
Constructing Use Case Models from Arabic User

Requirements in a Semi-Automated Approach

Sari Jabbarin and Nabil Arman*

Department of Computer Science and Engineering
Palestine Polytechnic University

Hebron, Palestine
*Corresponding author email: narman@ppu.edu

Abstract— Automated software engineering has attracted a large

amount of research efforts. The use of object-oriented

methodologies for software systems development has made it

necessary to develop approaches that automate the construction

of different UML models in a semi-automated approach from

textual user requirements. UML use case models represent an

essential artifact that provide a perspective of the system under

analysis or development The development of such use case

models is very crucial in an object-oriented development

methodology. The main principles used in obtaining these models

are described. A natural language processing tool is used to parse

different statements of the user requirements written in Arabic to

obtain lists of nouns, noun phrases, verbs, verb phrases, etc. that

aid in finding potential actors and use cases. A set of steps that

represent our approach for constructing a use case model is

presented.

Keywords- User Requirements, Use Case Model, National

Language Processing (NLP) tool.

I. INTRODUCTION

Object-oriented methodologies are used for software
systems development for the many benefits they provide like
software reuse, reducing software development costs, to name
just a few. Therefore, there is a need for development of
automated tools that can help in constructing different
components of an object-oriented software system.

A use case diagram shows a set of use cases and actors and
their relationships. Use case diagrams address the static use
case view of a system. These diagrams are especially important
in organizing and modeling the behaviors of a system. This
paper addresses the problem of generating a use case model
from user requirements, written in Arabic, in a semi-automated
approach. An Arabic natural language processing
tool/software, namely Stanford Tagger/Parser, is used to parse
different statements of the user requirements, written in Arabic,
to obtain lists of nouns, noun phrases, verbs, verb phrases, etc.
that aid in finding potential actors and use cases. A set of
steps that represent our approach for constructing a use case
model is presented.

II. RELATED WORKS

Recently there is a great interest in automating software
engineering activities. Many tools were developed to automate
different activities of software systems development like

normalizing relational database schemas, reverse engineering
of relational database and generating the corresponding entity-
relationship data model, …etc. [1, 2]. In addition, many CASE
tools were developed to aid in drawing different diagrams of
UML. For example, Rational Rose is an object-oriented
Unified Modeling Language (UML) software design tool
intended for visual modeling and component construction of
enterprise-level software applications [3].

Rational Unified Process (RUP) is an object-oriented Web-
enabled program development methodology. According to
Rational (developers of Rational Rose and the Unified
Modeling Language), RUP is like an online mentor that
provides guidelines, templates, and examples for all aspects
and stages of program development. RUP and similar
products, such as Object-Oriented Software Process (OOSP),
and the OPEN Process are comprehensive software
engineering tools that combine the procedural aspects of
development (such as defined stages, techniques, and
practices) with other components of development (such as
documents, models, manuals, code, and so on) within a
unifying framework [4].

More advanced tools were developed to automate software
engineering activities that are more complicated than just
aiding in drawing a UML diagram or checking its overall
structure. Arman and Daghameen proposed a systematic
approach that generates class diagrams from textual software
requirements. They presented some steps to build a matrix that
was used to obtain classes and their associations to generate
class diagrams [5].
Kothari proposed an approach that can extract the basic
elements for generating a class diagram from user
requirements written in a clear way. The Natural Language
Processing for Class (NLPC) can extract classes, data
members and member functions from the given user
requirements [6]. This approach was implemented as a
software tool to generate the class diagrams.

Seresht and Ormandjieva proposed an approach to
generate use case diagrams from software requirements, but
this approach depends on other models to obtain the use case
by combining two technologies: Recurcive Object
Model(ROM) and Expert Comparable Contextual (ECC)
Models. The ROM provides a formal graphical model of the
text and the knowledge it carries and the ECC can extract the
stakeholder role. This approach can generate the Context Use

 978-1-4799-3351-8/14/$31.00 ©2014 IEEE

Case Model (CUCM) by applying the knowledge included in
the ECC model to identify the actors and devising rules for
extracting CUCM elements [7].

Cayaba et al. proposed an approach called computer
automated use case diagram generator (CAUse), that can
generate the use case diagrams from a text described using a
special language called ADD [8]. However, this approach
depends on the ADD language to generate the use case
diagrams.

