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Abstract

The numerical model MIMO is a three-dimensional model for simulating microscale wind
#ow and dispersion of pollutants in built-up areas. It solves the Reynolds averaged conserva-
tion equations for mass, momentum and energy. Additional transport equations for humidity,
liquid water content and passive pollutants can be solved. The Reynolds stresses and turbulent
#uxes of scalar quantities can be calculated by several linear and nonlinear turbulence models.
A staggered grid arrangement is used and coordinate transformation is applied to allow non-
equidistant meshsize in all three dimensions in order to achieve a high resolution near the ground
and near obstacles. The model was validated for a variety of test cases and it was applied
successfully to air pollution problems. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The increasing interest in the prediction of wind #ow and pollutant dispersion over
built-up areas and major advances in computer technologies have led to the develop-
ment of e$cient numerical models as an alternative or complementary approach to
laboratory and "eld experiments. The microscale model MIMO [1] was developed at
the Institut fuK r Technische Thermodynamik on the basis of the non-hydrostatic
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mesoscale model MEMO [2,3]. It includes several linear and nonlinear eddy-viscosity
turbulence models, which describe the production of turbulent kinetic energy due to
shear stresses and vertical temperature gradients. To study dispersion processes
transport equations for passive pollutants can be solved. The system of partial
di!erential equations is discretized on a staggered grid and solved numerically.

The governing equations, the solution procedure and the formulation of initial and
boundary conditions are described in Section 2. In Section 3 the coupling of the model
MIMO to the mesoscale model MEMO, an approach to simulate scale interaction, is
presented. Examples of the model predictions and comparisons with results from
measurements are shown in Section 4.

2. Model equations and numerical solution

2.1. Governing equations

The model MIMO solves the conservation equations for mass, momentum, energy
and other scalar quantities such as the humidity or the concentration of passive
pollutants. According to Reynolds [4] the instantaneous value of a quantity UI is split
into a mean part U and a #uctuating part /. In Table 1 the time averaged conserva-
tion equations for mass, momentum, energy and other scalar quantities are given in
a general form, which consists of terms describing the temporal derivative, the
advection, the di!usion and source terms. ;

i
is the mean velocity and x

i
are the

Cartesian co-ordinates. The energy equation is formulated employing the potential
temperature h de"ned as
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with the temperature ¹, the pressure p and the reference pressure p
0
("105 Pa) at

ground level.
The mean state is assumed to be in hydrostatic equilibrium, i.e., Lp/Lz"!og.

Usually the density #uctuations o@ are small compared to the mean density o
0
.
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L(o
0
;

i
)

Lt
#

L(o
0
;

i
;

j
)

Lx
j

"!o@g
i
!

Lp

Lx
i

!

L(o
0
u
i
u
j
)

Lx
j

, (2)

where density variations in the inertia term are neglected, but retained in the buoy-
ancy term (Boussinesq approximation).

2.2. Turbulence modeling

Numerical modeling of turbulence often plays a crucial role in providing accurate
microscale wind "elds, which are necessary to reliably predict transport and disper-
sion of pollutants in the vicinity of buildings.
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To solve the conservation equations it is necessary to model the Reynolds stresses

u
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which arise from the averaging of the nonlinear transport equations for mo-
mentum. The most common turbulence models are based on the eddy viscosity

hypothesis by Boussinesq which states that the Reynolds stresses q
ij
,!o ) u

i
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j
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proportional to the mean strain rate S
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For brevity the Einstein summation convention was applied. The exchange coe$cient
or eddy viscosity k

t
which is de"ned by Eq. (3) is not a property of the #uid but

a property of the #ow "eld. The eddy viscosity is a characteristic quantity of the local
turbulence and it is usually expressed in terms of the velocity and length scales of the
turbulent motion.

Based on the desired accuracy and e!ort several turbulence models can be applied:
The most simple turbulence model included in the microscale model MIMO is
a one-equation turbulence model. It employs the kinetic energy of the turbulent
#uctuations as the basis for the velocity scale which is necessary to compute the eddy
viscosity. One-equation turbulence models are extremely simple, however they are
incomplete as they relate the turbulence length scale to some typical #ow dimension.
In contrast, two-equation turbulence models provide an additional equation for the
turbulence length scale or its equivalent and are thus complete, i.e., they can be used to
determine a #ow without prior knowledge of any #ow details.

