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Abstract 

Wireless Multimedia Sensor Network (WMSN) is an environment for transferring 

images, audios, and videos. However, it has many restrictions and limitations that 

affect the security level as well as the required power consumption. This project 

is to implement the protection of sensitive data transmission through wireless 

networks with high performance and low power consumption. The 

implementation is based on Field-Programmable Gate Array (FPGA) using the 

Verilog HDL hardware language for the hardware programming and C/C++ high-

level languages for the software programming of the FPGA. The project 

implementation is proposed for the solution that was presented by Hraini.[1] In the 

hardware implementation, RGB images are included in addition to the grayscale 

images in the software solution. Images are compressed by Set Partitioning in 

Hierarchic Tree (SPIHT) algorithm[2] and encrypted selectively during the 

compression process (i.e. jointly). The importance of this project lies in being 

useful in making a secure environment for transferring images through the most 

unsecured networks which are wireless networks such as Bluetooth as was 

applied in this project. The expected results are a hardware implementation that 

corresponds to the software solution in Hraini’s thesis. Also, the system is 

expected to present secure transmission for RGB and grayscale images through 

wireless networks in addition to perform the proposed security solution in a way 

that guarantees a minimum use of power consumption and high performance. 

Also, it is expected to satisfy the data confidentiality and privacy the software 

solution aimed to apply besides having a very compact output bitstream and a 

constant bitrate in both parties (i.e., sender party and receiver party) as has been 

achieved in the software solution. 
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Chapter 1 

Introduction 

 
1.1 Overview of the Project 

WMSNs contain small devices that collect data by their sensors as shown in Fig1.1. They 

work by sensing multimedia data like audio, videos, and images. However, these networks 

have few restrictions regarding power consumption, and they also have security issues. So, to 

solve these problems, a software solution has been proposed in Hraini’s thesis[1] that 

guarantees a secure transmission for images. 

 

Fig.1.1: Wireless Multimedia Sensor Networks 

In this project, the hardware implementation for that solution has been determined to be on 

FPGA so to handle the power consumption issue by selecting specifically Cora Z7 FPGA. 

The project deals with any image in the BMP extension and of any size. It can also process 

RGB and grayscale images. 

1.2 Motivation 

Implemented applications in hardware circuits are the trend nowadays for the easiness of 

reprogrammable them and for their adavantage of detecting and fixing errors with nearly no 
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cost at all. However, the hardware circuits face two major problems which are are power and 

performance. Therefore, it is preferred to use the type of processor with excellent 

performance and low power consumption. FPGAs stand out with these characteristics and so 

have been chosen to be the hardware tool for the project implementation. 

To the best of our knowledge, graduation projects in Palestine Polytechnic University (PPU) 

of computer engineering major have been dedicated to Arduino and Raspberry Pi in general 

and were away from FPGA specifically. Thus, this approach is the first of its kind adding to 

that the challengeable uniqueness of FPGAs themselves because of being programmed with 

Hardware Description Languages (HDLs) for making the hardware definition files of the 

FPGA board. As for the software programming of the FPGA processor, C and C++ are the 

languages used. 

1.3 Importance 

Converting the proposed software solution to secure WMSNs into real-time and hardware 

solution is important for business companies to be able to make integration of the 

implemented solution.  

The project is useful in implementing a secure environment for transferring images through 

the most unsecured networks (i.e., wireless networks such as Bluetooth). 

1.4 Objectives 

The goals of this project are: 

• Securing the transition of RGB and grayscale images in WMSNs which don’t protect 

the transmitted data from attacks and that results in losing its integrity and 

confidentiality. 

• Achieving a high performance by using the excellent SPHT for compression and 

Hraini’s embedded encryption technique with just a 0.2914% overhead and a constant 

bitrate. 

• Having a minimum power consumption by using the Cora Z7 FPGA hardware 

component in implementing the software solution. Cora Z7 can either takes power 

input from 4.5V to 5.5V external source or through USB. 
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1.5 Description of the Project 

Implementing the SPIHT algorithm with the solution presented in Hraini’s thesis[1] by 

encrypting selectively the pixels with the most amount of information simultaneously with 

compressing the image. 

