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Abstract.

In a recent paper G. A. Cannon and K. M. Neuerburg point out that if A = Z and B is an arbitrary ring
with unity, then Z ⋆ B, the Dorroh extension of B, is isomorphic to the direct product Z × B. Thus the
ideal structure of Z ⋆ B can be completely described. The aim of this note is to point out that this result
may be extended to any pair (A,B) in which B is an A–algebra with unity, and to study the construction
of extensions of algebras without zero divisors and their behavior with respect to algebra maps.

1 Dorroh extensions

All rings A have unity. We call a rng or a pseudo–ring any triad (B,+,×) in which (B,+) is an abelian
group, and × is associative and distributive with respect to +, i.e. a ring not necessarily with unity. By
an A–algebra we mean a pseudo–ring B with left and right A–module structures satisfying the following
three properties:

a1(ba2) = (a1b)a2, a(b1b2) = (ab1)b2 and (b1b2)a = b1(b2a),

for any a, a1, a2 ∈ A and b, b1, b2 ∈ B. If in addition B has a unity, say e, one may prove that ae = ea
for any a ∈ A; this means that the map f : A → B, defined as f (a) = ae, is a ring map from A to B. We
define an A–algebra map from an algebra B to an algebra B′ as a two–sided module map f : B → B′

satisfying f (b1b2) = f (b1)f (b2) for any b1, b2 ∈ B. In the same way we may define left and right or
two–sided ideals, subalgebras, and other elements and constructions generalizing those studied in ring
theory. In this note we shall consider non–zero algebras, but it may be that the zero algebra {0} appears
inside some constructions.
Examples. 1.1.
Let A be a ring. The followings are examples of A–algebras:
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(1) The ring A is an unitary A–algebra.

(2) The set
{(

a b
0 0

)
| a, b ∈ A

}
is an A–algebra with a left sided unity.

(3) If A is commutative and a ∈ A, then aA is an A–algebra. For instance XZ[X] and 2Z are Z–algebras.

(4) If {Aλ | λ ∈ Λ} is a family of A–algebras, then ⊕λAλ and
∏

λ Aλ are A–algebras. In this case ⊕λAλ

is a subalgebra and a two–sided ideal of
∏

λ Aλ.

A classical problem in ring theory is how to embed an A–algebra B in an A–algebra with unity, say A⋆B,
in such a way that this embedding is minimal in the following sense: for any unitary A–algebra C, any
algebra map f : B → C may be uniquely factorized through A ⋆ B. To construct A ⋆ B we proceed as
follows.

For any A–algebra B, in the cartesian product underlying set A × B we define an addition by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2), for any a1, a2 ∈ A and b1, b2 ∈ B,

and a multiplication by

(a1, b1) (a2, b2) = (a1a2, a1b2 + b1a2 + b1b2), for any a1, a2 ∈ A and b1, b2 ∈ B.

With these operations A×B is an A–algebra with unity (1, 0). We denote this A–algebra by A⋆B and call
it the Dorroh extension1 of B by A. If we identify B with {(0, b) | b ∈ B} and A with {(a, 0) | a ∈ A},
then B is an ideal and A a unitary subalgebra of A ⋆ B.

Theorem. 1.2.
For any A–algebra B, any unitary A–algebra C, and any algebra map f : B → C, there exists a unique
unitary algebra map f ′ : A ⋆ B → C such that f ′|B = f .

B //

f ��?
??

??
??

A ⋆ B

f ′||y
y

y
y

y

C

Note that any ring B is a Z–algebra. Hence, as we remarked before, the first construction involving
Dorroh extensions deals with pairs (Z,B), see [3]. In this particular case, in [1] and [2] the ideal structure
of Z⋆Z is studied. In the former one it is pointed out that Z⋆B is isomorphic to the direct product Z×B,
for any ring B with identity.

We are interested in the general case, in which A may be different from Z, because it allows us to use
some useful tools of general ring theory.

