

 Int. J. Internet Technology and Secured Transactions, Vol. 7, No. 2, 2017 89

 Copyright © 2017 Inderscience Enterprises Ltd.

Design and efficient implementation of a chaos-based
stream cipher

Mohammed Abu Taha* and Safwan El Assad
Institut d’Electronique et de Télécommunications de Rennes (IETR),
Université de Nantes, France
Email: mohammad.abu-taha@etu.univ-nantes.fr
Email: safwan.el-assad@univ-nantes.fr
*Corresponding author

Audrey Queudet
Institut de Recherche en Communications et
Cybernétique de Nantes (IRCCyN),
Universit´e de Nantes, France
Email: audrey.queudet@univ-nantes.fr

Olivier Deforges
Institut d’Electronique et de Télécommunications de Rennes,
INSA de Rennes, France
Email: olivier.deforges@insa-rennes.fr

Abstract: We designed and implemented a stream cipher cryptosystem based
on an efficient chaotic generator of finite computing precision (N = 32). The
proposed structure of the chaotic generator is formed by a Key-setup, an IV-
setup, a non-volatile memory, an output and an internal state function. The
cryptographic complexity mainly lies in the internal state containing two
recursive filters, with one, two or three delays. Each recursive filter includes a
perturbation technique using a linear feedback shift register. The first recursive
filter includes a discrete skew tent map, and the second one includes a discrete
piecewise linear chaotic map. The chaotic generator is implemented in
sequential and parallel versions using Pthread library in a secure manner. The
proposed Stream ciphers have very good performance in terms of security and
execution time. Experimental results highlight the robustness of the proposed
system against known cryptographic and statistical attacks.

Keywords: stream cipher; chaotic generator; chaotic multiplexing; parallel
computing.

Reference to this paper should be made as follows: Abu Taha, M.,
El Assad, S., Queudet, A. and Deforges, O. (2017) ‘Design and efficient
implementation of a chaos-based stream cipher’, Int. J. Internet Technology
and Secured Transactions, Vol. 7, No. 2, pp.89–114.

Biographical notes: Mohammed Abu Taha received his MS in Informatics
from Palestine Polytechnic University, Hebron-Palestine. He is currently
pursuing his PhD from Nantes University, France. His research interests
include security of image and video, Linux-based real-time applications and
embedded systems, and parallel programming.

 90 M. Abu Taha et al.

Safwan El Assad joins the University of Nantes, France in September 1987,
where he is currently an Associate Professor. Since 2005, his main researches
are in chaos-based crypto and crypto-compression systems for secure
transmitted and stocked data.

Audrey Queudet graduated in Computer Engineering at Polytechnic School of
the University of Nantes (France). She is an Associate Professor at the
University of Nantes. Her research interests include real-time scheduling
theory, quality of service guarantees for soft real-time systems, and
Linux-based real-time operating systems and applications.

Olivier Deforges received his PhD in Image Processing in 1995. He is a
Professor with the National Institute of Applied Sciences (INSA) of Rennes
since 2005. His principal research interests are image and video lossy and
lossless compression, image understanding, fast prototyping, and parallel
architectures.

1 Introduction

Cryptography was used in the past to keep military information and diplomatic
correspondence secure and to protect national security. In recent times, the range of
cryptography applications has been widely expanded, following the development of new
communication means. Cryptography is used to ensure that the contents of a message are
confidentially transmitted and cannot be altered. Chaos is one interesting field of research
dealing with nonlinear, deterministic, and dynamic systems. It is applied to many
different domains such as physics, robotics, biology, finance and encryption. The most
important chaos properties are the high dependency on initial conditions and parameter
variation, ergodicity and the random-like behaviour. These properties entice researchers
to develop chaotic secure communication systems (Kocarev, 2001; El Assad and
Farajallah, 2016; Farajallah et al., 2016; Setti et al., 2005; Cimatti et al., 2007; Abu Taha
et al. 2015; Arlicot, 2014; Caragata et al., 2010; Chetto et al., 2014). Under certain
conditions, chaos can be generated by any nonlinear dynamic system (Smale, 1967). For
public channels including network communication and for computer communication,
most data transactions (valuable information) need to be protected from malicious attacks
and threats (Li and Lee, 2016; Masoumi et al., 2016; Jo and Koh, 2016). A block
symmetric cipher is one of the classical encryption technique widely used in the
literature. The Advanced Encryption Standard (AES) is one of the most famous
symmetric encryption for block ciphers. The stream cipher is used to secure useful
information that must be transmitted continuously over the network communication for
example. Generally stream ciphers are more efficient than block ciphers in two situations:

1 in software applications requiring a very high encryption or decryption rate

2 in hardware applications where physical resources(e.g., chip area, power, etc) are
restricted.

Handling a stream cipher encryption with block ciphers is possible by using counter and
output feedback modes (CTR, OFB). Because the AES is very secure and widely
adopted, its two modes, namely CTR and OFB are used as stream ciphers. However, to

 Design and efficient implementation of a chaos-based stream cipher 91

benefit from both advantages of stream ciphers compared to block ciphers, several stream
cipher designs such as RC4 and eSTREAM algorithms have been produced. RC4 is one
of the widely known stream ciphers and a hardware implementation was performed in an
efficient way by Gupta et al. (2013). However, RC4 is now broken. The eSTREAM
project was a multi-year effort, running from 2004 to 2008, to promote the design of
efficient and compact stream ciphers suitable for the widespread adoption of Estream
(eSTREAM, 2008). Nevertheless, until now most of the eSTREAM ciphers are still not
definitely secure (Manifavas et al., 2015). Chaos-based stream ciphers are used to
enhance the security issue (Machicao et al., 2012).

In this paper, we propose a new chaos-based stream cipher. The proposed system is
based on an efficient chaotic generator using two chaotic recursive filters, a technique of
disturbance and chaotic multiplexing. The remainder of the paper is structured as follows.
The next section reviews the related work and Section 3 recalls the main technique used
in parallel programming. The structure of the proposed stream cipher is described in
Section 4. We detail the description of the proposed chaotic generator in Section 4.1 and
Section 4.2 provides its parallel implementation. Next Section 4.3 gives the computation
performance of the generator. In Section 5, we set out the performance of the stream
cipher in terms of encryption speed and security using known cryptographic and
statistical attacks. Finally, Section 6 concludes our contribution and outlines some
directions for future work.

2 Related work

In the following paper we recall the main related works in standard and chaos-based
stream ciphers.

