
1 PalGov © 2011

 أكاديمية الحكومة الإلكترونية الفلسطينية
The Palestinian eGovernment Academy

www.egovacademy.ps

Tutorial III:
Process Integration and Service Oriented Architectures

Session 8
WSDL

Prepared By

Mohammed Aldasht

2 PalGov © 2011

About

This tutorial is part of the PalGov project, funded by the TEMPUS IV program of the
Commission of the European Communities, grant agreement 511159-TEMPUS-1-
2010-1-PS-TEMPUS-JPHES. The project website: www.egovacademy.ps

University of Trento, Italy

University of Namur, Belgium

Vrije Universiteit Brussel, Belgium

TrueTrust, UK

Birzeit University, Palestine
(Coordinator)

Palestine Polytechnic University, Palestine

Palestine Technical University, Palestine Université de Savoie, France

Ministry of Local Government, Palestine

Ministry of Telecom and IT, Palestine

Ministry of Interior, Palestine

Project Consortium:

Coordinator:
Dr. Mustafa Jarrar
Birzeit University, P.O.Box 14- Birzeit, Palestine
Telfax:+972 2 2982935 mjarrar@birzeit.edu

http://www.egovacademy.ps/�

3 PalGov © 2011

© Copyright Notes

Everyone is encouraged to use this material, or part of it, but should properly
cite the project (logo and website), and the author of that part.

No part of this tutorial may be reproduced or modified in any form or by any
means, without prior written permission from the project, who have the full
copyrights on the material.

Attribution-NonCommercial-ShareAlike
CC-BY-NC-SA

This license lets others remix, tweak, and build upon your work non-
commercially, as long as they credit you and license their new creations
under the identical terms.

Tutorial Map

Title T Name
Session0: Syllabus and overview 0 Aldasht
Sesson1: Introduction to SOA 2 Aldasht
Session2: XML namespaces & XML schema 2 Aldasht
Session 3: Xpath & Xquery 4 Romi
Session4: REST web services 3 M. Melhem
Session5: Lab2: Practice on REST 3 M. Melhem
Session 6: SOAP 2 Aldasht
Session 7: WSDL 3 Aldasht
Session8: Lab 3: WSDL practice 3 Aldasht
Session9: ESB 4 Aldasht
Session10: Lab4: Practice on ESB 4 Aldasht
Session11: integration patterns 4 M. Melhem
Session12: Lab5: integration patterns 4 M. Melhem
Session13: BPEL 3 Aldasht
Session14: Lab6: Practice on BPEL 3 Aldasht
Session15: UDDI 2 Aldasht

Intended Learning Objectives
A: Knowledge and Understanding

3a1: Demonstrate knowledge of the fundamentals of middleware.
3a2: Describe the concept behind web service protocols.
3a3: Explain the concept of service oriented architecture.
3a4: Explain the concept of enterprise service bus.
3a5: Understanding WSDL service interfaces in UDDI.

B: Intellectual Skills
3b1: Design, develop, and deploy applications based on Service
Oriented Architecture (SOA).
3b2: use Business Process Execution Language (BPEL).
3b3: using WSDL to describe web services.

C: Professional and Practical Skills
3c1: setup, Invoke, and deploy web services using integrated
development environment.
3c2: construct and use REST and SOAP messages for web
services communication.

D: General and Transferable Skills
d1: Working with team.
d2: Presenting and defending ideas.
d3: Use of creativity and innovation in problem solving.
d4: Develop communication skills and logical reasoning abilities.

Session 8: WSDL
Session ILOs

After completing this session students will be able to use
WSDL to describe web services.

Session Outlines

 Introduction
 WSDL building blocks
 Structure of a WSDL document
 The SOAP binding

Overview

• A consumer first examines the WSDL description before
requesting a service.

Source, [3]

Web Services Application Code

WSDL API

WSDL SOAP

SOAP API

XML / XML namespace / XML Schema

Introduction I

• Web Services Description Language (WSDL): is an XML-
based language that provides a model for describing Web
services [2].

• WSDL is often used in combination with SOAP and an XML
Schema to provide Web services over the Internet.
– A client program connecting to a Web service can read the WSDL file

to determine what operations are available on the server.
– Any special datatypes used are embedded in the WSDL file in the form

of XML Schema.
– The client can then use SOAP to actually call one of the operations

listed in the WSDL file using XML or HTTP.

