
S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 202

Indexing for Large DNA Database Sequences

Samer Mahmoud Wohoush samer_wh@yahoo.com
Faculty/Department/Division
Palestine Polytechnic University
Hebron, PO.Box 198, Palestine

Mahmoud Hasan Saheb alsaheb@ppu.edu
Palestine Polytechnic University
Hebron, PO.Box 198, Palestine

Abstract

Bioinformatics data consists of a huge amount of information due to the large number of
sequences, the very high sequences lengths and the daily new additions. This data need to be
efficiently accessed for many needs. What makes one DNA data item distinct from another is its
DNA sequence. DNA sequence consists of a combination of four characters which are A, C, G, T
and have different lengths. Use a suitable representation of DNA sequences, and a suitable index
structure to hold this representation at main memory will lead to have efficient processing by
accessing the DNA sequences through indexing, and will reduce number of disk I/O accesses.
I/O operations needed at the end, to avoid false hits, we reduce the number of candidate DNA
sequences that need to be checked by pruning, so no need to search the whole database. We
need to have a suitable index for searching DNA sequences efficiently, with suitable index size
and searching time. The suitable selection of relation fields, where index is build upon has a big
effect on index size and search time. Our experiments use the n-gram wavelet transformation
upon one field and multi-fields index structure under the relational DBMS environment. Results
show the need to consider index size and search time while using indexing carefully. Increasing
window size decreases the amount of I/O reference. The use of a single field and multiple fields
indexing is highly affected by window size value. Increasing window size value lead to better
searching time with special type index using single filed indexing. While the search time is almost
good and the same with most index types when using multiple field indexing. Storage space
needed for RDMS indexing types are almost the same or greater than the actual data.

Keywords: Large Database, DNA Sequence, Index Structure, Sequence Transformation,
Wavelet Transformation, RDMS Indexing.

1. INTRODUCTION
Dealing with string of characters for large database is not easy in term of space and access time.
Genome databases as NCBI have a huge size because of the daily addition of new data.
Electronic books and biological data are good examples for large databases that include text and
sequences. For genome database we can consider DNA sequence as a key value that
distinguishes a sequence from another.

Most of the work on genome database tries to find small size, efficient digit value that can
represents DNA sequence. The problem of large number of I/O operation when accessing large
size database is very costly in term of space and performance. Accessing the database need to
be in minimum amount and at last stage after filtrations to reduce the number of records need to
be accessed.

We will consider the DNA sequence as the key value for genome database. Transforming this
key to a digit is required to increase efficiency. Wavelet transformation technique [1] for DNA
sequences is a suitable choice for our needs to do transformation as it gives us two advantages.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 203

Firstly, it saves sequence order while considering amount of overlapping carefully. Secondly,
transforming characters to digits depends on frequencies of characters.

Little amount of storage is needed as after finding first level wavelet coefficients[1], the second
level can be calculated depending on the first level instead of referring to the original sequence
again. Our evaluation use substring searching for matching identical pattern by sliding window,
this will reduce candidate list of sequences need to be checked, and at the last stage refer to
database disk for validations after pruning, in other words, optimization for the number of I/O
operations.

Relational database provide different types of indexing like BTree, RTree[2], and hashing. Using
these types of indexing to store Wavelet transformation will be discussed later.
The rest of the paper is organized as follows: section 2 reviews of related works. Section 3
presents data samples and methodology. Our results will be presented in section 4. Section 5
discusses the results. Conclusions will be discussed in section 6.

2. RELATED WORK
Different methods had been used to transform and index huge database systems. Dynamic
programming [3, 4] has time and space complexity of O(nm) for two strings S and Q of lengths n
and m, for database comparisons it will needs matrix of size nxm. Hence for long sequence and
large database this method will be not practical in term of both space and time. It finds the
difference between S and Q using a heavy computation method; the edit distance.
The use of r Binary masks [3] of size n, M1,M2,…,Mr to move through S, of size m, by word size of
w has complexity of O(nmr/w). For large value of m, this complexity will be very close to dynamic
programming.