The implementation is carried out using FPGA based on the Verilog hardware language for 

hardware programming and C/C++ for software programming. The hardware programming 

programs the FPGA by the definitions file of the FPGA board (i.e., HDF extension file) in 

addition to a bitstream that is created based on the FPGA block design which is translated to 

Verilog codes (i.e., V extension files). The software programming inserts the C/C++ code of 

the SPIHT and selective encryption into the FPGA processor. 

Images are not collected by sensors; they are stored in the computer locally after being 

brought from the Internet. FPGA gets the DWT images from the MATLAB program on the 

sender side. The output of the FPGA after it processes the image is a binary file that has the 

image header and bitstream. The binary file gets transferred through WMSN to the receiver 

who gives it as an input to the FPGA. After the FPGA processes the bitstream, an inverse 

DWT image is generated and taken as an input to the receiver MATLAB program so to 

reconstruct the image to its original version 

Although Hraini’s thesis covers grayscale images only, the hardware implementation deals 

with both RGB and grayscale images of different sizes. 

1.6 Design Options 

Many available options are suitable to be applied in the system, and each option has its 

advantages and disadvantages. Here is a comparison between options of the same category 

with pointing out to the selected choice for this project. 

FPGA Hardware Programming Language: 

- VHDL: It is an abbreviation of VHSIC Hardware Description Language. VHSIC is 

yet another abbreviation of Very High-Speed Integrated Circuits. 

▪ VHDL advantages: 
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It has roots in Ada programming language in the syntax and concept. It 

includes a lot of features and thus has a great number of uses. It is a strongly 

typed language, [3] excellently typed, deterministic, and more natural language 

than Verilog HDL, and its designs are self-documenting. VHDL can also 

define more errors that are detected but left undefined in Verilog HDL. 

Moreover, it doesn’t have any unambiguity in its semantic as its keywords are 

expressive and meaningful. Furthermore, it provides flexible and smoothing 

switching between tools. 

▪ VHDL disadvantages: 

It hasn’t been learned in university so there is no assurance of self-learning it 

fully, deeply, and correctly in such a short time. Also, there is no guarantee 

that it would become practiced and professionally typed even after learning it. 

Moreover, it needs more programming when converting from one data type to 

another. 

- Verilog HDL (Has been chosen): 

▪ Verilog HDL advantages: 

Its roots refer to an early HDL, Hilo, and that makes it a more low-level 

hardware language than VHDL. It also shares a strong language like C its 

syntax and structure, and the advanced version of C, which is C++, has been 

learned in university. It is a deterministic language as VHDL, and all data 

types are predefined so there is no extra coding when converting from one 

data type to another as in VHDL. Moreover, it is a bit-level representation 

which means it is very concise and can be looked at in-depth. Furthermore, it 

has been taught in university and thus the knowledge and experience exist. 

▪ Verilog HDL disadvantages: 

It is a weakly typed language,[3] and it doesn’t have the flexibility needed. 

FPGA Software Programming Language: 

- C Language: 

▪ C language advantages: 

For embedded systems such as FPGA, C language is a more suitable choice 

since it requires less runtime support. It is also faster in compiling since it has 

more low-language similarity than C++. Moreover, it can be easily interfaced 
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with other languages compared to C++ which has a high level of complexity 

in its libraries. 

▪ C language disadvantages: 

It is harder to understand as it is a bit far from being English-like language. 

Also, it doesn’t have inline functions and doesn’t support functions with 

default arguments. 

- C++ Language (Has been chosen): 

▪ C++ language advantages: 

It can work with the C language in the same program code. It also improves 

performance and reserves memory slots efficiently. Moreover, it has a very 

large set of in-built functions and user-defined functions. 

▪ C++ language disadvantages: 

It isn’t secure, and it works on a specific set of platforms. Also, it can become 

very complex in large programs. 

Host Device: 

- FPGA: FPGA has slots for one SD card, Ethernet, and power connectivity. Those 

three components allow FPGA to work independently of a host computer. If there is 

no need for the Internet, the Ethernet can be excluded. However, there would still be a 

need for an LCD screen to display output on. 