2.1 AES-CTR and eSTREAM software

AES-CTR mode

Counter mode, a standard introduced by Diffie and Hellman in 1979 is one of the best
known modes used for stream ciphers. Counter mode switches a block cipher into a
stream one. It generates the next keystream block by encrypting successive values of a
counter. After each block encryption, the counter must be different and this can be done
simply by incrementation of the counter by some constant, typically one. CTR mode has
significant efficiency advantages over the standard encryption modes without weakening
the security. In particular its tight security has been proven. On the other hand most of the
perceived disadvantages of CTR mode are not valid criticisms, but rather caused by a
lack of knowledge (Lipmaa et al., 2000).

Rabbit

Rabbit is a stream cipher algorithm. Its rose/developed as a fast software encryption
method in 2004. It is one of the most effective algorithm developed in the eSTREAM
project. Rabbit is directed to be used in both software and hardware applications. The
Rabbit Algorithm takes a 128-bit key and a 64-bit IV vector as input. At each iteration it,
generates a 128-bit output. The output is pseudo-random in its nature. The heart of this

 92 M. Abu Taha et al.

cipher consists of 513 internal state bits. Clearly the output generated in each iteration is
some combination of these state-bits. The 513 bits are divided into eight 32-bit state
variables, eight 32-bit counters and one counter carry bit. The state functions which
update these state variables are nonlinear and thus build the basis of the security provided
by this cipher (Boesgaard et al., 2005; eSTREAM, 2008). The designers provided the
security analysis considering several possible attacks: algebraic, correlation, and
statistical attacks. They conclude that no huge weakness of Rabbit has been found.
However in 2009, Kircanski and Youssef in their paper provide a differential fault
analysis attack on Rabbit algorithm. The fault model in which they analyse the cipher is
the one in which the attacker is assumed to be able to fault a random bit of the internal
state. The attack requires around 128–256 faults, a precomputed table of size around
241.6 bytes, this technique enables to recover the complete internal state of Rabbit in
about 238 steps.

Salsa20/r

Salsa20/r is one of the eSTREAM finalist algorithms for software implementation, where
r = 8, 12, 20 represents the number of iterations of the round function. The algorithm is
constructed on a pseudo-random function based on a 32-bit addition, bitwise XOR and
rotation operations, which maps a 256-bit key, a 64-bit nonce (IV initial vector), and a
64-bit stream position to a 512-bit output (Bernstein, 2008; eSTREAM, 2008). The
Salsa20/8 version is very fast but not secure enough. Its weakness comes from a
differential cryptanalysis performed by Tsunoo et al. (2007). Salsa20/12 and Salsa20/20
algorithms seem to be secure so far, because no better attack than the brute-force attack
has been reported.

HC-128 and HC-256

HC-128 is an efficient software stream cipher, which consists of two secret tables, each
one with 512 32-bit elements. At each step they update one element from one of the two
tables using a nonlinear feedback function. All the elements of the two tables are updated
every 1,024 steps. At each step, one 32-bit output is generated from the nonlinear output
function. HC-256 is a new version that differs from HC-128 by the size of secret tables
which is 1,024 32-bit elements instead of 512 32-bit ones. All the elements of the two
tables are updated every 2,048 steps. At each step, HC-256 produces one 32-bit output
(Wu, 2008, 2004; eSTREAM, 2008). However, in 2010, Kircanski and Youssef provide
in a differential fault analysis attack on HC-128 their paper. The attack is based on the
fact that, some of the inner state words of HC-128 may be exploited several times without
being updated. Consequently, the complete internal state is recovered using about 7968
faults.

SOSEMANUK

SOSEMANUK is a software stream cipher that has a key length ranging from 128 to 256
bits. It takes an initial value IV vector of 128 bits. SOSEMANUK has two main
components: a linear feedback shift register (LFSR) and a finite state machine (FSM).
The LFSR operates on 32-bit words and at every clock a new 32-bit word is computed.
The FSM has two 32-bit memory registers: at each step the FSM takes an input word

 Design and efficient implementation of a chaos-based stream cipher 93

from the LFSR, updates the memory registers and produces a 32-bit output (Berbain et
al., 2008; eSTREAM, 2008). In 2011, Salehani et al. (2011) made a differential attack on
SOSEMANUK. The attack needed around 6144 faults to recover the secret inner state of
the cipher.

2.2 Chaos-based stream cipher

Abderrahim et al. (2014) in their paper propose a chaos-based stream cipher based on
symbolic dynamic description and synchronisation. Their main contribution concerns a
pseudo-random number generator (PRNG) based on an appropriate mixture of perturbed
chaotic maps. The synchronisation of the emitter/receiver is performed by a symbolic
dynamic-based method. One of the characteristics of their proposed stream cipher is that
the chaotic symbolic dynamic sequences are easy to produce. The obtained bit rate, with
an Intel Core i7 processor clocked at 3.5 GHz, and 8G of RAM is 10 Mbps. Lu et al.
(2004), proposed a one-way-coupled chaotic map lattice for cryptography of a
self-synchronising stream cipher. The system performs an analytical computation into
real numbers, and incorporates some algebraic operations on integer numbers. The
encryption/decryption operation is done in parallel using multiple chaotic maps. The
authors claim that the system has a good security level, and good reliability against strong
channel noise. They provide an encryption speed (around 914 Mbps on a 2 GHz CPU). In
2007, Li et al. published a stream cipher also based on a spatiotemporal chaotic system as
done previously in Lu et al. (2004). The chaotic system uses coupled logistic maps, and
simple algebraic computations. The system produces parallel keystreams for encrypting
plaintexts via bitwise XOR. Security analysis is performed to prove the robustness of the
system. The encryption speed is 700 Mbits in a computer with a 1.8 GHz CPU and 1.5
GB RAM. The eSTREAM project ciphers have better performance in time than the three
chaos-based stream ciphers. In the following sections we will describe our chaos-based
stream cipher in sequential and parallel implementation.

3 Parallel programming techniques

As processors’ speeds no longer significantly increase, multicore systems have become
more popular. Thus to benefit from these systems, programmers have turned to parallel
programming. Therefore, programmers have to deal more and more with parallel
programming. Parallelism is achieved thanks to multiple processes running at the same
time on multiple processors (Rani, 2011). It explicitly breaks the task down into small
units of execution, where each unit can be executed in parallel on a single processor. In
this way multiple parts of the same task can run in parallel (Sinnen, 2007; Lozi et al.,
2016). Parallel programming can be implemented using several different software
interfaces, or parallel programming models. The programming model used in any
application depends on the underlying hardware architecture of the system on which the
application is expected to run: shared memory architecture or distributed memory
environment. In shared-memory multiprocessor architectures, threads can be used to
implement parallelism. Threads are lightweight processes, existing within a single
operating system process. Threads share the same memory address space and state
information of the process that contains them. Parallel programming can be implemented
for shared memory systems using automatic parallelisation (Banerjee et al., 1993),

 94 M. Abu Taha et al.

POSIX threads (Butenhof, 1997) and Solaris threads (Butenhof, 1997), or OpenMP
(Dagum and Enon, 1998). Among distributed memory programming models, the message
passing interface (MPI) model (Gropp et al., 1996) is commonly used to parallelise
applications. MPI is a very explicit programming model. The programmer implements
the distribution of the tasks, communication between them, and decides how the work is
allocated between the various threads. With the emergence of multi-core systems, hybrid
programming models have also been developed. Within a single node, fast
communication through shared memory can be exploited, and a networking protocol can
be used to communicate across the nodes. Programs can then take advantage of both
shared memory and distributed memory. In our parallel implementation we used POSIX
threads.

