

DYNAMIC LOAD BALANCING IN HETEROGENEOUS CLUSTERS:

EXPLOITATION OF THE PROCESSING POWER

MOHAMMED ALDASHT *
JULIO ORTEGA **

CARLOS G. PUNTONET **

* Department of Information Technology
Palestine Polytechnic University,
P.O.Box 198 Hebron, Palestine

{mohammed@ppu.edu}

** Department of Computer Architecture & Technology
University of Granada,

E-18071 Granada, Spain
{julio, carlos @atc.ugr.es}

ABSTRACT

The dynamic load balancing techniques, practically,
do not assume any information about the tasks to be
executed at compilation time. Parameters like
execution time or communication time are unknown
at compilation time. These techniques are used to
distribute the computation tasks of an application
between different processors at execution time to
achieve some defined performance objectives [1]. In
this paper we present a dynamic load balancing
algorithm designed especially for heterogeneous
network of workstations . The algorithm distributes
the parallel tasks dynamically attempting to
minimize its execution time. The experiments are
done over a network of workstation interconnected
via a fast Ethernet. It is a Linux cluster which has
some degree of heterogeneity in the processing
nodes. Our algorithm is shown to be efficient in
increasing the resource utilization and reducing the
total execution time of the applications.

Key words: Heterogeneous Cluster, Dynamic Load
Balancing, Centralized Algorithms.

1. INTRODUCTION

Load balancing means to distribute the workload of a
parallel application among the processors in the
platform at hand according to their relative
performance, in order to minimize the execution time

of the program [6]. Load balancing algorithms can
be classified into three main classes: static
algorithms, dynamic algorithms, and adaptive
algorithms [4]. Static algorithms decide how to
distribute the workload according a prior knowledge
of the problem and the system characteristics.
Dynamic algorithms use state information to make
decisions during program execution. Finally,
Adaptive algorithms are a special case of dynamic
algorithms. They dynamically change its parameters
in order to adapt its behavior to the load balancing
requirements. Moreover, dynamic load balancing
strategies can be divided basically into two main
classes: centralized dynamic load balancing and
distributed dynamic load balancing [3]. These
strategies define where the load balancing decisions
are made. In a centralized scheme, the load balancer
is implemented on one master processor and all
decisions are made there. In a distributed scheme, the
load balancer is replicated on all processors [5]

The dynamic load balancing exploits the
communication resources of the parallel platform to
exchange state information and tasks between the
processors. Therefore, the processors use the local
information which they have about the global state of
the system, to make decisions that allow obtaining of
minimal response time and maximum performance.
The efficiency of a load balancing algorithm depends
on: the communication cost between processors, the
complexity associated with the decision making
procedure in each processor, and on the cost of
maintaining relative information of the global state
of the system in each of the nodes [2,3].

2. OPERATIONS AND PARAMETERS
OF A DYNAMIC LOAD

DISTRIBUTION ALGORITHM:

Dynamic scheduling is based on the redistribution of
processes between processors during the execution
time. This redistribution is achieved by transferring
tasks from overloaded processors to the under -loaded
ones, this operation is called load balancing, and it is
done with the objective to improve the performance
of the application execution [2,3].

Typically, a load balancing algorithm can be

defined by a series of parameters:

• Granularity: it describes the degree of
partitioning the ap plication into sub-tasks.
Depending on the number of sub-tasks,
partitioning of a problem could be fine-grain,
medium-grain, coarse-grain or random.

• Initial work distribution: assuming that the load
is entering a load queue, initially we can
distribute equal quantity of load to every
processor. A staggered distribution can be a
good choice if we don’t have much information
about the node resources. If we have some
information about the node resources we can
give each node a quantity of load proportional to
its processing power. Another choice is to
achieve a random initial distribution.

• Information policy: according to which the
processing nodes exchange load information. It
can be periodical, on-demand, or on-state. In our
algorithm we use the on -demand information
policy as processors send to the central node
their state information when they ask for new
tasks to execute.

• Transfer policy: determines whether a node is in
a suitable state to participate in a task transfer. It
can be either sender-driven or receiver-driven.
With a sender-driven policy the node is letting
partner nodes know that it has tasks to be
transferred. With a receiver-driven policy the
node has extra resources and is ready to accept
more tasks from partner nodes. Similar to
information policy, this can be done periodically
or be threshold-driven. Our algorithm is
centralized and the transfer policy used is
receiver-driven policy which convenes with the
on-demand information policy.