Dictionary based indexing [3] for a database of sequences Si (i:1,2,…,n), creates index structure
of size n corresponding to database size, predefining query lower bound length (L) to be equal to
log(n) assumed. Query with larger length will be partitioned into smaller parts. All substrings of
length L mapped to integers using hashing function and for queries larger than L split it into sub-
queries, then search each sub-query alone and combine the results. This method indexes all
possible strings of a pre-specified length L. Dictionary based index size is larger than the
database.

BLAST technique [5] used to find local similarity [6] and not global similarity. It is a string
matching tool that has two phases: search all database sequences for a fixed substring length w
(between 3 and 11) for exact matching (at i). And using a threshold 't', continue searching after
the exact match at both direction, left and right, for distance more than 'i' and before 'i-w' till
exceed 't'. It stores pointer for location 'i'. So, space needed is more than the database size.

Suffix array [7] scans database strings using a window (window size w, overlapping amount ∆)
and count repetition of all possible k-tuples. It stores result at vector of size σ

k
 (σ referred to

alphabet chars A,C,G,T). Then it indexes those vectors at hierarchical binary tree and to compare
new query with those vectors it uses Edit distance method. It runs 25 to 50 times faster than
BLAST. Disadvantage of this method is the allowing of false drops and index size increase
linearly with k value.

The Multi-Resolution index Structure (MRS) [5, 8] uses a sliding window of size w. MRS seeks
the result set in different resolution levels. However, the authors only focus on the cost of MRS,
and do not evaluate the filtrations efficiency of their proposed technique.

SST [9, 10] scans the database by window w and map results to vector of size 4

w
. Then

hierarchical clusters, non overlapping, built using k-means algorithm, as any new query need to
be processed against the database, using cluster mean and neglect clusters that are far away
from the new query. Disadvantages of SST are the complexity of calculations, and false
clustering.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 204

The use of blocked inverted index [11] consists of index file (distinct terms) and a set of inverted
lists with large-scale full-text system. This method solves two problems: The high storage
overhead and considering posting list structure with differentiation between short and long lists.
Through this work [11], blocked inverted index where used with skipping approach and propose
the random access blocked inverted index (RABI) which enhance space and storage efficiency.
This approach divide index into blocks and do compression to different parts of the block using
encoding method. For compression it uses Binary interpolative coding (BIC). Access is done at
both levels block level and inner block level.

Build self-index [10] for data records using stuffing of delimiters, and give an upper bound, limited
by a number of bits, of permanent space in worst case. Analysis’s done for space and time
efficiency. Storage experiments compare the effects of using stuffing and performance examines
three process construct, recover, and retrieval. Results show the effectiveness of FM-index in
space and performance. This paper shows the advantages of using FM-index with the addition of
adding delimiters.

Handle structural mathematical text and mathematical operation [12] by index real-world scientific
documents containing mathematical notation based on full text searching. Mathematical indexing
address the following issues, extraction and storing of mathematical notation, and ranking
function.

Full text search [13, 14] can be done by different ways. One way is by using N-gram which means
we take N characters each time we do processing. N characters processed for searching, by start
with 2-gram index then supplement with higher-gram index. Frequently used search terms
selected for the incremental index for that this approach have two functions, search engine and
index creation engine. For long sequence number of AND operation is large which cause low
performance for search, incremental indexing should solve this problem by carefully selecting
search terms using search intensive approach. Experimental results show the effectiveness of
incremental index even for further stored terms. This method build the incremental index upon
subset of terms not for all terms to save space and provide efficiency for most search terms, while
in our case we need to have index structure to be ready before searching.

Building suffix array needs time O(n) and space O(n) for constant size text and Suffix tree needs
O(nlogn) time and O(n) space. Suffix array and tree are suitable for pattern searching. Another
method uses Compressed Suffix Array [15] and the output array of Burrows-Wheeler
Transformation (BWT). In this approach a new algorithm has been developed using terminators
at the end of each word.

The use of signature of files for documents retrieval for large database systems allows the use of
parallel hardware architecture [16, 17] for full text searching. Controlling false drop and using
suitable hashing function with buffer and good storage overhead. The parallel process can be
applied for process a document and between documents too. It provide a way for don’t care
characters.