4 Description of the proposed chaos-based stream cipher

In this section we present a synchronous stream cipher based on a novel chaotic generator
with its two implemented versions (sequential and parallel). In sequential
implementation, each generator call produces a 32-bit sample that is immediately
converted into 4 bytes and stored in a buffer, before being Xored with 4 bytes from the
plaintext to obtain 4 ciphered bytes and so on. In the parallel implementation, each
generator call produces four 32-bit samples that are immediately converted into 16 bytes
stored in a buffer and then Xored with 16 bytes from the plaintext. Here, a question of
synchronisation between generated samples arises after each generator call. More details
about this question are given in Section 4.2. For a given plaintext data, the generator
produces the necessary keystreams to obtain ciphering data. In Figure 1 the general
structure of stream cipher encryption and decryption processes are shown.

Figure 1 Stream cipher encryption/decryption structure

As with any encryption system, the secret key K and the initial IV vector must be shared
between the sender and the receiver. The key must be kept secret while the IV vector is
not necessarily kept secret but must be a nonce. The common method to share the secret
K between the two parties is a symmetric key distribution based on either symmetric
encryption using a key distribution centre (KDC) or asymmetric encryption using the
RSA (Rivest, Adi Shamir and Leonard Adleman) algorithm (Stallings, 2006). The IVg is
changed every new session as a key session.

 Design and efficient implementation of a chaos-based stream cipher 95

4.1 Description of the proposed chaotic generator

The architecture of the proposed chaotic generator is composed of several black-boxes as
presented in Figure 2. The detailed description of the internal state and the output
function is given in Figure 3. The secret key K, the initial vector Nonce IVg and
parameters are the inputs of the chaotic generator. From these inputs, the IV-setup
computes another three IVs values and the Key-setup, in case of parallel
implementation, creates another three keys. Then, four IVs and four keys will be used by
four threads in the system. Since chaos is sensitive to any small changes in the secret key,
the creation of each new key in the Key-setup entity is achieved by the circular shift
rotation of the three bit value of K1_s,K1_p parameters (see Figure 3). Moreover, the
creation of each new IV in the IV-setup entity is achieved by the circular shift rotation
of the three-bit value of U_s, U_p. Before the execution of the program is completed, a
new IV value is generated and stored in the non-volatile memory box. The generation of
this new value comes from /dev/urandom Linux PRNG (Gutterman et al., 2006). The
internal state, which contains the main cryptographic complexity of the system, is formed
by two recursive filters of order three. The first recursive cell contains a discrete Skew
tent map and the second one contains a discrete piecewise linear chaotic map (PWLCM).
These maps are used as nonlinear functions. We give below the outputs of the recursive
cell containing the Skew tent map and of the recursive cell containing the PWLC map
respectively. Hence the output equation of the recursive cell Skew tent map is:

{ }_ 1[1], 1 1X s STmap F n P Q= − ⊕ (1)

with

[]
3

1

1[1] mod _ ()_ ()_ , 2N

i

F n U s K i s X n i s
=

⎡ ⎤
− = + × −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ (2)

And the output equation of the recursive cell PWLC is:

{ }_ 2[1], 2 2X p PWLCmap F n P Q= − ⊕ (3)

with

[]
3

1

2[1] mod _ ()_ ()_ , 2N

i

F n U p K i p X n i p
=

⎡ ⎤
− = + × −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ (4)

In the equations above, P1 and P2 are control parameters in the range [1, 2N − 1] and
[1, 2N−1 − 1] respectively. Q1 and Q2 are perturbing signals produced by the LFSRs.
K1_s, K2_s, K3_s, K1_p, K2_p, K3_p are the coefficients of the recursive cells in the
interval [1; 2N − 1]. U_s and U_p, each of 32 bits, represent IVg of 64 bits. The
equations of the discrete skew tent and discrete PWLCM maps are respectively given by
(Masuda and Aihara, 2002; Lian et al., 2007; El Assad, 2012; Desnos et al., 2014):
discrete skew tent map:

 96 M. Abu Taha et al.

[1]2 if 0 [1] 1
1

[] 2 1 if [1] 1

2 [1]2 if 1 [1] 2
2 1

sN
s

N
s s

N
sN N

sN

X n X n P
P

X n X n P

X n P X n
P

⎧ −⎡ ⎤× < − <⎪⎢ ⎥⎢ ⎥⎪⎪= − − =⎨
⎪ − −⎡ ⎤⎪ × < − <⎢ ⎥⎪⎢ − ⎥⎩

 (5)

Discrete PWLCM map:

1
1

1
1

[1]
2 if 0 [1] 2

2
[1] 2

2 if 2 [1] 2
2 2

[] 2 2 [1]
2 if 2 [1] 2 2

2 2
2 [1]

2 if 2 2 [1] 2 1
2

2 1 2 otherwise

pN
p

pN N
pN

Np pN N N
pN

N
pN N N

p

N

X n
X n P

P
X n P

P X n
P

X n P X n
X n P

P
X n

P X n
P

P

−
−

−
−

⎧ −⎡ ⎤× < − ≤⎪⎢ ⎥⎢ ⎥⎪
⎪ − −⎡ ⎤× < − ≤⎪⎢ ⎥⎢ − ⎥⎪

= − − −⎡ ⎤⎨ × < − ≤ −⎢ ⎥⎢ − ⎥
− −⎡ ⎤

× − < − ≤ −⎢ ⎥⎢ ⎥
− −

⎪

⎪
⎪
⎪
⎪
⎪
⎪⎩

 (6)

Figure 2 Architecture of the proposed generator with internal feedback mode (see online version
for colours)

The values produced Xs[n], Xp[n] by the recursive cells in the internal state are
entered to the output function. Then, the output sequence Xg(n) is obtained using a
chaotic multiplexing controlled by the chaotic sequence X1s(n − 1) ⊕ X1p(n − 1) and by a
threshold Th = 2N−1, as shown in Figure 3. The output sequence is defined as follows:

[], if 0 _ [1] _ [1]
()

[], otherwise
Xs n X s n X p n Th

Xg n
Xp n

< − ⊕ − <=⎧
= ⎨
⎩

 (7)