- USB Host (Has been chosen): USB can work as a host by connecting any PC with an 

FPGA. The UART communication protocol happens by transmitting and receiving 

the transferred bytes to and from the FPGA’s two channels. Each channel has a light 

indicator that lights in the transmission process. The left light, from the USB 

viewpoint, is for transferring the data from FPGA to the other side of the USB 

connection which is the PC. The right light is for transferring the data to the FPGA 

from the other side of the USB connection which is again the PC. 

Serial Communication Software: 

- Putty: 

▪ Putty advantages: 

It is the most common software that is used for serial communication and has 

a higher review than TeraTerm. 

▪ Putty disadvantages: 
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It lacks the simplicity than TeraTerm and can come across printing unknown 

characters without a clear reason.[4] 

- TeraTerm (Has been chosen): 

▪ TeraTerm advantages: 

It works best for beginners and serves their needs well by providing the 

necessary properties and characteristics. 

▪ TeraTerm disadvantages: 

It is not as highly configurable as Putty and connecting remotely makes a real 

issue as it sometimes works and other times not under the same environmental 

conditions. 

Hardware Component: 

- Arduino: It can be used in digital image processing. It is an easy kit for use, but it is 

too simple to deal with the complexity of image processing. Also, it is not powerful 

enough to deal with images. Therefore, high resolution and great image quality are 

not the results to get from Arduino. 

- Raspberry pi: It is characterized by its low-cost and ability to do digital image 

processing by providing a simple interface so to reduce the complexity of real-time 

applications.[6] However, Raspberry pi can’t be used for real-time applications. 

- FPGA (Has been chosen): It is often used for image processing and that is because of 

FPGA structure which gives it an advantage for doing spatial and temporal 

parallelism. Besides, FPGA size can contain image sizes when they grow larger in 

processing due to their nature.[6] 

1.7 Overview of the Rest of the project 

The analysis of the problem statement, definition, list of requirements, and expected results 

are provided in chapter 2. A short description of the parts used in the system, why they are 

chosen, specification, and design constraints are presented in chapter 3. Information about the 

software developed to drive the system is shown in chapter 4. Implementation description, 

issues, and challenges are included in chapter 5. Validation and analysis of the project results 

are in chapter 6, and finally, the conclusion of the project as well as future work. 
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Chapter 2 

Problem Statement 

 
2.1 Problem Analysis 

Transferring information between different parties is a daily process in cyberspace, and there 

is a need for securing the transferred content especially when the confidentiality and privacy 

of the data are important. This means that the only legal destination can read and understand 

the transferred information. 

Also, the integrity of the data should be guaranteed when they arrive at their destination. 

Therefore, any modification to the data must be identified. To achieve that, selective 

encryption alongside compression by the SPIHT algorithm is presented by Hraini in [1] to get 

the security level needed with high performance and minimum power consumption. 

2.2 Definition 

This project is proposed to implement the presented solution in the thesis[1] so to convert the 

theoretical solution to a real-life application. 

SPIHT is the compression algorithm used, and it contains four stages which are initialization, 

sorting, refinement, and quantization. Selective encryption is the best choice to be used when 

processing time is the most important criteria in addition to many limitations on power and 

memory. The selective encryption is achieved jointly with the compression in the second 

stage of the SPIHT (i.e., the sorting stage). 

This implementation is performed on an FPGA board connected to a PC via a USB cable. 

The PC is mainly used for displaying the images before and after processing while the USB is 

for transferring and receiving the binary file. The images are jointly compressed and 

encrypted, and the images are jointly decompressed and decrypted. 
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2.3 List of Requirements 

The system requirements in the project can be summarized as the following: 

1- The system must be able to achieve the confidentiality and integrity of the images as 

it was achieved in the software solution in [1]. Therefore, they don’t get exposed to 

passive and active attacks and thus preserving the secrecy and reliability of data. 

2- The average time of the joint compression-encryption with SPIHT and Hraini’s 

encryption technique is approximately the same as the time of compression alone with 

SPIHT. This should be reflected in the hardware implementation. 

