

Structural Design for Dora Hospital

By
Wafa' Karajat
Hamdan Hroub Mousa Abu Rayan

Supervisor:
DR. Belal AL.Massri

Submitted to the College of Engineering
In partial fulfillment of the requirements for the degree of Bachelor degree in Building Engineering

DIDICATION

To Palestine...
To our Parents....
To The Soul of Martyrs....
To our Teachers
To our Friend's ...
To whom we Love

To Everyone who gave us Help ...
To DR. Belal Almassri ...

ACKNOWLEDGMENT

We would like to thank and gratitude to Allah, who gives us the most Merciful who granted us the ability and willing to start project.

We thank "Palestine Polytechnic University", "Department of Civil and Architectural Engineering" and wish to it more progress and successes. We express our thanks to Eng. Belal Almassri, who gave us the knowledge, valuable help, encouragement, supervision and guidance.

Thanks for all teachers that gave us a little of theirs time and answers our questions.
Finally, our deep sense and sincere thanks to our parents, brothers and sisters for their patience, and for their endless support and encouragement also for everybody who tried to help us during our work and gave us strength to complete this task.

ABSTARCT

Government and private hospitals are one of the most important institutions that serve our country and serve our people. They provide services and health care to them and provide them with the necessary treatment requirement It is necessary from all diseases, especially because we are suffering today from an increase in the population and the services and treatment that it requires all sides.

The project is a hospital in the city of Dura, it is a city with a large population so that it needs a hospital to serve this number of residents, as health centers in the city have become unable to meet the needs of this population and there has been a trend from the government several years ago this construction the hospital.

The project consists of 5 floors

*Two level floors, each with an area of 726 m 2.
*The ground floor area is 3667 m 2 .
*The first floor has an area of 1893 m 2.
*The second floor has an area of 1881 m 2.
*The total project area is 8893 m 2 .
*The land area required for the hospital must not be less than 11,000 square meters.

Content index

INTRODUCTRY PAGES

Subject Page
Dedication II
Acknowledgment III
Abstract IV
Content index 1
Index of tables 4
Index of Figure 4
List of Abbreviation 6
Reference 57
Chapter One
INTRODUCTION
Subject Page
Chapter One 8
1.1 Introduction 9
1.2 Research problem 9
1.3 An overview of the project 9
1.4 The objectives of the project 10
1.5 Project steps 11
1.6 Reasons to choose project 11
1.7 The scope of the project 12
1.8 Schedule 12

Chapter Two

ARCHITECTURAL DESCRIPTION

Subject Page
Chapter Two 14
2.1 Introduction 15
2.2 Project Overview 14
2.3 Study the Project Components
2.3.1 Project Plans 16-20
2.3.2 Project Elevation 21-22
2.3.3 Movement Of The Building (Sections and Site Plan) 23-24

Chapter 3

STRUCTURAL DESCRIPTION

Subject Page
Chapter Three 25
3.1 Introduction 26
3.2 The goal of the structural design 26
3.3 Scientific tests 26
3.4 Stages of structural design 26
3.5 Loads acting on the building 27
3.6 Structural elements of the building 30

Chapter Four

DESIGNOF STRUCTURAL MEMBERS

Subject Page
Chapter Four 35
4.1 Introduction 36
4.2cheak minimum thickness 39
4.3 design of topping 39
4.4 Design of one-way ribbed slab 41
4.5 Design of beam 50
4.6 Design of one-way solid slab 63
4.7 Design of column 67
4.8 Design of staircase 71
4.9 Design of basement wall 79
4.10 Design of shear wall 83
4.11 Design isolated footing 87

Index tables

Table Page
Table (1.1): Project schedule for first semester 13
Table ($4-1$): Dead load calculation of topping 41
Table ($4-2$): dead load Calculation of rib 44
Table (4 - 3): dead load Calculation of solid slab 63
Table (4 - 4): Design data of column (11) 66
Table ($4-5$):Dead load calculation on flight 72
Table ($4-6$): Show dead load calculation on landing stair 72
Index of Figure
Figure Page
Figure (1.1): Shows The Stages Of The Project 12
Figure (2.1): Second Basement Floor Plan 16
Figure (2.2): First Basement Floor Plan 17
Figure (2.3): Ground Floor Plan 18
Figure (2.4): First Floor Plan 19
Figure (2.5): Second Floor Plan 20
Figure (2-6): North East Elevation 21
Figure (2-7): South West Elevation 21
Figure (2-8): North West Elevation 22
Figure (2-9): South East Elevation 22
Figure (2-10): Section A-A 23
Figure (2-11): Section(B-B) 23
Figure (2.12) : Site Plan 24
Figure (3.1): Determination of live load code (page 25) 27
Figure (3-2): Snow loads on structures 28
Figure (3.3): Determination of snow load, Jordanian loads code 28
Figure (3-4): Earthquake map for Palestine 29
Figure (3-5): Wind Pressure on buildings 30
Figure (3-6): Solid Slab 31
Figure (3-7): One Way Ribbed Slab 31
Figure (3-8): The shape of stairs 32
Figure (3-9): Hidden Beam 33
Figure (3-10): Paneled Beam 33
Figure (3-11): Column 34
Figure (3-12): Shear Wall 34
Figure (3-13): Frame Structure 35
Figure (4-1): relation between cylinder and cube concrete test 38
Figure (4-2): stress strain curve of concrete 38
Figure (4-3): values of under strength factored related to strength condition 39

Figure (4-4) : provided minimum thickness from code
Figure (4-5) : one way rib slab plan 43
Figure (4-6) : one way rib slab section 43
Figure (4-7) : Moment and shear envelop of rib3 46
Figure (4-8) : توزيع حديد العصب
Figure (4-9):Beam (150) 50
Figure (4-10) :statically system and loads distribution beam (150) 51
Figure (4-11):shear and moment envelop diagram of beam (150) 53
Figure (4-12): توزيع حديد الجسر 61+60
Figure (4-13): plan of solid slab 62
Figure (4-14):shear and moment envelop diagram of solid slab 64
Figure (4-15) : details of column 69
$\begin{array}{ll}\text { Figure (4-16) :stair plan and structure system } & 70\end{array}$
Figure (4-17): transformation of dead load into horizontal projection 71
Figure (4-18): details of stairs 77
Figure (4-19): shear and moment envelop diagram of stairs 79
$\begin{array}{ll}\text { Figure (4-20): basement wall details } & 81\end{array}$
Figure (4-21): shear wall (3) 82
Figure (4-22): figure of shear wall 85
Figure (4-23):footing section 86
Figure (4-24): one way shear calculation 87

List of Abbreviations:

- $\mathbf{A c}=$ area of concrete section resisting shear transfer.
- $\mathbf{A s}=$ area of non-prestressed tension reinforcement.
- $\mathbf{A g}=$ gross area of section.
- $\mathbf{A v}=$ area of shear reinforcement within a distance (S).
- $\quad \mathbf{A t}=$ area of one leg of a closed stirrup resisting tension within a (S).
- $\mathbf{b}=$ width of compression face of member.
- bw = web width, or diameter of circular section.
- $\mathbf{D L}=$ dead load.
- $\mathbf{d}=$ distance from extreme compression fiber to cancroids of tension reinforcement.
- $\mathbf{E c}=$ modulus of elasticity of concrete.
- $\mathbf{F y}=$ specified yield strength of non-prestressed reinforcement.
- $\mathbf{I}=$ moment of inertia of section resisting externally applied factored loads.
- $\mathbf{L n}=$ length of clear span in long direction of tow-way construction, measured face-to-face of supports in slabs without beams and face to face of beam or other supports in other cases.
- $\mathbf{L L}=$ live load.
- $\mathbf{L d}=$ development length. $\quad \mathrm{Vu}$:factored shear force at sec.
- $\mathbf{M}=$ bending moment. Wc : weight of concrete $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$
- $\mathbf{M u}=$ factored moment at section.
- $\mathbf{M n}=$ nominal moment.
- $\mathbf{P n}=$ nominal axial load.
- $\mathbf{S}=$ spacing of shear or in direction parallel to longitudinal reinforcement.
- $\mathbf{V c}=$ nominal shear strength provided by concrete.
- $\mathbf{V n 8}=$ nominal shear stress.
- $\mathbf{V s}=$ nominal shear strength provided by shear reinforcement.

CHAPTER

1

INTRODUCTION

1.1 INTRODUCTION.

1.2 RESEARCH PROBLEM

1.3 AN OVERVIEW OF THE PROJECT

1.4 THE OBJECTIVE OF THE PROJECT

1.5 PROJECT STEPS

1.6 REASONS TO CHOOSE PROJECT
1.7 THE SCOPE OF THE PROJECT
1.8 SCHEDULE

1.1 Introduction

Human nature needs to have places of worship in place of residence, and these places must have all the means to ensure comfort and safety. General design process requires the introduction of all aspects of the building to be created both in the architectural appearance of the building and how to distribute the spaces and areas within various service sections linked to each other, or structural terms dealing with structural system capable of carrying the loads affecting the building taking into account the minimum possible economical system construction as is compatible with the architectural design choice.

The project includes the architectural and structural design of Theater, Library, Management rooms, Galleries, Mosque, Restaurant, Conference Hall Lecture halls, Stores, Computer halls and Concerns literal. Distributing columns and bridges in line with architectural and design elements from components to bases and foundations and structural schemes and processing in order to produce an integrated project and implementation.

1.2 Research Problem:

The summary of the idea of this project, is to prepare a structural design of a general hospital, consisting of all facilities that should be available in any optima medical center . This building is consisting of 5 floors with a nice elevation, which reflecting the medical face of the building, on the other hand, no doubt that the structural design at a same level of importance of archeries one ,by supporting the building with a structural element ,which will be designed according to ACI code. The project contains the structural analysis for vertical and horizontal loads and the structural design and details for each member in the building.

1.3 An Overview of the Project:

The project is a hospital in the city of Dura, it is a city with a large population so that it needs a hospital to serve this number of residents, as health centers in the city have become unable to meet the needs of this population and there has been a trend from the government several years ago this construction the hospital.

The project consists of 5 floors

Two level floors, each with an area of 726 m 2.*
The ground floor area is $3667 \mathrm{~m} \mathrm{2.*}$
The first floor has an area of $1893 \mathrm{~m} 2 . *$
The second floor has an area of 1881 m 2 .*
The total project area is $8893 \mathrm{~m} \mathrm{2.*}$
The land area required for the hospital must not be less than 11,000 square meters.*

1.4 The Objective of the Project

The objectives of the project are divided into two parts:

1. Architectural Goals:

In this project architectural design is not the main goal as civil and building engineers, however this buildings where necessary to achieve beauty and utility requirements, cost and durability in these facilities, which are the basic architectural design requirement.
2. Structural Goals:

Structural design of the units will be done in this project with prepare all structural drawings for beams, slabs, columns, footings and shear walls to be ready for fulfillment on the location of the project

1.5 Project Steps

1. Architecture design (construction drawings, elevations, sections, public location).
2. Study the units structurally to identify structural elements, loads on the buildings, and the selection of appropriate structural system.
3. Distribute columns to the chosen structural system.
4. Structural analysis of all structural elements of the units.
5. Structural design of all structural elements.
6. Preparation of construction drawings of the building to remove the executable image.
7. Writing project in accordance with the requirements of the construction engineering.

1.6 Reasons to Choose the Project:

The reason of selecting the project back to several things, including the conquest of skill in design for structural elements in buildings, in addition to increasing knowledge of machine construction systems in our country and other countries, as well as the conquest of scientific knowledge and the process followed in the design and implementation of construction projects and the structural engineer after graduation in the work market in the future.

This search is to submit it to the department of civil engineering and architecture at the College of engineering and technology at Palestine Polytechnic University to meet graduation requirements and a Bachelor's degree in civil engineering for building engineering.

1.7 The scope of the Project

This project contains several chapters are detailed as follows:

- Chapter One: a general introduction to the project.
- Chapter Two: includes description of architectural project.
- Chapter Three: contains a description of the structural elements of the project.
- Chapter Four: Analysis and structural design of all structural elements.
- Chapter Five: The results that have been reached and recommendations.

1.8 Schedule:

Figure (1-1): Shows The Stages of The Project.

Table (1.1): Project Schedule.

Week NO.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
Select project																

CHAPTER

Architectural Description

2.1 INTRODUCTION.

2.2 THE MAIN ELEMENTS IN THE ISLAMIC CULTURAL CENTER.

2.2.1 INTERIOR SPACES.

2.2.2 EXTERNAL SPACES

2.3 PROJECT PLANS.
2.4 PROJECT ELEVATIONS.
2.5 PROJECT SECTIONS.
2.6 SOME PERSPECTIVE SHOTS FOR THE ISLAMIC CULTURAL CENTRE.

