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Abstract—The autonomous cache management in Content-
Centric Networking (CCN) results in suboptimal caching de-
cisions and implies cache-ignorant routing. Cache coordination
and similar improvements hence have been the subject of several
recent studies. The proposed solutions, however, are either
impractical due to their massive coordination overhead, or of
limited benefit since they cannot realize perfect coordination.

We present CoMon, an architecture for network-wide
coordinated caching. CoMon realizes an affordable, yet highly
effective, coordination by assigning monitoring and cache-aware
(re)routing tasks to only a few nodes, through which the
majority of traffic is expected or enforced to pass. CoMon, by
design, maximizes the diversity of cached contents and reduces
cache replacements. In addition, our simulation study using
ISP topologies, shows that CoMon under several scenarios,
when coordinates through a small ratio of the nodes, reduces
the server hit ratio (i.e. the ratio of requests consumed by the
origin content providers) of both CCN and notable related
work, remarkably.

Index Terms—Information-Centric Networking; Coordinated
Caching; Cache-Aware Routing

I. INTRODUCTION

The Internet, which was designed for end-to-end commu-
nication, is dominated by content distribution and retrieval
applications, today. This mismatch between the design and
usage, beside the enormous (and ever-increasing [1]) volumes
of traffic generated by content distribution applications, will
soon disable the Internet from satisfying its users’ demands.
To cope with this situation, a broad research direction called
Information-Centric Networking (ICN) proposed for a radical
shift from the traditional host-centric communication model to
an information-centric one. Notable ICN architectures include:
Content-Centric Networking (CCN), 4WARD, DONA, and
PSIRP (for an overview, please refer to [2]). A key feature
of those architectures (that promises to improve the efficiency
gains for Internet content distribution) is in-network caching,
in which each node autonomously caches part of the contents
passing through it, based on its local view of content access
(i.e. names of requested contents and their properties, like
frequency and recency of requests). In CCN [3], for instance,
contents are cached at all intermediate nodes on the path from
the content provider to the consumer (which is commonly
known as on-path caching).

The autonomous cache management, although simple and
does not cause coordination overhead, has three drawbacks.
First, it is likely to cause unnecessary large cache redundancy

(it thus poorly utilizes the available, already limited [4], cache
space). Second, it may result in suboptimal selection for con-
tents that are given priority for caching as the node’s view of
content access is likely different from the global (i.e. network-
wide) view. Third, it implies cache-ignorant routing, and
hence the system can take advantage of cached contents only
when they are located opportunistically on the default path
towards the origin content providers. These drawbacks have
already raised doubts about achieving the intended caching
efficiency of ICN, which match with prior results (e.g [5],
[6]) showing that in some cases only a very small ratio of
content requests hits a cache. Consequently, several studies
(e.g. [6]–[9]) proposed to address these drawbacks through
cache coordination.

We argue that coordinated cache management can be highly
beneficial only when it is based on timely and network-
wide knowledge of both content access information and cache
configurations (i.e. which content is cached in which node?).
The distributed nature of ICN beside the massive volumes and
high dynamics of coordination information, however, render
such coordination (hereafter, perfect coordination) impractical.
Therefore, despite the considerable number of prior attempts to
coordinate caching in ICN, they either favour low coordination
cost over high performance gain or vice versa. To the best
of our knowledge, a solution that realizes a close-to-perfect
coordination with an affordable coordination overhead is still
missing, and this is what we aim to achieve in this study.

Towards this end, we present and evaluate CoMon (our main
contribution in this paper), an architecture for Coordination
that is based on lightweight Monitoring of content access in-
formation and bounded advertisement of cache configurations.
CoMon’s design is guided by two requirements:

1) Realizing network-wide caching goals: CoMon should
allow the network operator to apply network-wide goals
(e.g. maximizing the diversity of cached contents in the
entire network).

2) Incurring low coordination cost: The first requirement
should be fulfilled with an affordable coordination over-
head. We focus on the signalling overhead, which mainly
relates to the number of coordinating nodes.