Mala and Uma proposed an approach to extract the object-
oriented elements of system requirements. This approach
started by assigning the parts of speech tags to each word in the
given requirements. Thus, this approach resolved the ambiguity
posed by the pronouns, the pronoun resolutions by normalizing
the text at the beginning. After that, the elements of the object-
oriented system such as names of the classes, the attributes,
methods and relationships between the classes, sequence of
actions, the use-cases and actors are identified by mapping the
‘parts of speech- tagged’ words onto the Object Oriented
Modeling Language elements using mapping rules [9].

III. CONSTRUCTING USE CASE MODELS

This section describes how the actors and use cases are
extracted from user requirements written in Arabic. There is a
need for an Arabic Natural Language Processing tool such as
the Stanford Tagger, which is used in this research to help in
splitting and tokenizing the Arabic user requirements text.
Once this is performed, a set of heuristics are used to construct
the use case model as presented in subsections A though E.

A. Stanford Tagger

Stanford Tagger is a piece of software that reads text in
some language, in our case Arabic, and assigns parts of text to
each word, such as noun, verb, adjective, etc., This software is
implemented in Java programming language. The tagger was
originally written by Kristina Toutanova. Since that time, Dan
Klein, Christopher Manning, William Morgan, Anna Rafferty,
Michel Galley, and John Bauer have improved its speed,
performance, usability, and support for other languages [10].

All user requirements are processed using the Stanford
tagger by writing the requirements in the text area provided
for that purpose as shown in Fig. 1.
A set of user requirements for a system implementing
ridesharing is used. The requirements were written in Arabic
and some of these requirements are used in our examples. The
ridesharing system includes many requirements. Two
examples are presented below:

يقوم السائق بتسجيل الدخول الى النظام ومن ثم يستطيع ا�ع
ن عن الرحله التي -
وقت الرحله : سيقوم بھا ويقوم في ھذه المرحله بتحديد ومتطلباتھا وتشمل

كما ويستطيع . و المسار الذي سيسلكه اضافة الى عدد المقاعد الفارغه) ا�نط
ق(
 .حذف رحلة بعد انتھاءھا او الغائھا

Figure 1. Stanford Tagger Screen Snapshot

يستطيع ايضا تتبع المسافرين باستخدام , يقوم السائق بقبول الركاب او رفضھم -

 .ان توفرت ھذه الخاصيه عند الركاب في النھايه يقوم بتسجيل الخروج GPSال

 In addition, Stanford Tagger uses a set of tags to describe
different components of a statement.
Stanford Tagger tokenizes the statements and uses a large
number of tags. Table 1 shows the ones used in our approach.

Table 1. Tags’ Descriptions

Tag Description

CC conjunction, coordinating

IN preposition or conjunction, subordinating

JJ adjective or numeral, ordinal

NN noun, common, singular or mass

NNP noun, proper, singular

VB verb, base form

VBD verb, past tense

VBN verb, past participle

VBP verb, present tense, not 3rd person singular

VBZ verb, present tense, 3rd person singular

B. Actors Identification

To identify the actors from the user requirements written in
Arabic, a set of heuristics are presented. These heuristics are
used to extract the actors from the tagging of the user
requirements generated from the Stanford Tagger. These
heuristics are presented as follows:

• If the statement is simple (i.e. it contains only a verb, a
subject and an object) then the actor is the main subject
in the statement.

e.g. يقوم السائق بتسجيل الدخول

Here the main subject is السائق and it’s the actor.

Generalization: If the statement is in the form of
<VBZ> < NNP> < NNP> <NNP> when using the
Stanford Tagger, then the first NNP is the actor. To
simplify referencing, the form can be write as <VBZ>
< NNP(1)> < NNP(2)> < NNP(3)>, where the subscripts
determine the order of the NNPs.

• When there are two statements combined with a
connection then, there are three cases:

a) The subject is the actor.
e.g. نمن ثم يستطيع النظام و لىإيقوم السائق بتسجيل الدخول
 اJع

الرحلةعن

The actor is السائق.

b) If the subject is redundant in the second statement

then the actor doesn’t change.

e.g. السائق من ثم يستطيع النظام و إلىيقوم السائق بتسجيل الدخول

الرحلةعن اJع
ن

The actor is السائق.

c) If the subject changes in the second statement then

this is another actor.

e.g. الراكب من ثم يستطيع النظام و إلىيقوم السائق بتسجيل الدخول
.اختيار الرحلة المعلن عنھا من خ
ل زيارة النظام

The actors are السائق and الراكب .