2.1 Introduction:-

Architectural description is the most important things that should be consider when preparing for any project because of its importance in defining and understanding the nature of the project and its sections.

Architectural design requirements task must meet the desired job and human needs in the present time, these terms are in the functional, lasting beauty and economy, it is important in these conditions can interact between each other and in harmony to achieve our vision of optimal design and get an integrated and comprehensive architectural design, and this is achieved by understanding the functional demands of the building and space as well as taking into account nature movement of each part of the project.

Architectural study that must precede the start of architectural design must be easy to handle and understand different events that it contains building and functional relations among them, and the nature of the association movement and using these parts, and other things of importance that give a clear picture of the project and therefore it will be possible to locate the columns and other structural elements to suit architectural design.

2.2 Project overview:

Through wandering on our Palestinian street, and the cover revealed its concerns, we find the need for our society With model hospitals, you keep in mind the modern requirements of public health and safety systems. The urgent need for hospitals in our area, the current medical deficit in the country, will be the solution .
The idea of the project is summarized by designing a general hospital that achieves the goals mentioned above and meets All the needs that the Palestinian family demands, as the project consists of three floors in addition to two settlement levels, ranging in area from about 726 square meters to 3667 square meters, and the total area is 8,893 , in which the career services vary appropriately with the required design need.

2.3 Study the project components :

2.3.1 Plans :

The project includes five floors, with a variety of services, on each floor distributed according to the following:

- Second Basement: It contains the morgue.

Figure (2.1): second basement plan

- First Basement Floor : It contains

1. Washing machine
2. Outpatient clinics

(2.2) : Figure first basement plan

- Ground Floor : It has an area 3667 m 2

It Contain :

1. Kitchen.
2. x_ray place.
3. Orthopedic department.
4. children section.
5. Emergency department.

Figure (2.3) :Ground floor plan

- First Floor: It has an area 1893 m 2.

It Contain:

1. Department of ENT.
2. Quarantine department.

Figure(2.4) : First Floor Plan

- Second Floor : It has an area 1881 m 2.

It Contain:

1. Department of Medical Director.
2. The esoteric section.

Figure (2.5) :Second floor plan

2.3.2 Description of Elevation

The main materials used in the construction process are reinforced concrete, and ordinary concrete. And two types of stone are stained stone and Al-Matabba stone (sesame stone), provided that they are suitable for conditions. Resist weather conditions and provide beauty, where stained stone is used in The facades, and the stone bricks above the windows, doors and plaques.

- North east Elevation

Figure (2.6): North East Elevation

- South west Elevation

Figure (2.7) :South West Elevation

- North West Elevation

Figure (2.8) :North West Elevation

- South east Elevation

Figure (2.9) :south east elevation qw

2.3.3 The Movement in the Building

There are many forms of movement in the building, as comfort, safety and ease of movement were taken into consideration. Which externally is to reach the hospital and internally by horizontal and vertical movement.

- Section A-A

Figure (2.10): Section A-A

- SECTION B-B

Figure (2.11) :Section B-B

- SITE PLAN

Figure (2.12) :Site Plan

CHAPTER

3.1 INTRODUCTION.

3.2 THE GOAL OF THE STRUCTURAL DESIGN.
3.3 SCIENTIFIC TESTS.
3.4 STAGES OF STRUCTURAL DESIGN.
3.5 LOADS ACTING ON THE BUILDING.
3.6 STRUCTURAL ELEMENTS OF THE BUILDING.

3.1 Introduction:

The main objective of the process design is to ensure the existence of necessary operating advantages with structural elements on the most suitable dimensions in terms of security and economic terms.

The knowledge of structural elements of any project is essential in the design of reinforced concrete structures to make comparisons between different types of these elements for the construction of safer system. So the structural elements that go into the design of this project will be described.

3.2 The Goal of the Structural Design:

The structural design is an integrated and balanced structural system capable of carrying it meet the established requirements and desires of users, and thus determines the structural elements from the following:

1- Factor of Safety: Is achieved by selecting sections for structural elements capable of withstanding the forces and resulting stresses.
2- Economy: Check by choosing the appropriate building materials and by choosing the perfect low-cost section.
3- Serviceability: To avoid excessive landing (deflection), fissures (cracks).
4- Preservation of architectural design.
5- Preserving the environment.

3.3 Scientific Tests:

Before the design of any construction project must be doing some tests, tests of the soil to see breaking strength, specifications, type, the underground water level and depth of the foundation layer, and through holes up and depths measured by the appropriate International Center for Geotechnical Engineering Studies (ICGES) in Bethlehem, and took samples of the soil, has been getting the value soil durability of Earth-based project.

3.4 Stages for Structural Design:

We will distribute the structural design of the project in two phases:-

1. The first stage:-

In this stage, the appropriate structural system of project construction and analysis for this system will be determined.
2. The second stage:- The structural design of each element of the set is detailed and accurate according to the chosen construction system and structural blueprints for executable.

3.5 Loads Acting on the Building:

Is a group of forces that is designed to endure, and that any building is subjected to several types of loads must be calculated and selected carefully because any error in identifying and calculating loads reflect negatively on structural design of various structural elements. The building is exposed to loads of live and dead loads, wind loads, snow loads, loads of earthquakes.

The permanent forces and resulting from strong gravity which are fixed in terms of amount and location and does not change during the age of the building, and the loads on the weight of structural elements and the weights of the items based upon sustainably as cutters and walls, as well as the weight of the body adjacent to the building permanently, and the calculation and estimate the loads by knowing the dimensions of the structural elements and specific gravity of the material used in the manufacture of structural elements, And are most often include: concrete, and Rebar, and plaster, and bricks, tiles and finishes, and the stone used in building coverage abroad, there is also a tube extensions, as well as suspended ceilings and decorations for the building.

الجمدول (r-r-ب) تابع الأمال الحية للأرضيات والعقدات				
الحمل المركز البديل	الحه /	الاستعهال	نوع المبى	
كن	كن/م'	Jالالثغ	خاص	P
4.5	4.0	والأدراج و! . . سعطات الأدراج والمبرات للرتنغة اللوصلة بين الباني.	تابع القاعات، قاء ات الاجتماعات، الـطاعمب، \|لكتاحف، للككتات،	تابع مباني التجمعات العامة.
4.5	7.5	للكّ .	النوادي، للسارح،	
4.5	4.0	أرض وصالات عرض الننون.	ستوديوهات الاذاعة.	
2.7	3.0	أماكن العبادة (لا ساجدا , الكنائس) .		

Figure (3-1) Determination of live load code (page 25)

Snow Loads:

Figure (3-2): snow loads.

Snow loads can be calculated by knowing the altitude using the table below by Jordanian code.

حمل الثلا	ارتفاع المتشأ
0	$250>h$
(h-250)/800	$500>h>250$
(h-400)/320	$1500>h>500$

Figure (3.3): Determination of snow loads code (page 44).

Based on the scale of previous snow loads and after selecting the high building surface and that equals (700 m) according to item III snow load is calculated as follows:
$\mathrm{SL}=(\mathrm{h}-400) / 320$
$\mathrm{SL}=(775-400) / 320=1.17 \mathrm{KN} / \mathrm{m}^{2}$

Earthquake Load:

Produce earthquakes of horizontal and vertical vibrations due to the relative motion of the Earth rock layers, resulting in strong cut affect the origin, and these loads must be taken into account in the design to ensure resistance to earthquakes. This will be resisted by shear walls in a building on the construction accounts.

Figure (3-4): Earthquake map for Palestine.

Wind Loads:

Wind loads affect the horizontal forces on the building, and the wind load determination process is depending on wind speed and change height from the surface of the Earth and the location of where his high buildings or having established himself in the high or low position and many other variables.

Figure (3-5): Wind Pressure on buildings.

3.6 Structural Elements of the Building:

All buildings are usually consists of a set of structural elements that work together to maintain the continuity of a building and its suitability for human use, and the most important of these slabs and beams and columns and load-bearing walls, etc.

- Slabs:

Structural elements are capable of delivering vertical forces due to the loads affecting the building's load-bearing structural elements such as beams, columns and walls, without distortions.

In this project, two types of components both in its appropriate place, and in, which will clarify the structural design in the subsequent chapter, and below these types:

1- One Way Ribbed Slab.
2- Tow Way Solid Slab.

.Figure (3-6): Solid Slab.

.Figure (3-7): One Way Ribbed Slab.

- Stairs:

The architectural elements used for vertical transmission between the different levels of the lever through the building, and will be one of inclusion type design development.

Figure (3-8): The shape of stairs.

- Beams:

The basic structural elements in moving load of tiles into columns, and are of two types:

1- Hidden Beam: Hidden inside Slabs.
2- Dropped Beam: (Paneled Beam).

Figure (3-9): Hidden Beam.

Figure (3-10): Paneled Beam.

- Column:

The column is an important element in moving loads of bridges to the foundations, it is essential to transfer the loads and the building, and therefore must be designed so as to be able to download and load them, and two rectangular and square concrete columns.

Figure (3-11): Column.

- Shear wall:

Is a structural system composed of braced panels (also known as shear panels) to counter the effects of lateral load acting on the building, the building contains a number of shear wall continued from Foundation to the end minaret.

Figure (3-12): Shear Wall.

- Frames:

The frame construction is a method of building and designing structures, primarily using steel or steel-reinforced precast concrete. The connections between the columns and the rafters are designed to be moment-resistant.

Figure (3-13): Frame Structure.

Chapter Four

4-1 Introduction.

4-2 Check of Minimum Thickness of Structural Member.

4-3 Design of Topping.

4-4 Design of One Way Rib Slab.

4-5 Design of beam

4-6 Design of one-way solid

4-7 Design of Coulmn.

4-8 Design of Stairs.

4-9 Design of basement Wall.

4-10 Design shear wall

4-11 Design of isolated footing

4-1 | Introduction

Reinforced concrete (RC) is a versatile composite and one of the most widely used materials in modern construction. Concrete is a relatively brittle material that is strong under compression but less so in tension. Plain, unreinforced concrete is unsuitable for many structures as it is relatively poor at with standing stresses induced by vibrations, wind loading and so on.

To increase its overall strength, steel rods, wires, mesh or cables can be embedded in concrete before it sets. This reinforcement, often known as rebar, resists tensile forces. By forming a strong bond together, the two materials are able to resist a variety of applied forces, effectively acting as a single structural element.

Reinforced concrete can be precast or cast-in-place (in situ) concrete, and is used in a wide range of applications such as; slab, wall, beam, column, foundation, and frame construction.

4-1-1 Concrete and its Classifications:

Plain concrete is made by mixing cement, fine aggregate, coarse aggregate, water, and frequently admixtures,

Structural concrete can be classified into:

- Lightweight concrete with a unit weight from about 1350 to $1850\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$ produced from aggregates of expanded shale, clay, slate, and slag.
- Normal-weight concrete with a unit weight from about 1800 to $2400\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$ produced from the most commonly used aggregates - sand, gravel, crushed stone.
- Heavyweight concrete with a unit weight from about 3200 to $5600\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$ produced from such materials such as barite, limonite, magnetite, ilmenite, hematite, iron, and steel punching or shot. It is used for shielding against radiations in nuclear reactor containers and other structures.

4-1-2 Compressive strength of concrete:

The strength of concrete is controlled by the proportioning of cement, coarse and fine aggregates, water, and various admixtures. The most important variable is (w/c) ratio. Concrete strength ($f_{c}{ }^{\prime}$) - uniaxial compressive strength measured by a compression test of a standard test cylinder (150 mm diameter by 300 mm high) on the 28th day-ASTM C31, C39. In many countries, the standard test unit is the cube ($200 \times 200 \times 200 \mathrm{~mm}$).

The concrete strength depends on the size and shape of the test specimen and the manner of testing. For this reason the cylinder ($\varnothing 150 \mathrm{~mm}$ by 300 mm high) strength is 80% of the 150 mm cube strength and 83% of the 150 mm cube strength, figure (4-1) demonstrate relation between cylinder and cube concrete test.

Figure (4-1) relation between cylinder and cube concrete test.