CoMon exploits the topological properties of the nodes
to perform content monitoring and cache-aware (re)routing
at only a few nodes, through which the majority of traffic
is expected or enforced to pass. These nodes work with



a controller who takes network-wide decisions in a central
way. CoMon is consistent with CCN, the most studied ICN
architecture. Its design concepts, however, are applicable for
the other architectures. Our evaluations show that CoMon can
remarkably reduces the server hit ratio of both the original
CCN and prior work (particularly, [10] and [11]).

The rest of the paper is organized as follows. We give
background information in Section II, motivate our study
through an example in Section III, and discuss related work in
Section IV. Next, we introduce CoMon in Section V, describe
its specifications in Section VI, and evaluate it in Section VII.
We finally conclude the paper in Section VIII.

II. BACKGROUND

In this section, we first give an overview for CCN in Sec-
tion II-A, before introducing the main terms and performance
metrics that we use along the paper in Section II-B and
Section II-C, respectively.

A. Primer on CCN

Content-Centric Networking (CCN) [3] is a network archi-
tecture for future Internet proposed by Van Jacobson, aiming to
coincide the Internet’s design and its usage (which is currently
dominated by content distribution traffic [1]). CCN adopts
three core concepts:

1) Networking named content: Contents are identified and
addressed by unique hierarchical names (rather than lo-
cations or host addresses).

2) On-path caching: Contents are cached along the delivery
path from the content provider to the consumer.

3) Consumer-driven communication model: Named con-
tent is first requested by an Interest packet, and then the
content itself is delivered inside a Data packet on the
same path (in reverse way).

The node model in CCN consists of three data structures:
the Content Store (CS) (or cache) holds Data packets passing
through the node. The Pending Interest Table (PIT) maintains
content names of recently received, but still not consumed
(i.e. satisfied), Interest packets along with the interfaces (or
faces) through which they were received. The Forwarding
Information Base (FIB) maintains a list of potential next-
hop interfaces for different content names and prefixes. With
this node model, CCN nodes handle packets as follows: upon
receiving an Interest packet, the node first looks for a matching
name in its CS; if found, it forwards the corresponding Data
packet to the same interface from which the Interest was
received. Otherwise, the node looks for the name in its PIT;
if a matching entry is found but the interface from which it
was received is not listed, the new interface is appended to the
same entry, and nothing otherwise. This way, the nodes avoid
forwarding duplicate copies of identical Interest packets. If no
matching PIT entry found, a new PIT entry is created, then
the FIB is consulted, and the packet is forwarded accordingly.

When receiving a Data packet, the node first looks for the
content name in its PIT; if found, the Data packet is cached in
the CS (LRU or LFU is used for content replacement, in case

the CS is full) and then forwarded to all the listed interfaces,
and lastly the respective PIT entry is deleted. If no matching
PIT entry found, the packet will be discarded.

B. Terminology

We summarize here the terminology that we use along
the paper: uncoordinated or original CCN refers to CCN as
described in [3] (or Section II-A). Coordinated CCN refers to a
CCN-like system whose nodes (or part of them) exchange their
content access views and/or cache configurations to coordinate
their caching-related decisions. If cache configurations are
exchanged, the coordination implicitly enables for cache-
aware routing. Perfect coordination implies that all network
nodes exchange timely information of both their content access
views and cache configurations.

C. Performance Metrics

In this paper, we use the following, commonly used, metrics
to evaluate the performance of CCN-like systems:

1) Cache diversity: The ratio of unique contents in the
caches (to the overall cache capacity of the network).

2) Server hit ratio: The ratio of the Interest packets con-
sumed by the origin content providers.

3) Path stretch: The number of hops that the Data packet has
traversed, normalized over the number of hops between
the consumer and the origin content provider.

4) Content replacements: The number of content replace-
ments occurred. More replacements cause more memory
access and processing power from the caching nodes.

III. ILLUSTRATIVE EXAMPLE

This example illustrates both the benefits and challenges
of coordinating caching decisions in CCN 1. As shown in
Fig. 1, there is a network A and a scenario consisting of
seven Interest packets. ti denotes the time-stamp at which
each Interest packet was issued. The network A comprises two
ingress nodes N0, N1, and one egress node N2 (connecting A
to the rest of the Internet). Each of N0 and N1 has a cache store
(CS) that is capable of holding one content, whereas N2 has no
CS. N0 and N1 use LFU for cache replacements (LRU is used
in case of equality). c0 and c1 abstract clients connecting to N0

and N1, respectively. The server S abstracts all origin content
providers. We assume that distance(N2, S) = 10 hops.

