Palestine Polytechnic University

Department of
Computer Systems Engineering

\y

o LQ}E

" .*‘ i

“»,

e/

'

G

Implementing a hybrid Compression
Encryption Technique for Securing WMSN on
FPGA

Team Members:
Tasneem Zahdeh

161011 @ppu.edu.ps
[Lama Jawabreh 161003@ppu.edu.ps

Supervisor:
Dr.Mousa Farajallah

Tue, Jan 26", 2021

mailto:161011@ppu.edu.ps
mailto:161003@ppu.edu.ps

Abstract
Wireless Multimedia Sensor Network (WMSN) is an environment for transferring
images, audios, and videos. However, it has many restrictions and limitations that
affect the security level as well as the required power consumption. This project
is to implement the protection of sensitive data transmission through wireless
networks with high performance and Ilow power consumption. The
implementation is based on Field-Programmable Gate Array (FPGA) using the
Verilog HDL hardware language for the hardware programming and C/C++ high-
level languages for the software programming of the FPGA. The project
implementation is proposed for the solution that was presented by Hraini.!l In the
hardware implementation, RGB images are included in addition to the grayscale
images in the software solution. Images are compressed by Set Partitioning in
Hierarchic Tree (SPIHT) algorithm? and encrypted selectively during the
compression process (i.e. jointly). The importance of this project lies in being
useful in making a secure environment for transferring images through the most
unsecured networks which are wireless networks such as Bluetooth as was
applied in this project. The expected results are a hardware implementation that
corresponds to the software solution in Hraini’s thesis. Also, the system is
expected to present secure transmission for RGB and grayscale images through
wireless networks in addition to perform the proposed security solution in a way
that guarantees a minimum use of power consumption and high performance.
Also, it is expected to satisfy the data confidentiality and privacy the software
solution aimed to apply besides having a very compact output bitstream and a
constant bitrate in both parties (i.e., sender party and receiver party) as has been

achieved in the software solution.

Table of Contents

LiST OF TaBIES ..o 5
LIS OF FIQUIES ...t 6
Chapter 1: INtrodUCTIONc.ooiieie e 8
11 Overview 0Of the ProjJeCtcovvvviiiiiiiiiiiiieeeee 8
1.2 IMIOTIVALION ... 8
1.3 g 0T] v 13T - PSP 9
1.4 (@] 0Tl £ RSSP 9
15 Description of the Project..........ceeiieeiiiiieiiieee e 10
1.6 DESIGN OPLIONS ... 10
1.7 Overview of the Rest of the projectcovvvvvviiiiiiiiii 13
Chapter 2: Problem Statement...........coccovviiiiiiiieesie e 14
2.1 Problem ANalYSiS.........ooooeiiiee e 14
2.2 DEFINITION . 14
2.3 List Of REQUIFEMENTS ... e 15
2.4 EXPECIEd RESUILS. .. .uiieeee e 15
Chapter 3: BaCKgroUNd........c.cooviiieiieiie e 16
3.1 Theoretical Background and Literature REVIEWevvvvveviiininennnnns 16
3.2 System Hardware COMPONENTESccvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 18
34.1 System SPecifiCationScouvviiiiiiiiii 21
3.4.2 DeSigN CONSTIAINTS.uuii e eee e e e e e e e e e e e e eeenees 21
Chapter 4: SyStem DESIQNccveiiieiieiie e 22
4.1 Detailed Description of the Systemcceeeeiieeeiiiiiiiiee e, 22
4.2 BIOCK DESION. ..cevtiiiei e e e e e e 30
4.3 BIOCK DIagramcoooeieeeeeeeee e 31
Chapter 5: SOfIWAIE........oiiiee e 32
5.1 Description of the SOftware ..., 32
5.2 FIOWCNAIT. ... 33
53 PSEUAOCOUE ... 33
5.4 N I I = o= Vo o 1] oo R 33
54.1 Padding TeSE CaSES ...uuueeeeeeeeeiiiae e e e e e ettt e e e e e e e eeaeea e e e e eeeeeeeees 34

55 Header OVerheadooovveeeeieeeeee 35

5.6 Discrete Wavelet TransSformM e iee et e e 36

Chapter 6: Validation and DISCUSSIONcccccveiieiieiieiie e 37
6.1 IMPIEMENAtION ISSUESu et et e e e e e eaaees 37
6.2 Implementation Challengesuvveiiiiiiiiiiiiiiiiiiiee e 37
6.3 Description of the method used to validate the System........................... 37
6.4 Results Validation and AnalysiS..........cooovviriiiiiee e 38

6.4.1 Power Validation and Analysiscuiieiiieeiiiiiciiie e, 38
6.4.2 Time Validation and AnalysiS..........ceeeiiieeiiiiiiiiiiee e, 39
6.4.3 Security Validation and Analysis...........ceeeiiieeeiiieiiiiiiee e, 42
6.4.3.1 Encryption/Decryption teChniqueccoeeeeeeiiiiiiiiiiie e, 42
6.4.3.2 SECUMTY TESES .eeeieeeiiieiiiiiii ittt 45
6.4.3.3 A Comparision with the Thesis ReSUItScooovveiiiiiiiiieeeriiiinns 46

6.5 Recommendations based on the ReSUlLS ... 49

CONCIUSION. ...ttt bttt 50

F A o] 0 1< Lo ot USSR 51
SYSIEM FIOWCRAIT. ... e 51
YA (=] =T U o [oT oo Lo L= T PP 52

RETEIEINCES ...t 56

List of Tables

Table 5.1: The overhead percentage for Lena tested iIMagesS.......cvvvueeiieeeeiiiiiiiiiiee e eee e 35
Table 6.1: Design components with power consumption and utilization percentages....................... 39
Table 6.2: Time calculations for 512X512 PX IMAJEcceeeeeieeeeee e 40
Table 6.3: Array recommended length for each image Sizeeeeiviiiiiiiiii e, 43
Table 6.4: Security results for 128x128 pX LENa IMAQJEccoeeieeieeeieeieeeee e 45

List of Figures

Fig.1.1: Wireless Multimedia Sensor NEtWOrKS.........ccoovvuiiiiiiii e 8
Fig.2.1: Different rates of the lossy compression in comparison to the original image 15
Fig.3.1: Any image can be divided into four subbandsccccoimiiiiiiiiiiiiiiie 16
Fig.3.2: The solution proposed in Hraini’s thesisooviiiiiiiiiiiiiie e 17
Fig.3.3: The encryption place in the SPIHT algorithm................ouuiiiiiiiiiiiiiiiiee 18
Fig.3.4: Cora Z7 Zyng-7000 SingleCore for ARM/FPGAcooiiiiiici e 19
Fig.3.5: Zybo Z7 — Zynqg-7000 ARM/FPGA SoC Development Boardeeveveemmmenmnnnnnnnnne 20
Fig.3.6: ZedBoard Zyng — 7000 ARM/FPGA SoC Development Board.............ccccceeeveeeeerieininnnnnn. 20
Fig.3.7: AMODIIE USB CaDIE ...ttt 20
Fig.4.1: A set of random images from the INterNetvviiii i i e 22
Fig.4.2: Running the MATLAB program “Sender Party”uuuiiiiiieiiiiiiiiiii e 22
Fig.4.3: The DWT image in the MiCro SD Carduuuuuuummmmmmmeniiiiiiiiiiiiiineienieineeneeeneennennnnenne 23
Fig.4.4: The micro SD card inserted inside the USB adapterciveeeiieeeiiiiiiiiiiie e, 23
Fig.4.5: The image is displayed in its original fOrm..............uuuuuiiiiiimiiiiiiiiiieeeeee 23
Fig.4.7: The FPGA is connected to the PC through a USB cablecccoooeeiiiiiiiiiiiin i, 24
Fig.4.8: The messages get printed on TeraTerm wWhen FPGA TUNSccevviiiiiiieiiiiiiiiiiecee e 25
Fig.4.11: The output is stored inthe binary file ..., 26
Fig.4.13: The SD memory card in the sender and reCRIVETuuuuuuumiumimiiiiiiiiiiiiiiiiiiiieeiennnneeenes 27
Fig.4.14: The messages get printed on TeraTerm when FPGA rUNSccovieeiiiiiiiiiiie e, 27
Fig.4.15: The transferring process for the header and bitstreamcccooooeiiiiiiiii . 28
Fig.4.16: The FPGA is running and processing the image’s bitstreamcevvieeeiiieiiiiiiinnneennn. 28
Fig.4.17: A message is printed on TeraTerm after FPGA finishes processing.........cccoeeeeeevvevvvinnnnnn. 29
Fig.4.18: Running the MATLAB program “Receiver Party”ccoooeeiiiiiiiiiiiiinieeieceeiiiie e 29
Fig.4.19: The inverse DWT image in the Micro SD Card...........cccoivviiiiiiiiiieeee e, 29
Fig.4.20: The reconstructed image is displayed and sent to the user’s desktop...........ccceevvvvnuinrreenn. 30
Fig.4.21: FPGA Block Design with the needed IPS............uciiiiiiiiiiiiicee e 30
Fig.5.6: Ones and Zeros Padding tEChNIQUEuuuuuiiriiiiiiiiiiiiiiiiiiiiiiii e 34
FIQ.5.7: FOPWAIT DWW T ..ot e e e e e ettt e e e e e e e e e e eaat e e e e e e e eeenennnnnns 36
FIQ.5.8: INVEISE DWW ..ot e e ettt e e e e e e e e e ettt e e e e e e e eeenennnnns 36
Fig.6.1: The power chart of COra Z7 in ViVad0uuuuuuuuuuuiiiiiiiiiiiiiieiiiieieneneeeeneeneeneenaneneeeeenes 39
Fig.6.2: Lena images Of different SIZeSoouueeeiii i 40
Fig.6.3: CPU utilization and miss rate in SDKuuuuuuuimimiuiiiiiiiiiiiiiieiieeeeieireeeeeeeeeeeeeeee 41
Fig.6.4: Elapsed time of 256x256x3 px in TeraTerm approximate measurementsoeeveennnn. 41

Fig.6.5:
Fig.6.6:
Fig.6.7:
Fig.6.8:
Fig.5.1:
Fig.5.2:
Fig.5.3:
Fig.5.4:
Fig.5.5:

A comparison between compression & encryption VS compression timeeeeee. 47
A comparison between decompression & decryption Vs decompression time 47
Software solution NiStogram reSUlLS..........ooooi i 48
Hardware implemenation histogram reSUILS...........cooviieiiiiiiiii e 48
SyStem FIOWCQAITo 51
Sender’s MATLAB PIrOZIAM.cociiiieiiiiiiieeeeeeeeeieias e e e e e e eene s e e e e e eennnnn e e e e e e eennne 52
LT a 1o (=TI L S o] (0o > o USSP 53
RECEIVEI'S SDK PIOGIaM ... 54
Receiver’s MATLAB PrOZIAMc.uuuiiiiii ettt e e e e e e e eeeans 55

file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674236
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674236
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674237
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674237
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674238
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674238
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674239
file:///C:/Users/user/Dropbox/Graduation%20Project%20LT/27-1%20(Lama%20&%20Tasneem).docx%23_Toc62674239

Chapter 1
Introduction

1.1 Overview of the Project

WMSNs contain small devices that collect data by their sensors as shown in Figl.1. They
work by sensing multimedia data like audio, videos, and images. However, these networks
have few restrictions regarding power consumption, and they also have security issues. So, to
solve these problems, a software solution has been proposed in Hraini’s thesis™ that

guarantees a secure transmission for images.

