

 1

Particle Swarm Optimization for the Exploration of

Distributed Dynamic Load Balancing Algorithms

Mohammed M. Aldasht

College of IT and computer engineering,

Palestine Polytechnic University, Palestine

Abstract - Evolutionary algorithms provide mechanisms that can achieve efficient exploration for complex design spaces. Also,

they constitute an efficient tool for identifying the best alternatives to implement the solution of a certain problem. In this work we

use particle swarm optimization (PSO) to find the best alternatives for the distributed load balancing procedure in heterogeneous

parallel computers. We have classified and parameterized the different distributed strategies of the dynamic load balancing, then

we have applied a methodology based on PSO capable of analyzing the characteristics of the alternatives of load balancing when

considering different types of problems and parallel platforms. As an application example of the proposed methodology we will

show the results corresponding to the dynamic load balancing in a heterogeneous cluster of PCs for a parallel branch and bound

algorithm.

Keywords: Evolutionary algorithms, Particle Swarm Optimization, heterogeneous clusters, dynamic load balancing procedures.

1. Introduction
The target of a load balancing algorithm is to distribute

the computational work between the different processing

nodes of the parallel and/or distributed machine, so that

the resource utilization is maximized to optimize the

performance of the platform [1]. A load balancing

procedure must find a trade-off between the utilization

of processors that constitute the parallel machine and the

costs associated with the communication and

synchronization between these processors, so that the

execution time of the parallel application is minimized.

Dynamic load balancing exploits the

communication resources of the parallel platform to

exchange state information and tasks between the

processors. Therefore, processors use the local

information which they have about the global state of

the system, to make decisions that allow obtaining of

minimal response time and maximum performance. The

efficiency of a load balancing algorithm depends on the

communication cost between processors, the complexity

associated with the decision making procedure in each

processor, and on the cost of maintaining relative

information of the global state of the system in each

node.

Dynamic load balancing strategies can be

implemented either in centralized or distributed model.

In the centralized case, a processor is responsible for

maintaining information of the global state of the system

and, then, carries out the tasks assignment to processors.

In case of systems with a high number of geographically

distributed processors, this strategy turns out to be not

feasible, for which the distributed strategies are the most

suitable. In the distributed strategies, the nodes of the

system have local information about the global state of

the system and they make the decisions in an

autonomous form considering this local state

information and the information that they exchange with

other processors. Given that the processors use partial

information about the state of the system, decision

making for load distribution, usually, may not be

optimal.

In the literature there are described numerous

examples of the distributed procedures, which they make

up a very complex design space. Therefore, deciding

about the type of procedure to choose, according to the

problem and the platform, turns out to be quite

complicated. Particle Swarm Optimization (PSO) is a

kind of swarm intelligence algorithms which are meta-

heuristics that simulate the social life of some animals

used to solve complex problems. PSO is a population

based stochastic optimization technique developed by

Dr. Eberhart and Dr. Kennedy in 1995. In this paper we

present the possibilities of using the PSO in the field of

distributed dynamic load balancing.

In section 2 we describe the characteristics of the

distributed procedures for dynamic load balancing.

Section 3 presents a generic procedure of load balancing

to which there can be applied an optimization method

based on PSO. Finally, the experimental results appear

in section 4 and the conclusions of the paper in section

5.

2

2. Classification of load balancing

procedures
In the last years a lot of load balancing procedures have

been proposed [2-6, 14-16] looking for scalability

enhancements and portability. In general, it is an issue of

new ideas about how to select and to distribute tasks

between processors in order to minimize the volume of

work to transfer between processors, and to support or to

improve the locality in the communications of the

parallel program. With the objective of minimizing the

overhead associated with maintaining and updating the

load information, or assuring that it keeps within

reasonable limits [7].

