
1 PalGov © 2011

 أكاديمية الحكومة الإلكترونية الفلسطينية
The Palestinian eGovernment Academy

www.egovacademy.ps

Tutorial III:
Process Integration and Service Oriented Architectures

Session 5
REST Web Services

Prepared By

Mohammed Melhem

2 PalGov © 2011

About

This tutorial is part of the PalGov project, funded by the TEMPUS IV program of the
Commission of the European Communities, grant agreement 511159-TEMPUS-1-
2010-1-PS-TEMPUS-JPHES. The project website: www.egovacademy.ps

University of Trento, Italy

University of Namur, Belgium

Vrije Universiteit Brussel, Belgium

TrueTrust, UK

Birzeit University, Palestine
(Coordinator)

Palestine Polytechnic University, Palestine

Palestine Technical University, Palestine Université de Savoie, France

Ministry of Local Government, Palestine

Ministry of Telecom and IT, Palestine

Ministry of Interior, Palestine

Project Consortium:

Coordinator:
Dr. Mustafa Jarrar
Birzeit University, P.O.Box 14- Birzeit, Palestine
Telfax:+972 2 2982935 mjarrar@birzeit.edu

http://www.egovacademy.ps/�

3 PalGov © 2011

© Copyright Notes

Everyone is encouraged to use this material, or part of it, but should properly
cite the project (logo and website), and the author of that part.

No part of this tutorial may be reproduced or modified in any form or by any
means, without prior written permission from the project, who have the full
copyrights on the material.

Attribution-NonCommercial-ShareAlike
CC-BY-NC-SA

This license lets others remix, tweak, and build upon your work non-
commercially, as long as they credit you and license their new creations
under the identical terms.

Tutorial Map

Title T Name
Session0: Syllabus and overview 0 Aldasht
Sesson1: Introduction to SOA 2 Aldasht
Session2: XML namespaces & XML schema 2 Aldasht
Session 3: Xpath & Xquery 4 Romi
Session4: REST web services 3 M. Melhem
Session5: Lab2: Practice on REST 3 M. Melhem
Session 6: SOAP 2 Aldasht
Session 7: WSDL 3 Aldasht
Session8: Lab 3: WSDL practice 3 Aldasht
Session9: ESB 4 Aldasht
Session10: Lab4: Practice on ESB 4 Aldasht
Session11: integration patterns 4 M. Melhem
Session12: Lab5: integration patterns 4 M. Melhem
Session13: BPEL 3 Aldasht
Session14: Lab6: Practice on BPEL 3 Aldasht
Session15: UDDI 2 Aldasht

Intended Learning Objectives
A: Knowledge and Understanding

3a1: Demonstrate knowledge of the fundamentals of middleware.
3a2: Describe the concept behind web service protocols.
3a3: Explain the concept of service oriented architecture.
3a4: Explain the concept of enterprise service bus.
3a5: Understanding WSDL service interfaces in UDDI.

B: Intellectual Skills
3b1: Design, develop, and deploy applications based on Service
Oriented Architecture (SOA).
3b2: use Business Process Execution Language (BPEL).
3b3: using WSDL to describe web services.

C: Professional and Practical Skills
3c1: setup, Invoke, and deploy web services using integrated
development environment.
3c2: construct and use REST and SOAP messages for web
services communication.

D: General and Transferable Skills
d1: Working with team.
d2: Presenting and defending ideas.
d3: Use of creativity and innovation in problem solving.
d4: Develop communication skills and logical reasoning abilities.

Session Outlines

1. What is REST?
2. Key Principles
3. Fundamental HTTP Concepts
4. Rest examples
5. Design guide lines
6. How to Document REST
7. Case Study
8. Common misuses
9. Code samples (C#, Java)
10. What we have else?
11. Conclusions

What is REST

• A service designed to embrace the “web” from the
ground-up.

• Representational State Transfer
• An architecture style for designing networked application.

– Introduced by Roy Fielding’s PhD Thesis (2000)

• The idea is that, provide a replacement for old and
complex integration mechanisms RPC, COBRA, etc. using
simple HTTP calls between systems.
– The web itself, can be viewed as a REST-based architecture.