 Design and efficient implementation of a chaos-based stream cipher 97

Figure 3 Detailed description of the internal state and the output function

4.2 Parallel implementation of the chaotic generator using Pthread

Usually a multi thread process launches several threads that run concurrently. In our
implementation, we parallelised the sequential version of our chaotic generator using the
standard API used for implementing multithreaded applications, namely POSIX Threads
or pthread (Pacheco, 2011). pthread is a library of functions that programmers can use to
implement parallel programs. Unlike MPI, pthread is used to implement shared-memory
parallelism. It is not a programming language (such as C or Java). It is a library that can
be linked with C programs. The source code is compiled with gcc and using the -lpthread
option. In our multithreaded approach, data sequences are partitioned among several
threads. Threads execute the same instructions on different data sets. The number of
samples to be processed and the starting point of the samples’ subset data are different for
each thread. The different threads are created and launched via a call to pthread create().
In our case, we create a number of threads equals to the number of cores chosen in our
system. The function pthread create() takes the thread as parameter. Each thread will call
the computation function. This function ensures the generation of the samples and the
conversion to bytes. Then the computed sequences from threads will be stored in a buffer
in a systematic manner to gain a maximum performance. Each sequence from each thread
is then stored consecutively as illustrated in Figure 4. In the main() function, we wait for
the termination of all threads by calling the pthread join() function. To describe the
decomposition of the sequences among the threads, we give the following example:
consider that 4 cores are available on the platform and that the sequence length is
seq length = 3,125,000 samples. Four threads will then be created. The first thread
computes samples from index imin = 0 * 3,125,000/4 = 0 to index imax =(0 + 1) *
(3,125,000/4) − 1 = 781249. The second thread computes samples from index imin = 1 *
3,125,000/4 = 781,250 to index imax = (1 + 1) * (3,125,000/4) − 1 = 1,562,499 and so on
until the last thread that will compute the rest of samples. The remainder of samples that
resulted from the division of the number of sequences to the number of threads, if it exist,
will also be computed by the last thread. Samples from each thread are stored in a shared
result array, each thread filling specific index values.

 98 M. Abu Taha et al.

Figure 4 Storing of samples that generated by different threads

4.3 Computing performance of the chaotic generator

To evaluate the computing performance of the proposed chaotic generator we performed
some experiments using a two 32-bit multi-core Intel Core (TM) i5 processors running at
2.60 GHz with 16 G of memory. This hardware platform was used on top of an Ubuntu
14.04 Trusty Linux distribution. Here after, for different sizes of data bytes, we give the
average generation time in micro second GT (μs), the average bit rate en Mega bit par
second BR(Mbit/s), and the average of the required number of cycles to generate one
byte, NCpB(Cycles/B). The average is determined by using 100 different secret keys for
each data size. For parallel implementation we choose 4 threads in parallel running on a
four-cores platform. The results obtained for GT (μs), BR(Mbit/s) and NCpB(Cycles/B)
are given in Tables 1, 3 and 4 and are depicted in Figures 5, 6 and 7 for sequential and
parallel implementation. The number of cycles required to generate one byte NCpB is
given by:

(Hertz)

(Byte/s)

CPU Speed
NCpB

Db
= (8)

Table 1 Generation time for sequential and parallel generators

Data (bytes) GT/Seq (μs) GT/Parl (μs)
64 6 705
128 8 726
256 11 743
512 19 753
1,024 32 763
2,048 57 801
4,096 109 810
16,384 332 835
32,768 520 847

 Design and efficient implementation of a chaos-based stream cipher 99

Table 1 Generation time for sequential and parallel generators (continued)

Data (bytes) GT/Seq (μs) GT/Parl (μs)

64 6 705

65,536 712 764

125,000 1282 1325

196,608 1830 1869

393,216 2902 2436

786,432 5502 4835

3,145,728 21723 19539

12,582,912 85009 49154

Table 2 NCpB performance of some PRNG

PRNG NCpB (cycles/B)

Wang et al. (2016) 160

Akhshani et al. (2014) 45

Jallouli et al. (2016) 24.68

Proposed algorithm 17.3

Table 3 Bit rate for sequential and parallel generators

Data (bytes) BR/Seq (Mbit/s) BR/Parl (Mbit/s)

64 85.33 0.73

128 128 1.41

256 186.18 2.76

512 215.58 5.44

1,024 256 10.74

2,048 287.44 20.45

4,096 300.62 40.45

16,384 394.8 156.97

32,768 504.12 309.5

65,536 736.36 686.24

125,000 780.03 754.72

196,608 859.49 841.55

393,216 1,083.99 1,291.35

786,432 1,143.49 1,301.23

3,145,728 1,158.49 1,287.98

12,582,912 1,184.15 2,047.92

 100 M. Abu Taha et al.

Table 4 NCpB for sequential and parallel generators

Data (bytes) NCpB-S (cycles/B) NCpB-P (cycles/B)

64 232.5 27,173.2
128 155 14,068.4
256 106.5 7,187.1
512 92 3,646.4
1,024 77.5 1,847
2,048 69 970
4,096 66 490.4
16,384 50.2 126.4
32,768 39.3 64.1
65,536 26.9 28.9
125,000 25.4 26.3
196,608 23.1 23.6
393,216 18.3 15.4
786,432 17.3 15.2
3,145,728 17.1 15.4
12,582,912 16.8 9.7

As we can see from these results, the parallel implementation is only better for data size
equal to or bigger than 393,216 bytes. This is due to the overhead time caused by the
synchronisation between threads. In Table 2 we compare our obtained results in terms of
NCpB with some known chaos-based generators, for data size equal to 786,432 bytes that
correspond to a image size of 512 * 512 * 3. As we can see, the obtained performance is
good.

Figure 5 Generation time for parallel and sequential generators (see online version for colours)

 Design and efficient implementation of a chaos-based stream cipher 101

Figure 6 Bit Rate for parallel and sequential generators (see online version for colours)

Figure 7 NCpB for parallel and sequential generators (see online version for colours)

5 Encryption speed and security analysis of the proposed stream cipher

5.1 Time performance

The computation performance is determined by: the average encryption time Enc T(μs),
the average encryption throughput ET(Mbit/s) defined in equation (9), and the
average number of cycles to encrypt one byte NCpB(Cycles/B) defined previously in
equation (8).