In a distributed procedure, once the tasks are distributed

between the processors, these take charge both of the

processing of the tasks that are assigned to them, and of

the redistribution of the tasks to respond to the changes

that can occur in the state of load in the processors, due

to the dynamic nature of the platform (modifications on

the load of the different nodes due to the presence of

other applications), the characteristics of the applications

(irregular applications), or failure in some processor or

another element of the hardware of the platform. In a

distributed procedure, each processor must implement,

in some way, the procedures correspond to the stages of

load evaluation, initiation of distribution [5,8],

calculation of the volume of work to transfer [5,6,9],

selection of tasks, and task migration. These stages are

implemented using a series of policies:

- The information policy: this policy determines

the characteristics of information exchange between the

processors in order to have an updated image about the

state of load of the whole machine. The set of local and

remote information that a processor has, allows it to

determine whether to initiate a redistribution of load, the

amount of work that it should transfer, if it should act as

transmitter or receiver, etc. The most important

dimensions to characterize an information policy are

related to the spatial frame and to the temporary frame.

Thus, an information policy should fix the topology that

the processors define with mutual state information. A

processor can have information about all the processors

in the platform, of those with which it has neighborhood

relations according to the interconnection network, or of

groups of processors that it could establish according to

some criteria (for example, a group of randomly selected

processors) that can change temporarily. Moreover, the

information policy must establish the moments in which

the processors must exchange information: periodic or

on-demand information policy. In the periodic one, the

processors exchange load information with a frequency

that we will name the load balancing frequency (LBF).In

the case of on-demand information policy, the state

information is exchanged whenever it is necessary to

realize a load redistribution, since it is supposed that it is

the moment in which changes in the processors charges

will take place that cannot decide locally.

- The transfer policy establishes the conditions

under which the migration of tasks must take place

between processors. For this, every processor may use

the load information (local and remote) and it decides if

it must transfer tasks or request task to be transferred to

it. This way, according to which of the processors will

initiate the load balancing operation, the transfer policy

can be sender initiated, receiver initiated, or

symmetrical. In case of the sender initiated transfer, the

overloaded processor will begin the load distributed

operation and send tasks to other processors. If the

transfer is receiver initiated, the processor that needs

work will initiate the load distribution operation. Finally,

in the symmetrical transfer policy, the overloaded

processor which is going to send work to another

processor and the one that requests work they must

synchronize to realize the transfer of one to other.

- The location policy determines the processors

that intervene in the transfer of tasks that take place in

the load redistribution. This policy is related to that of

transfer, since to decide if the level of load in a

processor can make it a sender or a receiver corresponds,

precisely, to the location policy. Four different types of

location policy: the policy that use one threshold, the

policy that use two thresholds, the policy of

minimum/maximum level of load, and the random

location policy. In the one threshold policy a node is

located as sender or receiver as its load is, respectively,

above or below a certain level considered as a threshold.

In the location policy of two thresholds, two thresholds

are used, one of them (the high threshold) establishes the

value over which the processor is considered to be

overloaded, and other (the low threshold) represents the

value below which the processor is considered to be

underloaded. A processor is sender if its level of load is

over the high threshold, and is receiver if its load is

below the low threshold. At the moment of establishing

the two values of thresholds it is necessary to have in

mind that the load of the application can change over the

time, therefore, it is suitable to use thresholds that

change dynamically, adapting itself at the level of load

of the system.

- The selection policy is the one that determines

what tasks to chose to be transferred from a processor

that has been designated as a sender by the location

policy (and in some cases by the distribution policy, as

we will see). Two alternatives exist for this policy. On

3

the one hand the preemptive selection policy, in which,

between the tasks that can be selected, the task that is

being processed is included. On the other hand, non-

preemptive selection of tasks; only the tasks that are

waiting can be selected. The selection policies only need

information that allows estimating the load of work of

each one of them.

- The distribution policy determines the way of

balancing the load between the processors that the

location policies have selected as senders or receivers.

This policy is related to the stages of load evaluation,

task selection and migration. In the distribution policy,

the selected tasks to constitute the work to exchange are

those that the selection policy determines.