The example compares the performance of four different
systems: a system without coordination, a system applying
perfect coordination (as defined in Section II-B), and two
systems applying partial coordination. In both the two sys-
tems with partial coordination, we assume that all the nodes
participate in coordination; they differ in the information the
nodes exchange among each others for coordination. In the
first (hereafter, partial-1), the nodes exchange only content
access information, while in the second (hereafter, partial-2)
they exchange only cache configurations.

1This is an extension for an example from [12]. More precisely, our example
considers more aspects (covering all the cases that relate to our study), using
a more comprehensive scenario and more evaluation metrics.



TABLE I: Performance Results of the Illustrative Example

No coordination Partial coordination (1) Partial coordination (2) Perfect coordination
Cache diversity (1+0.5+1+0.5+1)/5 = 80% (1+0.5+0.5+0.5+1)/5 = 70% (1+1+1+1+1)/5 = 100% (1+1+1+1+1)/5 = 100%
Server hit ratio (1+1+1+1+1)/5 = 100% (1+1+1+1+1)/5 = 100% (0+0+1+0+1)/5 = 40% (0+0+1+0+0)/5 = 20%

Path stretch (12+12+13+13+12)/62 = 100% 2 (12+12+13+13+12)/62 = 100% (1+2+13+2+12)/62 ≈ 48% (1+2+13+2+2)/62 ≈ 32%
Replac. / node (1+1+0+1+1+1+1)/7 ≈ 86% (1+1+0+0+1+1+1)/7 ≈ 71% (0+0+0+1+0+0+1)/7 ≈ 29% (0+0+0+0+0+0+0)/7 = 0
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Fig. 1: Topology and Scenario of the Illustrative Example

In both the uncoordinated system and partial-1, Interest
packets are forwarded along the shortest path towards S, and
consumed either by S or opportunistically by a cache on
the path. As for the other two systems, Interest packets are
forwarded either towards the other caching node (if the content
is cached there), or towards S otherwise.

Fig. 1 shows, at each time-stamp ti+ (i.e. after ti and before
ti+1), the content cached at each of N0 and N1, in each
of the four systems. In both the uncoordinated system and
partial-1, each node ranks the observed contents, according to
its knowledge of content access, and caches the top ranked
one. In the other two systems, the network-wide goal is to
diversify cached contents; that is, each node ranks the observed
contents, according to its knowledge of content access and
global knowledge of cache configurations, and caches the top
ranked content unless it is cached by the other caching node;
in that case, it caches the second ranked content.

The results, based on four commonly used performance
metrics (Section II-C), are summarized in Table I, comparing
the four systems from t3 onwards (i.e. after all the caches
became full). As to be expected, the results show that the
system with full coordination outperforms the others (for all
the four metrics), and that the two systems with partial coor-
dination (particularly partial2) outperform the system without
coordination3. However, this superiority comes with price (i.e.

2 The denominator (i.e. no. of hops till S) = 12+12+13+13+12 = 62.
3Note that N0’s local view of content access without coordination is the

same as with perfect coordination. This is attributed to N0’s central position,
and because none of the Interest packets issued by c1 were consumed by N1’s
cache. Nevertheless, this knowledge alone was not sufficient for N0 to take
decisions as efficient as if the cache configuration of N1 was also known.

the coordination cost), represented by the volume of traffic that
need to be exchanged for coordination between N0 and N1.