Proposition. 1.3.
For any ring A and any unitary A–algebra B the Dorroh extension A⋆B is isomorphic to the direct product
A × B.

1This construction was performed firstly by J. L. Dorroh in [3] for A = Z.
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PROOF. Let B be an algebra with unity, say e ∈ B, then (0, e) is a central idempotent element in A ⋆ B.
Indeed, for any (a, b) ∈ A ⋆ B we have:

(a, b) (0, e) = (0, ae + be) = (0, ea + eb) = (0, e) (a, b).

If we identify e with (0, e), then B = e(A ⋆ B). On the other hand 1 = (1, 0) = (1,−e) + (0, e);
this means that any element (a, b) ∈ A ⋆ B may be written as (a, b) = (a,−ae) + (0, ae + b), and we
have the decomposition A ⋆ B = (1 − e)(A ⋆ B) + e(A ⋆ B) which produces the algebra isomorphism
A ⋆ B = (1 − e)(A ⋆ B)× e(A ⋆ B).

As we have noted before, e(A ⋆ B) = B. On the other hand (1 − e)(A ⋆ B) = {(a,−ae) | a ∈ A} is
isomorphic to A via the ring map (a,−ae) 7→ a. As a consequence A ⋆ B ∼= A × B via the isomorphism
φ : (a, b) 7→ (a, ae + b). �

Note that even if B is a unitary A–algebra, the Dorroh extension of B does not coincide with B.

Some remarks on the ideal structure of A ⋆ B.

Note that, if B has a unity, ideals in A ⋆ B have a simple description. Indeed, for any ideal c ⊆ A ⋆ B we
have the decomposition c = (1 − e)c⊕ ec. Thus we proceed as follows:

A ⋆ B (1 − e)(A ⋆ B)⊕ e(A ⋆ B) // A × B

c // (1 − e)c⊕ ec // a× b

In this case we denote a the ideal prA(c), where prA : A ⋆ B → A is the projection. Therefore we have:
(1 − e)c = {(a,−ae) | a ∈ a} → prA(c) = a. The ideal ec may be also completely determined; in
particular b = ec ⊆ B, and it may be described as b = {prB(c) + prA(c)e | c ∈ c}. Therefore c is
determined by its images by the projections prA and prB, and we have c = {(prA(c),−prA(c)e) | c ∈
c} ⊕ {(0, prB(c) + prA(c)e) | c ∈ c}.

Are ideals in A ⋆B of the type a ⋆ b (defined in the obvious way) for ideals a ⊆ A and b ⊆ B? To answer
this question first we note that for ideals a ⊆ A and b ⊆ B the following statements are equivalent: (a)
a ⋆ b ⊆ A ⋆ B is an ideal and (b) Ba, aB ⊆ b. In this case we have:

a ⋆ b = (1 − e)(a ⋆ b)⊕ e(a ⋆ b) → a× (ae + b) = a× b.

In general, given an ideal c ⊆ A ⋆ B we have c = a ⋆ b, for some ideals a ⊆ A and b ⊆ B, if, and only if,
prA(c)e ⊆ prB(c).

Prime ideals in A ⋆ B are completely determined as they are in A × B. Prime ideals in A × B are either
A × b, with b ⊆ B being prime, or a × B, with a ⊆ A being prime. On one hand we have the ideal
{(a,−ae) | a ∈ A}⊕ b (note that Ae * b as b ⊆ B is a proper ideal), and on the other we have the ideal
{(a,−ae) | a ∈ a} ⊕ B = a ⋆ B.
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2 Szendrei extensions

Let us consider the following examples.

Examples. 2.1.
(1) If A = Z and B = XZ[X], the Dorroh extension is isomorphic to Z[X].

(2) If A = Z and B = 2Z, the Dorroh extension has an underlying structure of an abelian group
isomorphic to Z× Z, hence it is not isomorphic to Z.

