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Abstract: We designed and implemented a stream cipher cryptosystem based 
on an efficient chaotic generator of finite computing precision (N = 32). The 
proposed structure of the chaotic generator is formed by a Key-setup, an IV-
setup, a non-volatile memory, an output and an internal state function. The 
cryptographic complexity mainly lies in the internal state containing two 
recursive filters, with one, two or three delays. Each recursive filter includes a 
perturbation technique using a linear feedback shift register. The first recursive 
filter includes a discrete skew tent map, and the second one includes a discrete 
piecewise linear chaotic map. The chaotic generator is implemented in 
sequential and parallel versions using Pthread library in a secure manner. The 
proposed Stream ciphers have very good performance in terms of security and 
execution time. Experimental results highlight the robustness of the proposed 
system against known cryptographic and statistical attacks. 
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1 Introduction 

Cryptography was used in the past to keep military information and diplomatic 
correspondence secure and to protect national security. In recent times, the range of 
cryptography applications has been widely expanded, following the development of new 
communication means. Cryptography is used to ensure that the contents of a message are 
confidentially transmitted and cannot be altered. Chaos is one interesting field of research 
dealing with nonlinear, deterministic, and dynamic systems. It is applied to many 
different domains such as physics, robotics, biology, finance and encryption. The most 
important chaos properties are the high dependency on initial conditions and parameter 
variation, ergodicity and the random-like behaviour. These properties entice researchers 
to develop chaotic secure communication systems (Kocarev, 2001; El Assad and 
Farajallah, 2016; Farajallah et al., 2016; Setti et al., 2005; Cimatti et al., 2007; Abu Taha 
et al. 2015; Arlicot, 2014; Caragata et al., 2010; Chetto et al., 2014). Under certain 
conditions, chaos can be generated by any nonlinear dynamic system (Smale, 1967). For 
public channels including network communication and for computer communication, 
most data transactions (valuable information) need to be protected from malicious attacks 
and threats (Li and Lee, 2016; Masoumi et al., 2016; Jo and Koh, 2016). A block 
symmetric cipher is one of the classical encryption technique widely used in the 
literature. The Advanced Encryption Standard (AES) is one of the most famous 
symmetric encryption for block ciphers. The stream cipher is used to secure useful 
information that must be transmitted continuously over the network communication for 
example. Generally stream ciphers are more efficient than block ciphers in two situations: 

1 in software applications requiring a very high encryption or decryption rate 

2 in hardware applications where physical resources(e.g., chip area, power, etc) are 
restricted. 

Handling a stream cipher encryption with block ciphers is possible by using counter and 
output feedback modes (CTR, OFB). Because the AES is very secure and widely 
adopted, its two modes, namely CTR and OFB are used as stream ciphers. However, to 
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benefit from both advantages of stream ciphers compared to block ciphers, several stream 
cipher designs such as RC4 and eSTREAM algorithms have been produced. RC4 is one 
of the widely known stream ciphers and a hardware implementation was performed in an 
efficient way by Gupta et al. (2013). However, RC4 is now broken. The eSTREAM 
project was a multi-year effort, running from 2004 to 2008, to promote the design of 
efficient and compact stream ciphers suitable for the widespread adoption of Estream 
(eSTREAM, 2008). Nevertheless, until now most of the eSTREAM ciphers are still not 
definitely secure (Manifavas et al., 2015). Chaos-based stream ciphers are used to 
enhance the security issue (Machicao et al., 2012). 

In this paper, we propose a new chaos-based stream cipher. The proposed system is 
based on an efficient chaotic generator using two chaotic recursive filters, a technique of 
disturbance and chaotic multiplexing. The remainder of the paper is structured as follows. 
The next section reviews the related work and Section 3 recalls the main technique used 
in parallel programming. The structure of the proposed stream cipher is described in 
Section 4. We detail the description of the proposed chaotic generator in Section 4.1 and 
Section 4.2 provides its parallel implementation. Next Section 4.3 gives the computation 
performance of the generator. In Section 5, we set out the performance of the stream 
cipher in terms of encryption speed and security using known cryptographic and 
statistical attacks. Finally, Section 6 concludes our contribution and outlines some 
directions for future work. 

2 Related work 

In the following paper we recall the main related works in standard and chaos-based 
stream ciphers. 

2.1 AES-CTR and eSTREAM software 

AES-CTR mode 

Counter mode, a standard introduced by Diffie and Hellman in 1979 is one of the best 
known modes used for stream ciphers. Counter mode switches a block cipher into a 
stream one. It generates the next keystream block by encrypting successive values of a 
counter. After each block encryption, the counter must be different and this can be done 
simply by incrementation of the counter by some constant, typically one. CTR mode has 
significant efficiency advantages over the standard encryption modes without weakening 
the security. In particular its tight security has been proven. On the other hand most of the 
perceived disadvantages of CTR mode are not valid criticisms, but rather caused by a 
lack of knowledge (Lipmaa et al., 2000). 