 102 M. Abu Taha et al.

Size

Time

Image (Mbit)ET
Encryption ()s

= (9)

Table 5 Performance results of proposed sequential stream cipher with different data bytes

Data in bytes Enc-T(μs) Seq/Parl ET (Mbit/s) Seq/Parl NCpB (cycles/B) Seq/Parl

512 21/778 213.01/5.31 92.9/3,650.7

1,024 33/792 259.1/11.1 78.2/1,889

2,048 60/806 286.5/19.9 70.2/973

4,096 116/822 299.3/39.3 67.0/491.3

49,152 659/1,619 569.0/231.6 34.8/85.6

196,608 2,455/2,419 610.9/620.0 31.9/31.2

786,432 9,088/8,099 660.2/740.8 30.0/26.7

3,145,728 35,560/24,190 674.9/978.8 29.3/20.2

12,582,912 121,899/88,597 787.5/1,083.5 25.1/18.3

50,331,648 398,089/319,785 964.6/1,200.8 20.5/16.5

We report in Table 5 and in Figures 8, 9, 10 the obtained results of the computation
performance for sequential and parallel implementation of the proposed stream cipher.
The decryption time is approximatively equal to the encryption time.

For big data size, from 196,608 bytes upwards, the parallel implementation is better
than the sequential one and on average the NCpB of the stream cipher takes
approximatively eight cycles more compared to the NCpB of the chaotic generator.

Figure 8 Encryption time for parallel and sequential cryptosystem (see online version
for colours)

 Design and efficient implementation of a chaos-based stream cipher 103

Figure 9 Encryption throughput for parallel and sequential cryptosystem (see online version
for colours)

Figure 10 NCpB for parallel and sequential cryptosystem (see online version for colours)

In Table 6, we report a comparison of time computation for the proposed algorithm (for
different data size images of Lena) with three chaos-based algorithms and the most
Known stream ciphers of eStream project (Maxime, 2016). For big data, the proposed
algorithm has better results than Abderrahim et al. (2014) and Lu et al. (2004). We also
observed that the time computation of eStream’s algorithms is better than the proposed
system until we reach the big data size, for which, our system will be faster. For very big
data size (201,326,592) such as videos, the obtained NCpB is around 9. In addition, the
proposed chaotic system has a strong nonlinearity compared to the other systems thus, its
robustness against cryptographic attacks is higher.

 104 M. Abu Taha et al.

Table 6 Performance results comparison of some stream ciphers

Stream cipher-Alg Image size (B) Enc-time (μs) ET (Mbit/s) NCpB (cycles/B)

Abderrahim et al. - - 10 2,800
Hauping et al. - - 914 17
Ping et al. - - 700 20
Rappit 256 × 256 × 3 811.3 1,848.8 9.5

512 × 512 × 3 3,256 1,842.6 9.5
1,024 × 1,024 × 3 12,950 1,853.9 9.5

HC-128 256 × 256 × 3 1,221 1,228.1 14.4
512 × 512 × 3 4,895 1,225.6 14.4

1,024 × 1,024 × 3 19,647 1,221.5 14.4
Salsa20/12 256 × 256 × 3 836.4 1,793.4 9.8

512 × 512 × 3 3,389 1,770 9.9
1,024 × 1,024 × 3 13,483 1,779.9 9.9

SOSEMANUK 256 × 256 × 3 880.3 1,704 10.3
512 × 512 × 3 3,570 1,680 10.5

1,024 × 1,024 × 3 14,134 1,698 10.4
AES-CTR - - - 21.2
Proposed chaos
stream cipher
(Seq)

256 × 256 × 3 2,455 610.9 31.9
512 × 512 × 3 9,088 660.2 30.0

1,024 × 1,024 × 3 35,560 674.9 29.3
Proposed chaos
stream cipher
(Parl)

256 × 256 × 3 2,419 620 31.2
512 × 512 × 3 8,099 740.8 26.7

1,024 × 1,024 × 3 24,190 978.8 20.2
201,326,592 1,200,178 1,881 8.8

5.2 Security analysis

In this section we evaluated the software security implementation and the security of the
proposed chaotic system against cryptanalytic and statistic attacks.

5.2.1 Software security implementation

Software security analysis is another crucial factor to ensure the quality of the source
code and to restrict all security threats. Because it is still possible to read data out of
memory even if the application no longer has pointers to it, it is necessary to incorporate
data security within the source code. In cryptographic applications, sensitive information
(e.g., secret keys) must be kept in memory for the minimum amount of time possible and
should be written over/deleted, not just released, when no longer needed. One first step
consists in erasing such sensitive data from memory once it is no longer needed in order
to prevent any security attacks. The idea is to zero-fill buffers which contained sensitive
information. In practice, we used the following functions to decontaminate (i.e., zero) a
buffer and guarantee that the compiler will not optimise it away: the secure_memzero()

 Design and efficient implementation of a chaos-based stream cipher 105

function depends on a function pointer memset ptr that itself points to the memset()
function. It uses the key and the key size and will put zero value on the allocated
memory related to the key by call memset(). The function memset() is invoked to write
a specific value in a buffer that was allocated previously. We used this function to write a
zero value in the buffer. While Some compilers optimise away the call to memset()
function. To overcomes this, we declared memset ptr as a volatile pointer. Since a
volatile pointer can be manipulated outside the scope of the application, the code is not
optimised by the compiler, thus keeping the program unchanged. Furthermore, the data in
main memory may leak to the disk through virtual memory, thus representing another
source of the most serious leaks (leaks to physical mediums). One solution, which is
sufficient to include, is to deactivate the swap space altogether, thus preventing data from
being written to the page file by locking it in memory. In our code, we used the mlock()
function that locks pages in the address range starting at the address and continuing for
byte lengths. All pages that contain a part of the specified address range are secured to be
resident in the main memory when the call returns successfully. Then, the pages are
guaranteed to stay in the main memory until later unlocked.

In order to guarantee the validity of our solution, we carried out a security code
review using several static and dynamic techniques: Clang, Gdb, Valgrind, DRD,
Callgrind and leak-analysis tools. Results match up well with the security level requested
by our chaos-based stream cipher (Taha et al., 2016).

5.2.2 Cryptanalytic attacks

The proposed system has the ability to resist common attacks such as ciphertext only
(Siegenthaler, 1985), chosen plaintext attack, brute force attack, and key sensitivity
attack. Indeed, encrypting an image several times using the same secrete key, produces
totally different ciphered images. This is due to the IV-setup block.

Key space

The size of the secret key, formed by all the initial conditions and by all the parameters of
the system, varies from 299 bits, with delay = 1, to 555 bits, with delay = 3. This means
that the brute force attack is impracticable.

Key security and sensitivity attack

From the generated sequences it is impossible to find the secret key and this is because of
the structure of the chaotic generator which in addition includes a chaotic switching. The
knowledge of part of the secret key is not very useful for an attacker because of the
intrinsic property of chaotic signal, which is extremely sensitive to the secret key.
Besides, we computed the average hamming distance (HD) (of 100 secret keys) of two
Keystreams generated each time with two secret keys that differ only by one bit and the
result obtained is equal to 0.499993, therefore very close to 50%. In conclusion, the
produced keystreams are highly secure. A cryptosystem must be sensitive to one bit
change per key used. This property is important in order to resist many attacks (Lian
et al., 2005). To test the key sensitivity of the proposed chaos stream cipher, we
encrypted ‘Lena’ image 100 times using 100 secrete keys that differ only by the LSB bit.
Then we computed the following parameters: the number of pixel change rate (NPCR),

 106 M. Abu Taha et al.

the unified average changing intensity (UACI) and the HD. The parameters (NPCR,
UACI) are necessary but not sufficient to ensure that the proposed cryptosystem is
resistant against the key sensitivity attack. For this reason, we add the HD measurement
(Mar and Latt, 2008).

