
1 PalGov © 2011

 أكاديمية الحكومة الإلكترونية الفلسطينية
The Palestinian eGovernment Academy

www.egovacademy.ps

Tutorial III:
Process Integration and Service Oriented Architectures

Session 10
ESB

Prepared By

Mohammed Aldasht

2 PalGov © 2011

About

This tutorial is part of the PalGov project, funded by the TEMPUS IV program of the
Commission of the European Communities, grant agreement 511159-TEMPUS-1-
2010-1-PS-TEMPUS-JPHES. The project website: www.egovacademy.ps

University of Trento, Italy

University of Namur, Belgium

Vrije Universiteit Brussel, Belgium

TrueTrust, UK

Birzeit University, Palestine
(Coordinator)

Palestine Polytechnic University, Palestine

Palestine Technical University, Palestine Université de Savoie, France

Ministry of Local Government, Palestine

Ministry of Telecom and IT, Palestine

Ministry of Interior, Palestine

Project Consortium:

Coordinator:
Dr. Mustafa Jarrar
Birzeit University, P.O.Box 14- Birzeit, Palestine
Telfax:+972 2 2982935 mjarrar@birzeit.edu

http://www.egovacademy.ps/�

3 PalGov © 2011

© Copyright Notes

Everyone is encouraged to use this material, or part of it, but should properly
cite the project (logo and website), and the author of that part.

No part of this tutorial may be reproduced or modified in any form or by any
means, without prior written permission from the project, who have the full
copyrights on the material.

Attribution-NonCommercial-ShareAlike
CC-BY-NC-SA

This license lets others remix, tweak, and build upon your work non-
commercially, as long as they credit you and license their new creations
under the identical terms.

Tutorial Map

Title T Name
Session0: Syllabus and overview 0 Aldasht
Sesson1: Introduction to SOA 2 Aldasht
Session2: XML namespaces & XML schema 2 Aldasht
Session 3: Xpath & Xquery 4 Romi
Session4: REST web services 3 M. Melhem
Session5: Lab2: Practice on REST 3 M. Melhem
Session 6: SOAP 2 Aldasht
Session 7: WSDL 3 Aldasht
Session8: Lab 3: WSDL practice 3 Aldasht
Session9: ESB 4 Aldasht
Session10: Lab4: Practice on ESB 4 Aldasht
Session11: integration patterns 4 M. Melhem
Session12: Lab5: integration patterns 4 M. Melhem
Session13: BPEL 3 Aldasht
Session14: Lab6: Practice on BPEL 3 Aldasht
Session15: UDDI 2 Aldasht

Intended Learning Objectives
A: Knowledge and Understanding

3a1: Demonstrate knowledge of the fundamentals of middleware.
3a2: Describe the concept behind web service protocols.
3a3: Explain the concept of service oriented architecture.
3a4: Explain the concept of enterprise service bus.
3a5: Understanding WSDL service interfaces in UDDI.

B: Intellectual Skills
3b1: Design, develop, and deploy applications based on Service
Oriented Architecture (SOA).
3b2: use Business Process Execution Language (BPEL).
3b3: using WSDL to describe web services.

C: Professional and Practical Skills
3c1: setup, Invoke, and deploy web services using integrated
development environment.
3c2: construct and use REST and SOAP messages for web
services communication.

D: General and Transferable Skills
d1: Working with team.
d2: Presenting and defending ideas.
d3: Use of creativity and innovation in problem solving.
d4: Develop communication skills and logical reasoning abilities.

Session 10: ESB

Session ILOs
After completing this session students will be able to:
1. Explain the concept of enterprise service bus
2. Setup, invoke and deploy web services.

Session Outlines

 Introduction
 ESB functions

 ESB role
 ESB Components
 Service invocation
 ESB Routing Facilities
 ESB example (Biztalk)

Introduction

• Using point-to-point
integration approach leads
to unreliable, insecure,
non-monitorable and in
general non-manageable
communication channels
between applications.

• Process logic and data
transformation logic is
encoded into the
applications.

Tightly-coupled applications, Source [6]

Introduction

• In an ESB architecture all
kinds of applications are
provided as business services
and connected via reliable,
secure and manageable
virtual channels.