Rabbit 

Rabbit is a stream cipher algorithm. Its rose/developed as a fast software encryption 
method in 2004. It is one of the most effective algorithm developed in the eSTREAM 
project. Rabbit is directed to be used in both software and hardware applications. The 
Rabbit Algorithm takes a 128-bit key and a 64-bit IV vector as input. At each iteration it, 
generates a 128-bit output. The output is pseudo-random in its nature. The heart of this 
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cipher consists of 513 internal state bits. Clearly the output generated in each iteration is 
some combination of these state-bits. The 513 bits are divided into eight 32-bit state 
variables, eight 32-bit counters and one counter carry bit. The state functions which 
update these state variables are nonlinear and thus build the basis of the security provided 
by this cipher (Boesgaard et al., 2005; eSTREAM, 2008). The designers provided the 
security analysis considering several possible attacks: algebraic, correlation, and 
statistical attacks. They conclude that no huge weakness of Rabbit has been found. 
However in 2009, Kircanski and Youssef in their paper provide a differential fault 
analysis attack on Rabbit algorithm. The fault model in which they analyse the cipher is 
the one in which the attacker is assumed to be able to fault a random bit of the internal 
state. The attack requires around 128–256 faults, a precomputed table of size around 
241.6 bytes, this technique enables to recover the complete internal state of Rabbit in 
about 238 steps. 

Salsa20/r 

Salsa20/r is one of the eSTREAM finalist algorithms for software implementation, where 
r = 8, 12, 20 represents the number of iterations of the round function. The algorithm is 
constructed on a pseudo-random function based on a 32-bit addition, bitwise XOR and 
rotation operations, which maps a 256-bit key, a 64-bit nonce (IV initial vector), and a 
64-bit stream position to a 512-bit output (Bernstein, 2008; eSTREAM, 2008). The 
Salsa20/8 version is very fast but not secure enough. Its weakness comes from a 
differential cryptanalysis performed by Tsunoo et al. (2007). Salsa20/12 and Salsa20/20 
algorithms seem to be secure so far, because no better attack than the brute-force attack 
has been reported. 

HC-128 and HC-256 

HC-128 is an efficient software stream cipher, which consists of two secret tables, each 
one with 512 32-bit elements. At each step they update one element from one of the two 
tables using a nonlinear feedback function. All the elements of the two tables are updated 
every 1,024 steps. At each step, one 32-bit output is generated from the nonlinear output 
function. HC-256 is a new version that differs from HC-128 by the size of secret tables 
which is 1,024 32-bit elements instead of 512 32-bit ones. All the elements of the two 
tables are updated every 2,048 steps. At each step, HC-256 produces one 32-bit output 
(Wu, 2008, 2004; eSTREAM, 2008). However, in 2010, Kircanski and Youssef provide 
in a differential fault analysis attack on HC-128 their paper. The attack is based on the 
fact that, some of the inner state words of HC-128 may be exploited several times without 
being updated. Consequently, the complete internal state is recovered using about 7968 
faults. 

SOSEMANUK 

SOSEMANUK is a software stream cipher that has a key length ranging from 128 to 256 
bits. It takes an initial value IV vector of 128 bits. SOSEMANUK has two main 
components: a linear feedback shift register (LFSR) and a finite state machine (FSM). 
The LFSR operates on 32-bit words and at every clock a new 32-bit word is computed. 
The FSM has two 32-bit memory registers: at each step the FSM takes an input word 
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from the LFSR, updates the memory registers and produces a 32-bit output (Berbain et 
al., 2008; eSTREAM, 2008). In 2011, Salehani et al. (2011) made a differential attack on 
SOSEMANUK. The attack needed around 6144 faults to recover the secret inner state of 
the cipher. 

2.2 Chaos-based stream cipher 

Abderrahim et al. (2014) in their paper propose a chaos-based stream cipher based on 
symbolic dynamic description and synchronisation. Their main contribution concerns a 
pseudo-random number generator (PRNG) based on an appropriate mixture of perturbed 
chaotic maps. The synchronisation of the emitter/receiver is performed by a symbolic 
dynamic-based method. One of the characteristics of their proposed stream cipher is that 
the chaotic symbolic dynamic sequences are easy to produce. The obtained bit rate, with 
an Intel Core i7 processor clocked at 3.5 GHz, and 8G of RAM is 10 Mbps. Lu et al. 
(2004), proposed a one-way-coupled chaotic map lattice for cryptography of a  
self-synchronising stream cipher. The system performs an analytical computation into 
real numbers, and incorporates some algebraic operations on integer numbers. The 
encryption/decryption operation is done in parallel using multiple chaotic maps. The 
authors claim that the system has a good security level, and good reliability against strong 
channel noise. They provide an encryption speed (around 914 Mbps on a 2 GHz CPU). In 
2007, Li et al. published a stream cipher also based on a spatiotemporal chaotic system as 
done previously in Lu et al. (2004). The chaotic system uses coupled logistic maps, and 
simple algebraic computations. The system produces parallel keystreams for encrypting 
plaintexts via bitwise XOR. Security analysis is performed to prove the robustness of the 
system. The encryption speed is 700 Mbits in a computer with a 1.8 GHz CPU and 1.5 
GB RAM. The eSTREAM project ciphers have better performance in time than the three 
chaos-based stream ciphers. In the following sections we will describe our chaos-based 
stream cipher in sequential and parallel implementation. 