The parameters that must be fixed to, completely,

specify the alternatives of different policies are:

- The granularity, GRN, which indicates the

number of tasks in which the problem is divided. It can

vary between 1 and N, where N is the maximum number

of tasks that can be considered in the problem. A low

value of GRN indicates a fine granularity provided that

few tasks are created. A parameter between 0 and 1 is

used that relates the value of N and that of GRN.

- The thresholds, TSD1 and TSD2, are the values

used as thresholds in case of a location policy with one

threshold (TSD1) or with two thresholds (TSD1 is the

low threshold and TSD2 the high threshold). The values

of the thresholds can vary between 1 and GRN. The

parameters TSDP1 and TSDP2 are used, with values

between 0 and 1, for establishing the relation between

TSD1 and TSD2, respectively, with GRN.

- The load balancing frequency, LBF, is a

parameter that can vary between 1 and GRN (a

parameter called LBP, between 0 and 1, is used to relate

between LBF and the granularity). It indicates that

during the execution of the parallel program, a processor

can initiate operations of load balancing every LBF time

intervals.

The classification of the dynamic distributed load

balancing procedures according to the different policies

allows the parameterization of the above mentioned

procedures and to transform a generic procedure for the

dynamic distributed load balancing that we have

developed (it will be described in the following section).

We can get the desired procedure on fixing the

parameters to the values corresponding to that

procedure. Our approach is similar in many aspects to

the one that raises the genetic programming [10], whose

target is to generate optimum programs.

while (not end) do

{

 if (LBC==LBF) then

 {

 load_distribution()

 LBC=0;

 }

 if (work_queue not empty) then

 {

 process_task();

 LBC=LBC+1;

 LI=LI-1;

 }

}

Figure 1. Load balancing function call

Table 1. Parameters of the described procedure
Parameter Range/Definition Meaning

N -
Problem Size. The maximum

number of tasks in the problem.

P - Processors

GRN
 GRANP×N
(0<GRANP<=1)

granularity. The problem is

divided initially into GRN tasks.

TSD1
 TSDP1×GRN
(0<TSDP1<1)

Lower threshold.

TSD2
 TSDP2×GRN
(0<TSDP2<1)

Higher threshold.

LBF
 LBP×GRN
(0<LBP<1)

Load balancing frequency

LI

Load Index. The number of tasks

in the work queue of the

processor.

LBC Load balancing counter.

p Current processor

3. General procedure of dynamic and

distributed load balancing
In this section we describe a general procedure of

dynamic and distributed load balancing [13]. The

definitions, the range and the meaning of the parameters

and variables used in the procedures are provided in the

tables 1 and 2. In the Figure 1 a call to the load

balancing procedure is shown. It could be seen that

every LBF time intervals of processing a call to the load

balancing function is realized, load_distribution(). This

should not conclude that load distribution operations

should have to begin necessarily. Every time interval is

equal to the processing time of a task. Thus, the load

index LI of a processor decreases by one each time a

task is processed. Obviously, the size of the task, and

therefore, the duration of the time interval will depend

on the granularity, GRN. As shown in Table 1, there

exist a relation between LBF and GRN and is controlled

by the parameter LBP, which varies between 0 and 1.

4

Table 2. Parameters of the described procedure (cont.)

Parameter Meaning

S Number of processors selected as

senders by the location policy.

R Number of processors selected as

receivers by the location policy.

CS Sum of load indices for all senders

CR Sum of load indices for all receivers

LI Load Index. Numbers of tasks reside

in the work queue of the processor.

OL Overload.
RS

CRCS
LIOL

+

+
−=

W(Ti) Work load asociated with the task Ti

Figure 2 describes the calls that the load distribution

procedure realizes to the functions implemented by the

different policies. The calls that are finally realized

depend to the parameter used in the program execution

according to the policies that intervene in the load

distribution. Thus, in the function load_distribution(),

firstly, three conditional statements appear, each of

which corresponds to one of the three alternatives that

are considered for the transfer policy.