An ontology kit for full text searching [18] focuses on finding words related to a certain concept
(using relevancy ranking function) from a set of concepts. This kit consists of three layers: Full
text layer for full text indexing (a Word-based index) and full text searching, Ontology layer for
concept definition and ontology maintenance, and User layer for the programming issues.
This kit made use of Apache Lucence and Jena development kits [http://lucene.apache.org/].
They work to get a relevancy ranking between documents that meet the query, which may be met
by large number of documents. This kit is a sample of development kits used for evaluating index
structure, this kit process depend on relevancy ranking rather than accurate matching.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 205

Most of mentioned works try to build lower bound (D) for the edit distance (ED). Edit Distance is
time and space consuming (O(|n|*|n|) time & space) for the whole string. In general we can see
that for three strings s1,s3 and s3, if D(s1,s2) > D(s1,s3), then ED(s1,s2) > ED(s1,s3)).

3. DATA AND METHODOLOGY
Data used in our experiments shown in table 1, we have picked different types (Species kingdom)
including Archaea, Eukaryotic, and Bacteria. The Sample file contains DNA sequences only and
is of different sizes as show in table 1.

3.1 Solution Approach
Our approach start by converting DNA sequence into eight columns vectors corresponding to the
two wavelet transformation factors; A and B. Calculation like data center, four k-means, four
vectors of size v with fixed size of eight-columns instead of a sequence of size n which is variable
and long is less in storage size. This transformation has been used for computing second
coefficient wavelet transformation with six different windows ‘w’ of sizes 8, 16, 32, 64, 128, and
256 chars Figure 1 shows the conversion steps.

Species

kingdom
 Accretion No Length Size

Archaea NC_010315.fasta

NC_008318.fasta

EU881703.1.fasta

NC_006389.fasta

AY596291.1.fasta

NC_013966.fasta

NC_011766.fasta

NS_000190.fasta

1,051

15,717

28,643

33,927

33,446

63,034

1,365,223

2,082,083

2KB

16KB

29KB

34KB

34KB

630KB

1353KB

2000KB

Eukaryotic AP009202.1.fasta

NC_009684.fasta

NC_010093.fasta

NC_013009.fasta

16,240

16,604

153,819

879,977

17KB

17KB

153KB

872KB

Bacteria NC_011841.fasta

NC_009471.fasta

NC_013210.fasta

NC_009926.fasta

NC_013009.fasta

30,652

37,155

191,799

374,161

879,977

31KB

37KB

190KB

371KB

872KB

TABLE 1: Data samples used by our experiments

Linux Apache
MYSQL PHP

(LAMP)
Application

RDMSL MYSQL

Haar WT
Using MATLAP

New Query

End

Output

Start: User
interface

Haar WT
Using MATLAP

DNA sequences
‘FASTA’

Processing

Export:
CSV Format

Result

WT process

Output

Search

Feedback

Process
Complete

I/O

Read

FIGURE 1: Schema chart shows transformation, building index structure, preprocessing new query, and comparison

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 206

After transformation we build an index which will be used for searching. Transforming data
sequences to numerical representation (NR) will be accomplished.

The aim of using different window sizes 'Wx' is to have different resolution levels of
representation of a sequence; we aim, through using different window sizes, to find the values of
the window sizes where index structure remain stable, in other word we need the window size
where space and search time is optimal. We assume the windows sizes 'Wx' to be 2x. By this
assumption after finding the first order wavelet transformation by scanning the database by
window Wx1, we can find the wavelet transformation for window values Wxi for i>1 depending on
previous window value (Wx1) and no need to scan the database again.

3.1 RDMS indexing evaluation algorithm:

Input:
Database of n sequences, n is a large value.

Each sequence will be donated by Si, i Є [1, .., n] with length Li.

Preprocessing:
We have different window sizes (Wx), x =1, …,6

Transform each Si into number format using Wavelet Transformation (WT), Haar wavelet transformation

for Wi+1 can be calculated from Wi as:

(A1,B1),(A2,B2) -> (A1+A2,A1-A2)
Initialize i=0

For each Wx value from (Wx min,…, Wx max){

 Slide window Wx over Si

 Calculate Wavelet Transformation

 Wx’ = Wx’ +1 and i++

Output: set of subsequences (SSi,j), j Є[1,…, m],m=Li/Wx, for each Si

}

Output: two values

1. Transformed subsequence

2. Sequence pointer

Loop through all sequences(i){

 For each pair value of (A,B) for a sequence(i)
 Remove duplicated (A,B) values

}

Store pair values at database table.