3- Getting a duplicate image, to the bare eye, of the original one in the destination by 

using decompression by the SPIHT which is lossy compression. An example of lossy 

compression is shown in Fig.2.1.  

 
Fig.2.1: Different rates of the lossy compression in comparison to the original image 

2.4 Expected Results 

The system is expected to have some certain results, and they are: 

1- The hardware implementation is expected to correspond to the software solution. 

2- The system is expected to present the secure transmission proposed in [1] for RGB 

and grayscale images through wireless networks. 

3- The system is expected to perform the proposed security solution in a way that 

guarantees a minimum use of power consumption and high performance. 

4- The hardware implementation is expected to satisfy the data confidentiality and 

privacy the software solution aimed to apply. 

5- The hardware implementation is expected to have a very compact output bitstream 

and constant bitrate as has been achieved in the software solution. 
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Chapter 3 

Background 

 
3.1 Theoretical Background and Literature Review 

For the past few years, security problems make a big issue concerning data transmission 

especially through wireless networks. Thus, the software solution approach focuses mostly on 

securing data through WMSNs. 

The main aspect of the proposed solution is the joint encryption of the images while getting 

processed with the SPIHT algorithm before getting transmitted. The SPIHT algorithm was 

developed from the strengths of the powerful compression algorithm — the Embedded Zero 

tree Wavelet (EZW) which is created based on Discrete Wavelet Transform (DWT). A 

popular technique, that was proposed by Shapiro to achieve compression, has been used to 

encode DWT. DWT states that any image can be divided into four subbands as shown in 

Fig.3.1. 

 

 

 

  

 

Fig.3.1: Any image can be divided into four subbands 

In each LL subband, divisions take place and continue until a tree is formed. The order of the 

four coefficients from the topmost subband are Low Low (LL), High Low (HL), Low High 

(LH), and High High (HH). They all share the same resolution. 

The prime purpose of the tree is to form the coefficients and generate the bitstream in 

prioritized order such as the most significant coefficients are placed in the LL subband of the 

first level (it is LL2 in Fig.3.1), less significant coefficients are placed in HL subband of the 

higher levels, and less significant coefficients than the ones in HL are placed on LH subband 

LL2 HL2 

HL 

LH2 HH2 

LH HH 

LL HL 

LH HH 

Image M x N 
Decomposition  Decomposition  
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of the same level and so on. The least significant coefficients are placed in the HH subband of 

the last level which would be the highest. In other words, the most important information of 

the image lay in the subbands of the lower levels starting from LL. Pixels that contain 

information of little importance lay in the furthest subbands such as HL, LH, and HH of the 

last levels. 

The software solution in the thesis[1] that was proposed to satisfy the secure transmission and 

data confidentiality in WMSNs is shown in Fig.3.2. 

 

 

 

 

 

  

 

 

 

Fig.3.2: The solution proposed in Hraini’s thesis 

The SPIHT is used for compression in four stages for any image on the sender side and 

decompression in the same four stages but vise versa on the receiver side. A very important 

notation is that the encoder and decoder are identical, and a few lists are consistently updated. 

They are: 

• LIP: is an abbreviation of List of Insignificant Pixels and is the first list. 

• LSP: is an abbreviation of List of Significant Pixels and is the second list. 

• LIS: is an abbreviation of List of Insignificant Sets and is the last list. 

The coordinates for the first and second lists are (i, j) which represents individual pixels. 

However, the last list takes sets as its entry. 

Read image 

and convert it 
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The key step added to the SPIHT is the selective encryption that happens jointly with the 

compression. The encryption occurs in the second stage of the SPIHT which is the sorting 

stage. This is shown in Fig.3.3. 

 

Fig.3.3: The encryption place in the SPIHT algorithm 

The encryption is applied with a simple XOR equation. The XORing happens with an array 

of secret keys which are generated with the generator in [7]. However, the encryption can be 

applied with any secure Pseudo-Random Number Generator (PRNG). The encryption process 

is explained in detail in Chapter 6 — section 6.4.3.1. 

