International Tournal of Soft Computing 10 (5): 301-306, 2015

ISSN: 1816-9503
© Medwell Journals, 2015

An Efficient Multiple Sources Single-Destination
(MSSD) Heuristic Algorithm Using Nodes Exclusions

'Faisal Khamayseh and *Nabil Arman
"Department of Information Technology,
"Department of Computer Science and Engineering,
College of Information Technology and Computer Engineering,
Palestine Polytechnic University, Hebron, Palestine

Abstract: The problem of identifying the best paths between given set of nodes and a given single-destination
n a graph of vertices 1s commonly referred to as network multiple sourcessingle-destination problems. In real
life researchers always find themselves in a critical situation in which they seek the nearest set of related points
such as the urgent need for fire stations. This study describes, the problem and proposesan algorithm for
finding the shortest paths between the set of sources <5> and a single-destination <t> given that <s;> and <t>¢
weighted graph G(V, E, w) with vertex set V and arc set E associated with nonmegative real valued weight. An
efficient algorithm 1s developed based on different graph representations. The proposed heuristic determines
a candidate subgraph G' and excludes all nodes that do not lead to destination. The proposed algorithm
improves partially the performance of improved traditional shortest path algorithms, i.e., Dijkstra’ algorithm.
This is shown obvicusly by applying the algorithm on set of random graphs.

Key words: Shortest path, communication network, graph, multiple sources smgle-destination, candidate

subgraphs, node exclusions

INTRODUCTION

Finding shortest or fastest paths in real network 1s
always demanding. In real life researchers may find
ourselves in a critical situation that researchers urgently
seek the nearest set of related points such as the fire
stations in the area. Many contemporary applications
benefit from efficient networking topologies such as
active learning space network. This requires putting
together the knowledge space and learning content space
i active and real time content delivery mn a form of
directed weighted graph (Khamayseh et al., 2009). Tn fact,
the presence of large street networks in towns and
residential areas increases the demand on urgently finding
the best paths. This means that allocating services such
as ambulance and civil defense services in the area
around a specific accident pomt 1s extremely important as
shown in Fig. 1.

This study focuses on the Multiple Sources,
Single-Destination (MSSD) networlk problem representing
the set of given sources and a given single-destination in
graph G. An important method applied m this study
represents the graph in several efficient structures and
then traversing the graph using these structures to find
the set of shortest paths. An efficient heuristic MSSD

za-:}uevawnm' ,\
®.;
5

Fig. 1: Application of multiple shortest paths

algorithm is proposed to find the shortest paths towards
a single-destination. The main objective of MSSD i1s that
1t saves time and cost by excluding none related nodes,
comparing to the way of applying traditional shortest path
algorithm such as modified Dijkstra’s algorithm. Other
than finding the multiple sources single-destination

Corresponding Author: Nabil Arman, Department of Computer Science and Engineering,
College of Information Technology and Computer Engineering, Palestine Polytechnic Umiversity, Hebron,

Palestine



Int. J. Soft Comput., 10 (5): 301-306, 2015

shortest paths, the new algorithm finds also the single
source single-destination shortest path using the same
approach. To find a single-source single-destination or
multiple source multiple-destination one may refer to
the known algorithms such as Dijkstra’s and Floyd
algorithms with some variations (Kumar and Kaur, 2011;
Cormen ef al, 2001; Dykstra, 1959) and some
mnprovements on related existent techniques (Armarn,
2005a; Orlin ez al., 2010, Shibuya, 1999, Xiao et al., 2012;
Khamayseh and Arman, 201 4a, b).

Given a directed graph G(V, E, w), where V 13 the set
of nodes, E 1s the set of directed edges labeled with
weights as a function of [w(e)|. For a given destination
<t=cV and set of sources {<s>, <s,», ..., <s >} for each
<3>€V, the Multiple Source Single-Destination algorithm
15 to find the shortest paths from each given <s> to a
single given destination <t>> as depicted in Fig. 2.

There are different shortest path algorithms applied
on different graphs with various
conditions. Examples mclude finding the single-source
shortest path in a weighted graph, single-source shortest
path with the possibility of negative weights, k-shortest
paths, shortest path in unweighted graph, single-pair
using heuristics all-pawrs shortest paths, etc. These
graphs with different constraints and assumptions
may require applying simple mimimum spanning tree
procedures to effectively find the shortest path. Other
assumptions may require advanced algorithms such as
Dijkstra’s and Floyd algorithm with some variations. Some
improvements on applying the existent algorithms based
on tree structures have been presented by Cormen et al.

constramts and

Fig. 2: Random general directed graph G(V, E, w)

302

(2001). Example of such variations is the running time
based on Fibonacci-heap min-priority queue which is
calculated to be O(|V|log|V|+[E]) assuming that w(e)=0
(Cormen et ai., 2001).