Presenter
Presentation Notes
Architecture style based on a set of constrains for building things the “Web” way.�REST not tied to a platform or a technology “ it’s simply a way to design thing to work like the web “RESTFull”What does “Web-platforms” mean? - A distributed computing platform, which includes: URI, HTTP, common data formats XML, JSON, RSS, ATOM Rest=Representational state transfer which is an architecture design to represent the resources. Rest provide the uniform interface through additional constraints around how to identify resources, how to manipulate resources through representations, and how to include metadata that make messages self-describing.�Rest is not tied with any platform and technology but WEB is only platform which satisfy the all constrain. So any thing you build using Rest constrain, you do it on Web using HTTP.

Key Principles

1. Every element must have it’s ID.
2. Things must be linked.
3. Use standard methods
4. Provide multiple representations
5. Communicate statelessly

Every element must have it’s ID

• Relies on uniform interface URI’s
• Every thing is a resource (Data and Operations)
• Each resource has it a URI

– Operations, process steps, etc.
– Individual item

• http://bzu.edu/course/123
• http://ritaj.bzu.edu/faculty/1234

– Collections
• http://registration.bzu.edu/course/123/students

http://test.com/products/1234�

Things must be linked

• There is no connection state interaction is stateless,
each request must carry all the information required to
complete it, and must not rely on previous operations or
requests.

• Two schools
– The URL King (TUK)[3]

• Encode all important staff in the URL
– Hipermedia as the engine of application state (HARTEOAS) [2]

Presenter
Presentation Notes
TUK: All required information to identify a resource must be included in the URI

HARTEOAS

• Each URI maps to a single resource
• Each resource may have more than one URI i.e. versions.
• Details:

– Client takes actions from the representations returned.
– The media types used for the representations, and the links they

may contain.

Presenter
Presentation Notes
HATEOAS, an abbreviation for Hypermedia as the Engine of Application State, is a constraint of the REST application architecture that distinguishes it from most other network application architectures. The principle is that a client interacts with a network application entirely through hypermedia provided dynamically by application servers. A REST client needs no prior knowledge about how to interact with any particular application or server beyond a generic understanding of hypermedia. Contrast this with e.g. a service-oriented architecture (SOA), where clients and servers interact through a fixed interface shared through documentation or an interface description language (IDL).

HATEOAS Example

Example Create record
• Request

• Response

PUT /Phone HTTP1.1
Host: http://example.com
Content: application/xml
<phone><person>Mohammed</person></phone>

201 Created
Location: http//example.com/phones/mohammed
Content: application/xml
…

http://example.com/�

Provide multiple representations

• Rest is not a standard
– There will never be a W3C recommendation.
– Often server response is an XML, however other formats can also

be used unlike other services i.e SOAP.
– All data formats are acceptable such as JSON “JavaScript Object

Notation”, however using human readable formats is not
acceptable.

Communicate statelessly

 REST services are self contained and
each request carries (transfer) all the
information (state) that the server needs
in order to complete it.

Example: Clients checkout
Client: I’m done, (identification) with a purchase
Server: OK, here it is your total for the items in http://example.com/users/
(identification) /basket

Fundamental HTTP Concepts

• Standard communication protocol for interacting with
resources and other resources.

• HTTP defines:
– A standard set of methods
– Status codes
– And headers for interaction with resources on the WEB

Standard methods

• Common set of methods to represent CRUD operations,
based on HTTP standard verbs and response codes.

 Method Description CRUD SAFE idempotent

Get Request a specific representation of a
resource

Read YES YES

PUT Create/Update a resource with provides
representation

UPDATE/CR
EATE NO YES

Delete

Delete the specified resource DELETE NO YES

POST Submits data to be processed by the
identified resource

CREATE/UP
DATE NO NO

OPTIONS/
HEAD

Returns the methods supported by the
identified resource

-
YES YES

Presenter
Presentation Notes
Say we have a resource representing a course description at BZU. We would issue a GET request to retrieve the course description from BZU URI.�If we want to update the course we will issue a PUT request to the same URI supplied with modified data- HTML 4 only supports issuing GET/POST requests and to work around developers used to overload POST to take care of everything but operation retrieval.�- HTML 5 planned to overcome this issue.��POST the actual function of it defined by the server. Therefore POST can’t be considered SAFE or idempotent.