Several projects and researches of image processing have been made using FPGA. Research 

about FPGA-based image processor architecture for WMSN in [8] has focused on achieving 

high-speed processing with minimum power consumption, and its approach is to compress 

and transfer images through WMSN to examine WMSN issues such as power management 

and system synchronization. Another research about FPGA architecture for object extraction 

in WMSN in [9]. It is for detecting and extracting captured images in real-time. The system is 

optimized to achieve high-speed processing with minimum power consumption. Both 

reasearches share the same goals as in this project. 

3.2 System Hardware Components 

The hardware components that are needed for the project are explained here with a short 

description of each one. The integration between them is followed immediately. 

The hardware components: 

1- FPGA board: 
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FPGAs are semiconductor devices that deal with configurable logic blocks (CLBs) in 

the form of matrices, and they are all connected by programmable interconnects. They 

can also be programmed to be used for a wide range of available purposes. The choice 

has been set on Cora Z7 in Fig.3.4 which is a Zynq-7000 SingleCore for 

ARM/FPGA[10] SoC Development.  

 

Fig.3.4: Cora Z7 Zynq-7000 SingleCore for ARM/FPGA 

The platform’s design was done by Zynq-7000, and the board architecture is from 

ARM. It contains a single-core with a speed that equals 667 MHz with a Cortex-A9 

processor with a Xilinx 7-series. The Cora Z7 makes this FPGA a great platform for 

developing software as it has a wide range of hardware interfaces such as the 1 Gbps 

Ethernet PHY, general-purpose input/output pins, and analog-to-digital converters. It 

acts as a one-component containing a large set of solutions. The board has its 

independent SD card slot, Ethernet slot, and power slot. 

Cora Z7 is the one used in the project, not Zybo Z7[11] nor ZedBoard[12] for a few 

reasons, and they are: 

• Zybo Z7 in Fig.3.5 has a larger memory than Cora Z7, but Cora Z7’s memory 

is enough for the required processing in this project besides being cheaper. 

• Cora Z7 and ZedBoard in Fig.3.6 have the same memory size and both have 

Ethernet slots but Cora Z7 is much cheaper than ZedBoard. 
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Fig.3.5: Zybo Z7 — Zynq-7000 ARM/FPGA SoC Development Board 

 

Fig.3.6: ZedBoard Zynq — 7000 ARM/FPGA SoC 

Development Board 

2- Personal Computer: 

The project needs one Personal Computer (PC) for each party. The user enters the 

necessary inputs such as an image for the sender and a bitstream for the receiver. The 

user gets the outputs on the PC such as a bitstream for the sender and a reconstructed 

image for the receiver. Also, for determining the number of secret keys and the length 

of the sequence by the keyboard. The recommended operating system is Windows 10. 

3- USB cable: 

A mobile USB cable in Fig.3.7 is needed to connect the FPGA board with the PC. 

The USB will work as a host and establishes the UART protocol. 

 

Fig.3.7: A Mobile USB Cable 

4- Micro SD card and Micro SD card USB Adapter: 

To insert the micro SD card which is the non-volatile memory of the FPGA into the 

PC, there must be a third-party to connect those two, and it is the adapter. The SD 

memory card is needed to store and retrieve data to and from the FPGA. 
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3.4  Specification and Design Constraints 

The processor of the FPGA is programmed with a bitstream that is different from the Hraini’s 

bitstream. The FPGA’s bitstream contains the used logic gates defined by the Verilog 

language and constraint files for each Intellectual Property (IP) that exist in the hardware 

block design. 

3.4.1 System Specifications 

Certain features must be presented in the system to convey the wanted results correctly and 

precisely. Such features are: 

1- The system must be able to deal with all images whether they are RGB or grayscale 

and of different sizes or unequal axes in the BMP extension. The accepted minimum 

size is 2x2 px because of the DWT function allowable range in MATLAB and 

because of SPIHT since an image of 1x1 px would have zero levels. 

2- Two forms of the images must be presented on the PC screen. They are the image in 

its original state and the reconstructed image after getting decompressed and 

decrypted in the destination. The MATLAB programs do the displaying task. 

