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Abstract

We obtain sharp estimates for average norms of multilinear Hankel forms on complex
Hilbert space whose entries are independent Rademacher functions.
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1. Introduction

The computation of the norm of a Hilbert space operator is generally a difficult
problem. However, when an appropriate degree of randomness is introduced, the
situation becomes, on average, much more tractable. To be specific, let us consider
a linear operator T : lN+1

2 → lN+1
2 on the standard (N + 1)-dimensional complex

Hilbert space with usual (!) orthonormal basis {e0, . . . , eN }. This operator then has
a matrix representation T = (tkm)

N
k,m=0 and its norm is given by
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‖T ‖ := sup
{|(T x)(y)| : ‖x‖ � 1, ‖y‖ � 1

}
= sup



∣∣∣∣∣

N∑
k,m=0

tkmxkym

∣∣∣∣∣ :
N∑
k=0

|xk|2 � 1,
N∑

m=0

|ym|2 � 1


 .

We shall work with operators T whose entries tkm are independent identically distrib-
uted random variables taking values ±1 with equal probability. (A useful model for
these random variables is the collection of Rademacher functions.) Such operators
have been studied extensively by several authors, including Bennett et al. [2], and
have been used to provide important insights in the geometry of Banach spaces. The
reason for their importance is that, on average, such operators have norm close to the
minimum possible. The main estimate [2,4] is that

AN1/2 � E(‖T ‖) � BN1/2,

where E denotes mathematical expectation and A, B are constants independent of
N . In fact [4], all linear operators on lN+1

2 whose entries are ±1 have norm at least
(N + 1)1/2.

It is natural to ask how this average behavior is affected by the introduction of
algebraic structure into the matrix representation of the operator. A very common
class that arises in this sort of way is the class of Hankel operators, A Hankel operator
T on l2 has infinite matrix representation

T = (tk+m)
∞
k,m=0,

and so the entries are constant on “counter-diagonals”, A famous theorem of Nehari
(see [6]) establishes a link with function theory; it asserts that

‖T ‖ = inf
{‖f ‖∞ : f̂ (n) = tn, n = 0, 1, 2, . . .

}
.

Here, f is an L∞ function defined on [0, 2�], ‖f ‖∞ is the supremum norm, and
f̂ (n) is the nth Fourier coefficient.

When we work with Hankel operators T on lN+1
2 whose distinct entries are inde-

pendent identically distributed random vaxiables taking values ±1 with equal prob-
ability, we are able to exploit Nehari’s theorem in conjunction with probabilistic
estimates introduced by Salem and Zygmund [8] to show that

A(N logN)1/2 � E(‖T ‖) � B(N logN)1/2,

where A, B are constants independent of N .
In this case it is interesting to note that the expected value of ‖T ‖ deviates by

a logarithmic factor from the lowest possible norm of a Hankel operator on lN+1
2

with ±1 entries. To see this, it is enough to consider the operator S = (Sk+m)
2p
k,m=0

where the entries S0, . . . , S2p+1−1 are the coefficients of the (p + 1)st Rudin–Shap-
iro polynomial [3] and S2p+1 = 0. Since the norm of this Rudin–Shapiro polynomial
is bounded above by 10(2p)1/2, an application of Nehari’s theorem shows that ‖S‖ �
10(2p)1/2.
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The results we have mentioned on linear operators are a special aspect of a much
more general theory; the clue to this is given by the fact that a linear operator lN+1

2 →
lN+1
2 can be canonically and isometrically identified with a bilinear operator lN+1

2 ×
lN+1
2 → C.

An r-linear form T : lN+1
2 × · · · × lN+1

2 → C may be specified by

T (ek1 , . . . , ekr ) = tk1···kr (0 � k1, . . . , kr � N),

and its norm is given by

‖T ‖ = sup
{|T (x1, . . . , xr )| : ‖x1‖ � 1, . . . , ‖xr‖ � 1

}
.

Multilinear forms whose entries tk1···kr are independent identically distributed ran-
dom variables taking values ±1 with equal probability have been studied by Mantero
and Tonge [4,5] and Varopoulos [9]. They proved effective in working with many
variable von Neumann inequalities. It is remarkable that the r-linear norm estimates
[4] are exactly the same as the bilinear norm estimates:

AN1/2 � E(‖T ‖) � BN1/2,

where A and B depend on r , but are independent of N .
Our object in this paper is to obtain the corresponding estimates for norms of

random multilinear Hankel forms T given by

T (ek1 , . . . , ekr ) = tk1+···+kr (0 � k1, . . . , kr � N).

For r > 2 the Hankel situation is quite different from the general case.

Theorem 1.1. If T : lN+1
2 × · · · × lN+1

2 → C is an r-linear Hankel form whose
distinct entries tk1+···+kr are independent identically distributed random variables
taking values ±1 with equal probability, then

A(Nr−1 logN)1/2 � E(‖T ‖) � B(Nr−1 logN)1/2,

where A and B are constants depending on r, but independent of N .

