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Abstract 

 
Bioinformatics data consists of a huge amount of information due to the large number of 
sequences, the very high sequences lengths and the daily new additions. This data need to be 
efficiently accessed for many needs. What makes one DNA data item distinct from another is its 
DNA sequence. DNA sequence consists of a combination of four characters which are A, C, G, T 
and have different lengths. Use a suitable representation of DNA sequences, and a suitable index 
structure to hold this representation at main memory will lead to have efficient processing by 
accessing the DNA sequences through indexing, and will reduce number of disk I/O accesses. 
I/O operations needed at the end, to avoid false hits, we reduce the number of candidate DNA 
sequences that need to be checked by pruning, so no need to search the whole database. We 
need to have a suitable index for searching DNA sequences efficiently, with suitable index size 
and searching time. The suitable selection of relation fields, where index is build upon has a big 
effect on index size and search time. Our experiments use the n-gram wavelet transformation 
upon one field and multi-fields index structure under the relational DBMS environment. Results 
show the need to consider index size and search time while using indexing carefully. Increasing 
window size decreases the amount of I/O reference. The use of a single field and multiple fields 
indexing is highly affected by window size value. Increasing window size value lead to better 
searching time with special type index using single filed indexing. While the search time is almost 
good and the same with most index types when using multiple field indexing. Storage space 
needed for RDMS indexing types are almost the same or greater than the actual data. 
 
Keywords: Large Database, DNA Sequence, Index Structure, Sequence Transformation, 
Wavelet Transformation, RDMS Indexing. 

 
 
1. INTRODUCTION 
Dealing with string of characters for large database is not easy in term of space and access time. 
Genome databases as NCBI have a huge size because of the daily addition of new data. 
Electronic books and biological data are good examples for large databases that include text and 
sequences. For genome database we can consider DNA sequence as a key value that 
distinguishes a sequence from another.  
 
Most of the work on genome database tries to find small size, efficient digit value that can 
represents DNA sequence.  The problem of large number of I/O operation when accessing large 
size database is very costly in term of space and performance. Accessing the database need to 
be in minimum amount and at last stage after filtrations to reduce the number of records need to 
be accessed.  
 
We will consider the DNA sequence as the key value for genome database. Transforming this 
key to a digit is required to increase efficiency. Wavelet transformation technique [1] for DNA 
sequences is a suitable choice for our needs to do transformation as it gives us two advantages. 
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Firstly, it saves sequence order while considering amount of overlapping carefully. Secondly, 
transforming characters to digits depends on frequencies of characters. 
 
Little amount of storage is needed as after finding first level wavelet coefficients[1], the second 
level can be calculated depending on the first level instead of  referring to the original sequence 
again. Our evaluation use substring searching for matching identical pattern by sliding window, 
this will reduce candidate list of sequences need to be checked, and at the last stage refer to 
database disk for validations after pruning, in other words, optimization for the number of I/O 
operations. 
 
Relational database provide different types of indexing like BTree, RTree[2], and hashing. Using 
these types of indexing to store Wavelet transformation will be discussed later. 
The rest of the paper is organized as follows: section 2 reviews of related works. Section 3 
presents data samples and methodology. Our results will be presented in section 4. Section 5 
discusses the results. Conclusions will be discussed in section 6. 
 
2. RELATED WORK 
Different methods had been used to transform and index huge database systems. Dynamic 
programming [3, 4] has time and space complexity of O(nm) for two strings S and Q of lengths n 
and m, for database comparisons it will needs matrix of size nxm. Hence for long sequence and 
large database this method will be not practical in term of both space and time. It finds the 
difference between S and Q using a heavy computation method; the edit distance.  
The use of r Binary masks [3] of size n, M1,M2,…,Mr to move through S, of size m, by word size of 
w has complexity of O(nmr/w). For large value of m, this complexity will be very close to dynamic 
programming. 
 