4-1-3 Modulus of Elasticity of concrete:

The modulus of elasticity of concrete varies, unlike that of steel, with strength. A typical stress-strain curve for concrete in compression is shown. The initial modulus (tangent at origin), the tangent modulus (at $0.5 f_{c}{ }^{\prime}$), and the secant modulus are noted. Usually the secant modulus at from 25 to 50% of the compressive strength $f_{c}{ }^{\prime}$ is considered to be the modulus of elasticity. For normal weight concrete, shall be permitted to be taken as $E_{c}=$ $4700 \sqrt{f_{c}{ }^{\prime}}$ (Map),

4-1-4 Strength Design method (Ultimate strength method):

In the strength design method, the service loads are increased by factors to obtain the load at which failure is considered to be "imminently". This load is called the factored load or factored service load. The structure or structural element is then proportioned such that the strength is reached when the factored load is acting. The computation of this strength takes into account the nonlinear stress-strain behavior of concrete.

The strength design method may be expressed by the following:

Strength provided \geq [strength required to carry factored loads]

Where the "strength provided" (such as moment strength) is computed in accordance with the provisions of a building code, and the "strength required" is that obtained by performing a structural analysis using factored loads.

4-1-5 Load Factors U and strength reduction

Factor \varnothing :

figure (4-2) demonstrate stress-strain concrete

According to (ACI 318-11 9.2.1) the factor \mathbf{U} for overload is given:

```
\(U=1.4 D\)
\(U=1.2 D+1.6 L+0.5\left(L_{r}\right.\) or \(S\) or \(\left.R\right)\)
\(U=1.2 D+1.6 L+0.5\left(L_{r}\right.\) or \(S\) or \(\left.R\right)\)
\(U=1.2 D+1.0 W+1.0 L+0.5\left(L_{r}\right.\) or \(S\) or \(\left.R\right)\)
\(U=1.2 D+1.0 E+1.0 L+0.2 S\)
\(U=0.9 D+1.0 W\)
\(U=0.9 D+1.0 E\)
```

Where:

D: dead load.
L : live load
L_{r} : roof live load.
S : snow load.
R : rain load.
W: Wind load.
E : Earthquake load.

The factor \varnothing (under strength factor) according to ACI demonstrated in figure (4-3).

Strength Condition	ϕ Factors
1. Flexure (with or without axial force)	
Tension-controlled sections	0.90
Compression-controlled sections	
Spirally reinforced	0.75
Others ..	0.65
2. Shear and torsion	0.75
3. Bearing on concrete ...	0.65
4. Post-tensioned anchorage zones ...	0.85
5. Struts, ties, nodal zones, and bearing areas in strut-and-tie models	0.75

Figure (4-3) values of understrength factors related to strength condition.

4-1-6 General considerations:

1- ACI 318-11 Building code will be used in this project.
2- UBC-97 code will be used for lateral loads.
3- Ultimate strength design method will be used during the analysis and design of this project.

4- The compressive strength of concrete for all structural elements is $\mathbf{B} 300$ which equals to $f_{c}{ }^{\prime}=$ 24 Mpa .

5- Yield strength of reinforcing rebar's $f_{y}=420 \mathrm{Mpa}$.

4-2 | Check of Minimum Thickness of Structural Member:

It will be determined according to (ACI 318-11) to achieve deflection requirements,

TABLE 9.5(a) - MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED				
	Minimum thickness, \boldsymbol{h}			
	Simply supported	One end continuous	Both ends continuous	Cantilever
Member	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections			
Solid oneway slabs	U/20	U24	</28	e/10
Beams or ribbed oneway slabs	U/16	e/18.5	e/21	/8
Notes: Values given shall be used directly for members with normalweight concrete and Grade 420 reinforcement. For other conditions, the values shall be modified as follows: a) For lightweight concrete having equilibrium density, \boldsymbol{w}_{c}, in the range of 1440 to $1840 \mathrm{~kg} / \mathrm{m}^{3}$, the values shall be multiplied by ($1.65-0.0003 w_{c}$) but not less than 1.09. b) For f_{y} other than 420 MPa , the values shall be multiplied by $\left(\mathbf{0 . 4}+\boldsymbol{f}_{y} / 700\right)$.				

Figure (4-4) provided minimum thickness from code

The thickness of slab provided from (ACI 318-11) to achieve requirements of deflection, depends on the Flexural stiff ness of slab, by manual calculation comes about
$h_{\text {min }}=32 \mathrm{~cm}$.

4-3 | Design of Topping:

4-3-1 Load calculations:

\checkmark Topping in One way ribbed slab can be considered as a strip of 1-meter width and span of hollow block Load
Calculations:

Dead Load:

length with both end fixed in the ribs, Table (4-2) shows Load calculations on topping.

Live load calculations $=4 \times 1=4\left(\frac{k N}{m}\right)$

Factored Load: -
$\mathrm{W}_{\mathrm{U}}=1.2 \times 6.84+1.6 \times 4$ $=14.608 \mathrm{KN} / \mathrm{m}$

Check the strength condition for plain concrete, $\varnothing \mathrm{M}_{\mathrm{n}} \geq \mathrm{M}_{\mathrm{u}}$, where $\emptyset=0.55$
$\mathrm{M}_{\mathrm{n}}=0.42 \lambda \sqrt{f_{c}^{\prime}} \mathrm{S}_{\mathrm{m}}$ (ACI 22.5.1, equation 22-2)

No.	Parts of Rib	Calculation
1	Tiles	$0.03 * 23 * 1=0.69 \mathrm{KN} / \mathrm{m}$
2	Mortar	$0.03 * 22 * 1=0.66 \mathrm{KN} / \mathrm{m}$
3	Coarse Sand	$0.07 * 17 * 1=1.19 \mathrm{KN} / \mathrm{m}$
4	Topping	$0.08 * 25 * 1=2.0 \mathrm{KN} / \mathrm{m}$
5	partiton	$1 * 2.3=2.3$

$\mathrm{S}_{\mathrm{m}}=\frac{b . h^{2}}{6}=\frac{1000.80^{2}}{6}=1066666.67 \mathrm{~mm}^{2} \quad$ table (4-1): Dead Load Calculation of Topping
$\emptyset \mathrm{M}_{\mathrm{n}}=0.55 \times 1 \times \sqrt{24} \times 1066666.67 \times 10^{-6}=1.2 \mathrm{KN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{u}}=\frac{W_{u} L^{2}}{12}=0.174 \mathrm{KN} . \mathrm{m} \quad$ (negative moment)
$\emptyset \mathrm{M}_{\mathrm{n}} \gg \mathrm{M}_{\mathrm{u}}=0.174 \mathrm{KN} . \mathrm{m}$
No reinforcement is required by analysis. According to ACI 10.5.4, provide $\mathrm{A}_{\mathrm{s}, \text { min }}$ for slabs as shrinkage and temperature reinforcement.
$\rho_{\text {shrinkage }}=0.0018$ ACI 7.12.2.1
$\mathrm{A}_{\mathrm{s}}=\rho \times \mathbf{b} \times \mathrm{h}_{\text {topping }}=0.0018 \times 1000 \times 80=144 \mathrm{~mm}^{2} / \mathrm{m}$
Step (s) is the smallest of:

1. $3 \mathrm{~h}=3 \times 80=240 \mathrm{~mm}$ control ACI 10.5.4
2. 450 mm .
3. $\mathrm{S}=380\left(\frac{280}{\mathrm{f}_{\mathrm{s}}}\right)-2.5 \mathrm{C}_{\mathrm{c}}=380\left(\frac{280}{\frac{2}{3} 420}\right)-2.5 .20=330 \mathrm{~mm}$
$\mathrm{S} \leq 300\left(\frac{280}{f s}\right)=300\left(\frac{280}{\frac{2}{3} 420}\right)=300 \mathrm{mmACI} 10.6 .4$
Take $\varnothing 8 @ 200 \mathrm{~mm}$ in both direction, $\mathrm{S}=\mathbf{2 0 0} \mathrm{mm}<\mathrm{S}_{\max }=\mathbf{2 4 0} \mathbf{~ m m} \ldots$ OK

4.4 Design of One Way Rib Slab (R3)

Requirements for Ribbed Slab Floor According to ACI- (318-08).
\qquad
$\mathrm{bw} \geq 10 \mathrm{~cm}$
ACI (8.13.2)
Select bw $=12 \mathrm{~cm}$
$\mathrm{h} \leq 3.5^{*} \mathrm{bw}$
. ACI (8.13.2)

Select $\mathrm{h}=35 \mathrm{~cm}<3.5 * 12=42 \mathrm{~cm}$
$\mathrm{tf} \geq \mathrm{Ln} / 12 \geq 50 \mathrm{~mm}$ $\mathrm{ACI}(8.13 .6 .1)$

Select $\mathrm{tf}=8 \mathrm{~cm}$

Material :-

\Rightarrow concrete $\mathrm{B} 300 \quad \mathrm{Fc}^{\prime}=24 \mathrm{MPa}$
\Rightarrow Reinforcement Steel fy $=420 \mathrm{MPa}$

Section:-

$\Rightarrow \quad B=520 \mathrm{~mm}$
$\Rightarrow \quad \mathrm{Bw}=120 \mathrm{~mm}$
$\Rightarrow \mathrm{h}=320 \mathrm{~mm}$
$\Rightarrow \mathrm{t}=80 \mathrm{~mm} \quad \mathrm{~d}=320-20-8-14 / 2=285 \mathrm{~mm}$

Fig 4.5: One Way Rib Slab (R3).

Fig 4.6 : one way rib section of $R(3)$

\checkmark Load Calculation:-

Dead Load:-

Table (4-2): Dead Load Calculation of Rib (R3).

Type	$\gamma \mathrm{b} \mathrm{h}$	KN / m
Tiles	$0.03 * 0.52 * 23$	0.359
Mortar	$0.03 * 0.52 * 22$	0.343
Sand	$0.07 * 0.52 * 17$	0.619
Topping	$0.08 * 0.52 * 25$	1.04
Hollow block	$0.4 * 0.24 * 10$	0.96
Plaster	$0.03 * 0.52 * 22$	0.343
R.C rib	$0.12 * 0.24 * 25$	0.72
Partition	$1 * 2.3 * 0.52$	1.196
Sum		5.58

Dead Load $/ \mathrm{rib}=5.58 \mathrm{KN} / \mathrm{m}$
Live Load:-
Live load $=4 \mathrm{KN} / \mathrm{M}^{2}$
Live load /rib $=4 \mathrm{KN} / \mathrm{m}^{2} \times 0.52 \mathrm{~m}=2.08 \mathrm{KN} / \mathrm{m}$.
Effective Flange Width $\left(b_{E}\right)$:-
ACI-318-11 (8.10.2)
b_{E} For T- section is the smallest of the following: -
$b_{E}=\mathrm{L} / 4=7300 / 4=1825 \mathrm{~mm}$
$b_{E}=16 \mathrm{hf}=16(80)=1280 \mathrm{~mm}$
$b_{E}=\mathrm{b}_{\mathrm{e}} \leq$ center to center spacing between adjacent beams $=520 \mathrm{~mm} . .$. Control

Geometry Units:meter,cm

Loading

load group no. 1
Dead load - Service
Units:kN,meter

Live load - Service
Load factors: 1.20,1.20/1.60,0.00

Shear

Factored			
DeadR	3.4	14.58	5.1
LiveR	3.46	11.12	4.23
Max R	6.86	25.71	9.33
Min R	2.53	19.24	4.76
Service			
DeadR	2.83	12.15	4.25
LiveR	2.16	6.95	2.64
Max R	4.99	19.11	6.89
Min R	2.29	15.06	4.04

Fig 4.7: Shear and Moment Envelope Diagram of (R3).