3 Parallel programming techniques 

As processors’ speeds no longer significantly increase, multicore systems have become 
more popular. Thus to benefit from these systems, programmers have turned to parallel 
programming. Therefore, programmers have to deal more and more with parallel 
programming. Parallelism is achieved thanks to multiple processes running at the same 
time on multiple processors (Rani, 2011). It explicitly breaks the task down into small 
units of execution, where each unit can be executed in parallel on a single processor. In 
this way multiple parts of the same task can run in parallel (Sinnen, 2007; Lozi et al., 
2016). Parallel programming can be implemented using several different software 
interfaces, or parallel programming models. The programming model used in any 
application depends on the underlying hardware architecture of the system on which the 
application is expected to run: shared memory architecture or distributed memory 
environment. In shared-memory multiprocessor architectures, threads can be used to 
implement parallelism. Threads are lightweight processes, existing within a single 
operating system process. Threads share the same memory address space and state 
information of the process that contains them. Parallel programming can be implemented 
for shared memory systems using automatic parallelisation (Banerjee et al., 1993), 
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POSIX threads (Butenhof, 1997) and Solaris threads (Butenhof, 1997), or OpenMP 
(Dagum and Enon, 1998). Among distributed memory programming models, the message 
passing interface (MPI) model (Gropp et al., 1996) is commonly used to parallelise 
applications. MPI is a very explicit programming model. The programmer implements 
the distribution of the tasks, communication between them, and decides how the work is 
allocated between the various threads. With the emergence of multi-core systems, hybrid 
programming models have also been developed. Within a single node, fast 
communication through shared memory can be exploited, and a networking protocol can 
be used to communicate across the nodes. Programs can then take advantage of both 
shared memory and distributed memory. In our parallel implementation we used POSIX 
threads. 

4 Description of the proposed chaos-based stream cipher 

In this section we present a synchronous stream cipher based on a novel chaotic generator 
with its two implemented versions (sequential and parallel). In sequential 
implementation, each generator call produces a 32-bit sample that is immediately 
converted into 4 bytes and stored in a buffer, before being Xored with 4 bytes from the 
plaintext to obtain 4 ciphered bytes and so on. In the parallel implementation, each 
generator call produces four 32-bit samples that are immediately converted into 16 bytes 
stored in a buffer and then Xored with 16 bytes from the plaintext. Here, a question of 
synchronisation between generated samples arises after each generator call. More details 
about this question are given in Section 4.2. For a given plaintext data, the generator 
produces the necessary keystreams to obtain ciphering data. In Figure 1 the general 
structure of stream cipher encryption and decryption processes are shown. 

Figure 1 Stream cipher encryption/decryption structure 

 

As with any encryption system, the secret key K and the initial IV vector must be shared 
between the sender and the receiver. The key must be kept secret while the IV vector is 
not necessarily kept secret but must be a nonce. The common method to share the secret 
K between the two parties is a symmetric key distribution based on either symmetric 
encryption using a key distribution centre (KDC) or asymmetric encryption using the 
RSA (Rivest, Adi Shamir and Leonard Adleman) algorithm (Stallings, 2006). The IVg is 
changed every new session as a key session. 
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4.1 Description of the proposed chaotic generator 

The architecture of the proposed chaotic generator is composed of several black-boxes as 
presented in Figure 2. The detailed description of the internal state and the output 
function is given in Figure 3. The secret key K, the initial vector Nonce IVg and 
parameters are the inputs of the chaotic generator. From these inputs, the IV-setup 
computes another three IVs values and the Key-setup, in case of parallel 
implementation, creates another three keys. Then, four IVs and four keys will be used by 
four threads in the system. Since chaos is sensitive to any small changes in the secret key, 
the creation of each new key in the Key-setup entity is achieved by the circular shift 
rotation of the three bit value of K1_s,K1_p parameters (see Figure 3). Moreover, the 
creation of each new IV in the IV-setup entity is achieved by the circular shift rotation 
of the three-bit value of U_s, U_p. Before the execution of the program is completed, a 
new IV value is generated and stored in the non-volatile memory box. The generation of 
this new value comes from /dev/urandom Linux PRNG (Gutterman et al., 2006). The 
internal state, which contains the main cryptographic complexity of the system, is formed 
by two recursive filters of order three. The first recursive cell contains a discrete Skew 
tent map and the second one contains a discrete piecewise linear chaotic map (PWLCM). 
These maps are used as nonlinear functions. We give below the outputs of the recursive 
cell containing the Skew tent map and of the recursive cell containing the PWLC map 
respectively. Hence the output equation of the recursive cell Skew tent map is: 