We shall also find that all r-linear Hankel forms T on lN+1
2 whose entries are

±1s satisfy ‖T ‖ � CN(r−1)/2 where C is a constant independent of N . The Rudin–
Shapiro example would show that this global lower bound cannot be improved.

2. The upper estimate

We begin by introducing a link with Hardy spaces. For p > 0, the Hardy space
Hp is the subspace of Lp[0, 2�] consisting of those functions f with f̂ (n) = 0 for
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n < 0. Our interest in these spaces stems from their adaptability to “fractional inte-
gration”.

Theorem 2.1 (Zygmund [10, Theorem 9.15]). Let 0 < p < q < ∞ and set β = 1
p

−
1
q

. There is a constant k � 0 such that if g ∈ Hp and gβ(z) = ∑∞
n=1 ĝ(n)(in)

−βzn

then gβ ∈ Hq with ‖gβ‖q � k‖g‖p.

This theorem enables us to obtain information on the distribution of ‖T ‖.

Proposition 2.1. There is a constant A, independent of N, such that for any λ > 0
and τ > 0, we have

P

(
‖T ‖ � A

(
λNr−1 + 2

λ
logN3τ

))
� 1

τ
.

Proof. For 1 � j � r , take x(j) in the sphere of lN+1
2 and set

kj (e
iθ ) =

N∑
n=0

x
(j)
n einθ .

Then ‖kj‖H 2 = ‖x(j)‖ and so, by a general form of Hölder’s inequality, k1 · · · kr ∈
H 2/r with ‖k1 · · · kr‖2/r � 1.

Consequently

‖T ‖ = sup



∣∣∣∣∣

N∑
i1,...,ir=0

ti1+···+ir x
(1)
i1

· · · x(r)ir

∣∣∣∣∣ : ‖x(j)‖ � 1, 1 � j � r




= sup



∣∣∣∣∣
rN∑
p=0

tp

N∑
i2,...,ir=0

x
(1)
p−(i2+···+ir )

x
(2)
i2

· · · x(r)ir

∣∣∣∣∣ : ‖x(j)‖ � 1, 1 � j � r




� sup



∣∣∣∣∣
rN∑
p=0

tp ̂k1 · · · kr(p)
∣∣∣∣∣ : ‖k1‖H 2 � 1, . . . , ‖kr‖H 2 � 1




� sup



∣∣∣∣∣
rN∑
p=0

tpĝ(p)

∣∣∣∣∣ : ‖g‖H 2/r � 1


 .

This enables us to make use of Theorem 2.1 with p = 2/r and q = 1, and so
β = (r − 2)/2. Let f (eiθ ) = ∑rN

p=0 tp e−ipθ and

f (r−2)/2(eiθ ) =
rN∑
p=0

(ip)(r−2)/2tp e−ipθ .
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Then, using the orthogonality of the functions einθ , we find

‖T ‖ � sup



∣∣∣∣∣
rN∑
p=0

[
(ip)(r−2)/2tp

][
ĝ(p)/(ip)(r−2)/2]∣∣∣∣∣ : ‖g‖H 2/r � 1




� sup

{∣∣∣∣
∫ 2�

0
f (r−2)/2(eiθ )g(r−2)/2(e

iθ )
dθ

2�

∣∣∣∣ : ‖g‖H 2/r � 1

}

� k sup

{∣∣∣∣
∫ 2�

0
f (r−2)/2(eiθ )h(eiθ )

dθ

2�

∣∣∣∣ : ‖h‖H 1 � 1

}

= k‖f (r−2)/2‖(H 1)∗

� k

∥∥∥∥∥
rN∑
p=0

tp(ip)
(r−2)/2 eipt

∥∥∥∥∥∞
.

By the proof of [3, Theorem 1, p. 68], we have

P

(∥∥∥∥∥
rN∑
s=0

ts(is)
(r−2)/2 eist

∥∥∥∥∥∞
� λq + 2

λ
log(4�(rN)2τ)

)
� 1

τ
,

with q = ∑rN
s=0

∥∥(is)(r−2)/2 eisθ
∥∥2

2 = ∑rN
s=0 s

(r−2) � BNr−1, where B is a constant
independent of N . The result follows at once. �

We can now derive our upper estimate. Notice that

E(‖T ‖)=
∫ ∞

0
P(‖T ‖ � z) dz

� 7A(Nr−1 logN)1/2 +
∫ ∞

7A(Nr−1 logN)1/2
P(‖T ‖ � z) dz

= 7A(Nr−1 logN)1/2 +
∫ ∞

0
P
(‖T ‖ � z + 7A(Nr−1 logN)1/2) dz.

However, setting λ = (N−(r−1) logN)1/2 in Proposition 2.1 we get

P
(‖T ‖ � 7A(Nr−1 logN)1/2 + 2AN(r−1)/2 log τ

)
� 1/τ

for any τ > 0, and so it follows that

E(‖T ‖)� 7A(Nr−1 logN)1/2 +
∫ ∞

0
exp

(− z/2AN(r−1)/2) dz

� 9A(Nr−1 logN)1/2.
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3. The lower estimate

Our method consists of choosing appropriate vectors to estimate the norm from
below, and then extracting the necessary information by using techniques introduced
by Salem and Zygmund [8], Some of these techniques have also been used effectively
by Bennett [1] in the study of uncomplemented Hilbert subspaces of Lp[0, 1] for
p > 2.