Build index:
Select index type from RDMS index types, and build data structure upon this index type.

Search by a query sequence:
Search for a new sequence NQ of length |NQ|.

Convert NQ to WT to produce |NQ|-Wx subsequences (NQi)

after moving Wx window over NQ.

Search the database for matching between NQi and SSi,j.

3.2 Constructing Wavelet Coefficients
Each NR row corresponds to a DNA sequence, consists of 8 columns vector. The columns is the
wavelet second order coefficients (A,B), A is a 4 columns represent frequency of chars (A,C,G,T)
second part B is the difference. Example bellow describes how wavelet works [3]:

()

≤<−

=

=

≤<+

=

=

=

+−−+−−
,log0

00

,

,log0

0)(

,,

212,12,1

,

212,12,1

,

,,,

nkAA

k

B

nkAA

kcf

A

BAv

ikik

ik

ikik

i

ik

ikikik

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 207

For a sequence u: [ACTC TAGC], consider frequency is done by the order (A, C, G, T) =(2, 3, 1,
2), divide u in two equal parts and recalculate frequency again then do subtraction, you get [1201,

1111] →(2 3 1 2 , 0 1 –1 0).

 The sequences will be represented using six window sizes, wi for i={1, 2, 3, 4, 5, 6}, Each
window size 'wi' representation will correspond to a final matrix for each sequence, this means we
will have six matrices corresponds to wi value.

Second step: uploading the data on a rational database system (RDMS). We used RDMS to get
advantage of RDMS indexing systems like BTree, and Hash. Before uploading data to database
tables, all repeated rows had been eliminated to make index size less since there is no need for
the repeated data rows. Table 3 shows results of transformation and percentage of repeated
data.

Seven types of indexing have been used for evaluation. The types are index on primary key,
normal index, primary index, full-text, unique, Hash, and BTree. Our experiments done using two
PC’s, one with 1GB memory 2GHz, second one is 2 x1GHz CPUs 4GB memory. RDMS used is
MYSQL v5.0.1 [19, 20] to store index in, webserver is Apache and language script used is PHP
v5 for testing index reach, and Matlab version 7 used for wavelet transformation.

3.3 Index Types
Full-text index allow search for natural language text, some features are: Excludes partial words
and words less than x characters in length (3 or less), words that appear in more than half the
rows, Hyphenated words are treated as two words, Rows are returned in order of relevance,
descending, words in the stopword list (common words) are also excluded from the search
results. Full-text had been used to achieve high performance indexing for XML[21].

"Normal" Indexes are the basic index type used by RDMS and require data field to be ordered,
Normal Index have no restraints such as uniqueness. Unique Indexes are the same as "Normal"
indexes with one difference: all values of the indexed column(s) must only occur once. Primary
index are unique indexes for primary keys.

BTree index ,for n keys values, constructed by build a tree with height (h) and a degree (t). Where
the degree (t) is greater than or equal to 2. The worst case of BTree is O(logn) comparisons.
Number of branches for BTree index is larger than the number of branches of other balanced tree
structures. Number of branches for a tree controls the logarithm base of complexity (Logn of base
x where x equal the number of branches). So the base of logarithm tends to be large than
required by other tree structures. And what this mean, it means that if we have n key values and
we want to build a tree of base x, x branches, as we increase x number of nodes visited during
search tends to be smaller. BTree tend to have smaller heights than other trees with the same
number of key values. Path to leaf node not exceeding KLog

n 2/
while a binary tree is KLog2

,

where Search k-key values are K1, K2, … ,Kn –1.

BTree make all nodes full at least to a minimum percentage to save space and reducing number
of disk references. Space complexity of BTree is O(L/B), where L: length of the sequence and B:
block size[22].