3- The hardware code of the system is written in Verilog and embedded in the FPGA 

processor core initially before programming the FPGA again with the software code 

written in C/C++. 

3.4.2 Design Constraints 

There exist some limitations regarding the size of the hardware components so they should be 

taken into consideration when using the system. They are: 

• The FPGA RAM is 512 MB. It is Double Data Rate 3 (DDR3) — Synchronous 

Dynamic Random-Access Memory (SDRAM). 

• The FPGA 32-GB SD memory card is a non-volatile memory. 

• FPGA can take input power that ranges between 4.5 V to 5.5 V from an external 

source and get connected to a PC wirelessly or take power from a PC through a USB 

cable. In this project, the USB approach has been chosen to get with, and that creates 

a limitation on the possible distance between the FPGA and PC. That is, the distance 

can’t be more than the USB cable length which is 1 meter. 
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Chapter 4 

System Design 

 
4.1 Detailed Description of the System 

The following steps describe the system in detail: 

1- The sender on his PC chooses an image from any external source such as from the 

Internet. An example is shown in Fig.4.1. 

 

Fig.4.1: A set of random images from the Internet 

2- The sender runs the MATLAB program “Sender Party” on his PC as shown in 

Fig.4.2. The program shortcut can detect any image that resides in its path. 

 

Fig.4.2: Running the MATLAB program “Sender Party” 

3- The MATLAB program converts the image to its DWT equivalent as shown in 

Fig.4.3. The image gets stretched in its width four times because of the function 

imwrite() in MATLAB which rearranges the image pixels in the range 0-255. So, to 

preserve the DWT image exact values, each pixel gets 4 bytes in the new DWT image 

instead of one byte. 
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Fig.4.3: The DWT image in the micro SD card 

4- The MATLAB program sends the DWT as a BMP image to the SD memory card 

which would be inserted via a USB adapter into the sender’s PC as shown in Fig.4.4. 

The SD memory card will act as a hard drive after being formatted once with the 

FAT32 system on Windows OS. 

 
 

Fig.4.4: The micro SD card inserted inside the USB adapter 

5- The MATLAB program displays the chosen image in its original form in a new 

window on the sender’s PC as shown in Fig.4.5. 

 

Fig.4.5: The image is displayed in its original form 

6- The sender takes the SD memory card from his PC and inserts it into the FPGA 

onboard SD Card slot as shown in Fig.4.6. The FPGA would be connected to the PC 
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through a USB cable which provides the power for the FPGA from the PC and works 

as a host. Through the USB, a UART protocol gets established and thus transfer data 

through FPGA two channels; one of them is for sending and the other is for receiving. 

 

Fig.4.6: The slot in FPGA for the micro SD memory card 

7- The sender clicks on the reset button on the FPGA for the FPGA to read the inserted 

memory as shown in Fig.4.7, then clicks on the soft reset button to run the FPGA 

program. 

 

Fig.4.7: The FPGA is connected to the PC through a USB cable 

8- The FPGA program runs and outputs several messages on TeraTerm, which is a 

virtual hardware screen, on the sender’s PC as shown in Fig.4.8: 

▪ 1st message prompts the sender to open a binary file, which takes zeros and 

ones only, by the logging option that is available in TeraTerm, and set the 

logging on pause. 

▪ 2nd message prompts the sender to enter the number of secret keys that he 

would like to use as long as they are less than the number of secret key files 
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stored in the SD memory card. However, the sender can enter an enormous 

number of keys since the memory is 32 GB. 

▪ 3rd message prompts the sender to enter the sequence length. 

▪ 4th message prompts the sender to start the logging in 3 seconds as with the 

header of the image followed by the bitstream will get printed. 

The TeraTerm is the platform in which the user gives inputs to it and takes outputs 

from it. Since FPGA can’t connect to the user’s PC directly, the USB cable and 

TeraTerm do the job in establishing a connection between the two (i.e., the user’s 

PC and FPGA board). 

 

Fig.4.8: The messages get printed on TeraTerm when FPGA runs 

9- The DWT image gets compressed and encrypted inside the FPGA as shown in 

Fig.4.9. 