• Location policy: is about finding a suitable
transfer partner using information about the
node status. A location policy can try to find the
most suitable node, which would involve more
overhead computation and time delay, or settle

with an adequate node, which may not give the
best result.

• Selection policy: det ermines which tasks to be
transferred. It can be pre-emptive or non-
preemptive. A pre-emptive transfer involves
tasks that are partially executed, while a non-
preemptive policy only involves tasks that have
not begun execution. In our algorithm we have
used the non-preemptive selection policy, so the
transferred tasks are from the task queue of the
master.

3. D ESCRIPTION THE ALGORITHM

In this work we propose a dynamic load distribution
algorithm by which we try to obtain the maximum
processor utilization and exploitation of the
processing power in a heterogeneous parallel
processing system.

The proposed algorithm is denominated as
Exploitation of the Fastest Processor (EFP) which is
a centralized algorithm for dynamic load distribution
of parallel applications based on the Single Program
Multiple Data (SPMD) paradigm. EFP algorithm
tends to obtain the maximum utilization and
exploitation of the processing power in a
heterogeneous parallel system, through distributing
the parallel tasks dynamically in the way that permits
the execution of the parallel application in the
minimum possible time.

Figure 1 shows the block diagram of the
multi-computer system architecture. The centralized
approach is based on the master worker paradigm as
shown.

Figure 1: multi-computer system architecture

Figure 2 shows the flowchart of the proposed
algorithm. Consider N to be the size of the problem
executed by the parallel application. And P
processors can be used to execute the application: P0,
P1, …, PP-1. As we stated above, EFP algorithm is a
centralized one, so the fastest processor in selected
as the central node to execute the load distribution

Master Processing
Node (P0)

Switch
……………….

P1 P2 PP-1

algorithm. In the case of homogeneous system where
all processors have the same processing capacity, our
algorithm can select any one to be the central node.
The central processor is assigned the identification
number 0 (P0), the rest of the processors are ordered
based on their processing capacity where P1 is the
least powerful one and PP-1 is the most powerful one.
The EFP algorithm is executed in the central node
and consists of the following steps:
1. Divide the problem in a number of tasks equals

to G and put them into a queue. The value of G
is determined by the following expression:

G(P) = n×P×rand()×(P×(P-1)/2) … (1)

 Where, x is the least integer larger than or
equals to x; n is a positive integer between 1 and 3;
and rand() is a function that returns a real number
between 0 and 1. Value of G increases proportional
to the number of processors and it must be less than
the problem size N. Therefore, increasing the
number of processors result in fine-grain division for
the problem. Using the integer n, we can prefix
different values of the granularity for a fixed number
of processors, as needed. In the experiments we have
done, 1, 2, or 3 are used as values of n, as indicated.

2. The central processor P0, performs a staggered

distribution of tasks on the processing nodes,
assigning tasks on each processor so that the ith
processor receives i tasks for i =1,2,…,P-1.

3. When tasks are assigned on other processors,
and while those are executing, the central
processor executes tasks form it s queue and
attends to the incoming interrupts from other
processors. In the case where there is an
interrupt:
• Identify the interrupting processor.
• Receive results of the executed task along

with some information relative to the
processor speed.

• If the task queue on the central processor is
empty go to step 5.

• Calculate the Speed factor, S, of the
interrupting processor and send it a number
of tasks proportional to that factor. i.e. more
tasks are sent when the processor is faster.

4. If the task queue on the central processor is not
empty go to step 3.

5. The central processor waits for results from all
the processors that are terminating their assigned
tasks, and sends a processing termination signal
to the processors according to their finishing
order.

In the design of the EFP algorithm we consider

that the computing platform can be heterogeneous,
which means that processing nodes can have
different processing capacity and different memory

capacity. To be able to implement the algorithm it is
needed to have information that can help in deciding
about the processing power of the nodes. E.g. in our
implementation, three parameters are used to decide
about the processing power: the clock frequency of
the processor, internal cache capacity, and the RAM
capacity of the node. The processor with the most
capacity is assigned to be the central processor,
where our procedure of load distribution is executed.
The rest of the processors are assigned identifiers in
the order of their computing capacity. P1 is the least
capable processor, and Pp-1 is the most capable one.

