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ABSTRACT

Object based image analysis has gained on the traditional per-

pixel multi-spectral based approaches. The main pitfall of us-

ing anisotropic diffusion for creating a multi scale represen-

tation of a remotely sensed image remains the computational

burden. Producing the coarser scales in a multi scale repre-

sentation or, diffusing spatially large images involves signifi-

cant time and resources. This paper proposes a fast approach

for anisotropic diffusion that overcomes spatial size limita-

tions by distributing the diffusion as individual sub-processes

over several overlapping sub-images. The overlap areas are

synchronized at specific diffusion time ensuring that the fast

approximation does not deviate too much from its single pro-

cess equivalent. This demonstrated for an image, which can

be diffused using a traditional sequential approach. In ad-

dition, experimental data for very large images that can not

efficiently be processed using a sequential approach is illus-

trated.

Index Terms— Image enhancement, anisotropic diffu-

sion, (very) high resolution images, multi-process, parallel

computing

1. INTRODUCTION

In recent years, the use of multi scale representation for the

analysis of remotely sensed images has received increasing

interest [1, 2, 3]. These approaches acknowledge the fact that

the analysis of images depends on the scale of the objects of

interest. Multi scale representations based on scale space the-

ory encapsulates two concepts: scale space filtering and the

linking strategy which deals with the methodology that re-

lates signal structure at different scales. Scale space filtering

concerns the mechanism that embeds the signal into a one-

parameter family of derived signals for which the signal con-

tent is simplified. The parameter describes the scale or res-

olution at which the signal is represented. The main idea is

that the amount of local extrema in the signal and its deriva-

tives should decrease with scale. Initially linear or Gaussian

scale-space was preferred, however inherent drawbacks such

as the dislocation of feature and the similar treatment of noise

and important signal structure lead toward non-linear scale-

spaces filters. Anisotropic diffusion is an established tech-

nique for image enhancement and multi scale representation.

Although originally proposed for gray-scale images [4, 5], it

has been long extended to color [6, 7], multi [8] and hyper-

spectral [9, 10] images. Furthermore, fast numerical approx-

imations and parallelization [11, 12] schemes have improved

computation times significantly. However, dealing with high

resolution images remains challenging.

2. ANISOTROPIC DIFFUSION

The focus lies on edge-affected diffusion processes in which

the diffusion is locally adaptive aiming to favor intra-region

instead of inter-region smoothing, thus overcoming the dislo-

cation of region boundaries. The mathematical form of this

type of process [5, 6] is given by:

∀i = 1, 2, . . . ,M and ∀t ∈ R+ :
∂tu

(i)(t) = div
[
g(|∇σru(t)|)∇u(i)(t)

] (1)

The scale-space image u is obtained by evolving the above

PDE using the original M -bands image f(x) = {f (1)(x),. . .,
f (M)(x)},∀x ∈ Ω ⊂ Z

2, as the initial condition for the scale

parameter t = 0, in conjunction with homogeneous von Neu-
mann boundary conditions, where x denotes a 2D position

vector on the image plane Ω. Note that |∇σru(t)| is the reg-

ularized vector-valued gradient magnitude obtained by con-

volving the image with a Gaussian kernel of size σr [5], and

g is the diffusivity function, which is a bounded, positive,

decreasing function that discriminates the different diffusion

models. The time sampling start from the naturally sampling

of the scale-space image [13]:

tj =

{
0 if j = 0

exp [2(j − 1)τ ] if j > 0
(2)

where τ denotes the time step considered for time discretiza-

tion. A compact version of the scale space stack may be ex-

tracted from the sampled set of scales: Let {t0, t1, . . . , tend}
represent the set of discrete times/scale obtained via scale

space sampling, then the purpose of scale selection is to ob-

tain a subset of discrete scales S = {s0, s1, . . . send}, where

the localization scale s0 = tj is the scale for which u(tj)
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contains a minimum amount of noise whilst retaining all im-

portant image features at their exact location. For image en-

hancement the identification of the scale s0 suffices.

3. FAST APPROXIMATION

In some application domains the pixel resolution of the im-

agery is so high that an image cannot be processed as a whole.

In such circumstances, the image is commonly divided into

sub-images, i.e. tiles, that often have a degree of overlap.