Load_distribution()
{

 if (transfer_policy=sender_initiated)

 {

 if (LI>TSD) then

 {

 request_locate_receiver(p);

 load_information_exchange(receiver_proc);

 select_tasks();
 send_tasks(receiver_proc);

 }

 }

 if (transfer_policy=receiver_initiated)

 {

 if (LI<TSD) then

 {

 request_locate_sender(p);

 load_information_exchange(sender_proc);

 request_tasks(sender_proc);

 receive_tasks(sender_proc);

 }

 }

 if (transfer_policy=symetrically_initiated)

 {

 load_information_exchange(sender_proc);

 locate_sender_receiver();

 if (p=sender_proc)

 {

 select_tasks();
 send_tasks(receiver_proc);

 }

 if (p= receiver_proc)

 {

 request_tasks(sender_proc);

 receive_tasks(sender_proc);

 }

 }

}

Figure 2. Load distribution procedure

If the transfer policy is sender initiated, the

processor verifies if its load index, LI, is greater than the

high threshold, TSD. If the used location policy is with

one threshold, TSD will be equal to TSD1, and if the

used location policy is with two thresholds, TSD will be

equal to TSD2. If, it is greater than the threshold that

indicates the overloading of a processor, it turns into

sender. In this case it calls the function

request_locate_receiver() in order to get the receiver or

the set of receivers to which it must send tasks, which

will be determined later using the functions

load_information_exchange(), and select_tasks(), and

send_tasks(). With respect to the exchanged information,

apart from the load index, LI, when the system is startup

the nodes exchange information as the CPU speed, the

available memory, size of cache, etc. This information

allows having a better knowledge of the state of the

processors, and can be used in the location of processors

suitable for load transfer. Besides, calculations of

minimums, maximums of load, etc. as we will see, could

be needed in some policies.

In case the receiver initiated transfer, first it

calls the function request_locate_sender(), to identify

the possible sender from whom it could receive the

needed tasks. Then, load information will be exchanged

with the sender or possible senders using the function

load_information_exchange(), and the sending of tasks

is requested by means of the function request_tasks().

Then, the processor waits to receive these tasks before

continuing with its processing.

If the transfer initiates symmetrically, after

exchanging load information, a call to the function

locate_sender_receiver() is needed. This function

determines whether the processor that has issued the call

is sender or a receiver and, in each case, returns one or

several receivers or senders, respectively. If the function

locate_sender_receiver() indicates that the processor is

not sender nor receiver, the processor will not intervene

in the load redistribution. If the processor is selected as

sender it will call the functions select_tasks() and

send_tasks(), and if it is designated as receiver it will

call the functions request_tasks() and then it waits to

receive them by calling to receive_tasks().

The function select_tasks() allows to determine

the set of tasks that they can be considered at the

moment of choose those that must be sent. Thus, in the

function there appear two options that correspond to two

alternatives considered for the selection policy:

preemptive or non-preemptive. In addition, in the

function select_tasks() the function choose() is to be

called. This function implements the distribution policy,

5

where its form depends on the specific characteristics of

the type of procedure that it is considered (diffusion,

dimensional exchange, etc.). The function choose() is

called with a parameter that refers to the set of tasks that

can be chosen according to the selection policy

(preemptive or non-preemptive) and, in our

implementation, it associates a volume of load superior

to a load index OL, whose definition appears in the

Table 1. In the calculation of OL we use aspects related

to the topology of connection that is considered between

the processors (all, the neighbors, group members, etc.).

The form of these location functions depends on

the type of transfer policy in use, keeping in mind the

clear interrelationship between the two policies. The

function locate_sender_receiver(), is called when the

transfer policy is symmetrical. There appear the options

corresponding to four alternatives for the location

policy. So, according to the load index LI, according to

whether it is less or greater than TSD1 the processor will

act as receiver or sender, respectively, in the case of the

location policy of a one threshold. In the case of two

thresholds location policy, the same thing is to do but,

there are in use the thresholds TSD1 as low load

threshold and TSD2 as overload threshold. If the

location policy is based on the minim/maximum load it

will be necessary to compare the load index with the

values of maximum and minim load of the set of

processors with that a processor can exchange load.