Dictionary based indexing [3] for a database of sequences Si (i:1,2,…,n), creates index structure 
of size n corresponding to database size, predefining query lower bound length (L) to be equal to 
log(n) assumed. Query with larger length will be partitioned into smaller parts. All substrings of 
length L mapped to integers using hashing function and for queries larger than L split it into sub-
queries, then search each sub-query alone and combine the results. This method indexes all 
possible strings of a pre-specified length L. Dictionary based index size is larger than the 
database. 
 
BLAST technique [5] used to find local similarity [6] and not global similarity. It is a string 
matching tool that has two phases: search all database sequences for a fixed substring length w 
(between 3 and 11) for exact matching (at i). And using a threshold 't', continue searching after 
the exact match at both direction, left and right, for distance more than 'i' and before 'i-w' till 
exceed 't'. It stores pointer for location 'i'. So, space needed is more than the database size. 
 
Suffix array [7] scans database strings using a window (window size w, overlapping amount ∆) 
and count repetition of all possible k-tuples. It stores result at vector of size σ

k
 (σ referred to 

alphabet chars A,C,G,T). Then it indexes those vectors at hierarchical binary tree and to compare 
new query with those vectors it uses Edit distance method. It runs 25 to 50 times faster than 
BLAST. Disadvantage of this method is the allowing of false drops and index size increase 
linearly with k value. 
 
The Multi-Resolution index Structure (MRS) [5, 8] uses a sliding window of size w. MRS seeks 
the result set in different resolution levels. However, the authors only focus on the cost of MRS, 
and do not evaluate the filtrations efficiency of their proposed technique. 
 
SST [9, 10] scans the database by window w and map results to vector of size 4

w
. Then 

hierarchical clusters, non overlapping, built using k-means algorithm, as any new query need to 
be processed against the database, using cluster mean and neglect clusters that are far away 
from the new query. Disadvantages of SST are the complexity of calculations, and false 
clustering. 
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The use of blocked inverted index [11] consists of index file (distinct terms) and a set of inverted 
lists with large-scale full-text system. This method solves two problems: The high storage 
overhead and considering posting list structure with differentiation between short and long lists. 
Through this work [11], blocked inverted index where used with skipping approach and propose 
the random access blocked inverted index (RABI) which enhance space and storage efficiency. 
This approach divide index into blocks and do compression to different parts of the block using 
encoding method. For compression it uses Binary interpolative coding (BIC). Access is done at 
both levels block level and inner block level. 
 
Build self-index [10] for data records using stuffing of delimiters, and give an upper bound, limited 
by a number of bits, of permanent space in worst case. Analysis’s done for space and time 
efficiency. Storage experiments compare the effects of using stuffing and performance examines 
three process construct, recover, and retrieval. Results show the effectiveness of FM-index in 
space and performance. This paper shows the advantages of using FM-index with the addition of 
adding delimiters. 
 
Handle structural mathematical text and mathematical operation [12] by index real-world scientific 
documents containing mathematical notation based on full text searching. Mathematical indexing 
address the following issues, extraction and storing of mathematical notation, and ranking 
function.  
 
Full text search [13, 14] can be done by different ways. One way is by using N-gram which means 
we take N characters each time we do processing. N characters processed for searching, by start 
with 2-gram index then supplement with higher-gram index. Frequently used search terms 
selected for the incremental index for that this approach have two functions, search engine and 
index creation engine. For long sequence number of AND operation is large which cause low 
performance for search, incremental indexing should solve this problem by carefully selecting 
search terms using search intensive approach. Experimental results show the effectiveness of 
incremental index even for further stored terms. This method build the incremental index upon 
subset of terms not for all terms to save space and provide efficiency for most search terms, while 
in our case we need to have index structure to be ready before searching. 
 
