
Palestine Polytechnic University

College of Administrative Science and Informatics
Information systems Department

Novel Algorithm To Determine Highly
Homologous Segmental Genome Duplication

Prepared by:
Talat Al sharabati

Project Supervisor
Dr.Mahmoud Al-saheb
Dr.yaqoub Ashhab

This project is submitted in partial fulfillment of the requirements for the degree of
B.Sc. in Information systems in Palestine Polytechnic University

January 2006

r. . lilllliM,fllj "'I . 'tg· ~ :'I iSi!fJ.l la,~ "
3z ' Palestine Poly±oehilc University

·'I! {PPU}
£The Library 3i.5It

Ass.1.$7.16.<ma. a»
Closs,.;,, ~. A F r

\,,. ~

Abstract

In the world of genomic research, projects aimed at revealing the complete

sequence of a given genome are usually cumbersome and tedious. The major

problem in these projects is that the long sequence of the genome should pass

two processes; 1) randomly cutting it into a huge number of short DNA

sequences known as Whole genome-shotgun reads (WGSRs), 2) thereafter

using computer programs to reconstruct the whole genome sequence. The main

drawback during the reconstruction process is the small fragments that come

from duplicated segment in the original genome. Segmental duplication is a

well known phenomenon which refers to blocks of DNA sequence that exist in

more than one copy in the genome. The objective of my project is to develop a

Windows-based system that can efficiently analyze and delineate segmental

duplications. in WGSRs databases. The main advantage of this system is its

simplicity for users as well as capability to be used for any WGSRs database.

Perl was used for developing this system because it is a very strong language in

string processing and analysis. In addition, Perl has many bioinformatics
modules that can facilitate programming for biological applications.

I

Dedication

<to my parent ancf fami{y ...

<to my instructor ...

<to my Jriencfs at tfe college...

Jo my partner wfo is waiting befind tfe occupation prison, Beffaf Af
qwasmah...

rto tne coming generation wfio wi{{ 6enefit from tfis project ...

To al wfo fave participated at completing tfis project...

II

Acknowledgement

First I would thank god for giving me the bless of thinking and studying

I would like to acknowledge my gratitude to all those who have helped me in

the writing of this project. First and foremost, I wish to express my sincere

thanks to Dr.Yaqoub al-ashhab and Dr.Mahmmoud al- sahib for their insightful

comments on an earlier version of the project.

I am also thankful to may friends for offering invaluable suggestions about the

project.

Special thanks go to Rula Al_sharabati for correcting my grammatical errors

and for translating.

Finally, I also thank my parent for encouraging, and giving me the suitable

environment

III

Gene Duplication Finder (GD Finder) is a program designed to analyze databases that

contain high number of shotgun reads that are produced by genome projects. Gene

Duplication Finder can easily and accurately delineate the genomic segments that extra

very similar copies somewhere else in the same genome. The program rely a Blast-based

approach to analyze the whole genome shotgun reads in order to detect the shotgun reads

that have similar extra copies. After detecting the duplicated shotgun reads, GD Finder

will construct and determine physical limits of the duplicated segments.

The program was designed in the Information Technology Department, Palestine

Polytechnic University, Hebron, and Palestine.

• How to Install the program

The following steps are needed to install the program:

1. Inside GD Finder folder, Click on Setup

2. Choose where to install (desired path).

• The main window of GD Finder allows the user to determine the WGSRs file and
the coverage fold (as shown in the next figure).

Note: The coverage fold should be obtained when you download the WGSRs from the
web sit of the genome project that you are interested in.

~ ~

DSegmen&al Duplie&ion Finder

Determine T he WGS Read File:

Determine T he Coverge Fold:

Browse

Analyzing..

• After determining the path of the WGSRs database and the coverage fold, you can
start the automatic analysis of the whole database by clicking the bottom
[analyzing] as shown in the previous Figure.

• The program will automatically move to the next screen, which is shown below.

• In order to construct the segments that contain the duplicated sequences, you have
to choose construct from the menu bar, then click duplication segments.

[ASHIA.Te,NI
File Constarct

«wow«wwpesg]t of Segmant Duplication Finder«wwwwwt
gz tug tu tr tee4wt we@wewwteetwtcwttcuucp4eteweeuwteetwtetwtceetetewwtteeetetwteteewe4wee4we4wee±ewe

\ll'GSRs;that are expected to have highly homologur extra copier: is :

wGSRO 0002a

\ll'GSR1 0003

\ll'GSR2 0005

wGSR3 0006

G SR4 0011

wG SR 5 0012

wGSR 6 0026

\ll'GSR7 0033

wGSR8 0034

wG SR 9 0036

\ll'GSR10 0040

wG5R11 0041

wGsR12 0042

• The program will automatically analyze the results of WGSRs duplication finder.
• The final results of the segment duplications finder will appear in a new screen

such as the one shown below.

♦

mEHpIIGmNAASAD.III
File y wt t kt tot«eek ocoooooeweewoeekeseeeeewe° "

The GSR Dublication is

segmant0 0002a!0003

segmant1 0005 !0006

segmant2 0011 1 0012

segmant3 0033 1 0034

segmant4 0040 !0041 !0042

segmant5 0056!0057

segmant6 0063!0064

segmant7 0066!0067

segmant8 0072!0073

segmant9 0088!0089

Segmant1O 0093!0094 !0095!0096!0114

segmant11 00991 0100

segmant12 0026

===========-=segmant13 ==-==~~:~========--==========------------===============----

iilllllllllllll

Acknowledgement

First I would thank god for giving me the bless of thinking and studying

I would like to acknowledge my gratitude to all those who have helped me in

the writing of this project. First and foremost, I wish to express my sincere

thanks to Dr. Yaqoub al-ashhab and Dr.Mahmmoud al- sahib for their insightful

comments on an earlier version of the project.

I am also thankful to may friends for offering invaluable suggestions about the

project.

Special thanks go to Rula Al_sharabati for correcting my grammatical errors

and for translating.

Finally, I also thank my parent for encouraging, and giving me the suitable

environment

III

Table of Contents

Abstract... I
Dedication.. II
Acknowledgment ·

................ ··......... III
Table of Contents

·· IV List of Tables
List of Figure~.··· .. ···

···
VII
VIII

Chapter One (Introduction)

1.1 Overview. 1 ··
1.2 Genome and Gene... 1
1.3 Gene Duplication... 2
1.4 How genome are sequenced... 3
1.5 Detection of segmental duplication.. 4

Chapter two (System Specification)

2.1 Introduction :.. 7
2.2 System Objectives ·................................... 7
2.3 Functional Requirement...... .. 7
2.4 Non-Functional requirements.. 8
2.5 Allocation of Roles of System Developers.. 8
2.6 Feasibility Study .'........... 9

2.6.1 Alternatives... 9
2.6.2 Cost-Benefit Analysis... 9
2.6.3 Economical Study :........................ l 0
2.6.4 Risk Analysis 13
2.6.5 Technical Feasibility 14
2.6.6 Legal Feasibility.. 14
2.6.7 Time Feasibility333..3.3%33%.3.3·3333%%333......,,]4

Chapter three (Software Requirements Specification)

3.1 Introduction •••••••···
3.2 Functional details description •·:······•···························•·•······•·•··•·· 16
3.3 Information Description •·····•···•····················•··•··•·· .

3.3.1 System Data Flow Diagrams , .
3.3.2 Data Dictionary •·····························•··•··•····· .

16

19
19
20

IV

Chapter Four (System Design)

4.1 Introduction.. 22
4.2 Input/output Design 23

4.2.1 Segmental Duplication Finder... 23
4.2.2 Gene Duplication Result.. 24
4.2.3 Segmental Gene Duplication Result... 24

4.3 Functional Design.. 26
4.4 Test Plan.. 34

Chapter Five (Implementation and Coding)

5.1 Introduction 35
5.2 Coding Programming Language... 35
5.3 Establishment of Development Environment.. .. :.. 37

Chapter Six (System Testing)

6.1 Introduction.. 42
6.2 Unit and Module Testing.. 43
6.3 Integration Testing... 45
6.4 System Testing... 46
6.5 Acceptance Testing... 46
6.6 Sample Snapshots.. 46

6.6.1 Segmental Duplication Finder.. 46
6.6.2 Gene Duplication Result.. 47
6.6.3 Segmental Gene Duplication Result.. 48

Chapter Seven (Maintenance)

7.1 Introduction •·····•····· ···························........ 50
7.2 Establishment of the production environment.. .
7.3 Migration and Deployment Plan.......-........-........%........3.3%33..3..3...%%%%-...-.6.
7.4 Maintenance Plan .

50
50
51

References · 53
54 Appendix .

V

List of Tables

Table Page

Table 2.1 Development Hardware Costs 10
Table 2.2 Development Software cost : . 11
Table 2.3 Development Human Resource Cost 11
Table 2.4 Implementation Hardware Cost... 12
Table 2.5 Implementation Software Cost.. 12
Table 2.6 Total Cost... 13
Table 2.7 Time Schedule... 15
Table 3.1 Data Dictionary.. 21
Table 6.1 Testing Schedule... 42
Table 6.2 Information gene Test Cases... 45

VI

List of Figures

Figures Page

Figure 1. 1 Gene Duplication.. 2
Figure 1.2 Whole Genome Construction and Assembly Process.. 3
Figure 1.3 Detection of Gene Duplication 6
Figure 2.1 Gantt chart 15
Figure 3.1 System Data Flow.. 19
Figure 4.1 Segmental Duplication Finder .-.. 23
Figure 4.2 Gene Duplication Result 24
Figure 4.3 Segment Gene Duplication Result 25
Figure 4.4 determine the location genome data file Flowchart....................... 26
Figure 4.5 Formatting data file Flowchart 27
Figure 4.6 Run MegaBlast Flowchart . 28
Figure 4.7 Extract information from output MegaBlast file flowchart............. 31
Figure 4.8 Searching to find the duplication on gene flowchart...................... 33
Figure 5.1 Install Active Perl 5.8.7.813... 38
Figure 5.2 Finish install DzSoft Perl Editor V5.6.0.2.................. 39
Figure 5.3 DzSoft Perl Editor V5.6.0.2. 40
Figure 6.1 Information gene Execution Paths flowchart............................. 44
Figure 6.2 Segmental Duplication Finder Snapshot................................... 47
Figure 6.3 Gene Duplication Result Snapshot 48
Figure 6.4 Segmental Duplication Result Snapshot 49
Figure 7.1 Software Change Request Form.. 52

VII

Is Introduction
~
3 ti
\i ,l
E ; /

"

Overview.

► Genome and Gene .

. ► Gene Duplication.
~

-~ ►How genome are sequenced.
~

► Detection of segmental duplication

Chapter One Introduction

1.1. Overview

Computers and the World Wide Web are rapidly and dramatically changing the face of

biological research. "Theoretical and computational biology have existed for decades on

the "fringe" of biological science. But within just a few short years, the flood of new

biological data that produced by genomics efforts and, by necessity, the application of

computers to the analysis of this genomic data has begun to affect every aspect of the

biological sciences. Research that used to start in the laboratory now starts at the

computer, as scientists search databases for information that might suggest new

hypotheses" .1

Bioinformatics is a new field of science. It refers to the application of computational tools

and techniques to the management and analysis of biological data. The term

bioinformatics is relatively new, and some time it is interchangeable with term

"computational biology". In particular, bioinformatics is often the term used when

referring to the data and the techniques used in large-scale sequencing and analysis of

entire genomes.