{ }_ 1[ 1], 1 1X s STmap F n P Q= − ⊕  (1) 

with 

[ ]
3

1

1[ 1] mod _ ( )_ ( )_ , 2N

i

F n U s K i s X n i s
=

⎡ ⎤
− = + × −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (2) 

And the output equation of the recursive cell PWLC is: 

{ }_ 2[ 1], 2 2X p PWLCmap F n P Q= − ⊕  (3) 

with 

[ ]
3

1

2[ 1] mod _ ( )_ ( )_ , 2N

i

F n U p K i p X n i p
=

⎡ ⎤
− = + × −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (4) 

In the equations above, P1 and P2 are control parameters in the range [1, 2N − 1] and  
[1, 2N−1 − 1] respectively. Q1 and Q2 are perturbing signals produced by the LFSRs. 
K1_s, K2_s, K3_s, K1_p, K2_p, K3_p are the coefficients of the recursive cells in the 
interval [1; 2N − 1 ]. U_s and U_p, each of 32 bits, represent IVg of 64 bits. The 
equations of the discrete skew tent and discrete PWLCM maps are respectively given by 
(Masuda and Aihara, 2002; Lian et al., 2007; El Assad, 2012; Desnos et al., 2014): 
discrete skew tent map: 
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Discrete PWLCM map: 
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 (6) 

Figure 2 Architecture of the proposed generator with internal feedback mode (see online version 
for colours) 

 

The values produced Xs[n], Xp[n] by the recursive cells in the internal state are 
entered to the output function. Then, the output sequence Xg(n) is obtained using a 
chaotic multiplexing controlled by the chaotic sequence X1s(n − 1) ⊕ X1p(n − 1) and by a 
threshold Th = 2N−1, as shown in Figure 3. The output sequence is defined as follows: 

[ ], if 0 _ [ 1] _ [ 1]
( )

[ ], otherwise
Xs n X s n X p n Th

Xg n
Xp n

< − ⊕ − <=⎧
= ⎨
⎩

 (7) 
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Figure 3 Detailed description of the internal state and the output function 

 

4.2 Parallel implementation of the chaotic generator using Pthread 

Usually a multi thread process launches several threads that run concurrently. In our 
implementation, we parallelised the sequential version of our chaotic generator using the 
standard API used for implementing multithreaded applications, namely POSIX Threads 
or pthread (Pacheco, 2011). pthread is a library of functions that programmers can use to 
implement parallel programs. Unlike MPI, pthread is used to implement shared-memory 
parallelism. It is not a programming language (such as C or Java). It is a library that can 
be linked with C programs. The source code is compiled with gcc and using the -lpthread 
option. In our multithreaded approach, data sequences are partitioned among several 
threads. Threads execute the same instructions on different data sets. The number of 
samples to be processed and the starting point of the samples’ subset data are different for 
each thread. The different threads are created and launched via a call to pthread create(). 
In our case, we create a number of threads equals to the number of cores chosen in our 
system. The function pthread create() takes the thread as parameter. Each thread will call 
the computation function. This function ensures the generation of the samples and the 
conversion to bytes. Then the computed sequences from threads will be stored in a buffer 
in a systematic manner to gain a maximum performance. Each sequence from each thread 
is then stored consecutively as illustrated in Figure 4. In the main() function, we wait for 
the termination of all threads by calling the pthread join() function. To describe the 
decomposition of the sequences among the threads, we give the following example: 
consider that 4 cores are available on the platform and that the sequence length is  
seq length = 3,125,000 samples. Four threads will then be created. The first thread 
computes samples from index imin = 0 * 3,125,000/4 = 0 to index imax =(0 + 1) * 
(3,125,000/4) − 1 = 781249. The second thread computes samples from index imin = 1 * 
3,125,000/4 = 781,250 to index imax = (1 + 1) * (3,125,000/4) − 1 = 1,562,499 and so on 
until the last thread that will compute the rest of samples. The remainder of samples that 
resulted from the division of the number of sequences to the number of threads, if it exist, 
will also be computed by the last thread. Samples from each thread are stored in a shared 
result array, each thread filling specific index values. 
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Figure 4 Storing of samples that generated by different threads 

 

