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Abstract The adjusted Rand index is a measure of similarity or agreement between two
clusterings of the same dataset. It is based on counting pairs of points and comparing
the agreement and the disagreement between two clusterings or two classification rules.
In this paper, the adjusted Rand index is proposed as a test statistic. Two testing methods
are proposed. The first method is based on the χ2 distribution assuming the cluster sizes
within each set of clusters are equal. The second method is based on the permutation
approach. Comparison between these methods is carried out in terms of empirical level
of significance.

Keywords: Adjusted Rand index; Cluster analysis; Permutation test; Random agreement;
Similarity measures.

1. INTRODUCTION

Measuring the similarity between two clusterings (two sets of clusters) for the

same dataset have received strong interest in the literature. This is due to the exis-

tence of many different clustering algorithms (Leonard and Peter, 1990; Theodor-

idis and Koutroumbas, 2006) or to the fact that different researchers may use the

same clustering algorithm but different starting points which yield different clus-

terings (Brennan and Light, 1974). Therefore, measuring this agreement is a fun-

damental problem in the cluster analysis field.

In order to clarify ideas and to avoid misunderstanding of what we mean

by similarity or agreement between two clusterings, it is helpful to refer to an
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example. Suppose two researchers are asked independently to cluster or partition a

dataset into several clusters, so we have two clusterings. The specific criterion for

partitioning is left up to each researcher. Thus the number of clusters within each

clustering could be different. Moreover, each researcher may use different labels

for his clusters. An important question to be asked is whether the two researchers

agree or disagree. For example, consider a two-dimensional dataset of size 100.

In Figure 1(a) the two researchers agree completely. In Figure 1(b) they also

agree completely although different labels are used. There is a strong agreement

in Figure 1(c) although different number of clusters are used. Finally, Figure 1(d)

depicts a random agreement. Note that the random agreement occurred when at

least one of the researchers partition the dataset into clusters randomly.

It is worthwhile to observe that the problem of measuring agreement between

two (or more) researchers, given that the categories or the cluster labels are prede-

fined and imposed on researchers, is investigated in the literature. Cohen (1960)

introduced the coefficient kappa to measure the degree of agreement between two

researchers who cluster the observations among predefined categories. This mea-

sure has been extended to three or more researchers by Light (1971) and Fleiss

(1971). See also Cohen (1968), Everitt (1968) and Fleiss et al. (1969).

The problem considered in this paper is somewhat different. The two re-

searchers are asked to cluster the observations into several clusters. The specific

criterion for clustering is left up to each researcher. Thus the two researchers may

develop different number of clusters. Moreover, since no precise set of clusters

have been labelled in advance, each researcher may use different clustering crite-

ria resulting in categories with different labels.

A large number of agreement measures have been proposed in the literature,

which can be classified into three types of measures:

1. Pair counting, which are based on counting pairs of points and comparing

the agreement and the disagreement between two clusterings. Jaccard in-

dex (Jaccard, 1901), Rand index (Rand, 1971), Fowlkes and Mallows index

(Fowlkes and Mallows, 1983) and adjusted Rand index (Hubert and Arabie,

1985) are examples of this group of measures.

2. Set matching, which are based on measuring the shared set cardinality be-

tween two clusterings. F-measures (Rijsbergen, 1979) and misclassifica-

tion rate (Meilǎ, 2005) are examples of this group of measures.

3. Information theoretic, which are based on the conditional probabilities re-

sulting from the number of points shared between clusters of the two clus-
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(a) Perfect agreement, ARI = 1 (b) Perfect agreement, ARI = 1

(c) Strong agreement, ARI = 0.75 (d) Random agreement, ARI ≈ 0

Figure 1: Agreement between two clusterings of a dataset obtained independently by two
different researchers
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terings. Mutual information (Strehl and Ghosh, 2003) and variation of in-

formation (Meilǎ, 2005) are examples of this group of measures.

For more details see Hubálek (1982), Albatineh et al. (2006), Milligan and Cooper

(1986) and Warrens (2008a,b).

Few publications are found in the literature concerning distributional proper-

ties of agreement measures. Janson and Vegelius (1981) derived the mean and the

variance of Jaccard index. McCormick et al. (1992) derived the exact distribution

of the Jaccard index assuming an underlying multinomial distribution with all cat-

egories equally likely except one. Hubert and Arabie (1985) derived the mean of

the Rand index under the hypergeometric distribution assumption. Fowlkes and

Mallows (1983) derived the mean and variance for Rand index. Albatineh (2010)

generalized the derivation of Fowlkes and Mallows (1983) for the mean and the

variance to a large number of similarity measures. Finally, Shuweihdi and Taylor

(2007) showed that the Rand index is linearly related to the Pearson statistic given

that the cluster sizes (i.e. the number of observations within each cluster) within

each clustering are equal.