\checkmark Moment Design for (R3): -

4.4.1 Design of Positive Moment for(R3) :-(Mu=8.7KN.m)

Assume bar diameter $\varnothing 12$ for main positive reinforcement
$\mathrm{d}=\mathrm{h}$ - cover $-\mathrm{d}_{\text {stirrups }}-\frac{d_{b}}{2}=320-20-8-\frac{12}{2}=286 \mathrm{~mm}$
Check if $\mathrm{a}>\mathrm{h}_{\mathrm{f}}$ to determine whether the section will act as rectangular or T- section.
$\mathrm{M}_{\mathrm{nf}}=0.85 . f_{c}^{\prime} \cdot b_{e} \cdot h_{f} \cdot\left(d-\frac{h_{f}}{2}\right)$
$=0.85 \times 24 \times 520 \times 80 \times\left(286-\frac{80}{2}\right) \times 10^{-6}=208.75 \mathrm{KN} . \mathrm{m}$
$\mathrm{M}_{\mathrm{nf}} \gg \frac{M_{u}}{\varphi}=\frac{8.7}{0.9}=9.67 \mathrm{KN} . \mathrm{m}$, the section will be designed as rectangular section with $\mathrm{b}_{\mathrm{e}}=520 \mathrm{~mm}$.
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{8.7 \times 10^{6}}{0.9 \times 520 \times 286^{2}}=0.227 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 0.227}{420}}\right)=0.00054$
$A_{s, \text { req }}=\rho . b . d=0.00054 \times 520 \times 286=80.86 \mathrm{~mm}^{2}$

Check for As min:-

A $s \min =\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)$ ACI-318 (10.5.1)
A $s \min =\frac{\sqrt{24}}{4(420)}(120)(315)=110.23 \mathrm{~mm}^{2}$
$\mathrm{A} s \min =\frac{1.4}{(f y)}(b w)(d)$
A $s \min =\frac{1.4}{420}(120)(315)=126 \mathrm{~mm}^{2}$ control
$\mathrm{As}_{\text {req }}=80.86 \mathrm{~mm}^{2}<\mathrm{As}_{\text {min }}=126 \mathrm{~mm}^{2} \mathrm{OK}$

Use $2 \varnothing 12$

Check for strain:-

$\mathrm{a}=\frac{A_{s . f y}}{0.85 b f_{c}^{\prime}}=\frac{126 \times 420}{0.85 \times 520 \times 24}=5 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{5}{0.85}=5.9 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{286-5.9}{5.9}\right)=0.14>0.005
$$

4.4.2 Design of Negative Moment for (R3): - (Mu=-10.8 KN.m)

Assume bar diameter $\varnothing 12$ for main positive reinforcement
$\mathrm{d}=\mathrm{h}$ - cover $-\mathrm{d}_{\text {stirrups }}-\frac{d_{b}}{2}=320-20-8-\frac{12}{2}=286 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\phi b d^{2}}=\frac{10.8 \times 10^{6}}{0.9 \times 520 \times 286^{2}}=0.282 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 0.282}{420}}\right)=0.00068$
$A_{s, \text { req }}=\rho . b . d=0.00068 \times 520 \times 286=100.6 \mathrm{~mm}^{2}$
Check for As min:-
$\mathrm{A}_{s \min }=\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)$ ACI-318 (08)
$\mathrm{A}_{s} \min =\frac{\sqrt{24}}{4(420)}(120)(314)=109.9 \mathrm{~mm} 2$
A $s \min =\frac{1.4}{(f y)}(b w)(d)$
A $s \min =\frac{1.4}{420}(120)(314)=125.6 \mathrm{~mm}^{2} \ldots$. controls
$\mathrm{As}_{\mathrm{req}}=100.6 \mathrm{~mm}^{2}<\mathrm{As}_{\text {min }}=125.6 \mathrm{~mm}^{2} \mathrm{OK}$
$\underline{\text { Use } 2 ø 12, ~} A_{s, \text { provided }}=404.48 \mathrm{~mm}^{2}>\quad A_{s, \text { required }}=395.3 \mathrm{~mm}^{2} \ldots$ Ok
Check for strain: -
$\mathrm{a}=\frac{A_{s . f y}}{0.85 b f_{c}^{\prime \prime}}=\frac{125.6 \times 420}{0.85 \times 520 \times 24}=5 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{5}{0.85}=5.9 \mathrm{~mm}$

$$
\varepsilon_{S}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{286-5.9}{5.9}\right)=0.14>0.005
$$

Fig 4.8 : توزيع حديد العصب (R(3))

\checkmark 4.4.3 Shear Design for (R3):-

V_{u} at distance d from support $=26.8 \mathrm{KN}$
Shear strength V_{c}, provided by concrete for the joists may be taken 10% greater than for beams. This is mainly due to the interaction between the slab and closely spaced ribs. (ACI, 8.13.8).
$\mathrm{V}_{\mathrm{c}}=\frac{1.1}{6} \lambda \sqrt{f_{c}^{\prime}} b_{w} d=\frac{1.1}{6} \sqrt{24} \times 120 \times 286 \times 10^{-3}=33.9 \mathrm{KN}$
$\emptyset \mathrm{V}_{\mathrm{c}}=0.75 \times 33.9 .=25.46 \mathrm{KN}$
Check for items:-
1- $\mathrm{Vu} \leq \Phi \mathrm{Vc} / 2$
$26.8>12.73$ (not ok)
2- $\Phi \mathrm{Vc} / 2 \leq \mathrm{Vu} \leq \Phi \mathrm{Vc}$
$15.9375<26.8>25.46 \quad($ not ok)
3- $\Phi \mathrm{Vc} \leq \mathrm{Vu} \leq \Phi \mathrm{Vc}+\Phi \mathrm{Vsmin}$
$\Phi \operatorname{Vsmin} \geq 0.75\left(\frac{1}{3}\right) * \mathrm{bw} * \mathrm{~d}=0.75 *\left(\frac{1}{3}\right) * 120 * 0.315=9.45 \mathrm{KN} . \quad$ (control)
$\geq 0.75\left(\frac{\sqrt{24}}{16} * \mathrm{bw} * \mathrm{~d}=0.75 * \frac{\sqrt{24}}{16} * 0.315 * 120=8.6 \mathrm{KN}\right.$
$\Phi \mathrm{V} \operatorname{smin}=9.45 \mathrm{KN}$.
$\Phi \mathrm{Vc}=25.46 \leq \mathrm{Vu}=26.8<(\Phi \mathrm{Vc}+\Phi \mathrm{Vsmin})=35.9 \mathrm{Ok}$
Soitem3 satisfy.
$\mathrm{S}=\mathrm{d} / 2=315 / 2=157.5 \mathrm{~mm}$ (control)
$S=600 \mathrm{~mm}$
Take $A v=2 \Phi 8=2 * 50=100 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& \text { Av/s }=\text { Vs/fy } * \mathrm{~d} \\
& 2 * 50 / \mathrm{s}=12.6 * 1000 /(315 * 420) \quad \rightarrow \mathrm{s}=1050 \mathrm{~mm}
\end{aligned}
$$

Take $\mathrm{S}=150 \mathrm{~mm} \ldots$ Use 2 Ф8 @ $15 \mathrm{~cm} \mathrm{c} / \mathrm{c}$.

4.5 Design of Beam (B (150)):

Fig 4.9:beam (B(150)):
$\mathrm{H}=570 / 21=27.2 \mathrm{~cm}$
$\mathrm{H}=32 \mathrm{~cm}$

Load calculation:
From Reaction -from (R3):
Dead load $=12.15 / 0.52=23.36 \mathrm{KN} / \mathrm{m}$
Live load $=6.95 / 0.52=13.36 \mathrm{KN} / \mathrm{m}$
Weight of beam $=0.8^{*} 25^{*} 0.32=6.4 \mathrm{kn} / \mathrm{m}$
L.L=0.5*4=2.08

Weight of wall (25thick,4high)

Material :-

$$
\begin{array}{lll}
\Rightarrow & \text { concrete } \quad \mathrm{B} 300 & \mathrm{Fc}^{\prime}=24 \mathrm{MPa} \\
\Rightarrow & \text { Reinforcement Steel } & \mathrm{fy}=420 \mathrm{MPa}
\end{array}
$$

Section:-

$\Rightarrow \quad \mathrm{Bw}=800 \mathrm{~mm}$
$\Rightarrow \quad \mathrm{h}=320 \mathrm{~mm}$
$\Rightarrow \quad \mathrm{tf}=350 \mathrm{~mm}$
$\Rightarrow \mathrm{d}=320-40-10-18 / 2=262 \mathrm{~m}$

Fig (4.10) Statically System and Loads Distribution of Beam B (150)
\checkmark Moment Design for (B(150)):-
\checkmark Geometry Units:meter,cm

Loading

load group no. 1
Dead load - Service
Units:kN,meter

Fig 4.11: Shear and Moment Envelope Diagram of B(150)

\checkmark Span (L=5.1 m):

1- Flexural Design of Positive Moment for (B (150)) :-(Mu=130.8KN.m)
Determine of $\mathrm{Mn}_{\text {, max }}$
use $\varnothing 18$
$\mathrm{d}=320-40-10-18 \backslash 2=262 \mathrm{~mm}$
$c=\frac{3}{7} d=\frac{3}{7} * 262=112.3 \mathrm{~mm}$
$\mathrm{a}=\mathcal{B} . c=112.3 * 0.85=95.44 \mathrm{~mm}$
$\mathrm{Mn}_{\max }=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)=0.85 * 24 * 95.44 * 800 *(262-95.44 / 2) * 10^{-6}=333.8 \mathrm{KN} . \mathrm{m}$
$\emptyset \mathrm{Mn}_{\max }=0.82 * 333.8=273.7 \mathrm{KN} . \mathrm{m}>130.8 \mathrm{KN} / \mathrm{m}$
Design as singly reinforcement:
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{130.8 \times 10^{6}}{0.9 \times 800 \times 262^{2}}=2.65 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 2.65}{420}}\right)=0.0068$
$A_{s, \text { req }}=\rho . b . d=0.0068 \times 800 \times 262=1419.8 \mathrm{~mm}^{2}$

Check for As min:-
$\mathrm{A}_{s} \min =\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d) \mathrm{ACI}-318$ (10.5.1)
$A s \min =\frac{\sqrt{24}}{4(420)}(800)(262)=611.2 \mathrm{~mm}^{2}$
A $s \min =\frac{1.4}{(f y)}(b w)(d)$
A $s \min =\frac{1.4}{420}(800)(262)=698.7 \mathrm{~mm}^{2}$ control
$\mathrm{As}_{\text {req }}=1419.8 \mathrm{~mm}^{2}>\mathrm{As}_{\text {min }}=698.7 \mathrm{~mm}^{2} \ldots$ use $\mathrm{As} \mathrm{As}_{\text {req }}$
Use $8 \varnothing 18, A_{s . \text { provided }}=1600 \mathrm{~mm}^{2}>\mathrm{A}_{\text {s.required }}=1419.8 \mathrm{~mm}^{2} \ldots$ Ok
$\mathrm{S}=\frac{800-2 * 40-20-(8 * 18)}{7}=79.4 \mathrm{~mm}>d_{b}=18>25 \mathrm{~mm} \quad O K$
Check for strain: -
$\mathrm{a}=\frac{A_{\text {s.fy }}}{0.85 b f_{c}^{\prime}}=\frac{1419.8 \times 420}{0.85 \times 800 \times 24}=36.5 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{36.5}{0.85}=42.94 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{262-42.94}{42.94}\right)=0.015>0.005
$$

2-Flexural Design of Negative Moment for (B(150) :-(Mu=161.7 KN.m)

\checkmark Moment Design for (B 150):-

Determine of $\mathrm{Mn}_{\text {, max }}$
use $\varnothing 18$
$\mathrm{d}=320-40-10-18 \backslash 2=262 \mathrm{~mm}$
$c=\frac{3}{7} d=\frac{3}{7} * 262=112.3 \mathrm{~mm}$
$\mathrm{a}=\mathcal{B} . c=112.3 * 0.85=95.44 \mathrm{~mm}$
$\mathrm{Mn}_{\max }=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)=0.85 * 24 * 95.44 * 800 *(262-95.44 / 2) * 10^{-6}=333.8 \mathrm{KN} . \mathrm{m}$
$\emptyset \mathrm{Mn}_{\max }=0.82 * 333.8=273.7 \mathrm{KN} . \mathrm{m}>161.7 \mathrm{KN} / \mathrm{m}$
Design as singly reinforcement:
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{161.7 \times 10^{6}}{0.9 \times 800 \times 262^{2}}=3.27 M p a$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 3.27}{420}}\right)=0.0085$
$A_{s, \text { req }}=\rho . b . d=0.0085 \times 800 \times 262=1790.23 \mathrm{~mm}^{2}$

Check for As min:-
A $s \min =\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)$ ACI-318 (10.5.1)
$A s \min =\frac{\sqrt{24}}{4(420)}(800)(262)=611.2 \mathrm{~mm}^{2}$
A $s \min =\frac{1.4}{(f y)}(b w)(d)$
A $s \min =\frac{1.4}{420}(800)(262)=698.7 \mathrm{~mm}^{2}$ control
$\mathrm{As}_{\mathrm{req}}=1790.23 \mathrm{~mm}^{2}>\mathrm{As}_{\text {min }}=698.7 \mathrm{~mm}^{2} \ldots$ use As As req
Use $9 \not \varnothing 18, \mathrm{~A}_{s . \text {.provided }}=1800 \mathrm{~mm}^{2}>\mathrm{A}_{\text {s.required }}=1790.23 \mathrm{~mm}^{2} \ldots$ Ok
$\mathrm{S}=\frac{800-2 * 40-20-(9 * 18)}{8}=67.25 \mathrm{~mm}>d_{b}=18>25 \mathrm{~mm} \quad O K$
$\mathrm{a}=\frac{A_{s . f y}}{0.85 b f_{c}^{\prime}}=\frac{1790.23 \times 420}{0.85 \times 800 \times 24}=46.1 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{46.1}{0.85}=54.23 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{262-54.23}{54.23}\right)=0.0115>0.005
$$

