
1 PalGov © 2011

 أكاديمية الحكومة الإلكترونية الفلسطينية
The Palestinian eGovernment Academy

www.egovacademy.ps

Tutorial III:
Process Integration and Service Oriented Architectures

Session 11
Integration Patterns

Prepared By

Mohammed Melhem

2 PalGov © 2011

About

This tutorial is part of the PalGov project, funded by the TEMPUS IV program of the
Commission of the European Communities, grant agreement 511159-TEMPUS-1-
2010-1-PS-TEMPUS-JPHES. The project website: www.egovacademy.ps

University of Trento, Italy

University of Namur, Belgium

Vrije Universiteit Brussel, Belgium

TrueTrust, UK

Birzeit University, Palestine
(Coordinator)

Palestine Polytechnic University, Palestine

Palestine Technical University, Palestine Université de Savoie, France

Ministry of Local Government, Palestine

Ministry of Telecom and IT, Palestine

Ministry of Interior, Palestine

Project Consortium:

Coordinator:
Dr. Mustafa Jarrar
Birzeit University, P.O.Box 14- Birzeit, Palestine
Telfax:+972 2 2982935 mjarrar@birzeit.edu

http://www.egovacademy.ps/�

3 PalGov © 2011

© Copyright Notes

Everyone is encouraged to use this material, or part of it, but should properly
cite the project (logo and website), and the author of that part.

No part of this tutorial may be reproduced or modified in any form or by any
means, without prior written permission from the project, who have the full
copyrights on the material.

Attribution-NonCommercial-ShareAlike
CC-BY-NC-SA

This license lets others remix, tweak, and build upon your work non-
commercially, as long as they credit you and license their new creations
under the identical terms.

Tutorial Map

Title T Name
Session0: Syllabus and overview 0 Aldasht
Sesson1: Introduction to SOA 2 Aldasht
Session2: XML namespaces & XML schema 2 Aldasht
Session 3: Xpath & Xquery 4 Romi
Session4: REST web services 3 M. Melhem
Session5: Lab2: Practice on REST 3 M. Melhem
Session 6: SOAP 2 Aldasht
Session 7: WSDL 3 Aldasht
Session8: Lab 3: WSDL practice 3 Aldasht
Session9: ESB 4 Aldasht
Session10: Lab4: Practice on ESB 4 Aldasht
Session11: integration patterns 4 M. Melhem
Session12: Lab5: integration patterns 4 M. Melhem
Session13: BPEL 3 Aldasht
Session14: Lab6: Practice on BPEL 3 Aldasht
Session15: UDDI 2 Aldasht

Intended Learning Objectives
A: Knowledge and Understanding

3a1: Demonstrate knowledge of the fundamentals of middleware.
3a2: Describe the concept behind web service protocols.
3a3: Explain the concept of service oriented architecture.
3a4: Explain the concept of enterprise service bus.
3a5: Understanding WSDL service interfaces in UDDI.

B: Intellectual Skills
3b1: Design, develop, and deploy applications based on Service
Oriented Architecture (SOA).
3b2: use Business Process Execution Language (BPEL).
3b3: using WSDL to describe web services.

C: Professional and Practical Skills
3c1: setup, Invoke, and deploy web services using integrated
development environment.
3c2: construct and use REST and SOAP messages for web
services communication.

D: General and Transferable Skills
d1: Working with team.
d2: Presenting and defending ideas.
d3: Use of creativity and innovation in problem solving.
d4: Develop communication skills and logical reasoning abilities.

Session 11: SOA design and Integration
Patterns.

This session aims to cover Service oriented architecture and
how to utilize it in systems integration using different patterns
and methodologies of best practice.

After completing this session students will be able to:
1. Link SOA principles to integration
2. Open doors to integration patterns and understand how

to use it in Enterprise Applications

Session contents

1. Review of Service Oriented Architecture
2. SOA – Principles
3. Integration

1. The challenge
2. Patterns
3. Enterprise integration patterns
4. Messaging
5. Why web services
6. Additional Patterns

4. SOA Integration Patterns
5. Summery

SOA “Service Oriented Architecture”
Motivation

• Challenges in enterprise application development
– Many users and backend systems interact with the system.

– Quality of services (QoS) requirements and other Non-functional

requirements .

– Development and integration projects costly and long running
• For example point – to – point connections, often developed from

scratch.

SOA “Service Oriented Architecture”
Motivation (cont.)