In this paper, the adjusted Rand index (ARI) is used as a test statistic for

testing the null hypothesis of random agreement. The concept of the ARI and

its properties are reviewed in Section 2. Tests for the null hypothesis of random

agreement using χ2 distribution and permutation approaches are investigated in

Section 3. A simulation study to investigate the empirical level of significance is

carried out in Section 4. Finally, concluding remarks are presented in Section 6.

2. ADJUSTED RAND INDEX

2.1. DEFINITION AND NOTATION

Consider a dataset with n items denoted by X = {X1, . . . ,Xn}. Let U with r
clusters and V with c clusters be two clusterings to be compared. U and V
are obtained independently by two researchers, or by the same researcher but

in different occasions or different starting points, or by applying two different

clustering algorithms. The information on the overlap between U and V can be

summarized by considering one of the following representations.

• Representation 1 Each clustering is represented by a string of symbols

containing the cluster labels of the corresponding data points. For example,

U = {u1,u1,u3,u4,u4, . . .} and V = {v3,v3,v1,v2,v4, . . .} means the first

data point X1 is labeled by u1 in clustering U whereas it is labeled by v3 in

clustering V , and so on.
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• Representation 2 Let U = {u1, . . . ,ur} and V = {v1, . . . ,vc}, where ui is

the set of all data points clustered into the ith cluster, i = 1, . . . ,r, by U ,

and v j is the set of all data points clustered into the jth cluster, j = 1, . . . ,c,

by V . Then the information on cluster overlap between U and V can be

summarized in the form of a r×c contingency table as illustrated in Table 1,

where ni j is the number of items classified into cluster ui according to U
and into cluster v j according to V . The cluster sizes in the two clusterings

are the row and column totals of the contingency table given by ni+ = ∑ j ni j

and n+ j = ∑i ni j.

Table 1: The contingency table, ni j = ui
⋂

v j

U ↓ V → v1 v2 . . . vc ni+

u1 n11 n12 . . . n1c n1+

u2 n21 n22 . . . n2c n2+
...

...
...

. . .
...

...
ur nr1 nr2 . . . nrc nr+

n+ j n+1 n+2 . . . n+c n

• Representation 3 Any pair of data points from the total of N =
(n

2

)
different

pairs in the dataset X falls into one of the following four types of pairs:

1. N11: the number of pairs that are in the same cluster in both U and

V ;

2. N00: the number of pairs that are in different clusters in both U and

V ;

3. N01: the number of pairs that are in the same cluster in U but in

different clusters in V ;

4. N10: the number of pairs that are in different clusters in U but in the

same cluster in V .

These quantities can be calculated using the ni j’s (Hubert and Arabie, 1985).

Intuitively, N00 and N11 are typically interpreted as agreements in the clas-

sification of the items whereas N01 and N10 represent disagreements. The

information on cluster overlap between U and V can be summarized in the

form of a 2×2 contingency table as illustrated in Table 2. The Rand index

(Rand, 1971) is simply defined as the probability of agreement:

RI =
N00 +N11

N
.
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Table 2: The contingency table, definitions of agreement and disagreement

U ↓ V → Pairs in same cluster Pairs in different clusters

Pairs in same cluster N11 N01

Pairs in different clusters N10 N00

The Rand index lies between 0 and 1. It takes the value of 1 when the two

clusterings are identical and 0 when the two clusterings have no agreement at all.

In fact, the latter happens if and only if one clustering consists of a single cluster

and the other only of clusters containing single points. However, the unique case

where RI = 0 is quite extreme and has little practical value. In most situations the

Rand index often lies within the narrower range of [0.5,1]. Therefore, the Rand

index possibly gives high values to pairs of randomly generated clusterings, e.g.

0.5, and this baseline value does not take on the same value in different scenarios.