4. FLOWCHART AND ANALYSIS OF
THE EFP ALGORITHM

The following chart shows the flow of the control
and data operations achieved by the algorithm. All
the operations are expressed above:

Figure 2: flowchart of the EFP algorithm

No

No

Yes

No

Yes

Yes

N= Problem Size
P= Number of Processors.

Select the fastest processor to be the central one, to
execute the load distribution procedure

Divide the problem in a number of tasks, G
(N≥G), and create a task queue

G(P) = n×P×rand()×(P× (P -1)/2);
n∈{1,2,3}; 0 ≤ rand() ≤ 1

Initialize a staggered distribution of tasks on the
processing nodes, assigning tasks on each processor

so that the ith processor receives i tasks
 for i =1,2,…,P-1

 (the central, P0, doesn’t execute its part of work yet)
yet)

Execute work in the central node

Interrupt
?

More tasks
in the

queue?

Receive results form the
interrupting processor

More tasks
in the

queue?

Calculate the speed factor, S, of the
interrupting processor and send it a
number of tasks proportional to that
factor. i.e. more tasks are sent when

the processor is faster

Receive results
from all the
processors

End

Start

 In the first round (P(P-1)/2) tasks are
distributed, so that the ith processor receives i tasks
for i=1,…,P-1. Thus, slower processors never have
more tasks than the faster processors. On the other
hand, using staggered distribution it is less probable
that two or more processors finish their assigned
work and interrupt the central processor
simultaneously, to send back results and ask for new
tasks. This is important, especially when having a
shared bus network where the contention on the bus
increases the communication time, consequently the
performance of the system is affected negatively.

When the central processor completes the
distribution in the first round, it continues executing
tasks from its queue, at the same time it enables
interrupts from other processors when they need to
send back results and receive new tasks to execute.
Really, the procedure executed in the central
processor simulates the interrupt through a periodic
check for interrupting messages sent by other
processors. If an interrupt request from another
processor is detected, the central processor executes
an interrupt service routine by which it identifies the
interrupting processor, and then receives the results
and further information about the processor speed.
Specifically: computation time, communication time,
wait time, and the quantity of tasks executed. This
information is sent to the central processor to help in
deciding how much tasks it will send to the
interrupting processor. The processor which finishes
its assigned work more rapidly will receive more
work in the next assignment, and otherwise it will
receive less work in the next assignment. When there
are no tasks in the queue, the central processor
finishes the current task and waits for results from all
the processors that are terminating their assigned
tasks.

It is evident that the EFP algorithm is
simple and has linear time complexity. The time of
the algorithm is O(G). This simplicity makes small
overhead of load distribution on the central
processor.

5. EXPERIMENTAL RESULTS:
In this section we describe the experimental

result obtained from generating and studying the
proponed algorithm. It will be shown that the fastest
processor always executing more tasks. And the
finish time of the processors is similar due to the
suitable distribution done by the algorithm. This
improves the utilization of the processors.

As a benchmark, in this paper we have used
the matrix multiplication algorithm because of its
simplicity and scalability. The product of two

matrices A and B is defined by
kj

n

k
ikij bac ×= ∑

= 1 ,

where ija
, ijb

 , and ijc
 is the element in the i’th

row and j’th column of the matrix A, B, and C
respectively, and C is the result matrix. for simplicity
we use a square matrices of order n . So we can
increase or decrease the workload by simply
changing the order of matrices n . Thus, the matrices
A, B, and C are n×n matrices . The sequential
algorithm of this matrix multiplication requires

3n multiplications and additions, therefore its time
complexity is ()3nO .

We have selected this algorithm because of
its simplicity and because it is one of the most
important linear algebra algorithms which may
simulate many real applications like image
processing, video compression, …etc. also the
workload of the MM algorithm is scalable and very
easy to modify.

A heterogeneous cluster of computers
connected by fast Ethernet is used as the parallel
processing platform in our experiments. Table 1
shows the characteristics of the cluster used.
Massage passing library MPI is used as the parallel
programming environment implemented in C.

TABLE 1: CHARACTERISTICS OF THE CLUSTER USED

Number of
nodes

CPU Speed
(MHZ)

Cache size
(KB)

RAM size
(MB)

1 PIII 1000 512 118
8 PII 333 512 120

The following figure shows the effect of the
workload on the execution time (seconds) with a
fixed number of processors.