These calculations is done when the calls are realized to

the function load_information_exchange() in the case of

using this location policy. The set of processors that

intervene at the moment of doing this calculation are

determined by the alternative of topology of the

information policy. The way of determining the sender

and receiver in case of random location policy also

requires information about the maximum and minimum

load of the correspondent group of processors.

To determine the index (the indices) of the

sender (possible senders) or receiver (possible

receivers), respectively, for the processor designated as

receiver or sender, the functions sending() and

receiving() are used. These functions perform

communication between those processors that can

transfer tasks according to the topological alternatives of

the distribution policies. From these functions, also it is

possible to call to the functions locate_sender() (in case

of sending()) and locate_receiver() (in case of

receiving()), which are described later.

The function locate_receiver() allows to

determine a receiver processor in the sender initiated

transfer policy. In addition to be called from the function

receiving(), the function locate_receiver() is also called

from the function request_locate_sender(), which

generates the calls to locate_sender(processor) in a

processor from all processors that the distribution policy

indicates that they can exchange work with the

processor. The function executed in the processor p

sends to request_locate_sender() in processor the load

index of the processor, p, if it verifies, from the

conditions established in the location policy in use, to be

a receiver.

The function locate_sender() is analogous to the

function locate_receiver() but in this case for the

processor or processors to which it is possible to request

tasks for them. This function is called from

request_locate_sender() in case that the transfer policy

is receiver initiated (also it is possible to be called from

sending(), as indicated before).

To explore the design space of the distributed

procedures for dynamic load balancing, we have used a

PSO algorithm (figure 3) that it is employed to search

the space defined by the different alternatives of the

policies of information, transfer, location, and selection,

in addition to the values that can take the parameters

LBF, GRN, and the thresholds TSD1 and TSD2 (real

values). Its target is to find the configurations of the

policies and the values of the parameters for policies that

can provide a better distribution of load for a parallel

application.

PSO algorithms share similarities with

evolutionary computation techniques such as Genetic

Algorithms (GA), where PSO starts with a population of

random solutions and searches for optima by updating

generations. But unlike GA, PSO has no evolution

operators such as crossover and mutation. The potential

solutions, particles, fly through the problem space by

following the current optimum particles.

In the swarm of solutions, which evolves from

one generation to another, it keeps tracking of the

particles conserving the local best for each particle and

the global best from the swarm. Thus, it keeps the most

suitable solution found in the previous iterations.

Precisely, the ability to remember useful information

relative to the past iterations is one of the strategies that

have been considered in the application of the

evolutionary algorithms to the dynamic optimization

problems, in which the obtained solutions must bear in

mind the changeable nature of the problem [11,12].

6

For each particle

 Initialize particle

END

Do

 For each particle

 Calculate fitness value

 If fitness > best fitness value pbest in history

 set current value as the new pbest

End

 Choose the particle with best fitness value as the gbest

 For each particle

 Calculate particle velocity:

 v’ = v + c1*rand*(pbest - present) + c2*rand*

(gbest - present)

 Update particle position according Calculated

velocity

 present’ = persent + v’

 End

While maximum iterations or minimum error criteria is

not attained

Figure 3. Pseudocode of the developed PSO algorithm

4. Experimental results
The results that appear here correspond to a parallel

algorithm of branch and bound for the traveling

salesman problem. In this case the volume of calculation

of the program is unknown in advance, and it depends

on the implicit search process that the algorithm

implements. In this way, it is essential to use a procedure

of dynamic load balancing.

They are provided (Table 3 and Figures 4-6) the

results obtained for a problem size corresponding to 8

cities, in a cluster with 7 nodes with the characteristics

described in table 3 and connected via a Gigabit

Ethernet.