“P2% Multimedia hub
Internet & | Video Sensor

5 Audio Sensor
S99 Multimedia Sensor
Gateway \

o Gateway
— H}.ﬁ
[—— .

Fig.1.1: Wireless Multimedia Sensor Networks

In this project, the hardware implementation for that solution has been determined to be on
FPGA so to handle the power consumption issue by selecting specifically Cora Z7 FPGA.
The project deals with any image in the BMP extension and of any size. It can also process

RGB and grayscale images.
1.2 Motivation

Implemented applications in hardware circuits are the trend nowadays for the easiness of

reprogrammable them and for their adavantage of detecting and fixing errors with nearly no

8

cost at all. However, the hardware circuits face two major problems which are are power and
performance. Therefore, it is preferred to use the type of processor with excellent
performance and low power consumption. FPGAs stand out with these characteristics and so
have been chosen to be the hardware tool for the project implementation.

To the best of our knowledge, graduation projects in Palestine Polytechnic University (PPU)
of computer engineering major have been dedicated to Arduino and Raspberry Pi in general
and were away from FPGA specifically. Thus, this approach is the first of its kind adding to
that the challengeable uniqueness of FPGAs themselves because of being programmed with
Hardware Description Languages (HDLs) for making the hardware definition files of the
FPGA board. As for the software programming of the FPGA processor, C and C++ are the

languages used.

1.3 Importance

Converting the proposed software solution to secure WMSNs into real-time and hardware
solution is important for business companies to be able to make integration of the

implemented solution.

The project is useful in implementing a secure environment for transferring images through

the most unsecured networks (i.e., wireless networks such as Bluetooth).
1.4 Objectives

The goals of this project are:

e Securing the transition of RGB and grayscale images in WMSNs which don’t protect
the transmitted data from attacks and that results in losing its integrity and
confidentiality.

e Achieving a high performance by using the excellent SPHT for compression and
Hraini’s embedded encryption technique with just a 0.2914% overhead and a constant
bitrate.

e Having a minimum power consumption by using the Cora Z7 FPGA hardware
component in implementing the software solution. Cora Z7 can either takes power

input from 4.5V to 5.5V external source or through USB.

1.5 Description of the Project

Implementing the SPIHT algorithm with the solution presented in Hraini’s thesis by
encrypting selectively the pixels with the most amount of information simultaneously with
compressing the image.

The implementation is carried out using FPGA based on the Verilog hardware language for
hardware programming and C/C++ for software programming. The hardware programming
programs the FPGA by the definitions file of the FPGA board (i.e., HDF extension file) in
addition to a bitstream that is created based on the FPGA block design which is translated to
Verilog codes (i.e., V extension files). The software programming inserts the C/C++ code of

the SPIHT and selective encryption into the FPGA processor.

Images are not collected by sensors; they are stored in the computer locally after being
brought from the Internet. FPGA gets the DWT images from the MATLAB program on the
sender side. The output of the FPGA after it processes the image is a binary file that has the
image header and bitstream. The binary file gets transferred through WMSN to the receiver
who gives it as an input to the FPGA. After the FPGA processes the bitstream, an inverse
DWT image is generated and taken as an input to the receiver MATLAB program so to

reconstruct the image to its original version

Although Hraini’s thesis covers grayscale images only, the hardware implementation deals

with both RGB and grayscale images of different sizes.
1.6 Design Options

Many available options are suitable to be applied in the system, and each option has its
advantages and disadvantages. Here is a comparison between options of the same category

with pointing out to the selected choice for this project.

FPGA Hardware Programming Language:

- VHDL: It is an abbreviation of VHSIC Hardware Description Language. VHSIC is
yet another abbreviation of Very High-Speed Integrated Circuits.
= VHDL advantages:

10

It has roots in Ada programming language in the syntax and concept. It
includes a lot of features and thus has a great number of uses. It is a strongly
typed language, B! excellently typed, deterministic, and more natural language
than Verilog HDL, and its designs are self-documenting. VHDL can also
define more errors that are detected but left undefined in Verilog HDL.
Moreover, it doesn’t have any unambiguity in its semantic as its keywords are
expressive and meaningful. Furthermore, it provides flexible and smoothing
switching between tools.

VHDL disadvantages:

It hasn’t been learned in university so there is no assurance of self-learning it
fully, deeply, and correctly in such a short time. Also, there is no guarantee
that it would become practiced and professionally typed even after learning it.
Moreover, it needs more programming when converting from one data type to

another.

Verilog HDL (Has been chosen):

Verilog HDL advantages:

Its roots refer to an early HDL, Hilo, and that makes it a more low-level
hardware language than VHDL. It also shares a strong language like C its
syntax and structure, and the advanced version of C, which is C++, has been
learned in university. It is a deterministic language as VHDL, and all data
types are predefined so there is no extra coding when converting from one
data type to another as in VHDL. Moreover, it is a bit-level representation
which means it is very concise and can be looked at in-depth. Furthermore, it
has been taught in university and thus the knowledge and experience exist.
Verilog HDL disadvantages:

It is a weakly typed language,©! and it doesn’t have the flexibility needed.

FPGA Software Programming Language:

C Language:

C language advantages:
For embedded systems such as FPGA, C language is a more suitable choice
since it requires less runtime support. It is also faster in compiling since it has

more low-language similarity than C++. Moreover, it can be easily interfaced

11

with other languages compared to C++ which has a high level of complexity
in its libraries.

= C language disadvantages:
It is harder to understand as it is a bit far from being English-like language.
Also, it doesn’t have inline functions and doesn’t support functions with
default arguments.

C++ Language (Has been chosen):

= C++ language advantages:
It can work with the C language in the same program code. It also improves
performance and reserves memory slots efficiently. Moreover, it has a very
large set of in-built functions and user-defined functions.

= C++ language disadvantages:
It isn’t secure, and it works on a specific set of platforms. Also, it can become

very complex in large programs.

Host Device:

FPGA: FPGA has slots for one SD card, Ethernet, and power connectivity. Those
three components allow FPGA to work independently of a host computer. If there is
no need for the Internet, the Ethernet can be excluded. However, there would still be a
need for an LCD screen to display output on.

USB Host (Has been chosen): USB can work as a host by connecting any PC with an
FPGA. The UART communication protocol happens by transmitting and receiving
the transferred bytes to and from the FPGA’s two channels. Each channel has a light
indicator that lights in the transmission process. The left light, from the USB
viewpoint, is for transferring the data from FPGA to the other side of the USB
connection which is the PC. The right light is for transferring the data to the FPGA

from the other side of the USB connection which is again the PC.

Serial Communication Software:

Putty:
= Putty advantages:
It is the most common software that is used for serial communication and has
a higher review than TeraTerm.

= Putty disadvantages:

12

It lacks the simplicity than TeraTerm and can come across printing unknown
characters without a clear reason.™!
- TeraTerm (Has been chosen):

= TeraTerm advantages:
It works best for beginners and serves their needs well by providing the
necessary properties and characteristics.

= TeraTerm disadvantages:
It is not as highly configurable as Putty and connecting remotely makes a real
issue as it sometimes works and other times not under the same environmental

conditions.
Hardware Component:

- Arduino: It can be used in digital image processing. It is an easy Kit for use, but it is
too simple to deal with the complexity of image processing. Also, it is not powerful
enough to deal with images. Therefore, high resolution and great image quality are
not the results to get from Arduino.

- Raspberry pi: It is characterized by its low-cost and ability to do digital image
processing by providing a simple interface so to reduce the complexity of real-time
applications.’®! However, Raspberry pi can’t be used for real-time applications.

- FPGA (Has been chosen): It is often used for image processing and that is because of
FPGA structure which gives it an advantage for doing spatial and temporal
parallelism. Besides, FPGA size can contain image sizes when they grow larger in

processing due to their nature. 6!
1.7 Overview of the Rest of the project

The analysis of the problem statement, definition, list of requirements, and expected results
are provided in chapter 2. A short description of the parts used in the system, why they are
chosen, specification, and design constraints are presented in chapter 3. Information about the
software developed to drive the system is shown in chapter 4. Implementation description,
issues, and challenges are included in chapter 5. Validation and analysis of the project results
are in chapter 6, and finally, the conclusion of the project as well as future work.

13

Chapter 2
Problem Statement

2.1 Problem Analysis

Transferring information between different parties is a daily process in cyberspace, and there
is a need for securing the transferred content especially when the confidentiality and privacy
of the data are important. This means that the only legal destination can read and understand

the transferred information.

Also, the integrity of the data should be guaranteed when they arrive at their destination.
Therefore, any modification to the data must be identified. To achieve that, selective
encryption alongside compression by the SPIHT algorithm is presented by Hraini in [1] to get

the security level needed with high performance and minimum power consumption.
2.2 Definition

This project is proposed to implement the presented solution in the thesis! so to convert the

theoretical solution to a real-life application.

SPIHT is the compression algorithm used, and it contains four stages which are initialization,
sorting, refinement, and quantization. Selective encryption is the best choice to be used when
processing time is the most important criteria in addition to many limitations on power and
memory. The selective encryption is achieved jointly with the compression in the second
stage of the SPIHT (i.e., the sorting stage).

This implementation is performed on an FPGA board connected to a PC via a USB cable.
The PC is mainly used for displaying the images before and after processing while the USB is
for transferring and receiving the binary file. The images are jointly compressed and

encrypted, and the images are jointly decompressed and decrypted.

14

2.3

List of Requirements

The system requirements in the project can be summarized as the following:

1-

2-

2.4

The system must be able to achieve the confidentiality and integrity of the images as
it was achieved in the software solution in [1]. Therefore, they don’t get exposed to
passive and active attacks and thus preserving the secrecy and reliability of data.

The average time of the joint compression-encryption with SPIHT and Hraini’s
encryption technique is approximately the same as the time of compression alone with
SPIHT. This should be reflected in the hardware implementation.

Getting a duplicate image, to the bare eye, of the original one in the destination by
using decompression by the SPIHT which is lossy compression. An example of lossy

compression is shown in Fig.2.1.

Original JPG , 50% Lossy Comp 80% Lossy Co
824 KB o > 38 KB e

Fig.2.1: Different rates of the lossy compression in comparison to the original image

Expected Results

The system is expected to have some certain results, and they are:

The hardware implementation is expected to correspond to the software solution.

The system is expected to present the secure transmission proposed in [1] for RGB
and grayscale images through wireless networks.

The system is expected to perform the proposed security solution in a way that
guarantees a minimum use of power consumption and high performance.