Introduction II

• Web service refers to the piece of code implementing
the XML interface to a resource

• This enables consumer with XML support to integrate
with Web service applications

• XML Schema
– Allows developers to describe the structure of XML

messages
– But, can't describe the additional details involved in

communication with a Web service

Introduction III

• A message exchange is referred
to as an operation.

• Operations are what consumers
care about most since they're
the focal points of interaction.

• Consumers must be aware of
the groupings of related
operations into interfaces, since
it impacts the way they write
their code service [1]

Resource

Service

Messages

Communicating with a web service ,
Source, [1]

Introduction IV

• Consumers must be aware of
these groupings since it
impacts the way they write
their code.

• Consumers must also know
what communication
protocol to use for sending
messages to the service [1].
– Also, specific mechanics

involved in using the given
protocol such as the use of
commands, headers, and
error codes

Resource

Service

Messages

Operations (message exchange),
Source, [1]

Output Input

Operation

Introduction V

• A binding influences the way abstract messages are
encoded on the wire by specifying the style of
service.
– Document vs. RPC
– The encoding mechanism, literal vs. encoded.

• A service can support multiple bindings for a given
interface.

• Each binding should be accessible at a unique address
identified by a URI, also referred to as a Web service
endpoint [1].

Interfaces and Bindings,
Source, [1]

Introduction VI: Interfaces and Bindings

Session Outlines

 Introduction
 WSDL building blocks
 Structure of a WSDL document
 The SOAP binding

WSDL building Blocks

• WSDL separates a service into two parts [3]:
– Abstract interfaces: unfolds the operations supported by the

web service, the operation parameters and abstract data
types.

• Independently from, any concrete network address, communication
protocol or data structure.

– Concrete implementation: binds the abstract interface
description to a concrete network address, to a protocol and
to a concrete data structure.

• A web service consumer can bind to such an implementation and
invoke a service.

WSDL building Blocks

• A WSDL document is an XML instance composed of
elements.

• Elements are declared in a WSDL schema definition
with target namespace:

 http://schemas.xmlsoap.org/wsdl/.
• See next slide for:

– An initial WSDL interface description for the
getPhoneNumber service, Source, [3].

<definitions name = “phoneNumberService”
 targetNamespace = “http://companyx.com/ns/phoneNumber/wsdl”
 xmlns:tns=“http://companyx.com/ns/phoneNumber/wsdl”
 xmlns:SOAP-EXT=“http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns=“http://schemas.smlsoap.org/wsdl/”>
 <types>
 <schema
 targetNamespace=“http://companyx.com/ns/phoneNumber/wsdl”
 xmlns=“http://www.w3.org/2001/XMLSchema”>
 <complexType name=“NameInType”>
 <sequence>
 <element name=“first-name” type=“xsd:string”/>
 <element name=“last-name” type=“xsd:string”/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name=“GetPhoneNumberIn”>
 <part name=“name” type=“tns:NameInType”/>
 </message >
 <message name=“GetPhoneNumberOut”>
 <part name=“return” type=“xsd:string”/>
 </message >
 <portType name=”PhoneNumberPortType”>
 <operation name=“getPhoneNumber”>
 <input message=“tns:GetPhoneNumberIn”/>
 <output message=“tns:GetPhoneNumberOut”/>
 </operation>
 </portType>

Abstract
data type

definitions

Data that is
returned

Port type containing
one operation

An operation with
input and output

message

getPhoneNumber service

Summary of elements collectively describing a
web service interface

• portType: a named collection of operations
• operation: abstractly describes a service call.

– May contain input message, output message and optionally several
fault message.

• message: an abstract description of the data that is sent.
– Messages consist of logical units called parts.

Summary of elements collectively describing a
web service interface

• part: is associated with a data type.
• type: provides a container for data type definitions.

– WSDL 1.1 refer to XML schema data types, but doesn’t prohibit the
use of other type systems.

• See next slide for:
– A WSDL implementation description for the getPhoneNumber

service, Source, [3].