IV. RELATED WORK

Existing solutions for coordinated caching in ICN can be
classified as either indirect (implicit) or direct (explicit). Both
classes aim to outperform uncoordinated CCN (in terms of one
or more of the metrics listed in Section II-C). With indirect
coordination, nodes do not need to exchange coordination in-
formation among each others (or exchange little information).
Instead, each node takes decisions independently according
to a predefined strategy (allowing for implicit cooperation),
based only on its local content access view. Notable exam-
ples include: [6], [13], Leave Copy Down (LCD) [11], and
probabilistic caching [10]. In the solutions that apply direct
coordination (e.g. [7]–[9]), in contrast, the nodes take caching-
related decisions based on the information they explicitly
exchange among each others. This way, solutions with indirect
coordination generally favour low coordination cost over high
performance gain, while direct coordination solutions make the
opposite. Due to space constraints, we do not describe each of
those solutions individually; recent survey [2], [14] give more
details than we can provide here.

To the best of our knowledge, among existing ICN coordi-
nation solutions, only the designs of [8] and [9] may realize
almost perfect coordination (as defined in Section II-B). To
do so, either all the network nodes [8] or all ingress nodes
[9] should participate in the coordination. The high coor-
dination overhead of those solutions, however, likely makes
them impractical. Therefore, each of the two papers proposed
a lighter version of its original solution. As for the other
solutions, although their evaluations show that they outperform
the uncoordinated CCN with relatively low coordination cost,
their gains are still limited compared to what can be achieved
with perfect coordination. This is obvious, for instance, when
comparing the performance of the original coordination solu-
tions of [8] and [9] to their respective lighter versions.

That said, as yet there is no solution that can realize (almost)
perfect coordination with an affordable cost. This is the goal
that CoMon (our solution for coordination) aims to achieve.
While a preliminary version of this work appeared in [15],
this paper describes CoMon’s design in detail and evaluates it
through extensive simulations with realistic settings.

V. COMON: A HIGH-LEVEL OVERVIEW

Coordination can be done either within a domain or can
involve multiple autonomous systems. The CoMon version



that we present in this paper is designed to work in a domain-
wide scale. Each domain (or network) consists of a set V of
nodes (with cardinality |V |). We assume homogeneous cache
capacities for all the nodes. We let c and C denote the cache
capacity per node and the overall cache capacity of the entire
domain, respectively (i.e. C = c.|V |).

Fig. 2 shows the system architecture of CoMon. It consists
of the following three components:

1) Caching Controller (CC): Each domain has a controller
that: (i) aggregates monitored content access information,
(ii) calculates and commands caching-related decisions,
and (iii) advertises cache configurations in the routing
plane of only a set M ⊂ V of nodes. Motivated by
prior results (e.g. [16], [17]), showing that centralized
management can significantly decrease coordination cost
and complexity, we chose to implement a centralized CC.

2) Caching Nodes (CNs): These are similar to CCN nodes
[3] in that they have routing and caching capabilities.
However, instead of taking autonomous decisions, each
CN caches and evicts contents as commanded by the CC.
In response to a command implying to cache contents,
the node: (i) identifies which of these contents are not
already in its cache, (ii) requests each of them by an
Interest packet (i.e. prefetching), and creates a respective
PIT entry and initializes it with a null interface, and
(iii) stores the respective Data packets when arrive after
verifying their integrity and provenance (to avoid cache
poisoning). The CN appends the interface information
of matching Interest packets that arrive before the CN
receives the corresponding Data packets to the respective
PIT entries.

3) Caching Nodes with Monitoring and Re-routing capa-
bilities (CNMRs): A set of M ⊂ V nodes are selected as
CNMRs. In addition to a CN’s regular functions4, each
CNMR: (i) monitors each Interest packet passing through
it, and records its content’s names and characteristics (e.g.
number of times it has been requested during the current
observation period), (ii) periodically (as determined by
the CC) uploads the recorded content information (here-
after, monitoring reports) to the CC, and clears them
afterwards, and (iii) receives lists of cached contents from
the CC, and (re)routes Interest packets accordingly.

Please note that the system operation described above
implies off-path caching and supports cache-aware routing.
It also gets rid of CCN’s requirements of performing cache
replacements and signature verifications at line rate.

VI. COMON: DESIGN SPECIFICATIONS

In this section, we describe the design specifications of
CoMon that are not detailed in Section V.