• Process orchestration and
data transformation logic can
be moved to the bus

• Process interactions can be
performed in a controlled
manner

• The ESB is an innovative
approach to enterprise
application integration (EAI) Integrate all kinds of applications using

a centralized EAI broker, Source [6]

Introduction: definitions

• The ESB is a new approach to integration that supports a

loosely coupled, highly distributed integration network [1].

– Shortly, a standards-based integration platform

• Also, we can say that an ESB is a flexible connectivity

infrastructure for integrating applications and services [4].

ESB 4 functions [4]

• An ESB performs the following between requestor

and service:

– Routing messages between services.

– Converting transport protocols between requestor and

service.

– Transforming message format between requestor and

service.

– Handling business events between different sources.

Session Outlines

 Introduction
 ESB functions

 ESB role
 ESB Components
 Service invocation
 ESB Routing Facilities
 ESB example (Biztalk)

SOA Role

• SOA decouples interfaces from applications.

• The number and complexity of interfaces is reduced.

• Business applications and their interfaces become reusable.

• Interfaces tightly coupled with point-to-point connections

SOA Role

Interface

Service

Interface

Service

Interface

Service

Interface

Service

Interface

Service

Interface

Service

Application

Application

Application

Application

Application

Application

= Interface
Source, IBM education assistant:

http://publib.boulder.ibm.com/infocenter/ieduasst

http://publib.boulder.ibm.com/infocenter/ieduasst�

ESB Role

• ESB decouples the point to point connections from the interfaces.

• More flexible coupling and decoupling of applications

• Enables for finding applications and interfaces for reuse.

• Add or modify services faster and with less impact on existing

services.

ESB Role

Interface

Service

Interface

Service

Interface

Service

Interface

Service

Interface

Service

Interface

Service

Service

Service

Service

Service

Service

Service

Enterprise Service Bus

Source, IBM education assistant:
http://publib.boulder.ibm.com/infocenter/ieduasst

http://publib.boulder.ibm.com/infocenter/ieduasst�

ESB role

• In an ESB, applications and event-driven services are tied
together in an SOA in a loosely coupled fashion.

• An ESB provides the implementation backbone for an SOA.

• An ESB provides a loosely coupled, event-driven SOA with a
highly distributed universe of named routing destinations across
a multiprotocol message bus.

• Applications (and integration components) in the ESB are
abstractly decoupled from each other, and connect together
through the bus as logical endpoints that are exposed as event-
driven services.

ESB forms a pervasive grid that can span a global enterprise network, Source [5]

Some ESB Characteristics

• Standards-Based Integration [1].
– ESB can utilize J2EE components for connectivity.
– ESB also integrates with applications built with .NET, COM, C#, and

C/C++.
– Can easily integrate with anything that supports SOAP and web-

services APIs.

• Distributed Data Transformation.
– Transformation services can be located anywhere and accessible from

anywhere on the bus

• Remote Configuration and Management.
– Local IT staff can't always be at each remote location

Session Outlines

 Introduction
 ESB functions

 ESB role
 ESB Components
 Service invocation
 ESB Routing Facilities
 ESB example (Biztalk)

ESB Components

3 key components of an ESB architecture: MOM, Service container, and Management facility, Source [5]

Message Oriented Middleware (MOM)

• A MOM is a key part of the ESB architecture [1].
– It provides a network of virtual channels that an ESB uses to

route messages throughout an enterprise and beyond.
• In a MOM-based communication environment,

messages are usually sent and received asynchronously
• MOM in combination with message queues are

fundamental components of the ESB

Message Oriented Middleware

Source, [1]

Tightly Coupled Versus Loosely Coupled
Interfaces

• Synchronous RPC-Style Programming [1]:

– Technologies that predominantly use RPC-style communication include:

CORBA, RMI, DCOM, Sun-RPC, Java API for XML-RPC (JAX-RPC)

– Synchronous RPC-based interactions consist of multiple point-to-point

integrations that depend on each other.

– Minimum number of application interfaces is n(n-1)/2

• Asynchronous message-based interfaces are much more loosely

coupled and manageable

Where MOM fits?

The shift from synchronous remote calls to asynchronous message exchange, Source [5]

Asynchronous Messaging Models

Point-to-point and publish-subscribe messaging models, Source [5].

Service Container

Connecting services to the ESB using ESB endpoints that are managed by a service
container, Source [5]

Management Facility

• ESB centrally manages its decentralized infrastructure

• Each ESB, therefore, has a powerful and versatile

management facility, which consists of:

– A central repository

– A network of management servers

– Management interfaces at message servers and service containers

– Different configuration, management and monitoring tools.