 <binding name=“PhoneNumberSoapBinding” type=“tns:PhoneNumberPortType”>
 <SOAP-EXT:binding style=“rpc”
 transport=“http://schemas.xmlsoap.org/soap/http”/>
 <operation name=“getPhoneNumber”>
 <SOAP-EXT:operation soapAction=“”/>
 <input>
 <SOAP-EXT:body use=“encoded”/>
 </input>
 <output>
 <SOAP-EXT:body use=“encoded”/>
 </output>
 </operation>
 </binding>
 <service name=“PhoneNumberService”>
 <port name=“PhoneNumberPort” binding=“tns:PhoneNumberSoapBinding”>
 <SOAP-EXT:address
 location=“http://www.companyx.com/servlet/rpcrouter”/>
 </port>
 </service>
</definitions>

Use SOAP
RPC style

Service name

… and map
the abstract

input and
output

messages
to these
concrete

messages

Bind an abstract operation to this
concrete implementation …

Network address of service

Summary of elements describing a web service
implementation

• binding: provides concrete protocol and data format
specifications for a particular port type.

• port: describes the network address of a service.
– In combination with a binding it provides info about concrete service

endpoint.

Summary of elements describing a web service
implementation

• service: a collection of related ports.
– May share the same port type, but employ different bindings or

network addresses.
– May be concrete service endpoint implementations of several port

types.

WSDL service interface and service
implementation description

service

binding port

port binding

portType binding type

Associated with
Relationship Containment

Relationship

Source, [3]

WSDL related name spaces

• Although the use of other type systems is not forbidden, WSDL
uses XML schema definitions and XML schema instance
attributes from representing abstract data types:
– Namespace prefix xsd refers to URI
http://www.w3.org/2001/XMLSchema.

– Namespace prefix xsi refers to URI
http://www.w3.org/2001/XMLSchema-
instance

http://www.w3.org/2001/XMLSchema�
http://www.w3.org/2001/XMLSchema-instance�
http://www.w3.org/2001/XMLSchema-instance�

WSDL related name spaces, cont.

• Additional namespaces with WSDL 1.1 specification:
– Namespace prefix wsdl refers to URI
http://schemas.xmlsoap.org/wsdl

– Namespace prefix SOAP-EXT refers to URI
http://schemas.xmlsoap.org/wsdl/soap

http://schemas.xmlsoap.org/wsdl/�
http://schemas.xmlsoap.org/wsdl/soap�

Session Outlines

 Introduction
 WSDL building blocks
 Structure of a WSDL document
 The SOAP binding

WSDL document containment structure

• Three important containment structure elements: (see next slide)
– definitions: a container for all WSDL elements.
– portType.
– binding: each binding related to a distinct port type maps a concrete

protocol implementation to this port type.

WSDL document containment structure

• Message provides a data types container for operations via its
ports.

• Individual data types may appear multiple times in several
messages.

• A specific input message may be identical, and reusable for
several applications.

• Bindings might be reusable, also.

WSDL document containment structure

Source, [3]

Service interface-related elements of WSDL
document

• definitions element: may have name, targetNamespace
and xmlns.

• types element: a container for all data type definitions that
belong to the messages.

• message element: represents operation parameters for one
interaction between a client and a service. e.g:
– Input parameters for a SOAP RPC are described as a message.
– Another message presents the return and output parameters for this call.

• part element: contained in message element; may carry name
attribute, element attribute and type attribute.

Definitions elements

• wsdl namespace prefix is defined by default.
• Identical namespaces assigned to the
targetNamespace attribute and the tns
namespace prefix.

• The target namespace of local WSDL definitions
together with the tns namespace prefix helps a
processor to locate these local definitions when they
are referred to.

Definitions example

<definitions name=“phoneNumberService”
 targetNamespace=“http://companyx.com/ns/phoneNumber/wsdl”
 xmlns:tns=“http://companyx.com/ns/phoneNumber/wsdl”
 xmlns:SOAP-EXT=“http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:”http://schemas.smlsoap.org/wsdl”>
 <documentation>
 WSDL document describing a phone number service
 </documentation>
 <!–- The WSDL specification goes here. -->
 ...
</definitions>

Types element

• The types element is a container for all abstract data
type definitions that belong to messages.