1.2. Genome and Gene:

Genome is the sum of all genetic material encased in every cell of a given organism. The

genome contains the genetic material (DNA) is a form of either one or more very long

strings (each called chromosome), that represent the specific order of 4-chemical units

known as nucleotides (A, C, G, T.
A gene can be defined as a substring of a given chromosome. It represents the specific

order of the 4-nuclotides in that substring. According to biologist, gene is defined as the

'Jambeck, Per and Gibas, Cynthia. Developing Bioinformatics Computer Skills. 1°" Edition O'Reilly &
Associates.200 I.
Lesk, Arthur. Introduction to Bioinformatics. Oxford University Press. 1' Edition 2002
Lesk. c, Bo+fo 1aties. Oxford University Press. 1 Edition 2002. S), Arthur. Introduction to iiointorm: '

-1

Chapter One Introduction

unit of inheritance that encodes specific information which can dictate a specific
biological function in the cell.

1.3. Gene Duplication:

Gene duplication is a very common phenomenon in most organisms. It occurs when an

error in DNA replication leads to the duplication of a region of DNA containing a

(generally functional) gene. The significance of this process for evolutionary biology is

that if a gene is under natural selection, many mutations will lead to loss of functionality

and thus are selected against. When a gene is duplicated selection may be removed from

one copy and now the other gene locus is free to mutate and discover new functions.

Alternatively, the gene may acquire deleterious mutations and become a pseudo-gene. 4

A B C
-IDT + B8®"+ EE2A

A'
Genome I

Duplication process

Gene A

Gene A'
String Similarity

= 90-99%

Figure [1.1] Gene Duplication Diagram.

Figure 1.1 shows a hypothetical genome as a single string chromosome that contains several
genes (indicated by shaded boxes). The difference in shading between A (old copy) and A' (new

) h h ges that were acquired by the recently duplicated copy A'. copy represents t e new c an

: : iblishe Oxford, UK 2® Edition 2002. Br T.A.G BIOS Scientific pul lisher. JXIO rown, . . enomes.

-2

Chapter One Introduction

1.4. How genome are sequenced:

Since the genomes are usually very long single or multiple chromosomes (strings), there

is no biological technique to read and determine the whole sequence of a given genome at

once. Therefore, biologists usually solve this technical problem by dividing the long

chromosome into a large number of small fragments, these fragments are known as

WGSRs (Whole Genome Shotgun Reads). The generation of these fragments is totally a

random process, which means that the cutting process will generate a random number of

WGSRs, each has a random length. After finishing the cutting process, each WGSR is

sequenced by a simple biological technique and the order of its nucleotides (characters) is

determined. The next step is to find the order of the fragment in relating to each other.

This is achieved by haring more than one string of the whole genome there afire, by find

the overlapping parts of the different fragment the whole genome is built. This process is
call genome ensample by WESR overlapping. 5

Theoretical [Genome Copy 1 I
WGSR1 I WGSR2 I WGSR3 I WGSR4 I

cutting Genome Copy 2 I wasRs, WGSR6 WGSR7 I
wGSR8 , wasR I I

patter Genome Copy 3 p GSR1o I WGSR11. _wasR12 I WGSR13 I WGSR14 I
~

Coverage fold =# of copy

result '{ Database of

.. [=» __WGSRs
----- ' I----,

i-------, 3.-8

. ~

'· 2
Assembly algorithm

1 2
,.

5 6 .
10

Figure [1.2] Whole Genome Construction and Assembly Process.

5 B T A G BIOS Scientific publisher. Oxford, UK 2° Edition 2002. rown, . . enomes.

.3

Chapter One Introduction

It is important to note that the number of copies of the genome (whole string) that is
under sequencing and assembly process should be at least two in order to facilitate the

process of finding overlapping tips in WGSRs. The number of genome copies is usually

referred as coverage fold. For example, when three copies of a given genome are cut

down into small fragments (WGSRs) in order to construct and assemble the whole

genome, the coverage fold is said to be 3.

1.5 Detection of segmental duplication:

Recent segmental duplications are blocks of genomic DNA sequences that are highly

similar (90%-98%) and they range in size from 1kb to 200 kb. segmental duplications can

be divided into two classes; inter-chromosomal and intra-chromosomal. Due to their size,

these segments can include full and/or partial genes, regulatory sequences and high-copy

repeats.6

Before the era of whole genome sequencing, several segmental duplications have been

discovered based on extremely tedious experimental analyses. Such experimental results

were not enough to delineate the pattern of segmental duplication along any given

genome. However, the availability of a number of complete or nearly complete genomic

sequences has opened the possibility to explore segmental duplications through

bioinformatics analysis. In the last few years, attempts were made to study recent

segmental duplication and to determine their map in human, mouse and rat genomes.7

• A proposed methodology:

Recently, several in silico algorithms were proposed to detect highly homologous

duplications. Bailey, J. et al developed two independent in silico detection strategies.
The first method termed whole-genome assembly comparison (WGAC) is a BLAST

6 Eichler EE. Recent duplication, domain accretion and the dynamic mutation of the human genome.
Trends Genet. 2001Nov;1711):661-9. •

7 Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental duplications within
mammalian organisms. Cold Spring Harb Symp Quant Biol. 2003;68:115-24.

-4

Chapter One Introduction

based approach that performs an all-to-all comparison of assembled genomic

sequence. 8 The second method have been developed assuming that the genome

assembly is correct so it compare the WGSRs with the theoretically assembled
genome.9

The method we present in this· project is partially based on one of Bailey's approaches

termed whole-genome shotgun detection (WSSD) with some modifications that were

introduce to improve the performance and accuracy. Our system will be able to

distinguish unique and duplicated sequence on the basis of:

1. The depth of coverage.

2. The average degree of sequence identity of whole-genome shotgun sequence

reads aligned to each others

In essence, duplicated regions will show an increased depth-of-coverage and a significant

reduction in the average degree of sequence identity, due to the matches with the

duplicated new copies.

• AM M HF Trask BJ Eichler EE. Segmental duplications: organization and
8 Batley JA Yavor , assa ' ' . G R 2001 J ·11(6)·1005 17 :. ? th genome project assembly. ienome tes. Jun; r: v-! '. impact within the current uman id? MD.My EW.Li PW · k RA R · rt K Samonte RV Schwartz S, A ams , yers , 1 , 9 Batley JA Gu Z Clar , einer 3 ' · 2002 A ., » 3 ital dt lications in the human genome. Science. ug Eichler EE. Recent segmen a upI
9;297(5583): 1003-7.

.5

Chapter One Introduction

A A'
DNA copy1 'NNW 2 I 3 ~ I 4 [ITT? :

s A A'
DNA copy1 FSND 16 ~1½½½½1 18 l~'\.'\.W!---1

A A'
DNA copy1 '-SNN] p I 11 ™ 112 [® 3

Blast Analysis:
1. Duplication occur

~

-~~~~i-l ---1

~
. I . 4 &-,."-.~WI . ' ·1

~-
12 ., _....,,~'\,~

Predictor 95%
• Coverage foid ~6 = 3X2
• Similarity 95%

2. Unique gene

Coverage fold = 3
Similarity 100% • ·

Figure [1.3] Detection of Gene Duplication.

• What is Blast

The Basic Local Alignment Search Tool (BLAST) is one of the most popular software

tools in biological research. It tests a query sequence against a library of known

sequences in order to find similarity. BLAST is actually a collection of programs with

versions for query-to-database pairs such as nucleotide-nucleotide, protein-nucleotide,

protein-protein, nucleotide-protein and more. 10

10 Lesk, Arthur. Introduction to Bioioformatics. Oxford New York. First published 2002

.6

CHAPTER TiiO ,=--.\ © I ::: : :,:::::::::::::,:,,,,,,,,,,,:,:,,,,,,,,,::::::,: V

~ ;i
d System Specification

0
► Introduct1on.
► System Objectives. .

. . ' '

► Functional Requirement.

►Non-FunctionalRequirement.

► Allocation of Roles of System

Developers.

► Feasibility Study.

E

Chapter Two System Specification

2.1 Introduction

In this chapter I will describe the system specifications. The description will include the
following topics:

1. System objectives.

2. Functional and Non-Functional requirements.

3. Allocation of roles of system developers.
4. Constraints.

5. Feasibility study (Alternatives, Cost-Benefit analysis, and Risks Analysis).
6. Resources and Cost.

7. Time Schedule for development.

2.2 System Objective

The overall goal of this system is to develop efficient software that can identify segmental

duplication in genome of interest to molecular biology researcher.

2.3 Functional requirements

The followings are the functional requirements that should provide by the system:

1. The system should be able to determine the location of the genome data file.

2. The system should be able to determine number of coverage fold.
3. The system should perform data formatting that is necessary for the subsequent

Mega-Blast program.
4. The system should be able to run the Mega-Blast program on the formatted data.
5. The system should be able to analyze the Mega-Blast output in order to

determine the duplicated segments in the tested genome sequences.

.7

Chapter Two System Specification

2.4 Non-Functional requirements

A group of non-functional requirements is highly demanded in order to have a useful and

easy applicable system. These non-functional requirements include:

• Product Requirement

1. User friendly: attractive and competitive methodology for displaying interface.
2. Usability: easy and simple for use GUI.

3. High speed program: The system enables the user to perform all the processes in

a short period of time, and take the results of the processes very quickly,
4. High performance system: The system will provide very high quality output, with

less cost.

5. Portability: running on different operating systems without any problems on the

application.

6. Accuracy: the system must provide a high level of accuracy.

• Process requirement

The system and its explanatory documentation must be delivered on 18 January, 2006.

2.5 Allocation and roles of system developers:
1. Leader: responsible of planning, scheduling and controlling flow of system

development processes.
2. Programmer: responsible of the system programming, implementation testing, so

he must have enough experiences in Perl development environment.

3. Software engineer: responsible for the documentation and tracing of the

development stages of the software.

.8

Chapter Two System Specification

2.6 Feasibility Study

For a system to be developed from scratch, the most important issue is to evaluate its benefits
versus its cost.

In this section, we will describe the system alternatives that could be adapted; a Cost-Benefit

analysis is conducted to justify the decision for developing the system, and an evaluation of

the risks that may face the system and the development process.

2.6.1 Alternatives:
• Environment:

We will use the windows XP as an operating system to implement this program. We decided

to use this operating system because of its easiness, flexibility and wide distribution.

Perl is a popular programming language that's extensively used in areas such as

bioinformatics and web programming. Perl has become popular with biologists because it's

so well-suited to several bioinformatics tasks.

The following sections illustrate some of Perl's strong points.

1. Ease of Programming.

2. Free Source.

3. Rapid Prototyping.

4. Portability, Speed, and Program Maintenance
So I have chosen this language for the previous reasons.

2.6.2 Cost-benefit analysis

Experimental analysis was the only way for molecular biologist to determine the nature and

location of segmental duplication in the genome of interest. In addition to include laborious

procedure, such experimental work would require at least one to three years (ref). In contrast

to the tedious experimental work, the proposed bioinformatics system would provide answers
for biological questions in very short time. The other advantage of this system over the

experimental procedure is the possibility to apply it to any genome that would be sequenced

in the future.

.9

Chapter Two System Specification

Biology Provider benefits:

l. Decrease the biology time and efforts works.

2. Increase the efficiency by decreasing the error rate during process.

3. Significantly reducing the cost of such research activities.

2.6.3 Economical Study
In this section, resources and costs are described both for the development and
implementation requirements.

• Development Costs :

Hardware

The following table lists the costs for the hardware that needed to develop this

project:
No. Item Quantity Specifications ·Cost

I. Microsoft compatible PC. 1 Pentium 4 2400 MHz $900

512KB cache memory

RAM512MB

Hard Disk drive 40 GHz

Floppy drive 1.44

CD-ROM52X

Monitor 15°
Keyboard and mouse

2. Printer 1 HP 3420 $85

Total $985

Table [2.1] Development Hardware Costs

-10

Chapter Two System Specification

Software

Table [2.2] shows the software products required and their costs for the system
development and implementation.

No. Software Cost
.