Session Outlines

 Introduction
 ESB functions

 ESB role
 ESB Components
 Service invocation
 ESB Routing Facilities
 ESB example (Biztalk)

Service invocation model

• A typical SOA uses the find/bind/invoke model
• This model assumes that there is a registry or a

directory that stores the location and metadata about a
service implementation
• In the "find" operation, the service client does a lookup in

the registry for the service, using certain criteria, like names.
• The "bind" operation, for a web services request could

simply mean doing an HTTP connect.
• The "invoke" operation, means sending a message or

invoking a remote procedure.

ESB Service Invocation

• ESB has the concept of a registry or directory service in which

information about service endpoints is stored

• An inherent find/bind/invoke operation occurs as part of the ESB

mechanics, but it is separated out from the business logic.

• In an asynchronous ESB environment, the set of

find/bind/invoke operations may actually map to sending an

XML message to a queue and processing the reply.

• The means by which the find/bind/invoke operations are defined,

is through configuration and deployment tools.

Steps of service invocation

1. XML messages are received by the service from an entry

endpoint that is managed by the service container.

2. Upon conclusion of its task, the service implementation

places its output message in the exit endpoint.

3. The output of the service is the reply, which the ESB routes

to the next step or back to the request.

Session Outlines

 Introduction
 ESB functions

 ESB role
 ESB Components
 Service invocation
 ESB Routing Facilities
 ESB example (Biztalk)

ESB Routing mechanisms

• ESB basically provides 3 routing mechanisms thereby

invoking multiple business services:

– Itinerary-based routing.

– Service orchestration using BPEL.

– Content-based routing.

Itinerary-Based Routing

• Message itineraries (routes) are key to enabling a highly

distributed SOA across an ESB.

• In order to route a message through the bus, each message

contains an itinerary.

• The itinerary consists of a list of ESB endpoints that have to be

visited and the information about already visited ESB endpoints.

• The message payload contains the current processing state.

An ESB itinerary represents a distributed
business process

Source, [1]

Itinerary-based routing in an ESB

Source, [5]

Service Orchestration using BPEL

• Used to manage long-running business processes that might

run for months or years.

• A BPEL process definition consists of a number of logical steps

that are connected to each other by conditional or unconditional

links and can be executed in sequence or in parallel.

• A BPEL process definition also allows to define time-based,

condition-based and event-based triggers.

• As in the itinerary based routing, each logical step refers to an

ESB endpoint

Service orchestration using BPEL

Source, [5]

Content-Based Routing (CBR)

• Based on the fact that XML processing services with different

capabilities are plugged into the bus.

• They basically allow to validate, enrich, transform, route and

operate XML messages.

• Combinations of these services allow to form lightweight processes

with the purpose to process messages.

• Such a lightweight process is plugged as CBR service into the

message flow between a message producer and a message consumer

Content-based routing in an ESB

Source, [5]

Session Outlines

 Introduction
 ESB functions

 ESB role
 ESB Components
 Service invocation
 ESB Routing Facilities
 ESB example (Biztalk)

Microsoft BizTalk Server

• Referred to as "BizTalk“
• An Enterprise Service Bus (ESB) created by Microsoft.
• It enables companies to automate business processes

– Through the use of "adapters" which are tailored to communicate with
different software systems used in an enterprise.

• Provides the following functions:
– Enterprise application integration.
– Business process automation.
– Business-To-Business communication.
– Message broker.
– Business activity monitoring.

Biztalk main competitors

• Commercial:
– WebSphere by IBM
– webMethods by Software AG
– Oracle Enterprise Service Bus (BEA Logic)

• Open source:
– Apache ServiceMix
– Apache Synapse
– JBoss ESB
– NetKernel

Architecture

• The BizTalk Server runtime is built on a publish/subscribe
architecture, sometimes called "content-based publish/subscribe".
– Messages are published into BizTalk, transformed to the desired format, and

then routed to one or more subscribers.

• BizTalk makes processing safe by serialization (called dehydration
in Biztalk's terminology)
– Placing messages into a database while waiting for external events, thus

preventing data loss.