In Hash index, bucket reached by key using a hashing function. Records with different key values
may map to same bucket; thus entire bucket has to be searched sequentially to locate record.
Bucket Overflows caused by insufficient buckets and distribution of records (Overflow chaining)
Collision handling with O(1) complexity, for worst cases performance may deteriorates to O(n).
An ideal hash function is uniform/Random and worst map to one bucket. Space complexity for
formal Hash function is O(nlogn), where n: number of keys [22, 13]. Hashing functions divided
into two types, Uniform distribution: all buckets have the same number of search-key values.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 208

Random distribution: on average, at any given time, each bucket will have the same number of
search-key values, regardless of the current set of values.

Primary index and Unique index both can consists of one or more fields, and both can be
clustered/non clustered indexes. The difference is that Primary cannot be Null while Unique can
be, there can be only one Primary index on a table but you can have more than one Unique
index.

4. EXPERIMENTAL RESULTS
We used two approaches for index evaluation. In the first approach, we created the index on one
field representing the coefficients of WT and investigate the effect of changing the type of the
index on the response time, which is measured in millisecond. Table 2-a shows the response
time. For the second approach, search field is spitted into two parts mainly which are the wavelet
transformation coefficients (A, B). Each part consists of four columns. Table 2-b shows the results
of this approach.

For all index types we do search for the worst case if applicable or randomly. “Default on pk”
ordered by order of entry, worst case is the last entry. The same is true for normal index, primary
index, and unique index.

Through all experiments, the searching process is applied using the same value, while changing
index type, so we can results correctly. For Hashing index type, most database engine uses
random hash function, we do the experiment by randomly picking values then the average access
time is calculated. BTree index, which is the most popular index over database systems, depends
mainly on sorting the data.

Table 3 shows percentage number of returned references to the whole database size while
changing window size

datasetofsizetotal

retrievedsequences
Ratio =

Index

type

W1 W2 W3 W4 W5 W6

DEFAULT 0.002494 0.029923 0.233727 0.677167 0.9619 1.1533

Normal

Index

0.01046 0.1679 1.3807 4.05 5.8911 6.3502

PRIMARY 0.093462 0.190009 1.4703 4.233 6.0642 6.4283

Fulltext 0.0028

0.002973

0.003

0.0261

0.028

0.0291

0.2165

0.2273

0.2282

0.259

0.2576

0.2278

1.0997

1.1553

0.993

1.4781

1.4783

1.5482

UNIQUE 0.009996 0.1726 1.406 4.0779 5.931 6.357

Hash 0.0104

0.0106

0.0111

0.1647

0.167

0.1706

1.3639

1.3764

1.3781

4.0591

4.13

4.2522

5.9206

6.0105

6.117

6.2829

6.3638

6.386

BTree 0.010

0.0104

0.010

0.166

0.1664

0.1668

1.3669

1.3791

2.3838

4.0927

4.054

4.249

5.9147

6.0438

6.0883

6.266

6.336

6.410

TABLE 2-a: Evaluation of sample data (under six resolutions Wx) using different index types.

Index

type

W1 W2 W3 W4 W5 W6

DEFAULT

ON pk

0.018718 0.010034 0.067594 0.209389 0.28135 0.27995

Normal

Index

0.001046 0.001547 0.001531 0.001733 0.001544 0.001677

Hash 0.001588 0.001561 0.001646 0.001609 0.001599 0.001651

BTree 0.001605 0.001663 0.001614 0.001688 0.001605 0.001522

TABLE 2-b: Applying indexes for eight columns search fields.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 209

5. DISCUSSION
We have applied indexes in two different ways, one field index and multiple fields’ index. When
using one field index, the best performance achieved was using default index and Full-text. When
we used BTree or primary index we get the worse performance over all for one field indexing.
Almost all other types of indexes give performance close to BTree index.

W with duplication no duplication References%

w1 7069 1250 0.81

w2 73562 23283 0.65

w3 325701 192058 0.41

w4 662746 553933 0.15

w5 813987 796371 0.02

w6 836376 835106 0.002

TABLE 3: Error amount at each resolution used corresponding to amount of reduction.

On the other hand when we used multiple fields index, we have got much better results as shown
in table 2-b. Hash, BTree, and normal index on the eight fields give better results when compared
with a single field index by table 2-a.

Multiple field index cause overhead for calculation and index address updates in case that
amount of updates is high, and overhead for write operations and disk referring. But compared
amount of overhead with multiple indexes (merge index) case, this overhead is less. For DNA
database, update operations is much less than insert operations and can be neglected. To
reduce size of WTR, singular value decomposition (SVD) [23] as a preprocessing step before
building index structure for the genome database can be used.

