Information Technology Joumal 6 (2): 263-266, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

A Parallel Algorithm for Generating Maximal Interval Groups in Interval
Databases Based on Schedule of Event Points

Nabil Arman
Palestine Polytechnic University, Palestine

Abstract: In this study, a parallel algorithm to generate all maximal interval groups form a given interval set
15 presented. The algorithm makes use of mtraoperation parallelism to speed up the generation of the
maximal groups. The development of efficient algorithms to enumerate all intervals that have certain
properties has attracted a large amount of research efforts due to the important role of interval-based
reasomng n different areas like rule-based systems, including Expert Systems (ESs), Information
Distribution Systems (IDSs) and database systems to name a few. These algorithms are very crucial to

answer certain queries about these intervals.

Key words: Maximal interval groups, interval database, parallel databases

INTRODUCTION

Interval-based reasoning has an important role in
many areas like rule-based systems, mncluding Expert
Systems (ESs), Information Distribution Systems (IDSs)
and database systems. Intervals are appropriate and
convenient for representing events that span continuous
period of time. One may query an mterval database to
determine what events occur during a given mterval.
Algorithms to enumerate all intervals that have certain
properties have attracted a large amount of research
efforts due to the important role of interval-based
reasoming 1 different areas, including rule-based
systems and database systems (Aiken et al, 1995;
Chamberlam, 1994; Chion and Madey, 1997,
Cormen et al., 2001; Harrison, 1993). These algorithms
have an wnportant role m all these systems. An algorithm
that finds an interval in an interval tree, represented as a
red-black tree, which overlaps a given interval is
presented by Cormen et af. (2001). However, the algorithm
has the overhead of building and mamtaming the mterval
tree and it can only determine pairs of intervals that
overlap. Qur algorithm, on the other hand, determines all
mterval groups that overlap and makes wuse of
mtraoperation parallelism to speed up processing.

Many queries in interval databases, including the
generation of maximal interval groups, have data
requirements that may run into terabytes. Handling such
large volumes of data at an acceptable rate 1s difficult, if
not impossible, using single-processor systems. In fact,
a set of commercial parallel database systems, such as
Teradata DBC series of computers have demonstrated the
feasibility of parallel database queries. As a matter of fact,

263

the set-oriented nature of database queries naturally lends
itself to parallelization (Silberschatz et al., 2005). In a
database of n intervals, there is a need to find all maximal
groups, where each group has the mtervals that overlap.
In a temporal database that stores all courses classes and
their times, a query may be asked to generate all groups of
classes that meet at a certain time point. In an TDS, it is
always needed to check the time validity of rules to
determine if they can be chamed. This has an mmportant
role in controlling the operation of an IDS which is a
corner stone of Command, Control, Communication,
Computer and Intelligence (C4l) systems. This study
presents a parallel algorithm to generate all maximal
interval groups form a given interval set.

Interval grouping parallel algorithm: The generation of
the maximal mterval groups in mterval databases can be
parallelized using intraoperation parallelism. The
processing of this query can be speeded up by
parallelizing the execution of many mdividual operations
mvolved in the generation of the maximal mterval
groups. To simplify the explanation and presentation of
the algorithm, it is assumed that there are n processors,
P.... P, and n disks D,,...., D, where disk D, 1s
associated with processor P,

There are many approaches to the design of parallel
algorithms (Berman and Paul, 2003). One approach is to
modify an existing efficient sequential algorithm focusing
on those parts of the algorithm that can be parallelized.
Another approach is to design a completely new parallel
algorithm that may have no natural sequential analog. The
approach used in this algorithm is the first one. A
sequential algonthm that generates the maximal interval



Inform. Technol. J., 6 (2): 263-266, 2007

{

Procecure Parallel Determine Tnterval Groups(Tnterval Set: 1S)

Partition TS using range partitioning on interval low end points

Sort IS in lexicographic ordering using parallel external sort-merge

P; determines all potential event points in its partition locally

Merge results from P;,...., P, to form event_points

Replicate IS and event points on all n processors

Distribute event_points on the processors in a round-robin scheme

P; determines maximal interval group G; using its assigned event point localty
Merge IG;s from Py,...., P, to produce the final result

Fig. 1: Parallel Determine Interval Groups algorithm

groups was presented by Arman (2004). The algorithm
doesn’t make use of the benefits of parallel architectures
which are becoming more popular for query processing in
large databases.