In this study, the applied approach represents the
directed graph in a matrix structure with entries be the
links between nodes starting from the graph roots. Then,
the graph 1s reversely represented using the same
structure starting from the graph destinations with entries
be the reverse links. The proposed algorithm scans both
matrices starting from the reverse one to limit the
candidate graph parts to be used m finding the
source-destination paths.

GRAFPH REPRESENTATION

After studying several alternative data structures and
graph representations, researcher represents the structure
in several matrices that efficiently represent the given
graph as mtroduced by Kumar and Kaur (2011). This
existing technique helps in representations and the path
existence in unweighted graph. To represent a graph
G = (V, E, w) consisting |V| none repeatable nodes, two
matrices with maximum |V|’ entries are needed with matrix
entries |H| equal exactly the number of arcs in the general
each graph. The first one is to represent the graph in
normal form rooted with sources while the other 1s to
represent the same graph in reverse-traverse with
destinations are the graph roots (Arman, 2005a-¢). These
representations are shown in Fig. 3 and 4. Figure 4 shows
the graph as linear array with entries representing the
nodes and ther coordinates in the graph matrix
representation.

The graph paths are stored in Graph Matrix
Representation as paths starting with graph roots
from left to right with sub paths (multi out degree nodes)
extending the current node in the consecutive rows. The

0

1

2

3

P

5

6 5
7 6,4
8 6,6

9 6,6

10 6,4

11 6,7

12 6,7

13 6,6

14 6,5

Fig. 3: Graph matrix representation



Int. J. Soft Comput., 10 (5): 301-306, 2015

0,010,1({0,2]1,2]1 13202, 113,1]3,2(4,2]43]5,3]|54]6,4]6,5]6,6
A E J K 02| B 0 F |0 L |L2f P [31|M]N O
6,716,817,8184]93[10,2|11,0] 11,1 11,2]12,1|12,2|12,3][13,3] 14,3
G [31]64]66]66| 64| D C [67]| H I 6,7 | 6,6 | 6,5
Fig. 4 Linear array representation
_ 0 1 2 3 4 5 6 7 8 9 10
L— 1 ]
0 TNE A | B
1 F 0,3
2 G C | D
3 1 2,6
4 o |3.5
5 N M 2,4
6 1,3
7 P L3
8 4,6
9 7,8
10 7,9
11 7.8
]
12 0,1
[ )
13 7.9

Fig. 5: Reverse matrix representation

advantage of this representation is that it stores all graph
paths in the order of depth first search traversal showing
clearly all subpaths. In this way, each node name/mnumber
15 shown only once while all revisited common nodes are
shown in reference pointer coordinates (i, j) based on
matrix indexing to avoid subpath duplication. The matrix
also shows the graph roots and paths’ ends enabling
counting the path nodes in constant time. As an example
of path representations of graph G, if path p, = <v,, v,,
Vis oy Vyp, Vo2 and p, = <v, vy, ., ¥, .., V> eXist in the

is - ces

graph (branching after node <v;>), then p, 1s stored m the
next row of p, starting from the column (i+1) to represent
the rest of p, as <v,,, Vi, ... with all entries on the left of
<v,,> are empty. The linear array representation stores
the mdex of all nodes and common nodes as stored i the
main matrix representation.

The applied technique requires having the graph G
represented in reverse structure. That is, the nodes are
stores in the reverse matrix using the same construction
technicque but with paths start with destinations (as roots)
towards the paths’ sources as end nodes considering
only the weighted reverse edges. The reversed-paths
P = <V, ¥y, Vi, ¥y, V@ and p; = <vy, vy, v, v that are
linearly retrieved from reverse matrix mean that the source
nodes v, and v, reach the destination node v, The

303

advantage of this representation is that it stores all paths
that can reach the given node from the given source
nodes.

The sizes of both matrices may differ depending on
the depth first search traversing technique. This means
that some parts of some paths may be visited earlier and
being referenced later. These paths may explicitly appear
in consecutive row entries and also may appearin some
row and column entries if first visited. It 1s required that
the number of entries in both matrices must be the same,
since these entries represent the nodes and edges of the
main given graph.