Window size (resolution) affects mainly needed I/O references. When we increase window size
the I/O reference operation decreases as shown in table 3. Changing the resolution of the
wavelet transformation resolution from low value to high value (from 8 char to 256 char) leads to
increase in size of the number of wavelet coefficients and the time of scanning the database.
From table 3 when using w1 we get 81% of overall database reference while for w4 this
percentage goes down to 15%. Changing window size affect I/O reference percentage directly so
as this percentage can be used as a threshold according to application needs.

6. Index Space Complexity
Table3.a shows the space complexity of using one column index with the following index types:
full-text, primary index, 8 column index of type’s unique, primary, and normal index.

W value
UNIQUE Primary

Index

w1

2048-

2085 B

46250-

55296B

92500-

122880B

w2

861471-

975872 B

861471-

975872B

861471-

975872B

w3

6940-

7850 KB

6940-

7850

6940-

7850KB

w4

20015-

22638 KB

20015-

22638 KB

20015-

22638KB

w5

28775-

32545 KB

28775-

32545KB

28775-

32545KB

w6

30175-

34128 KB

30175-

34128KB

30175-

34128KB

TABLE 3.A: Space complexity table (B: bytes, KB: Kbytes), range values stands for space used for data

and for index.

Figure 2 shows that, depending on input data properties, while increasing sliding window size the
size of index is the same even if we don’t remove duplicated values.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 210

Space Cost

1 2

3

4

5 6

1
2

3

4

5 6

0

200000

400000

600000

800000

1000000

1 2 3 4 5 6

Window Size

M
a
tr

ix
 R

o
w

s

Without Duplication With duplication

FIGURE 2: Space cost

0

10000000

20000000

30000000

40000000

Window Size

In
d

e
x
 s

iz
e

Unique

Primary-8

primary

Unique 2085 975872 7850000 22638000 32545000 34128000

Primary-8 55296 975872 7850 22638000 32545000 34128000

primary 15360 241664 1928000 5561000 7995000 8384000

8 16 32 64 128 256

FIGURE 3-a: Space cost for all one field (primary, Full-text) and 8-column (index, primary, unique).

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

Window value

In
d

e
x
 S

iz
e

Index

Full-text

Index 122880 975872 7850000 22638000 32545000 34128000

Full-text 23552 435200 4715000 14913000 22866000 26848000

8 16 32 64 128 256

FIGURE 3-b: Space cost for all one field (primary, Full-text) and 8-column (index, primary, unique).

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 211

Tables 3.a and table 3.b show that space complexity variation while changing window size for
different index types, it needs to be considered carefully. We can see that index size is larger
than data size for all types, as seen from table 3.b where index size is low compared with data
size.

W value
UNIQUE Primary

Index

w1

2048-

2085 B

46250-

55296B

92500-

122880B

w2

861471-

975872 B

861471-

975872B

861471-

975872B

w3

6940-

7850 KB

6940-

7850

6940-

7850KB

w4

20015-

22638 KB

20015-

22638 KB

20015-

22638KB

w5

28775-

32545 KB

28775-

32545KB

28775-

32545KB

w6

30175-

34128 KB

30175-

34128KB

30175-

34128KB

Table 3.a: Space complexity table (B: bytes, KB: Kbytes), range values stands for space used for data and
for index.

W value Full-text
Primary

w1 25000-23552B
25000-15360B

w2 465660-435200 B
475812-241664B

w3 3751-4715 KB
4334-1928KB

w4 10974-14913 KB
13137-5561KB

w5 16253-22866 KB
19364-7995KB

w6 17931-26848 KB
21193-8384KB

TABLE 3.b:Space complexity table (B: bytes, KB: Kbytes), range values stands for space used for data and

for index.

Figure 4 and figure 5 shows the DNA data size changing while increasing Wx value for different
index types.