Building suffix array needs time O(n) and space O(n) for constant size text and Suffix tree needs 
O(nlogn) time and O(n) space. Suffix array and tree are suitable for pattern searching. Another 
method uses Compressed Suffix Array [15] and the output array of Burrows-Wheeler 
Transformation (BWT). In this approach a new algorithm has been developed using terminators 
at the end of each word. 
 
The use of signature of files for documents retrieval for large database systems allows the use of 
parallel hardware architecture [16, 17] for full text searching. Controlling false drop and using 
suitable hashing function with buffer and good storage overhead. The parallel process can be 
applied for process a document and between documents too. It provide a way for don’t care 
characters. 
 
An ontology kit for full text searching [18] focuses on finding words related to a certain concept 
(using relevancy ranking function) from a set of concepts. This kit consists of three layers: Full 
text layer for full text indexing (a Word-based index) and full text searching, Ontology layer for 
concept definition and ontology maintenance, and User layer for the programming issues.  
This kit made use of Apache Lucence and Jena development kits [http://lucene.apache.org/]. 
They work to get a relevancy ranking between documents that meet the query, which may be met 
by large number of documents. This kit is a sample of development kits used for evaluating index 
structure, this kit process depend on relevancy ranking rather than accurate matching. 
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Most of mentioned works try to build lower bound (D) for the edit distance (ED). Edit Distance is 
time and space consuming (O(|n|*|n|) time & space) for the whole string. In general we can see 
that for three strings s1,s3 and s3, if D(s1,s2) > D(s1,s3), then ED(s1,s2) > ED(s1,s3) ).  
 

3. DATA AND METHODOLOGY 
Data used in our experiments shown in table 1, we have picked different types (Species kingdom) 
including Archaea, Eukaryotic, and Bacteria. The Sample file contains DNA sequences only and 
is of different sizes as show in table 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
3.1 Solution Approach 
Our approach start by converting DNA sequence into eight columns vectors corresponding to the 
two wavelet transformation factors; A and B. Calculation like data center, four k-means, four 
vectors of size v with fixed size of eight-columns instead of a sequence of size n which is variable 
and long is less in storage size. This transformation has been used for computing second 
coefficient wavelet transformation with six different windows ‘w’ of sizes 8, 16, 32, 64, 128, and 
256 chars Figure 1 shows the conversion steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Species 

kingdom 
 Accretion No Length Size 

Archaea NC_010315.fasta 

NC_008318.fasta 

EU881703.1.fasta 

NC_006389.fasta 

AY596291.1.fasta 

NC_013966.fasta 

NC_011766.fasta 

NS_000190.fasta 

1,051 

15,717 

28,643 

33,927 

33,446 

63,034 

1,365,223 

2,082,083 

2KB 

16KB 

29KB 

34KB 

34KB 

630KB 

1353KB 

2000KB 

Eukaryotic AP009202.1.fasta 

NC_009684.fasta 

NC_010093.fasta 

NC_013009.fasta 

16,240 

16,604 

153,819 

879,977 

17KB 

17KB 

153KB 

872KB 

Bacteria NC_011841.fasta 

NC_009471.fasta 

NC_013210.fasta 

NC_009926.fasta 

NC_013009.fasta 

30,652 

37,155 

191,799 

374,161 

879,977 

31KB 

37KB 

190KB 

371KB 

872KB 

TABLE 1: Data samples used by our experiments 
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FIGURE 1: Schema chart shows transformation, building index structure, preprocessing new query, and comparison 
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After transformation we build an index which will be used for searching. Transforming data 
sequences to numerical representation (NR) will be accomplished. 
 
The aim of using different window sizes 'Wx' is to have different resolution levels of 
representation of a sequence; we aim, through using different window sizes,  to find the values of 
the window sizes where index structure remain stable, in other word we need the window size 
where space and search time is optimal. We assume the windows sizes 'Wx' to be 2x. By this 
assumption after finding the first order wavelet transformation by scanning the database by 
window Wx1, we can find the wavelet transformation for window values Wxi for i>1 depending on 
previous window value (Wx1) and no need to scan the database again. 