• This architecture binds BizTalk with Microsoft SQL Server.
• Processing flow can be tracked by administrators using an

Administration Console

BizTalk Server Messaging engine

• Enables users to create business processes that spans multiple

applications by providing two primary things:

– A way to specify and implement the logic driving that business process

– A mechanism for communicating across the applications that the

business process uses

BizTalk Server engine

• Send and receive adapters, use the
appropriate mechanism to
communicate with receiver and
sender applications respectively.

• Receive and send pipelines,
convert between XML format used
by BizTalk Server and the format
required the external application,
validate/add a digital signature,
etc…

• Business process logic is
implemented as one or more
orchestrations, each of which
consists of executable code.

• MessageBox, a database where the
message is delivered into and is
implemented using Microsoft SQL
Server.

Different people perform different functions
using the BizTalk Server engine

• A BizTalk application wraps orchestrations, pipelines,
message schemas, etc. into a single logical unit
– Which is an abstraction for management and deployment

• Three roles are necessary to create and maintain BizTalk
Server solutions, this done by:
– A business analyst: to define the rules and behaviors that

make up a business process.
– A developer can create a BizTalk application that implements

the business process.
– An administrator: setting up communication among the parts,

deploying the BizTalk application.

Biztalk Application Example (Practical
Session)

• Before start:
– Install BizTalk server on a single-computer environment
– Do the basic configuration

• We will create and build the first project in the enterprise
application integration (EAI) solution.
– The project contains message schemas, and a map.

• Then, we will create the business process that routes the
messages and evaluates the contents of the request message.

• Then, we will learn administering BizTalk Server artifacts by
using the BizTalk Server Administration Console, as follows:
– Deploy the project
– Configure and start the application
– Test the solution

Summary

During this module we have introduced the concept of enterprise
service bus; we have covered the following:

1. ESB role
2. ESB components
3. Service invocation
4. ESB Routing Facilities
5. BizTalk

Next module will cover the SOA design and Integration Patterns

References

1. Dave Chappell, “Enterprise Service Bus”, O'Reilly, June 2004.
2. Eric Newcomer, Greg Lomow, “Understanding SOA with Web Services”, Addison

Wesley Professional, December 2004.
3. Steve Graham, Doug Davis, Simeon Simeonov, Glen Daniels, Peter Brittenham,

Yuichi Nakamura, Paul Fremantle, Dieter König and Claudia Zentner, “Building Web
Services with Java, making sense of XML, SOAP, WSDL and UDDI”, Second Edition,
Sams Publishing, 2005.

4. Extracted from IBM education assistant:
http://publib.boulder.ibm.com/infocenter/ieduasst, 9/2011.

5. Martin Breest, “An Introduction to the Enterprise Service Bus”, Hasso-Plattner-
Institute for IT Systems Engineering at the University of Potsdam, Prof.-Dr.-Helmert-
Str. 2-3, D-14482 Potsdam, Germany, 2006.

http://publib.boulder.ibm.com/infocenter/ieduasst�

Thanks

Mohammed Aldasht

	Slide Number 1
	About
	© Copyright Notes
	Tutorial Map
	Session 10: ESB
	Session Outlines
	Introduction
	Introduction
	Introduction: definitions
	ESB 4 functions [4]
	Session Outlines
	SOA Role
	SOA Role
	ESB Role
	ESB Role
	ESB role
	Slide Number 17
	Some ESB Characteristics
	Session Outlines
	ESB Components
	Message Oriented Middleware (MOM)
	Message Oriented Middleware
	Tightly Coupled Versus Loosely Coupled Interfaces
	Where MOM fits?
	Asynchronous Messaging Models
	Service Container
	Management Facility
	Session Outlines
	Service invocation model
	ESB Service Invocation
	Steps of service invocation
	Session Outlines
	ESB Routing mechanisms
	Itinerary-Based Routing
	An ESB itinerary represents a distributed business process
	Itinerary-based routing in an ESB
	Service Orchestration using BPEL
	Service orchestration using BPEL
	Content-Based Routing (CBR)
	Content-based routing in an ESB
	Session Outlines
	Microsoft BizTalk Server
	Biztalk main competitors
	Architecture
	BizTalk Server Messaging engine
	BizTalk Server engine
	Different people perform different functions using the BizTalk Server engine
	Biztalk Application Example (Practical Session)
	Summary
	References
	Thanks��Mohammed Aldasht