4.3 Computing performance of the chaotic generator 

To evaluate the computing performance of the proposed chaotic generator we performed 
some experiments using a two 32-bit multi-core Intel Core (TM) i5 processors running at 
2.60 GHz with 16 G of memory. This hardware platform was used on top of an Ubuntu 
14.04 Trusty Linux distribution. Here after, for different sizes of data bytes, we give the 
average generation time in micro second GT (μs), the average bit rate en Mega bit par 
second BR(Mbit/s), and the average of the required number of cycles to generate one 
byte, NCpB(Cycles/B). The average is determined by using 100 different secret keys for 
each data size. For parallel implementation we choose 4 threads in parallel running on a 
four-cores platform. The results obtained for GT (μs), BR(Mbit/s) and NCpB(Cycles/B) 
are given in Tables 1, 3 and 4 and are depicted in Figures 5, 6 and 7 for sequential and 
parallel implementation. The number of cycles required to generate one byte NCpB is 
given by: 

(Hertz)

(Byte/s)

CPU Speed
NCpB

Db
=  (8) 

Table 1 Generation time for sequential and parallel generators 

Data (bytes) GT/Seq (μs) GT/Parl (μs) 
64 6 705 
128 8 726 
256 11 743 
512 19 753 
1,024 32 763 
2,048 57 801 
4,096 109 810 
16,384 332 835 
32,768 520 847 
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Table 1 Generation time for sequential and parallel generators (continued) 

Data (bytes) GT/Seq (μs) GT/Parl (μs) 

64 6 705 

65,536 712 764 

125,000 1282 1325 

196,608 1830 1869 

393,216 2902 2436 

786,432 5502 4835 

3,145,728 21723 19539 

12,582,912 85009 49154 

Table 2 NCpB performance of some PRNG 

PRNG NCpB (cycles/B) 

Wang et al. (2016) 160 

Akhshani et al. (2014) 45 

Jallouli et al. (2016) 24.68 

Proposed algorithm 17.3 

Table 3 Bit rate for sequential and parallel generators 

Data (bytes) BR/Seq (Mbit/s) BR/Parl (Mbit/s) 

64 85.33 0.73 

128 128 1.41 

256 186.18 2.76 

512 215.58 5.44 

1,024 256 10.74 

2,048 287.44 20.45 

4,096 300.62 40.45 

16,384 394.8 156.97 

32,768 504.12 309.5 

65,536 736.36 686.24 

125,000 780.03 754.72 

196,608 859.49 841.55 

393,216 1,083.99 1,291.35 

786,432 1,143.49 1,301.23 

3,145,728 1,158.49 1,287.98 

12,582,912 1,184.15 2,047.92 
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Table 4 NCpB for sequential and parallel generators 

Data (bytes) NCpB-S (cycles/B) NCpB-P (cycles/B) 

64 232.5 27,173.2 
128 155 14,068.4 
256 106.5 7,187.1 
512 92 3,646.4 
1,024 77.5 1,847 
2,048 69 970 
4,096 66 490.4 
16,384 50.2 126.4 
32,768 39.3 64.1 
65,536 26.9 28.9 
125,000 25.4 26.3 
196,608 23.1 23.6 
393,216 18.3 15.4 
786,432 17.3 15.2 
3,145,728 17.1 15.4 
12,582,912 16.8 9.7 

As we can see from these results, the parallel implementation is only better for data size 
equal to or bigger than 393,216 bytes. This is due to the overhead time caused by the 
synchronisation between threads. In Table 2 we compare our obtained results in terms of 
NCpB with some known chaos-based generators, for data size equal to 786,432 bytes that 
correspond to a image size of 512 * 512 * 3. As we can see, the obtained performance is 
good. 

Figure 5 Generation time for parallel and sequential generators (see online version for colours) 
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Figure 6 Bit Rate for parallel and sequential generators (see online version for colours) 

 

Figure 7 NCpB for parallel and sequential generators (see online version for colours) 

 

5 Encryption speed and security analysis of the proposed stream cipher 

5.1 Time performance 

The computation performance is determined by: the average encryption time Enc T(μs), 
the average encryption throughput ET(Mbit/s) defined in equation (9), and the  
average number of cycles to encrypt one byte NCpB(Cycles/B) defined previously in 
equation (8). 
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Size

Time

Image (Mbit)ET
Encryption ( )s

=  (9) 

Table 5 Performance results of proposed sequential stream cipher with different data bytes 

Data in bytes Enc-T(μs) Seq/Parl ET (Mbit/s) Seq/Parl NCpB (cycles/B) Seq/Parl 

512 21/778 213.01/5.31 92.9/3,650.7 

1,024 33/792 259.1/11.1 78.2/1,889 

2,048 60/806 286.5/19.9 70.2/973 

4,096 116/822 299.3/39.3 67.0/491.3 

49,152 659/1,619 569.0/231.6 34.8/85.6 

196,608 2,455/2,419 610.9/620.0 31.9/31.2 

786,432 9,088/8,099 660.2/740.8 30.0/26.7 

3,145,728 35,560/24,190 674.9/978.8 29.3/20.2 

12,582,912 121,899/88,597 787.5/1,083.5 25.1/18.3 

50,331,648 398,089/319,785 964.6/1,200.8 20.5/16.5 

We report in Table 5 and in Figures 8, 9, 10 the obtained results of the computation 
performance for sequential and parallel implementation of the proposed stream cipher. 
The decryption time is approximatively equal to the encryption time. 