Response Codes

Status Range Description Example
100 – 199 Informational 100 continue
200 – 299 Successful 200 OK

201 Created
202 Accepted

300 – 399 Redirection 301 Moved Permanently
304 Not Modified

400 – 499 Client Error 400 Bad Request
401 Client error
404 Not found

500 – 599 Server Error 500 internal server error
501 Not implemented

Presenter
Presentation Notes
That specify the results of processing the request. Status codes are organized into ranges that mean different things.

HTTP Headers

• Used to negotiate behavior between HTTP clients and
server.

• Provide built in solutions for important communication
concepts like:
– Redirection
– Content negotiation
– Security(Authentication, authorization)
– Caching
– Compression

Rest examples

Today most of the online solutions expose their Application
programmable interfaces (APIs) as a web services, these
services typically exposed as REST, and some of leading
companies provide a side WSDL services that easier to parse:

Examples of sites expose their services in REST Format:

 - Microsft.com
 - Filcker
 - Amazon.com
 - Facebook.com

Design guide lines

TIPS
• Use logical URL, don’t point to a physical paths.
• Don’t return bulks of data use pagination, and returned

results should contain next and previous links.
• Make sure REST services are will documented, and don’t

change its return type.
• Always include URI for additional actions “don’t let the

client do it by himself/herself”
• GET request should not change state at anytime, use

POST/DELETE/PUT for change operations.

How to Document REST

• WSDL and WADL
– WSDL stands for Web Service Description Language, it is

recommended standard by W3C to description SOAP services.
WSDL is a flexible language, however it lack for HTTP verbs
support, making it a poor choice for REST documentation.

• WSDP 2.0 support HTTP verbs

– WADL[4] the Web Application Description Language, an alternative
for WSDL to document REST services, it is easy to understand and
lighter compared to WSDL, however it lacks WSDL flexibility.

WADL example

<application xmlns="http://wadl.dev.java.net/2009/02"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:atom="http://www.w3.org/2005/Atom">

 <resources base="http://example.org/">
 <resource path="blog/main"
 type="http://www.w3.org/2007/app.wadl#entry_feed">
 <doc title="Main Site"/>
 </resource>
 <resource path="blog/pic"
 type="http://www.w3.org/2007/app.wadl#media_feed">
 <doc title="Pictures"/>
 </resource>
 </resources>
</application>

Case STUDY

Operation Description
createStudent Create a new student
getStudent Retrieves student information for the authenticated

user
deleteStudent Delete one student
updateStudent Updates an existing student information
getStudentCourses Retrieves student registered courses
registerStudentCourse Register course for an existing student
getCourses Retrieve all available courses

Lets suppose you are in a university that provide an online services for their
students and faculty. One of your services provides supposed to provide following
services:

Presenter
Presentation Notes
We will start with RPC-based services and redesign it to become a RESTfull service.Extract the resources that make up the service.Design a URI for identifying the resources and identifying which HTTP methods will they support

CASE STUDY

• Identify the resource the service will expose.
– Student
– Course
– registered courses

CASE STUDY

• Analyze the functionality, to address type of resources:
– An individual student profile
– A collection of registered courses
– A collection of courses

CASE STUDY

• Design the URI template
– start with base urI i.e. http://birzeit.edu/
– May use path component to disambiguate.
– May use query string for further semantics

 /students/{studentid}
 /students/{studentid}/courses

• Identify status codes to utilized for operations

i.e. 201 for new created student record

http://birzeit.edu/�

Design guide lines

• RESTfull interface

Method URI Template RPC Equivalent
PUT students/{studentdI} createStudent
GET students/{studentdI} getStudent
PUT students/{studentid} updateStudent
DELETE students/{studentid} deleteStudent
GET students/{studentid}/courses getStudentCourses
PUT student/{studentid}/courses/{id} registerStudentCourse

Case Study [add a phone]

• Request

• Response

PUT /student/1095080/ HTTP 1.1
Host: birzeit.edu
<Student>
 <name>Karen</name>
 <nationalid>123456789</nationalid>
 <gender>female</gender>
</ Student >

201 Created
Location: http://birziet.edu/students/1095080

Common misuses

• Exposing implementation details
– Expose database IDs and database entities

• Ignoring caching
– It is powerful, increase performance and scalability.