I. Windows XP professional $200
2. Active Perl-5.8.7.813 - MS Win32 Free
3. BLASTALL free
4. DzSoft.Perl.Editor.v5.6.0.2.WinALL $80
5. Microsoft Office2003 $450

Total $730

Table [2.2] Development Software cost

Human Resource cost:
As shown in Table [2.3] the team costs are estimated as the market prices for

software developers.

Number Team Role Hours/week Cost\hour Total
1 Programming 20 $5 $100

2 Software Engineering 20 $5 $100

3 Interface Design GUI 20 $5 $100

Total cost/week $300

Table [2.3] Development Human Resource Cost.

• Implementation Cost

This section lists the cost needed to implement this project:

Hardware:

The system can work on a computer Pentium II but it is better to work on a

- 11

Chapter Two System Specification

computer which has these qualifications.

No. Item Quantity Specifications Cost
3. Microsoft compatible PC 1 Pentium 4 2400 MHz $900

512KB cache memory

RAM512MB

Hard Disk drive 40 GHz

Floppy drive 1.44

CD-ROM52X

Monitor 17°
Keyboard and mouse

Total $900

Table [2.4] Implementation Hardware Cost

Software
In this section the software needed to implement this project listed:

No. Software Cost

1. WindowsXP $200

2. BLASTALL free

Total $200

Table [2.5] Implementation Software Cost.

• Other accessories cost:
Other costs such as books, papers, pens, and transportations are estimated to be $20/ week.

• Total Cost:
Table 2.6 below represents the total cost of all system cost:

- 12

Chapter Two System Specification

Number System Cost Total
1 Development cost $5215
2 Implementation cost $1100

4 Other cost $300

Total cost $6615

Table [2.6) Total Cost

2.6.4 Risk Analysis
(

This section contains the risks that may appear in the project, and the possible

solutions:

1. The Israeli occupation has began an arrest campaign in the west bank which may

disruptive our project because no one can predict the future.

The project was divided between me and him so I will face a problem to fill

the gap of his absence.

2. Shortage of development time:

The time that specified to develop such as project is not enough as we hope

to be. I may face problems in collection information specially I have to work

alone at this project

3. We have little biology background which would help us developing this system.

For that reason I have to spend a lot of time surfing the web, visiting the

library, and asking people who are specialized in this field.

-13

Chapter Two System Specification

2.6.5 Technical feasibility

This project requires a programming experience in Perl. Team work members have fairly

good experience and capabilities to develop such applications. They have experience in

different programming languages such as C, Visual Basic, Perl and others. In addition, we

can solve some obstacles through seeking help from experts people in the university or

through bioinformatics forums on the web.

2.6.6 Legal feasibility

Perl is distributed under the GNU's General Public License, which implies that anyone can

use, modify, and distribute the source code and documentation of perl. Any modifications

made to the source code derived from the GNU-licensed source code must be freely made

available to other. This distribution model has encouraged volunteers worldwide to

contribute to the perl software.

2.6.7 Time Feasibility

In this section we show how we have allocated the given period over the development stages.

The time interval that was available to develop the system was 15 weeks. We have

distributed this interval over all of the development process. Table [2.6] shows the time

schedule for all development tasks.

• Time Schedule:

As shown below in Table [2.7], all system development tasks are distributed over the

available fifteen weeks. Some of these tasks were performed in parallel. Figure [2.1] shows

the timeline distribution precisely.

.14

Chapter Two System Specification

Task Work Time in weeks
Tl Information gathering and System specification. 2
T2 Software requirement specification. 2
T3 System Design. 6
T4 Coding and implementation. 6
T5 System Testing. 3
T6 System Maintenance. 2
T7 Documentation. 15

Table [2.7] Time Schedule

• Gantt chart for time schedule:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

4
5
6

7

Figure [2.1] Gantt chart

-15

+

l CHAPTER THR££ ~·· . !'' ::: : : :::::::::,::,::::,:,:,:,:,:,::,:,::::::,:,:::::;.
; ; ;

=>Software Requirements
Specifications

· ► Introduction.
. . . ~ ► Functional details description.

~

·►Information Description.

· ❖. Data Flow Diagram.

❖ Data Dictionary

Chapter Three Software Requirements Specification

3.1 Introduction

In this section the software specifications will be addressed and identified in more
technical terms, and in more details.

In this section we will cover:

• Functional description of our system, in which all the supported functions

and services will be identified and modeled.

• Behavioral models in which the behavior of the system will be modeled by

using a data flow diagram.

• Data dictionary in which a complete description of each system entity will

be provided, with its name, type, input and output.

3.2. Functional Detail Description:
This section lists the major functions in the project and a description for
each.

The system should be able to determine the location of the genome

data file.

Description: In this part of the system, the user can determine the path of the query

Function:

Input:

Source:

using file browser or using file name.

Specifying the file path.

The place that contains the file, it may be on some location on drive

C.

Output: Place that contains the file; it may be on some location on drive C.

Destination: A textbox that will be filled by the query.

Require: nothing.

Precondition: Test the existence of the file.

Post condition: nothing.

.16

Chapter Three Software Requirements Specification

Function: Coverage fold.

Description: In this part ofth · e system, the user can detenrune the number of whole
copy gene.

Input: number of coverage fold.

Source: the user of system

Output: nothing.

Destination: A textbox that will be filled by number.

Require: nothing.

Precondition: Test the existence of the numeric.

Post condition: nothing.

The system should perform data formatting that is necessary for the

subsequent Mega-Blast program

Description: In this part of the system, the systems will change the file to new

formatting, to give MeagBlast the ability of reading it.

Function:

Input:

Source:

Output:

Destination:

Require:

The file which is selected by the user.

A textbox that will be filled by the Data.

New formatting of the file.

The input of the MeagBlast.

Determine the location of the genome data file.

Precondition: Test the existence of the Data.

Post condition: Run MegaBlast to get similar EST's.

.17

Chapter Three Software Requirements Specification

Input:

Function: Run MegaBlast

Description: This program is optimized for aligning sequences that differ slightly

as a result of sequencing or other similar

Formatting data file.

Data file. Source:

Output: file results from MegaBlast program which can be run through the

system. It contains the headers of the EST's, the query gene aligned

with each EST and information about alignment process.

Destination: To analyzing the MegaBlast output.

Require: Make formatting data.

Precondition: Test the existence of the formatting data.

Post condition: Run MegaBlast to get similar EST's.

Function: Analyze to determine the duplicated segments in the tested genome

sequences

Description: Apply the defined criteria to predict if the string contains a duplicated

segmant.

Input: Output MegaBlast file.

Source: Data file.

Output: Dublication on genome.

Destination: nothing.

Require: MegaBlast Output file.

Precondition: Test the existence of the MegaBlast output file.

Post condition: display the result of anlayze.

-18

Chapter Three Software Requirements Specification

3.3 Information Description

This section talks about the data and information in the project, describe the

dataflow, and a description for each entities names.

3.3.1 System Data Flow Diagram (DFD)

Output Format

Use MegaBlast
To get similar
EST's

Output MegaBlast
Y

Analyzing
Result·

(spay)

Figure [3.1] System Data Flow

.19

Chapter Three Software Requirements Specification

3.3.2 Data dictionary:

Entity name Type Description

This procedure takes the files that the

Reads_ WGSR Procedure
MegaBlast has carried out then it

reads data and extracts the wanted

information

This procedure extracts the similarity
extract_similarity_no Procedure rate from the files that the MegaBlast

has carried out.

extract_similarity_Subject Procedure
This procedure extract the subjects

which have similarity with WGSRs .

sort array Procedure
This procedure orders the array which

has the extracted data from the file.

This procedure collects the arrays that

contain all the collected data which
sort_array_DataSegmant Procedure

have been extracted from all files in

one array then it orders the array.

This procedure investigates all arrays

Procedure
and examines if it have duplication

filter file WGSRs and appears it, if there is no

it remove the array.

This function runs the MegaBlast for

Run_MegaBlast Function each WGSR and compares it with all

database file

This Procedure appears WGSRs
Display_ WGSR_Duplication Procedure

which had duplication as a report

This Procedure collects all WGSRs

Collection WGSR Procedure which had duplication then it collect

all of them to gather as segments.

-20

Chapter Three Software Requirements Specification

This procedure collect the segments

Make File_Segmant which have been collected at the
Procedure

previous point and it puts them in one

file

This procedure brings the segment
Rur_megeblast_Segmant Procedure and compares it with database file

by the MegaBlast.

Table [3.1] Data Dictionary

-21

\

CHAPTER FOUR
AEEEE8AH45555ASSESSES'EEEEEEEE~ §: ~:~: :55: 555555:~: .,/
!

► Introduction.
► Input/output design.

e Segmental Duplication ·Finder

•!• Gene Duplication Result

•!• Segmental Gene Duplicati.on

- Result

► Functional Design.

► Test Plan

Chapter Four System Design

4.1 Introduction

In this section the functions design will be implemented using functional oriented

methodology, where each function will be designed accordingly.

The following will be covered in this section

• Input output design: a design for the input output screens.

• Functions design: where each function will be designed by using a flow chart,

its interface and constraints will be identified.

• Test plan: a test plan will be identified.

-22

Chapter Four System Design

4.2 Input I Output Design

4.2.1 Segmental Duplication Finder

This interface allows user to enter the necessary information to search and to find the

duplication on gene file. The figure [4.1] shows two text boxes. In the first text box

the user will enter the name and location of the WGS reads file. The second text box

the user will enter the coverage fold. After click on the (Analyzing) button, the

program will check the existing and validity of the WGS reads file in first text box,

Check the validity of coverage fold in the second one.

Segmental Duplication Finder

Determine Tle WGS Reads File

Determine The Co verge Fold

Analyzing

Figure [4.1] Segmental Duplication Finder

-23

Chapter Four System Design

4.2.2 Gene Duplication Result

This screen display the result of duplication on WGS reads file that the project found
it.

Gene Duplication Result

Header of the gene duplication:

Report:

I Back

Figure [4.2] Gene Duplication Result

1 G e Duplication Result 4.2.3 Segmenta en f d ili tion on Segmental WGS reads that the project This screen display the result of luplicat1o
found it.

-24

Chapter Four
System Design

Segmental Gene Duplication Result

Header of the Segmental gene duplication:

Report:

I Back

Figure [4.3] Segment Gene Duplication Result

-25

Chapter Four
System Design

4.3 Functions design

This section describes the functional design for each module in the software system.

• Determine the location genome data file :

In this function we will describe logical flow to determine the location of file and

the coverage fold, then we will check the validity of them and averting the error in
the next function.

=
Output error
massage

Input :Path WGS
Reads File ,
Coverage Fold

LN1v----<
i

I
Yes

I

}---fJf..-->¢

I
Yes

!
i

Check The WGS Reads File

[

!
I

V

i
~--N"------<;..,.

I
Yes

i

v

) (END

. the location genome data file Flowchart Figure [4.4] determine

-26

Chapter Four System Design

• Formatting The Data File

In this function we will describe logical flow to change the file to new

formatting and to give MeagBlast the ability of reading it. The following
flowchart will explain its details.

(Start)
r
I

! • Input data file

Change The Data File Formatting

New Data File

(END)

V

Figure [4.5] Formatting data file Flowchart

-27

Chapter Four System Design

• Run MegaBlast

In step, Function will run the MegaBlast to produce optimized for aligning

sequences that differ slightly as a result of sequencing or other similar.
Execute MegaBlast on all WGS reads.

Start

Input data file

Run MegaBlast Program

NO

Output of
MegaBlast File

!
l
I

Yes

I
V

) (END

Figure [4.6] Run MegaBlast Flowchart

-28

Chapter Four System Design

• Run MegaBiast

In step, Function will run the MegaBlast to produce optimized for aligning

sequences that differ slightly as a result of sequencing or other similar.
Execute MegaBlast on all WGS reads.