0

10000000

20000000

30000000

40000000

Window size values

D
a
ta

 S
iz

e

Unique Primary-8 Index

Unique 2048 861471 6940000 20015000 28775000 30175000

Primary-8 46250 861471 6940 20015000 28775000 30175000

Index 92500 861471 6940000 20015000 28775000 30175000

8 16 32 64 128 256

FIGURE 4: Data size while changing Wx value for Unique, Primary 8 columns and index.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 212

0

5000000

10000000

15000000

20000000

25000000

Window size Wx

D
a
ta

 s
iz

e

Full-text

Primary

Full-text 25000 465660 4E+06 1E+07 2E+07 2E+07

Primary 25000 475812 4E+06 1E+07 2E+07 2E+07

8 16 32 64 128 256

FIGURE 5: Data size while changing Wx value for Full-text and Primary index.

Data size: is highest when using 8-columns index structure, low value when using one field index.

Index size: when using 8-columns almost data and index size are the same. And when using one
field index, data and index sizes are relatively the same too.

0

10000000

20000000

30000000

40000000

Window Size

In
d

e
x
 s

iz
e

Unique

Primary-8

primary

Unique 2085 975872 7850000 22638000 32545000 34128000

Primary-8 55296 975872 7850 22638000 32545000 34128000

primary 15360 241664 1928000 5561000 7995000 8384000

8 16 32 64 128 256

FIGURE 6: Index size while changing Wx value for Unique, Primary 8 columns and Primary index.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 213

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

Window value

In
d

e
x
 S

iz
e

Index

Full-text

Index 122880 975872 7850000 22638000 32545000 34128000

Full-text 23552 435200 4715000 14913000 22866000 26848000

8 16 32 64 128 256

FIGURE 7: Index size while changing Wx value for Full-text and index.

Figures 6 and 7 display the increase at index size for five different index types while changing Wx
values.

When comparing time with size of one field index, we found that best time performance achieved
by DEFAULT ON pk and full-text but full-text had high space requirement. For 8-column index
structure best time achieved by normal, hash, and BTree index.

Access time for 8-column is better than that of one field index but index size equal or more than
data size which is a large value. Lowest index size is primary and Full-text as shown by figure 3.

7. CONCLUSION
Our study shows that using multi-fields index improve performance over all types of indexing in
spite of the type of index we used. First experiment shows that using specialized index type like
full-text or primary index in integer fields give the best performance over using BTree or Hash
indexing.

Different window sizes provide multi-resolution index structure. This property gives user a
threshold value to determine his needs, and support queries of different sizes. Through our work,
we see that no need, when doing query search, to scan the whole database. Instead of scanning
the whole database a subset of sequences, which we call candidate sequences, will be
referenced from the database after the filtration step. By this way we have minimized the number
of disk pages that will be visited at the final stage.

Space and time complexity shows that using special type of index (like Full-text) or using the
primary index, of one field, leads to decrease index size, like the full text index when using w6
compared with unique index for the same window size as shown by table 3.a and 3.b. And a
higher access time compared to eight fields index type, which lead to larger index size but better
access time. This is true, as the Full-text get advantage of its properties as a special index for the
search field and the primary index is on integer field, which is less in size than the 8 columns
(64.303 compared with 29.577 about one half). This means that a good representation of search
field must occupy less space. Small size index, which can be fit in memory, allow the use of in-
memory searching mechanisms which gives fast searching time.

From the discussed results, we can see that we need to try to find a less size index structure.
Index size is larger than database size, when building index upon eight columns search field.
Building the primary index upon a small size relation field is efficient in time and space. Sequence

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 214

transformation to numerical format (compact form), good performance index structure (size and
time and the use of multi-field index type), and early pruning of false sequences hits leads to build
the desired structure.

8. REFERENCES

[1] Effective Indexing and Filtering for Similarity Search in Large Biosequence Databases. Ozgur

Ozturk Hakan Ferhatosmanoglu bibe, pp.359, Third IEEE Symposium on BioInformatics and
BioEngineering (BIBE'03), 2003.

[2] An efficient similarity search based on indexing in large DNA databases, In-Seon Jeong,
Kyoung-Wook Park, Seung-Ho Kang, Hyeong-Seok Lim, 2010.

[3] An Efficient Index Structure for String Databases. Tamer Kahveci Ambuj K. Singh

Department of Computer Science, University of California Santa Barbara, CA 93106
{amer,ambuj}cs.ucsb.edu, 2001.