In fact, it is desirable for the similarity measure between two random clusterings

to take values close to zero, or at least a constant value. A further problem with

the Rand index is that its expected value between two random clusterings does not

even take a constant value. Hubert and Arabie (1985), by taking the generalized

hypergeometric distribution as the model of randomness, i.e. the two clusterings

are picked at random subject to having the original number of classes and objects

in each, found the expected value for N00+N11. They suggested using a corrected

version of the Rand index of the form:

Ad justed_Index =
Index−E(Index)

Max(Index)−E(Index)

thus giving rise to the adjusted Rand index given by:

ARI(U ,V ) =
∑i ∑ j

(ni j
2

)−∑i
(ni+

2

)
∑ j

(n+ j
2

)
/
(n

2

)
0.5

(
∑i

(ni+
2

)
+∑ j

(n+ j
2

))−∑i
(ni+

2

)
∑ j

(n+ j
2

)
/
(n

2

) . (1)

The ARI is bounded above by 1 and takes on the value 0 when the index equals its

expected value (under the generalized hypergeometric distribution assumption for

randomness). For more details see Hubert and Arabie (1985); Yeung and Ruzzo

(2001).

Using Representation 3, Warrens (2008b) showed that the ARI can be rewrit-

ten as follows:

ARI(U ,V ) =
2(N11N00 −N01N10)

(N11 +N01)(N00 +N01)+(N00 +N10)(N10 +N11)
.
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Albatineh et al. (2006) introduced a family of similarity measures which can

be written in the form β0 + β1 ∑i ∑ j n2
i j, where β0 and β1 are unique for each

measure. The ARI can be exactly treated the same way. Given Equation 1, after

simple algebra, the ARI is written in the following form:

ARI(U ,V ) = β0 +β1 ∑
i

∑
j

n2
i j, (2)

where

β0 =
−n− PQ

n(n−1)

0.5(P+Q)− PQ
n(n−1)

and

β1 =
1

0.5(P+Q)− PQ
n(n−1)

with P = ∑i n2
i+−n and Q = ∑ j n2

+ j −n.

2.2. ARI AND PEARSON STATISTIC

Let the totals within each marginal be equal, that is,

ni+ =
n
r
,∀i = 1, . . . ,r (3)

and

n+ j =
n
c
,∀ j = 1, . . . ,c. (4)

Shuweihdi and Taylor (2007) showed that the Rand index is linearly related with

the Pearson statistic. By the same way, the relationship between ARI and Pearson

statistic can be derived. The Pearson statistic is given by

X2 = ∑
i

∑
j

(
ni j − ni+n+ j

n

)2

ni+n+ j
n

.

Under restrictions 3 and 4, the Pearson statistic becomes

X2 =
rc
n ∑

i
∑

j
n2

i j −n.

Therefore, after simple algebra,

ARI = γ0 + γ1X2, (5)

where γ0 =
c+r−rc−1

d and γ1 =
n−1
nd with d = 0.5nc− rc+0.5c+0.5nr−n+0.5r.
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3. TESTS FOR RANDOM AGREEMENT

Consider two independent clusterings U and V . We wish to compare the ob-

served number of agreements with the number expected from "chance" agree-

ment. Thus, we test the null hypothesis:

H0 : {There is a random agreement between U and V }

or equivalently

H0 : A ≤ 0.5,

against the one-tailed alternative hypothesis:

H1 : {U and V are not random}

or equivalently

H1 : A > 0.5,

where A is the population parameter (the true value of the statistic ARI).

Performing the test based on the statistic ARI requires the knowledge of its

probability distribution under the null hypothesis which is tedious to find in closed

form. To overcome this problem, two approaches are proposed; χ2 distribution

approach (Section 3.1) and permutation approach (Section 3.2).

3.1. χ2 DISTRIBUTION APPROACH

When the clusterings U and V have equal cluster sizes, it is shown in Section 2.2

that the ARI can be written as a linear function of Pearson statistic (see Equa-

tion 5).

Since X2 has an asymptotic χ2 distribution with ν = (r− 1)(c− 1) degrees

of freedom, then the probability distribution of ARI is given by

fARI(x) =
1

2ν/2Γ(ν/2)γ1

(
x− γ0

γ1

)ν/2−1

exp

{−(x− γ0)

2γ1

}
, where x ≥ γ0.

with mean

E(ARI(U ,V )) = γ0 + γ1ν ,

and variance

V(ARI(U ,V )) = 2νγ2
1 .
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To test the null hypothesis of random agreement, the following test statistic

is used.

X2
ARI(U ,V ) =

ARI − γ0

γ1
,

which has an asymptotic χ2 distribution with ν = (r−1)(c−1) degrees of free-

dom. Therefore, the asymptotic p-value is given by

λ1 = 1−FX2(X2o
ARI) =

∫ ∞

X2o
ARI

fARI(x)dx,

where X2o
ARI is the observed test statistic and FX2(·) is the asymptotic cdf of χ2

random variable.

The size of the test has the correct nominal level α in the sense that
∫ ∞

X2
α

fARI(x)dx=
α .