The weighted graph can also be represented using
the same representation techmique. Each link 1s
represented by associating the node name with its weight
required to reach it from its direct predecessor. This
representation requires that each entry contains three
main parts (node name, weight, predecessor node). The
advantage of this structure is to keep modifying the
accumulated weight and the corresponding predecessor
node name as required by the applied shortest path finder
such as Dijkstra’s. Such, technique assures the mimmum
sum of weights from a selected source via the predecessor
node and neglecting all nodes out of the candidate
subgraph. The candidate set of nodes are determined by
marking candidate nodes using reverse traversing.
Figure 5 shows the graph rooted by destinations. It helps



Int. J. Soft Comput., 10 (5): 301-306, 2015

finding and marking the candidate nodes lead to
destination node starting from destination node visiting
all predecessor nodes as backward fashion. For example,
node M 15 visited by G, F and P, node P 1s visited by L
and F, node F is visited by B and G and so on. At the end,
researchers find that some nodes are not visited for
example, nodes A, E, T and K. The primarily advantage of
marking nodes using reverse traversing 1s to exclude all
nodes that do not lead to destination and hence save
searching time in these nodes or subgraphs.

MULTIPLE SOURCES SINGLE-DESTINATION
SHORTEST PATHS (MSSD)

In real hugenetwork topologies and m real life
commumnication applications, the need for more than one
shortest path leading to single-destination is demanding.
The primarily procedure is minimizing all subgraphs that
do not lead to destination from some selected sources or
vice versa. The traditional algorithms do not satisfy this
optimization. The new Heuristic algorithm benefits from
the representation of the graph in different structures and
by updating the traditional shortest path techmques. The
general steps are;

Constructing the main matrix to represent the graph
structure where each entry contains the node name,
weight and predecessor node. This structure
represents all the graph paths with node weights
Constructing the reverse matrix representing the
graph rooted by destinations. This structure depicts
all paths lead to destination. The advantage of this
structure is the ability of marking all candidate nodes
lead to destination and discarding all wrelevant ones.
This step requires having the mark matrix containing
the candidate nodes. Traversing the graph based on
reverse structure results in new limited graph G'(V', B,
w) as shown in Fig. 6 and Table 1

Find shortest paths from the given sources <s>
towards the destination <t= For each source <sj>,
the algorithm adds all neighbor edges (in breadth
fashion) by wvisiting all nodes listed in the next
column of the current nede. For each current node,
researchers always accumulate the subpath weight
by adding the current node weight to accumulated
path weight (dist). Revisiting the node using new
edge e means researchers encounter node
coordinates (1, 7) with new weight w(e). In this case,
researchers jump to node pointer with coordinates
(i, j) in the main graph matrix and compare the new
weights 1n order to keep the minimum distance and
the corresponding predecessor nodes

304

Fig. 6: Candidate nodes graph

Table 1: Candidate nodes matrix

Vertex No. Vertices Coordinates
0 B <2, 0=
1 C <11, 1=
2 D <11, 0>
3 F <3, 1=
4 G <6, 7>
5 H <12, 1=
& I <12, 2=
7 K <4, 2=
8 L <6, 4>
9 M <6, 5>
10 N <6, 6>
11 8] <5, 3=

The excludedgraph nodes are: {<A>, <E=>, <J>, <K=}

MULTIPLE SOURCES SINGLE-DESTINATION
SHORTEST PATH (MSSD) ALGORITHM

The algorithm finds each shortest path as structured
in the main weighted graph matrix by excluding all
irrelevant nodes and by keep checking the current node
in the marked candidate nodes. Candidate nodes are
determined from the generated reverse matrix in linear
time. The path existence between each source <s> to
destination <t> can be determined in linear time by
applymng efficient algorithm called path existence query as
presented by Arman (2005a-c).

The algorithm finds the shortest path between each
source <> to destination <t> among the marked nodes
only. The algorithm keeps updating entries using values
(Vertex, Dist and PredNode). The function stores in
Distentry the accumulated weight up to the current Vertex,
by adding the vertex weight from its predecessor
PredNode. The function continues updating the distentry
whenever reads a coordinates pointer of the revisited
node. Using the updated procedure of Dykstra’s
technique (Xiao et al., 2012), the algorithm keeps the
minimum  weight and the comesponding nodes by
comparing the last calculated weight with the new weight.



Int. J. Soft Comput., 10 (5): 301-306, 2015

Multiple Sources Single-destination Shortest Path
algorithm using node exclusions: The algorithm finds the
shortest path based on discarding all nodes m the graph
that do not lead to destination. This efficient procedure
may save much work comparing to the fimctionality of
known algorithms.