For big data size, from 196,608 bytes upwards, the parallel implementation is better 
than the sequential one and on average the NCpB of the stream cipher takes 
approximatively eight cycles more compared to the NCpB of the chaotic generator. 

Figure 8 Encryption time for parallel and sequential cryptosystem (see online version  
for colours) 
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Figure 9 Encryption throughput for parallel and sequential cryptosystem (see online version  
for colours) 

 

Figure 10 NCpB for parallel and sequential cryptosystem (see online version for colours) 

 

In Table 6, we report a comparison of time computation for the proposed algorithm (for 
different data size images of Lena) with three chaos-based algorithms and the most 
Known stream ciphers of eStream project (Maxime, 2016). For big data, the proposed 
algorithm has better results than Abderrahim et al. (2014) and Lu et al. (2004). We also 
observed that the time computation of eStream’s algorithms is better than the proposed 
system until we reach the big data size, for which, our system will be faster. For very big 
data size (201,326,592) such as videos, the obtained NCpB is around 9. In addition, the 
proposed chaotic system has a strong nonlinearity compared to the other systems thus, its 
robustness against cryptographic attacks is higher. 
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Table 6 Performance results comparison of some stream ciphers 

Stream cipher-Alg Image size (B) Enc-time (μs) ET (Mbit/s) NCpB (cycles/B) 

Abderrahim et al. - - 10 2,800 
Hauping et al. - - 914 17 
Ping et al. - - 700 20 
Rappit 256 × 256 × 3 811.3 1,848.8 9.5 

512 × 512 × 3 3,256 1,842.6 9.5 
1,024 × 1,024 × 3 12,950 1,853.9 9.5 

HC-128 256 × 256 × 3 1,221 1,228.1 14.4 
512 × 512 × 3 4,895 1,225.6 14.4 

1,024 × 1,024 × 3 19,647 1,221.5 14.4 
Salsa20/12 256 × 256 × 3 836.4 1,793.4 9.8 

512 × 512 × 3 3,389 1,770 9.9 
1,024 × 1,024 × 3 13,483 1,779.9 9.9 

SOSEMANUK 256 × 256 × 3 880.3 1,704 10.3 
512 × 512 × 3 3,570 1,680 10.5 

1,024 × 1,024 × 3 14,134 1,698 10.4 
AES-CTR - - - 21.2 
Proposed chaos 
stream cipher 
(Seq) 

256 × 256 × 3 2,455 610.9 31.9 
512 × 512 × 3 9,088 660.2 30.0 

1,024 × 1,024 × 3 35,560 674.9 29.3 
Proposed chaos 
stream cipher 
(Parl) 

256 × 256 × 3 2,419 620 31.2 
512 × 512 × 3 8,099 740.8 26.7 

1,024 × 1,024 × 3 24,190 978.8 20.2 
201,326,592 1,200,178 1,881 8.8 

5.2 Security analysis 

In this section we evaluated the software security implementation and the security of the 
proposed chaotic system against cryptanalytic and statistic attacks. 

5.2.1 Software security implementation 

Software security analysis is another crucial factor to ensure the quality of the source 
code and to restrict all security threats. Because it is still possible to read data out of 
memory even if the application no longer has pointers to it, it is necessary to incorporate 
data security within the source code. In cryptographic applications, sensitive information 
(e.g., secret keys) must be kept in memory for the minimum amount of time possible and 
should be written over/deleted, not just released, when no longer needed. One first step 
consists in erasing such sensitive data from memory once it is no longer needed in order 
to prevent any security attacks. The idea is to zero-fill buffers which contained sensitive 
information. In practice, we used the following functions to decontaminate (i.e., zero) a 
buffer and guarantee that the compiler will not optimise it away: the secure_memzero() 
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function depends on a function pointer memset ptr that itself points to the memset() 
function. It uses the key and the key size and will put zero value on the allocated 
memory related to the key by call memset(). The function memset() is invoked to write 
a specific value in a buffer that was allocated previously. We used this function to write a 
zero value in the buffer. While Some compilers optimise away the call to memset() 
function. To overcomes this, we declared memset ptr as a volatile pointer. Since a 
volatile pointer can be manipulated outside the scope of the application, the code is not 
optimised by the compiler, thus keeping the program unchanged. Furthermore, the data in 
main memory may leak to the disk through virtual memory, thus representing another 
source of the most serious leaks (leaks to physical mediums). One solution, which is 
sufficient to include, is to deactivate the swap space altogether, thus preventing data from 
being written to the page file by locking it in memory. In our code, we used the mlock() 
function that locks pages in the address range starting at the address and continuing for 
byte lengths. All pages that contain a part of the specified address range are secured to be 
resident in the main memory when the call returns successfully. Then, the pages are 
guaranteed to stay in the main memory until later unlocked. 

