Information Technology Journal 4 (4): 465-468, 2005
ISSN 1812-5638
© 2005 Asian Network for Scientific Information

Graph Representation: Comparative Study and Performance Evaluation

Nabil Arman
Palestine Polytechnic University, Hebron, Palestine

Abstract: In this study, a comparisen is conducted among three major representations of directed graphs to
illustrate the main advantages and disadvantages of each representation scheme. In addition, a performance
evaluation study is presented. The reason for conducting this study is to show that one of the schemes is
overlooked despite the fact that it has more information than the other schemes and this mformation 1s very
useful in improving the performance of many graph algorithms.

Key words: Graph representation, path matrix representation

INTRODUCTION

Graph algorithms have attracted a large amount of
research efforts due to the important role of these
algorithms m many application domains. The efficiency of
many graph algorithms is largely dependent on the
underlying graph representation scheme. Many graph
algorithms are well-documented m the literature, including
specialized texts and research papers!' .

In this study, three directed graph representation
schemes are compared, namely path matrix, adjacency

matrix and adjacency lists.
GRAPH REPRESENTATION SCHEMES

The path matrix scheme 1s explained mn detail, since it
1s not very popular compared to the other two schemes,
which are well-known.

The path matrix graph representation: The path matrix is
a special matrix/structure that has been used in answering
the generalized forms of partially and fully instantiated

" and in

computing the transitive closure of a database relation®™.

same generation queries in deductive databases!

In this matrix, the rows represent some paths m the graph
starting from the roots/source vertex to the leaves.
Basically, depth-first search is used to create the paths of
the graph. Instead of storing every vertex in all paths, the
commeon parts of these paths can be stored only once to
avoid duplications. If two paths P, = <a,, a,...., a,, b,

comimeon parts <a,, a,,
i the two consecutive rows of the matrix as <a,, a,,
b, b,
where, the first n entries of the second row are empty. To

prevent the duplicate storage of the vertex in the matrix, a

465

{(a) Graph form

0 1 2 3 4 5 6
0 8 r o
1 p 02
2 g f e d
3 2,6
4 q 1,2
5 23
6 i h c a
7 b
8 n 52
9 k 6,3
10 1 2.1
11 i 6,3

(b) Matrix representation

Fig. 1: Directed graph in (a) Graph form (b) Matrix
representation

different techmique 1s used; for the first visit to the vertex,
it 1s entered into the matrix and the coordnates of its
location is recorded. On subsequent visits, instead of
entering the vertex itself, its coordinates are entered into
the matrix (a pointer to the already stored vertex). In this
way, only a single copy of each of the graph’s vertex 1s
guaranteed to be entered in the matrix. Moreover, there
will be only one entry (either a vertex or a pointer) in the
matrix for each edge m the graph. In Fig. 1b, the matrix
representation of the graph given inFig. la 1s presented.

Inform. Technol. J., 4 (4): 465-468, 2005

0,0 0,1 0,2 1,2 1,32 2,3 2.4 2,5 2.6 3,5 4,1 4.2 5,2 53 6,3
r o p 0.2 g f e d 2.6 q 1.2 m 2.3 i

6,4 6,5 6,6 7,6 8,0 8.1 a1 92 10,1 10,2 11,2 11,2

h C a b N 5.2 k 6,3 1 a1 i 6.3

Fig. 2: The matrix as linear array

Row No Row beginning Row end Row end entry

0 0 2 o

1 2 3 <0,2>

2 3 6 d

3 5 5 <2,6>

4 1 2 <1,2>

5 2 3 <2,3>

6 3 4] a

7 6 & b

8 0 1 52>

9 1 2 <6,3>

10 1 2 <01>

11 2 3 <6,3>

Fig. 3: Matrix representation row beginnings and endings

X¥ s r o p g f e d q m i h c a b n k 1 i

S 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

r 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

k 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

i 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Fig. 4: Adjacency matrix representation

In that graph, there are 25 edges and in its matrix
representation there are 25+2 =27 nonempty entries in the
matrix (another two entries for the vertex s and n). An
immportant advantage of this matrix structure is that it
stores a path from each root to each vertex that is
reachable from that root.

Tn the implementation of this sparse matrix, the empty
entries are not stored explicitly. The matrix can be stored
sequentially row by row as shown in Fig. 2. For each row,
storing the column number, as shown in Fig. 3, of its first
non-empty entry and the sequence of non-empty entries
in the row 1s sufficient. Thus, the size of the stored matrix
1s much smaller than the original relation and matrix.

The adjacency matrix graph representation: The most
straightforward scheme of directed graph representation
is the so-called adjacency matrix representation. A V-by-V
array of Boolean values 13 maintained, with a[x,y] set to
true if there 1s an edge from vertex x to vertex y and false
otherwise. The adjacency matrix representation for the
graph in Fig. la is shown in Fig. 4. (1 means true and
0 means false). The first step i representing a graph 1s to
map the vertex names to mtegers between 1 and V to make
it possible to access information using array indexing!.

