
LINE RECOGNITION IN IMAGE FILES USING INTEGER-BASED
FORMAL APPROACH

Khalid Daghameen and Nabil Arman
Palestine Polytechnic University, Palestine

{dkhalid,narman}@ppu.edu

ABSTRACT
One of the main areas in image processing is line detection and recognition. Some
algorithms for line detection were introduced. However, these algorithms involve
expensive operations like floating-point arithmetic and matrix operations. In
addition, the number of iterations of these expensive operations is high. Such
operations increase the computational time significantly. In this paper, a line
recognition algorithm, which involves integer arithmetic only, is introduced. The
algorithm uses a formal approach to recognize a line within an image file.

Keywords: Line recognition, line detection, image processing.

1 INTRODUCTION

Image processing is one of the most important
areas in computer science and engineering. One of
the main goals of image processing is to be able to
identify objects of the image. Objects in a computer
image are identified by their edges. These edges
could be straight lines or curved lines. Many
algorithms were used to detect a line in gray-scaled
images as well as colored images. Each algorithm
has some conditions and constraints to deal with.
Guido introduces an algorithm to detect a line based
on a weighted minimum mean square error
formulations [1]. This algorithm involves the use of
matrices and uses a set of matrix operations such as
transpose and multiplications.

Hough’s transform is another algorithm for
detecting a line. This algorithm is based on
quantization and simple line equations, and finding
the maxima. Hough’s algorithm is an efficient
algorithm when the slope is small. On the other hand,
it becomes inefficient or even impractical to use
when the slope approaches infinity [2,6]. This
algorithm is able to detect straight and curved lines,
circles and ellipses.

Marco and others developed a set of algorithms
to detect a line based on a general formulation of a
combinatorial optimization problem. In their
algorithm, a lot of expensive operations like
multiplication, power and exponent functions are
used. Marco and his colleagues claimed that they are
able to compare their algorithms with Hough’s
transform algorithms and they claim that their
algorithms are faster [3].

Guru developed an algorithm based on small
eigenvalue analysis to detect straight line segments
in an edge image. The algorithm depends on

scanning the input image from top left corner to the
bottom down corner with a moving mask matrix. The
small eigenvalue of covariance of the edge pixels is
computed. This algorithm depends on matrix
processing [4].

A straight line detection algorithm was presented
by Yun-Soak Lee and others [5]. It separates rows
and column edges from edge image using primitive
shapes, the edges are labeled and analysis for each
edge is performed.

Chan and his colleagues used a simple and
efficient approach for the line segment detection.
The algorithm uses digital line segment attributes. In
discrete domain, a continuous line can be thought as
sets of patterns combined in the quantized direction
of edge pixels (i.e. 0°, 45°, 90°, 135°). These edge
pixels have approximately equal number of pixels.
Based on this property, the boundary convergence of
discrete line is obtained. Based on the convergence
property, a simple and efficient line detection
algorithm is presented. Real-time line detection can
be performed in a very simple and highly efficient
manner [7].

An algorithm for recognizing a line in an image
file was proposed in [8]. It was based on integer
arithmetic, in which it decreases the processing time.
The algorithm uses informal way to prove the
correctness. Ours uses formal way to prove the
correctness.

In this paper, an efficient and a formal-based
algorithm for line recognition is presented. The
algorithm involves simple mathematical operations
using integer arithmetic only, rather than floating
point or expensive matrix operations.
 The algorithm is intended to be used for line
detection. Circles, ellipses and other curves are not

UbiCC Journal, Volume 6: Issue 3 917

Ubiquitous Computing and Communication Journal
(ISSN 1992-8424)

Figure 2: Line approximation on a grid layout

considered in this research since they are represented
using mathematical models that are completely
different form line mathematical representation.

2 LINE RECOGNITION ALGORITHM
THEORY

The line equation between two points (x1,y1) and
(x2, y2) is

11)(yxxmy  …………………….(1)

where m is the slope and (x1, y1) is the first point of
the line. It is a continuous equation for an ideal line,
while in digital images, the situation is different,
since x and y are both discrete values. This means
that x takes a set of whole numbers between x1 and x2,
and the same applies for y, i.e.

},....,,,{

},....,,,{

210

210

k

n

yyyyy

xxxxx




In digital form
]][],...,2[],1[],0[[][nxyyxnx 

]][],....,2[],1[],0[[][kyyyyky 

where x[0]=x1

and y[0]=y1

as for x[n]=x2 and y[k]=y2

The difference between any two consecutive
values is 1, i.e. x[j+1]-x[j] =1 and y[i+1]-y[i] =1.
i.e. in figure 2, the points that are part of a line are
(xi, yk), (xi+1, yk+1), (xi+2, yk+1), (xi+3, yk+1), (xi+4,
yk+1), (xi+5, yk+2). Such point illustrates that above
fact.