4From here ahead, we use the term node in a generic way for referring to
any node v ∈ V (i.e. either CN or CNMR), and use CN for referring to a
node u without monitoring nor re-routing capabilities (i.e. u ∈ V : u 6∈M ).
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Fig. 2: CoMon Architecture (CC: Caching Controller; CN: Caching Node; CNMR:
Caching Node with Monitoring and Re-routing capabilities). The coordination

messages are unsolicited Data packets, belonging to a reserved name prefix; it can be
determined whether they are legitimate or not by verifying the contained signatures.

A. Caching-Related Decisions

After each observation period (i.e. after receiving new
monitoring reports from the CNMRs), the CC calculates
caching-related decisions according to the network-wide goals
specified by the network operator. In particular, the CC has to
determine: (i) the contents that are given priority for caching,
and (ii) their positions in the network. Those decisions implic-
itly determine the redundancy degree for each selected content
as well as its caching duration (each cached copy is preserved
till a more recent decision implies that it has to be evicted).
The above-described system operation implies that the CC has
a full control over the entire caching process, which makes
CoMon compatible with any network-wide goals.5

Without losing the generality, we experiment CoMon in this
paper with an exemplary network-wide policy: Maximizing
the diversity of popular contents cached inside the network,
thus favouring data availability over the hop count required
for data delivery inside the network. This policy was also
adopted in several studies (e.g. [6], [9]), and it mainly aims
to minimize the network traffic that crosses other domains
because the transit cost is commonly charged according to the
traffic volume [19]. In the following, we describe how the CC
implements the aforementioned two decisions accordingly:

1) Content Selection for Caching: The CC selects con-
tents that should be given priority for in-network caching by
maintaining a list containing the names of both the currently
cached contents and the recently monitored ones. It calculates
the popularity score fi for each content i, and ranks the
contents accordingly. Given our exemplary goal to maximize
the diversity of cached contents, the top C ranked contents are
selected for caching (C denote the overall cache capacity). In
our experiments (Section VII), we use the LFU algorithm for
calculating the popularity scores.

5Please note that this design allows the CC to mitigate cache pollution
attacks at a network-wide scale, which we expect to be more effective than
prior node-level (i.e. autonomous) mechanisms like [18]. We leave the design
and evaluation of such add-on mechanism for future work.



2) Content Placement (Content-to-Cache Distribution):
Assuming that both content popularity and nodes’ betweenness
centrality (BC) scores have power-law distributions, Wang et
al. [20] observed that, with our approach for content selection
(Section VI-A1) and the exemplary network-wide goal of
maximizing content diversity, a high network performance is
achieved when the contents with highest popularity are placed
in the network core (i.e. on the nodes that have highest BC
scores) while the less popular ones are placed at the edges.

Motivated by the aforementioned observation, CoMon
places contents in the network as follows: First, the BC score
for each node v ∈ V (counting the total fraction of all shortest
paths in the network that pass through v [21]) is calculated.
Second, the nodes are sorted by their BC scores in descending
order. Third, the selected contents, from the most to least
popular, are assigned iteratively on the sorted nodes.

B. Reducing the Frequency of Changing Cache Configurations

Changing cache configurations after each observation pe-
riod, according to the newly calculated caching decisions,
results in: (i) signalling overhead for delivering both the
caching assignments (from the CC to the nodes) and the list
of newly selected contents (from the CC to the CNMRs),
beside (ii) computational and memory access overhead both
for updating the CNMRs’ FIBs and for content replacements.

In order to mitigate this overhead, CoMon implements a
technique in which the CC first calculates the feasibility of
changing (FoC) the set Hc of currently cached contents to the
set Hn of newly selected contents:

FoC = 1−

∑
x∈Hc,x∈Hn

fx∑
y∈Hn

fy
(1)

where fx and fy denote the newly calculated popularity
scores of contents x and y, respectively. The CC then changes
the current configurations only if the resulted FoC value was
above a preset threshold.