Span (L=5.4 m):

1-Flexural Design of positive Moment for (B (150) :-(Mu=72.5 KN.m)
\checkmark Moment Design for (B (150)): -

Determine of $\mathrm{Mn}_{\text {, max }}$
use $\varnothing 14$
$\mathrm{d}=320-40-10-14 \backslash 2=263 \mathrm{~mm}$
$c=\frac{3}{7} d=\frac{3}{7} * 263=112.3 \mathrm{~mm}$
$\mathrm{a}=\mathcal{B} . c=112.3 * 0.85=95.44 \mathrm{~mm}$
$\mathrm{Mn}_{\max }=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)=0.85 * 24 * 95.44 * 800 *(262-95.44 / 2) * 10^{-6}=333.8 \mathrm{KN}$.
$\emptyset \mathrm{Mn}_{\max }=0.82 * 333.8=273.7 \mathrm{KN} . \mathrm{m}>72.5 \mathrm{KN} / \mathrm{m}$
Design as singly reinforcement:
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{72.5 \times 10^{6}}{0.9 \times 800 \times 263^{2}}=1.45 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 1.45}{420}}\right)=0.0036$
$\mathrm{A}_{\mathrm{s}, \text { req }}=\rho . \mathrm{b} \cdot \mathrm{d}=0.0036 \times 800 \times 263=757.4 \mathrm{~mm}^{2}$

Check for As min:-
A $s \min =\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)$ ACI-318 (10.5.1)

A $s \min =\frac{\sqrt{24}}{4(420)}(800)(262)=611.2 \mathrm{~mm}^{2}$
$\mathrm{A} s \min =\frac{1.4}{(f y)}(b w)(d)$
A $s \min =\frac{1.4}{420}(800)(262)=698.7 \mathrm{~mm}^{2}$ control
$\mathrm{As}_{\mathrm{req}}=757.4 \mathrm{~mm}^{2}>\mathrm{As}_{\min }=698.7 \mathrm{~mm}^{2} \ldots$ use As As Areq
Use $8 \varnothing 14, A_{\text {s.rrovided }}=960 \mathrm{~mm}^{2}>A_{\text {s.required }}=757.4 \mathrm{~mm}^{2} \ldots$ Ok
$\mathrm{S}=\frac{800-2 * 40-20-(8 * 14)}{7}=84 \mathrm{~mm}>d_{b}=18>25 \mathrm{~mm} \quad O K$
$\mathrm{a}=\frac{A_{s . f y}}{0.85 b f_{c}^{\prime}}=\frac{757.4 \times 420}{0.85 \times 800 \times 24}=19.5 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{46.1}{0.85}=22.9 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{263-22.9}{22.9}\right)=0.0314>0.005
$$

2- Flexural Design of negative Moment for (B (150) :-(Mu=192 KN.m)

Determine of $\mathrm{Mn}_{\text {, max }}$
use $\varnothing 18$
$\mathrm{d}=320-40-10-1812=262 \mathrm{~mm}$
$c=\frac{3}{7} d=\frac{3}{7} * 262=112.3 \mathrm{~mm}$
$\mathrm{a}=\mathcal{B} . c=112.3 * 0.85=95.44 \mathrm{~mm}$
$\mathrm{Mn}_{\max }=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)=0.85 * 24 * 95.44 * 800 *(262-95.44 / 2) * 10^{-6}=333.8 \mathrm{KN}$.
$\emptyset \mathrm{Mn}_{\text {max }}=0.82 * 333.8=273.7 \mathrm{KN} . \mathrm{m}>192 \mathrm{KN} / \mathrm{m}$
Design as singly reinforcement:
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{192 \times 10^{6}}{0.9 \times 800 \times 262^{2}}=3.88 M p a$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 3.88}{420}}\right)=0.00939$
$A_{s, \text { req }}=\rho . b . d=0.00939 \times 800 \times 263=1975.65 \mathrm{~mm}^{2}$
$\mathrm{As}_{\mathrm{req}}=1975.65 \mathrm{~mm}^{2}>\mathrm{As}_{\min }=698.7 \mathrm{~mm}^{2} \ldots$ use As As ${ }_{\text {req }}$
Use $10 \varnothing 18, \mathrm{~A}_{\mathrm{s}, \text { provided }}=2000 \mathrm{~mm}^{2}>\mathrm{A}_{\mathrm{s}, \text { required }}=1975.65 \mathrm{~mm}^{2} \ldots \mathrm{Ok}$
$\mathrm{S}=\frac{800-2 * 40-20-(10 * 18)}{9}=57.8 \mathrm{~mm}>d_{b}=18>25 \mathrm{~mm} \quad O K$
$\mathrm{a}=\frac{A_{s . f y}}{0.85 b f_{c}^{\prime}}=\frac{1975.65 \times 420}{0.85 \times 800 \times 24}=50.8 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{50.8}{0.85}=59.8 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{262-59.8}{59.8}\right)=0.01>0.005
$$

0k

* $\operatorname{Span}(\mathrm{L}=5.7 \mathrm{~m})$:

\checkmark Moment Design for (G.B(18):-
1- Flexural Design of Positive Moment for (B (150)) :-(Mu=160.6KN.m)
Determine of $\mathrm{Mn}_{\text {, max }}$
use $\varnothing 18$
$\mathrm{d}=320-40-10-18 \backslash 2=262 \mathrm{~mm}$
$c=\frac{3}{7} d=\frac{3}{7} * 262=112.3 \mathrm{~mm}$
$\mathrm{a}=\mathcal{B} . c=112.3 * 0.85=95.44 \mathrm{~mm}$
$\mathrm{Mn}_{\text {max }}=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)=0.85 * 24 * 95.44 * 800 *(262-95.44 / 2) * 10^{-6}=333.8 \mathrm{KN} . \mathrm{m}$
$\emptyset \mathrm{Mn}_{\max }=0.82 * 333.8=273.7 \mathrm{KN} . \mathrm{m}>160.6 \mathrm{KN} / \mathrm{m}$
Design as singly reinforcement:
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{160.6 \times 10^{6}}{0.9 \times 800 \times 262^{2}}=3.27 M p a$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 3.27}{420}}\right)=0.0085$
$A_{s, \text { req }}=\rho . b . d=0.0085 \times 800 \times 262=1790.23 \mathrm{~mm}^{2}$

Check for As min:-
A $s \min =\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)$ ACI-318 (10.5.1)
$\mathrm{A} s \min =\frac{\sqrt{24}}{4(420)}(800)(262)=611.2 \mathrm{~mm}^{2}$
A $s \min =\frac{1.4}{(f y)}(b w)(d)$
A $s \min =\frac{1.4}{420}(800)(262)=698.7 \mathrm{~mm}^{2}$ control
$\mathrm{As}_{\mathrm{req}}=1790.23 \mathrm{~mm}^{2}>\mathrm{As}_{\min }=698.7 \mathrm{~mm}^{2} \ldots$ use $\mathrm{As} \mathrm{As}_{\mathrm{req}}$
Use $9 \varnothing 18$, As,provided $=1800 \mathrm{~mm} 2>$ As,required $=1790.23 \mathrm{mm2} \ldots$ ok
$\mathrm{S}=\frac{800-2 * 40-20-(9 * 18)}{8}=67.25 \mathrm{~mm}>d_{b}=18>25 \mathrm{~mm} \quad O K$
$\mathrm{a}=\frac{A_{\text {s.fy }}}{0.85 \mathrm{~b} f_{c}^{\prime}}=\frac{1790.23 \times 420}{0.85 \times 800 \times 24}=46.1 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{46.1}{0.85}=54.23 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{262-54.23}{54.23}\right)=0.0115>0.005
$$

Fig 4.12 : توزيع حديد الجسر (B(150))

4-6 DESIGN OF ONE WAY SOLID SLAB:

* Fig 4.13 : Plan of solid slab

- Material:

$$
\begin{array}{lll}
\Rightarrow & \text { concrete } \quad \mathrm{B} 300 & \mathrm{Fc}^{\prime}=24 \mathrm{~N} / \mathrm{mm}^{2} \\
\Rightarrow & \text { Reinforcement Steel } & \mathrm{fy}=420 \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
$$

\checkmark Slab Thickness Calculation:

The overall depth must satisfy ACI Table (9.5.a):

Min H (deflection requirement):
$\mathrm{H}=\mathrm{L} / 24=550 / 24=22.9$

For One way solid slab, will use thickness of slab 25 cm .

Dead Load For Solid slab:

No.	Parts of Rib	Calculation
1	Tiles	$0.03 * 23 * 1=0.69 \mathrm{KN} / \mathrm{m}$
2	Mortar	$0.02 * 22 * 1=0.44 \mathrm{KN} / \mathrm{m}$
3	Coarse Sand	$0.07 * 17 * 1=1.19 \mathrm{KN} / \mathrm{m}$
4	plaster	$0.02 * 22 * 1=0.44 \mathrm{KN} / \mathrm{m}$
5	RC. Solid slab	$0.25 * 25=6.25 \mathrm{KN} / \mathrm{m} \wedge 2$
6	Partitions	$2.3 * 1=2.3 \mathrm{KN} / \mathrm{m}$

Table (4.3): Dead Load Calculation of solid slab.
Live Load For Solid slab $=4 * 1=5 \mathrm{Kn} / \mathrm{m}$

\checkmark System of Landing:

Moments: spans 1 to 1

Shear

Fig 4.14 : Shear and moment envelop diagram of solid slab

\checkmark Design of Shear:

($\mathrm{Vu}=74.7 \mathrm{Kn}$)

Assume bar diameter $\varnothing 12$ for main reinforcement
$\mathrm{d}=\mathrm{h}$ - cover $-\frac{d_{b}}{2}=350-20-\frac{12}{2}=324 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{c}}=\frac{1}{6} \sqrt{f c^{\prime}} b_{w} d==\frac{1}{6} \sqrt{24} * 1000 * 324=264.5 \mathrm{KN}$
$\Phi^{*} \mathrm{~V}_{\mathrm{c}=}=0.75^{*} 264.5=198.4 \mathrm{KN}>\mathrm{Vu}=74.7 \mathrm{KN}$. Thickness Is Enough (No need for shear)

1- Design of Bending Moment ($\mathrm{Mu}=\mathbf{1 0 2 . 7} \mathrm{KN} / \mathrm{m}$) :-

$$
\mathrm{d}=\mathrm{h}-\text { cover }-\frac{d_{b}}{2}=350-20-\frac{12}{2}=324 \mathrm{~mm}
$$

$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{102.7 \times 10^{6}}{0.9 \times 1000 \times 324^{2}}=1.09 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 1.09}{420}}\right)=0.00266$
$\mathrm{A}_{\mathrm{s}, \text { req }}=\rho . \mathrm{b} . \mathrm{d}=0.00266 \times 1000 \times 324=862.2 \mathrm{~mm}^{2}$
Check for $\mathbf{A}_{\mathbf{s}, \text { min }}$:-
$\mathrm{As}_{\text {min }}=\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)=\frac{\sqrt{24}}{4 * 420} * 1000 * 324=944.8 \mathrm{~mm}^{2}$

As $\sin _{\min }=\frac{1.4}{(f y)}(b w)(d)=\frac{1.4}{420} * 1000 * 324=1080 \mathrm{~mm}^{2}$ Controls

Use $\varnothing 14 @ 125 \mathrm{~mm}, \mathbf{A}_{\mathrm{s}, \text { provided }}=1230 \mathrm{~mm}^{2}>\mathbf{A}_{s, \text { required }} \equiv \mathbf{1 0 8 0} \mathrm{mm}^{2} \ldots$ Ok

Number of bars required in 1 m strip $=1230 / 154=8$ bars

Then use 8 Ø14@12.5mm

Check for strain:

$\mathrm{a}=\frac{A_{s . f y}}{0.85 b f_{c}^{\prime}}=\frac{1230 \times 420}{0.85 \times 1000 \times 24}=25.32 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{25.32}{0.85}=29.8 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-x}{x}\right)=0.003\left(\frac{324-29.8}{29.8}\right)=0.0296>0.005
$$

\checkmark lateral or Secondary Reinforcement of Solid slab :

$\mathrm{As}, \mathrm{req}=\mathrm{As}, \min =0.0018 * 1000 * 250=450 \mathrm{~mm} 2$

Use ø10 @ 175 mm As, provided= 451 mm $2>A_{s, \text { required }}=450 \mathrm{~mm} 2 \ldots$ Ok

\checkmark Top Reinforcement :

$A_{s, \min }=0.0018 * 1000 * 250=450 \mathrm{~mm} 2$
Use mesh ø10 @ $\mathbf{1 7 5} \mathbf{m m}$.