• Message parts link types to messages.
• WSDL prefers the use of XML schema for the type

definitions
• In the following example all elements are based on

the XML schema built-in string type.

Types Example

<types>
 <schema

targetNamespace=“http://companyx.com/ns/phoneNu
mber/wsdl”

 xmlns=“http://www.w3.org/2001/XMLSchema”>
 <element name=“FirstNameIN”

type=“xsd:string”/>
 <element name=“LastNameIN”

type=“xsd:string”/>
 <element name=“PhoneNumber”

type=“xsd:string”/>
 <element name=“NoNameFound”

type=“xsd:string”/>
 </schema>
</types>

Message and part elements

• As mentioned earlier, a message represents operation parameters
for one interaction between a client and a service.

• See next slide for an example of three messages, each holding
one part, respectively:

Message and part example

<message name=“GetPhoneNumberIn”>
 <part name=“name” element=“tns:NameIn”/>
</message>
<message name=“GetPhoneNumberOut”>
 <part name=“return” element=“tns:PhoneNumber”>
</message>
<message name=“NoNameFoundOut”>
 <part name=“failure” element=“tns:NoNameFound”/>
</message>

Message and part example, cont.

• The element attribute refers to the element declarations in the
types container.

• Alternatively, we can have defined the data type of each part
via the type attribute.

<message name=“GetPhoneNumberIn”>
 <part name=“name” type=“tns:NameInType”/>
</message>
<message name=“GetPhoneNumberOut”>
 <part name=“return” type=“xsd:string”>
</message>
<message name=“NoNameFoundOut”>
 <part name=“failure” type=“xsd:string”/>
</message>

Mapping of a WSDL part to a SOAP RPC
style message

• See the message in the next slide.
• Dotted arrows illustrate how a part name of the WSDL

document describing the phone number service is mapped to a
procedure call parameter accessor in a SOAP RPC style
message body to invoke this service.

WSDL part to a SOAP RPC style message

<SOAP-ENV:Body>
 <getPhoneNumber ...>
 <name>
 <first-name xsi:type=“xsd:string”>Ahmad M.</first-name>
 <last-name xsi:type=“xsd:string”>Ahmad</last-name>
 </name>
 </getPhoneNumber>
</SOAP-ENV:Body>

<message name=“GetPhoneNumberIn”>
 <part name=“name” type=“tns:NameIn”/>
</message>

WSDL Document:

SOAP Message Body (RPC Style):

Source, [3]

Mapping of a WSDL part to a SOAP
document style message

• Here, parts point to the XML instance contained in the SOAP
message body.

• No additional wrapper.
• The element representing the XML instance goes directly into

the SOAP message body element.
• See next slide!

WSDL part to a SOAP document style message

<SOAP-ENV:Body>
 <NameIn>
 <first-name xsi:type=“xsd:string”>Ahmad M.</first-
name>
 <last-name xsi:type=“xsd:string”>Ahmad</last-name>
 </NameIn>
</SOAP-ENV:Body>

<message name=“GetPhoneNumberIn”>
 <part name=“name” element=“tns:NameIn”/>
</message>

WSDL Document:

SOAP Message Body (Document Style):

Source, [3]

The operation element

• 4 operation types:
– One-way: has only an input element specifying the operation

message.
– Request-response: contains one input, one output and optionally,

one or more fault elements.
– Solicit-response: contains one input, one output and optionally, one

or more fault elements.
– Notification: contains only an output element specifying the operation

message.

operation element

Source, [3]

Mapping of a WSDL operation to a SOAP
RPC style message

• An operation element may hold two attributes:
– name: it is mandatory and specifies the operation name
– parameterOrder: carries a space-separated list of message parts.

• May be used for request-response and solicit-response operations with an
RPC binding to save the function call signature.

WSDL operation to a SOAP RPC style message

<SOAP-ENV:Body>
 <getPhoneNumber ...>
 ...
 </getPhoneNumber>
</SOAP-ENV:Body>

<portType name=“PhoneNumberPortType”>
 <operation name=“getPhoneNumber”>
 <input message=“tns:GetPhoneNumberIn”/>
 <output message=“tns:PhoneNumberOut”/>
 </operation>
</portType>

WSDL Document:

SOAP Message Body (RPC Style):

Source, [3]

Binding-related elements of a WSDL
document

• binding element almost matches the structure of portType
element.