First, observe that for each 0 � x � 2�,

‖T ‖ � N−r/2

∣∣∣∣∣∣
N∑

k1,...,kr=0

tk1+···+kr eik1x · · · eikrx

∣∣∣∣∣∣
= N−r/2

∣∣∣∣∣∣
rN∑
k=0

( ∑
k1+···+kr=k

1

)
tk eikx

∣∣∣∣∣∣
= N−r/2

∣∣∣∣∣
rN∑
k=0

(
r + k − 1
r − 1

)
tk eikx

∣∣∣∣∣ .
The last equality is due to a standard counting technique which may be found, for

example in [7]. We can now assert that

‖T ‖ � N−r/2

∥∥∥∥∥
rN∑
k=0

(
r + k − 1
r − 1

)
tk eikx

∥∥∥∥∥
∞
, (∗)

and we proceed to estimate the expected value of the supremun norm.
In order to apply the methods of Salem and Zygmund, we need a preliminary

remark.

Lemma 3.1. Set ak = (
r+k−1
r−1

)
for 0 � k � rN, and define RN = ∑rN

k=0 a
2
k and

QN = ∑rN
k=0 a

4
k . Then there is a constant C, independent of N, for which QN �

CN−1R2
N .

Proof. It is clear that for each k,

kr−1

(r − 1)! � ak � (r + k)r−1

(r − 1)! .

Consequently

QN =
rN∑
k=0

a4
k �

rN∑
k=0

[
(r + k)r−1

(r − 1)!
]4

�
r(N+1)∑
k=0

[
kr−1

(r − 1)!
]4

� AN4r−3,

where A is a constant depending on r , but not on N .
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On the other hand

RN =
rN∑
k=0

a2
k �

rN∑
k=0

[
kr−1

(r − 1)!
]2

� BN2r−1, (∗∗)

where B is another constant depending on r , but not on N. Assembling this informa-
tion, we find

QN � (AB−2)N−1R2
N. �

Recall [4] that any r-linear form T : lN+1
2 × · · · × lN+1

2 → C, whose entries
tk1,...,kr = T (ek1 , . . . , ekr ) have values ±1, must satisfy ‖T ‖ � N1/2. The extra struc-
ture imposed by the Hankel condition, namely that tk1,...,kr = tk1+···+kr , forces this
lower bound up when r > 2. We can see this by combining (∗) and (∗∗):

‖T ‖ � N−r/2

∥∥∥∥∥
rN∑
k=0

aktk eikx

∥∥∥∥∥
∞

� N−r/2

∥∥∥∥∥
rN∑
k=0

aktk eikx

∥∥∥∥∥
2

= N−r/2R
1/2
N � BN(r−1)/2.

The estimates of Lemma 3.1 allow us to use the techniques, but not the statement, of
Salem and Zygmund [8, Theorem 4.5.1]. To aid the reader, we indicate briefly how to
extract the information, we need. For simplicity we suppose that the random variable
tk is the (k + 1)st Rademacher function, which we (unconventionally!) label rk .

Lemma 3.2 (Salem and Zygmund). Let PN(x,w) = ∑rN
k=0 akrk(w) eikx . Set RN =∑rN

k=0 a
2
k and QN = ∑rN

k=0 a
4
k . Now select 0 < θ < 1 and λ < 1. Finally, when

IN(w) = 1

2�

∫ 2�

0
eλPN(x,w) dw,

denote by EN the set of all points w ∈ [0, 2�] where

IN(w) � (rN)θ
2−1 e

1
4λ

2RN−λ4QN .

Then the measure of EN satisfies

|EN | �
(
1 − (rN)θ

2−1)2 e−2λ4QN

(
1 + 5

36

QN

R2
N

e
3
2λ

2RN

)−1

.

The proof may be found in [8, pp. 273–275].
We can now achieve our goal rapidly. Using the ak’s of Lemma 3.1 and choosing

λ2 = (2θ2 log rN)/(3RN) we can follow the route of Salem and Zygmund and use
Lemma 3.1 to derive

|EN | � 1 − CNθ2−1,
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where here and later C is a constant depending on r , but not on N . Incorporating
the lower bound for IN(w) on EN , we find, just as in Salem and Zygmund, that for
w ∈ EN

sup
x

|PN(x,w)| � C(RN log rN)1/2 � CNr− 1
2 (logN)1/2

provided that θ is chosen sufficiently close to 1.
Since |EN | � 1

2 for large N , it follows at once that

E(‖PN‖∞) � CNr− 1
2 (logN)1/2

for large N, and so for all N. Consequently, we can use (∗) to conclude that

E(‖T ‖) � C(Nr−1 logN)1/2.
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