3.2  PERMUTATION APPROACH

χ2 distribution approach, discussed in Section 3.1, is valid when the cluster sizes

within each clustering are equal and the expected frequency of each cell is at least

5. In practice, these restrictions may not be attained. Therefore, an alternative

approach is required. In this section, a permutation test is proposed.

The idea of permutation test dates back to Fisher (1934/1935), and Pitman

(1937/1938) was next to consider permutation tests. Fisher (1934, 1935) intro-

duced the permutation approach for exact inference within the conditionality and

sufficiency principles of inference. He introduced the permutation test as the ex-

act test for the association between two binary variables when some cells have

expected frequencies less than 5; that is, when the chi-square test fails. Also

it is useful for one sided testing if at least one variable is ordered categorical. In

addition, Fisher introduced the exact test for testing differences between means of

two populations when the assumptions of the two-sample t-test were not met. He

pointed out that the probability of a type I error for the two-sample permutation

test is closely approximated by the normal theory probability of a type I error for

the particular problem dealt with.

Pitman (1937a,b, 1938) developed exact permutation methods consistent with

the Neyman-Pearson approach for the comparison of k ≥ 2-samples and for bivari-

ate correlation. For two-sample design, Pitman introduced a test statistic which is

a monotonic increasing function of the square of the t-test statistic.
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Permutation tests are considered a subclass of nonparametric tests (Lehmann

and Romano, 2005; Pesarin and Salmaso, 2010). They are computationally inten-

sive, but modern computational power makes permutation tests feasible. Nonpara-

metric test statistics do not rely on a specific probability distribution that describes

the underlying population. In fact, permutation tests are always distribution free

since observed data are sufficient statistics in the null hypothesis (see Pesarin and

Salmaso, 2010, Sec. 2.1.3). However, some tests (two-sample design, ANOVA,

etc.) require assumptions upon to the samples rather than the underlying dis-

tributions or parameters. An important assumption is that the observations are

exchangeable under the null hypothesis. The exchangeability is generally assured

by random allocation of treatments to units in experimental work. In observa-

tional studies, exchangeability in the null hypothesis shall be assumed in order

to obtain exact testing solutions. If this assumption cannot be justified, then ap-

proximate permutation solutions are obtained in accordance, for instance, with the

nonparametric Behrens-Fisher testing.

Permutation tests are widely used in many research fields such as agriculture,

clinical trials, educational statistics, business statistics and industrial statistics.

For more works on permutation test and its variations see Edgington (1995), Pe-

sarin (2001), Salmaso (2003), Good (2005), Basso et al. (2009) and Pesarin and

Salmaso (2010) and the references therein.

The goal of using a permutation test in our problem is the computation of

the conditional probability distribution of the ARI. For the purpose of finding the

permutation sample space, Representation 1 of the two clusterings (discussed in

Section 2.1) is considered. The cluster labels within each clustering are permuted

then ARI is calculated using U ∗ and V ∗. Algorithm 1 is used to obtain the permu-

tation (conditional) p-value for testing the null hypothesis of random agreement.

Note that the permutation mid p-value (Lancaster, 1961) is calculated due to

the discreteness of the permutation distribution of the test statistic.

4. SIMULATION STUDY

In this section, the empirical level of significance of the proposed tests is inves-

tigated. To assess the empirical level of significance, the tests are performed on

a two random clusterings. A random clustering can be created by assigning data

points to clusters randomly. As an example, two clusterings each with three cat-

egories (r = c = 3) are created under the null hypothesis and three different con-

figurations are considered: (a) ni+ = 50, ∀i = 1,2,3 and n+ j = 50, ∀ j = 1,2,3;

(b) n1+ = n+1 = 5, ni+ = 50, i = 2,3 and n+ j = 50, j = 2,3; (c) n1+ = 5, n2+ =
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Algorithm 1 Conditional p-value of the ARI

1. For two given clusterings U and V , calculate the observed test statistic

ARI(U ,V ), denoted by ARIo.

2. Take a random permutation U ∗ of U and V ∗ of V .

3. Calculate the test statistic ARI∗ = ARI(U ∗,V ∗).

4. Independently repeat Steps 2 and 3 many times, say B times, obtaining B
test statistics, say {ARI∗b , b = 1, . . . ,B}.

5. The permutation mid p-value is estimated as

λ2 =
∑B

b=1 I(ARI∗b > ARIo)

B
+

∑B
b=1 I(ARI∗b = ARIo)

2B
,

where I(·) is the indicator function.