Execution Time

0

50

100

150

200

250

10
0

20
0

30
0

40
0

50
0

70
0

80
0

90
0

10
00

15
00

20
00

Matrices Size

E
xe

cu
ti

o
n

 T
im

e

Execution Time

Figure 3: effect of matrix size (workload) on the execution time.

Table 2 and figure 4 show the detailed
execution results with the matrix size 100×100. It is
obvious in the table that the central processor
multiplies the greatest number of rows, and the other
processors almost multiply similar number of rows.
Also shown the three components of the execution
time, wait time (Twait), communication time

(Tcomm), and computation time (Tcomp). Because
of the small size of the matrix (small workload) used
it is obvious that the major component of the
execution time is the communication time.

TABLE 2: EXECUTION RESULTS WITH 100×100 MATRIX

Processor
Number of

Rows Texec Tcomp Tcomm Twait

0 9 0.072 0.013 0.055 0.004

1 10 0.071 0.014 0.049 0.007

2 8 0.072 0.008 0.06 0.004
3 8 0.071 0.009 0.057 0.005

4 6 0.07 0.009 0.052 0.009

5 8 0.072 0.011 0.05 0.01

6 9 0.072 0.013 0.048 0.011

7 10 0.072 0.014 0.046 0.011

8 32 0.078 0.078 0 0

Execution time for 100X100 Matrices

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 1 2 3 4 5 6 7 8

Processor

E
xe

cu
ti

o
n

 T
im

e

Twait

Tcomm

Tcomp

Figure 4: Execution times for a matrices sizes 100×100.

Tables 3 through 6 and figures 5 through 8
show the detailed execution results with the matrix
size 400×400, 800×800, 1000×1000, and
2000×2000, respectively, it is obvious in the table
that the central processor multiplies the greatest
number of rows, and the other processors almost
multiply similar number of rows. Also shown the
three components of the execution time, wait time
(Twait), communication time (Tcomm), and
computation time (Tcomp). In contrast to the
previous execution and because of the increase in
work load (matrix size), It is obvious that the major
component of the execution time is the computation
time, which increases efficiency.

TABLE 3: EXECUTION RESULTS WITH THE MATRIX SIZE

400×400

Processor
Number of

Rows Texec Tcomp Tcomm Twait

0 38 1.853 1.457 0.251 0.146

1 37 1.837 1.426 0.209 0.202

2 46 1.806 1.221 0.548 0.036

3 40 1.792 1.249 0.452 0.091

4 32 1.827 1.37 0.2 0.257

5 36 1.863 1.38 0.17 0.313

6 34 1.806 1.297 0.142 0.367

7 34 1.84 1.294 0.122 0.424

8 103 1.865 1.865 0 0

Execution time for 400X400 Matrices

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8

Processor

E
xe

cu
ti

o
n

 T
im

e

Twait

Tcomm

Tcomp

Figure 5: Execution times for a matrices sizes 400×400.

TABLE 4: EXECUTION RESULTS WITH THE MATRIX SIZE

800×800

Processor
Number of

Rows Texec Tcomp Tcomm Twait

0 75 13.667 12.169 0.928 0.57

1 76 13.999 12.306 0.903 0.79

2 99 13.35 11.042 2.178 0.13

3 84 13.269 11.185 1.735 0.349

4 65 13.517 11.741 0.765 1.011

5 72 13.725 11.658 0.835 1.233

6 69 13.503 11.173 0.874 1.455

7 68 13.441 11.011 0.749 1.681

8 192 14.039 14.039 0 0

Execution time for 800X800 Matrices

0
2
4
6
8

10
12
14
16

0 1 2 3 4 5 6 7 8

Processor

E
xe

cu
ti

o
n

 T
im

e

Twait

Tcomm

Tcomp

Figure 6: Execution times for a matrices sizes 800×800.

TABLE 5: EXECUTION RESULTS WITH THE MATRIX SIZE

1000×1000

Processor
Number
of Rows Texec Tcomp Tcomm Twait

0 84 24.996 23.413 0.698 0.886

1 89 26.786 24.804 0.747 1.235

2 122 26.001 23.455 2.346 0.2

3 106 25.667 24.211 0.914 0.542

4 77 26.243 23.947 0.714 1.583

5 83 25.699 23.122 0.642 1.935

6 84 26.331 23.409 0.635 2.287

7 78 24.916 21.731 0.542 2.643

8 277 26.829 26.829 0 0

Execution time for 1000X1000 Matrices

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

Processor

E
xe

cu
ti

o
n

 T
im

e

Twait

Tcomm

Tcomp

Figure 7: Execution times for a matrices sizes 1000×1000.