Generalization: If the statement is in the form of
<VBP> <DTNN> <NN> <DTNN> <IN> <DTNN> <
DTJJ> <CC> <VBP> <DTNN> <IN> <DTNN>
<WP> <VBD> <NNP> <CC> <NNP> <IN> <DT>
<DTNN> <NNP> <NNP> <NNP> <PUNC> <NN>
<JJ> <DTNN> <DTJJ> <CC> <DTNN> <WP>
<VBP> <NN> <IN> <NN> <DTNN> <DTJJ>
<PUNC> <CC> <VBD> <NN> <NN> <NN> < NN>
<CC> <NN> when using the Stanford Tagger, then
the first NN is the actor, or if there is an CC found in
the statement, then we check the first NN after the
CC, if this NNP is redundant after the CC then the
actor doesn’t change, but if the NNP has changed after
the CC then this is another actor.

• As mentioned previously, to simplify referencing,
subscripts are used. Thus the form is <VBP(1)>
<DTNN(1)> < NN(1)> <DTNN(2)> <IN(1)> <DTNN(3)>
<DTJJ(1)> <CC(1)> <VBP(2)> <DTNN(4)> <IN(2)>
<DTNN(5)> <WP(1)> < VBD(1)> <NNP(1)> <CC(2)>
<NNP(2)> <IN(3)> <DT(1)> <DTNN(6)> <NNP(3)>
<NNP(4)> <NNP(5)> <PUNC> <NN(2)> <JJ(1)>
<DTNN(7)> <DTJJ(1)> <CC(3)> <DTNN(8)> <WP(2)>
<VBP(3)> <N(3)> <IN(4)> <NN(4)> <DTNN(9)>
<DTJJ(2)> <PUNC> <CC(4)> <VBD(2)> <NN(5)>
<NN(6)> <NN(7)> <NN(8)> <CC(5)> <NN(9)>

C. Use Cases Identification

To identify the use cases from the user requirements, more
heuristics that can be used to extract the use cases from the
user requirements are presented.

• If the statement is simple (i.e. it contains only a verb, a
subject and an object) then the use case is the main
object in the statement.

e.g. يقوم السائق بتسجيل الدخول

The main subject is .and it’s the use case الدخول تسجيل

Generalization: If the statement is in the form of
<VBZ> < NNP> <NNP> < NNP> or in the form
<VBZ(1)> <NNP(1)> <NNP(2)> <NNP(3)> after using
subscripts when using the Stanford Tagger, then the
first VB is the use case.

• If the statement contains the connector (و) without any
verb or actor in the second statement then the second
statement is the use case.

e.g. يستطيع الراكب ا�نضمام إلى الرحلة و الحجز فيھا

In the above example, the statement contains a
connector (و) so there are two use cases 1- يستطيع
 يستطيع الحجز -2 ا�نضمام

Generalization: If the statement is in the form of
<VBZ> <NNP> <NNP> <IN> <NNP>
<CC><NNP><NNP> when using the Stanford Tagger,
then

a) The use case is the first VB with the second NNP.

b) The use case is the first VB with the first NNP after
the CC.

Again the form can be re-written using subscripts to
tags as, <VBZ(1)> <NNP(1)> <NNP(2)> <IN(1)>
<NNP(3)> <CC(1)> <NNP(4)> <NNP(5)>

• If the statements that contain the connector(أو) without
any verb or actor in the statement then the first verb in
the statement with the first noun after each connector
is a use case.

e.g. يستطيع الراكب ا�نضمام إلى الرحلة و الحجز فيھا أو ا�نسحاب
.منھا

In the above example, the statement contains a
connector (e.g. أو) so there are three use cases 1- يستطيع
 .يستطيع ا�نسحاب-3 يستطيع الحجز -2 ا�نضمام

Generalization: If the statement is in the form of
<VBZ> <NNP> <NNP> <IN> <NNP> <CC> <NNP>
<NNP> <CC> <NNP> <NNP> when using the
Stanford Tagger, then

a) The use case is the first VB with the second NNP.

b) The use case is the first VB with the first NNP after
the CC. The form after adding the subscript to each tag
is <VBZ(1)> <NNP(1)> <NNP(2)> <IN(1)> <NNP(3)>
<CC(1)> <NNP(4)> <NNP(5)> <CC(2)> <NNP(6)>
<NNP(7)>

D. Use Case Model Generation

To complete the generation of the use case model, a
structure that depicts the relationships among the
different tokens is needed. A matrix consisting of
columns with headings, which contain the potential use
cases, and rows with labels, which contain the potential
actors, is used. These are obtained from the heuristics
explained previously. The matrix is filled by arrow
symbols. An arrow means that an actor is associated
with one or more particular use cases as shown in
Table 2.