The adjacency list graph representation: In this
representationy, all the vertices connected to each vertex

466

Inform. Technol. J., 4 (4): 465-468, 2005

are listed on an adjacency list for that vertex. This can be
easily done with linked lists. The linked lists are built as
usual, with artificial nodes for the begmmng of the lists
kept in an array adj indexed by vertex. To add an a
directed edge connecting x to y to this representation of
the graph, we add y to x’s adjacency list“],

COMPARISON CRITERIA

The three representation schemes are compared
according to the following criteria:

Intelligence and pruning: Algorithms that use the path
matrix representation can benefit from the properties of
this representation to prune or bound the traversing of
the vertices 1n the matrix, since it terminates the search
once a pointer goes beyond the vertex that the algorithm
tries to reach and then backtracks from there. On the other
hand, algorithms that use the adjacency matrix or
adjacency list representations may explore wrrelevant parts
of the graph. Assume we are trying to determine whether
there is a path from vertex v, to vertex v, (a query that
might be called a path existence query). If DFS starts with
v,, then it will consider all vertices reachable from that
vertex until it reaches v, (if v, is reachable). However, if
DFS starts with v, the path matrix
representation, then it will consider vertices reachable
from that vertex as long as no vertex coordinates goes
beyond the coordinates of vertex v, or until it reaches v,
(if v, is reachable).

and uses

Database usage (vertex clustering): An important
advantage of the path matrix representation is that it
stores a path from the source vertices to all vertices
reachable from that source vertex. Clustering vertices
around source vertices reduces the number of page [/Os
necessary to process data needed in many graph
algorithms. On the other hand, the way adjacency matrix
representation keeps its information increases
dramatically the number of page I/Os necessary to
process data in graph algorithms.

Path ordering: In the path matrix representation, paths
have implicit order according to the rows they appear in.
On the other hand, neither adjacency matrices nor
adjacency lists have such order. This ordering plays a
crucial role m pruning the search of graphs once a certain
path number has been exceeded.

Space requirements: As explained before, in the
implementation of the path matrix representation, the
empty entries are not stored explicitly. The matrix can be

467

stored sequentially row by row as shown in Fig. 2. For
each row, storing the column number, as shown in Fig. 3,
of its first non-empty entry and the sequence of
non-empty entries in the row 1s sufficient. Thus, the size
of the stored matrix is much smaller than the original graph
and matrix. The space requirement is actually proportional
to [E[+|s| where, |E| 15 the number of edges and [s| 1s the
number of source nodes (|s| 1s generally a constant).

However, the adjacency matrix representation needs
space proportional to |V and the adjacency list
representation needs
Therefore, the space needed by path matrix representation
is less than the space needed by the other two
representation schemes.

space proportional to |V|+HE|

Vertex skipping in searching: In certain path algorithms,
such as finding the path length between two vertices, or
finding the maximum/minimum path length between two
vertices, or even checking the path existence between two
vertices, path matrix representation enables these
algorithms to skip many vertices on different paths,
instead of considering all vertices on these paths, using
the row beginmngs and row ends to determine the paths
or path lengths.

PERFORMANCE EVALUATION

To determme the performance of graph algorithms
that use the three representation schemes, simulations
were performed for random graphs with 2000 edges of 4
different out degree values from 1 to 4 as shown in Fig. 5
at the begimning of the paragraph, since it 1s needed to
introduce the paragraph, since it is needed to introduce
the paragraph.

For more accurate results, the algorithms were
executed 5 times for each case and the average was taken
(Fig. 5). The path existence query was chosen as
representative of graph algorithms and was tested for 100
randomly generated queries. The number of nodes visited
to answer these queries was determined for the three
representation schemes. When the graph obtained from
the execution of the algorithms was examined, two things
were observed. First, the number of nodes visited in the

—¢— Path matrix representation
- Adjacency matrix
—— Adjecency list

No. of vistited nodes

Graph outdegree

Fig. 5: Comparative performance for the path existence

query of different graph representation schemes

Inform. Technol. J., 4 (4): 465-468, 2005

algorithm that uses the path matrix representation (where
the row beginnings and tow ends of the matrix
representation are visited only) 1s less than the number of
nodes visited m the other two schemes of graph
representation (where all nodes along the paths are
visited). Second, increasing the outdegree of the
underlying graph 1s in favor of the path matrix
representation scheme. This 1s due to the fact that larger
outdegree values of the underlying graph generate longer
paths of the graph, which results in skipping larger
number of nodes in the graph.

CONCLUSIONS

This study presents a comparative study and
performance evaluation of algorithms that use different
graph representation schemes. Fach representation
scheme is explained briefly and its main advantages and
disadvantages 1s presented. The criteria are useful in
choosing the appropriate representation scheme for
different intemal or external algorithms. The study also
highlights the advantages of path matrix representation
scheme smce 1t 18 overlooked in graph theory related

algorithms.

468

REFERENCES

Armar, N., 2005, Graph representation comparative
study. Proc. 2005 Intl. Conf Foundations of
Computer Sci. (FCS'035), Tune 27-30, 2005, Las Vegas,
TUSA, Accepted.

Armar, N., 2004, An efficient algorithm for the
generalized partially instantiated same generation
query in deductive databases. The Intl. Arab T.
Inform. Technol., pp: 142-146.

Arman, N, 2003. An intelligent algorithm for the
generalized fully mstantiated same generation query
mn deductive databases. Prec. 4th Intl. Arab Conf.
Inform. Technol. (ACTT 2003), December 20-23, Arab
Acad. Sci. Technol., Alexandria, Egypt, pp: 224-228.
Cormen, T., C. Leiserson, R. Rivestand C. Stein, 2001.
Introduction to Algorithms. McGraw-Hill Book
Company.

Toroslu, I., G. Qadah and L. Henschen, 1994
An efficient database transitive closure algorithm.
I. Applied Intelligence, 4: 205-218.