In order to guarantee the validity of our solution, we carried out a security code 
review using several static and dynamic techniques: Clang, Gdb, Valgrind, DRD, 
Callgrind and leak-analysis tools. Results match up well with the security level requested 
by our chaos-based stream cipher (Taha et al., 2016). 

5.2.2 Cryptanalytic attacks 

The proposed system has the ability to resist common attacks such as ciphertext only 
(Siegenthaler, 1985), chosen plaintext attack, brute force attack, and key sensitivity 
attack. Indeed, encrypting an image several times using the same secrete key, produces 
totally different ciphered images. This is due to the IV-setup block. 

Key space 

The size of the secret key, formed by all the initial conditions and by all the parameters of 
the system, varies from 299 bits, with delay = 1, to 555 bits, with delay = 3. This means 
that the brute force attack is impracticable. 

Key security and sensitivity attack 

From the generated sequences it is impossible to find the secret key and this is because of 
the structure of the chaotic generator which in addition includes a chaotic switching. The 
knowledge of part of the secret key is not very useful for an attacker because of the 
intrinsic property of chaotic signal, which is extremely sensitive to the secret key. 
Besides, we computed the average hamming distance (HD) (of 100 secret keys) of two 
Keystreams generated each time with two secret keys that differ only by one bit and the 
result obtained is equal to 0.499993, therefore very close to 50%. In conclusion, the 
produced keystreams are highly secure. A cryptosystem must be sensitive to one bit 
change per key used. This property is important in order to resist many attacks (Lian  
et al., 2005). To test the key sensitivity of the proposed chaos stream cipher, we 
encrypted ‘Lena’ image 100 times using 100 secrete keys that differ only by the LSB bit. 
Then we computed the following parameters: the number of pixel change rate (NPCR), 
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the unified average changing intensity (UACI) and the HD. The parameters (NPCR, 
UACI) are necessary but not sufficient to ensure that the proposed cryptosystem is 
resistant against the key sensitivity attack. For this reason, we add the HD measurement 
(Mar and Latt, 2008). 

The NPCR and UACI, introduced by Eli Biham and Adi Shamir (Biham and Shamir, 
1991) are given by the following equations: 

1 1 1

1 ( , , ) 100%
P L C

p i j
NPCR D i j p

L C P = = =
= × ×

× × ∑ ∑ ∑  (10) 

where 

1 2

1 2

0, if ( , , ) ( , , )
( , , )

1, if ( , , ) ( , , )
C i j p C i j p

D i j p
C i j p C i j p

=⎧
= ⎨ ≠⎩

 (11) 

1 21 1 1

1 ( , , ) ( , , ) 100%
255

P L C

p i j
UACI C i j p C i j p

L C P = = =
= × − ×

× × × ∑ ∑ ∑  (12) 

In the previous equations, i, j and p are the row, column, and plane indexes of the image, 
respectively. L, C and P are the length, width, and plane sizes of the image respectively. 
The optimal NPCR and UACI values are 99.61% and 33.46% respectively (Wu et al., 
2011). 

The HD is defined by: 

( ) ( )
| |

1 2 1 2
1

1, ( ) ( )
| |

Ib

K

HD C C C K C K
Ib =

= ⊕∑  (13) 

where |Ib| = L × C × P × 8, is the size of the image in bits. The optimum HD value is 
50%. A good stream cipher should produce an HD close to 50% (Wang et al., 2014). 
Table 7 indicates that the NPCR, UACI and HD values of the proposed stream cipher are 
very close to optimal values. Consequently a high resistance to differential attack is 
achieved. 
Table 7 The NPCR, UACI and HD 

Cryptosystem NPCR UACI HD 

Proposed cipher cryptosystem 99.665 33.459 0.499999 

5.3 Statistical analysis 

5.3.1 NIST test 

To evaluate the statistical performances of the Key stream produced, we also used one of 
the most popular standards for investigating the randomness of binary data, namely the 
NIST statistical test (Barker and Kelsey, 2012). This test is a statistical package that 
consists of 188 tests that were proposed to assess the randomness of arbitrarily long 
binary sequences. We applied the NIST test to many ciphered texts, and all the NIST 
results obtained, are as expected (good NIST values). In Figure 11 we present one of the 
NIST result obtained. This means that the ciphered texts have a high randomness. 
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Figure 11 NIST test key stream results (see online version for colours) 

 

5.3.2 Histogram and chi-square test 

A cryptosystem is considered to be strong against statistical attacks, if the histogram of 
the ciphered text is uniformly distributed. Visually, the uniformity test is necessary, but it 
is not sufficient. The chi-square test is applied to statistically confirm the uniformity of 
the histogram: 

( )21
2
exp

0

Q
i i

ii

o eχ
e

−

=

−
=∑  (14) 