[4] Fast Dynamic Programming Based Sequence Alignment Algorithm. Nur'Aini Abdul Rashid',
Rosni Abdullah, Abdullah Zawawi Haji Talib, Zalila Ali, IEEE, 2006.

[5] MAP: Searching Large Genome Databases. T. Kahveci, A. Singh Pacific Symposium on

Biocomputing 8:303-314(2003).

[6] Indexing and retrieval for genomic database.Hugh E. Williams, Member, IEEE, and Justin

Zobel, Member, IEEE Computer Society, IEEE, 2002.

[7] S. Muthukrishnan and S. C. Sahinalp. Approximate nearest neighbor and sequence

comparison with block operations, 2000.

[8] CoMRI: A Compressed Multi-Resolution Index Structure for Sequence Similarity Queries.

Hong Sun1, Ozgur Ozturk1, Hakan Ferhatosmano glu, IEEE, 2003.

[9] E. Giladi et al., SST: An Algorithm for Finding Near-Exact Sequence Matches in Time

Proportional to the Logarithm of the Database Size. Bioinformatics 18, 873–877, 2002.

[10] An Efficient Approach for Building Compressed Full-text Index for structured Data: Jun Liang,

Lin Xiao, Di Zhang IEEE, 2009.

[11] Efficient Maintenance Schema of Inverted Index for Large-scale Full-Text Retrieval, Xiaozhu
Liu, State Key Lab of Software Engineering Wuhan University Wuhan 430072, China ,
School of Automation Wuhan University of Technology IEEE, 2010.

[12] Mathematical Extension of Full Text Search Engine, Jozef Misutka, Leo Galambos,

Department of Software Engineering, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic, 2008.

[13] Experimental Simulation on Incremental Three-gram Index for Two-gram Full-Text Search
Systems, Hiroshi Yamamoto Seishiro Ohmi Hiroshi Tsuji IEEE, 2003.

[14] A Compact Memory Space of Dynamic Full-Text Search using Bi-Gram Index, El-Sayed

Atlam, El-Marhomy Ghada, Masao Fuketa, Kazuhiro Morita and Jun-ichi Aoe, Department of
Information Science and Intelligent Systems, University of Tokushima Tokushima,770-8506,
Japan 2004.

S. M. Wohoush & M.H. Saheb

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (4) : 2011 215

[15] Breaking a Time-and-Space Barrier in Constructing Full-Text Indices, Wing-Kai Hon,
Kunihiko Sadakane_ Wing-Kin Sung IEEE, 2003.

[16] Parallel Selection Query Processing Involving Index in Parallel Database Systems. J. Wenny

Rahayu David Taniar, IEEE, 2002.

[17] An Architecture for Parallel Search of Large, Full-text Databases, Nassrin Tavakoli and

Hassan Modaress-Razavi, Department of Computer Science, The University of North
Carolina at Charlotte, Charlotte, NC 28223 IEEE, 1990.

[18] An Ontology Enhanced Development Kit for Full Text Search, Su Jian, Weng Wenyong,

Wang Zebing, Lab of Digital City & Electronic Service, Zhejiang University City College,
Hangzhou 310015, China IEEE, 2009.

[19] Alexander Rubin, Senior Consultant, MySQL AB, Full Text Search in MySQL 5.1 New

Features and HowTo, http://www.mysqlfulltextsearch.com/full_text.pdf, 2006.

[20] Moshe Shadmon, The ScaleDB Storage Engine,

http://www.scaledb.com/pdfs/ScaleDB_MySQL_Preso2009.ppt, 2009.

[21] A Hybird Method for Efficient Indexing of XML Documents. Sun Wei, Da-xin Lui, IEEE, 2005.

[22] The SBCTree: An Index for RunLength Compressed Sequences, Mohamed Y. Eltabakh

,Wing-Kai Hon, Rahul Shah, Walid G. Aref, Jeffrey S. Vitter Purdue University, 2008, 2008

[23] Efficient Filtration of Sequence Similarity Search Through Singular Value Decomposition. S.

Alireza Aghili Ozgur D. Sahin Divyakant Agrawal Amr El Abbadi, IEEE 2004.