Table 3: cluster nodes characteristics

of

nodes

CPU Speed

(MHZ)

Cache

(KB)
RAM

Node1
Xeon, dual

processor
2 MBytes 2 GB

Nodes:

2-4
P4 3.2 512 1 GB

Nodes:

5-7

Core 2 Duo

1.8
512 1 GB

Figure 4: Fitness (1/parallel time) for the alternatives with sender

initiated transfer

Figure 5: Fitness (1/parallel time) for the alternatives with receiver

initiated transfer

Table 3 presents, for the alternative procedures

of the symmetric transfer policy (the one that provides

better speedup), the values of the parameters to that

genetic algorithm converges and the values of the fitness

and of the average utilization obtained (the standard

deviations are indicated between parentheses). Since

value of fitness used is the inverse of the parallel

execution time (we have avoided the evaluation of the

sequential execution time of the algorithm, which can

become extremely high). Figures 4, 5, y 6 represent the

evolution of the fitness across the successive generations

of the genetic algorithm in the alternative procedures of

each transfer policy.

The results obtained for the branch and bound

algorithm show that better speedup values are provided

7

by symmetric transfer policy. The procedures with

sender initiated transfer policy are better than those of

receiver initiated transfer. Here, the utilizations obtained

by the symmetric procedures are similar in some cases

to those of the receiver initiated procedures, and the

procedures with sender initiated transfer have lower

utilization.

If we consider the different alternatives for

every transfer policy we have that in case of the

procedures with sender initiated transfer (figure 4) and

for the receiver (figure 5) all the alternatives converge

towards quite close values: it can be considered that they

are almost equivalent as for the speedup that they allow

to reach. As for the procedures with symmetric transfer,

the figure 6 shows relatively different behaviors for

different location and selection policies. In this case, the

procedures based on a threshold (preemptive or

nonpreemptive) and the procedure based on two

thresholds with no preemption who provide better

performance.

Table 3 Convergence of the parameters for the alternatives with the

symmetric transfer policy

Procedure LBF GRN TSD1 TSD2 1/(T Par)
Util.

Máx.

Threshould

(Preemption)

107

(12)
1 (1) 101 (7) 279 (18) 1.87 (0.03) 0.09

Threshould

(No-

Preemption)

103 (8) 2 (1) 106 (8) 279 (16) 1.88 (0.02) 0.11

Two-

Threshoulds

(Preemption)

111

(11)
2 (1) 109 (12) 280 (12) 1.58 (0.02) 0.17

Two-

Threshoulds

(No

Preemption)

116

(14)
2 (1) 94 (6) 297 (8) 1.80 (0.03) 0.13

Mín/máx

(Preemption)
105 (7) 2 (1) - - 1.00 (0.01) 0.05

Mín/máx

(No

Preemption)

119

(14)
5 (3) - - 1.24 (0.03) 0.03

It figures 6: fitness (1/parallel time) for the alternatives with

symmetric transfer policy

The convergence on the parameters GRN, LBF, TSD1,

and TSD2 shows greater deviations than in other test

programs that have been analyzed [12]. Also, greater

changes exist between the convergences of the

parameters according to the procedures. For example

GRN is between 1 and 2, though in some cases it is

equal to 5. The values of LBF to which it converges are

between 103 and 121 for the procedures with sender

initiated transfer and the symmetric ones, but in case of

the receiver initiated transfer they are 85 and 75,

respectively, for two considered alternatives. The values

of TSD1 are between 90 and 117, and the values of

TSD2 are between 273 and 297, though in one case it

comes to 328 (sender initiated transfer with location

based in the maximum/minimal level of load with

nonpreemption). This way, the best procedure for the

branch and bound algorithm applied to the traveling

salesman problem with 8 cities uses symmetric transfer

policy, one threshold location policy, and

nonpreemption selection policy; with GRN=2,

LBF=103, and TSD1=106.

5. Conclusions
According to the alternatives that can be distinguished in

the information, transfer, location, distribution, and

selection policies, which they define a load distribution

procedure, different procedures have parameterized and

the genetic search has been applied in the defined space

of design. Thus, it is possible to carry out an

optimization of the parameters that define the behavior

of each load balancing procedure, which, in this way, is

achieved by means of an analogous approach to the

genetic programming.