In equation (14), Q is the number of levels (here Q = 256), oi is the observed occurrence 
frequency of each colour level (0–255) on the histogram of the ciphered image, and ei is 
the expected occurrence frequency of the uniform distribution, given here by  

.i
L C Pe

Q
× ×

=  For a secure cryptosystem, the experimental chi-square value must be less 

than the theoretical chi-square one, which is 293 in case of α = 0.05 and Q = 256. In 
Figures 12, 13 and 14 we give the histograms for the plain/cipher images for lena, Boat 
and Camera man images on size 512 * 512 * 3. As we can see the histogram of the 
ciphered image seems to be uniform. To assess the uniformity, we performed the chi 
square test with the following parameters: alpha = 0.05, and number of classes equal to 
256. Experimental value obtained is less than the theoretical one that equal 293. This 
means that the histogram is uniform (see Table 8). 
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Figure 12 Histogram of the Lena plain image and its ciphered image, (a) Lena plain image  
(b) Lena cipher image (c) histogram for plain image (d) histogram for the cipher image 
(see online version for colours) 

  
(a)     (b) 

   
(c)     (d) 

Figure 13 Histogram of the boat plain image and its ciphered image, (a) boat plain image  
(b) boat cipher image (c) histogram for plain image (d) histogram for the cipher image 
(see online version for colours) 

   
(a)     (b) 
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Figure 13 Histogram of the boat plain image and its ciphered image, (a) boat plain image  
(b) boat cipher image (c) histogram for plain image (d) histogram for the cipher image 
(continued) (see online version for colours) 

  
(c)     (d) 

Figure 14 Histogram of the camera man plain image and its ciphered image, (a) camera man 
plain image (b) camera man cipher image (c) histogram for plain image (d) histogram 
for the cipher image (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Table 8 Chi-square value for ciphered Lena, boat and C-man with different sizes 

Image Experimental value Theoretical value 

Lena 256 × 256 × 3 261.085938 293.247835 
Lena 512 × 512 × 3 263.013852 293.247835 
Lena 1,024 × 1,024 × 3 270.300127 293.247835 
Boat 256 × 256 × 3 260.186354 293.247835 
Boat 512 × 512 × 3 266.465369 293.247835 
Boat 1,024 × 1,024 × 3 272.669811 293.247835 
C-man 256 × 256 × 3 261.339680 293.247835 
C-man 512 × 512 × 3 267.317852 293.247835 
C-man 1,024 × 1,024 × 3 274.397541 293.247835 

5.3.3 Correlation analysis 

Correlation analysis is also one of the statistical attacks that are used to cryptanalyse the 
cryptosystem. The attacker should not have any information of the used secret key or any 
partial information on the original plain image. This means that the encrypted image 
should be extremely different from its original version. Correlation analysis is one of the 
regular and standard methods to measure this property. Indeed, it is well-known that 
adjacent pixels in the plain images are very redundant and correlated. Thus, in the 
encrypted images, adjacent pixels should have a redundancy and a correlation as low as 
possible. The following mathematical equations are used to calculate the correlation 
coefficient (Song et al., 2013): 

cov( , )
( ) ( )

xy
x yρ

D x D y
=  (15) 

where 

[ ][ ]( )
1

1cov( , ) ( ) ( )
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i i
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= − −∑  (16) 
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N

i
i

E x x
N =
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In the previous equations, xi and yi are the values of the two adjacent pixels in the plain 
image or the corresponding ciphered image. 
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Figure 15 Correlation of the boat plain image and its ciphered image, (a) plain image correlation 
of adjacent pixels (b) ciphered image correlation of adjacent pixels (see online version 
for colours) 

  
(a)     (b) 

To test the security of our proposed stream cipher algorithm, regarding to this type of 
attack, first N pairs of adjacent pixels in vertical, horizontal, and diagonal directions are 
selected from the plain image and its ciphered version. Figure 15 shows the correlation 
curves of the adjacent pixels in the horizontal direction for the plain image and its 
ciphered one. The values of their corresponding correlation coefficient are 0.96606 and 
0.0035. Similar results are obtained for the correlation in vertical and diagonal directions. 

6 Conclusions 

We proposed a new chaos-based stream cipher, useful for continuous communication as 
used in network communications. The heart of the system relies on a proposed chaotic 
generator that is designed and implemented in a secure and efficient manner with a 
sequential and parallel version. Its structure is modular, generic, and allow the production 
of high secure sequences. The performance in time for the proposed generator is better 
than other known PRNG. Also, For very big data size, the obtained performance results 
are better than other known stream ciphers. The proposed chaotic system is robust against 
cryptographic attacks. Furthermore, it has strong nonlinearity compared to the other 
systems. Indeed, the results obtained from the cryptographic analysis and of common 
statistical tests indicate the robustness of the proposed stream cipher. Our future work 
will focus on the design of chaos-based joint crypto-compression systems to secure 
videos: HEVC bitstream and MPEG-4. 
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