• Ignoring return codes
– There is more than 200 OK

• Ignoring mime-types
– Using non-standard mimes
– Not providing different representations

Code Demo [C#]

static string HttpGet(string url) {

 var req = WebRequest.Create(url) as HttpWebRequest;

 string result = null;

 using (var resp = req.GetResponse() as HttpWebResponse) {
 var reader = new
StreamReader(resp.GetResponseStream());

 result = reader.ReadToEnd();

 }

 return result;

}

Code Demo [Java]

public static String httpGet(String urlStr) throws IOException {
 URL url = new URL(urlStr);
 HttpURLConnection conn = (HttpURLConnection)

url.openConnection();
 if (conn.getResponseCode() != 200) {
 throw new IOException(conn.getResponseMessage());
 }
 // Buffer the result into a string
 BufferedReader rd = new BufferedReader(new

InputStreamReader(conn.getInputStream()));
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = rd.readLine()) != null) {
 sb.append(line);
 }
 rd.close();
 conn.disconnect();
 return sb.toString();
}

What we have else?

• SOAP (Simple Object Access Protocol).
That been introduced in session1, and will be covered in session 7 in more details.

• OData (Open Data Protocol)
enables the creation of HTTP-based data services, which allow resources identified using
Uniform Resource Identifiers (URIs) and defined in an abstract data model, to be published
and edited by Web clients using simple HTTP messages. OData is intended to be used to
expose and access information from a variety of sources including, but not limited to, relational
databases, file systems, content management systems, and traditional Web sites.

Summary

• REST is an Architecture style
• Platform independent
• Language independent
• Standard based built on top (HTTP).
• Data independent return any type of data, unlike SOAP
• Next session will introduce the SOAP message

construction for web services communication.

References

1. Architectural Styles and the Design of Network-based Software Architectures, Roy
Thomas Fielding, 2000

2. http://en.wikipedia.org/wiki/HATEOAS
3. Resource Oriented Architecture and REST, Assessment of impact and advantages on

INSPIRE, Roberto Lucchi, Michel Millot, European Commission, Joint Research
Centre, Institute for Environment and Sustainability, EUR 23397 EN - 2008

4. http://en.wikipedia.org/wiki/Web_Application_Description_Language
5. http://en.wikipedia.org/wiki/SOAP
6. http://www.odata.org/developers/protocols/overview#RelationshipToOtherProtocols

http://www.ics.uci.edu/~fielding/�
http://www.ics.uci.edu/~fielding/�
http://en.wikipedia.org/wiki/HATEOAS�
http://en.wikipedia.org/wiki/Web_Application_Description_Language�
http://en.wikipedia.org/wiki/SOAP�
http://www.odata.org/developers/protocols/overview�

Thanks

Mohammed Melhem

	Slide Number 1
	About
	© Copyright Notes
	Tutorial Map
	Session Outlines
	What is REST
	Key Principles
	Every element must have it’s ID
	Things must be linked
	HARTEOAS
	HATEOAS Example
	Provide multiple representations
	Communicate statelessly
	Fundamental HTTP Concepts
	Standard methods
	Response Codes
	HTTP Headers
	Rest examples
	Design guide lines
	How to Document REST
	WADL example
	Case STUDY
	CASE STUDY
	CASE STUDY
	CASE STUDY
	Design guide lines
	Case Study [add a phone]
	Common misuses
	Code Demo [C#]
	Code Demo [Java]
	What we have else?
	Summary
	References
	Slide Number 39