The experimental results obtained show that in all

the analyzed cases the symmetric transfer policy with

8

periodic information policy is better than the sender and

receiver initiated both with the on-demand information

policy. These results coincide with the conclusions

obtained in other works [2]. As for location policies, the

most efficient is used to be with one or two thresholds,

and as for the selection policy, in some cases the best are

those of preemption and in others those who use

nonpreemption. The procedures with random location

policy are those who provide the worst performance.

6. References
[1] Theys, M.D., et al.:”What are the Top Ten most

Influential Parallel and Distributed Processing

concepts of the past millenium?”. Journal of

Parallel and Distributed Computing, Vol.61,

pp.1827-1841, 2001.

[2] Antonis, K.; Garofalakis, J.; Mourtos, I. ; Spirakis,

P. : “A hierarchical adaptive distributed algorithm

for load balancing”. J. Parallel Distrib. Comput.,

64, pp.151-162, 2004.

[3] Barker, K.; Chernikov, A.; Christoides, N.; Pingali,

K.:”A Load Balancing Framework for Adaptive

and Asynchronous Applications”. IEEE Trans. on

Parallel and Distributed Systems, Vol.15, No. 2,

pp.183-192. Febrero, 2004.

[4] Watts, J; Taylor, S. “A Practical Approach to

Dynamic Load Balancing”. IEEE Trans. on Parallel

and Distributed Systems, Vol. 9, No. 3,pp. 235-247

March 1998

[5] Xu, C.; Lau, F.:”Load Balancing in Parallel

Computers”. Kluwer Academic Publishers, 1997.

[6] Willebeek-LeMair, M; Reeves, A.: “Strategies for

Dynamic Load Balancing on Highly Parallel

Computers”, IEEE Transactions on Parallel and

Distributed Systems, 4:979-993, 1993.

[7] Dandamudi, S., Piotrowski, A. ,“A Comparative

Study of Load Sharing on Networks of

Workstations”, Proceedings of the International

Conference on Parallel and Distributed Computing

Systems, New Orleans.

[8] Muniz, F.; Zaluska, E.:”Parallel Load-Balancing:

An extension to the Gradient Model”. Parallel

Computing, Vol. 21, pp.287-301, 1995.

[9] Horton, G.:”A Multi-Level Difussion Method for

Dynamic Load Balancing”. Parallel Computing,

Vol.19, pp.209-218, 1993.

[10] Koza, J.R.:”Genetic Programming: On the

Programming of Computers by Means of Natural

Selection”. MIT Press. Cambridge, Mass., 1992.

[11] J. Kennedy and R. C. Eberhart. Swarm Intelligence.

Morgan Kaufmann. 2001.

[12] Branke, J.:”Evolutionary Optimization in Dynamic

Environments”. Kluwer, 2001.

[13] Aldasht, M.; Ortega, J.; Puntonet, C.G.; Díaz,

A.F.:”A Genetic Exploration of Dynamic Load

Balancing Algorithms”. IEEE Conference on

Evolutionary Computation, Portland, Oregon, 2004.

[14] Kai Lu; Riky Subrata; Albert Y. Zomaya,: ”On the

performance-driven load distribution for

heterogeneous computational grids”. Journal of

Computer and System Sciences, Volume 73, Issue

8, December 2007, Pages 1191–1206

[15] David Clarke; Alexey L. Lastovetsky; Vladimir

Rychkov: “Dynamic Load Balancing of Parallel

Computational Iterative Routines on Highly

Heterogeneous HPC Platforms”. Parallel

Processing Letters 06, 2011; 21(2):195-217.

[16] D Clarke; A Lastovetsky; V Rychkov: “Column-

Based Matrix Partitioning for Parallel Matrix

Multiplication on Heterogeneous Processors Based

on Functional Performance Models”. Lecture Notes

in Computer Science 01/2012; 7155:450-459.