An important 1ssue in the design of parallel database
algorithms 15 how data 1s partitoned among processors
and their disks. There are many partitioning techniques,
including round-robin, hash partitioning and range
partitioning. However, these partitioning techmiques have
their pros and cons and using any of them mn our parallel
algorithm is not very useful. For example, partitioning the
intervals, in the interval database, in a round-robin
techmque places intervals, that are related to each other
i different disks resulting in many extra passes/merges to
perform the grouping. Therefore, our algorithm partitions
the interval database based on a schedule of event points
to be explained.

Before explaining the parallel grouping algorithm,
some concepts that will be used in the algorithm are
explained. The algorithm uses the concept of event points
and event point schedule (Cormen ez al., 2001). An event
point 15 a point on the spatial dimension, where some
intervals are leaving a certain interval group and other
intervals are entering another interval group. The set of
these event pomnts constitutes a schedule of event points.
In our algorithm, the real schedule 1s determined
dynamically as the algorithm progresses. The algorithm
uses intervals where an interval i = [t,, t;] is represented
as an object with fields low [1] = t, (the low endpoint) and
high [1] = t, (the high endpomt). Two intervals overlap if
their intersection is not empty. The algorithm also sorts
the intervals in Lexicographic ordering. This can be
performed using a parallel sort algorithm like range-
partitioming sort or parallel external sort-merge
(Silberschatz et al., 2005). An interval set is sorted in
lexicographic ordering if whenever interval [I, jl<[h, k]
then either 1 <h or1=handj <k. Let IS denote an interval
set and let t;, t;, t,, denote all potential event points. Let
t. be high[last interval], which is an event point
representing a guard condition for the algorithm. Let

264

LIG (t) denote the Low Interval Group of t, which is the
set of mtervals I whose high[i] > = t, and low[1] <t. Let UIG
(t;) denote the Upper Interval Group of t, which is the set
of mtervals T whose low [i]<t,, and low [i] > = t,, where t;,,
15 the next event point. Then for every event pomnt t
and 1its next event point t.,, IG (t) = LIG (t) v UIG (t).
Thus, TG(t) for event point t, consists of the set of
intervals whose high [i] > = t, and low [i] <t; and the set of
intervals whose low [1] <t., and low [1] > =t, where t, 1s
the next event point of t,.

The grouping algorithm is implemented by the
procedure Parallel Determine Interval Groups as given
i Fig. 1, which can be mvoked with any mterval set IS to
be grouped into maximal groups, such that each nterval
group IG has the maximum number of intervals such
that for any interval T, and T, in IG, TN T, # .

Parallel Determine TInternal Groups algorithm
determines all potential event points that represent the set
of all distinct low endpoints in the interval set. In doing
that, the mterval set IS 1s partitioned and allocated to the
n processors using range partitioning on the intervals’
low end points. Each processor P, determines all potential
event points in its partition locally. The results form
processors P.., P, are merged together to form
event points.

The interval set IS and event points are replicated on
all n processors to be used in computing the maximal
interval groups. The event points are distributed on the n
processors in a round-robin scheme, where each
processor P, determines maximal interval group G, based
on its assigned event point locally. If the number of event
points m 18 less than the number of processors n, then m
processors are used. The maximal interval groups from
processors P,,...., P, are merged to produce the final
result.

A draft version of the algorithim appeared by Arman
(2006).

Example: Consider the interval set: {[0,1], [0,3], [0,5],
[0,7], [0.,9], [O,11], [2,13], [4,13]} and assume there are
4 processors PP, P, and P,.



Inform. Technol. J., 6 (2): 263-266, 2007

The algorithm sorts the interval set if it is not sorted
using a parallel sort algorithm. The algorithm then
partitions the interval set using range partitioning.
Assume the partition vector is <1, 2, 3>. Based on this
vector, intervals whose low end point is less than 1 are
placed on D,. Intervals whose low end points are greater
than or equal to 1 and less than 2 are placed on D,.
Intervals whose low end points are greater than or equal
to 2 and less than 3 are placed on D;. Finally, intervals
whose low end points are greater than 3 are placed on D,.
Thus, IS is distributed as follows:

D, contains [0,1], [0,3], [0,5], [0,7], [0,9] and [0,11]
D, contains no intervals

D, contains [2,13]

D, contains [4,13]

Therefore, the processors determine the event points
in parallel as follows:

P, determines event point: O
P, determines no event point
P, determines event point: 2
P, determines event point: 4

The event pointes from P,,..., P, are merged to
produce the event points 0, 2 and 4.