(Start)
I
I

Input data file

Run MegaBlast Program

NO

Output of
MegaBlast File

i

Yes
I
I ...

(END)
Figure [4.6] Run MegaBlast Flowchart

-28

Chapter Four - System Design

• Run Mega Blast

In step, Function will run the MegaBlast to produce optimized for aligning

sequences that differ slightly as a result of sequencing or other similar.
Execute MegaBlast on all WGS reads.

Start

Input data file

Run MegaBlast Program

NO

Output of
MegaBlast File

IF WGS reads
Is End

Yes
i
I
Y

) (END

Figure [4.6] Run MegaBlast Flowchart

-28

Chapter Four
System Design

• Analyzing Output MegaBlast

In this function we will describe two functions that are related to it:

I. Extract information from output MegaBlast file

In this part, we will make processing for the output MegaBlast file which

will produce and extracted information that is essential to start searching

the gene duplication, the following flow chart explains this clearly:

.29

Chapter Four - System Design

(
I y

)
ID = identity array , QE = query array
SB = subject array, ST = Start array
EN= End array, LE= Length array

A

Open MegaBlast
Output File

B

R = Read The line

j

NO
I
I
!

I
Yes

!
Inset R into SB
Increment SB

{
i

No

'------Yes

----Yes-.-
Inset R into ID
Increment ID

Inset R into OE
Increment QE

Y
Yes -------,s,okl4f------ '------ l

·CO --o-ow-o- _

;

vY

C

-30

Chapter Four - System Design

(Start

I _y

)
ID = identity array, QE = query array

· SB = subject array, ST = Start array
EN= End array, LE= Length array

A

Open MegaBlast
Output File

B

R = Read The line

I

No

IF R == The
Identities

i
NO

i
i
i
!
v Yes

I

I
i

Inset R into OE
Increment OE

I
Yes

!
Inset R into SB
Increment SB

I
i

No

Inset R into ID
Increment ID

V ------Od-,:1----- ,_______ Yes]

V

C

-30

Chapter Four
System Design

C

[l(

I
Yes

I

Inset R into ST
Increment ST

Inset R into EN
Increment EN

1-~-Yes

Yes

Inset R into LE
Increment LE

I
Not---------~

I
I

B l®]--»-fpf-------

I
Yes

i

I Clos; File I
!
i
I
V

IF Open
N --

I
I

I

I
v ;

Open Next File I Yes
I

I

I

I
Y

C END)
I
V

A

Figure [4.7] Extract information from output MegaBlast file

-31-

Chapter Four
System Design

2. Searching to find the gene duplication

In this part, we will make processing data which we extract from the first

step then we will determine if there is a gene duplication or not and we
will display the results on the screen.

(Start)

ID = Identity array, QE = query array
SB = subject array, ST = Start array
EN = End array, LE= Length array

IN = is reads array ,M, I , J Is counter

Input Coverage
fold

A ----· I ---N,v---

Increment I

T No <

I
I

Yes
I
!

IN[1] = M
M =M+1

Temp=EN[IJ

Increment J

·Yes
I
l

I
Yes

' s B

No

fg$

B

Increment I, M
.1

IN[J] = M

t

I
Yes

I
i
!

f

I
L f@gr-lK

,-----~ N'o--------

Temp~ EN[J J

No,--------- ·~----~

-32

Chapter Four
System Design

A

No
I

Clear I, J
cover counter

-(---»%?

No

IF cover
<=·

Coverage fold

Display the
Query

Subject ...

I
Yes

l
Remove Query file

Increment I

lncrementJ

l
I
! [.__ __]

(so)

>-----Yes,
i r I

No
I

>----Yes
I

I

• Figure [4.8] Searching to find the duplication on gene

i
I
!
No

Increment Cover

• i

-33-

Chapter Four
System Design

4.4 Test Plan

Here we describe the methodolo th
. gy at we have adapted to test the system, steps

that will be followed in the system testing are de ·ibed 6 e escri ve ellow:

Testing steps:

1- Unit and Module testing:

We will use unit testing to ensure that each function or module will operate as
expected. The test components are; import query gene, import formatted database
file, extract data from output MegaBlast results, searching the gene duplication,
display duplication gene result.

2- Integration testing and System testing:

The integration of all units will be tested to ensure that the sub-systems work
together properly as it's expected. Sub-systems are integrated to constitute the

whole system. System is tested with a complete process of import the query gene

and database, execute the MegaBlast program, extract data from output MegaBlast

file, searching to determine the gene duplication , display the result of gene

duplication.
Real data are filled through that sequence and traced to find that results are as

expected so that the system processes work properly. System testing is also

accomplished through transferring the system on different platforms.

3- Acceptance Testing:
A system is developing for a single user. The acceptance testing process

continues until the system developer and the user agree that the delivered system

is an acceptable implementation of the system requirements.

.34

Implementation &
Coding

· ·►Introduction. · ·

» Coding Programming Language

►Establishment of development .

environment

Chapter Five
Implementation and Coding

5.1 Introduction

This chapter describes the main
. steps must be followed to start in coding and

programming to reach the design that · de ·ib, : IS escn ed m the previous chapters and to
discover the programming language that i d ti h. ' s use or this purpose.

This chapter focuses on the codi: id 5l .- mg an imp ementation of novel algorithm to determine
highly homologue segmental genome duplication project.

Coding refers to the process of writing the necessary /hi:h · I h program, whucl implements the
main procedures and functions of the project. The code of the project is to be written
from the scratch using perl language.

The project is to be implemented as a windows application, the project is to be

programmed under windows XP operating system.

5.2 Coding Programming Language

There are many languages that can be used to develop a system such ours, but the most

effective languages are visual c, visual basic, Perl language, here we describe the why

our selection was on the Perl:

Perl is a popular programming language that's extensively used in areas such as

bioinformatics and web programming. Perl has become popular with biologists because

it's so well-suited to several bioinformatics tasks.

The following sections illustrate some of Perl's strong points.

1. Ease of Programming :

Computer languages differ in which things they make easy. By "easy" I mean
t program Perl has certain feature that simplifies several easy for a programmer to '

· · c. t· t ks It can deal with information in ASCII text files or common bioinformatics as

35

Chapter Five
Implementation and Coding

flat files, which are exactly the ki d . .
. n s of files in which much important biological

data appears, in the GenBank and PDB d b atabases, among others.

2. Free Source :

Perl is distributed under the GNU' G . . s ieneral Public License, which implies that
anyone can use, modify, and distribute the source code and documentation of perl.

Any modifications made to the source code derived from the GNU-licensed

source code must be freely made available to other. This distribution model has

encouraged volunteers worldwide to contribute to the perl software.

3. Rapid Prototyping

Another important benefit of using Perl for biological research is the speed with

which a programmer can write a typical Perl program (referred to as rapid

prototyping). Many problems can be solved in far fewer lines of Perl code than in

C or Java. This has been important to its success in research. In a research

environment there are frequent needs for programs that do something new, that

are needed only once or occasionally, or that need to be frequently modified. This

rapid prototyping ability is often a key consideration when choosing Perl for a job

4. Portability, Speed, and Program Maintenance

Portability means how many types of computer systems the language can run on.

Perl has no problems there, as it's available for virtually all modem computers

found in biology labs. If you write a DNA analyzer in Perl on your Mac, then

move it to a Windows computer, you'll find it usually runs as is or with only

minor retrofitting.
S d h d ·th which the program runs. Here Perl is pretty good but [pee means the spee wi

· h 1 language of choice is C. A program not the best. For speed of execution, the usua
• . . more times faster than the comparable Perl

written in C typically runs two or
• • grams are first written in Perl, and then only

program. In many organizations, pro

36

Chapter Five
Implementation and Coding

the programs that absolutely need to have maximum speed are rewritten in C. The

fact is, maximum speed is only occasionally an important consideration.

Program maintenance is the general activity of keeping everything working such

as; adding features to a program, extending it to handle more types of input,

porting fr to run on other computer systems, fixing bugs, and so forth. Programs

take a certain amount of time, effort and cost to write, but successful programs

end up costing more to maintain than they did to write in the first place. It's

important to write in a language, and in a style, that makes maintenance relatively

easy, and Perl allows you to do so.

I have appended the source code written manually for the main functionalities in our

application.

5.3 Establishment of Development Environment

•
•
•
•

Purchase the computers and the software required for developing the system .

Install windows XP .

Install the required utilities .

Install the Active Perl 5.8.7.813

Before installing the active perl some windows Prerequisites mast be available its as
following:

H d 90 MB hard disk space for typical install • ar ware:
:. ISAPI-compatible web server, such as ITS 4.0 or ■ Perl for ISAPI: requires an

greater or PWS 4.0 or greater
' . i ting host such as Internet Explorer 4.0 " Perl Script: requires an ActiveX scrip

or eater or Windows Scripting Host
gre 1,1es: if Perl environment variables such as PERLLIB,

■ Perl Environment V aria es. I b set on your system, you should unset
PERL5OPT have een

PERL5LIB or . p l Otherwise, these variables may cause
them before installing Active 'er1.

37

Chapter Five
Implementation and Coding

incompatible versions of Perl modules to be used during the installation
process.

To install the active perl

• Download the active perl 5.8.7.813 on the internet from website
www.activestate.com

■ After download Run ActivePerl-5.8.7.813 .EXE.

■ After determining the location of perl and installing it the following figure
will appear.

· gs; ActivePerl 5.8.7 Build 813 Setup#78-±»3 a
Completing the ActivePerl 5.8.7 Build 813
Setup Wjza·ra ·' · · · · ·

: · · . ·.· . . · "'",: -- ,:_ ;:= ,.;..:· > · :_ , Serio~s about programming in Perl?

'. -', ., ·. . Get ActivePerl Pro studio! ActivePerl Pro Studio is
everything a Perl programmer needs in one convenient
[package combining professional Perl tools: Komada Pro'
Perl Dev Kit, and Visual Perl, with premium online access to
Safari Bookshelf.

(_- ·. i · • ' • • ' :: -. · Find out how you can upgrade today:
http: /twww.ActiveStflte.com/ActivePerlProStud10

Activestate wnwx.Active&State.ccm

[V Display the release notes· .:

~ ~ack w· finish JI Cancel

Figure [5.1] Install Active Perl 5.8.7.813.

-38 -

Chapter Five
Implementation and Coding

• Install DzSoft Perl Editor V5.6.0.2.

DzSoft Perl Editor is a tool for writing, editing, and debugging Perl CGI scripts. It has a

comfortable and intuitive interface both for beginners and advanced programmers.

DzSoft Perl Editor is deceptively simple, but it is really a very powerful tool.

To install DzSoft Perl Editor V5.6.0.2:

■ Run Perl Editor V5.6.0.2.exe from CD Rom.
■ After determining the location of Perl Editor V5.6.0.2 and installing it the

following figure will appear.

····--.~-- I ·:···-···- :
' . • . .
"=" { .. l. ···-_·-_"(_· / ~ :

~i
; s • ;s
S

s]
I ' ,:

~

~·. :
·:..,.;,_ . '· ...

' . -~ ~ ~-• ~~~
. . . : . ···••'•,.·. . -~- -

Dz&oft ":

Completing the DzSoft Perl Editor
Setup Wizard

Setup has finished installing DzSoft Perl Editor on .YOU(
computer. The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

?] Launch DzSoft Perl Editor

Finish

• • . 11 D Soft Perl Editor V5.6.0.2. Figure [5.2] Finish install Z .

39

Chapter Five
_ _ Implementation and Coding

i.a \j =[win [Uri8

r···-[2] Subroutines
L ... [IJ Variables

2 zs [] [insert [Licensed to ·

Figure [5.3] DzSoft Perl Editor V5.6.0.2.