 

Fig.4.9: The FPGA is running and processing the user’s image 

10- FPGA outputs the image header and bitstream on TeraTerm in the form of zeros and 

ones as shown in Fig.4.10, and FPGA prints the time calculations for generating the 

keys array and the time calculations for compressing and encrypting the image in a 

text file with the name ‘Time’. It would have the processing time, average generation 
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time, mean computation time, sample rate, bit rate, the number of clock cycles, and 

the time consumed in printing the header and bitstream on the terminal. 

 

Fig.4.10: The header and bitstream are printed on TeraTerm 

11- The header and bitstream are logged into the binary file chosen in the logging step as 

shown in Fig.4.11. 

 

Fig.4.11: The output is stored in the binary file 

12- The binary file gets transferred through the Bluetooth in Fig.4.12 from the sender’s 

PC to the desired destination which is the receiver’s PC. 

 

Fig.4.12: The Bluetooth icon 
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13- The receiver uses his FPGA board and inserts his SD memory card into the FPGA 

onboard SD Card slot, then clicks on the reset button on the FPGA. The memory card 

has the same content in both parties except for the boot image which automatically 

runs the compression-encryption program in the FPGA on the sender side and the 

decompression-decryption program on the receiver side. However, both bootable 

images exist in both memories, and the user can choose between them. The 

memories’ content is shown in Fig.4.13. 

  

Fig.4.13: The SD memory card in the sender and receiver 

14- FPGA program runs and outputs several messages on TeraTerm on the receiver’s PC 

as shown in Fig.4.14: 

▪ 1st message prompts the receiver to enter the number of secret keys that are 

used. 

▪ 2nd message prompts the receiver to enter the sequence length. 

▪ 3rd message prompts the receiver to send the received binary file from the PC 

desktop to TeraTerm as shown in Fig.4.15. 

 

Fig.4.14: The messages get printed on TeraTerm when FPGA runs 

The inputs for the first and second message must be identical to the sender’s 

inputs. 
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Fig.4.15: The transferring process for the header and bitstream 

15- The bitstream gets decompressed and decrypted in the FPGA, and FPGA stores the 

inverse DWT output in its SD memory card that is inserted inside it. This is shown in 

Fig.4.16. The FPGA also prints the time calculations for generating the keys array and 

the time calculations for compressing and encrypting the image in a text file with the 

name ‘Time’. It would have the processing time, average generation time, mean 

computation time, sample rate, bit rate, and the number of clock cycles. 

 

Fig.4.16: The FPGA is running and processing the image’s bitstream 

16- The receiver takes the SD memory card from the FPGA after the FPGA finishes the 

processing by printing a message on TeraTerm as shown in Fig.4.17. Then the 

receiver inserts the SD card into the PC via a USB adapter. 
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Fig.4.17: A message is printed on TeraTerm after FPGA finishes processing 

17- The receiver runs the MATLAB program “Receiver Party” on his PC as shown in 

Fig.4.18. 

 

Fig.4.18: Running the MATLAB program “Receiver Party” 

18- The MATLAB program receives the inverse DWT BMP image from the SD memory 

card as shown in Fig.4.19. 

 

Fig.4.19: The inverse DWT image in the micro SD card 

19- The MATLAB program reconstructs the original image from its inverse DWT. 

20- The MATLAB program displays the reconstructed image in a new window on the 

receiver's PC and sends a copy of it in the BMP extension to the receiver’s desktop. 

This is shown in Fig.4.20. 
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Fig.4.20: The reconstructed image is displayed and sent to the user’s desktop 

4.2 Block Design 

Creating a block design, which is shown in Fig.4.21, is necessary for the FPGA to run. It is 

the hardware programming part of the FPGA board used. The tool provided in Vivado 

software allows the user to create a block design where all the IPs that would be used in the 

software programming (i.e., the C/C++ code) are inserted and connected. The block design is 

a user-friendly interface to create the equivalent Verilog files where the logic gates would be 

defined and wired in detail. The Verilog files pass a Hardware Definition File (HDF) 

wrapping so Vivado can deal with it as one package and in the way it understands. Constraint 

files are very important to be attached either manually by importing the files from the FPGA 

manufaturing company to Vivado or automatically by checking the “Apply Board Preset” 

button in “Zynq Processing System 7” IP properties in Vivado. 