Once the matrix is constructed, the use case model is
obtained by taking an actor with all its associated use
cases to generate a use case diagram. The set of all use
case diagrams represent the use case model.
According to the above description, this approach can
be implemented easily to generate a use case model.

Table 2. Matrix of Potential Actors and their Use
Cases

E. Further Refinement to Use Case Model

In UML there are three associations between use cases,
namely "include", "extend", and "generalization".
From the matrix, we can obtain the "include"
relationship, by asking if a certain use case depends on
another use case based on the meaning or semantics.
So we can ask if the use case 1 is required by use case
2, then if the answer is "Yes" we can suggest there is
an "include" relationship and if the answer is "No" then
there is no "include" relationship between these use
cases. The "extend" and "generalization" relationships
can be handled similarly. These steps need human
intervention, thus our approach can’t be fully
automated but semi-automated.

IV. CONCLUSIONS

The proposed approach of developing use case models is
very essential in the practice of object-oriented software
engineering. This approach can be implemented and
incorporated in any Integrated CASE (Computer Aided
Software engineering) Tool to aid in the process of obtaining
the use case models from user requirements written in Arabic.
The approach has the main advantage of dealing with Arabic
language. In addition, a set of heuristics are presented to obtain
the use cases. These heuristics use the tokens produced by a
natural language processing tool, namely Stanford Tagger.

ACKNOWLEDGMENT

The authors would like to than the Software Engineering
Research Group (SERG) at Palestine Polytechnic University
(PPU) for their feedback to the original idea and Dr. Diya Abu
Zeina for his help with Stanford Tagger.

REFERENCES

[1] N. Arman, "Normalizer: A Case Tool to Normalize Relational Database
Schemas, Information Technology Journal, pp. 329-331, Vol. 5, No.
2, ISSN: 1812-5638, 2006.

[2] N. Arman, "Towards E-CASE Tools for Software
Engineering," International Journal of Advanced Corporate
Learning, pp. 16-19, Vol. 6, No. 1, 2013.

[3] http://searchciomidmarket.techtarget.com/home/0,289692,sid183,00.htm
l, accessed: October 15, 2013.

[4] "Rational Unified Process (RUP)": ch1, Prentice Hall 1990, ISBN 0-13-
629841-9.

[5] N. Arman. and K. Daghameen, “A Systematic Approach for
Constructing Static Class Diagrams from Software Requirements,”
International Arab Conference on Information Technology (ACIT2007),
November 26-28 2007, Amman, Jordan.

[6] P. Kothari, “Processing Natural Language Requirement to Extract Basic
Elements of a Class,” International Journal of Applied Information
Systems (IJAIS) , ISSN : 2249-0868.

[7] S. Seresht and O. Ormandjieva, “Automated Assistance for Use Cases
Elicitation from User Requirements Text,” 11th. Workshop on
Requirement Engineering, 2009.

[8] C. Cayaba, J. Rodil and N. Lim, "CAUse: Computer Automated Use
Case Diagram Generator", 2006.

[9] G. Mala and G. Uma, "Automatic Construction of Object Oriented
Design Models [UML Diagrams] from Natural Language Requirements
Specification", 2006.

[10] http://nlp.stanford.edu:8080/parser/index.jsp, accessed: October 1, 2013.

مديرال Potential Actors الراكب السائق

Potential Use Case

 تسجيل الدخول ← ← ←

 يستطيع ا�ع
ن ← ←
 تحديد متطلبات ←
 قبول الركاب ←
 ننبع المسافرين ←

 تسجيل الخروج ← ← ←
 يستطيع ا�نضمام ←
 يستطيع الحجز ←
 يستطيع ا�نسحاب ←
 يوفر تغذيه ←

 يستطيع اضافة ←

 يستطيع حذف ←

 تصنيف مستخدمين ←

 يستعرض الرح
ت ← ←