The NPCR and UACI, introduced by Eli Biham and Adi Shamir (Biham and Shamir,
1991) are given by the following equations:

1 1 1

1 (, ,) 100%
P L C

p i j
NPCR D i j p

L C P = = =
= × ×

× × ∑ ∑ ∑ (10)

where

1 2

1 2

0, if (, ,) (, ,)
(, ,)

1, if (, ,) (, ,)
C i j p C i j p

D i j p
C i j p C i j p

=⎧
= ⎨ ≠⎩

 (11)

1 21 1 1

1 (, ,) (, ,) 100%
255

P L C

p i j
UACI C i j p C i j p

L C P = = =
= × − ×

× × × ∑ ∑ ∑ (12)

In the previous equations, i, j and p are the row, column, and plane indexes of the image,
respectively. L, C and P are the length, width, and plane sizes of the image respectively.
The optimal NPCR and UACI values are 99.61% and 33.46% respectively (Wu et al.,
2011).

The HD is defined by:

() ()
| |

1 2 1 2
1

1, () ()
| |

Ib

K

HD C C C K C K
Ib =

= ⊕∑ (13)

where |Ib| = L × C × P × 8, is the size of the image in bits. The optimum HD value is
50%. A good stream cipher should produce an HD close to 50% (Wang et al., 2014).
Table 7 indicates that the NPCR, UACI and HD values of the proposed stream cipher are
very close to optimal values. Consequently a high resistance to differential attack is
achieved.
Table 7 The NPCR, UACI and HD

Cryptosystem NPCR UACI HD

Proposed cipher cryptosystem 99.665 33.459 0.499999

5.3 Statistical analysis

5.3.1 NIST test

To evaluate the statistical performances of the Key stream produced, we also used one of
the most popular standards for investigating the randomness of binary data, namely the
NIST statistical test (Barker and Kelsey, 2012). This test is a statistical package that
consists of 188 tests that were proposed to assess the randomness of arbitrarily long
binary sequences. We applied the NIST test to many ciphered texts, and all the NIST
results obtained, are as expected (good NIST values). In Figure 11 we present one of the
NIST result obtained. This means that the ciphered texts have a high randomness.

 Design and efficient implementation of a chaos-based stream cipher 107

Figure 11 NIST test key stream results (see online version for colours)

5.3.2 Histogram and chi-square test

A cryptosystem is considered to be strong against statistical attacks, if the histogram of
the ciphered text is uniformly distributed. Visually, the uniformity test is necessary, but it
is not sufficient. The chi-square test is applied to statistically confirm the uniformity of
the histogram:

()21
2
exp

0

Q
i i

ii

o eχ
e

−

=

−
=∑ (14)

In equation (14), Q is the number of levels (here Q = 256), oi is the observed occurrence
frequency of each colour level (0–255) on the histogram of the ciphered image, and ei is
the expected occurrence frequency of the uniform distribution, given here by

.i
L C Pe

Q
× ×

= For a secure cryptosystem, the experimental chi-square value must be less

than the theoretical chi-square one, which is 293 in case of α = 0.05 and Q = 256. In
Figures 12, 13 and 14 we give the histograms for the plain/cipher images for lena, Boat
and Camera man images on size 512 * 512 * 3. As we can see the histogram of the
ciphered image seems to be uniform. To assess the uniformity, we performed the chi
square test with the following parameters: alpha = 0.05, and number of classes equal to
256. Experimental value obtained is less than the theoretical one that equal 293. This
means that the histogram is uniform (see Table 8).

 108 M. Abu Taha et al.

Figure 12 Histogram of the Lena plain image and its ciphered image, (a) Lena plain image
(b) Lena cipher image (c) histogram for plain image (d) histogram for the cipher image
(see online version for colours)

(a) (b)

(c) (d)

Figure 13 Histogram of the boat plain image and its ciphered image, (a) boat plain image
(b) boat cipher image (c) histogram for plain image (d) histogram for the cipher image
(see online version for colours)

(a) (b)

 Design and efficient implementation of a chaos-based stream cipher 109

Figure 13 Histogram of the boat plain image and its ciphered image, (a) boat plain image
(b) boat cipher image (c) histogram for plain image (d) histogram for the cipher image
(continued) (see online version for colours)

(c) (d)

Figure 14 Histogram of the camera man plain image and its ciphered image, (a) camera man
plain image (b) camera man cipher image (c) histogram for plain image (d) histogram
for the cipher image (see online version for colours)

(a) (b)

(c) (d)

 110 M. Abu Taha et al.

Table 8 Chi-square value for ciphered Lena, boat and C-man with different sizes

Image Experimental value Theoretical value

Lena 256 × 256 × 3 261.085938 293.247835
Lena 512 × 512 × 3 263.013852 293.247835
Lena 1,024 × 1,024 × 3 270.300127 293.247835
Boat 256 × 256 × 3 260.186354 293.247835
Boat 512 × 512 × 3 266.465369 293.247835
Boat 1,024 × 1,024 × 3 272.669811 293.247835
C-man 256 × 256 × 3 261.339680 293.247835
C-man 512 × 512 × 3 267.317852 293.247835
C-man 1,024 × 1,024 × 3 274.397541 293.247835

5.3.3 Correlation analysis

Correlation analysis is also one of the statistical attacks that are used to cryptanalyse the
cryptosystem. The attacker should not have any information of the used secret key or any
partial information on the original plain image. This means that the encrypted image
should be extremely different from its original version. Correlation analysis is one of the
regular and standard methods to measure this property. Indeed, it is well-known that
adjacent pixels in the plain images are very redundant and correlated. Thus, in the
encrypted images, adjacent pixels should have a redundancy and a correlation as low as
possible. The following mathematical equations are used to calculate the correlation
coefficient (Song et al., 2013):

cov(,)
() ()

xy
x yρ

D x D y
= (15)

where

[][]()
1

1cov(,) () ()
N

i i
i

x y x E x y E y
N =

= − −∑ (16)

()2

1

1() ()
N

i
i

D x x E x
N =

= −∑ (17)

()
1

1()
N

i
i

E x x
N =

= ∑ (18)

In the previous equations, xi and yi are the values of the two adjacent pixels in the plain
image or the corresponding ciphered image.