• Install BLAST all Program

There are three steps needed to setup the Standalone BLAST executable:

1. Download and compress the Standalone BLAST Windows binary. We

suggest doing this in its own directory, perhaps called blast. This is a 'self

extracting' archive and all you need to do is run this either through a

Command Prompt (DOS Prompt) or by selecting "Run" from the Windows

"Start button" and browsing the blastcz.exe file.

40

Chapter Five
Implementation and Coding

2. Create an ncbi.ini file. In order to operate Standalone BLAST, you need to

have an ncbi.ini file. Make sure that your ncbi.ini file is in the Windows or
WINNT directory on your machine.

3. Format your BLAST database files. The main advantage of Standalone

BLAST is to be able to create your own BLAST databases. This can be done

with any file of F ASTA formatted protein or nucleotide sequences.

41

'tCHAPT£R sIx @ ,;,::::,:::::::::,:,:,:,:,:,:,:,:,:,:,:,:;::::::· :,:,:,·,: ., , : , ,,, :,:,: ·,:,: ,.,,,,,:,:,,,,,·,· : : ,,, : ,,, : : ,,,,,,,,:,·,,,,,,,,,, ,,, r= ,)
}
t:

System Testing

8
» Introduction.

1► Unit and Module Testing

► Integration Testing·

► System Testing

Acceptance Testing

► Snapshots

Chapter Six - System Testing

6.1 Introduction

Testing the system to ensure that it meets its specifications is one of the most
important stages in the software system development.

For the purpose of delivering a system that works properly as expected, certain testing

procedures should be performed on system and its components; accordingly with an

acceptance testing that may be stated as a result for the success of the testing process.

This chapter covers the testing for:

• System units and module testing.

• Integration testing.

• System testing.

• Acceptance testing.

Testing will take place in a time space that was assigned for the testing process.

Table (6.1) shows the testing schedule:

I st week 3° week 3'° week

I:. .
II II I I Unit and module testing m·· ..

II I [system testing. II
I II I [Integration testing. II
II 11· I [Acceptance testing. II

Table (6.1) Testing Schedule.

.42

Chapter Six - System Testing

6.2 Unit and module testing

All system units and modules were tested against its specifications using the black

box testing, the test ensured that the units and modules performed as expected.

The following are some samples for module testing and its associated results using
whit box testing method.

■ Tested Function: "Information gene":

Method: path testing.

Test cases: each test case covers the set of input values in a certain execution

path as shown in the function flowchart figure (6.1].

.43

Chapter Six
gA System Testing

A

Output error
massage

D

C

N

Input ;Path WGS
Reads File

Coverage Fold

B

All input are
filled

I
I

Yes

E

F

<Q-- [l(} Valid expression

I
Yes

I
i
Y

G

Check The WGS Reads File

H

Valid Data WGS
Reads

Yes
J

Figure (6.1] Information gene Execution Paths flowchar.

.44

chapter Six - System Testing

-
Test Cases

Test Data

Path
WGS Reads Coverage Expected Output

File
Actual Output

Fold
D:\BLAST

A-B-E-G Valid WGS Reads Valid WGS Reads
ALL\ bin\

H-J
4 And Coverage fold

Data.txt
And Coverage fold

{Accepted format). (Accepted format).

A-B-C-D
Valid WGS Reads Valid WGS Reads
And Coverage fold And Coverage fold
is not filled in. is not filled in.

D:\BLAST Invalid path format Invalid path format
A-B-E-F-D 4 ALL\ bin\ And coverage fold And coverage fold

Data.txt not numeric not numeric

A-B-E-G
D: \BLAST Not correct WGR

H-I-D
ALL\ bin\ 4 Reads file format or

Invalid login ID or

Data.txt Contents
Password.

I

Table [6.2] Information gene Test Cases.

Conclusion: function confirms to its specifications.

6.3 Integration testing

All module, and units are integrated and this integration is tested to show if there were

defects that appear upon the integration of them. We have tested the integration using

top-down testing. Testing here demonstrates on the interfaces between all modules,

and the functionality of the integrated parts.
After testing the integration of all subsystems, the result indicated that they work

together properly.

.45

Chapter Six - System Testing

6.4 System Testing
The system was tested under sev al ·: era conditions, some e
these results, we have solved the ' rrors were detected, and upon

se problems and we im
to testing techniques to ensure that it dis 9posed the system another time

« 1t h1sposed all types ·f def
data are filled through that sequ s

O
e ects and problems. Real

ence and traced to find that r
that the system processes work pro ly. Sy results are as expected so

. perly. jystem testing is also accomplished through
transferring the system on different platforms.

6.5 Acceptance Testing
The system was tested against its requirem t en s, we conclude that it achieves its
functional requirements, and could operate . th . soon m e real environment.

6.6 Sample Snapshots

We have selected some program snapshots to be displayed here to show how the real

program behaves when working under certain situations and these snapshots are
describe the main functions of our web based system as shown bellow:

6.6.1 Segmental Duplication Finder

This interface allows user to enter the necessary information to search and to find the

duplication on gene file. The figure [4.1] shows two text boxes. In the first text box

the user will enter the name and location of the WGS reads file. The second text box
the user will enter the coverage fold. After click on the (Analyzing) button, the

program will check the existing and validity of the WGS reads file in first text box,

Check the validity of coverage fold in the second one.

.46

Chapter Six - System Testing

$Segmental Duplication ;5, ' ,ny --'®% If'lrleP

Determine The WGS Read File [bas±i,
Browse

Determine T he Coverge fold 4

Figure [6.2] Segmental Duplication Finder Snapshot

6.6.2 Gene Duplication Result
After clicking on Analyzing button the program will give the result of duplication

gene as the next figure.

.47

Chapter Six - System Testing

] WGSRs Duplication Result
a Constarct

p 5egmant Duplication

of segmant upli . •
zwwwwwwwwwowowwwwwt ICallgf Fjr]gr®www

Newel&ewe#utt
wGSRS: that 0ooowuwwwwowowowoww

5 al'e eXpeCtgd tg hay2 i. owwww highly homologur extra copier: is :

wGSRO 0002

WGSRl 0003

\•J'GSR2 0005

WGSR3 0006

WGSR4 0011

WGSR5 0012

'w'GSR6 0026

wWGSR? 0033

wGSR8 0034

wGSR9 0036

WGSRlO. 0040

WGSR11 0041

WGSR12 0042

Figure [6.3] Gene Duplication Result Snapshot

6.6.3 Segmental Gene Duplication Result
After clicking on Segment Duplication button the program will give the result of

segmental duplication as the next figure.

.48

Chapter Six - System Testing

segrnantl 0005 ! 0006
segmant2 0011 !0012

Segmant3 0033 !0034

segmant4 0040 !0041 ! 0042
segmant 5 0056!0057

segmant6 0063!0064

segmant7 0066!0067!0114

segmant8 0072 ! 0073

segmant9 0088!0089

segmantl0 0093!0094!0095!0096

segmantll 0099!0100

segmant12 0026

segmant13 : 0036
=-------==--------

segmant : 0002!0003

================-------=============================---------------------

[Query= 0002!0003
f· A€r "] A+-+ m»»)

Figure [6.3] Segmental Duplication Result Snapshot

eat xi6Est sol?
E, ,,&etno Potytehiite' university

g (PPu} ,
me\bray 3iSt
\4.1.16. ±as» Acc · .

s.scad+ 62y c1oss. ·

-49-

A

I CHAPTER S£V£N · ·- .
.. : ; : ::,:::::::::::::::;':',: :: :: :: :: : :: : : , , : : : ' ' , , ., : : : : : : : :; :: : : : _: :::: :::::::::::::: :::::::: '.;'.: ::::; '.;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.;:::: !/ .,

' ' ~

~

-=ti!~----------·= ... ,.·- ==------.,,~-•;.:.::?:-System Main_ tenance ii
~
~ •

► Introduction.
~

\) ► Establishment of the production
~

► -environment

. ►Migration and Deployment Plan

►Maintenance Plan

Chapter Seven
System Maintenance

7.1 Introduction

In this chapter we will talk about the working environment. It is silly to think that the user

is the developer of the system because he is just a user who lacks the knowledge of this

system in that case, we have to provide the user with the sufficient information about the
system, how it works, and how it could be maintained.

This chapter describes how to start working with the system; the establishment of the

environment that the system will work in, what is the process of deployment, and the
maintenance plan.

7.2 Establishment of the production environment:

To make it easily for the user to install this system certain environment must be provided.

In order to operate system on a PC with an operating system is required:

• Install the operating system.

• Install the Gene Duplication Finder program package.
The following steps are needed to install the program:

1. Inside GD Finder folder, Click on Setup

2. Choose where to install.
You must install it On C:\Gene Duplication\

Or D:\Gene Duplication\
Or any drive directly.

7.3 Migration and Deployment Plan

b ·it by certain steps so that to work properly h tern must be ui
The deployment of t e sys . h to be established, configured, and

oduction environment1as .
within its environment; the pr b taken considering all constrams and

. the new system must e . .
a decision of operating on T ward deploying and migrating to

. to the new system. o 3ks th of migration ns s of t e process t be done:
ibe here the steps that mus the new system we descrile

.50

Chapter Seven - System Maintenance

There are three steps required t o move any windows a 1 · •
environment to a production directory: PP ication from the development

1. Build, or compile the Windows a r . .
in the directory that ,, @PPlication, this compilation creates a .EXE file

a contams the code for Gene Duplication.

2. Copy the necessary windows li ° ·· · application files(after compilation Gene
Duplication) in the developmt it di en irectory to the production directory, which are:

• The .PL files.

• Megablast.exe and Formatdb.exe

• The Execution File

3. Package and build the production solution and run.

7.4 Maintenance Plan
When running system failures or errors may occur. In this case the programmer can

follow the code and maintain it, a single error or multiple errors may occur will be

solved. If an error handling occurs during the implementation, the error message and a

description of that error will be displayed on the screen, then the customer must call the

vendor and tell him about the error.
When the programmer solves the error, he should make unit testing and integration

testing to ensure that the last qualifications will not influence the whole system
performance. Finally, the corrected components must be developed and published.

The program purchaser can call the programmer using a special form , which contains

the error information and description, and then the programmer must record each step in

another form.

The program purchaser can call the programmer using a special form (Fig 6.1), which
contains the error information and description, and then the programmer must record

each step in another form (Fig 7 .1).

.51

Chapter Seven - System Maintenance

Software Change Request Form

Software Change Request (SCR)

Requirement #
Date: -------

~

() New Requirement () System Problem () Suggestion for Improvement

() Requirement Change () User Interface Problem () other: _

() Design Change () Documentation Correction

Description:

Please attach supporting documentation for the requested change
(Screen/report printouts, document pages affected, etc.)

Figure [7.1] Software Change Request Form

.52

References

1. http://www.perl.com/pub/q/docum t . entation.
2. http://perl-win32-ui ·' <gu1.sourceforge.net/cgi-bin/docs.cgi.

3. http://www.NCBI.nlm.nih.gov/blast.

4. Jambeck, Per and Gibas c thi • • , • s ynt ia. Developing Bioinformatics Computer Skills. 1 ST
Edition O'Reilly & Associates.2001.

5. Lesk, Arthur. Introduction to B : f ± 10m ormat1cs. Oxford University Press. 1 ST Edition
2002.

6. Eichler EE. Recent duplicati d · · on, (omain accretion and the dynamic mutation of the

human genome. Trends Genet. 2001 Nov;l 7(1 1):661-9.

7. Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental

duplications within mammalian organisms. Cold Spring Harb Symp Quant Biol.

2003;68:115-24.

8. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications:

organization and impact within the current human genome project assembly.