• Solution evolved into Service Oriented Architecture
– Message Backbone

• Point to point connection between applications
• Simple, basic connectivity

– Enterprise Application Integration

• Connect application through a centralized hub
• Easier to manage larger number of connections

– Service Oriented Architecture
• Integration and choreography of services through an Enterprise

Service Bus
• Flexible connections with well defined, standards-based interfaces

SOA “Service Oriented Architecture” Definition

• No Single definition, different sectors different meaning
• Architect

– It is an Architectural style that aims to achieve loose coupling
among interacting software agents.

• Business Domain
– Set of services exposed to customers an

• Developers
– A programming and deployment model realized by standards, tools

and technologies such as Web services.

SOA Principles

• Loose Coupling
Refers to the number of dependencies between modules

• Abstraction
Contain essential information

• Reusability
• Autonomy

Level of control over its underlying runtime execution
• Statelessness
• Discoverability (meta data)

Presenter
Presentation Notes
Loose Coupling - Service contracts impose low consumer coupling requirements and are themselves decoupled from their surrounding environment.
Abstraction - Service contracts only contain essential information and information about services is limited to what is published in service contracts.
Reusability - Services contain and express agnostic logic and can be positioned as reusable enterprise resources.
Autonomy - Services exercise a high level of control over their underlying runtime execution environment.
Statelessness - Services minimize resource consumption by deferring the management of state information when necessary.
Discoverability - Services are supplemented with communicative meta data by which they can be effectively discovered and interpreted..
Composability - Services are effective composition participants, regardless of the size and complexity of the composition.

INTEGRATION PATTERNS

The challenge

• Organizations increase its dependency on IT systems.

• Systems must provide an integrated solutions.

• Systems must interoperate with each other.

• Architectural trends of technology.

• Changing business needs and requirements

Design Patterns, Why?

• Knowledge reuse.

• Patterns encapsulate knowledge of successful designs

• Shows good solution to a common problem within a
specific context.

• Observed from real experience.

• No repetition (copy-paste)

Enterprise integration Patterns

• Gregor Hohpe [1] defined a visual pattern language
describing message-based enterprise integration solutions

• 6 categories of patterns contains around 65 patterns

Message
Routing

Application
A

Application
B

Message
Channel

Router Translator
Endpoint Endpoint

Monitoring Messaging
Endpoints

Messaging
Channels

Message
Construction

Message
Transformation

System
Management

Presenter
Presentation Notes
Orchestration

Data Model
Implementation Patterns

Application Sample

• Front end can uses web
service to interact.

• Messages format defined
in SOAP.

• Access analytics service
using system com
adapter.

• Access deals from
existing services

• Access service bus
through messaging
abstraction library

Application

Analytical
Library

Deal
Manger

Messagin
g Lib

Adapter

App Logic

Front End

Request – Response Pattern

• Similar to RPC
• Asynchronous point – to – point channels
• Separate messaging

Request Channel

Response

Request

Reply Channel

Provider Consumer

Multiple Consumer

17

• Each consumer has its own queue
• But how does the provider send the response?

– Could send to all consumers
– Hard code

Responses

Requests

?

Requests
Request Channel

Reply Channel 1

Reply Channel 2

Provider Consumer 1

Consumer 2

Return Address

18

• Consumer send return address in request
Header (WS-Addressing).

• Service provide send response message to
consumer.

Responses

Requests Requests
Request Channel

Reply Channel 1

Reply Channel 2

Provider Consumer 1

Consumer 2

Load balancing service providers

19

• Handle request by multiple providers.
• One service receive requests
• How to handle message order?

Request Channel

Reply Channel

Provider 1

Provider 2

Consumer

Correlation Identifier

20

• Consumer assign an identifier to each message
• Message Id
• GUID
• Business Key

• Provider include identifier in response message
• Sender Match request and response

2
1

1
Request Channel

Reply Channel

2

Provider 1

Provider 2

Consumer

2 1 2 1

Content-Based Router

• Add a content based router
• Router handle message forwarding
• Content remain intact

Order
Entry

Widget Inv. Order Messages

Gadget Inv. Content
Based
Router

Multiple specialized provider

22

• Request message can be consumed by more than
one service provider.

• Each provider can handle specific type of message
• How to route the request to the appreciate provider?

• Sender should not worry about this task.
• Find a coordination system

Provider 1

Provider 2

Consumer

?

Composite messages

• How to process a message with multiple targets.
• Use a splitter to break out the message into separate

messages.
• Next use router to send messages to its targets.