 Design and efficient implementation of a chaos-based stream cipher 111

Figure 15 Correlation of the boat plain image and its ciphered image, (a) plain image correlation
of adjacent pixels (b) ciphered image correlation of adjacent pixels (see online version
for colours)

(a) (b)

To test the security of our proposed stream cipher algorithm, regarding to this type of
attack, first N pairs of adjacent pixels in vertical, horizontal, and diagonal directions are
selected from the plain image and its ciphered version. Figure 15 shows the correlation
curves of the adjacent pixels in the horizontal direction for the plain image and its
ciphered one. The values of their corresponding correlation coefficient are 0.96606 and
0.0035. Similar results are obtained for the correlation in vertical and diagonal directions.

6 Conclusions

We proposed a new chaos-based stream cipher, useful for continuous communication as
used in network communications. The heart of the system relies on a proposed chaotic
generator that is designed and implemented in a secure and efficient manner with a
sequential and parallel version. Its structure is modular, generic, and allow the production
of high secure sequences. The performance in time for the proposed generator is better
than other known PRNG. Also, For very big data size, the obtained performance results
are better than other known stream ciphers. The proposed chaotic system is robust against
cryptographic attacks. Furthermore, it has strong nonlinearity compared to the other
systems. Indeed, the results obtained from the cryptographic analysis and of common
statistical tests indicate the robustness of the proposed stream cipher. Our future work
will focus on the design of chaos-based joint crypto-compression systems to secure
videos: HEVC bitstream and MPEG-4.

References
Abderrahim, N., Benmansour, F. and Seddiki, O. (2014) ‘A chaotic stream cipher based on

symbolic dynamic description and synchronization’, Nonlinear Dynamics, Vol. 78, No. 1,
pp.197–207.

Abu Taha, M., El Assad, S., Farajallah, M., Queudet, A. and Deforge, O. (2015) ‘Chaos-based
cryptosystems using dependent diffusion: an overview’, 10th International Conference for
Internet Technology and Secured Transactions (ICITST), IEEE, pp.44–49.

 112 M. Abu Taha et al.

Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S-C. and Hassan, Z. (2014) ‘Pseudo random
number generator based on quantum chaotic map’, Communications in Nonlinear Science and
Numerical Simulation, Vol. 19, No. 1, pp.101–111.

Arlicot, A. (2014) Sequences Generator Based Chaotic Maps, Universit´e de Nantes, Tech. Rep.,
February.

Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.A. et al. (1993) ‘Automatic program
parallelization’, Proceedings of the IEEE, Vol. 81, No. 2, pp.211–243.

Barker, E. and Kelsey, J. (2012) Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, NIST SP 800-90 Rev A, Tech. Rep.

Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget, A.,
Granboulan, L., Lauradoux, C., Minier, M. et al. (2008) ‘Sosemanuk, a fast software-oriented
stream cipher’, in New Stream Cipher Designs, pp.98–118, Springer, Berlin-Heidelberg.

Bernstein, D.J. (2008) ‘The salsa20 family of stream ciphers’, in New Stream Cipher Designs,
pp.84–97, Springer, Berlin-Heidelberg.

Biham, E. and Shamir, A. (1991) ‘Differential cryptanalysis of des-like cryptosystems’, Journal of
CRYPTOLOGY, Vol. 4, No. 1, pp.3–72.

Boesgaard, M., Vesterager, M., Christensen, T. and Zenner, E. (2005) The Stream Cipher Rabbit,
ECRYPT Stream Cipher Project Report, Vol. 6.

Butenhof, D.R. (1997) Programming with POSIX Threads, Addison-Wesley Professional, Boston
Caragata, D., El Assad, S., Noura, H. and Tutanescu, I. (2010) ‘Secure unicast and multicast over

satellite dvb using chaotic generators’, International Journal of Internet Technology and
Secured Transactions, Vol. 2, Nos. 3–4, pp.357–379.

Chetto, M., El Assad, S. and Farajallah, M. (2014) ‘A lightweight chaos-based cryptosystem for
dynamic security management in real-time overloaded applications’, International Journal of
Internet Technology and Secured Transactions 7, Vol. 5, No. 3, pp.262–274.

Cimatti, G., Rovatti, R. and Setti, G. (2007) ‘Chaos-based spreading in ds-uwb sensor networks
increases available bit rate’, IEEE Transactions on Circuits and Systems I: Regular Papers,
Vol. 54, No. 6, pp.1327–1339.

Dagum, L. and Enon, R. (1998) ‘Openmp: an industry standard api for shared-memory
programming’, Computational Science & Engineering, IEEE, Vol. 5, No. 1, pp.46–55.

Desnos, K., El Assad, S., Arlicot, A., Pelcat, M. and Menard, D. (2014) ‘Efficient multicore
implementation of an advanced generator of discrete chaotic sequences’, International
Workshop on Chaos-Information Hiding and Security (CIHS).

Diffie, W. and Hellman, M.E. (1979) ‘Privacy and authentication: an introduction to cryptography’,
Proceedings of the IEEE, Vol. 67, No. 3, pp.397–427, IEEE.

El Assad and Farajallah, M. (2016) ‘A new chaos-based image encryption system’, Signal
Processing: Image Communication, Vol. 41, No. 11, pp.144–157.

El Assad, S. (2012) ‘Chaos based information hiding and security’, International Conference for
Internet Technology and Secured Transactions, IEEE, pp.67–72.

eSTREAM (2008) eSTREAM: The ECRYPT Stream Cipher Project [online]
http://www.ecrypt.eu.org/stream/ (accessed 10 May 2016).

Farajallah, M., El Assad, S. and Deforges, O. (2016) ‘Fast and secure chaos-based cryptosystem
for images’, International Journal of Bifurcation and Chaos, Vol. 26, No. 2, p.21, 1-650-021–
1–1-650-021–21.

Gropp, W., Lusk, E., Doss, N. and Skjellum, A. (1996) ‘A high-performance, portable
implementation of the mpi message passing interface standard’, Parallel Computing, Vol. 22,
No. 6, pp.789–828.

Gupta, S.S., Chattopadhyay, A., Sinha,K., Maitra, S. and Sinha, B.P. (2013) ‘High-performance
hardware implementation for rc4 stream cipher’, IEEE Transactions on Computers, Vol. 62,
No. 4, pp.730–743.

 Design and efficient implementation of a chaos-based stream cipher 113

Gutterman, Z., Pinkas, B. and Reinman, T. (2006) ‘Analysis of the linux random number
generator’, IEEE Symposium on Security and Privacy, IEEE, pp.2–16.

Jallouli, O., El Assad, S., Taha, M.A., Chetto, M., Lozi, R. and Caragata, D. (2016) ‘An efficient
pseudo chaotic number generator based on coupling and multiplexing
techniques’,International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE 2016), pp.30040}.