4-7 | Design of Column (11), Ground Floor.

4-7-1 Design Data:

The following table and figures gives the design parameters of column (11) Ground Floor:

Dead load (service)	574 kN
Live load (service)	151 kN
Length	3.75 m
k	1 (Braced)
D	55 cm
f_{y}	420 Mpa
$\boldsymbol{f}_{\boldsymbol{c}}^{\prime}$	40 mpm
Concrete cover	Bar size
Type of load	Concentrically Loaded

Table (4-4): Design Data of column (11).

4-8-2 Factored Loads:

$P_{u}=1.2 \mathrm{D}+1.6 \mathrm{~L}$
$P_{u}=1.2(574)+1.6(151)=931 k N$
4-8-3 Selecting Column Dimenssion:

```
Assum Ast = 0.015Ag
\emptysetPn,max = \emptyset0.85[0.85.fc(Ag-Ast)+Ast.Fy]
931*103 = 0.75*0.85[0.85*24*(Ag-0.015Ag)+(0.015Ag*420)]
Ag}=55282.3 mm2,
Ag=A.B
55282.3 = A.B
```

take $\mathrm{A}=40 \mathrm{~cm}$
take $b=600 \mathrm{~mm} 2$
$\mathrm{Ag}=\mathbf{A} \cdot \mathbf{B}=240000 \mathrm{~mm}^{2}$
\checkmark Check Slenderness Parameter:-
$\frac{k l u}{r}<34-12 \frac{M 1}{M 2} \leq 40$

Lu: Actual unsupported (Unbraced) length.
K : effective length factor.
R : radius of gyration $=\sqrt{\frac{I}{A}} \approx 0.3 \mathrm{~h} \ldots \ldots \ldots \ldots \ldots$. For rectangular section
$\mathrm{Lu}=3.75 \mathrm{~m}$
M1/M2 =1
$\mathrm{K}=1$ for braced frame.

- about X-axis
$\frac{k l u}{r}<34-12 \frac{M 1}{M 2} \leq 40$
$\frac{1 \times 3.75}{0.4 \times 0.4}=23.4>22$

Column Is Long About X-axis

- about Y-axis
$\frac{k l u}{r}<34-12 \frac{M 1}{M 2} \leq 40$
$\frac{1 \times 3.75}{0.3 \times 0.6}=20.8<22$

Column Is short About Y-axis

\checkmark Minimum Eccentricity:-

$\min e=15+0.03 \times h=15+0.03 \times 400=27 \mathrm{~mm}=0.027 \mathrm{~m}$
$e=0.027 m$

\checkmark Magnification Factor:-

$\delta_{n s}=\frac{C m}{1-\frac{P u}{0.75 P_{c}}} \geq 1.0$ and ≤ 1.4
$C m=0.6+0.4\left(\frac{M 1}{M 2}\right) \geq 0.4$
$C m=0.6+0.4 * 1=1 \geq 0.4$

$$
P_{c r}=\frac{\pi^{2} E I}{(K L u)^{2}}
$$

$E I=0.4 \frac{E_{c} I_{g}}{1+\beta_{d}}$
$E_{c}=4700 \sqrt{f c^{\prime}}=4700 \times \sqrt{24}=23025.2 M p a$
$\beta_{d}=\frac{1.2 D L}{P u}=\frac{1.2 *(574)}{931}=0.74<1$
$I_{g}=\frac{b \times h^{3}}{12}=\frac{600 \times 400^{3}}{12}=3.2 * 10^{9} \mathrm{~mm}^{4}$
$E I=\frac{0.4 \times 23025.2 \times 3.2}{1+0.74}=16938 \mathrm{KN} . \mathrm{m}^{2}$
$P_{C}=\frac{\pi^{2} * 16938}{(1 * 3.75)^{2}}=7401.8 \mathrm{KN}$
$\delta_{n s}=\frac{1}{1-\frac{931}{0.75 * 7401.8}}=1.2 \geq 1.0$ and ≤ 1.4

$$
\begin{aligned}
& e_{\min } \times \delta_{n s}=0.027 \times 1.2=0.0324 m \\
& \frac{e}{h}=\frac{0.0324}{0.4}=0.081 \\
& \gamma=\frac{400-2 * 40-2 * 10-25}{400}=0.6875 \\
& \frac{\phi^{*} P n}{A g}=\frac{P u}{A g}=\frac{931 * 10^{\wedge} 3}{600 * 400} * 0.145=0.56 \mathrm{KSI} \\
& \text { For } \gamma=0.6 \text { and } \frac{e}{h}=0.112 \text { and } \frac{\phi^{*} P n}{A g}=0.56 \\
& \rho=0.017 \\
& A s=0.017 * 300 * 600=3060 \mathrm{~mm} 4
\end{aligned}
$$

USE $14 \phi 20$ With As > As required

\checkmark Design of the Stirrups:-

The spacing of ties shall not exceed the smallest of :-
spacing $\leq 16 \times d_{b}=16 \times 2.5=40 \mathrm{~cm}$
spacing $\leq 48 \times d_{s}=48 \times 1.0=48 \mathrm{~cm}$
spacing \leq least $\operatorname{dim}=30 \mathrm{~cm}$

Useф10@20cm

Figure (4-15): Details of column.
live load of $L_{l}=4\left(\frac{k N}{m^{2}}\right)$, assuming rise of 155 mm , and run of $300 \mathrm{~mm}, \boldsymbol{f}_{c^{\prime}}=$ 24 Mpa, $f_{y}=420$ Mpa .

4-8-1 plan and materials of stair:

The following figure demonstrate the plan of stair that we consider to design it figure (4-29) which is carries a uniform

Figure (4-16): Stair Plan and structural system.

4-8-2 Structural system and minimum thickness:

1. The structural system of this stair was taken as a simply supported (one-way solid slab) since that the flight of stair will be supported at the ends of upper and lower landings.
2. Minimum Slab thickness for deflection is (for simply supported one-way solid slab) is $\boldsymbol{h}_{\min }=\frac{L}{20}=$ $\frac{545}{20}=27.25 \mathrm{~cm}$, but in this case presented here where the slab ends are cast white the supporting beams and additional negative reinforcement is provided, minimum thickness can be assumed to be $h_{\text {min }}=\frac{L}{28}=\frac{545}{28}=19.46 \mathrm{~cm}$.

Take $\boldsymbol{h}_{\text {min }}=25 \mathrm{~cm}$

4-8-3 Loads and Reactions calculations:

The applied live loads are based on the plan area (horizontal projection), while the dead load is based on the sloped length. To transform the dead load into horizontal projection the figure below explains how figure (430).

$$
\theta=\tan ^{-1}\left(\frac{\text { rise }}{\text { run }}\right)=\tan ^{-1}\left(\frac{\mathbf{1 5 5}}{\mathbf{3 0 0}}\right)=27.32^{\circ}
$$

Figure (4-17): Transformation of dead load into horizontal projection.

- Flight Dead Load computation:

Table (4-6) shows Dead Load calculations on Flight of stair:

Dead Load Form	Unit weight $\gamma\left(\frac{k N}{m^{3}}\right)$	$w\left(\frac{k N}{m}\right)$
Tiles	27	$27 \times\left(\frac{0.155+0.35}{0.3}\right) \times 0.03 \times 1=1.36$
Mortar	22	$22 \times\left(\frac{0.155+0.3}{0.3}\right) \times 0.03 \times 1=1.001$
Stair steps	25	$\frac{25}{0.3} \times\left(\frac{0.155 \times 0.3}{2}\right) \times 1=1.93$
Reinforced concrete (solid slab)	25	$\frac{25 \times 0.25 \times 1}{\cos 27.32}=7.04$
plaster	22	$\frac{22 \times 0.03 \times 1}{\cos 27.32}=0.75$
\sum Tota Dead loads kN/m		12.1

Table (4-5) Dead Load calculations on flight.

- Landing Dead Load computation:

Dead Load Form	Unit weight $\gamma\left(\frac{k N}{m^{3}}\right)$	$\gamma \times \delta \times 1 \quad\left(\frac{k N}{m}\right)$	
Tiles	23	$23 \times 0.03 \times 1=0.69$	
Mortar	22	$22 \times 0.03 \times 1=0.66$	
Reinforced concrete (solid slab)	25	$25 \times 0.25 \times 1=6.25$	
plaster	22	$22 \times 0.03 \times 1=0.66$	
Tota Dead loads $k N / m$			

Table (4-6) shows Dead Load calculations on landing of stair

- Live Load: $L_{l}=4\left(\frac{k N}{m^{2}}\right)$.
- Total Factored Load: $w=1.2 D_{L}+1.6 L_{l}$

For flight: $w=1.2(12.1)+1.6(4)=20.92\left(\frac{k N}{m}\right)$.
For Landing: $w=1.2(8.26)+1.6(4)=16.3\left(\frac{k N}{m}\right)$.
$16.3 / 2=8.15$

4-8-4 Design of flight 1:
The support reaction of flighting is:
$\frac{[(8.15 * 3.9)+(20.92 * 3.48)]}{2}=52.3\left(\frac{k N}{m}\right)$. as shown in figure (4-31).

Shear and moment calculations:

- Check for shear strength:

Assume bar diameter $\emptyset 14$ for main rinf orcemnt.
$d=h-$ cover $-\frac{d_{b}}{2}=250-20-\frac{14}{2}=223 \mathrm{~mm}$
Assume wall width 30 cm

$$
\begin{aligned}
& V_{u}=52.3-8.15 \times(0.155+0.223)=49.2 \mathrm{kN} \\
& V_{c}=\frac{1}{6} \sqrt{f_{c^{\prime}}} b_{w} d=\frac{1}{6} \times \sqrt{24} \times 1000 \times 223=182.7 \mathrm{kN} \ldots \text { for } 1 \mathrm{~m} \text { strip }
\end{aligned}
$$

$\phi=0.75-$ for shear
$\phi V_{c}=0.75 \times 182.7=136.55 k N .$. for $1 m$ strip
$V_{u, \max }=49.2 \mathrm{kN}<\frac{1}{2} \phi V_{c}=68.27 \mathrm{kN}$
\therefore The thickness of the slab is adequate enough

Calculation of maximum moment and steel reinforcement:

$$
\begin{aligned}
M_{u, \max } & =52.3 \times\left(2.4+\frac{3.48}{2}\right)-8.15 \cdot(2.4) \cdot\left(2.4 / 2+\frac{3.48}{2}\right)-20.92(1.74)\left(\frac{1.74}{2}\right) \\
& =127.34 \mathrm{kN} . \mathrm{m} / \mathrm{m}
\end{aligned}
$$

assume bar diameter $\emptyset 14$ for main rinforcemnt with,$d=223 \mathrm{~mm}$
$R_{n}=\frac{M_{u}}{\emptyset b d}=\frac{127.34 \times 10^{6}}{0.9 \times 1000 \times 223^{2}}=2.8 M p a, m=\frac{f_{y}}{0.85 f_{c}{ }^{\prime}}=\frac{420}{0.85 \times(24)}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 R_{n} m}{f_{y}}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \cdot 2.8 \cdot 20.6}{420}}\right)=0.0072$
$A_{s}=\rho b d=0.0072 \times 1000 \times 223=1605.6 \mathrm{~mm}^{2}$
$A_{s, \text { min }}=0.0018 \mathrm{bh}=0.0018 \times 1000 \times 250=450 \mathrm{~mm}^{2}$
$A_{s}=1605.6 \mathrm{~mm}^{2}>A_{s, \text { min }}=450 \mathrm{~mm}^{2}$, use $\emptyset 14$
Use11ф14@15 cm with $A_{s, p r o v}=1693.3 \mathrm{~mm}^{2}>A_{s}=1605.6 \mathrm{~mm}^{2}$ for (1m) strip
Check maximum step for main reinforcement (the smallest of):

1. $3 h=3 \times 250=750 \mathrm{~mm}$
2. 450 mm .
3. $S=380\left(\frac{280}{f_{s}}\right)-2.5 C_{c}=380\left(\frac{280}{\frac{2}{3} \times 420}\right)-2.5 \times 20=330 m m$

$$
S_{m a x}=300\left(\frac{280}{f_{s}}\right)=300\left(\frac{280}{\frac{2}{3} \times 420}\right)=300 \mathrm{~mm}-\text { controled }
$$

$S=15 \mathrm{~cm}<S_{\max }=30 \mathrm{~cm}-O K$

Temperature and shrinkage reinforcement:

$A_{s}($ temperature and shrinkagr $)=0.0018 \mathrm{bh}=0.0018(1000)(250)=450 \mathrm{~mm}^{2}$
Use $7 \emptyset 10 @ 10 \mathrm{~cm}$ with $A_{s, p r o v}=553 \mathrm{~mm}^{2}>A_{s}=450 \mathrm{~mm}^{2}$ for (1m) strip

Check maximum step for temperature and shrinkage (the smallest of):

1. $5 h=5 \times 250=1250 \mathrm{~mm}$
2. 450 mm . - controled
$S=10 \mathrm{~cm}<S_{\max }=45 \mathrm{~cm}-O K$

4-8-5 Design of flight 2:

The support reaction of flighting is:
$\frac{[(8.15 * 3.9)+(20.92 * 3.48)]}{2}=52.3\left(\frac{k N}{m}\right)$. as shown in figure (4-32).