After replicating IS and event points on all n
processors, the algorithm distributes the event points on
the n processors in a round robin scheme. Therefore,

P, is assigned event point O

P, is assigned event point 2

P, is assigned event point 4

P, is not assigned any event point and is free to be used
if needed

The processors determine maximal interval groups
based on the event points as follows:

Event point t; = 0.

Next event point t; = 2 determined from the event
points

P, determines the maximal group IG (t; =0) = {[0,1],
[0,3], [0.,5], [0,7]. [0,9], [0,11 ]}

Event point t, = 2.

Next event point t; = 4 determined from the event
points

P, determines the maximal group IG (t; = 2) = {[0,5],
[0,7], [0.9] [O11], [2,13]}

Event point t, = 4.

Next event point t; = Null since 4 is the last event
point

P,determines the maximal group IG (t, = 4) = {[0,5],
[0,7], [0.9], [O.11], [2,13], [4.13]}

265

4007 - Parallel algorithm
-8~ Sequential algorithm

~ 3004

(sec

_§ 2007

me

Ti

1004

04 T T T 1
1 2 3 4 5

No. of inervals {tens of thousands)

Fig. 2: Comparative performance for the parallel vs.
sequential algorithm

The maximal groups from the processors are merged
to produce the final result.

Performance evaluation of the parallel algorithm: To
perform the simulation study of the parallel algorithm, a
cluster of 4 PCs running a Linux operating system is
used as a parallel machine. The implementation language
is C with an MPT package. For the sequential algorithm
one of these PCs is used. The implementation language
is C. To determine the performance of the new parallel
algorithms, simulations of the algorithms were performed
for random interval databases with 10000, 20000, 30000,
40000 and 50000 intervals. The sequential algorithm was
used to generate the maximal interval groups and the time
taken for each case was recorded. The same random
interval databases were used by the new parallel algorithm
and the time taken for each case was also recorded. These
numbers were plotted for different interval databases as
shown in Fig. 2.

Tt is important to study the speedup obtained from
parallelizing the algorithm of generation of maximal
interval groups in interval databases, since it i3 an
important metric for measuring efficiency of parallel
database algorithms and the benefit of parallelizing
algorithms in general. The ideal situation is obtaining
linear speedup. However, a mumber of factors work
against this ideal situation like startup costs, interference
and skew. For example, when the number of intervals in
the interval database is 50000, the time for the sequential
algorithm version 1s about 320 sec and the time for the
parallel algorithm version 1s about 90 sec. The speedup 1s
320/90 = 3.55 (sublinear) and that is close to the number of
processors/machines used in the simulations which is 4.

CONCLUSIONS

A parallel algorithm for generating the maximal
interval groups has been presented. The algorithm is
very cruclal to answer certain queries about the intervals
in an interval set. The algorithm can be used to generate
the maximal interval groups needed in many systems,



Inform. Technol. J., 6 (2): 263-266, 2007

including TDS, expert systems and temporal database
systems. The algorithm makes us of intraoperation
parallelism to speed up the generation of the maximal
mterval groups in an mterval database. A simulation
study demonstrates that the speedup obtained is
sublinear.

REFERENCES

Aiken, A., J. Hellerstein and J. Widom, 1995, Static
analysis techmques for predicting the behavior of
active database rules. ACM Trans. Database Syst.,
20: 3-41.

Arman, N., 2004. An efficient algorithm for generating
maximal mterval groups i interval databases. J.
Applied Sci., 6: 19-27.

Arman, N., 2006. A parallel algorithm for generating
maximal interval groups in interval databases based
on schedule of event pomts. Proc. 4th Intl.
Multiconference on Compu. Sci. Inform. Technol.
(CSIT2006), IS pp: 454-457, April 5-7, Applied Sci.
Umniv. Amman, Jordan.

Berman, K. and I. Paul, 2003. Fundamentals of Secuential
and Parallel Algorithms, Thomson Asia Pte Ltd.,

Singapore.
Chamberlam, S., 1994, Autcmated Information
Distribution mn Bandwidth-Constrained

Environments. IEEE MILCOM Conference Record,
Vol. 2, October, 1994,

Chimm, S. and G. Madey, 1997. A Framework for
Developing and FHvaluating Expert Systems for
Temporal Business Applications. Expert Systems
with Applications, 12: 393-404.

Cormen, T., C. Leiserson, R. Rivest and C. Stemn, 2001.
Introduction to Algorithms. McGraw-IHill Book
Company.

Harnison, 1., 1993, Active Rules in Deductive Databases.
ACM CIKM, Washington DC., USA.

Silberschatz, A., H. Korth and S. Sudarshan, 2005.
Database System Concepts, McGraw Hill.

266