The hardware implementation is expected to satisfy the data confidentiality and
privacy the software solution aimed to apply.

The hardware implementation is expected to have a very compact output bitstream

and constant bitrate as has been achieved in the software solution.

15

Chapter 3
Background

3.1 Theoretical Background and Literature Review

For the past few years, security problems make a big issue concerning data transmission
especially through wireless networks. Thus, the software solution approach focuses mostly on
securing data through WMSNE.

The main aspect of the proposed solution is the joint encryption of the images while getting
processed with the SPIHT algorithm before getting transmitted. The SPIHT algorithm was
developed from the strengths of the powerful compression algorithm — the Embedded Zero
tree Wavelet (EZW) which is created based on Discrete Wavelet Transform (DWT). A
popular technique, that was proposed by Shapiro to achieve compression, has been used to
encode DWT. DWT states that any image can be divided into four subbands as shown in
Fig.3.1.

LL2 | HL2

HL

LH2 | HH2

LL | HL

Image M x N

Decomposition

Decomposition

LH | HH

LH HH

Fig.3.1: Any image can be divided into four subbands

In each LL subband, divisions take place and continue until a tree is formed. The order of the
four coefficients from the topmost subband are Low Low (LL), High Low (HL), Low High
(LH), and High High (HH). They all share the same resolution.

The prime purpose of the tree is to form the coefficients and generate the bitstream in
prioritized order such as the most significant coefficients are placed in the LL subband of the
first level (it is LL2 in Fig.3.1), less significant coefficients are placed in HL subband of the

higher levels, and less significant coefficients than the ones in HL are placed on LH subband

16

of the same level and so on. The least significant coefficients are placed in the HH subband of
the last level which would be the highest. In other words, the most important information of
the image lay in the subbands of the lower levels starting from LL. Pixels that contain
information of little importance lay in the furthest subbands such as HL, LH, and HH of the

last levels.

The software solution in the thesis!!! that was proposed to satisfy the secure transmission and

data confidentiality in WMSNSs is shown in Fig.3.2.

Read image . SPIHT: joint
Array of coordin

and convert it ay of coordinates DWT Array Of_WaVEIEt compression

to array coordinates and encryption
Sender Side

Reconstruct Avrray of coordinates Inverse SPIHT: joint

the_ original Array of.wavelet decompression
image DWT coordinates and decryption

Receiver Side

Fig.3.2: The solution proposed in Hraini’s thesis

The SPIHT is used for compression in four stages for any image on the sender side and
decompression in the same four stages but vise versa on the receiver side. A very important
notation is that the encoder and decoder are identical, and a few lists are consistently updated.

They are:

e LIP:is an abbreviation of List of Insignificant Pixels and is the first list.
e LSP: is an abbreviation of List of Significant Pixels and is the second list.

e LIS: is an abbreviation of List of Insignificant Sets and is the last list.

The coordinates for the first and second lists are (i, j) which represents individual pixels.

However, the last list takes sets as its entry.

17

The key step added to the SPIHT is the selective encryption that happens jointly with the
compression. The encryption occurs in the second stage of the SPIHT which is the sorting

stage. This is shown in Fig.3.3.

Initialization stage

The selective encryption is applied here Sorting stage

Refinement stage

Quantization stage

Fig.3.3: The encryption place in the SPIHT algorithm

The encryption is applied with a simple XOR equation. The XORing happens with an array
of secret keys which are generated with the generator in [7]. However, the encryption can be
applied with any secure Pseudo-Random Number Generator (PRNG). The encryption process

is explained in detail in Chapter 6 — section 6.4.3.1.

Several projects and researches of image processing have been made using FPGA. Research
about FPGA-based image processor architecture for WMSN in [8] has focused on achieving
high-speed processing with minimum power consumption, and its approach is to compress
and transfer images through WMSN to examine WMSN issues such as power management
and system synchronization. Another research about FPGA architecture for object extraction
in WMSN in [9]. It is for detecting and extracting captured images in real-time. The system is
optimized to achieve high-speed processing with minimum power consumption. Both

reasearches share the same goals as in this project.
3.2 System Hardware Components

The hardware components that are needed for the project are explained here with a short

description of each one. The integration between them is followed immediately.

The hardware components:

1- FPGA board:

18

FPGAs are semiconductor devices that deal with configurable logic blocks (CLBS) in
the form of matrices, and they are all connected by programmable interconnects. They
can also be programmed to be used for a wide range of available purposes. The choice
has been set on Cora Z7 in Fig.3.4 which is a Zyng-7000 SingleCore for
ARM/FPGAI% SoC Development.

Fig.3.4: Cora Z7 Zyng-7000 SingleCore for ARM/FPGA

The platform’s design was done by Zynq-7000, and the board architecture is from
ARM. It contains a single-core with a speed that equals 667 MHz with a Cortex-A9
processor with a Xilinx 7-series. The Cora Z7 makes this FPGA a great platform for
developing software as it has a wide range of hardware interfaces such as the 1 Gbps
Ethernet PHY, general-purpose input/output pins, and analog-to-digital converters. It
acts as a one-component containing a large set of solutions. The board has its

independent SD card slot, Ethernet slot, and power slot.

Cora Z7 is the one used in the project, not Zybo Z71*Y nor ZedBoard!*? for a few

reasons, and they are:

e Zybo Z7 in Fig.3.5 has a larger memory than Cora Z7, but Cora Z7’s memory
is enough for the required processing in this project besides being cheaper.
e Cora Z7 and ZedBoard in Fig.3.6 have the same memory size and both have

Ethernet slots but Cora Z7 is much cheaper than ZedBoard.

19

ZedBoard

wuu. z6dboar d. org

Fig.3.5: Zybo Z7 — Zynqg-7000 ARM/FPGA SoC Development Board Fig.3.6: ZedBoard Zynq — 7000 ARM/FPGA SoC
Development Board

2- Personal Computer:
The project needs one Personal Computer (PC) for each party. The user enters the
necessary inputs such as an image for the sender and a bitstream for the receiver. The
user gets the outputs on the PC such as a bitstream for the sender and a reconstructed
image for the receiver. Also, for determining the number of secret keys and the length
of the sequence by the keyboard. The recommended operating system is Windows 10.
3- USB cable:
A mobile USB cable in Fig.3.7 is needed to connect the FPGA board with the PC.
The USB will work as a host and establishes the UART protocol.

Fig.3.7: A Mobile USB Cable

4- Micro SD card and Micro SD card USB Adapter:
To insert the micro SD card which is the non-volatile memory of the FPGA into the
PC, there must be a third-party to connect those two, and it is the adapter. The SD

memory card is needed to store and retrieve data to and from the FPGA.

20

3.4

Specification and Design Constraints

The processor of the FPGA is programmed with a bitstream that is different from the Hraini’s

bitstream. The FPGA’s bitstream contains the used logic gates defined by the Verilog

language and constraint files for each Intellectual Property (IP) that exist in the hardware

block design.

34.1

System Specifications

Certain features must be presented in the system to convey the wanted results correctly and

precisely. Such features are:

1-

34.2

The system must be able to deal with all images whether they are RGB or grayscale
and of different sizes or unequal axes in the BMP extension. The accepted minimum
size is 2x2 px because of the DWT function allowable range in MATLAB and
because of SPIHT since an image of 1x1 px would have zero levels.

Two forms of the images must be presented on the PC screen. They are the image in
its original state and the reconstructed image after getting decompressed and
decrypted in the destination. The MATLAB programs do the displaying task.

The hardware code of the system is written in Verilog and embedded in the FPGA
processor core initially before programming the FPGA again with the software code

written in C/C++.

Design Constraints

There exist some limitations regarding the size of the hardware components so they should be

taken into consideration when using the system. They are:

The FPGA RAM is 512 MB. It is Double Data Rate 3 (DDR3) — Synchronous
Dynamic Random-Access Memory (SDRAM).

The FPGA 32-GB SD memory card is a non-volatile memory.

FPGA can take input power that ranges between 4.5 V to 5.5 V from an external
source and get connected to a PC wirelessly or take power from a PC through a USB
cable. In this project, the USB approach has been chosen to get with, and that creates
a limitation on the possible distance between the FPGA and PC. That is, the distance

can’t be more than the USB cable length which is 1 meter.

21

Chapter 4
System Design

4.1 Detailed Description of the System

The following steps describe the system in detail:

1- The sender on his PC chooses an image from any external source such as from the

Internet. An example is shown in Fig.4.1.

(A =S o > Al - : > L
Anime Girl.bmp Blue Cake.bmp Cartoon Coffee Cups.bmp Gray Anime Gray Blue Gray Cartoon Gray Coffee Gray Nature.bmp Gray
Series.omp Girl.bmp Cake.bmp Series.omp Cups.bmp Sunflower.omp

o B 4 1

Gray White Nature.omp Sender_Party Sunflower.omp White Bears.omp
Bears.omp

Fig.4.1: A set of random images from the Internet

2- The sender runs the MATLAB program “Sender Party” on his PC as shown in

Fig.4.2. The program shortcut can detect any image that resides in its path.

Fig.4.2: Running the MATLAB program “Sender Party”

3- The MATLAB program converts the image to its DWT equivalent as shown in
Fig.4.3. The image gets stretched in its width four times because of the function
imwrite() in MATLAB which rearranges the image pixels in the range 0-255. So, to
preserve the DWT image exact values, each pixel gets 4 bytes in the new DWT image
instead of one byte.

22

~ | = Manage USB Drive (F)

Home Share View Picture Tools
D & cut x Eﬁ T New item ~ Wl open - FH selectall
™l Copy path L] 47 Easy access ~ [T Edit 11 Select none
Pmat:zmz;ﬂ:k Copy Paste 8 Paste shortat n{w:\ie (tzpvy De\'e(e Rename (’:\Z\:r Pmpvem'ei e 8 invert selection
Clipboard Organise New Open Select
« v 1 - > USBDrive (F)
Documents N Name - Date modified Type Size
¥ Downloads MATLAB Receiver_Party 11/9/2020 527 PM File folder
b Music MATLAB Sender Party 11/7/2020 1:25 PM File folder
= Pictures Receiver_BOOT 11/28/2020 7:35 PM File folder
{8 videos Security 11/28/2020 7:35 PM File folder
& Windows (C) [W sooT.bin 12/15/2020 403 PM BIN File 1,707 KB
. HP_RECOVERY (T =] DWTbmp 1/13/2021 1225 PM BMP File 3,073 KB
« HP_TOOLS (E)
. USB Drive (F)

Fig.4.3: The DWT image in the micro SD card

4- The MATLAB program sends the DWT as a BMP image to the SD memory card
which would be inserted via a USB adapter into the sender’s PC as shown in Fig.4.4.
The SD memory card will act as a hard drive after being formatted once with the
FAT32 system on Windows OS.

Fig.4.4: The micro SD card inserted inside the USB adapter

5- The MATLAB program displays the chosen image in its original form in a new

window on the sender’s PC as shown in Fig.4.5.