C. Cache-Aware Routing (CAR)

CoMon implements CAR as follows: each Interest packet is
forwarded along the shortest path towards the corresponding
origin content provider till it encounters a CNMR. Only
that (i.e. first encountered) CNMR checks whether the re-
quested content is among the currently cached contents or
not (according to the list it received from the CC). If not,
the original path is preserved; otherwise, the CNMR adds
the ID of the matching node (node IDs are treated as con-
tent names; hereafter, node names) as a name prefix to the
original content name, and reroutes the packet towards the
identified node name. For example, if the content ”/org/ieee-
ccnc/papers/comon.pdf” is cached at N7, the CNMR changes the
name to: ”/N7/org/ieee-ccnc/papers/comon.pdf”. In either case,
the CNMR before forwarding the packet, sets a ”checked”
flag, so that next encountered CNMRs skip the aforementioned
checking step.

This procedure requires that each node stores additional
|V | − 1 FIB entries, one towards each of the other nodes in
the domain, so that all the nodes can route packets toward
each others.

D. Selection of CNMRs

Intercepting all or the majority of traffic by CNMRs is
essential for two reasons: First, it enables the CNMRs to gen-
erate accurate monitoring reports (which increases the quality
of the consequent caching decisions). Second, it increases the
chance to reroute Interest packets to local caches.

The corresponding CNMR selection problem can be ex-
pressed as follows: ”Given a domain consisting of a set V
of nodes, which set M ⊂ V of nodes should be selected as
CNMRs such that their aggregate traffic coverage is maximized
while |M | is minimized?”. This problem is known to be NP-
hard [22], and we hence aim at a heuristic selection.

Among existing solutions (for an overview, please refer to
[22], [23]), we chose the group betweenness centrality (GBC)
[24], which counts the total fraction of all shortest paths that
pass through at least one node in a given group of nodes. That
is, the |M | nodes with the highest GBC score are selected as
CNMRs. GBC is an extension for the well-know betweenness
centrality (BC) metric [21], which is considered to be highly
correlated with the network traffic [25] (particularly in scale-
free networks, like ISP topologies and the Internet). GBC,
however, was shown to be more effective than using the same
number of nodes with highest BC scores [26].

While these features are appealing, GBC does not guarantee
a complete or very high traffic coverage. The coverage could
be even worse in CCN-like networks since caches and PITs
may filter part of the traffic before it is intercepted by a
CNMR. In order to improve the traffic coverage achieved by
the above-described GBC-based placement, CoMon incorpo-
rates the following two techniques; when both work jointly,
they enforce each Interest packet to pass through a CNMR.

1) Monitor-Aware Routing (MAR): Ignoring the filtering
effects of caches and PITs for now, MAR modifies the original
routing strategy such that each Interest packet crosses at least
one CNMR. We propose two versions of MAR (hereafter,
MAR-V1 and MAR-V2). Both versions involve two routing
steps (only the first step is different). In MAR-V1, the ingress
node first routes the packet towards its closest CNMR (after
adding the node name of the designated CNMR as a prefix
for the original content name). Next, the designated CNMR
removes the added name prefix, then routes the packet either
towards the matching local node if the content is cached, or
towards the respective origin content provider otherwise.

It is obvious that, unless the default path contains a CNMR,
MAR results in additional routing hops. MAR-V2 aims to
minimize this overhead by selecting the destination CNMR
in the first routing step (i.e. at the ingress node) according to
the requested content name. This is done using the FINDING-
FIRST-CNMR Procedure (Algorithm 1), which is adapted from
the Routing-with-Content-Filtering (RFC) algorithm [27]. The



ingress node passes two parameters to the procedure: (i) its
own name, and (ii) the name of the requested content.

In Algorithm 1, the procedure (lines: 5 – 13) compares the
costs of all the matching paths (i.e. from the ingress node
towards the egress node through which the origin content
provider is accessed6) that contain CNMR(s); the total path
cost (line 8) sums up two values: the cost from the ingress
node to the CNMR (line 6) and the cost from the CNMR to the
egress node (line 7). The procedure then selects the lowest cost
path (lines: 9 – 12), and among the CNMRs locating on it, the
name of the ingress node’s closest CNMR is returned (line 14).
The ingress node in turn updates its FIB accordingly, so it
can route upcoming Interest packets towards the same content
name without recalculating the destination CNMR again.