The standard k}e two-equation turbulence model by Jones and Launder [5],
hereafter labelled JL, determines the velocity and length scales of the turbulent motion

by solving transport equations for the turbulent kinetic energy k ("0.5 ) u
i
u
i
) and the

rate of its dissipation e ("k3@2/¸). The proposed constants are Ck"0.09, Ce1"1.44,
Ce2"1.92, p

k
"1.0 and pe"1.3. Besides the standard k}e model the two-equation

turbulence models by Kato and Launder [6] KL, Shih et al. [7] SH, Yakhot et al. [8]
YA and Wilcox [9] WI are implemented in MIMO. Results obtained with these
turbulence models are given in Section 4.1.

To account for buoyancy e!ects the production of turbulent kinetic energy and
dissipation is augmented by an additional buoyancy term (see Table 1) depending on
the Richardson number
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All the turbulence models mentioned above are based on the Boussinesq hypothesis
given by Eq. (3). They are numerically robust and e$cient, however they are known to
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Table 1
Governing equations

General form of the conservation equation
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have de"ciencies in describing turbulent #ows with body force e!ects arising from
streamline curvature and Reynolds stress di!erences are not predicted correctly.
Therefore, their application to highly complex #ows can lead to considerable inaccur-
acies. These perceptions have led to the development of nonlinear stress}strain
relationships that transcend the Boussinesq hypothesis, but are not considerably more
complex in structure. A general constitutive relation for the Reynolds stresses under
the assumption that the Reynolds stresses are dependent only on the mean velocity
gradients and the characteristic scales of turbulence forms the basis of these models.
Due to this general constitutive relation nonlinear e!ects in the modeling of the
Reynolds stresses are taken into account. Therefore the capability to improve the
prediction for example in recirculation regions where turbulence becomes highly
anisotropic is inherent. Turbulence models based on a nonlinear stress}strain rela-
tionship are currently under investigation for the microscale model MIMO.

2.3. Solution procedure

The governing equations described in the previous section are solved numer-
ically on a staggered grid (ARAKAWA C) by using a "nite volume discretization
procedure. Scalar quantities such as the pressure or the potential temperature are
de"ned at the center of a cell while velocity components are speci"ed at the center of
the appropriate interfaces between two cells [10]. A co-ordinate transformation is
applied in all dimensions to allow for higher resolution, e.g. near buildings or near the
surface.

The conservation equation of mass is formulated in terms of the pressure yielding
an elliptic di!erential equation. The discrete form of the elliptic equation is solved
using a preconditioned conjugate gradient (CG) method. Preconditioning is
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performed by a fast direct solution technique on the basis of the discrete fast Fourier
transform (FFT) (see Ref. [11]).

For the numerical treatment of advective transport a 3-D second-order total-
variation-diminishing (TVD) scheme is implemented which is based on the 1-D
scheme proposed by Harten [12]. Furthermore a second-order #ux-corrected trans-
port (FCT) Adams}Bashforth scheme can be applied (Wortmann-Vierthaler and
Moussiopoulos [13]). Both schemes are positive, transportive, conservative and they
are characterized by a low level of numerical dissipation. Di!usion terms are treated
by a second order central di!erence scheme.

2.4. Initial and boundary conditions

In the model MIMO two di!erent possibilities for the initialization are included.
The "rst possibility is to couple the microscale model MIMO with the mesoscale
model MEMO (see Section 3). Alternatively the initial wind "eld can be calculated
from measured data or by the power law

;(z)";
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z

z
3
B

a
. (6)

Herein ;
3

denotes the reference velocity at the corresponding height z
3
.

The exponent a depends on the thermal strati"cation. The temperature is in-
itialized on the basis of measured pro"les or by a constant gradient. Initialization
of the pressure follows the thermal strati"cation according to the hydrostatic
equation.

The boundary conditions are grouped with respect to the physical behaviour of the
#ow into lateral in#ow and out#ow boundaries, internal openings (where #ow may
enter or leave the domain), walls and planes of symmetry. At lateral in#ow boundaries
Dirichlet conditions are imposed for all main quantities except for the pressure, which
must be of Neumann type. Homogeneous Neumann boundary conditions are im-
posed at lateral out#ow boundaries for the main quantities. Internal openings are
distinguished into easily penetrable obstacles, i.e., open factory buildings and planes
emitting mass #ux with an initial momentum like the exhaust of a stack or of a cooling
tower. In the latter case the initial wind velocity is prescribed according to the mass
#ux at the emission exhaust. The #ow inside an easily penetrable obstacle is resolved
explicitly.