Fig.4.5: The image is displayed in its original form

6- The sender takes the SD memory card from his PC and inserts it into the FPGA
onboard SD Card slot as shown in Fig.4.6. The FPGA would be connected to the PC

23

through a USB cable which provides the power for the FPGA from the PC and works
as a host. Through the USB, a UART protocol gets established and thus transfer data

through FPGA two channels; one of them is for sending and the other is for receiving.

Fig.4.6: The slot in FPGA for the micro SD memory card

7- The sender clicks on the reset button on the FPGA for the FPGA to read the inserted

memory as shown in Fig.4.7, then clicks on the soft reset button to run the FPGA

program.

Fig.4.7: The FPGA is connected to the PC through a USB cable

8- The FPGA program runs and outputs several messages on TeraTerm, which is a

virtual hardware screen, on the sender’s PC as shown in Fig.4.8:

1% message prompts the sender to open a binary file, which takes zeros and
ones only, by the logging option that is available in TeraTerm, and set the
logging on pause.

2"Y message prompts the sender to enter the number of secret keys that he

would like to use as long as they are less than the number of secret key files

24

stored in the SD memory card. However, the sender can enter an enormous
number of keys since the memory is 32 GB.
= 39 message prompts the sender to enter the sequence length.
= 4™ message prompts the sender to start the logging in 3 seconds as with the
header of the image followed by the bitstream will get printed.
The TeraTerm is the platform in which the user gives inputs to it and takes outputs
from it. Since FPGA can’t connect to the user’s PC directly, the USB cable and
TeraTerm do the job in establishing a connection between the two (i.e., the user’s
PC and FPGA board).

T COM4 - Tera Term VT

File Edit Setup Control Window Help
Open a log file and set it at ""Pause'?

Enter the number of secret keys: 188
Enter the length of sequence: 188

Start the logging within approximately 3 seconds?

Fig.4.8: The messages get printed on TeraTerm when FPGA runs

9- The DWT image gets compressed and encrypted inside the FPGA as shown in
Fig.4.9.

Fig.4.9: The FPGA is running and processing the user’s image

10- FPGA outputs the image header and bitstream on TeraTerm in the form of zeros and
ones as shown in Fig.4.10, and FPGA prints the time calculations for generating the
keys array and the time calculations for compressing and encrypting the image in a

text file with the name ‘Time’. It would have the processing time, average generation

25

time, mean computation time, sample rate, bit rate, the number of clock cycles, and

the time consumed in printing the header and bitstream on the terminal.

File Edit Setup Control Window Help

APEAEAAANAAAAAAEAGNAENAARAAAAAAARENG
AB0ABRERA0! AAARANARAREAAAAAAAI T Tera Term: Log
APEABARAAG APEABARAAGAAAAAG!

1190APEARPPARNANG1 AAPAABPPARRANANA1 01 BAAD

Filename: | BitStr.bin

= = 100PANAEAREAAAAAAAD
Fullpath: CiUserstuser\Desktop\BitStr.bin AnBeREEAR1A19111001
EBEEEEEEEEEEEEEEE%%

Bytes transferred: 68016

IARRARRARRANANAARAG
APA0A1 0111100010006
MARPARRARR1 11100000

11111@@@11133191119.@@11131Bﬂiiﬂﬂllﬂﬁﬂﬂi133311BﬂlEliBﬁiBEEiEEI1EEI11BBBEEEEEIEEEEIBBBBBEEBEEEEEEIBBBBBEBBBEEEEEEIBB
ARAARARARREARARARAAL 1 ARARBEARA1111ARAA1 A1 BABARARA1 A1 1 ARRRRBARANANAARARARREARARANAAAA1 ARRBARARANANARRRRRBARARARAA11 AR
PRA119ARARA1109A1103000A11ABAR1110PAA10A11131919199310910A1100A1110191101101 ARRARA191100101A101119109111000A1100A1190011110
PAP1001 AAA11A1190RAARARARREARARARAARNA1 IRBRBRRARAARARANRRREA1 1 PRAANA1 FRRR1 IRARARANRARARRBA1 IRARANARRRRRBRRA1 1 PRARARA
PARARARNRPEARA1AA0ARNGANREARARA1010001011101011101AFAAAG111001010000AAA1111011101100001101111001110100010AAA1A11111
110001111P119191001100A0110AR19A119110010110A0111110A1011011A0AAAAAAA1AARA1 ABARARAAAARRAA1 1 101 ARARARRRARARABA1A11PAAAAA0
ARAA11ARAREARARAR1 11111 ARBARARA1A11A1A1110A11AAAAAA1ARA1AR1A1A1110ARA11A11A1A1AAA1111110A11111A10100AA11810A11A110010
A111090AA11ARARAR1 ARRARARREAR1 1911 A0NARARREARARA11 4111131 ARRARARAA1 11 ARAAR1 A1 1901 1 ANANARBA1 ARARAARRAA1 1 BRRRRA11 10000
ARA11AAAARE1 171 ARAARAARRREA1AA1AAA1ARALA11119A11111171 10011110001 AA1 A1 A11AAARAAA1A111A11010111911111001111900010110
PP1010011011110100001AAAREA100A111 A1 AEAA1 A1 AA10A0AG16A11110100101600101010001101111061010AAEA10000A0AAG1110801100010

Fig.4.10: The header and bitstream are printed on TeraTerm

11- The header and bitstream are logged into the binary file chosen in the logging step as

shown in Fig.4.11.

Fig.4.11: The output is stored in the binary file

12-The binary file gets transferred through the Bluetooth in Fig.4.12 from the sender’s

PC to the desired destination which is the receiver’s PC.

£3 Bluetooth

Fig.4.12: The Bluetooth icon

26

13- The receiver uses his FPGA board and inserts his SD memory card into the FPGA

onboard SD Card slot, then clicks on the reset button on the FPGA. The memory card
has the same content in both parties except for the boot image which automatically
runs the compression-encryption program in the FPGA on the sender side and the
decompression-decryption program on the receiver side. However, both bootable
images exist in both memories, and the user can choose between them. The

memories’ content is shown in Fig.4.13.

Manage USB Drive (F) Manage Removable Disk (F:)
re View Picture Tools re View Picture Tools
Cut) New item e Cut I3 New item - o
. e |5 X = ; v u . e |9 X = ; v H
W Copy path 1 | Easy access ™ Ed| -] Copy path T _| Easy access ~ Ed|
" Move Copy Delete Rename — New Properties i Move Copy Delete Rename New Properties
|PERamE || to~ o folder © @Hi || Paste shortait S, -y~ = folder = oHi
Organise New Open Organise New Open
USB Drive (F) Removable Disk (F:)
”~ Name Date modified Type ~ Name Date modified Type
MATLAB Receiver_Party 11/9/20 File folder MATLAB Receiver_Party File folde
MATLAB Sender_Party File folder MATLAB Sender_Party File folde
Receiver_BOOT File folder Security File folde
Security File folder Sender_BOQT File folder
BOOT.bin N File BOGT.bin e

Fig.4.13: The SD memory card in the sender and receiver

14- FPGA program runs and outputs several messages on TeraTerm on the receiver’s PC

as shown in Fig.4.14:
= 1% message prompts the receiver to enter the number of secret keys that are
used.
= 29 message prompts the receiver to enter the sequence length.
= 39 message prompts the receiver to send the received binary file from the PC

desktop to TeraTerm as shown in Fig.4.15.

I COM4 - Tera Term VT

File Edit Setup Contrel Window Help

Enter the number of secret keys: 188
Enter the length of sequence: 188

sert the bhitstream file, then press “Enter"

In
||

Fig.4.14: The messages get printed on TeraTerm when FPGA runs

The inputs for the first and second message must be identical to the sender’s

inputs.

27

IPIRA11ANENAA1 1 HH0 N

Filename: |EISel)

Fullpath: CiUsersiuseriDesktopiBitStr.bin

Bytes transferred: 941700 (34.9%)
Elapsed time: 1:22 (11.39KBls)

EEBBEIBEEBBEBBEIB
ARBARAARARARNAAI
19901101 100000000
161

5] 0.
PP1A19111110166116611111110A0A1 100101 ANAAAARAA1111001000A11641160111PA60110AABAA1111100000111ARNAAAA10AA101 0100111610k

Fig.4.15: The transferring process for the header and bitstream

15- The bitstream gets decompressed and decrypted in the FPGA, and FPGA stores the
inverse DWT output in its SD memory card that is inserted inside it. This is shown in
Fig.4.16. The FPGA also prints the time calculations for generating the keys array and
the time calculations for compressing and encrypting the image in a text file with the
name ‘Time’. It would have the processing time, average generation time, mean

computation time, sample rate, bit rate, and the number of clock cycles.

Fig.4.16: The FPGA is running and processing the image’s bitstream

16- The receiver takes the SD memory card from the FPGA after the FPGA finishes the
processing by printing a message on TeraTerm as shown in Fig.4.17. Then the

receiver inserts the SD card into the PC via a USB adapter.

28

18391190011 001 110001 80001 1001811681 8888041 1 38006
18181991001 000011A111001 11108101101 8080601 A1 A800H
AARNRAAAARA1 ARARRARANARRRAANARARAAAARANRAL 1 A0ABAA
H88880000RRAANAAARARRRARRNNANENNNNAANAAAANAAA1 BB

Done?
You can remove the SD Card safely...J}

Fig.4.17: A message is printed on TeraTerm after FPGA finishes processing

17- The receiver runs the MATLAB program “Receiver Party” on his PC as shown in
Fig.4.18.

Fig.4.18: Running the MATLAB program “Receiver Party”

18- The MATLAB program receives the inverse DWT BMP image from the SD memory

card as shown in Fig.4.19.

| = | Manage Removable Disk (F)

Home Sha View Picture Tools

re
£ cut = New item ~ B Open ~ Select all
Uhu pi Xiﬁ 7 New item -par\ Ef select al
W Copy path 7] Easy access ~ [T Edit Select none
Propert

Pmatiecsusnck Copy Paste (e e T:‘ie [t:p'y Delete Rename f’:\?:r operties ooy | 8 mer selecion
Clipboard Organise New Open Select
« v 4 < > Removable Disk (F:)
[Desktop A Name o Date modified Type Size
Documents MATLAB Receiver_Party 11/30/2020 10:02 AM
¥ Downloads MATLAB Sender_Party 11/30/2020 10:02 AM
D Music Security 11/28/2020 7:33 PM
& Pictures Sender_BOOT 11/28/2020 7:32 PM
B videos (W BoOT.bin 12/15/2020 3:49 PM BIN File 1,707 KB
£ Windows (©) =] INVDWT.BMP 1/1/2010 12:00 AM BMP File 3073 KB
W nvETXT 1/1/2010 12:00 AM TXT ile 1KB

- HP_RECOVERY (C

Fig.4.19: The inverse DWT image in the micro SD card

19- The MATLAB program reconstructs the original image from its inverse DWT.

20- The MATLAB program displays the reconstructed image in a new window on the
receiver's PC and sends a copy of it in the BMP extension to the receiver’s desktop.
This is shown in Fig.4.20.