Note that, compared to non-MAR CoMon, MAR-V1 re-
duces the FIB overhead of CNs to O(|V | − 1), since each
CN needs only to reach the other |V | − 1 nodes; one of them
is labelled as its closest CNMR. As for CNMRs, their FIB
overhead is the same as with non-MAR CoMon; the same
applies to the FIB overhead both for CNs and for CNMRs
when MAR-V2 is applied.

Algorithm 1 Finding the Best Route’s First CNMR
1: // Find the best route from an ingress node s towards content’s

corresponding egress node t that crosses CNMR(s). Returns the
CNMR mc (closest to s)

2: procedure FINDING-FIRST-CNMR(s, t)
3: // Initialization
4: min sum← largest spc . spc: shortest path cost
5: for each CNMR m in M do
6: compute spc(s,m)
7: compute spc(m, t)
8: sum = spc(s,m) + spc(m, t)
9: if sum < min sum then

10: min sum← sum
11: mc ← m
12: end if
13: end for
14: Return mc

15: end procedure

2) Forward-Till-Be-Monitored (FTBM): As mentioned
earlier, Interest packets in CoMon (as in CCN) may be con-
sumed by a cache or captured by a PIT before they encounter
a CNMR. To mitigate the effects of these filters, CoMon
implements FTBM, which works as follows: when a node
receives an Interest packet and finds a matching Data packets
in its cache or a matching PIT entry, the node adds a preserved
name prefix ”/served/” to the original name, and then forwards
the packet to the closest CNMR. That CNMR, in turn, extracts
the original content name, updates the monitoring information
accordingly, and drops the packet afterwards.

The additional overhead caused by FTBM is measured by
the number of hops traversed by the Interest packet after it
has been served till it reaches a CNMR. Please note that since

6We assume that each content’s origin provider is accessible through one
specific egress node only. However, extending Algorithm 1 such that to
consider the multi-egress case is straightforward.

the Interest is already consumed, this overhead does not apply
for the respective (relatively much larger) Data packet.

VII. EVALUATION

We performed a simulation study to evaluate both the
reduction in server hit ratio (SHR) that can be achieved
with CoMon (Section VII-B), and the hop count overhead
of MAR (Section VII-C). As for the other metrics listed in
Section II-C, CoMon by design (Section VI) can maximize
the cache diversity and reduces cache replacements. Before
discussing the results, we describe our simulation setup in
Section VII-A. All results represent the respective systems
after stabilization.7

A. Simulation Setup

We used ccnSim [28], a highly scalable CCN simulator. We
adapted ccnSim in order to produce the behaviour of CoMon.
We have also simulated the original CCN and two notable
coordination solutions: (i) ProbeCache [10] in which contents
are cached at each node with a probability determined by the
node’s distance from the requester (the closer the node, the
higher the caching probability); (ii) Leave Copy Down (LCD)
[11] in which a cache hit results in caching the content at the
direct downstream node. LRU was used for cache replacement
in CCN, ProbeCache, and LCD simulations.

We fed the simulator with real ISP topologies measured
by the Rocketfuel project [29]. We experimented with four
different topologies. However, since the conclusions equally
apply for all the topologies, we discuss the results of one
topology only: the Exodus ISP (AS 3967) topology, consisting
of 79 nodes and 147 bidirectional edges.

Each experiment was repeated 20 times. At the beginning
of a run, the simulator randomly picks d70%e of the network
nodes as ingress nodes, and three of the rest as egress nodes.
In each run, 1, 000, 000 content requests (i.e. Interest packets)
in total are generated from all clients modelled as Poisson
processes. Contents are permanently stored at servers located
outside the ISP. Each content is accessible via only one egress
router, selected randomly at the beginning of the run.

The simulations applied a high competition among the
contents on the available storage by using small cache sizes,
with a homogeneous size c = 10, and a relatively large
content population P = 100.C = 79, 000. Similar to most
of related work, following measurement results from the real
Internet, content popularity has been modelled as a Zipf
distribution: we performed simulations under varying content
distribution skewness (i.e. Zipf parameter) α ∈ {0.8, 1.2, 1.5}.
In addition, to catch a very bad case of unpopular contents,
we have also simulated an additional case modelling content
popularity by the Mandelbrot-Zipf (MZipf) distribution using
the parameters: α = 0.8 and q = 5.