Wall boundary conditions prohibit #uid #ow across the boundary surface. Addi-
tionally, the #uid is assumed to be at rest on the wall boundary surface (no-slip
condition). The wall boundary condition for the velocity components is implemented
by assuming a logarithmic pro"le in the region close to the wall (Launder and
Spalding [14]). Based on this assumption, the value for the velocity gradient normal
to the wall is determined. For the solution of the transport equation of turbulent
kinetic energy next to solid walls it is assumed that the production rate of turbulent
kinetic energy is equal to the dissipation rate. Dissipation at the "rst grid point
adjacent to walls is set to its equilibrium value e"u3q /iz.
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3. Coupling with the mesoscale model MEMO

Wind #ow and pollutant dispersion over built-up areas are decisively in#uenced by
the large-scale #ow. Mesoscale wind #ow systems like thermally induced valley winds,
land-/sea-breeze circulations in costal areas or channelled #ow along a valley usually
govern the dispersion of pollutants in the surroundings of built-up areas. Inside urban
areas the microscale #ow is dominant. The microscale #ow is, however, strongly
a!ected by the mesoscale #ow. For a realistic simulation of the microscale #ow "eld
proper boundary conditions have to be provided. For most applications no detailed
measurements are available and therefore crude assumptions have to be made. In
order to avoid this ambiguity a coupling method between the microscale model
MIMO and a mesoscale model, e.g. the model MEMO, has been developed by Khatib
[15]. The results of the mesoscale simulation serve as initial and boundary conditions
for the microscale simulation. The coupling method enables to account for daytime
variations of the wind speed and direction and the thermal strati"cation.

The coupling procedure consists of three elements: a three-dimensional interpola-
tion, an adjustment for values within the surface layer and a formulation of the lateral
boundary conditions to introduce the interpolated values into the microscale model at
the lateral boundaries.

Fig. 1 shows the vertical structure of typical numerical grids of the models MEMO
and MIMO. The domain sizes and resolutions di!er considerably and there-
fore a three-dimensional interpolation must be applied. The microscale value WK is
calculated by a weighted averaging of the eight surrounding mesoscale values W
(see Fig. 2):
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Due to its coarse resolution the mesoscale simulation gives only poor information
about the vertical structure of the boundary layer adjacent to the ground. Therefore,
the interpolated values are adjusted using similarity theory. The microscale wind
pro"le in the surface layer is calculated using either the power law
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or the logarithmic law
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where ;
4-

is the mesoscale wind speed at the top of the surface layer z
4-
, ;q is the

friction velocity, z
0

is the roughness height and ¸ is the Monin-Obukhov length taken
from the mesoscale simulation. The exponent p depends on thermal stability and i is
the von KaH rmaH n constant. The similarity function / is calculated following Carson
and Richards [16] and Hicks [17].
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Fig. 1. Vertical structure of typical grids.

Fig. 2. Three-dimensional interpolation scheme.

The interpolated wind speed is introduced into the microscale model using an
expanded radiation boundary condition proposed by Carpenter [18]. Further details
are given by Khatib [15]. An example of a simulation performed with the coupled
model is presented in Section 4.3.

4. Model application and validation

The microscale model MIMO was applied to simulate the #ow around obstacles
with simple geometries like a surface-mounted cube and a U-shaped building. The

J. Ehrhard et al. / J. Wind Eng. Ind. Aerodyn. 85 (2000) 163}176 169



Table 2
Characteristic lengths of the #ow "eld

Type Identity Z
S
/H Z

T
/H X

F
/H X

R
/H

k}e JL 0.65 0.09 0.67 2.50
k}e KL 0.67 0.14 0.75 2.92
k}e SH 0.68 0.19 1.02 3.26
k}e YA 0.69 0.21 0.98 3.18
k}u WI 0.66 0.06 0.76 2.31
Experiment MT 0.65 0.17 0.84 1.66

results from these simulations were compared with results from wind tunnel experi-
ments. Moreover, the model was applied successfully to predict plumes rising from
cooling towers and dispersion of pollutants in built-up areas.