29

Image.bmp.

Fig.4.20: The reconstructed image is displayed and sent to the user’s desktop

4.2 Block Design

Creating a block design, which is shown in Fig.4.21, is necessary for the FPGA to run. It is

the hardware programming part of the FPGA board used. The tool provided in Vivado

software allows the user to create a block design where all the IPs that would be used in the

software programming (i.e., the C/C++ code) are inserted and connected. The block design is

a user-friendly interface to create the equivalent Verilog files where the logic gates would be

defined and wired in detail. The Verilog files pass a Hardware Definition File (HDF)

wrapping so Vivado can deal with it as one package and in the way it understands. Constraint

files are very important to be attached either manually by importing the files from the FPGA

manufaturing company to Vivado or automatically by checking the “Apply Board Preset”

button in “Zynq Processing System 7” IP properties in Vivado.

rst_ps7_0_50M

-
slowest_sync_clk
ext_reset_in
aux_resel_in
mb_debug_sys_rst
dom_locked

peripheral _f

Processor System Reset

processing_system7_0

mb_reset

bus_struct_reset(0:0]

2
r
"
interconnect_aresetn(0:0]
peripheral_aresetn[0:0]

esel(0:0]

J

M_AXI_GPO_ACLK ZYNQ‘

ZYNQT Processing System

M_AX|_GP0 < _l

FCLK_RESETO_N

DDR

DDR +|::
FIXED_10 4|

usBIND_0 + ||

FCLK_CLKO

axi_smc

=i+ s00Ax1 EE
aclk .ﬁ. MOO_AXI o [
wesen pXg

AXI| SmartConnect

axi_bram_ctrl_0

BRAM_PORTA 4

axi_adk
- BRAM_PORTE +

s_axi_aresetn

PR ol ol =
4 s_ax
s
\ J
AX| BRAM Controller

Fig.4.21: FPGA Block Design with the needed IPs

[FIXED_IO

axi_bram_ctrl_0_bram

(Il
(IF——lI

Block Memory Generator

—_——
+ BRAM_PORTA
+ BRAM_PORTB

The HDF wrapping gets simulated, synthesized, and implemented in order. If it passes the

three stages, then a bitstream is generated based on the Verilog files prescribed. The design

bitstream alongside the HDF file are exported to the software development tool which is the

30

Software Development Kit (SDK). In the SDK, the C/C++ codes are written and run in the
FPGA after programming it with the exported bitstream.

Notice that there are two bitstreams in this project, a bitstream for the hardware programming

of the FPGA, and another bitstream for the user’s image after getting compressed and

encrypted in the FPGA.

4.3 Block Diagram

PC1 USB FPGA board

The MATLAB program1 The processing on the
converts the original DWT image is done on
image to DWT image, Using the USB, the DWT is the FPGA which is
and the image is transferred to the FPGA board. programmed by Verilog
displayed on PC1 before codes (hardware) and
processing. CI/C++ code (software).
The MATLAB program?2 After performing the
converts the inverse compression and
DWT image to the Using the USB, the Inverse DWT is encryption jointly, the
original image, and the transferred to PC2. image can be restored by
image is displayed on decompression and
PC2 after processing. decryption.

31

Chapter 5
Software

5.1 Description of the Software

Xilinx SDK 2017.2 is the software tool used for writing the C/C++ code of this system. It can
be opened directly or through Vivado, which is another software tool but for writing the
hardware Verilog code of the FPGA. In this system, the software code has been written with
C and C++ together. SDK can compile C and C++ libraries as any other compiler. It uses
FPGA libraries better than C and C++ libraries. FPGA libraries are added to the project for
use based on the IPs chosen in Vivado first. Therefore, it is best to make the FPGA libraries

the first choice when there are two in-built functions for the same purpose.

SDK and Vivado work as one unit, but SDK can’t work without the HDF file which is made
in Vivado after generating the design bitstream successfully. It also needs the design
bitstream to make the C/C++ code work in FPGA by programming the FPGA processor with
it each time the C/C++ code runs on FPGA.

SDK gives the user serval choices to debug and run the C/C++ code such as launching it on
hardware (i.e., Hardware Debugger) and locally as a C/C++ application. Moreover, SDK can
be connected via a USB cable with a terminal emulator or use the SDK terminal inside the
SDK to take user-inputs and print outputs. However, the SDK terminal is just limited to
taking user-inputs via a keyboard and printing outputs on it; it can’t, for example, log output

or take local files like terminal emulators.

The user can deal directly with the DDRAM3 memory and other RAMs available in the
FPGA. There are two options for dumping and restoring memory content in binary file
format, and they work as a connector between FPGA and the local PC used since FPGA can’t
see local user files even if they were added to the path of the project itself. Therefore, another
option is the micro SD memory card which can send and receive files to and from the FPGA
if it is inserted into its slot in the board. However, some FPGAS don’t have an SD card slot.
Instead, they have a steady non-volatile memory on their boards themselves. Cora Z7 follows

the SD memory card approach.

32

5.2

Flowchart

The system flowchart is shown in Fig.5.1 in Appendix A.

5.3

Pseudocode

The pseudocodes are shown in Fig.5.2, Fig.5.3, Fig.5.4, and Fig.5.5 in Appendix B.

5.4

MATLAB Padding

Padding is applied on images of unequal sizes in rows and columns and is applied on images

that aren’t in the allowable range which is 2 to the power of any positive integer. What makes

padding an important step to do is because the DWT function used in MATLAB which

doesn’t accept any image of unequal sizes and not in the range. Also, the SPIHT doesn’t deal

with images except for the same number of rows and columns.

There are two padding techniques in the project’s MATLAB two programs. The first

technique is applied on all the images except black images (i.e., its pixels values are zeros)

which gets the second padding technique. The techniques are:

1-

Zero-padding:

This has been chosen instead of the NIST padding which is much better and secure
because after the image gets processed in the FPGA, some bits interfere in the pixels
of where the zero-padding resides, and they are all ones. Thus, a ratio of 87% is the
best proportion for checking the number of zeros compared to the ones for the same
row or column. The interfered bits exist because the padding gets processed as the
image original pixels.

NIST padding is not beneficial here since it adds unnecessary weight to the total size
of the image. The bit of the NIST padding will not indicate the start of the padding as
should do since there would be other bits of the same value in the padding.

One possible issue that might arise is to have identical image paddings for two
different images.

Ones and zeros padding:

This method is applied for any image of zero pixels such as black images. It is about
starting the row and column of the padding with ones. The rows get padded first, and

if the columns need padding then the zero-padding is applied even on the ones

33

generated in the columns because of the rows padding previously. This is illustrated in

Fig.5.6.
e EE R | o nEE | o
gl el Rl o il il sl el I O] [l Rl Rl Rl IS R)
| | | - 1]o -l el el el BRI
,_:1 | | s 1o l_,;3 e | =10
- 1|0 -y 1o
| | | 1]o - =l
Padding 2" technique is selected Padding is applied to columns Image isn’t in the allowable range
o ol el el B I gl Bl Bl Bl IO NV O
it | ol | oot | wiged |9) - 1lo]1]o0
it | ol | odgot et |9 1lo]1]o0
4 it | gl | et {orena | g | 1lof1]o0
mEEr et | o 1foj1fo
crgnal | ceinal | odgiost | sl | 1| 0 1|]0|1]|0
11| fr]|1f1]1 1f1f1fr|1f1]1fo
ojo|loflo|lofo]|ofo ofo|loflo|o|o|1]o0
Padding is applied to rows Another padding is applied to columns

Fig.5.6: Ones and Zeros Padding technique

The problem of the NIST padding arises when the bit has a high probability of getting
removed after the image gets processed in the FPGA since the SPIHT is a lossy
compression.

Also, zero-padding won’t work as it will be a pure zero-padding and thus can’t be
differentiated from the original zeros of the image.

The disadvantage in this technique is to have one row or column or one row and
column padding. The line of ones that precede the zero-padding won’t have a place in
the image; therefore, it will become zero-padding and thus won’t be differentiated and
removed on the receiver side. Increasing the padding to the next power of 2 is not a
solution since it will add a great unnecessary weight compared to restore the image

with one additional row or column or one row and column of zero pixels.

5.4.1 Padding Test Cases

The cases for the tested images of the padding are:

1) The number of rows and columns is identical, and they are not in the range. (Test

succeded)

34

2) The number of rows is less than the columns, and the columns are in the range. (Test

succeded)
3) The number of columns is less than the rows, and the rows are in the range. (Test

succeded)
4) The number of rows and columns is not identical, and they are not in the range. (Test

succeded)

The meaning of the range here is the allowable size for the DWT functions in the MATLAB

programs, and it is any positive number to the power 2.

5.5 Header Overhead

Since the header of the images is transferred with the bitstream, its overhead has been

calculated in Table 5.1 for Lena images.

Image size | Image type | Transferred bytes | Bitstream bytes | Header overhead
16x16 px gragécBale 16?},65482 Ejgiﬁ o705
R o
L ot
| 126,589 117,965 6.813%
128x128 px grag(:;a : 347,692 347,260 0.124‘;:
256%256 px gragé;ale 1?:;15';(,):35 11,13?3,10133 éﬁi;ﬁ
siosiope | SASEe | M08 | Lassse 0.005%

Table 5.1: The overhead percentage for Lena tested images

In the software C/C++ code, each byte in the 1078 bytes for grayscale headers and 54 bytes
for RGB headers is converted to 8 bits in ASCII. However, each bit whether it is 0 or 1 is
dealt with as a byte in the terminal. This isn’t applied to the bits in the header only but the
bitstream too. Therefore, there are 8624 bytes for the grayscale header and 432 bytes for the
RGB header.

35

5.6 Discrete Wavelet Transform

The DWT is used in this project to analyze the discrete images. The original image enters two
analysis filter banks which are Low Pass Filter (LPF) and High Pass Filter (HPF). They
produce the forward DWT coefficients after applying downsampling with a factor of 2 as

shown in Fig.5.7.

oo B]
s B

i E

Fig.5.7: Forward DWT

The downsampling divides the bandwidth in half so to preserve the bandwidth size ‘n’ such
thatn = 0,1,2,..., N — 1. After that, the N samples enter the LPF and HPF again. Thus, the
number of samples increase. In Fig.5.7, ¢(n,,n,) = @(n,)e(n,) represents the LL band,
Y (ny,ny) = Y(ng)e(ny) represents the HL band, ¥ (ny,n,) = @(ny)yP(n,) represents
the LH band, and y” (ny,n,) = ¥(ny)yY(n,) represents the HH band, where ¢ is produced
from the LPF, and v is produced from the HPF.

The image can be reconstructed through inverse DWT as the equation below shows, and

synthesis filters are applied after applying upsampling by a factor of 2 as Fig.5.8 shows.