3.1 RDMS indexing evaluation algorithm: 

Input:  
Database of n sequences, n is a large value. 

Each sequence will be donated by Si, i Є [1, .., n] with length Li. 

Preprocessing: 
We have different window sizes (Wx), x =1, …,6 

Transform each Si into number format using Wavelet Transformation (WT), Haar wavelet transformation 

for Wi+1 can be calculated from Wi as:  

(A1,B1),(A2,B2) -> (A1+A2,A1-A2) 
Initialize i=0  

For each Wx value from (Wx min,…, Wx max){ 

 Slide window Wx over Si 

 Calculate Wavelet Transformation 

 Wx’ = Wx’ +1 and i++ 

Output: set of subsequences (SSi,j), j Є[1,…, m],m=Li/Wx, for each Si 

} 

Output: two values  

1. Transformed subsequence 

2. Sequence pointer 

Loop through all sequences(i){ 

 For each pair value of (A,B) for a sequence(i) 
  Remove duplicated (A,B) values 

} 

Store pair values at database table. 

Build index: 
Select index type from RDMS index types, and build data structure upon this index type. 

Search by a query sequence: 
Search for a new sequence NQ of length |NQ|. 

Convert NQ to WT to produce |NQ|-Wx subsequences (NQi)  

after moving Wx window over NQ. 

Search the database for matching between NQi and SSi,j. 

 
3.2 Constructing Wavelet Coefficients 
Each NR row corresponds to a DNA sequence, consists of 8 columns vector. The columns is the 
wavelet second order coefficients (A,B), A is a 4 columns represent frequency of chars (A,C,G,T) 
second part B is the difference. Example bellow describes how wavelet works [3]: 
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For a sequence u: [ACTC TAGC], consider frequency is done by the order (A, C, G, T) =(2, 3, 1, 
2), divide u in two equal parts and recalculate frequency again then do subtraction, you get [1201, 

1111] →(2 3 1 2 , 0 1 –1 0). 
 
 The sequences will be represented using six window sizes, wi for i={1, 2, 3, 4, 5, 6}, Each 
window size 'wi' representation will correspond to a final matrix for each sequence, this means we 
will have six matrices corresponds to wi value. 
 
Second step: uploading the data on a rational database system (RDMS). We used RDMS to get 
advantage of RDMS indexing systems like BTree, and Hash. Before uploading data to database 
tables, all repeated rows had been eliminated to make index size less since there is no need for 
the repeated data rows. Table 3 shows results of transformation and percentage of repeated 
data. 
 
Seven types of indexing have been used for evaluation. The types are index on primary key, 
normal index, primary index, full-text, unique, Hash, and BTree. Our experiments done using two 
PC’s, one with 1GB memory 2GHz, second one is 2 x1GHz CPUs 4GB memory. RDMS used is 
MYSQL v5.0.1 [19, 20] to store index in, webserver is Apache and language script used is PHP 
v5 for testing index reach, and Matlab version 7 used for wavelet transformation. 
 
3.3 Index Types 
Full-text index allow search for natural language text, some features are: Excludes partial words 
and words less than x characters in length (3 or less), words that appear in more than half the 
rows, Hyphenated words are treated as two words, Rows are returned in order of relevance, 
descending, words in the stopword list (common words) are also excluded from the search 
results. Full-text had been used to achieve high performance indexing for XML[21]. 
 
"Normal" Indexes are the basic index type used by RDMS and require data field to be ordered, 
Normal Index have no restraints such as uniqueness. Unique Indexes are the same as "Normal" 
indexes with one difference: all values of the indexed column(s) must only occur once. Primary 
index are unique indexes for primary keys. 
 