Jo, I-H. and Koh, B-S. (2016) ‘Building a common encryption scrambler to protect paid broadcast
services’, International Journal of Internet Technology and Secured Transactions, Vol. 6,
No. 3, pp.167–177.

Kircanski, A. and Youssef, A.M. (2009) ‘Differential fault analysis of rabbit’, International
Workshop on Selected Areas in Cryptography, Springer, pp.197–214.

Kircanski, A. and Youssef, A.M. (2010) ‘Differential fault analysis of hc-128’, International
Conference on Cryptology in Africa, pp.261–278, Springer.

Kocarev, L. (2001) ‘Chaos-based cryptography: a brief overview’, Circuits and Systems Magazine,
IEEE, Vol. 1, No. 3, pp.6–21.

Li, L. and Lee, J-H. (2016) ‘On the security of a strong provably secure identity-based encryption
scheme without bilinear pairing’, International Journal of Internet Technology and Secured
Transactions, Vol. 6, No. 3, pp.178–185.

Li, P., Li, Z., Halang, W.A. and Chen, G. (2007) ‘A stream cipher based on a spatiotemporal
chaotic system’, Chaos, Solitons & Fractals, Vol. 32, No. 5, pp.1867–1876.

Lian, S., Sun, J. and Wang, Z. (2005) ‘Security analysis of a chaos-based image encryption
algorithm’, Physica A: Statistical Mechanics and its Applications, Vol. 351, No. 2,
pp.645–661.

Lian, S., Sun, J., Wang, J. and Wang, Z. (2007) ‘A chaotic stream cipher and the usage in video
protection’, Chaos, Solitons & Fractals, Vol. 34, No. 3, pp.851–859.

Lipmaa, H., Wagner, D. and Rogaway, P. (2000) ‘Comments to NIST concerning AES modes of
operation: Ctr-mode encryption’, CiteSeerX Digital Library, Vol. 1, pp.1–4.

Lozi, J-P., David, F., Thomas, G., Lawall, J. and Muller, G. (2016) ‘Fast and portable locking for
multicore architectures’, ACM Transactions on Computer Systems (TOCS), Vol. 33, No. 4,
p.13.

Lu, H., Wang, S., Li, X., Tang, G., Kuang, J., Ye, W. and Hu, G. (2004) ‘A new spatiotemporally
chaotic cryptosystem and its security and performance analyses’, Chaos: An Interdisciplinary
Journal of Nonlinear Science, Vol. 14, No. 3, pp.617–629.

Machicao, J., Marco, A.G. and Bruno, O.M. (2012) ‘Chaotic encryption method based on life-like
cellular automata’, Expert Systems with Applications, Vol. 39, No. 16, pp.12 626–12 635.

Manifavas, C., Hatzivasilis, G., Fysarakis, K. and Papaefstathiou, Y. (2015) ‘A survey of
lightweight stream ciphers for embedded systems’, Security and Communication Networks,
Vol. 9, No. 11, pp.1227–1246.

Mar, P.P. and Latt, K.M. (2008) ‘New analysis methods on strict avalanche criterion of s-boxes’,
World Academy of Science, Engineering and Technology, Vol. 48, No. 12, pp.150–154.

Masoumi, M., Habibi, P., Dehghan, A., Jadidi, M. and Yousefi, L. (2016) ‘Efficient
implementation of power analysis attack resistant advanced encryption standard algorithm on
side-channel attack standard evaluation board’, International Journal of Internet Technology
and Secured Transactions, Vol. 6, No. 3, pp.203–218.

Masuda, N. and Aihara, K. (2002) ‘Cryptosystems with discretized chaotic maps’, IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49,
No. 1, pp.28–40.

Maxime, B. (2016) Comparative Analysis of Estream Ciphers, Universite de Nantes, Tech. Rep.,
March.

Pacheco, P. (2011) An Introduction to Parallel Programming, 1st ed., Morgan Kaufmann [online]
http://amazon.com/o/ASIN/0123742609/ (accessed 11 April 2016).

 114 M. Abu Taha et al.

Rani, M.S. (2011) An Efficient and Scalable Core Allocation Strategy for Multicore Systems, PhD
dissertation, Florida Atlantic University Boca Raton, FL.

Salehani, Y.E., Kircanski, A. and Youssef, A. (2011) ‘Differential fault analysis of sosemanuk’,
International Conference on Cryptology in Africa, Springer, pp.316–331.

Setti, G., Rovatti, R. and Mazzini, G. (2005) ‘Chaos-based generation of artificial self-similar
traffic’, in Complex Dynamics in Communication Networks, pp.159–190, Springer., Berlin-
Heidelberg.

Siegenthaler, T. (1985) ‘Decrypting a class of stream ciphers using ciphertext only’, IEEE
Transactions on Computers, Vol. 100, No. 1, pp.81–85.

Sinnen, O. (2007) Task Scheduling for Parallel Systems, Vol. 60, John Wiley & Sons, USA.
Smale, S. (1967) ‘Differentiable dynamical systems’, Bulletin of the American Mathematical

Society, Vol. 73, No. 6, pp.747–817.
Song, C-Y., Qiao, Y-L. and Zhang, X-Z. (2013) ‘An image encryption scheme based on new

spatiotemporal chaos’, Optik-International Journal for Light and Electron Optics, Vol. 124,
No. 18, pp.3329–3334.

Stallings, W. (2006) Cryptography and Network Security: Principles and Practices, Pearson
Education, India.

Taha, M.A., El Assad, S., Jallouli, O., Queudet, A. and Deforges, O. (2016) ‘Design of a pseudo-
chaotic number generator as a random number generator’, The 11th International Conference
on Communications, pp.401–404.

Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T. and Nakashima, H. (2007) ‘Differential cryptanalysis of
salsa20/8’, Workshop Record of SASC.

Wang, X., Luan, D. and Bao, X. (2014) ‘Cryptanalysis of an image encryption algorithm using
chebyshev generator’, Digital Signal Processing, Vol. 25, pp.244–247.

Wang, Y., Liu, Z., Ma, J. and He, H. (2016) ‘A pseudorandom number generator based on
piecewise logistic map’, Nonlinear Dynamics, Vol. 83, No. 4, pp.2373–2391.

Wu, H. (2004) ‘A new stream cipher hc-256’, International Workshop on Fast Software
Encryption, pp.226–244, Springer.

Wu, H. (2008) ‘The stream cipher hc-128’, in New Stream Cipher Designs, Vol. 2, pp.39–47,
Springer, Berlin-Heidelberg.

Wu, Y., Noonan, J.P. and Agaian, S. (2011) ‘Npcr and uaci randomness tests for image
encryption’, Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal
of Selected Areas in Telecommunications (JSAT), Vol. 1, No. 2, pp.31–38.