The difference between two consecutive x values
is 1, while in y-direction the difference is m. Using

11)(yxxmy  …………………….(1)

)]2[(]2[11 xxmyy 

11]1[ymy 

12]2[ymy 
Therefore, we can say that

1][ymnny 

y-values are rounded to integer values (whole
numbers) as in the following definition of a function:

     
     







5.0

5.0

kkkk

kkkk
k yyyy

yyyy
y





For the first horizontal line segment. The
difference between the y’s is 0.5, we need to find the
number of increments of x’s to reach the first value
of y that is different from the current value. Using
equation 2, we can find that.

111 2

1
yynmyyk 

y

x

m
n





22

1

For any two points in the middle, the difference
between any two consecutive y values is 1. So using
the same equation above, the number of increments
in the x-direction can be determined.

)(1 11121 ymnymnyy kk 

112  mnmn

y

x

m
nn





1

12

so, the number of x increments, which is the length
of the horizontal line segment is equal to the
reciprocal of the line slope for all the middle
segments, while the outer horizontal segments is half
in length for those in the middle line segments.

It is clear that every thing here is an approximation.
So for the middle segments, the difference in the
vertical displacement is not exactly one. It is less
than one at most by m. This means, it is not less than
1-m , and it is not more than 1.

Figure 1: Relation between the increments in both
directions

UbiCC Journal, Volume 6: Issue 3 918

Ubiquitous Computing and Communication Journal
(ISSN 1992-8424)

Thus,

mymnymn

myy kk




1

1

1112

1

m

m
nn




1
12

112 




y

x
nn

From this, it is concluded that, the middle horizontal
segments length value is between the reciprocal of
the slope and the length of the first horizontal line
segment.

3 LINE RECOGNITION ALGORITHM

The algorithm is used to recognize a straight line
in a graphic image. It works for the first octant of the
plane, where the slope is between 0 and 1.
Generalizing the algorithm for the whole plane is
straight forward. The main advantage of the
algorithm is its simplicity and robustness. The
algorithm can detect any line that is continuous in the
plane.

The data structures required for the algorithm are
a matrix for the image, a bit matrix for visited pixels,
the number of rows and columns of the matrices
which are dependent on the size of the image.

A new data type is used to save the values of the
line. It has four integer values for the starting and
ending points. To save computational time, the
length of line segment is saved as a member of this
new data type. In order to keep track of all lines
within the same image, a list of lines data structure is
required.

The algorithm is shown in Figure 3. The
algorithm loops through all pixels of the image in a
row-major order. It checks if the pixel is part of a
line and is not visited, then it starts a sequence of
operations to find the line. These operations start by
finding the first horizontal line segment and consider
it as a temporary line. Then from the end of that
segment in the next row, it checks for another
horizontal line. If another horizontal line is found,
the length of the new horizontal line is checked. Its
length should be between the length of the first
horizontal segment and its double length. If the
conditions fail, that means there is no more
horizontal segment to be part of the line. Upon
completing that, the line should be added to the list
of recognized lines.

The algorithm can be extended to handle lines of
different thicknesses by testing pixels adjacent to the
main pixels comprising the main line. The level of
thickness determines number of adjacent pixels to be
tested. Here are three examples of the algorithm
using BMP files. In the first two images, there is one
line while in the third one, there are two lines.

Figure 3: Line recognition Algorithm

In the first example, the algorithm scans the
image row by row. At pixel (1,1) as shown in Figure
4, the algorithm finds an illuminated pixel, which
represents the starting pixel of a horizontal line
segment consisting of pixels (1,1) and (1,2). The
length of this segment is 2 pixels. The next segment
starts at the corner of the previous segment i.e., r and
c are incremented by 1. The new segment consists of
pixels (2,3), (2,4) and (2,5) with length 3. The length
is less than 4 by one, 4 is the double of the length of
the length of the first segment. Then the line end
points are (1, 1) and (2,5). It proceeds for the next
horizontal segment which consists of pixels (3,6) and
(3,7) with length 2, as the segments length is equal to
the length of the first segment. This line segment is
also part of the line, so the line end points become