• binding must map the abstract portType description to a
concrete implementation, carries two attributes:
– name: is mandatory, and specifies the name of the binding
– type: is mandatory, and refers to the port type that it binds.

binding example, Source, [3]

<binding name=“PhoneNumberSoapBinding”
 type=tns:PhoneNumberPortType”>
 <!–- SOAP binding extensibility element -->
 <SOAP-EXT:binding style=“rpc”>
 transport=“http://schemas.xmlsoap.org.soap/http”/>
 <operation name=“getPhoneNumber”>
 <!–- SOAP operation extensibility element -->
 <SOAP-EXT:operation soapAction=“”/>
 <input>
 <SOAP-EXT:body use=“encoded”/>
 </input>
 <output>
 <SOAP-EXT:body use=“encoded”/>
 </output>
 </operation>
</binding>

The binding element

• binding type attribute together with the name attribute
uniquely identifies a binding.

• Since various bindings may refer to the same port type.

binding element details

Source, [3]

Session Outlines

 Introduction
 WSDL building blocks
 Structure of a WSDL document
 The SOAP binding

The SOAP binding

• Binding to SOAP 1.1, means that we must fill these containers
with SOAP 1.1 extensibility elements.

• Providing a distinct WSDL binding requires the definition of
extensibility elements for the binding, the operation and
the port elements.

• In our examples, the namespace prefix for SOAP binding is
SOAP-EXT.

• The table contains WSDL-defined binding elements and
contained SOAP extensibility element.

WSDL-defined binding elements and contained
SOAP extensibility element

Source, [3]

SOAP extensibility elements

• SOAP binding extensibility element: has two attributes:
– transport: indicates the transport protocol for the SOAP message.
– style: can have value rpc or document.

• SOAP operation extensibility element: provides operation
scope info, has two attributes:
– style: may overwrite binding-wide sittings for individual operations.
– soapAction: specifies the value of the soapAction HTTP header for

the operation.

SOAP extensibility elements

• SOAP body extensibility element: defines the mapping of
abstract message parts into the SOAP message body:
– parts: contains the set of abstract message parts in message body.
– use: can take value literal or encoded.
– encodingStyle: if encoded, this defined the encoding rules.
– namespace: holds the namespace of the operation name.

SOAP RPC style binding using Section 5 encoded
message parts

• getPhoneNumber operation, or procedure call, is identified
using namespace attribute.

<operation name=“getPhoneNumber”
 <SOAP-EXT:operation soapAction=“”/>
 <input>
 <SOAP-EXT:body use=“encoded”
 encodingStyle=“http://schemas.xmlsoap.org/soap/encoding”
 namespace=“http://companyx.com/ns/employees”/>
 </input>
 <output>
 <SOAP-EXT:body use=“encoded”
 encodingStyle=“http://schemas.xmlsoap.org/soap/encoding”
 namespace=“http://companyx.com/ns/employees”/>
 </output>
</operation>

SOAP address extensibility element for SOAP
over HTTP, example

• This extensibility element specifies the network address of the
SOAP-accessible service.

• It is a member of the WSDL port element.
• It contains one attribute:

– location: defines the network address for the binding.

<service name=“PhoneNumberService”>
 <port name=“PhoneNumberPort” binding=“tns:PhoneNumberSoapBinding”>
 <SOAP-EXT:address
 location=“http://www.companyx.com/servlet/rpcrouter”/>
 </port>
</service>

Practices 1

• Create a web application to consume a web service called
(GlobalWeather) available on the web:

 http://www.webservicex.net/globalweather.asmx
• Use the WSDL file of the web service available on:
 http://www.webservicex.net/globalweather.asmx
• Create new ASP.Net web site
• In the design add a button and a text box.
• To the solution name add a web reference (Use the link of the WSDL file above)
• Go to the design, double click on the button. Add: using (the referenced webservice name).
Button Click code:
protected void Button1_Click(object sender, EventArgs e)

 {

 GlobalWeather G = new GlobalWeather();

 string cities = G.GetCitiesByCountry(TxtCountry.Text.ToString());

 Response.Write(cities);

 }

http://www.webservicex.net/globalweather.asmx�
http://www.webservicex.net/globalweather.asmx�

Practice 2: Self Hosting Service

• Create a service library (any service), name your solution (SelfHostingService)
• Add a new console application project to the solution, (MyserviceHost)

– Here, add references, to your service library and to .Net System.ServiceModel
– Add inside the main class ,the following code:

ServiceHost host = new ServiceHost(typeof(MyService));

host.Open(); //read service configurations from .config file and build
the runtime to support all endpoints defined in the configuration

Console.WriteLine("MyService is up and running ...");

Console.ReadLine();

host.Close();

– Build your solution
– Add an item (application configuration file) for the project and edit it using WCF editor:

• Create new service (browse for your the service library), then next. Use http binding , next: use basic WS
interoperability, nex: address: use relative address (e.g. name it basic) and finish.

• Create another service endpoint, the same, but use advanced WS interoperability, and use relative address (ws)
• Click Host in the configuration and create new base address (http://localhost:8080/MyService)
• Create another service endpoint, use tcp binding, use address (http://localhost:8080/MyService)
• Create another service endpoint, use Named pipes binding, use address (net.pipe://localhost/MyService)
• To enable metadata in your service; click advanced, then service behaviour, and new service behaviour, and add the

service meta data element, then select the element from the tree and set httpGetEnabeled to true
• Click the service name in the top, and Apply the new behaviour to the behaviour configuration
• Save the configuration and exit.

http://localhost:8080/MyService�
http://localhost:8080/MyService�

Practice 2: Self Hosting Service

• Right-click your host project and set as startup project.
• Press Crtl+F5 to start.
• Open internet explorer and in the address (localhost:8080/MyService)

Summary

During this session we have introduced the use of WSDL to
describe web services; Thus, the following subjects have
been described:

1. WSDL building blocks
2. Structure of a WSDL document
3. The SOAP binding

In the next session we will cover the enterprise service bus
“ESB”

References

1. Aaron Skonnard, Understanding WSDL, Microsoft Digital Network,
“http://msdn.microsoft.com/en-us/library/ms995800.aspx”, March 2003

2. Extracted from: http://en.wikipedia.org/wiki/WSDL
3. Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, “Perspectives on Web services-

Applying SOAP, WSDL and UDDI to real-world projects, 2nd edition, Springer, 2005

http://en.wikipedia.org/wiki/WSDL�

Thanks

Mohammed Aldasht

	Slide Number 1
	About
	© Copyright Notes
	Tutorial Map
	Session 8: WSDL
	Session Outlines
	Overview
	Introduction I
	Introduction II
	Introduction III
	Introduction IV
	Introduction V
	Interfaces and Bindings, Source, [1]
	Session Outlines
	WSDL building Blocks
	WSDL building Blocks
	getPhoneNumber service
	Summary of elements collectively describing a web service interface
	Summary of elements collectively describing a web service interface
	Slide Number 20
	Summary of elements describing a web service implementation
	Summary of elements describing a web service implementation
	WSDL service interface and service implementation description
	WSDL related name spaces
	WSDL related name spaces, cont.
	Session Outlines
	WSDL document containment structure
	WSDL document containment structure
	WSDL document containment structure
	Service interface-related elements of WSDL document
	Definitions elements
	Definitions example
	Types element
	Types Example
	Message and part elements
	Message and part example
	Message and part example, cont.
	Mapping of a WSDL part to a SOAP RPC style message
	WSDL part to a SOAP RPC style message
	Mapping of a WSDL part to a SOAP document style message
	WSDL part to a SOAP document style message
	The operation element
	operation element
	Mapping of a WSDL operation to a SOAP RPC style message
	WSDL operation to a SOAP RPC style message
	Binding-related elements of a WSDL document
	binding example, Source, [3]
	The binding element
	binding element details
	Session Outlines
	The SOAP binding
	WSDL-defined binding elements and contained SOAP extensibility element
	SOAP extensibility elements
	SOAP extensibility elements
	SOAP RPC style binding using Section 5 encoded message parts
	SOAP address extensibility element for SOAP over HTTP, example
	Practices 1
	Practice 2: Self Hosting Service
	Practice 2: Self Hosting Service
	Summary
	References
	Thanks��Mohammed Aldasht