Shear and moment calculations:

- Check for shear strength:

Assume bar diameter $\varnothing 14$ for main rinf orcemnt.
$d=h-$ cover $-\frac{d_{b}}{2}=250-20-\frac{14}{2}=223 \mathrm{~mm}$
Assume wall width 30 cm
$V_{u}=52.3-8.15 \times(0.155+0.223)=49.2 \mathrm{kN}$
$V_{c}=\frac{1}{6} \sqrt{f_{c^{\prime}}} b_{w} d=\frac{1}{6} \times \sqrt{24} \times 1000 \times 223=182.7 k N .$. for 1 m strip
$\phi=0.75-$ for shear
$\phi V_{c}=0.75 \times 182.7=136.55 k N .$. for $1 m$ strip
$V_{u, \max }=49.2 k N<\frac{1}{2} \phi V_{c}=68.27 k N$

\therefore The thickness of the slab is adequate enough

Calculation of maximum moment and steel reinforcement:
$M_{u, \max }=127.34 \mathrm{kN} . \mathrm{m} / \mathrm{m}$
assume bar diameter $\emptyset 14$ for main rinforcemnt with,$d=223 \mathrm{~mm}$
$R_{n}=\frac{M_{u}}{\emptyset b d}=\frac{127.34 \times 10^{6}}{0.9 \times 1000 \times 223^{2}}=2.8 \mathrm{Mpa}, m=\frac{f_{y}}{0.85 f_{c}{ }^{\prime}}=\frac{420}{0.85 \times(24)}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 R_{n} m}{f_{y}}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \cdot 2.8 \cdot 20.6}{420}}\right)=0.0072$
$A_{s}=\rho b d=0.0072 \times 1000 \times 223=1605.6 \mathrm{~mm}^{2}$
$A_{s, \min }=0.0018 \mathrm{bh}=0.0018 \times 1000 \times 250=450 \mathrm{~mm}^{2}$
$A_{s}=1605.6 \mathrm{~mm}^{2}>A_{s, \min }=450 \mathrm{~mm}^{2}$, use $\emptyset 14$

Use11ø14@15 cm with $A_{s, p r o v}=1693.3 \mathrm{~mm}^{2}>A_{s}=1605.6 \mathrm{~mm}^{2}$ for (1m) strip

Check maximum step for main reinforcement (the smallest of):
4. $3 h=3 \times 250=750 \mathrm{~mm}$
5. 450 mm .
6. $S=380\left(\frac{280}{f_{s}}\right)-2.5 C_{c}=380\left(\frac{280}{\frac{2}{3} \times 420}\right)-2.5 \times 20=330 m m$

$$
S_{\max }=300\left(\frac{280}{f_{s}}\right)=300\left(\frac{280}{\frac{2}{3} \times 420}\right)=300 \mathrm{~mm}-\text { controled }
$$

$S=15 \mathrm{~cm}<S_{\max }=30 \mathrm{~cm}-0 K$

- Temperature and shrinkage reinforcement:

$A_{s}($ temperature and shrinkagr $)=0.0018 \mathrm{bh}=0.0018(1000)(250)=450 \mathrm{~mm}^{2}$

Use 7ø10@10 cm with $A_{s, p r o v}=553 \mathrm{~mm}^{2}>A_{s}=450 \mathrm{~mm}^{2}$ for (1m) strip

Check maximum step for temperature and shrinkage (the smallest of):
3. $\mathbf{5 h}=\mathbf{5} \times \mathbf{2 5 0}=\mathbf{1 2 5 0} \mathbf{~ m m}$
4. 450 mm . - controled
$S=10 \mathrm{~cm}<S_{\max }=45 \mathrm{~cm}-O K$

Figure (4-18): Details of stairs

4.9 DESIGN of BASEMENT WALL .

Note: Column Load On theBasement wall not included, we designed these columns

```
* Material :-
    concrete B300
        Fc' =24 N/mm 
    Reinforcement Steel
        Fy=420 N/mm
    Load Calculations :-
    Soil density = 18 Kg/cm3 , L.L = 5 KN/m
    angle of friction in soil }\varnothing=3\mp@subsup{5}{}{\circ
    the wall is Pinned-Pinned system
    the backfill is dry (No Water)
    K
    * Load on basement wall.
For 1m length of wall:
* Weight of backfill:
q1 = K
q1(fact) = 1.6*32.59 = 52.144KN/m
* Load from live load:
q2 = K 
q2(fact) = 1.6*2.13=3.41 KN/m
```


Fig 4.19 : Shear and moment envelop diagram

After enter these data to ATIR program

Design Of Basement Wall

2- Design of Shear:- (Vu= 35.4 KN)

Assume bar diameter ø 12 for main reinforcement
$\mathrm{d}=\mathrm{h}$ - cover $-\frac{d_{b}}{2}=300-75-\frac{12}{2}=219 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{c}}=\frac{1}{6} \sqrt{f c^{\prime}} b_{w} d==\frac{1}{6} \sqrt{24} * 1000 * 219=178.8 \mathrm{KN}$
$\Phi^{*} \mathrm{~V}_{\mathrm{c}}=0.75^{*} 178.8=134.1 \mathrm{KN}>\mathrm{Vu}=35.4 \mathrm{KN}$. Thickness Is Enough (No need for shear)
2- Design of Bending Moment ($\mathrm{Mu}=37.6 \mathrm{KN} / \mathrm{m}$) :-
$\mathrm{d}=\mathrm{h}$ - cover $-\frac{d_{b}}{2}=300-75-\frac{12}{2}=219 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{37.6 \times 10^{6}}{0.9 \times 1000 \times 219^{2}}=0.87 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 0.87}{420}}\right)=0.00212$
$\mathrm{A}_{\mathrm{s}, \mathrm{req}}=\rho . \mathrm{b} . \mathrm{d}=0.00212 \times 1000 \times 219=464.3 \mathrm{~mm}^{2}$

Check for $\mathbf{A}_{\mathbf{s}, \text { min }}$:-

$A s_{\text {min }}=\frac{\sqrt{f c^{\prime}}}{4(f y)}(b w)(d)=\frac{\sqrt{24}}{4 * 420} * 1000 * 219=638.6 \mathrm{~mm}^{2}$

As $\mathbf{m i n}=\frac{1.4}{(f y)}(b w)(d)=\frac{1.4}{420} * 1000 * 219=730 \mathrm{~mm}^{2}$ Controls

Use $\varnothing 12 @ 150 \mathrm{~mm}, A_{\mathrm{d}, \mathrm{provided}}=754 \mathrm{~mm}^{2}>\mathrm{A}_{\mathrm{s}, \text { required }}=730 \mathrm{~mm}^{2} \ldots$ Ok
3- Design of horizontal and minimum vertical
$\mathrm{A}_{\mathrm{s}, \mathrm{h}}=\rho . \mathrm{b} . \mathrm{h}=0.00212 \times 1000 \times 300=636 \mathrm{~mm}^{2}$
For each side : $\mathrm{As}=636 / 2=318 \mathrm{~mm}^{2}$
Use ø10 @ 200 mm for each side, $\mathbf{A}_{s, \text { provided }}=\mathbf{3 9 5} \mathrm{mm}^{2}>\mathbf{A}_{s, \text { required }}=318 \mathrm{~mm}^{2} \ldots$ Ok
$\mathrm{As}_{\mathrm{vmin}}=\rho . \mathrm{b} . \mathrm{h}=0.002 \times 1000 \times 300=600 \mathrm{~mm}^{2} \ldots .300 \mathrm{~mm} 2$ for each side
Use ø10 @ $250 \mathbf{m m}$ for each side, $\mathbf{A}_{s . \text { provided }}=\mathbf{3 1 6} \mathrm{mm}^{2}>\mathbf{A}_{s, \text { required }}=\mathbf{3 0 0} \mathbf{~ m m}^{2} \ldots$ Ok

Fig 4.20: Basement wall details

4-10 Design of Shear Wall (3)

Figure (4-21): Shear Wall(3).

\checkmark Material and Sections:- (From Shear Wall 3)

\Rightarrow concrete B 300
$\mathrm{Fc}^{\prime}=24 \mathrm{~N} / \mathrm{mm}^{2}$
\Rightarrow Reinforcement Steel $\quad \mathrm{Fy}=420 \mathrm{~N} / \mathrm{mm}^{2}$
\Rightarrow Shear Wall Thickness $\quad \mathrm{h}=20 \mathrm{~cm}$
\Rightarrow Shear Wall Width $\quad \mathrm{Lw}=2.48 \mathrm{~m}$
\Rightarrow Shear Wall Height $\quad \mathrm{Hw}=11.25 \mathrm{~m}$

4-10-1 Design of Horizontal Reinforcement:-

$\sum F x=V u=520.32 K N$

The critical Section is the smaller of:
$\frac{l w}{2}=\frac{2.48}{2}=1.24 m \ldots \ldots .$. Control
$\frac{h w}{2}=\frac{11.25}{2}=5.625 \mathrm{~m}$
storyheigh $(H w)=3.75 m$
$d=0.8 \times L w=0.8 \times 2.48=1.98 m$

$$
\emptyset V_{\max }=\emptyset \frac{5}{6} \sqrt{f_{c}^{\prime}} h d
$$

$$
=0.75 * 0.83 * \sqrt{24} * 200 * 1980=1207.3 \mathrm{KN}>V_{u}=890.19 \mathrm{KN}
$$

V_{c} is the smallest of :
$1-V_{c}=\frac{1}{6} \sqrt{f_{c}{ }^{\prime}} h d=\frac{1}{6} \sqrt{24} * 220 * 1980=323.33 \mathrm{KN}$ \qquad control
$2-V_{c}=0.27 \sqrt{f_{c}{ }^{\prime}} h d+\frac{N_{u} d}{4 l_{w}}=0.27 \sqrt{24} * 200 * 1980+0=523.8 \mathrm{KN}$
$3-V_{c}=\left[0.05 \sqrt{f_{c}}+\frac{l_{w}\left(0.1 \sqrt{f_{c}{ }^{\prime}}+0.2 \frac{N_{u}}{l_{w} h}\right)}{\frac{M_{u}}{V_{u}}-\frac{l_{w}}{2}}\right] h d$
$3-V_{c}=\left[0.05 \sqrt{24}+\frac{2.48(0.1 \sqrt{24}+0)}{0.5925}\right] 200 * 1.98=909 \mathrm{KN}$

SOVc $=323.33 \mathrm{KN}$
$\emptyset * v c+\emptyset v s=v u$
$\emptyset * v s=\mathrm{vu}-\emptyset * v c$
$\mathrm{Vs}=\mathrm{vu} / \varnothing-v c$
$\mathrm{Vs}=520.32 / 0.75-323.33=370.4 \mathrm{kn}$ need reinforcement
$\frac{A_{v h}}{S_{2}}=\frac{v_{s}}{f_{y} d}=\frac{370.4}{420 * 1980}=0.000445 \mathrm{~m} 2 / \mathrm{m}$
$\rho_{t}=\frac{A_{v h}}{S_{2} * h}=\frac{0.000445}{0.2}=0.0023<0.0025$

- Maximum spacing is the least of :
$\frac{L w}{5}=\frac{2480}{5}=496 \mathrm{~mm}$
$3 * \mathrm{~h}=3 * 200=600 \mathrm{~mm}$
450 mm \qquad Control

Select $\varnothing 10$,tow layers
$\mathrm{Sh}=157 / 0.75=209.33$
$\rho_{t}=\frac{A_{v h}}{S_{2} * h}=\frac{2 * 78.5}{S_{2} * 200}=0.0025$
Sh=209.33
Select $\mathrm{Sh}=200 \mathrm{~mm} \leq \operatorname{Smax}=450 \mathrm{~mm}$.