MultipleSources_Single Destination_Shortest_Path
(Graph, Mark, Reverse_Matrix):
{
initialize Mark to empty
begin at destination vertex t in Reverse_Matrix
Node =t
Add node to Mark
for every vertex next to Node in Reverse_Matrix
Jivertex is predecessor to node in G
it vertex ! = coordinates pointer

Node = vertex
else
Node = Reverse Matrix[coordinates pointer]
add node to Mark

endfor
for every source node s
dist = FindShortest(GraphMatrix, Mark, s)
endfor
}
FindShortest{GraphMatrix, Mark, s)/no need for destination , it is needed
in Mark matrix
{
for each vertex v in GraphMatrix
dist[v] = infinity;

/ Initializations
// Unknown distance function from
source to v
pred[v] =undefined;  // Predecessor node in the node in optimal path
end for
dist[s] : = 0; {f Distance from source to destination
/f All marked nodes in Mark matrix arestill not processed. Put
thern in MarkQ
MarkQ) = set of Marked nodes in GraphMatrix ordered as of depth first search
visits
while MarkQ is not empty and u != t://destination is not reached
u=vertex in MarkQ with smallest distance in dist[],  // starting
from s
remove 1 from Mark();

if (u =1t || distfu] = infinity)  //end while, because destination is

reached and
break ; /f remaining vertices are inaccessible from
source or unmarked
end if

for eachneighbor v of u and v is in MarkQ
removed from Q.
if v is coordinate pointer <a,b>
v = GraphMatrix[a,b]
marked vertex
endif
p = distju]+dist_between(u, v);
it pdist[v]:
dist[v] =p;
pred[v] =u,
update v in MarkQ;
end if
end for
end while
return dist;

}

/f where v has not yet been

/ eross-fetch previously visited and

/f choose the best subp ath

/f Reorder v in the Queue

CONCLUSION

For a given weighted graph G(V, E, w) with weights
as a function of |w(e)|, an efficient and improved algorithm
for finding shortest paths between a set of sources <s>
and single-destination <t> in a weighted directed graph G
15 presented. In the practical phase, the algorithm
outperforms the performance of improved Duykstra’s
algorithm. As a Heuristic algorithm, the complexity will
always be bounded by the complexity of known
algorithms, i.e., it will not exceed O((|VIHElog | V|) for each
source <g;>.

This
shortest paths between source <s> and a given

study discussed the procedure offinding

single-destination <t> using candidate subgraphs. The
set of candidate nodes is determined as all nodes exist in
paths lead to destnation <t=.

ACKNOWLEDGEMENT

This research is funded by The Scientific
Research Council, Ministrty of Education and Higher

Education, State of Palestine under a project number of
01/12/2013.

REFERENCES

Arman, N., 2005a. Graph representation comparative
study. Proceedings of the International Conference
on Foundations of Computer Science, Tune 27-30,
20053, Las Vegas, USA., pp: 1-5.

Arman, N., 2005b. Graph representation: Comparative
study and performance evaluation. Inform. Technol.
1., 4: 465-468.

Arman, N., 2005¢. An efficient algorithm for checking path
existenice between graph vertices. Proceedings of the
6th International Arab Conference on Information
Technology, December 6-8, 2005, Amman, Jordan, pp:
471-476.

Cormen, TH., CE. Leiserson, R.L. Rivest and C. Stein,
2001. Introduction to Algorithms. 2nd Edn,
MIT Press, Cambridge, MA., USA., ISBN-13:
978-0262032933, pp: 595-601.

Dykstra, E'W., 1959. A note on two problems m cormexion
with graphs. Numerische Mathematik, 1: 269-271.

Khamayseh, F. and N. Armman, 2014a. An efficient
heuristic shortest path algorithm using candidate

of the

Conference on Intelligent Systems and Applications,

March 22-24, 2014, Hammamet, Tunisia, pp: 1-5.

subgraphs. Proceedmngs International



Int. J. Soft Comput., 10 (5): 301-306, 2015

Khamayseh, F. and N. Arman, 2014b. Using candidate
subgraphs to improve single-source single-
destination shortest path algorithms. SYLWAN I,
158: 303-312.

Khamayseh, F., A.S.E. Ahmed and L M. El-Fangary, 2009.
Evaluation of learner achievement within Active
Multimodal Presentation (AMP) and static e-learmng
modes. Egypt. Comput. Sci. J., Vol. 31, No. 3.

Kumar, A. and M. Kaur, 2011. A new algorithm for solving
shortest path problem on a network with imprecise
edge weight. Applic. Applied Math., 6: 602-619.

306

Orlin, I B., K. Madduri, K. Subramani and M. Williamson,
2010. A faster algorithm for the single source shortest
path problem with few distinct positive lengths. T.
Discrete Algorithms, 8: 189-198.

Shibuya, T., 1999. Computing the n X m Shortest
Paths Efficiently. In: Algorithm Engineering and
Experimentation, Goodrich, M.T. and C.C. McGeoch
(Eds.). Springer Science and Business Media, New
York, ppr 210-225.

Xiao, L., L. Chen and I. Xiao, 2012. A new algorithm for
shortest path problem in large-scale graph. Applied
Math., 6: 657-663.



	301-306_Page_1
	301-306_Page_2
	301-306_Page_3
	301-306_Page_4
	301-306_Page_5
	301-306_Page_6