(3) In general we have proved that if B is a ring with identity, the Dorroh extension Z ⋆ B is isomorphic
to Z × B. Consider the case of Z ⋆ Z[X], which is isomorphic to Z× Z[X].

We note that in some cases the “smallest” unitary algebra containing B is different of A ⋆ B. The reason
is that in the universal property in Theorem (1.2.) characterizing Dorroh extensions, the map f was an
arbitrary (not necessarily unitary) algebra map. One may pose the question: is it possible to modify
the Dorroh construction to some specific classes of algebras to construct “smallest” unitary algebra
extensions?

One of these modifications is known as the Szendrei extensions, see [4]. We present here a modification
of it. Let B be an A–algebra such that bB = 0 implies b = 0 for every b ∈ B; we say B is a proper
algebra; prime and semiprime A–algebras are proper. Define b = {x ∈ A ⋆ B | xB = 0}.

Lemma. 2.2.
With the above notation, if B is a proper algebra, b ⊆ A ⋆ B is a two–sided ideal and b ∩ B = 0.

In this case the composition map B → A ⋆ B → (A ⋆ B)/b is injective, and we may identify B with its
image in (A ⋆ B)/b. We call (A ⋆ B)/b the Szendrei extension of B.

Note that if B is a unitary A–algebra, it is a proper algebra and (A ⋆B)/b and B are isomorphic as unitary
algebras. In particular, in the examples mentioned in (2.1.) we have:

Examples. 2.3.
(1) (Z ⋆ XZ[X])/b ∼= Z[X].

(2) (Z ⋆ 2Z)/b ∼= Z.

(3) (Z ⋆ B)/b ∼= B.

Does this means that Szendrei extensions are more useful than Dorroh extensions? The answer is no, as
the construction of Szendrei extensions may dampen some of the functorial properties of Dorroh exten-
sions. In practice this is exactly what happens. For that reason it is not of interest from a categorial point
of view. Nevertheless we have the following useful property of Szendrei extensions, which indicates that
it may be of interest from an arithmetical point of view.

Theorem. 2.4.
Let A be a ring, B a proper A–algebra, and C a unitary A–algebra without zero divisors. For any non–zero
algebra map f : B → C there is a unique unitary algebra map f ′′ : (A ⋆ B)/b → C such that f ′′|B = f .
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PROOF. By Theorem (1.2.), there is a unique unitary algebra map f ′ : A ⋆ B → C such that f ′|B = f .
To prove this theorem we only need to prove that f ′(b) = 0. Indeed, if x ∈ b, then xB = 0, hence
0 = f ′(xB) = f ′(x)f (B). Since f (B) ̸= 0, then f ′(x) = 0. Therefore there is a unique unitary algebra map
f ′′ : (A ⋆ B)/b → C such that f ′′|B = f . �

The following example shows that the absence of zero divisor in C is necessary in the above theorem.

Example. 2.5.
Let us consider A = Z, and B = 2Z. In A⋆B = Z⋆2Z the annihilator of 2Z is b = {(−2x, 2x) | x ∈ Z}.
If we take C = Z8 and f : 2Z → Z8, defined by f (2) = 4; the only unitary algebra map extending f to
Z ⋆ 2Z is f ′ : Z ⋆ 2Z → Z8, defined by f ′(a, 2b) = a + 4b for any a, b ∈ Z. As a consequence f ′ can’t
be extended to (Z ⋆ 2Z)/b, as f ′(b) ̸= 0; indeed we have: f ′(−2, 2) = −2 + 4 = 2 ̸= 0.

As an application of this Szendrei extension, we have the original result due to Szendrei, see [4]. In it
the author studied when the extension of a (commutative) domain is also a unitary domain (one of the
main problems on Dorroh extensions is the appearance of zero divisors), and the corresponding universal
property for this construction.