Genome Res. 2001 Jun;l 1(6):1005-17.
9. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW,

Li PW, Eichler EE. Recent segmental duplications in the human genome. Science.

2002 Aug 9;297(5583):1003-7.
10. Brown, T. A. Genomes. BIOS Scientific publisher. Oxford, UK 2° Edition 2002.
11. Sommerville, Ian, Software Engineering, 7" edition, Addison-Wesley, 2001.

12. Lesk, Arthur. Introduction to Bioinformatics. Oxford University Press. 1 ST Edition 2002.

13. Jambeck, Per and Gibas, Cynthia. Developing Bioinformatics Computer Skills. First

edition O'Reilly & Associates.2001. United state of America.

14. Tisdall, James. Beginning Perl for Bioinformatics. First edition O'Reilly &

Associates.2001. United state of America.

.53

Appendix

.54

Appendix

#!/usr/bin/per]
Scoverge =();

@Data_gene=();
@Data_gene_segmant=();

@final=();
$item=();
@rep=();

$h=O;
$f=(); $1=8;

use Win32:: GUI; '## engage the Win32: :gui module
use win32; ##engage the win32 module

my ($DOS) = Win32::GUI::GetPerlWindow();Win32::GUI::Hide($D0S);

#==----==--========----=-
##Create the Segmental Duplication Finder wiindows.

$font= Win32::GUI::Font->new(
-name=> "Lucida Console",

-size=> 10,);

$file_menu2 new Win32::GUI::Menu
(

"File" =>"file",
">Help"=> "help",

"> -" => 0,
">Exit"=> "Exit" ,

) ;

$main= new Win32::GUI::Window
(

-text

-addexstyle

$font_lable2

-name => "main" ,
=> "GENE Duplication Finder"

-menu=> $file_menu2,
-sizable=> 0,

-controlparent =>1,
-maximizebox =>0,

=>WS EX CLIENTEDGE I WS_EX_STATICEDGE,
Jtop => 100,

-left=> 50,
-width => 640,
-height =>480,

) .
W. 3'2·:GUI::Font->new(
in. : C"
-name => "Snap IT '

-size => 16,
-italic => 1,

) ;

$main->AddLabel $label2 =
(

e=> "label2" , . " -name y]5cation Finder' z
"Segmental Dup..1 j) /2 -text=> ie ; ·Width()-380 , -1eft=> ($main->?',

-top=> 31 ,
t->$font lable2, -fon - - -width=>380,
-height=>40,

• Appendix

) ;

-text=>

$labell = $main->AddLabel
(

-name=> "labell"
"D I etermine The WGS Read File:" ,

=left=>100,
-top=> 100,
-width=>200,
-height=>20,

) ;

$label3 = $main->AddLabel
(

-name=> "label3" ,
-text=> "Determine The Coverge Fold:",

-left=>lOO,
-top=> 140,
-width=>200,
-height=>20,

) ;

$textl = $main->AddTextfield
(

-name=> "textl" ,
-text=>"" ,
-left=> 255,
-top=> 100,
-width=>150,
-height=>20,

) ;

$text2 = $main->AddTextfield
(

-name=> "text2",
-text=> ,
-number=> l,
-left=> 255,
-top=> 140,
-width=>150,
-height=>20,

) ;

1 _ $main->AddButton $button -
(

1" -tame => "button , n "
-text=> "Browse

-left =>430,
-top =>100,
-width => 80,
-height => 20,

) ;

= Smain->AddButton Sbutton?
(II

=> "button? , -name

Appendix

=text => " A
-left => . nalyzing... " ' (($main->Width()-85)/2)

-top =>200 I
• I =width => 85

-height => 20
I

) ;

++create ±% kc, ,,r------------------------
$file Ouplication Result windows.

1 .e_menu = new Win32::GUI::Menu
(

"File"=> "File"
II I
> Save AS"=> "Save"

">BACK" => "BACK"
1

I

"> =-" => 0,
">Exit"=> "Exit" ,
"Constarct"=>"make",

">Segmant Duplication"=>"Segmant" ,
) ;

Smainl= new Win32::GUI::Window
(

-name => "mainl" ,
-text=> "WGSRs Duplication Result"

-top => 50,
-sizable=> 0,

-menu=>$file_menu,
-controlparent => 1,

-addexstyle =>WS_EX_CLIENTEDGE I WS_EX STATICEDGE,
-left=> 50,

-width=> 670,
-height =>480,

) ;
$rich= $mainl->AddRichEdit

(
-name=> "rich" ,

-text=>"",
-left =>0,

-multiline => l,
-top =>0,

-vscroll =>1,
-hscroll => 1,
-readonly => 1,
-font=>$font,

=> Smainl->Width()-10,
=>$mainl->Height()-55, -width

-height
) ;

##Create

th WGSRs Duplication Result windows.
Sr±ie_menu1 = new Win32::GUI::Menu
(

"File" => "File" ,
"> Save AS" => "Savel" '

">BACK"=> "BACKl" ,
"> -" => o,

"E: ·t" "> Exit" => Ix1 r

Appendix
=text => " A =left => Analyzing... " ' ((Smain->Width()-85)/2)

-top =>200 '
• I =width => 85

-height => 20
I

) ;

#= ##Create the WGsp ===-=============================
$file Ouplication Result windows.

1 e_menu = new Win32::GUI::Menu
(

"File"=> "File"
II I
> Save AS"=> "Save"

">BACK" => "BACK"
1

I

"> -" => o,
">Exit"=> "Exit" ,
"Constarct"=>"rnake",

">Segmant Duplication"=>"Segmant" ,
) ;

$mainl= new Win32::GUI::Window
(

-name => "rnainl" ,
-text=> "WGSRs Duplication Result"

-top => 50,
-sizable=> 0,

-menu=>$file_rnenu,
-controlparent => 1,

-addexstyle =>WS_EX_CLIENTEDGE I WS_EX STATICEDGE,
-left=> 50,

-width=> 670,
-height =>480,

) ;
$rich= $mainl->AddRichEdit

(
-name=> "rich" ,

-text=>"",
-left =>0,

-multiline => 1,
-top =>0,

-vscroll =>1,
-hscroll => 1,
-readonly => 1,
-font=>$font,

=> Smainl->Width()-10,
=>Smainl->Height()-55, -width

-height
) ;

#===============------=========== --.- lt · dows
s+crease ens ass oiieo{" "",, ."",,

$file menul - new
(

"File" => "File" ,
"S·vel" "> Save AS" => ia '

">BACK"=> "BACKl"
"> -" => o,

"E 't" "> Exit" => IX1 r

Appendix

) ;
$rnain2= new Win32::GUI::Window

(
-name=> "rnain2",

text => "Segmant Duplication Result" ,
=top => 50,
sizable => 0,

-rnenu=>$file rnenul,
=controlparent => 1,

-addexstyle =>WS_EX_CLIENTEDGE] WS EX STATICEDGE,
-left=> 50,

=width => 670,
-height =>480,

) ;
$richl = $rnain2->AddRichEdit

(
-name=> "richl",

-text=>"",
=left =>0,

-rnultiline => 1,
-top =>0,

-vscroll =>1,
-hscroll => 1,
-readonly => 1,
-font=>$font,

-width=> $rnain2->Width()-10,
-height =>$main2->Height()-55,

) ;

#--
»=@92t22 -----=====------=----==----- ---- -

##Show main window
$main->Show();

##Message Loop
Win32::GUI::Dialog();

#===================----================================---- ---

sub buttonl_Click

. 32·-~UI::BrowseForFolder(
Win-"_root => (0x0011),

-owner=> Smain,
-editbox => l,

-includefiles => 1,

$folder

) ;

tl->Text($folder); Stex! {de(): # $main->Hide
$main]->Show () ; #

Appendix·

) ;
$main2= new Win32::GUI::Window

(·
=name => "main2",

-text=> 11Segmant Duplication Result 11 ,

-top => 50,
-sizable=> 0,

-menu=>$file menul,
-controlparerrt => 1,

. -addexstyle =>WS_EX_CLIENTEDGE I WS EX STATICEDGE,
-left=> 50,

-width => 67 0,
-height =>480,

) ;
$richl = $main2->AddRichEdit

(
-name => "richl",

-text=> " ",
-left =>0,

-multiline => 1,
-top =>0,

-vscroll =>1,
-hscroll => 1,
-readonly => 1,
-font=>$font,

-width=> $main2->Width()-10,
-height =>$main2->Height()-55,

) ;

##Message Loop
Win32::GUI::Dialog();

#-------===-----=====================----=--=-===----- -----

sub buttonl_Click

. 32· -~ur::BrowseForFolder(
win:"_root => (0x0011),

-owner=> $main,
-editbox => l,

-includefiles => 1,
) ;

$folder

t($folder); Stextl->Tex' .
$main->Hide)>

$mainl->Show (7 #

- Appendix

/=====------------------=----=========================----------------=
=H-st=EDD_LID

sub Save Click
$File_save - Win32 -G

- :: UI::GetSaveFileName
(-owner=> $rnaini
-filter => (".TXT;.DOC; .BAK"),

=createprompt => 1,
defaultextension => "txt",

=includefiles => 1,
) ;

$rich->Save("$File_save",Ox0004);

t===
sub Savel Click

$File_save == Win32::GUI::GetSaveFileName
(-owner=> $rnain2,
-filter=> ("*.TXT;*.DOC;*.BAK"),

-createprornpt ==> 1,
-defaultextension => "txt",

-includefiles => 1,
) ;

$richl->Save("$File_save",0x0004);

}

#---------------
sub Segmant_Click

{
&progress_Bar] () 7

&Collection_WGSR($itern);

#================-============--_-:===:::====---- ----==----- -----

. sub mainl_Maxirnize
{

$mainl->Maximize()
$rich->Maximize()

----===---=======--------------==================

E7. sub ma
{

. z->Maximize (l
Smain. , : () $richl->Maximize

Appendix

sub BACK1_Click
{

&main2_Terminate;
}

#=----=====================-----==============-=---------------~--=====

sub BACK_Click
{

&mainl_Terminate;
}

sub button2 Click
{

if(($text2->Text() eq 0) I ($textl->Text()eq" "))
{

&massge_box(" Please Fill the Textbox ... ?");
}

else
$tex = $textl->Text();
if (open (data,"$tex"))

{ &progress_Bar();
$coverge = $text2->Text();

&Reads_WGSR();

$main->Hide ();
$mainl->Show();

}
else

(" Th File is not correct ... ?") &massge_box e
}

#-----==========-----
sub Exit_Click

{
&main_Terminate;

}
ub mainl Terminate S

{
#==----===========-----

Smainl->Hide () ;
Smain->Show() ;

+ aaz Terminate sub ma1n_
{

#--=============--- --
smain2->Hide ();

$mainl->Show() 7

Appendix

#===============--
Sub mai --===== n_ Terminate

#==========~===========
exit;

return -1;

}
sub help_Click

{
& Help box·
i "

---===============---==============---===================

@help_text

sub Help box
{ -

#======---=----=====---
Smain->Disable(),

$helpl= new Win32 .. GUI , w· · • : : indow
(-owner=>$main I
=name => "helpl"

-sizable => o, '
_Fest=> "Help...72" ,

op-> $main->Top()+50
-left=>$main->Left()+50,

·parent => Smain,
-width => 500,
-height =>400,

-maximizebox => o,
-sysmenu =>l

) ;
$button5 = $helpl->AddButton

(
-name => "button5",

-text=> 11 <=Back<= 11

-left =>($help1->Width()-60)/2,
-top =>210,

-width => 60,
-height=> 20,

) ;
Shelpl->Show() ;

$label5 = $helpl->AddLabel
(

-name=> "label5" ,
-text=> 11 Gene Duplication Finder"

-left=> ($helpl->Width - 150) /2,
-top=> 15,
-width=>150,
-height=>20,

) ;

= ("Gene Duplication Finder (GD Finder) is a program
designed to analyze databases that".