TABLE 6: EXECUTION RESULTS WITH THE MATRIX SIZE

2000×2000

Processor
Number of

Rows Texec Tcomp Tcomm Twait

0 179 211.706 205.747 2.361 3.597

1 180 213.177 206.159 2.013 5.005

2 265 213.088 209.345 2.937 0.807

3 200 195.12 190.405 2.518 2.197

4 181 212.706 206.747 2.361 3.597

5 181 217.244 207.515 1.859 7.87

6 176 212.779 201.625 1.828 9.327

7 176 214.054 201.779 1.484 10.791

8 462 218.367 218.367 0 0

Execution Time for 2000X2000 Matrices

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

Processor

E
xe

cu
ti

o
n

 T
im

e

Twait

Tcomm

Tcomp

Figure 8: Execution times for a matrices sizes 2000×2000.

Figure 9: effect of number of processors on the Execution time

(seconds) for fixed matrix size.

 As shown in figure 9, as the number of

processors increase the total parallel execution time

decreases. Figure 10 shows a comparison of the

static load balance efficiency and the dynamic load

balance efficiency. Figure 11 shows a comparison of

the static load balance speedup and the dynamic load

balance speedup, it is clear in the figure that our

algorithm using the dynamic load balance achieves

better efficiency and speedup.

Figure 10: efficiency evolution comparison as a function of the

number of processors, P, using a matrix size 1000×1000.

Figure 11: Speedup evolution comparison as a function of the

number of processors, P, using a matrix size 1000×1000.

6. CONCLUSION
In this paper we have proposed a centralized
dynamic load distribution algorithm capable to
achieve efficient load distributions in a
heterogeneous parallel environment. We started with
presenting in detail the operations and characteristics
of a dynamic load distribution algorithm in section
II.
 To compare the results we have
implemented a static load distribution procedure
which performs the load distribution before the
execution begins. Our proposed algorithm
denominated EFP is capable to achieve good
distributions permitting that all processors terminate
their work almost simultaneously. Furthermore, this
algorithm is shown to be efficient in heterogeneous
parallel platforms. As shown in figures 4-8 above.
 We have used matrix multiplication as a
benchmark executing in a heterogeneous platform.
The obtained results show that EFP algorithm is
efficient and adaptive for different workload (matrix
sizes) and different number of processors. However,
it is important to take into account that centralized
approach present a bottleneck in the central node.
This bottleneck can limit the scalability of the of the
parallel algorithm, to deal with this problem, the EFP
algorithm always selects the fastest and the most
powerful processor to be the central node. Our
experiments show that the algorithm maintains a
good increase in the efficiency and speedup as the
number of processors increase. As shown in figures
10 and 11.

BIBLIOGRAPHY

[1] Theys, M.D., et al.:”What are the Top Ten most
Influential Parallel and Distributed Processing
concepts of the past millenium?”. Journal of
Parallel and Distributed Computing, Vol.61,
pp.1827-1841, 2001.

[2] Antonis, K.; Garofalakis, J.; Mourtos, I. ;
Spirakis, P. : “A hierarchical adaptive
distributed algorithm for load balancing”. J.
Parallel Distrib. Comput., 64, pp.151 -162, 2004.

[3] Barker, K.; Chernikov, A.; Christoides, N.;
Pingali, K.:”A Load Balancing Framework for
Adaptive and Asynchronous Applications”.
IEEE Trans. on Parallel and Distributed
Systems, Vol.15, No. 2, pp.183-192. Febrero,
2004.

[4] Luis Paulo Peixoto Dos Santos, Load
Distribution: A Survey, Technical Report,
Universidade do Minho, Departamento do
Informática Oct. 1996.

[5] Shahzad Malik, Dynamic Load Balancing in a
Network of Workstations, 95.515F Research
Report, Nov. 2000.

[6] Mohammed Javeed Zaki, Wei Li, and Srinivasan
Parthasarathy, Customized Dynamic Load
Balancing for a Network of Workstations,
Journal of Parallel and Distributed Computing
43, pp. 156–162 (1997).