Order
Entry

Composite
Messages

Content
Based
Router

Message
Splitter

Aggregator

• How to combine results messages?
– Messages can be out of order
– Conversations can be intermixed

• Use a stateful filter, an Aggregator
• Collects and stores messages until a complete set has

been received
• Publishes a single message created from the individual

messages

Aggregator

Communicating with multiple parties (Auction)

• How can we send a message to dynamic set of providers?
And return a single response message?

• Scatter-Gather
– Send message to pub-sub channel
– Forward message to target vendor
– Collect messages using Aggregator

Aggregator

Vender 1

Vender 2

Vender 3

Channel
Quote

Auction

Messaging Channels

• Channels are:
– Separate from applications
– Asynchronous & reliable
– Data is exchanged in self-contained messages
– Loosely coupled integration

Message History

• The key benefit of message based system is the loose
coupling between participants, however the same property
makes debugging and analyzing dependence not an easy
task.
– If we are not ware where message goes, we can’t assess the

impact of the change in the message.
– Another issue if we don’t know which application produce the

message, it become difficult to solve problems in messages.

• How can we effectively analyze and debug the flow of
messages in a loosely coupled system?

Presenter
Presentation Notes
The Message History maintains a list of all components that the message passed through. Every component that processes the message (including the originator) adds one entry to the list. The Message History should be part of the message header because it contains system-specific control information. Keeping this information in the header separates it from the message body that contains application specific data. [Enterprise Integration Patterns, Gregor Hohpe and Bobby Woolf]

Message Store

• How we can report of message status, without loosely
coupled and transient nature of messaging?

Message
Store

-Take advantage of
asynchronous nature of messaging
infrastructure

Presenter
Presentation Notes
When we send a message to a channel, we send a duplicate of the message to a special channel to be collected by the Message Store. This can be performed by the component itself or we can insert a Wire Tap into the channel. We can consider the secondary channel that carries a copy of the message as part of the Control Bus. Sending a second message in a 'fire-and-forget' mode will not slow down the flow of the main application messages. It does, however, increase network traffic. That's why we may not store the complete message, but just a few key fields that are required for later analysis, such as a message ID, or the channel on which the message was sent and a timestamp. [Enterprise Integration Patterns, Gregor Hohpe and Bobby Woolf]

 Additional Patterns (Pipe and Filter)

– Provides a solution to move an output from one system to another.
– Pipes are the connection between the source system and the

receiving system (sink)
– Filters responsible of data transformation to the receiver for

processing.
– This pattern useful for data transfer from one system to another,

into different formats. i.e. converting data from local university
storage format into National Student Registry format.

– Further reading: Microsoft Integration Patterns, patterns and
practice 2005, CH6

Source Pipe Filter 1 Filter 2 Pipe Pipe Sink

Additional Patterns (Gateway)

– Abstracts the access to an external systems to a single interface,
by eliminating the need for multiple systems.

– Simplifies the development and maintenance processes that are
related to accessing external systems.

– Common uses accessing mainframe programs and processing
credit card transactions. Pattern replaces direct access to
resources.

– Further reading: Microsoft Integration Patterns, patterns and
practice 2005, CH6

App 1

App 2

Gateway Resources

Why Web Services?

• Web service benefit:
– Loose-coupling
– Service oriented
– Reliable communication
– Vender independent
– Bypass firewalls (HTTP/HTTPS)

SOA Patterns

Categories:
Foundational Inventory Patterns
Logical Inventory Layer Patterns
Inventory Centralization Patterns
Inventory Implementation Patterns
Inventory Governance Patterns
Service Implementation Patterns
Service Security Patterns
Service Messaging Patterns

Presenter
Presentation Notes
How can services be delivered to maximize recomposition
How can non-agnostic process logic be separated and governed independently
How can business rules be abstracted and centrally governed
How can unnecessary infrastructure resource disparity be avoided�How can service contracts be consistently understood and interpreted?
How can the reliability and availability of a service be increased
How can event-driven logic be separated and governed independently

SOA Patterns: Logic Centralization

How can the misuse of redundant service logic be avoided?
Problem:
If National student services are not consistently reused,
redundant functionality can be delivered in other services,
resulting in problems associated with inventory
denormalization and service ownership and governance.

Presenter
Presentation Notes
Problem ��If National student services are not consistently reused, redundant functionality can be delivered in other services, resulting in problems associated with inventory denormalization and service ownership and governance.