BTree index ,for n keys values, constructed by build a tree with height (h) and a degree (t). Where 
the degree (t) is greater than or equal to 2. The worst case of BTree is O(logn) comparisons. 
Number of branches for BTree index is larger than the number of branches of other balanced tree 
structures. Number of branches for a tree controls the logarithm base of complexity (Logn of base 
x where x equal the number of branches). So the base of logarithm tends to be large than 
required by other tree structures. And what this mean, it means that if we have n key values and 
we want to build a tree of base x, x branches, as we increase x number of nodes visited during 
search tends to be smaller. BTree tend to have smaller heights than other trees with the same 
number of key values. Path to leaf node not exceeding KLog

n 2/
while a binary tree is KLog2

, 

where Search k-key values are K1, K2, … ,Kn –1. 
 
BTree make all nodes full at least to a minimum percentage to save space and reducing number 
of disk references. Space complexity of BTree is O(L/B), where L: length of the sequence and B: 
block size[22].  
 
In Hash index, bucket reached by key using a hashing function. Records with different key values 
may map to same bucket; thus entire bucket has to be searched sequentially to locate record.  
Bucket Overflows caused by insufficient buckets and distribution of records (Overflow chaining) 
Collision handling with O(1) complexity, for worst cases performance may deteriorates to O(n). 
An ideal hash function is uniform/Random and worst map to one bucket. Space complexity for 
formal Hash function is O(nlogn), where n: number of keys [22, 13]. Hashing functions divided 
into two types, Uniform distribution: all buckets have the same number of search-key values. 
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Random distribution: on average, at any given time, each bucket will have the same number of 
search-key values, regardless of the current set of values. 
 
Primary index and Unique index both can consists of one or more fields, and both can be 
clustered/non clustered indexes. The difference is that Primary cannot be Null while Unique can 
be, there can be only one Primary index on a table but you can have more than one Unique 
index. 
 
4. EXPERIMENTAL RESULTS 
We used two approaches for index evaluation. In the first approach, we created the index on one 
field representing the coefficients of WT and investigate the effect of changing the type of the 
index on the response time, which is measured in millisecond. Table 2-a shows the response 
time. For the second approach, search field is spitted into two parts mainly which are the wavelet 
transformation coefficients (A, B). Each part consists of four columns. Table 2-b shows the results 
of this approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For all index types we do search for the worst case if applicable or randomly. “Default on pk” 
ordered by order of entry, worst case is the last entry. The same is true for normal index, primary 
index, and unique index. 
  
Through all experiments, the searching process is applied using the same value, while changing 
index type, so we can results correctly. For Hashing index type, most database engine uses 
random hash function, we do the experiment by randomly picking values then the average access 
time is calculated. BTree index, which is the most popular index over database systems, depends 
mainly on sorting the data. 
  
Table 3 shows percentage number of returned references to the whole database size while 
changing window size 
 

datasetofsizetotal

retrievedsequences
Ratio =  

 

Index 

type 

W1 W2 W3 W4 W5 W6 

DEFAULT 0.002494 0.029923 0.233727 0.677167 0.9619 1.1533 

Normal 

Index 

0.01046 0.1679 1.3807 4.05 5.8911 6.3502 

PRIMARY 0.093462 0.190009 1.4703 4.233 6.0642 6.4283 

Fulltext 0.0028 

0.002973 

0.003 

0.0261 

0.028 

0.0291 

0.2165 

0.2273 

0.2282 

0.259 

0.2576 

0.2278 

1.0997 

1.1553 

0.993  

1.4781 

1.4783 

1.5482 

UNIQUE 0.009996 0.1726 1.406 4.0779 5.931 6.357 

Hash 0.0104 

0.0106 

0.0111 

0.1647 

0.167 

0.1706 

1.3639 

1.3764 

1.3781 

4.0591 

4.13 

4.2522 

5.9206 

6.0105 

6.117 

6.2829 

6.3638 

6.386 

BTree 0.010 

0.0104 

0.010 

0.166 

0.1664 

0.1668 

1.3669 

1.3791 

2.3838 

4.0927 

4.054 

4.249 

5.9147 

6.0438 

6.0883 

6.266 

6.336 

6.410 

TABLE 2-a:  Evaluation of sample data (under six resolutions Wx) using different index types. 