Figure 4: One line in a BMP file

Line_Recognition_Algorithm (Input: Matrix, Output: Lines-List)
// Matrix: matrix representation of the image.
// Lines-List: a list of recognized lines from the image

begin
 for i=1 to image-height
 for j = 1 to image-width
 if ((Matrix[i][j] ==lineColor) && Not done[i][j])

 set MoreSeg to TRUE;
 r = i

 c= j
 find a horizontal segment at (r, c)
 save the horizontal segment parameters into Temp-Line
 set the length of the horizontal segment to len
 set maxlen to double the length of segment

 change the status of those pixels to visited
 while there are MoreSeg
 if direction is RIGHTDOWN

// direction of the first octant
find next horizontal segment at (r+1,

Previous segment c+1)
 end if
 if (length of the segment is between len and maxlen)

Change the end point of the Temp-Line to
be the endpoint of the new segment

Change the status of those pixels to visited
 else

MoreSeg = FALSE
 end if
 end while

 add temporary line to the Lines-List
 endif
end

UbiCC Journal, Volume 6: Issue 3 919

Ubiquitous Computing and Communication Journal
(ISSN 1992-8424)

(1,1) and (3,7). The same applies for the other two
segments.

The second example is the same as the previous
one, except that the lengths of the horizontal
segments are 1 as shown in Figure 5. It shows that
the number of maximum horizontal line segment’s
length is 2, which is the double of the length of the
first horizontal segment.

In the third example, the first horizontal line
segment’s length is 4. This means that the other line
segments’ lengths must be between 4 and 8. The
second horizontal line segment’s length is 3, which is
less than four, which means that this segment is not
part of the line. Therefore the algorithm terminates at
this line segment. So the first line end points are
(1,1) and (1,4). By continuing the scanning of the
rows, pixel (2,5) is reached. The first horizontal line
segment end points are (2,5) and (2,7) with length 3.
The next horizontal segment is (3,8),(3,11) with
length 4, which is between 3 and 6, so the second
line end points become (2,5) and (3,11).
 Clearly, the algorithm outperforms other
algorithms for line detection in image files since it
uses integer arithmetic in its operations. As
mentioned before, other approaches and algorithms
use more expensive operations.

4 ALGORITHM ADVANTAGES AND
CONCLUSIONS

All algorithms that are used for line recognition
and detection in image processing involve very
expensive operations like floating-point calculation
and matrix operations. It is known that these

operations are very time consuming and using them
will definitely slow down these algorithms
significantly. On the other hand, our algorithm uses
only simple integer arithmetic. In addition to that,
our algorithm involves the simplest forms of
arithmetic operations namely, additions, comparisons
and logical operations. There are no multiplications
or divisions. Therefore, our algorithm has a great
value in line recognition and image processing due to
its simplicity and efficiency.

5 REFERENCES

[1] G. M. Schuster and A. K. Katsaggelos: Robust
Line Detection Using A Weighted Mse
Estimator, Image Processing, ICIP 2003.
Proceedings of 2003 International Conference
on Publication, 14-17 Sept., Vol. 1, pp. 293-296,
(2003)

[2] R. Boyle and R. Thomas: Computer Vision:A
First Course, Blackwell Scientific Publications,
Chap. 5, (1988).

[3] M. Mattavelli1, V. Noel1, and E. Amaldi: Fast
Line Detection Algorithms Based on
Combinatorial Optimization, Lecture Notes In
Computer Science; Vol. 2059, 2001.

[4] D.S. Guro, B. H. Shekar, P. Nagabhushan, “A
simple and robust line detection algorithm based
on small eigenvalue analysis”, Pattern
Recognition Letters, Vol 25, (2004).

[5] Y. Lee , H. Koo , and C. Jeong: A straight line
detection using principal component analysis,
Pattern Recognition Letters, Vol. 27 No. 14, pp.
1744-1754, (2006).

[6] D. Vernon: Machine Vision, Prentice-Hall,
Chap. 6, (1991).

[7] T. S. Chan, R. K. Yip: Pattern Recognition,
Proceedings of the 13th International
Conference on Pattern Recognition, 25-29 Aug,
pp. 126-130, (1996).

[8] K. Daghameen, and N. Arman, An Efficient
Algorithm For Line Recognition Based On
Integer Arithmetic, Proceedings of 2nd

Palestinian International Conference on
Computer and Information Technology, 1-3 Sep.,
pp-20-24, (2007).

Figure 5: One line in a BMP file

Figure 6: More than one line in a BMP file

UbiCC Journal, Volume 6: Issue 3 920

Ubiquitous Computing and Communication Journal
(ISSN 1992-8424)