S*(nlrnZ) =

L
1 Z Z 1
— W Uior k1 K2) @y, M1, m2) + Z ZZ Wy Uor k1, k)W), ey k, (M1, M2) , Where
r—Nl XNZ i L 14 JoK1,K2 r—Nl XNZ & i & Jo.K1,K2

e S*(nq,n,) represents the reconstructed image. It might not be 100% the same as the

original image except for the bare eye.

e L represents the level of partitions.

s E
o H 3
=S EH N
¢ [TEN

l*ﬂ s I8

Fig.5.8: Inverse DWT

For more information about the DWT, refer to the book in [13].

36

Chapter 6

Validation and Discussion

6.1

Implementation Issues

To the best of our knowledge, MATLAB paths for writing and reading images should be

fixed, and thus, they have been set manually in the two MATLAB programs in the project.

6.2

Implementation Challenges

The challenges that have been faced in this project are:

1. The lack of resources about FPGA on the Internet: Xilinx Community Forums is one

6.3

of the main resources but doesn’t provide solutions for beginners' understanding.
Answers there are very few, too short, and generalized.

No previous knowledge of the FPGA: Dealing with the FPGA for the first-time
required reading, searching, discovering, trying, testing, understanding, and inquiring
before implementing at the end something correct and right.

Memory restrictions: Dealing with 512 MB RAM and dividing it into sections wasn’t
easy and simple.

BMP Images: A deep understanding has been necessary to deal with BMP images. So
many images have been tested and checked to manually compare the differences in
each image in the BMP format according to the pixels’ values.

BMP headers: The RGB and grayscale headers differ in the initial set of bytes in
images of different sizes. It has been necessary to understand where the difference

occurs and when it occurs to convert and reconstruct them correctly.

Description of the method used to validate the System

The system validation has been done by several tools, and they are:

37

1)

2)

3)

4)

5)

6.4

6.4.1

SDK Performance Analysis tool: It has been used to get the CPU usage percentage,
data cache miss rate, and the number of CPU instructions per cycle.

Vivado Implementation statistics: It has been used to get the power report of this
system's hardware design.

Microsoft Excel application: It has been used to create the graphs, plots, and tables for
the validation results that are shown in figures.

Xilinx functions are in-built functions in SDK: They have been used for calculating
the time consumption and clock cycles precisely of the compression-encryption and
decompression-decryption procedures.

MATLAB application: It has been used in evaluating the correlation results by

displaying and comparing the pixel values in the encryption images.

Results Validation and Analysis

Power Validation and Analysis

One of these project goals is to achieve as minimum power consumption as possible. It is

worth mentioning several factors that affect power. They are:

1-

2-

3-

Performance: Whenever the performance is high, the power consumption increses,
and FPGAs are known for processing tasks with high performance using parallel
procedures.

Time: Whenever the processed data is large, the time increase and thus the power
consumption increases.

Utilization: Low utilization in FPGA components would result in an unnecessary

power consumption. The power utilization is shown in Table 6.1.

38

On-Chip Power (W) Used Available Utilization (%)
Clocks 0.005 3 - -
Slice Logic 0.003 4490 - -
LUT as Logic 0.002 1690 14400 11.74
LUT as Distributed RAM <0.001 112 6000 1.87
Register <0.001 1869 28800 6.49
LUT as Shift Register <0.001 134 6000 2.23
CARRY4 <0.001 4 4400 0.09
F7/F8 Muxes <0.001 1 17600 <0.01
Others 0.000 356 - -
Signals 0.004 3036 - -
Block RAM 0.022 32 50 64.00
PS7 1.251 1 - -

Table 6.1: Design components with power consumption and utilization percentages

Table 6.1 is also shown graphically in Fig.6.1. It is a screenshot taken from Vivado.

Power analysis from Implemented netlist. Activity On-Chip Power

derived from constraints files, simulation files or |

vectorless analysis. Dynamic: 1.285W (91%
Total On-Chip Power: 141 W Clocks: 0.005'W 19%
Junction Temperature: 41.3°C Signals: 0.004W (=1%
Thermal Margin: 43.7°C (37 W) - Logic: 0.002W (=1%
Effective 3JA 11.5 *C/W B BRAM: 0.022'W

Power supplied to ofi-chip devices: 0W M rs7: 1251W
Confidence level: Medium

Launch Power Constraint Advisor to find and fix e Device Static: 0125w (@

invalid switching activity

Fig.6.1: The power chart of Cora Z7 in Vivado

6.4.2 Time Validation and Analysis

Lena images of different sizes have been used to validate the time consumed for processing
in the FPGA. Lena images of different sizes are shown in Fig.6.2, and the time calculations
for two Lena images is shown in Table 6.2.

39

u
T i)

Fig.6.2: Lena images of different sizes

For 100 keys &
100 sequence-
long

512x512 px lena image

512x512 px lena image

512x512x3 px lena image

512x512x3 px lena image

Compression & Encryption

Decompression & Decryption

Compression & Encryption

Decompression & Decryption

Image Size

263,222 bytes

263,222 bytes

786,486 bytes

786,486 bytes

Stretched Image
Size

1,049,654 bytes

1,049,654 bytes

3,145,782 bytes

3,145,782 bytes

;;izzferred 1,473,208 bytes 1,473,208 bytes 4,771,081 bytes 4,771,081 bytes
Elapsed Time 127,868.824243076 ms | 127,868.824243076 ms | 414,124.201969230 ms | 414,124.201969230 ms
Transfer Speed 11.56 KB/s 11.56 KB/s 11.12 KB/s 11.12 KB/s

Clock Cycles 916,114,054 cycles 1,195,227,788 cycles 3,068,890,984 cycles 4,129,715,757 cycles
Processing Time | 2,818.812473846 ms 3,677.623963076 ms 9,442.741489230 ms 12,706.817713846 ms
Average

Generation 11.10986328 ms 14.365718841 ms 12.295236587 ms 16.545335769 ms
Time

Mean

Computation
Time

0.344093322 ms

0.448928713 ms

0.384226143 ms

0.517041742 ms

Sample Rate

2.906188249 mHz

2.227525234 mHz

2.602633953 mHz

1.934079766 mHz

Bit Rate

92.998023986 ms

71.280807495 ms

83.284286499 ms

61.890552520 ms

Table 6.2: Time calculations for 512x512 px image

Tables 6.2 has a 99% CPU usage and 0% data cache miss rate with 25 cycles for processing

one instruction. These statistics have been taken from the SDK Performance Analysis tool

which is shown in Fig.6.3.

40

m project_1.sdk - Performance Analysis - design_1_wrapper
File Edit Navigate Search Project Run Xilinx Tools Wi

- |G o®m R
= [PS Performance Graphs B9 PS Performance Counters &2
f[‘:, 00:00:00.000-00:09:59.969 CPUD

=l cpu Utilization(%s) 100.0

CPU Instructions Per Cycle 0.04

= L1 Data Cache Miss Rate(%6) 0.00

<+ | L1 Data Cache Access per ms 9028.1

=

= CPU Write Stall Cycles Per Instructi... 0.00

= CPU Read 5tall Cycles Per Instruction 0.00

Fig.6.3: CPU utilization and miss rate in SDK

In this section, each category in Table 6.2 is discussed:

1-
2-

Image size: Image Sample Size = 2K such thatk = 1,2,3, ...

Stretched image size: The Matlab program stretches the image in the sender and
returns it to its original structure in the receiver.

Transferred bytes: The bytes intended here are the header and bitstream bytes.
Elapsed time: It is the time consumed in transferring the bytes to and from the FPGA.

TeraTerm elapsed time calculations are shown in Fig.6.4.

X Tera Term: Send file ¥ COMA4 - Tera Term VT - B X

File Edit Setup Control Window Help

Filename: |EIEIANN

Fullpath: CiUserswseriDesktop\BitStr.bin

Bytes transferred: 1319073 (100.0%)
Elapsed time: 1:56 (11.35KBIs)
11
o 1911111111600110110681 11606 B 9911011110010010001 011110001 1011101001 0000000001 08101 000000
#6091 100 6110060091011106111811110086001 101600811 310000101 60116611100)
4 1060101110160 3081100810110

Help

©100010011110011111101106606616000100111110000810111101110010011160100000111010110100011010101001006101100011100811
$011001101110001 00601 0316106160110001111111100000001 11666161 6166061061106111111101010001606110610661106611600061160011
1118111116811 06000811 |

Fig.6.4: Elapsed time of 256x256x3 px in TeraTerm approximate measurements

Transfer speed: The speed is measured in TeraTerm automatically on the receiver
side.

Clock cycles: Clock Cycles = Ending Time - Starting Time , where

e Starting Time is calculated with the number of clock cycles in SDK by

XTime_SetTime() and XTime_GetTime() functions and has units of cycles.

41

e Ending time is calculated with the number of clock cycles in SDK by

XTime_GetTime() function and has units of cycles.

. . . . Clock Cycles
7- Processing time: Processing Time = m , where

2
e 650 million is a macro in C language with the name COUNTS_PER_SECOND (it
is divided by 2 because the clock cycles are in two directions).
e The clock cycles are divided by 1000 to get the processing time in milliseconds

(ms) instead of seconds (5).

Processing Time

8- Average generation time: Average Generation Time = , where

Image Parts
e Image Parts are the outer loop in image processing in the SDK. The image gets

partitioned if its size is over 32x32 px for memory efficiency.

Average Time

9- Mean computation time: Mean Time = , where

Part Size

e Part Size represents the size of one image part after the image gets partitioned.

1
Mean Time

10- Sample rate: Sample Rate =

11- Bit rate: Bit Rate = Sample Rate X 32
6.4.3 Security Validation and Analysis

The encryption and decryption techniques are the ones used in Hraini’s thesis while the
security tests are from the Ph.D. thesis in [14] in addition to a comparison between the
hardware implementation of the system and the software solution in Hraini’s thesis is at the

end of this section.
6.4.3.1 Encryption/Decryption technique

The equation used in encryption is:
B’ = B @ K|[i], where

B’ is the bit after getting encrypted.
e B is the bit before getting encrypted.
e Kiis the keys array.

e iisthe index that starts at 0 and increases by 1 with each invocation.

Notes:

42

- K]i] is converted to binary from hex, and its bits get XORed from the rightmost bit to
the leftmost one. Then it becomes ready to get XORed with the desired bit in the
bitstream.

- If the keys in the array aren’t enough to cover all the bits, the array starts over from i

equals 0 and continues to encrypt each key with one bit in the bitstream.

The equation used in decryption is:

B = B’ @ K|[i], where
e B is the recovered bit after getting decrypted.
e B’Iis the encrypted bit.

If the keys are larger or equal to the bits that should be encrypted, the cipher is secure as it
would be one-time pad encryption. However, if the keys are reused because they weren’t
enough to cover all the bits, the cipher would become exposed to two-time pad attacks.

Therefore, a recommended range of the array length is shown in Table 6.3.