These sub-images are processed separately whereafter the fi-

nal results are reintegrated. The proposed fast approximation

scheme adopts this methodology. But instead of integrating

the final results, the overlap areas are regularly synchronized

ensuring that the diffusion can occur across the tiles.
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Fig. 1. Flowchart of the proposed scheme.

Figure 3 show a flowchart of the proposed scheme. Once the

parameters of the anisotropic diffusion are estimated on the

full image, the iterative procedure starts. The latter consist of

two steps: (i) For each sub-image we calculate the next diffu-

sion scale tj (2) via the AOS-based numerical approximation

[7] of (1) using as many concurrent processes as efficiently

possible. (ii) Once all sub-images are processed, the overlap

areas are synchronized. Hereafter the estimations needed for

the scale selection are performed [8]. This procedure repeats

until either the desired amount of diffusion scales is reached

or a stopping criterion is met.

For tile synchronization, we adopt an approach that seam-

lessly rejoins the tiles. For this purpose, a weighted sum of the

overlapping pixel values for which the weights are inversely

proportional to the distance of the respective tile center, is

adopted. The overlap areas are synchronized at specific diffu-

sion times and should ensure that the fast approximation does

not deviate too much from its single process equivalent. In

this way we obtain a fast approximation for anisotropic dif-

fusion that significantly alleviates the limitations with respect

to spatial size whilst retaining a high degree of accuracy with

respect to its single process equivalent.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are conducted on a Intel(R)Xeon(R)CPU

E5345@2.33GHz with 8GB of RAM. For the 4-band 1022 x

1023 image shown, in Fig. 2(), the scale-space representation

containing 60 scales, i.e. t0, . . . t60, is obtain using (a) a

sequential AOS based implementation of (1) and, (b) the pro-

posed fast approximation 1. The quality of the fast diffusion

approximation is very high in the finer scales. For the very

coarse scales (Fig.2(i)-(j)) one can observe the appearance of

the underlying tiles. The latter is due to the fact that the syn-

chronization is performed at each sampled time step tj , which

is increasing exponentially. The latter can be remedied by in-

creasing the amount of synchronization steps at the coarser

scales. Fig. 2(c) illustrates a scale-space representation for

which the synchronization step is triggered more frequently

at the coarser scales. The quality of the approximation in-

creases significantly however, so does the computation time.

In our experiments, we limited we used tiles of 256x256 with

an overlap of 32 pixels. The amount of concurrent process

was limited to 16. The sequential diffusion method based on

the AOS numerical scheme needed 1795 seconds, the pro-

posed method created the 60 scales in 791 seconds. Remark,

that when the bulk of the computation for time occurs at

the coarser scales. In the case of image enhancement, i.e.

when only the scale s0 is needed, the 140 seconds for three

approaches. Nonetheless, the key advantage of the proposed

method is the fact that it is able to process very high resolu-

tion images and that the computational time can be reduced in

case the that amount of concurrent processes can be increased

efficiently.

5. CONCLUSIONS

This work proposes a fast approach for anisotropic diffusion

based enhancement and scale-space representation of very

high resolution images. It overcomes spatial size limita-

tions by distributing the diffusion as individual sub-processes

over several overlapping sub-images. In this way multi scale

representations obtained via nonlinear anisotropic diffusion

filtering can be achieved efficiently.

6. REFERENCES

[1] G. Hay, T. Blaschke, D. Marceau, and A. Bouchard, “A

comparison of three image-object methods for the mul-

tiscale analysis of landscape structure,” ISPRS J of Pho-

1A binary of the proposed scheme is available at

http://www.etro.vub.ac.be/Research/IRIS/PUB FILES/DEMOS/IGARSS-

2010

2223



(a) (b) (c)

Fig. 2. Multi scale representation: (a) Sequential diffu-

sion implementation using AOS, (b) Multi-process scheme,

(c) Multi-process scheme with augmented diffusion quality.

From top to bottom: t0, t21, t27, t33, t43, t52.
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U. Brüning, “Low level parallelization of nonlinear dif-

fusion filtering algorithms for cluster computing envi-

ronments.,” in Parallel Processing, 2003, pp. 481–490.

[16] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger, J. We-
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