"contain high number of shotgun reads that are
produced by genome projects. Gene ".

"Duplication Finder can easily and accurately

a Appendix

delineate the genomic segments that extra ".
"very similar copies somewhere else in the same

genome. The program rely a Blast-based ",
"approach to analyze the whole genome shotgun reads

in order to detect the shotgun reads" .
"that have similar extra copies. After detecting the

duplicated shotgun reads, GD Finder" .
"will construct and determine physical limits of the

duplicated segments. ".
"\nThe program was designed in the Information

Technology Department, Palestine".
"Polytechnic University, Hebron, and Palestine. ");

$label6 = $helpl->AddLabel
-foreground=>, [150, 29,255],

=-name=> "label6" ,
=-text=> @help text,

=left=>(Shelpl->Width()-450)/2,
-top=> 50,

-width=>450,
-height=>l50,

) ;
}

sub helpl_Terminate
{

#-----============-----
$helpl->Hide();
$main->Enable () ;
$main->Show();

sub massge_box
{

Mp"Jee #=--- ===-
$main->Disable(); .

Win32: :GUI: :Window $massegel= new .
(-owner=>$main,

II -name=> "massege '
-sizable => 0,

II II 11 ext => "Error!:::: r
F >> $main->Top()+50,
-top => ·ft()+50, -left=>$main->Le:

ent => $main, -par
-width => 200,
-height =>100,

imizebox => 0, -maXl! => O
-sysmenu -

):
'.1->AddBut ton $massege

(3" => "button ,
-name - _ 11 OK " ,
-text =>

-left =>70,
-top =>40,

-width => 40,
-height => 20,

Sbutton3

Appendix

) ;
Smassegel->Show() ;

$label4 = $ massegel->AddLabel
(

-name=> "label4"
-text=> $_[0] ,

-left=>30,
-top=> 15,

-width=>150,
-height=>20,

) ;

$probar

sub progress Bar
{ $main->Disable();

$probarform= new Win32::GUI::Window
(-owner=> $main,

-name => "probarform" ,
-text=>" Process Analyzing" ,

-sizable=> 0,
-top=> 200,
-left=>l00,

-parent =>$main,
-width=> 500,
-height =>150,

-maximizebox => 0,
-sysmenu => 0

) ;
$probarform->AddProgressBar

(
-name=>"probar",
-left =>40,
-top =>50,

-width =>400,
-height => 30,

) ;
Sprobarform->AddLabel

(
-name=> "labell" ,

-text=>"Please Wait ..• ",
-left=>50,
-top=>20,

-width=>100,
-height=>20,

) ;
Sprobar->SetStep(l) ;

$probar->SetBkColor([255,255,255)) 7
Sprobar->SetPos(10) ;
Sprobarform->Show() ;

}

$label5

• Appendix

#-- . ----===:~====-----===--==--=------=================
progress Bar]

$
{ $mainl->Disable().

probarforml = . ' = new Win32::GUI::Window
(=owner=> Smair ·

' =name => "probarforml"
=text =>" Process Analyzing" ,

sizable => 0,
=top => 200,
-left=>l00,

-parent =>$main,
-width=> 500,
-height =>150,

-maximizebox => 0,
-sysmenu => 0

) ;
$probarforml->AddProgressBar

(
$probarl

-name=>"probar",
-left =>40,
-top =>50,

-width =>400,
-height=> 30,

) ;
$probarforml->AddLabel

(
-name=> "label!" ,

-text=>"Please Wait ... ",
-left=>50,
-top=>20,

-width=>l00,
-height=>20,

) ;
$probarl->SetStep(l);

$probarl->SetBkColor([255,255,255]);
$probarl->SetPos(l0);
$probarforml->Show();

}

$label6

woos.@l;[s»suss ®%»a» won» » »

sub button3_Click
{

$massegel->Hide(};
$main->Enable(};

$main->SetActiveWindow();
}

#=--======-=====------=
sub button5_Click

{
Shelpl->Hide();
Smain->Enable ();

$main->SetActiveWindow () ;
}

- Appendix

local($NUMWGSR);

$NUMWGSR
for ($f=l

= &Run_MegaBlast($tex);
; Sf< SNUMWGSR;Sf++)

{

$counter= 0;
$expect= 0;
Squery=() ;
$subj ct= ();

@Data_gene=();
$len=0;

$condion =0;
$con=0;

$i=O; $j=0; $t=0; $1=8; $e=0;
unless (open (data, "TEMP/file$f.out"))

{ print "count open the file!";}

while (<data>) #start loop
{

chop($);
if (Scondion) # length of the query

$len = substr($, (index($, "(")+l) ,
(rindex(S_," ")-(index($, "(")+1)));

$condion=O;
}

if ($_ /Query=/) # query name
{

($delet ,$Data gene[$i][0]) = split(/Query= /,"$ ");
SData_gene[$i] [0]= (SData_gene[$i](O]);

$condion=l;
next;

if (($_ /alignments:/) or $con) # number of subject
result

if ($_

$con=l;
$expect++;

}
name of the />/)

{ $counter++;
if($con)

{ Se=0;
($delet, $Data_gene[$i] [1])

split(/>/,"$ "); chop ($Data_gene[Si] [1]);
$con= 0;

Sexpect -=4;
}

subject

else
{ Se=0;

&extract similarity_no($query,$i);
&extract_similarity_Subject ($subjct,$i) ;

- $query=();
Ssubjct=();

Si++;
$Data gene[$i] [0] $Data_gene[O] [0]

iS Appendix

s?2\;; Se seats±) 11»
chop($Data_gene[$iJ [$jJ);

if ($expect< $ · coverge) # check coverge
1 . {

un. ink("TEMP\file$f. out"); #delete file
$T=O;
last;

}
else { $T=l;

}
else {

if ($_ /Identities=/ and $e)
{ &extract_similarity no($query,$i);
&extract_similarity_Subject (Ssubjct, $i);

$query=();
$subjct=();

$i++;
$Data_gene[$iJ (1J=$Data gene[$i-1J [lJ;
$Data_gene[$i] [2]=$Data]gene[Si-1] [2];
$Data gene[$iJ [OJ= $Data gene[$i-1J [OJ;

$Data gene[$i][5]= int(substr(s ,index(s
, "(")+1,(rindex(s ,")")-(index(@_ , "(")))))7 =

$e=O;
next;

if ($_=~/Length=/) #length of the subject
{

($delet,$Data_gene[$iJ [2J)= split(/Length
=/,"$ ");

$Data gene[$i.J [2)= int($Data_gene[$i) (2])
next;

if ($_=~/Query: /) # query text
(

($delet,$temp)= split(/Query: /,"$ ");
$query= $query.$temp;

next;

query text
{

(Sdelet, Stem)= split(/Sbjct:/,"S_")7
$subjct = Ssubjct.stem;
$Data gene[$iJ [6]= O;
next;

}
if($ =~/Identities=/) # Percentage of similarity

{ Se=l;
[$') [5)= int(substr($,index($

$Data gene 1. -
; cs")")-(index(©_, "(")))))7

"(")+1, (rindex(»7 ([$:][5] > 99 5) ' - if ($Data gene 1 ' 7($j++;

if (S =- /Sbjct:/)

- · Appendix

next;
}

} #end loop

if($j==$counter)
#unlink(TEMP/file.out);

ST 0 ;

close (data); # close file
if($T)

{ &extract_similarity_no(©query,$i);
&extract_similarity_Subject(Ssubjct,$i) ;

for($i1=0;$il <= Si ; $il++)
{

for{$jl=0;$jl <= $1;$jl++)
{

$Data_gene_segmant[$item] [$jl]=
$Data_gene[$il] [$jl]; ·

}
$item++;

}

&filter_file($counter) ;
}

$probar->Stepit();

}#end loop
&sort_array_Datasegmant($item);
open {input," filel2.out");

open {outputl,">WGSR duplication.txt");
print outputl "\n \t\t »»k»Result of Segmant

Duplication Finder************** \n\n";
print outputl "*" x 100;

print outputl "\n \t\t WGSRs;that are expected to have
highly homologur extra copier: is : \n\n";

$fl= Srich->Text()7 .
$rich->Text("$fl\r\n \t\t The WGSR Dublication is ");

for{$i=0;$i<$h;$i++)
{

print outputl "\n\t\t WGSR$i\t: $rep[$i] \n";
$fl= $rich->Text();

$rich->Text ("$fl\ r\n \ t\ t WGSR$i \ t: $rep[$i) ");
}

$probar->Stepit{);
print outputl "*" x 100;
print outputl "\n\n";

while (<input>)
{

print outputl $_;
$fl= $rich->Text();

Srich->Text("$fl\r\n S_ ")7
}

- Appendix

} #
Reads

@RT= <outputl>;
· close (input) ;

close(outputl);
unlink ("file12.out");

$rich->Load("WGSR_duplication.txt", 0x0O0l);
Smain->Enable();
$main->Hide();

$probar->SetPos($probar->GetMax());
$probarform->Hide();

$mainl->Show();
****************End function

WGSR*******************************

sub print_array

{
loca1($i,$j,$len);

$len = $ [0];
open(out,">>yyy.txt");

for ($i=0;$i<=$len;$i++)
{ if ($i==0) {printout "\n Query subject length start

End I dent \n"; }
for ($j=0;$j<=$1;$j++)

{
print out " $Data_gene [$i] [$j] ";

}
print out "\n";

}

close(out);
}

#=--
sub extract_similarity_no

{
local ($string ,$cut, $y=(),$i);

$string= $_[0] ;
Si = $ [1];

SData gene[$i][3j= int(sstring);
while (1)

{ $cut= chop($string);
if ($cut =~ / I)

{last ;)
$y=$y.$cut;

}
$Data gene[$i] [4]=int(reverse($y))

extract_similarity_no

#-=============================--===---=-------========---------------

sub extract_similarity_Subject
(s:

local ($string ,$cut , $y=(),>i);

Appendix

$string=$ [O) .
si=s tij. $Data_gene[$i] [7j' + - l. . = int ($string) ;
while (1)

$cut= chop($string);
if($cut =~ / /)

{last;}
· $y=$y. $cut;

}
$Data_gene[$i] [8]=int(reverse($y))

extract_similarity_Subject

sub sort_array

local($i,$j,$len,$temp,$11);
$len= $ [0] ;

for ($i=0 ; $i< $len ; $i++)
(

for($j=$i;$j<=$len; $j++)
{

if($Data_gene[$i] [3]> $Data gene[$j] (3))
(

for ($11=0 ;$11<=$1;$11++)
(

$temp= $Data gene[$i] ($11) ;
$Data_gene[$i] [$11]=$Data gene[$j] ($11);

$Data_gene [$j] ($11] -= $temp;
}

}
}

#---------
sub sort array Datasegmant

loca1($i=O,$j=O,$len=O,$temp=0,$11=0,$1=8);
$len= $_[0] ;

for ($i=0 ; $i<= $len; $i++)
{

for($j=$i;$j<=$Slen; $j++)
(

if($Data gene segmant[$i] [7] >
$Data gene_segmant[sj] [7])
{ for ($11=0 ;$11<=$1+2;$11++)

{
$temp= $Data_gene_segmant[$i] [$11] ;

$Data gene segmant[$i] [$11]=$Data_gene_segmant[$j] ($11];
- - $Data gene segmant[$j] [$11] = $temp;

- - }

Appendix

$probar->Stepit();
open (out, ">>segmantl.txt") ;

for ($i=0;$i<=$len;$i++)
(# if ($i==O) {printout "\n Query subject length

start End Ident ------\n"; }
for ($j=0;$j<=$1;$j++)

{
print out 11 $Data_gene_segmant [$i] [$j] 11;