3, n3+ = 7 and n+1 = 1, n+2 = 10, n+3 = 4. Steps for assessing the empirical

significance level are summarized in Algorithm 2. A simulation study based on

R = 5000 datasets is performed. The number of permutations on each dataset is
B = 1000.

Algorithm 2 Empirical level of significance

1. For the given dataset, randomly create two clusterings U and V .

2. Use the aforementioned approaches to obtain the p-values, λ1 and λ2.

3. Independently repeat Steps 1 and 2 many times, say R times, giving R p-

values for each approach, say {λir, r = 1, . . . ,R}, i = 1,2.

4. For a preassigned nominal level of significance α , the empirical level of

significance is given by

α̂i =
∑R

r=1 I(λir ≤ α)

R
, i = 1,2.

The simulation results are reported in Tables 3-5 for each configuration. It is
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clear that the empirical level of significance for the proposed tests in configuration

(a) is closed to the nominal one; that is, the p-values under the null hypothesis are

uniformly distributed over its support, [0,1]. While in configurations (b) and (c)

the proposed permutation test is still valid but not the χ2 distribution.

Table 3: The empirical level of significance, ni+ = 50, ∀i = 1,2,3 and n+ j = 50, ∀ j =
1,2,3

Nominal level α
Method 0.05 0.10 0.20 0.40 0.60 0.80 0.90

χ2 distribution 0.049 0.104 0.215 0.427 0.604 0.813 0.906

permutation 0.051 0.105 0.208 0.410 0.600 0.805 0.905

Table 4: The empirical level of significance, n1+ = n+1 = 5, ni+ = 50, i = 2,3 and
n+ j = 50, j = 2,3

Nominal level α
Method 0.05 0.10 0.20 0.40 0.60 0.80 0.90

χ2 distribution 0.049 0.103 0.184 0.409 0.550 0.804 0.999

permutation 0.049 0.098 0.200 0.408 0.596 0.800 0.898

Table 5: The empirical level of significance, n1+ = 5, n2+ = 3, n3+ = 7 and n+1 =

1, n+2 = 10, n+3 = 4

Nominal level α
Method 0.05 0.10 0.20 0.40 0.60 0.80 0.90

χ2 distribution 0.040 0.049 0.182 0.4100 0.828 0.999 0.999

permutation 0.048 0.103 0.190 0.4100 0.575 0.828 0.871

5. AN APPLICATION

For a practical application of the test, blood clots detection study (Vanbelle,

2009) is used. The study was conducted on 50 patients to measure the efficacy

of two new methods (by two medical raters) with respect to a standard method

(reference) in the detection of blood clots in the legs. Each patient was classified

as having (1) or not having (0) blood clot(s) in the legs with respect to a reference

method called "Standard" and 2 new methods "Method 1" and "Method 2". The

study aimed at comparing the agreement between the standard method and each

Table 3: The empirical level of significance, ni+= 50,  ∀ i = 1, 2, 3  and  n+j = 50; ∀  j = 1, 2, 3

Table 4: The empirical level of significance, n1+= n+1= 5,  ni+= 50;  i = 2; 3 and

n+ j = 50,  j = 2, 3

Table 5: The empirical level of significance, n1+= 5,  n2+= 3;  n3+= 7 and  n+1= 1,  n+2= 10,

n+3= 4
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of the new methods in order to make a choice between them. The classification of

the patients according to the presence of blood clots is given in Table 6.

Table 6: Blood clots detection (0 =No, 1 =Yes) in the legs of 50 patients with
a standard method and two new methods

Method 1 Method 1

0 1 Total 0 1 Total

Standard 0 18 11 29 26 3 29

1 4 17 21 4 17 21

Total 22 28 50 30 20 50

To test which method gives better agreement with the standard method, the

two proposed testing methods are applied and the results are given in Table 7. It is

clear that Method 2 gives better agreement with the Standard method than Method

1. Our results agree with the outcomes in Vanbelle (2009).

Table 7: Inference on blood clots detection data under χ2 approach and per-
mutation approach

χ2 Approach Permutation Approach

Method 1 – Standard Test Statistic 1.11 0.01

p-value 0.177 0.223

Method 2 – Standard Test Statistic 22.44 0.51

p-value 0.000 0.000

6. CONCLUDING REMARKS

Testing for random agreement between two clusterings of a dataset is inves-

tigated in this paper. Two methods are proposed; χ2 approach using Pearson χ2

as a test statistic, and the permutation approach using the adjusted Rand index as

a test statistic. The two methods are compared in terms of type I error control and

it is found that the permutation approach preserves the test size. Moreover, the

permutation approach is valid for any sample size while the χ2 approach is valid

asymptotically.
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