Solution ��Access to reusable functionality is limited to official National student services.��Category: Foundational Inventory Patterns

SOA Patterns: Service Layers

How can group of services be organized based on functional
commonality?

Problem:
Arbitrarily services delivered and governed by different teams
can lead to design inconsistency and inadvertent functional
redundancy.

Presenter
Presentation Notes
Solution ��The inventory is structured into two or more logical service layers, each of which is responsible for abstracting logic based on a common functional type.��Category: Foundational Inventory Patterns

Related services are designed according to service models, thereby establishing logical service layers. In this case, the service inventory is structured with three service layers that correspond to the three abstraction patterns

SOA Patterns: Composition Autonomy

How can compositions be implemented to minimize loss of
autonomy?

Problem:
Composition controller services naturally lose autonomy
when delegating processing tasks to composed services,
some of which may be shared across multiple compositions.

Presenter
Presentation Notes
Solution ��All composition participants can be isolated to maximize the autonomy of the composition as a whole.��Category: Foundational Inventory Patterns

By grouping the services of a composition into a separate deployment environment, the collective autonomy is maximized because the implementation is dedicated to the composition, and none of the services are otherwise shared. Services C and D in particular benefit from this new implementation as they are no longer subject to shared access.

Summary

• Systems become more complex
• Patterns help us to design robust applications

• Interoperability and integration is key to build enterprise

software

• Next session will cover the business process execution

language

References

1. http://eaipatterns.com/gregor.html
2. http://en.wikipedia.org/wiki/Creational_pattern
3. http://en.wikipedia.org/wiki/Structural_pattern
4. http://en.wikipedia.org/wiki/Behavioral_pattern
5. http://dictionary.reference.com/browse/Integration
6. http://en.wikipedia.org/wiki/Systems_integration
7. http://www.designpatternsfor.net/Presentations/AsynchronousMessagingPatt

ernsWithWCF.pdf
8. http://drops.dagstuhl.de/volltexte/2006/828/pdf/06291.SWM.Paper.828.pdf
9. http://www.soapatterns.org/orchestration.php
10. Enterprise Integration Patterns, Gregor Hohpe, Bobby Woolf

Addison-Wesley, 2004
11. Patterns of Enterprise Application Architecture, Martin Fowler Addison-

Wesley, 2003 Enterprise SOA, Dirk Krafzig, Karl Banke, Dirk SlamaPrentice
Hall, 2004

12. Integration Patterns 3ed, Microsoft, 2004

http://eaipatterns.com/gregor.html�
http://en.wikipedia.org/wiki/Creational_pattern�
http://en.wikipedia.org/wiki/Structural_pattern�
http://en.wikipedia.org/wiki/Behavioral_pattern�
http://dictionary.reference.com/browse/Integration�
http://en.wikipedia.org/wiki/Systems_integration�
http://www.designpatternsfor.net/Presentations/AsynchronousMessagingPatternsWithWCF.pdf�
http://www.designpatternsfor.net/Presentations/AsynchronousMessagingPatternsWithWCF.pdf�
http://drops.dagstuhl.de/volltexte/2006/828/pdf/06291.SWM.Paper.828.pdf�
http://www.soapatterns.org/orchestration.php�
http://en.wikipedia.org/wiki/Creational_pattern�
http://en.wikipedia.org/wiki/Creational_pattern�

Thanks

Mohammed Melhem

	Slide Number 1
	About
	© Copyright Notes
	Tutorial Map
	Session 11: SOA design and Integration Patterns.
	Session contents
	SOA “Service Oriented Architecture” Motivation
	SOA “Service Oriented Architecture” Motivation (cont.)
	SOA “Service Oriented Architecture” Definition
	SOA Principles
	Integration Patterns
	The challenge
	Design Patterns, Why?
	Enterprise integration Patterns
	Application Sample
	Request – Response Pattern
	Multiple Consumer
	Return Address
	Load balancing service providers
	Correlation Identifier
	Content-Based Router
	Multiple specialized provider
	Composite messages
	Aggregator
	Communicating with multiple parties (Auction)
	Messaging Channels
	Message History
	Message Store
	 Additional Patterns (Pipe and Filter)
	Additional Patterns (Gateway)
	Why Web Services?
	SOA Patterns
	SOA Patterns: Logic Centralization
	SOA Patterns: Service Layers
	SOA Patterns: Composition Autonomy
	Summary
	References
	Slide Number 38