}
print out "\n";

}

close(out);
}

#-===-=---------=

sub filter file
loca1($i,$j,$lenl,$temp,$11,$t=0,$c=0);

Stemp=O;
Slenl= $ [0) ;

&sort array($lenl) ;
for ($i=0 7 $i<= $lenl ; Si++)

{
if ($Data gene[$i] [6)==0)

{ $Data gene[$i] [6]=$c;
$c++;

if(Slen-l == abs($Data_gene[$i] [3)-
$Data_gene[$i] [4]))

next;
Stemp++;
} #end if
else

{
$11=$Data gene[$i] [4);

for($j=$i+l;$j<=Slenl;$j++)
{

if ($Data_gene[$j] [6]==0)
{

if($Data_gene[$j] [3) == $11 +1)
{

$Data gene[$j] [6]=$i;
±E($len-l ==

abs ($Data _gene [$i] [3]- $Data _gene-[$j J [4 J))

$Data_gene[$j] [6]=$i;
$temp++;
last;

end if

else
{

$11 = $Data_gene[$j][4);
$Data_gene[$j] [6]=$i;

Appendix

} #end if
} #end if

}# end loop
}

} #end if

} #end loop

if($c <= $coverge-1)
#unlink (TEMP/file.out); #Delete file

}
else

&Display WGSR Duplication();
$rep[sn]= sData gene[1](O];

$hn++}
&print_array($counter);

}

end procedure

sub Run_MegaBlast
{

local($location=());
#engage the Cwd module

use Cwd ;
##Get the current directory location

$directory= cwd;
##assign the variable $folder
$folder= "$directory/TEMP"

##assign the attribute
$attribute= 777;

make a directory
mkdir($folder,$attribute);

$location= $_[0];
system("formatdb -i $location -p F -o T");

unless (open (DATABASE,"$location"))
{ print "count open the file!";}

$i=l;
open(file,">file.txt");

while (<DATABASE>)
{

chop($_);

if s />/
{

if($i!= 1)
{ close(file);

$j=$i-1;
system("MegaBlast -d $location -i

Appendix

file.txt -o temp/file$j.out -F \"m D;V;L \" ");
my ($DOS) =

Win32: :GUI::GetPerlWindow() ;Win32: :GUI: :Hide ($DOS) ;
open(file,">file.txt");

$i++;
}

print file "$_\n";

}
$j=$i-1;

system("MegaBlast -d $location -i file.txt -o
temp/file$j.out -F \"m D;V;L \" ");

my ($DOS) =
Win32::GUI::GetPerlWindow();Win32::GUI: :Hide($DOS);

return $i;

sub Display_WGSR_Duplication
{

local($i=0,$j,$len,$temp,$11);

unless (open (data,"TEMP/file$f.out"))
{ print "count open the file!"; }

unless (open (input,">>file12.out"))
{ print "count open the file!"; }
print input "=" x 100;
print input "\n\n WGSR $Data_gene [1] [O] \n\n "
print input "=" x 100;
print input "\n\n";

while (<data>) #start loop
{ chop($);
if(S_/Query=/)

{$i++; }
if($_ /Database:/)

{$i=0; }
if($i)
{ print input$;
print input "\n";

close (data) ;
print input "\n\n";

print input "\n\n";
close(input);

} # end of function Display

Appendix

#----

#Collection WGSR Duplication
sub Collection WGSR

{
local ($i,$j,$lenl, Stemp, $11,$t=0,$c=0, $d=0, $He=0,@locf=()) 7

Stemp=0;
@loc= () ;
$lenl= $ [O] ;

for ($i=0 ; $i<= $lenl ; $i++) # for 1
{
if (SData_gene_segmant [$i] [O] !=

$Data_gene_segrnant[$i] (1]) # f 1
{
if ($Data gene segmant[$i] [61==0) # if 2

(sc++;'
$Data gene segmant [$i] [6]=$c;
$11=$Data gene segmant[$i][8];
$loc[SHe]= $Data_ gene_segmant[$i] (O]7
if(SData_gene_segiant[$i][5]> 99)# if 3
(
for($j=$i+l;$j<=$lenl;$j++) # for 2

{ $d=O;

if ($Data_gene_segmant[$j] [6]==0)
{
if($Data_gene_segrnant[$i] [1]==

$Data_gene_segmant[$j] [1]
{
if($Data_gene_segmant[$j] [7]

== $11 +1)

if($Data_gene_segmant[$j] [5]> 99)

$loc [$He]."! $Data_gene_segrnant [$j] [0] ";

$Data_gene_segmant[$j] [8];

$Data_gene_segmant[$j] [6]=$c;

{
$loc[$He]=

$11 =

}
}

} # end for 2

$He++;
} #end if 3
else

{
for($j=$i+l;$j<=$lenl;$j++) # for 2

{ $d=0;
if ($ Data_gene_segrnant[$j] [6]==0)

{

$Data_gene_segmant[$j] [1]) if($Data_gene_segmant[$i] [1]==

Appendix

'±r (sData_gene_segmant ($j] (7)

== $l1 +l)

±f (SData_gene_segmant [$j] [5]< 99)

Sloc[SHe]."!$Data_gene_segmant [$j] [O]";

$Data_gene_segmant[$j] [8];

$Data_gene_segmant[$j] [6]=$c;

{
Sloc[$He]=

$11 =

}
}

}
} # end for 2

$He++;
} #end else

} # end if 2
} # end if 1

} # end for 1

$probarl->Steplt();
open (out, ">>segmantl.txt") ;
for ($i=0;$i<=$len;$i++)

{ # if ($i==O) { print out "\n Query
start End I dent ------\n "; } ·

for ($j=O;$j<=$1;$j++)
(

subject length

print out 11 $Data_gene_segmant[$i] [$j)";

print out "\n";

close(out);
$j=0;
for($i=O;$i<=$#loc;$i++)

{
if($loc[$i]=~/!/)

{ $locf[$j] [0]=$loc[$i];
$locf[$j] [l]=O;
$j++;

}
$probarl->Steplt();
@locd=(); $d=O;

for($i=0;$i<=$#locf;$i++)
{ if($locf[$i] [1]==0)

(
for($j=$i;$j<=$#locf;$j++)

{
if($j==Si) ($locd[$d] [0]= $locf[$i](0];
if(Slocf($i][0] eq $locf[$j][O))

{ $locf[$j] (1]=1;
$locd[$d] (1]++;

Appendix

}
$d++;

}
}
Sprobarl->StepIt();

for($i=0;$i<=$#locd;$i++)
{ @fi=();

. @fi = split(/!/,$locd[$i][0]);
if($locd[Si] [1]!=0)

{
for($j=$i+1;$j<=$#locd;$j++)

{ @se=();
@se = split(/!/,$locd[$j][0]);

for($k=0;$k<=$#fi;$k++)
{

if($fi[$k] eq $se[$k])
{

if($locd[$i] [1)>$locd[$j] [1))
{

$locd[$j] (11=0;
l.ast;

else
$locd[$i] [l]=0;
l.ast;

}
}

**

for ($i=0 ; $i<= Slen ; $i++)
{
for($j=$i;$j<=$len; $j++)

{
if($locd[$i] [0] gt $locd[$j] [O])

{
for ($11=0 ;$11<=1;$11++)

{ Stemp= $locd[$i][$11] ;
$locd[$i] ($11] =$locd[$j] [$11);

$locd[$j] [$11) = Stemp;
}

} Sprobarl->StepIt()7
@final=();
$d=0; for($i=0;$i<=$#locd;$i++)

{
@fi=();
@fi = split(/!/,$locd[$i][O]);

_Appendix

if($locd[$i] [1] !=O)
{

$rt=Sfi[$S#fi];
$final[$d]=$locd[$i][O];

for($j=0;$j<=$#locd;$j++)
{ @se=();

@se = split(/!/,$locd[$j][O]);
if(Slocd[Sj][1]!= 0)

{
if($rt =~ /$se[O]/)

{ $rt= $se[$#se];
$final [$ct] =$final [$ct]."! $rt"; '

$1 ocd [$ j] [1] =0 ;
$locd[$i] [l]=O;
}

}
$d++;
}

} $probarl->Stepit();
for($i=O;$i<=$#final;$i++)

{
print" $fina1[$i]"
print "\n";

for ($i=O ; $i<= $#rep ; $i++)
{ $k=l;
for($j=0;$j<=S#final; $j++)

{ @fi= () ;
@fi = split(/!/,$fina1[$j]);

for ($11=0 ;$11<=$#fi;$ll++)
{ if ($fi[$11] eq $rep[$i]

{ $Sk=O; last; }

}
if (Sk)

{ push(@final,$rep[$i]);

} $probarl->Steplt();

&MakeFile_Segmant ();

$probarl->Stepit();

END for procedure "Collection_WGSR "

#==

sub MakeFile_Segmant
{ local($j=0,$i=0,@fi=(),$k=0)n

Appendix

open (input ,">DATAS.txt") :
for($i=0 ; $i<=$#final;$i++)

{ . t . prin input "\n >$final[$i]\n":
$k=O; '
@fi=();

tor(s+.,,,FF = split(/!/,$final[$i));
ij=; 5j<=$#fi; $j++)
(

open (data,"$tex");
while(<data>)

{ chop($);

if($k)
{
if($ =~ />/)

(s=O; last;}
print input"$ \n";

} -
if($_=~ />$fi[$j]/)

{ $k=l
}

close(data);

}
$probarl->Stepit();

close(input);
&Rur_megeblast_Segmant();

} #=============== .==

sub Rur megeblast Segmant
10ca1 ($1=0,$j=0,s=0) ;

#engage the Cwd module
use Cwd ;
##Get the current directory location
$directory= cwd;
##assign the variable $folder
$folder= "$directory/SEGMANT"
##assign the attribute
Sattribute = 777;
make a directory
mkdir($folder,$attribute);

unless (open (DATABASE,"DATAS.txt"))
{ print "count open the file!";}

$i=l;
open(file, ">file.txt") 7
while (<DATABASE>)

{
chop(S_) n

11111

Appendix

if ($ />/)

if ($i ! = 1)
{ close (file) ;

$j=$i-1;
fi! system("MegaBlast -d $tex =l
ile.txt -o SEGMANT/file$j.out -F \"m D;V;L \"

11
);

open(file,">file.txt");

}
$i++;

}
print file "S_\n";

}

$j=$i-1;
system("MegaBlast -d $tex -i file.txt -o

SEGMANT/file$j.out -F \"m D;V;L \" ti);

unless (open (input,">SegmantDuplication.txt"))

{print "count open the file!"; }
$probarl->Stepit();

print input "" x 100;
print input "\n \t\t The WGSR Dublication is \n\n";

for($i=0;$i<=$#final;$i++)
{
print input "\n\t\t Segmant$i\t: $fina1[$i] \n";

print outputl "*" x 100;
print outputl "\n\n";

$probarl->Stepit();
for($i=O;$i<=$#final;$i++)
{ $k=$i+l;
unless (open (data, "SEGMANT/file$k.out"))

{ print "count open the file!"; }

print input "=" x 100;
print input "\n\n Segmant $fina1[$i] \n\n"

print input "=" x 1007
print input "\n\n";

$j=0;
while (<data>) #start loop

{ chop(s)7
±f($_ /Query=/)
{$j++; }

if($_ /Database:/)

{ $j=0; }
if($j)
{ print input ©_7

print input "\n";

}
close (data) ;

]]]]llllllll=a

Appendix

print input "\n\n";

print input "\n\n";

close(input);
$probarl->SetPos($probarl->GetMax());
$richl->Load("SegrnantDuplication.txt",Ox0001);
$probarforml->Hide();
$mainl->Enable();
$mainl->Hide();
Smain?->Show() 7

#---=-=-================ -==========================----------========