 
Index 

type 

W1 W2 W3 W4 W5 W6 

DEFAULT 

ON pk 

0.018718 0.010034 0.067594 0.209389 0.28135 0.27995 

Normal 

Index 

0.001046 0.001547 0.001531 0.001733 0.001544 0.001677 

 

Hash 0.001588 0.001561 0.001646 0.001609 0.001599 0.001651 

BTree 0.001605 0.001663 0.001614 0.001688 0.001605 0.001522 

TABLE 2-b: Applying indexes for eight columns search fields. 
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5. DISCUSSION 
We have applied indexes in two different ways, one field index and multiple fields’ index. When 
using one field index, the best performance achieved was using default index and Full-text. When 
we used BTree or primary index we get the worse performance over all for one field indexing. 
Almost all other types of indexes give performance close to BTree index. 

W with duplication no duplication References% 

w1 7069 1250 0.81 

w2 73562 23283 0.65 

w3 325701 192058 0.41 

w4 662746 553933 0.15 

w5 813987 796371 0.02 

w6 836376 835106 0.002 

 
TABLE 3: Error amount at each resolution used corresponding to amount of reduction.  

 
On the other hand when we used multiple fields index, we have got much better results as shown 
in table 2-b. Hash, BTree, and normal index on the eight fields give better results when compared 
with a single field index by table 2-a. 
 
Multiple field index cause overhead for calculation and index address updates in case that 
amount of updates is high, and overhead for write operations and disk referring. But compared 
amount of overhead with multiple indexes (merge index) case, this overhead is less. For DNA 
database, update operations is much less than insert operations and can be neglected. To 
reduce size of WTR, singular value decomposition (SVD) [23] as a preprocessing step before 
building index structure for the genome database can be used. 
 
Window size (resolution) affects mainly needed I/O references. When we increase window size 
the I/O reference operation decreases as shown in table 3. Changing the resolution of the 
wavelet transformation resolution from low value to high value (from 8 char to 256 char) leads to 
increase in size of the number of wavelet coefficients and the time of scanning the database. 
From table 3 when using w1 we get 81% of overall database reference while for w4 this 
percentage goes down to 15%. Changing window size affect I/O reference percentage directly so 
as this percentage can be used as a threshold according to application needs.  
 

6. Index Space Complexity 
Table3.a shows the space complexity of using one column index with the following index types: 
full-text, primary index, 8 column index of type’s unique, primary, and normal index. 

W value 
UNIQUE Primary 

Index 

w1 

2048- 

2085 B 

46250-

55296B 

92500-

122880B 

w2 

861471-

975872 B 

861471-

975872B 

861471-

975872B 

w3 

6940- 

7850 KB 

6940- 

7850  

6940-

7850KB 

w4 

20015-

22638 KB 

20015-

22638 KB 

20015-

22638KB 

w5 

28775-

32545 KB 

28775-

32545KB 

28775-

32545KB 

w6 

30175-

34128 KB 

30175-

34128KB 

30175-

34128KB 

 
TABLE 3.A: Space complexity table (B: bytes, KB: Kbytes), range values stands for space used for data 

and for index. 
 

Figure 2 shows that, depending on input data properties, while increasing sliding window size the 
size of index is the same even if we don’t remove duplicated values.  
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FIGURE 2: Space cost 
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FIGURE 3-a: Space cost for all one field (primary, Full-text) and 8-column (index, primary, unique). 
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FIGURE 3-b: Space cost for all one field (primary, Full-text) and 8-column (index, primary, unique). 
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Tables 3.a and table 3.b show that space complexity variation while changing window size for 
different index types, it needs to be considered carefully. We can see that index size is larger 
than data size for all types, as seen from table 3.b where index size is low compared with data 
size.  