4.1. Flow over a surface-mounted cube

The rectangular cube is a very simple idealisation of a building. Although it is
geometrically simple the corresponding #ow is very complex with severe pressure
gradients, streamline curvature and multiple, unsteady separation regions. Therefore,
this simple type of #ow already represents a formidable task for numerical models.

The #ow over a cubic obstacle is characterized by an impingement region at the
windward side of the cube. When approaching the cube the #ow separates due to
the increasing pressure. A main vortex develops which wraps around the cube into the
wake. Because of its characteristic shape this structure is called a horse-shoe vortex.
The #ow separates at the upper edge of the cube forming a separation bubble. At the
upper leeward edge of the cube the #ow separates again and leads to a large
recirculation region behind the cube which interacts with the horse-shoe vortex.

Numerical simulations of the #ow around a cubic obstacle were carried out with the
microscale model MIMO using "ve di!erent two-equation turbulence models intro-
duced in Section 2.2 (see also Table 2). A sketch of the model domain is shown in
Fig. 3. The results obtained by MIMO were compared with the experimental results
from Martinuzzi and Tropea [19].

The predicted height Z
T

of the separation bubble on top of the cube (see Fig. 3)
given in Table 2 is underestimated by the JL, KL and WI models whereas it is
overestimated by the SH and YA models. The same tendency can be observed for the
windward separation length X

F
. The JL, KL and WI models underpredict this length

whereas the SH and YA models overpredict it. The overprediction of X
F

leads to
a very large overprediction of the leeward reattachment length X

R
. The recirculation

region calculated by the KL model (X
R
/H"2.92) is larger than that of the JL model

(X
R
/H"2.50). This is due to the fact that in the former model less turbulent kinetic

energy is produced in the impingement region and therefore less turbulent ki-
netic energy is transported around the cube leading to a lower level of turbulent
kinetic energy in the wake region. The modi"cation aimed to improve the behaviour
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Fig. 3. Sketch of investigated cubic obstacle and location of vertical pro"les.

Fig. 4. Mean velocity in the vertical plane of symmetry along the main #ow direction.

in the impingement region therefore leads to worse results in the wake region for the
type of #ow considered in the present study. The results of the WI model
(X

R
/H"2.31) are closest to the experimental results (X

R
/H"1.66). All turbulence

models predict the height of the forward stagnation point Z
S
/H very well (see Table 2).

Fig. 4 shows calculated mean velocity pro"les in the vertical plane of symmetry of
the cube along the main #ow direction for four di!erent locations given in Fig. 3. The
height z and the velocity ; are nondimensionalized with the cube height H and the
bulk velocity ;

"
, respectively. Square symbols indicate the experimental results from

Martinuzzi and Tropea [19]. In front of the cube (Position A) all model results agree
very well with the experimental results except for the region close to the ground. The
di!erence in this region indicates that the size of the predicted horse-shoe vortex
di!ers from the measured one (see also Table 2). As already mentioned the separation
bubble on top of the cube (Position B) predicted by the WI model is clearly too
small whereas the bubble predicted by the YA and SH models is too large. Downwind
of the cube at position D both the JL and the WI model outperform the other
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Fig. 5. Sketch of the investigated U-shaped building and location of the vertical slices.

investigated models. Further downstream the predicted recirculation region is too
large indicating that the performance of all models degrades due to highly anisotropic
turbulence.

4.2. Flow and dispersion in the vicinity of a U-shaped building

The microscale model MIMO was employed to investigate the dispersion of
a passive pollutant in the vicinity of a U-shaped building. Detailed measurements for
this con"guration were carried out in a wind tunnel (Klein et al. [20]). The wind
tunnel model corresponded to a real building which is 52 m wide, 40 m deep and
28 m high. The wings of the building were 12 m wide. Simulations were carried out for
several wind directions and emission source locations. In this paper the results for one
wind direction are shown (see Fig. 5). A statistical evaluation is given by GoK tting et al.
[21]. The atmosphere was assumed to be neutrally strati"ed. The velocity pro"le at
the in#ow boundary was adapted to the power law given by Eq. (6) with the exponent
a"0.28. The reference velocity ;