With CoMon, we set FoC threshold to 0.2. As for CNMRs,
we experimented with two settings: (i) with the top d5%e GBC
nodes, and (ii) with all ingress routers (as in [9]). As to be

7For details, please refer to: http://www.infres.enst.fr/ drossi/ccnSim/ccnsim-
manual-0.3.pdf.



expected, changing the ratio of CNMRs did not affect the
traffic coverage as long as both MAR and FTBM are enabled,
thus the server hit ratio results were also almost identical;
we therefore show below only the results of the first setting.
Please note that the values of the first and third parts of the
signalling overhead (messages labelled (1) and (3) in Fig. 2)
with the first setting represent only about d5%e

d70%e the respective
values with the second setting.

B. Server Hit Ratio

Fig. 3 depicts the server hit ratio (SHR) results for the
different systems. CoMon was simulated both with MAR-V1
and MAR-V2, with FTBM enabled. The SHR results of both
MAR-V1 and MAR-V2, as to be expected (since both apply
same level of coordination based on same type and amount
of information), were almost identical, and therefore we only
show the results with MAR-V1. All in all, the results show that
CoMon remarkably reduces the SHR of the other systems. In
particular, CoMon reduces the SHR of LCD (the best among
the three other systems) by about 30% for α = 0.8. Although
the SHR results of all the four systems improve (i.e. decrease)
for larger α, 8 CoMon was always the superior with a notable
difference.

This superiority of CoMon confirms the utility of coordina-
tion based on global knowledge of content access information
and cache configurations. This knowledge enabled CoMon to
produce efficient caching-related decisions, which resulted in
maximizing the ratio of Interest packets that are consumed by
intra-domain caches.
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Fig. 3: Server Hit Ratios of Different CCN-like Systems

C. The Hop Count Overhead of MAR and FTBM

We aim here to measure the hop count overhead of both
MAR-V1 and MAR-V2, compared to the hop count in the
original CCN. To measure this overhead, we focus on hop
counts of the Interest packets which were consumed by origin
content providers. Fig. 4 plots the CDF of the hop count
distribution, counting the hops from the ingress node till the
egress node. The results, in general, show that the hop count

8Similar results have been observed for CCN, ProbeCache, and LCD
previously (please refer to [5] for explanation).

overhead of MAR is relatively small, but (as to be expected) is
slightly better with MAR-V2. For instance, while about half
the packets traversed a maximum of 4 hops without MAR,
this was achieved by about 31% and 35% of the packets with
MAR-V1 and MAR-V2, respectively. We consequently argue
that the positive impact of MAR on SHR (Section VII-B) pays
off the consequent hop count overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

P
(H

o
p
s
 <

=
 X

)

Hops

CCN
MAR-V2
MAR-V1

Fig. 4: CDF of Hop Count Distributions: MAR-V1 vs. MAR-V2 vs. CCN
(MZipf: α = 0.8, q = 5)

VIII. CONCLUSION

We presented a CCN-like architecture called CoMon. It real-
izes a reasonably priced, yet close-to-perfect, coordination, and
enables cache-aware routing, thus achieves an outstanding per-
formance. Table II summarizes which of CoMon’s techniques
enables to achieve which of the preset design requirements.

TABLE II: Mapping CoMon’s Design Requirements and Design Concepts

Realizing network-wide goals Incurring low coordination cost
The CC has a centralized control
over the entire caching process.

Employing few CNMRs with a
centralized control.

MAR and FTBM allow to gather
global content knowledge.

Each Interest packet is checked
only once.

CAR allows to fully leverage
cached contents.

The FoC technique reduces the
frequency of updates.

Our vision for CoMon is broader than its use for cache
coordination only. We are studying the extension of CoMon
in several directions, e.g. as an infrastructure for network
statistics, for the detection and mitigation of several attacks,
as well as in solving content’s versioning and consistency
problems. We are also considering the use of CoMon in a
multi-AS scenario where ASes maintain content-level peering
agreements to leverage each others’ cached contents.
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