4-10-2 Design of Vertical Reinforcement:-

$\frac{A_{v v}}{S_{v}}=0.0025+0.5\left(2.5-\frac{h_{w}}{L w}\right)\left(\rho_{t}-0.0025\right) \geq 0.0025$
$\frac{h_{w}}{L w}=\frac{11.25}{2.48}=4.53$
for this wall with $\frac{h_{w}}{L w} \geq 2.5, \rho_{t}=0.0025$

- Maximum spacing is the least of :

$\frac{L w}{3}=\frac{2480}{3}=826.67 \mathrm{~mm}$
$3 * \mathrm{~h}=3 * 300=900 \mathrm{~mm}$
450 mm \qquad Control

Use $\boldsymbol{\phi 1 0 / 2 0 0 ~ m m}$ for two layers

4-10-3 Design of Bending Moment:-

$$
\begin{aligned}
& A_{s t}=\left(\frac{2480}{200}\right) * 2 * 79=1959.2 \mathrm{~mm}^{2} \\
& w
\end{aligned}=\left(\frac{A_{s t}}{L_{w} h}\right) \frac{f_{y}}{f_{c}{ }^{\prime}}=\left(\frac{1959.2}{2480 * 200}\right) \frac{420}{24}=0.069 \quad \begin{aligned}
\alpha & =\frac{P_{u}}{l_{w} h f_{c}{ }^{\prime}}=0 \\
\frac{C}{l_{w}} & =\frac{w+\alpha}{2 w+0.85 \beta_{1}}=\frac{0.069+0}{2 * 0.069+0.85 * 0.85}=0.08 \\
\emptyset M_{n} & =\emptyset\left[0.5 A_{s t} f_{y} l_{w}\left(1+\frac{P_{u}}{A_{s t} f_{y}}\right)\left(1-\frac{c}{l_{w}}\right)\right] \\
& =0.9[0.5 * 1959.2 * 420 * 2480(1+0)(1-0.08)]=8448.5 \mathrm{KN} \geq 2953.2 \mathrm{KN} . \mathrm{m} \ldots \mathrm{Ok}
\end{aligned}
$$

$x \geq \frac{L w}{600 * 0.015}=\frac{2480}{600 * 0.015}=275.55$
$\mathrm{Lb} \geq \frac{X}{2}=137.8$
Since Smallest value of Lb \& Mub not require Boundary .

Figure (4-22): figure of Shear wall

4-11 | Design of isolated Footing(F1):

4-11-1 Materials and Loads:

Isolated footing that we consider to design with materials of:
$f_{c^{\prime}}=24 M p a, f_{y}=420$ Mpa.

Dead Load (service) $=574 k N$.
Live Load $($ service $)=151 \mathrm{kN}$.
Total services load $=574+151=725 k N$.
Total Factored load $=1.2(574)+1.6(151)=931 k N$.
Column dimension $(a \times b)=60 \mathrm{~cm} \times 40 \mathrm{~cm}$.
Soil density $=18\left(\frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}\right)$.
Allowable bearing capacity $q_{\text {all }}=400\left(\frac{k N}{m^{2}}\right)$

Figure (4-23): Footing Section.

Assume h $=50 \mathrm{~cm}$.
$q_{\text {all-net }}=400-(25 \times 0.5)-(18 \times 0.5)=378.5\left(\frac{k N}{m^{2}}\right)$

- Area of footing:

$$
A=\frac{p_{t}}{q_{\text {all-net }}}=\frac{725}{378.5}=1.92 \mathrm{~m}^{2}
$$

Assume rect. Footing
Select $\boldsymbol{B}=2.2 \boldsymbol{m}$
Select $\boldsymbol{L}=2.2 \boldsymbol{m}$

- Bearing pressure:

$$
q_{u}=\frac{931}{2.2 \times 2.2}=131.4\left(\frac{k N}{m^{2}}\right)
$$

4-11-2 Design:

- Design of one-way shear strength:

Critical Section at Distance \boldsymbol{d} From The Face of Column Assume $\boldsymbol{h}=50 \mathrm{~cm}$. Bar diameter $\emptyset 14$ for main reinforcement and 7.5 cm Cover.
$d=500-75-14=411 m m$
$V_{u}=q_{u} \times\left(\frac{B-a}{2}-d\right) \times L=131.4 \times\left(\frac{2.2-0.2}{2}-0.411\right) \times 2.2=170.3 \mathrm{kN}$

Figure (4-24): one-way shear calculation.

$$
\begin{aligned}
& \phi V_{C}=\emptyset \times \frac{1}{6} \times \sqrt{f_{c^{\prime}}} \times b \times d=0.75 \times \frac{1}{6} \times \sqrt{24} \times 2200 \times 411=553.7 \mathrm{kN} \\
& \emptyset V_{C}=553.7 \mathrm{kN}>V_{u}=170.3 \mathrm{kN}-\text { Safe }
\end{aligned}
$$

- Design of Tow-way shear strength:

$$
V_{u}=p_{u}-F R_{b}
$$

$$
F R_{b}=q_{u} \times \text { area of critical section }
$$

$$
V_{u}=170.3 \times[(2.2 * 2.8)-(0.5+0.411)(0.5+0.411)]=907.7 \mathrm{kN}
$$

The punching shear strength is the smallest value of the following equations:

1. $\emptyset V_{C}=\emptyset \times \frac{1}{6}\left(1+\frac{2}{\beta_{c}}\right) \times \sqrt{f_{c^{\prime}}} \times b_{\circ} \times d$
2. $\emptyset V_{C}=\emptyset \times \frac{1}{12}\left(\frac{\alpha_{s}}{\frac{b o}{d}}+2\right) \times \sqrt{f_{c^{\prime}}} \times b_{\circ} \times d$
3. $\varnothing V_{C}=\varnothing \times \frac{1}{3} \times \sqrt{\boldsymbol{f}_{\boldsymbol{c}^{\prime}}} \times \boldsymbol{b}_{\circ} \times \boldsymbol{d}$

Where:

$$
\beta_{c}=\frac{\operatorname{column} \text { Length }(a)}{\operatorname{column} \operatorname{width}(b)}=\frac{\mathbf{6 0}}{\mathbf{4 0}}=1.5
$$

$b_{\circ}=$ Perimeter of critical section taken at (d/2) from the loaded area.

$$
=2 \times(0.6+0.411)+2 \times(0.4+0.411)=384.2 \mathrm{~cm}
$$

$$
\alpha_{s}=40 \text { for interior coulmn }
$$

Substituting values in equations:

$$
\begin{aligned}
& \emptyset V_{C}=0.75 \times \frac{1}{6}\left(1+\frac{2}{1}\right) \times \sqrt{24} \times 3842 \times 411=2900.9 k N-C O N T R O L \\
& \emptyset V_{C}=0.75 \times \frac{1}{12}\left(\frac{40 * 0.511}{4.044}+2\right) \times \sqrt{24} \times 3842 \times 411=3410.7 \mathrm{kN} \\
& \emptyset V_{C}=0.75 \times \frac{1}{3} \times \sqrt{24} \times 3842 \times 411=1933.9 k N-C O N T R O L
\end{aligned}
$$

$$
\varnothing V_{C}=1933.9 k N>V_{u}=907.7 \boldsymbol{k N}
$$

- Design Bending moment for long dirction:

Critical Section at the Face of Column
select $\emptyset 14$

$$
d=500-75-14=411 \mathrm{~mm}
$$

$$
\begin{aligned}
& M_{u}=131.4 \times 2.2 \times 0.489 \times \frac{0.489}{2}=34.6 \mathrm{kN} . \mathrm{m} \\
& R_{n}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{34.6 \times 10^{6}}{0.9 \times 2200 \times 411^{2}}=0.103 \mathrm{MPa} \\
& m=\frac{420}{0.85 \times 24}=20.58 \\
& \rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.58}\left(1-\sqrt{1-\frac{2 \times 20.58 \times 0.103}{420}}\right)=0.00025 \\
& A_{S, \text { req }}=\rho \times b \times d=0.0025 \times 2200 \times 411=223.3 \mathrm{~mm}^{2} \\
& A_{S \text { Sin }}=0.0018 \times 2200 \times 500=1980 \mathrm{~mm}^{2} \\
& A_{S, \text { req }}=223.3 \mathrm{~mm}^{2}<A_{S \min }=1980 \mathrm{~mm}^{2}-O K
\end{aligned}
$$

Check maximum step (S) is the smallest of:

1. $3 h=3 \times 500=1500 \mathrm{~mm}$
2. 450 mm - control

Use $17 \emptyset 14$ with $A_{s, p r o v}=2040 \mathrm{~mm}^{2}>A_{S, \text { req }}=1980 \mathrm{~mm}^{2}$
$S=(2200-75 * 2-17 * 14) / 16=113.4 \mathrm{~mm}$
S=123.4 $<$ Smax $=450 \mathrm{~mm}$, select $\mathrm{S}=100 \mathrm{~mm}$

Check for strain:
$a=\frac{A_{s . f_{y}}}{0.85 b f_{c}^{\prime}}=\frac{2040 \times 420}{0.85 \times 2200 \times 24}=19.1 \mathrm{~mm}$
$c=\frac{a}{\mathcal{B}_{1}}=\frac{19.1}{0.85}=22.5 \mathrm{~mm}$
$\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{411-22.5}{22.5}\right)=0.0518>0.005$
$\ldots . .0$ k

- Design Bending moment for short direction:

Critical Section at the Face of Column
select $\emptyset 14$

$$
d=500-75-14=411 \mathrm{~mm}
$$

$$
M_{u}=131.4 \times 2.2 \times 0.489 \times \frac{0.489}{2}=34.6 \mathrm{kN} . \mathrm{m}
$$

$$
R_{n}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{34.6 \times 10^{6}}{0.9 \times 2200 \times 411^{2}}=0.103 M P a
$$

$$
m=\frac{420}{0.85 \times 24}=20.58
$$

$$
\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m . R_{n}}{420}}\right)=\frac{1}{20.58}\left(1-\sqrt{1-\frac{2 \times 20.58 \times 0.103}{420}}\right)=0.00025
$$

$$
A_{S, r e q}=\rho \times b \times d=0.0025 \times 2200 \times 411=223.3 \mathrm{~mm}^{2}
$$

$$
A_{S \min }=0.0018 \times 2200 \times 500=1980 \mathrm{~mm}^{2}
$$

$$
A_{S, \text { req }}=223.3 \mathrm{~mm}^{2}<A_{S \min }=1980 m m^{2}-O K
$$

Check maximum step (\mathbf{S}) is the smallest of:
3. $3 h=3 \times 500=1500 \mathrm{~mm}$

4. $\mathbf{4 5 0} \mathbf{~ m m}$ - control

Use $17 \emptyset 14$ with $A_{s, p r o v}=2040 \mathrm{~mm}^{2}>A_{S, \text { req }}=1980 \mathrm{~mm}^{2}$
$S=(2200-75 * 2-17 * 14) / 16=113.4 \mathbf{m m}$
$\mathrm{S}=\mathbf{1 2 3 . 4}$ < Smax $=\mathbf{4 5 0} \mathbf{~ m m}$, select $\mathrm{S}=100 \mathrm{~mm}$

Check for strain:

$$
\begin{aligned}
& a=\frac{A_{s . f_{y}}}{0.85 b f_{c}^{\prime}}=\frac{2040 \times 420}{0.85 \times 2200 \times 24}=19.1 \mathrm{~mm} \\
& c=\frac{a}{\mathcal{B}_{1}}=\frac{19.1}{0.85}=22.5 \mathrm{~mm} \\
& \varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{411-22.5}{22.5}\right)=0.0518>0.005
\end{aligned}
$$

Figure (4-25): Detailing of footing.