Corollary. 2.6.
Let A be a commutative ring, B a prime commutative A–algebra, and C a prime unitary commutative
A–algebra. Then (A ⋆ B)/b is a prime unitary commutative A–algebra, containing B as an ideal, and for
any non–zero algebra map f : B → C there is a unique unitary algebra map f ′′ : (A ⋆ B)/b → C such
that f ′′|B = f .

And we have an extension in the following sense.

Corollary. 2.7.
Let A be a commutative ring, B a semiprime commutative A–algebra, and C a semiprime unitary commu-
tative A–algebra. Then (A⋆B)/b is a semiprime unitary commutative A–algebra, containing B as an ideal,
and for any non–zero algebra map f : B → C there is a unique unitary algebra map f ′′ : (A ⋆ B)/b → C
such that f ′′|B = f .

PROOF. Following with the notation in the proof of Theorem 2.4., let P = {p | p ⊆ C} the set of all
prime ideals of C, then we consider the following commutative diagram.

b

��
B //

f
��

A ⋆ B
f ′

wwo o o o o o o o

C i //
∏

p∈P
C
p

πp
��

C
p

5



Where πp :
∏

p∈P
C
p → C

p is the canonical projection on the factor, for any p ∈ P . Since πp◦i◦f ′(b) = 0,
for every prime ideal p ∈ P , then i ◦ f ′(p) = 0, i.e. f ′(b) = 0, and this provides the existence of a unique
A–algebra map f ′′ : (A ⋆ B)/b → C such that f ′′|B = f . �

From now on, let us consider a commutative ring A and commutative A–algebras. Let f : B1 → B2 be
a map between proper commutative A–algebras. It is well known that f induces a map of unitary A–
algebras: A ⋆ f : A ⋆ B1 → A ⋆ B2, defined in the obvious way. Is the same result for Szendrei extensions
true? The answer is no, as the following example shows.

Example. 2.8.
Let us consider A = Z, B1 = 2Z, B2 = Z8[X], and f : 2Z → Z8[X] defined as f (2) = 4. The Szendrei
extension of 2Z is (Z ⋆ 2Z)/b1, where b1 = {(−2n, 2n) ∈ Z ⋆ 2Z | n ∈ Z}, and the Szendrei extension
of Z8[X] is (Z ⋆ Z8[X])/b2 ∼= Z8[X], where b2 = {(a, b) ∈ Z ⋆ Z8[X] | a + b = 0}. The map Z ⋆ f
is defined as (Z ⋆ f )(a, 2n) = (a, 4n). Since (−2, 2) ∈ b1, and (Z ⋆ f )(−2, 2) = (−2, 4) /∈ b2 as
−2 + 4 = −2 + 4 = 2 ̸= 0. As a consequence, f does not induce a unitary A–algebra map.

We have a positive answer in several particular cases. Thus f induces a unitary A–algebra map whenever
either f : B1 → B2 is surjective or f is a unitary A–algebra map.

On one hand, if f is a surjective A–algebra map and (a, b) ∈ b1 then (a+b)B1 = 0, hence (a+ f (b))B2 =
(a + f (b))f (B1) = 0. On the other hand, in the unitary case, f ′ induces the own f from B1 to B2 as this
is a unitary A–algebra map.

If f : B1 → B2 is surjective with kernel a, we may compute the kernel of the induced map f ′ : (A ⋆
B1)/b1 → (A ⋆ B2)/b2. It is straightforward to prove the following result.

Proposition. 2.9.
With the above notation f ′ is surjective and the kernel of f ′ is (a:B1)+b1

b1
, where (a : B1) = {x ∈ B1 |

xB1 ⊆ a}. In particular, the kernel of f ′ contains a+b1
b1

.

And, as a consequence, we have.

Corollary. 2.10.
Let A be a commutative ring. Let f : B1 → B2 be a map between proper commutative A–algebras with
kernel a such that B2 is prime. Then (a:B1)+b1

b1
⊆ A⋆B1

b1
is a prime ideal.
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