Key range
Image size
grayscale RGB
4x4 px 20 keys at most 60 keys at most

16x16 px 260 keys at most 780 keys at most

32x32 px 1,028 keys at most 3,084 keys at most

64x64 px 4,100 keys at most 12,300 keys at most
128x128 px 16,388 keys at most 49,164 keys at most
256x256 px 65,540 keys at most 196,164 keys at most
512x512 px 262,148 keys at most 786,444 keys at most

Table 6.3: Array recommended length for each image size
Notice that if the image is an RGB image, the maximum number of keys is tripled.

The calculations that have been done to get the results in Table 6.3 are explained in the

following example:

“A 4x4 px image has 16 pixels. It gets converted to DWT and divided as a result into
the LL, HL, LH, and HH bands. Each band have 4 pixels. The sign of significant
coefficients in HL, LH, and HH bands will be encrypted at some point in the sorting
pass, so 12 keys are needed. In the LL band, the magnitude and sign of the significant
bits will be encrypted in the first pass but magnitude only for insignificant bits, so 8

43

encryption procedure at most would happen here. Therefore, the total keys are

approximately 20 keys to ensure one-time pad encryption.”

The encryption equation in the software code is:

bitstream[pointer] = encrypt.xoring(bitstream[pointer]);

where:
e Ditstream[pointer] is an array that has all the output bits of the DWT image.
e encrypt is an object of a class where the XORing process takes place.
e xoring is a function in the class in which the XORing process happens.

e pointer is an index of the bitstream array, and it increases by 1 after each invocation.

The encryption occurs in four different places in the software code, and they are:
1. Encrypting the magnitude of LL coefficients that reside in the LIP and satisfy the
threshold condition in the first pass.
2. Encrypting the sign for LL coefficients that reside in the LIP and satisfy the threshold
condition in the first pass.
3. Encrypting the output for LL coefficients that reside in the LIP and doesn't satisfy the
threshold condition in the first pass.

4. Encrypting the sign of significant coefficients in the LIS.

The decryption equation in the software code is:
bit = decrypt.xoring(bit);
where:
e Dit is the recovered bit after decryption.
e decrypt is an object of a class where the XORing process takes place.

e xoring is a function in the class in which the XORing process happens.

The decryption occurs in four different places in the software code, and they are:
1. Decrypting the magnitude of LL coefficients that reside in the LIP and satisfy the
threshold condition in the first pass.
2. Decrypting the sign of LL coefficients that reside in the LIP and satisfy the threshold
condition in the first pass.
3. Decrypting the sign of significant coefficients in the LIS.
4. Decrypting the sign of insignificant coefficients in the LIP if they satisfy the threshold

condition and are not in the first pass.

44

6.4.3.2 Security Tests

Tests Results Optimal Results
Plain-text sensitivity

Number of Pixel Change Rate (NCPR) 89.36% 99.61%

Unified Average Changing Intensity (UACI) 9.54% 33.46%
Hamming Distance (HD) 38.53% close to 50%

Key sensitivity

Number of Pixel Change Rate (NCPR) 88.01% 99.61%

Unified Average Changing Intensity (UACI) 19.03% 33.46%
Hamming Distance (HD) 39.37% close to 50%

Histogram Analysis

chi-square 242.5 293 (o is 0.05)
Correlation Analysis
1 -0.0738 (0,0) (0,2)
-0.0738 1 (1,0) (1,2)
Information entropy
Information entropy (H) 7.51 8
Measurement of encryption quality
Encryption Quality (EQ) 37.12 127.5

Time performance

Encryption Throughput (ET) 676,186.55 -
CPU speed 667 MHz -
Number of cycles per Byte (NCpB) 0.99 cycles -

Table 6.4: Security results for 128x128 px Lena image

In Table 6.4, the first column is for the tests applied, the second column is for the test results
according to the hardware implementation calculations, and the third column is for the
optimal results according to the Ph.D. thesis in [14]. All the tests are well-explained in the
Ph.D. thesis. As for the plain-text sensitivity test, the first pixel’s most-significant bit has
been changed, and in the key sensitivity test, the second bit in a 100 keys array has been

changed.

45

6.4.3.3 A Comparision with the Thesis Results

Several tests have been made on the software solution™ and thus, in this section, the
hardware implementation results are compared with Hraini’s thesis results to show if this

project’s results are like them or even better.
- Consumed Time:

In the software solution, the processing time has been calculated for Lena image of
512x512 px, and it equaled 12.66 s. In the hardware implementation, the time consumed
for the initial steps of processing the image in MATLAB is 4.66 s, and the compression-
encryption procedure in FPGA is 1.50 s. Therefore, the total processing time is 6.16 s
which is half the time in Hraini’s result. However, the FPGA processing alone
corresponds to 8 s in the software solution and thus is twenty times better. That result
shows how much FPGA is fast in processing (i.e., providing high performance) as

required.
- Time Overhead:

The time overhead according to Hraini’s thesis for a 512x512 px Lena image is
0.002914 s and for a key generation time that equals 0.0000722789 s. The time
overhead in the hardware implementation for the same key generation time is 0.21441 s
as shown in the following equation:

Encryption Time

Overhead = + Generating Keys Time
riea Compression Time nerating feys tum

1.31967

= 0.00007 = 0.21441
(4.65772 MATLAB + 1.49914 FPGA) * s

The overhead percentage is 21.4% which is larger than 1% as in the software solution
by 20 times. It is still small although not negligible. The reason for this difference is
because, for each pixel in the image, one bit will be dedicated for the sign and is
encrypted; thus, it isn’t a small amount of data getting encrypted. Also, the encryption
process is not a simple XORing equation; it is getting the key from the secret keys array,
then increasing the pointer by one, then checking if the array came to an end, then
converting the key’s digits to binary, then XORing the bits with each other till the result
is one bit, and finally, XORing that resulted bit with the desired bit in the bitstream.

46

In Fig.6.5 and Fig.6.6 appears the calculated time for FPGA processing only with and
without the encryption/decryption time. The MATLAB application time is not added in
the graph as it doesn’t affect the comparison here. The two curves in each figure

indicates the time overhead for each Lena image sample.

The Relation between Compression & Encryption Vs

Compression Time
10000

9000
8000
7000
6000
5000
4000
3000
2000
1000

Processing Time (ms)

=@==Compression & Encryption .
Image Sample Size (px)

=@— Compression

Fig.6.5: A comparison between compression & encryption Vs compression time

The Relation between Decompression & Decryption Vs

Decompression Time
14000

12000
10000
8000
6000

4000

Processing Time (ms)

2000

=@==Decompression & Decryption .
Image Sample Size (px)
=@==Decompression

Fig.6.6: A comparison between decompression & decryption Vs decompression time

Constant Bitrate:

47

The number of bits in the compression is the same as the number of bits in the

compression and encryption in the software solution and hardware implementation.

Histogram:

The histogram in the software solution is uniform in the encrypted image as opposed to

the plain image for a 512x512 px Lena image. Fig.6.7 shows Hraini’s results.

2500

2000

1500

1000

Plain Image

0 50 100 150 200 250

6000 I
5000 -
4000 -
3000
2000
1000 1
—
0 50 100 150 200 250

Encrypted Image

Fig.6.7: Software solution histogram results

It is necessary for the histogram in the encrypted image to be equally distributed as to

not leak any information about the image and would indicate that the image is secured

from any gaps for starting attacks. This is what the results show in Fig 6.8 and thus

the hardware implementation corresponds to Hraini’s results and is greatly secured.

Plain Image

200

150

100

50

49
65
81
97
113
129
145
161
177
193
209

B Histogram

225
241

Encrypted Image

2000
1500
1000
500
0

AN MOOOWN AN OO WN A ~NM O N

AN <t OO0 AN ONO0OO N

™ o AN NN

MW Histogram

Fig.6.8: Hardware implemenation histogram results

48

6.5 Recommendations based on the Results

It is recommended to increase the security technique used with less time. Also, to optimize
the C/C++ code as highly as possible after writing it professionally. Moreover, to make use of
all the FPGA components and features to not go to waste and to achieve the best level of
utilization which has a huge effect on power consumption. Furthermore, fully understanding
the FPGA board in use to attain the best performance and results such as the results related to

time and security.

49

Conclusion

It can be summarized from this document that the FPGA board is the best choice for image
processing. Also, Hraini’s encryption technique with the SPIHT algorithm can deliver a

secure transmission with a constant bitrate.

The system has been expected to perform the proposed security solution in the thesis in a way
that guarantees the minimum use of power consumption and high performance. Adding to
that, satisfying data confidentiality and privacy which the software solution aimed to apply.
In the hardware implementation, these goals have been achieved in addition to the inclusion
of RGB images. It is considered as an improvement to the software solution which dealt with

grayscale images only.

50

Appendix A

System Flowchart

Select Image
on PC1

Run MATLAB
programl

Convert Image to
DWT

Send DWT to SD
Card

Display Image

Insert SD Card
into FPGA

Reset FPGA

Enter Keys
parameters

FPGA joint
compression-
encryption

Log Bitstream
from TeraTerm

Output
Bitstream File

Transfer File to
Destination

PC2

Reset FPGA

Enter Keys

parameters

Send Bitstream to
TeraTerm

Fig.5.1: System Flowchart

51

FPGA joint
decompression-
decryption

Insert SD
Card into
USB Adapter

Run MATLAB
program2

Receive Inv-DWT
from SD Card

Convert Inv-DWT
to Image

Display Image

Output Image
on PC2

Appendix B
System Pseudocode

//DWT in the MATLAB program "Sender Party"

Read the image entered by the user in the program path

Calculate the image size

Add zero padding if the image dimentions are not equal

Add zero padding if the image size is not in the DWT function range
Create a DWT image of double type

Zero the DWT image

Determine the DWT filter to be "bior4.4"

Get the lowpass value from the filter

Get the highpass value from the filter

Calculate the levels through the equation "log2(number of rows/cols)"

For each channel in the image, do {
Enter the DWT function parameters (the image, levels, lowpass, highpass)
Get the DWT image

}
Check the number of channels
If 3
Concatenate the three DWT images into one DWT image
Else

Do nothing
Covert the DWT image to integer type
Create an image of the same dimentions as the DWT image but four times in width
Determine the image type to be unsigned byte

For each channel, do {
For each row, do {
For each column, do {

Check the pixel sign

If negative
Set 1 in the first byte
Remove the negative sign from the value

Else
Do nothing

For each byte of the rest three bytes in the image, do {
Assign two digits of the pixel value in the byte of the image

}

Fig.5.2: Sender’s MATLAB program

52

/IThe SPIHT compression with the selective-encryption technique
Print the prompt message “Open a log file and set it at Pause!”
Generate the keys array {
Print the prompt message “Enter the number of secret keys:”
Print the prompt message “Enter the length of sequence:”
Calculate the consumed time and its variable
Print the time calculations in Time.txt file

Print the prompt message “Start the logging within approximately 3 seconds!”
Wait for 3 seconds
Start the timer
Initialize the keys array pointer to point at the beginning of the array
Define the user’s image data
Determine the image size for a single image part
Calculate the number of levels of the image part
For each part of the image parts, do{
Organize the data of the image part {
Take the pixels from the DWT image
Orginze the pixels in a vector