W value 
UNIQUE Primary 

Index 

w1 

2048- 

2085 B 

46250-

55296B 

92500-

122880B 

w2 

861471-

975872 B 

861471-

975872B 

861471-

975872B 

w3 

6940- 

7850 KB 

6940- 

7850 

6940-

7850KB 

w4 

20015-

22638 KB 

20015-

22638 KB 

20015-

22638KB 

w5 

28775-

32545 KB 

28775-

32545KB 

28775-

32545KB 

w6 

30175-

34128 KB 

30175-

34128KB 

30175-

34128KB 

Table 3.a: Space complexity table (B: bytes, KB: Kbytes), range values stands for space used for data and 
for index. 

W value Full-text 
Primary 

w1 25000-23552B 
25000-15360B 

w2 465660-435200 B 
475812-241664B 

w3 3751-4715 KB 
4334-1928KB 

w4 10974-14913 KB 
13137-5561KB 

w5 16253-22866 KB 
19364-7995KB 

w6 17931-26848 KB 
21193-8384KB 

 
TABLE 3.b:Space complexity table (B: bytes, KB: Kbytes), range values stands for space used for data and 

for index. 

Figure 4 and figure 5 shows the DNA data size changing while increasing Wx value for different 
index types. 
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FIGURE 4: Data size while changing Wx value for Unique, Primary 8 columns and index. 
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FIGURE 5: Data size while changing Wx value for Full-text and Primary index. 

 
Data size: is highest when using 8-columns index structure, low value when using one field index. 
 
Index size: when using 8-columns almost data and index size are the same. And when using one 
field index, data and index sizes are relatively the same too.  
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FIGURE 6: Index size while changing Wx value for Unique, Primary 8 columns and Primary index. 
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FIGURE 7: Index size while changing Wx value for Full-text and index. 

 
Figures 6 and 7 display the increase at index size for five different index types while changing Wx 
values. 
 
When comparing time with size of one field index, we found that best time performance achieved 
by DEFAULT ON pk and full-text but full-text had high space requirement. For 8-column index 
structure best time achieved by normal, hash, and BTree index. 
 
Access time for 8-column is better than that of one field index but index size equal or more than 
data size which is a large value. Lowest index size is primary and Full-text as shown by figure 3. 
 
7. CONCLUSION 
Our study shows that using multi-fields index improve performance over all types of indexing in 
spite of the type of index we used. First experiment shows that using specialized index type like 
full-text or primary index in integer fields give the best performance over using BTree or Hash 
indexing. 
 
Different window sizes provide multi-resolution index structure. This property gives user a 
threshold value to determine his needs, and support queries of different sizes. Through our work, 
we see that no need, when doing query search, to scan the whole database. Instead of scanning 
the whole database a subset of sequences, which we call candidate sequences, will be 
referenced from the database after the filtration step. By this way we have minimized the number 
of disk pages that will be visited at the final stage. 
 
Space and time complexity shows that using special type of index (like Full-text) or using the 
primary index, of one field, leads to decrease index size, like the full text index when using w6 
compared with unique index for the same window size as shown by table 3.a and 3.b. And a 
higher access time compared to eight fields index type, which lead to larger index size but better 
access time. This is true, as the Full-text get advantage of its properties as a special index for the 
search field and the primary index is on integer field, which is less in size than the 8 columns 
(64.303 compared with 29.577 about one half). This means that a good representation of search 
field must occupy less space. Small size index, which can be fit in memory, allow the use of in-
memory searching mechanisms which gives fast searching time. 
 
From the discussed results, we can see that we need to try to find a less size index structure. 
Index size is larger than database size, when building index upon eight columns search field. 
Building the primary index upon a small size relation field is efficient in time and space. Sequence 
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transformation to numerical format (compact form), good performance index structure (size and 
time and the use of multi-field index type), and early pruning of false sequences hits leads to build 
the desired structure. 
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