3
was equal to 5 m/s at the reference height z

3
"10

m. The turbulent #ow was simulated using the JL turbulence model.
Velocity vectors in a horizontal cross section 10 m above the ground are shown on

the left hand side of Fig. 6. They reveal the complex vortex structures around the
building. For the investigation of the dispersion of pollutants a source was located in
the center of the courtyard 2 m above the ground (location B in Fig. 5). The source was
assumed to be non-buoyant and with negligible initial momentum. Fig. 6 (right) shows
a vertical cross section through the concentration "eld at a distance 40 m downwind
of the reference point. The cross section indicated by a dashed line in Fig. 5 is
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Fig. 6. Flow "eld 10 m above ground level and vertical slices (location see Fig. 5) of the concentration of
a passive pollutant in the vicinity of a U-shaped building.

perpendicular to the main wind direction. Concentrations C are normalized with the
source strength QQ and the reference velocity ;

3
, according to

Cw
"103 )C );

3
/QQ .

The calculated concentrations agree very well with the measured concentrations.
Further investigations showed that the overall structure of the predicted plume is in
good agreement with the measurements. The locations of local maxima are also
predicted well indicating that the numerical model determines the average #ow "eld
well.

4.3. Wind yow over an industrial area

The coupled system MEMO-MIMO was applied to an industrial area in south-
western Germany, namely a part of the BASF site near the greater urban area
of Mannheim and Ludwigshafen. These cities are located in the northern part of
Baden-WuK rttemberg where the river Neckar joins the river Rhine. The Rhine valley
is bordered by the hills of the Odenwald and the PfaK lzer Wald. North of the
cities are the Taunus and the Spessart. The coupled model was chosen to take
in#uences of these mountains on the local wind #ow into account and to provide
realistic boundary conditions for the microscale simulation. The buildings considered
in the microscale simulations and the measuring stations (indicated by squares) are
shown in Fig. 7.

Table 3 shows the measured and the predicted microscale wind speed and wind
direction. The measured values are annual averages of the results from the measuring
stations shown in Fig. 7. For the simulation a meteorological situation was chosen
which corresponds to the mean yearly wind #ow. Microscale quasi-steady #ow "elds
were calculated for four characteristic times of the day: morning (9 am), noon,
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Fig. 7. Sketch of the investigated domain and locations of the measuring stations (S01}S07).

Table 3
Comparison between measurements and numerical
simulation

Measurements Simulation

Station u6 /m s~1 u/3 u6 /m s~1 u/3

S01 0.93 248}275 1.29 254}268
S02 1.03 256}284 1.28 234}258
S03 1.29 140}178 1.79 151}169
S04 1.28 130}175 1.74 148}169
S05 1.33 165}250 1.70 160}196
S06 1.70 175}202 2.07 186}197
S07 1.72 150}250 2.36 205}234

afternoon (3 pm) and night (9 pm). The values given in Table 3 are averaged over these
four characteristic times.

The wind speed is slightly overestimated by the numerical model because the
modeling domain covers only a sector of the industrial site. Hence, the deceleration by
the buildings is underestimated by the model. At the stations S06 and S07 the wind
speed is higher compared to the other stations. The main wind #ow is approaching
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Fig. 8. Flow "eld 5 m above the ground level.

from south-westerly directions. The stations S06 and S07 are at the south-western
boundaries where the in#ow is nearly una!ected by the buildings. This can also be
observed from the velocity vectors in a horizontal cross section 5 m above the ground
shown in Fig. 8.

Comparisons of measured and predicted results showed a good agreement indicat-
ing the plausibility of the model results. Due to the coupling procedure realistic initial
and boundary values for the microscale simulations have been generated without
having detailed measurements of the wind #ow in the surroundings. Therefore, the
capability of the model to reliably predict the wind #ow in built-up areas even in
a complex orography was emphasized.

5. Conclusions

An overview of the capabilities and features of the microscale model MIMO has
been presented. The model MIMO comprises solution procedures for the transport
equations momentum and scalars. It is suited for the prediction of #ow "elds and
plume dispersion in microscale domains. Several cases, e.g., the #ow over a surface
mounted cube and the #ow in the vicinity of a U-shaped building, which have been
employed for the validation of the numerical model indicate the applicability of the
numerical model. Further simulations for complex building structures indicate the
capabilities of the model to predict wind #ow and pollutant dispersion also for
realistic applications.
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