/lPass 1 in Hraini’s thesis: Initialization
Calculate the maximum pixel value based on magnitude only
Determine number of cycles for the upcoming three passes based on the maximum pixel
Zero the list of insignificant sets (LIS)
Fill LIS with the pixels in the LH, HL, and HH subbands
Zero the list of significant pixels (LSP)
Zero the list of insignificant pixels (LIP)
Fill LIP with the four pixels in the LL subband
While the number of cycles is larger or equals zero, do {
/lPass 2 in Hraini’s thesis: Sorting
Calculate the threshold
For each pixel in LIP, do {
Split it from its sign
Check if the it is larger than the threshold:

If yes
Move the pixel to LSP
Add 1 to the bitstream
Check if we are in the first pass:
If yes
Encrypt the bit
Else
Do nothing
Check the sign of the pixel:
If positive
Add 1 to the bitstream
Else
Add @ to the bitstream
Encrypt the sign
Else

Add @ to the bitsream
Check if we are in the first pass:
If yes
Encrypt the bit
Else
Do nothing
Return the sign for the pixel magnitude
}
For each subband in LIS, do {
For each pixel in the subband, do {
Split it from its sign
Check if it is larger than the threshold:

If yes
Add 1 to the bitstream
For each pixel in the subband, do {
Split it from its sign
Check if it is larger than the threshold:
If yes
Moves the pixel to LSP
Add 1 to the bitstream
Check the sign of the pixel:
If positive
Add 1 to the bitstream
Else
Add @ to the bitstream
Encrypt the sign
Else
Moves the pixel to LIP
Add @ to the bitsream
Return the sign for the pixel magnitude
}
Else
Do nothing
Check if no pixel in the subband was larger than the threshold:
If yes
Add @ to the bitsream
Else
Do nothing
}

¥
/lPass 3 in Hraini’s thesis: Refinement
Check if we are in the first pass:
If yes
Do nothing
Else
For each element magnitude in LSP except LSP elements for this cycle, do {
Convert the element to binary
Check the bit that corresponds the number of this cycle:
If1
Add 1 to the bitstream
Else
Add @ to the bitstream

/IPass 4 in Hraini’s thesis: Quantization
Decrease the number of cycles by one

}

Erase the keys array content in memory

Stop the timer

Calculate the consumed time and its variable
Append the time calculations in Time.txt file
Print the bitsream on the terminal

Fig.5.3: Sender's SDK program

//The SPIHT decompression with the selective-decryption technique
Generate the keys array {
Print the prompt message “Enter the number of secret keys:”
Print the prompt message “Enter the length of sequence:”
Calculate the consumed time and its variable
Print the time calculations in Time.txt file

Read the bitsream from the terminal {
Print the prompt message “Insert the bitstream, then press Enter”
Transfer the bitsream from the terminal to FPGA

}
Start the timer
Initialize the keys array pointer to point at the beginning of the array
Get the number of levels of the image from the bitstream
Determine the number of channels of the image
Calculate the image size for a single image part
Determine the final image file size in the BMP format
Write the header of the image into a new BMP file
While the bitstream didn’t reach its end, do {
Get an image part based on the precalculated size
Get the number of cycles for this image part
Determine the size of the list of significant pixels (LSP) vector based on the number of cyles minus 1
//Pass 1 in Hraini’s thesis: Initialization
Zero the image vector
Zero the list of insignifiant pixels (LIP) vector
Zero the list of insignifiant sets (LIS) vector
Zero the list of significant pixels (LSP) vector
Set the first four pixels in LIP to 1
While the number of cycles is larger or equals zero, do {
//Pass 2 in Hraini’s thesis: Sorting
Calculate the threshold
For the first four pixels in LL subband, do {
Get a bit from the bitstream
Check if we are in the first pass:

If yes
Decrypt the bit
Else
Do nothing
Check the value of the bit:
If 1
Get a bit from the bitstream
Decrypt the bit
Check the value of the bit:
If 1
Set the image vector with the threshold value
Else
Set the image vector with the negative threshold value
Zero the corresponding LIP pixel
Store 1 in the LSP
Else

Do nothing
}
For each element in the subband, do {
Check its equivalent in LIP:

If 1
Get a bit from the bitstream
Check the value of the bit:
If 1
Get a bit from the bitstream
Decrypt the bit
Check the value of the bit:
If 1
Set the image vector with the threshold value
Else
Set the image vector with the negative threshold value
Else
Do nothing
Zero the corresponding LIP pixel
Store 1 in the LSP
Else

Do nothing

For the three subbands in each level, do {
For each subband elements, do {
Check if the subband has been checked before:

If yes
Do nothing
Else
Get a bit from the bitstream
Check the value of the bit:
If 1
Mark the subband as checked
For each element in the subband, do {
Get a bit from the bitstream
Check the value of the bit:
If 1
Get a bit from the bitstream
Decrypt the bit
Check the value of the bit”
If 1
Set the image vector with the threshold
value Else
Set the image vector with the negative
threshold value Increase LSP value
Store LSP value in the corresponding pixel
Else
Set the corresponding LIP pixel to 1
}
Else
Do nothing

¥

//Pass 3 in Hraini’s thesis: Refinement
Check if we are in the first pass:
If yes
Do nothing
Else
While LSP value minus 1 doesn't equal @, do {
Get a bit from the bitstream
Check the value of the bit:

If1
Check the sign of the corresponding pixel in the image vector:
If negative
Split it from its sign
Add the threshold value to the array pixel magnitude
Return the sign
Else
Add the threshold value to the array pixel
Else
Do nothing

Decrease the LSP value by 1

Fig.5.4: Receiver's SDK program

//Inverse DWT in the MATLAB program "Receiver Party"

Read the image from the user's desktop
Calculate the image size
Convert the image to integer type
Create an array of the same dimentions as the Inverse DWT image but the width is divided by four
Zero the array
For each channel, do {
For each row, do {
For each column, do {
Assign the last three bytes of the Inverse DWT to the array element
Check the first byte
If1
Multiply the array element with -1
Else
Do nothing

}
}
Determine the Inverse DWT filter to be "bior4.4"
Get the lowpass value from the filter in the reverse mode
Get the highpass value from the filter in the reverse mode
Prepare an array of the Inverse DWT coefficients
Calculate the levels through the equation "log2(number of rows/cols)"

For each channel in the image, do {
Enter the Inverse DWT function parameters (the array, lowpass, highpass, levels)
Restore the original image

}
Check the number of channels
If 3
Concatenate the three reconstructed images into one DWT image
Else

Do nothing
Remove the zero padding from the image rows
Remove the zero padding from the image columns
Display the image
Write the image oo the user's desktop

Fig.5.5: Receiver’s MATLAB program

55

References

[1] Hraini, 1. (2019). Joint Crypto-Compression Based on Selective Encryption for WMSNs
[online]. Available from: DSpace at PPU (Palestine Polytechnic University) [accessed 1 April
2020].

[2] Luigi Dragotti, P. ; Poggi, G. ; Ragozini, A.R.P. (2000). Compression of multispectral
images by three-dimensional SPIHT algorithm [online]. Available from: IEEE Explore,
Digital Library [accessed 4 April 2020].

[3] Vaggalis, N. (2012). Weakly Typed Languages [online]. Available from: | Programmer
[accessed 24 April 2020].

[4] (2019). Putty vs TeraTerm [online]. Netscylla Cyber Security Ltd [accessed 17 November
2020].

[5] Shakir, N. (2018). Learn how to use your Raspberry Pi to alter images and videos with
this basic image processing tutorial [online]. Available from: EETech Media, LLC [accessed
29 April 2020].

[6] AlAli, M. ; Mhaidat, K. ; Aljarrah, I. (2014). Implementing image processing algorithms
in FPGA hardware [online]. Available from: IEEE Explore, Digital Library [accessed 29
April 2020].

[7] Salhab, O. ; Joodeh, M. ; Abutaha, M. ; Jweihan, N. (2018). Survey paper: Pseudo
random number generators and security tests [online]. Hebron: Palestine Polytechnic

University [accessed 17 November 2020].

[8] Pham, M. ; Aziz, S. (2011). FPGA-Based Image Processor Architecture for Wireless
Multimedia Sensor Network [online]. Available from: ResearchGate [accessed 26 January
2021].

[9] Pham, D. ; Aziz, S. (2011). FPGA architecture for object extraction in Wireless
Multimedia Sensor Network [online]. Available from: ResearchGate [accessed 26 January
2021].

56

http://scholar.ppu.edu/bitstream/handle/123456789/1495/Thesis-Iyad-Hrainil.pdf?sequence=1&isAllowed=y
https://ieeexplore.ieee.org/document/823937
https://www.i-programmer.info/programming/theory/1469-type-systems-demystified-part2-weak-vs-strong.html
https://www.netscylla.com/blog/2019/10/01/Putty-vs-TeraTerm.html
https://maker.pro/raspberry-pi/tutorial/how-to-do-basic-image-processing-with-raspberry-pi
https://ieeexplore.ieee.org/document/6716446/algorithms#algorithms
https://www.researchgate.net/publication/324692777_Survey_paper_Pseudo_random_number_generators_and_security_tests
https://www.researchgate.net/publication/221452317_FPGA-Based_Image_Processor_Architecture_for_Wireless_Multimedia_Sensor_Network
https://www.researchgate.net/publication/241635614_FPGA_architecture_for_object_extraction_in_Wireless_Multimedia_Sensor_Network

[10] Cora Z7: Zyng-7000 Single Core and Dual Core Options for ARM/FPGA SoC
Development [online]. 1300 Henley Ct #3, Pullman, WA 99163: Digilent Inc. [accessed 11
April 2020].

[11] Zybo Z7: Zyng-7000 ARM/FPGA SoC Development Board [online]. 1300 Henley Ct #3,
Pullman, WA 99163: Digilent Inc. [accessed 21 June 2020].

[12] ZedBoard Zyng-7000 ARM/FPGA SoC Development Board [online]. 1300 Henley Ct #3,
Pullman, WA 99163: Digilent Inc. [accessed 21 June 2020].

[13] Gonzalez, R. ; Woods, R. Digital Image Processing Third Edition [online]. P[488-512]
[accessed 20 December 2020].

[14] Farajallah, M. (2015) Chaos-based crypto and joint crypto-compression systems for
images and videos [online]. Engineering Sciences (physics). UNIVERSITE DE NANTES.

57

https://store.digilentinc.com/cora-z7-zynq-7000-single-core-and-dual-core-options-for-arm-fpga-soc-development/
https://store.digilentinc.com/zybo-z7-zynq-7000-arm-fpga-soc-development-board/
https://store.digilentinc.com/zedboard-zynq-7000-arm-fpga-soc-development-board/
http://sdeuoc.ac.in/sites/default/files/sde_videos/Digital%20Image%20Processing%203rd%20ed.%20-%20R.%20Gonzalez%2C%20R.%20Woods-ilovepdf-compressed.pdf
https://hal.archives-ouvertes.fr/tel-01179610/document