 

Fig.4.21: FPGA Block Design with the needed IPs 

The HDF wrapping gets simulated, synthesized, and implemented in order. If it passes the 

three stages, then a bitstream is generated based on the Verilog files prescribed. The design 

bitstream alongside the HDF file are exported to the software development tool which is the 
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Software Development Kit (SDK). In the SDK, the C/C++ codes are written and run in the 

FPGA after programming it with the exported bitstream. 

Notice that there are two bitstreams in this project, a bitstream for the hardware programming 

of the FPGA, and another bitstream for the user’s image after getting compressed and 

encrypted in the FPGA. 

4.3 Block Diagram 

             PC1                           USB                        FPGA board            

  

  

             PC2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After performing the 

compression and 

encryption jointly, the 

image can be restored by 

decompression and 

decryption. 

Using the USB, the Inverse DWT is   

transferred to PC2. 

The MATLAB program2 

converts the inverse 

DWT image to the 

original image, and the 

image is displayed on 

PC2 after processing. 

The MATLAB program1 

converts the original 

image to DWT image, 

and the image is 

displayed on PC1 before 

processing. 

Using the USB, the DWT is 

transferred to the FPGA board.   

The processing on the 

DWT image is done on 

the FPGA which is 

programmed by Verilog 

codes (hardware) and 

C/C++ code  (software). 
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Chapter 5 

Software 

 
5.1 Description of the Software 

Xilinx SDK 2017.2 is the software tool used for writing the C/C++ code of this system. It can 

be opened directly or through Vivado, which is another software tool but for writing the 

hardware Verilog code of the FPGA. In this system, the software code has been written with 

C and C++ together. SDK can compile C and C++ libraries as any other compiler. It uses 

FPGA libraries better than C and C++ libraries. FPGA libraries are added to the project for 

use based on the IPs chosen in Vivado first. Therefore, it is best to make the FPGA libraries 

the first choice when there are two in-built functions for the same purpose. 

SDK and Vivado work as one unit, but SDK can’t work without the HDF file which is made 

in Vivado after generating the design bitstream successfully. It also needs the design 

bitstream to make the C/C++ code work in FPGA by programming the FPGA processor with 

it each time the C/C++ code runs on FPGA. 

SDK gives the user serval choices to debug and run the C/C++ code such as launching it on 

hardware (i.e., Hardware Debugger) and locally as a C/C++ application. Moreover, SDK can 

be connected via a USB cable with a terminal emulator or use the SDK terminal inside the 

SDK to take user-inputs and print outputs. However, the SDK terminal is just limited to 

taking user-inputs via a keyboard and printing outputs on it; it can’t, for example, log output 

or take local files like terminal emulators. 

The user can deal directly with the DDRAM3 memory and other RAMs available in the 

FPGA. There are two options for dumping and restoring memory content in binary file 

format, and they work as a connector between FPGA and the local PC used since FPGA can’t 

see local user files even if they were added to the path of the project itself. Therefore, another 

option is the micro SD memory card which can send and receive files to and from the FPGA 

if it is inserted into its slot in the board. However, some FPGAs don’t have an SD card slot. 

Instead, they have a steady non-volatile memory on their boards themselves. Cora Z7 follows 

the SD memory card approach. 
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5.2 Flowchart 

The system flowchart is shown in Fig.5.1 in Appendix A. 

5.3 Pseudocode 

The pseudocodes are shown in Fig.5.2, Fig.5.3, Fig.5.4, and Fig.5.5  in Appendix B. 

5.4 MATLAB Padding 

Padding is applied on images of unequal sizes in rows and columns and is applied on images 

that aren’t in the allowable range which is 2 to the power of any positive integer. What makes 

padding an important step to do is because the DWT function used in MATLAB which 

doesn’t accept any image of unequal sizes and not in the range. Also, the SPIHT doesn’t deal 

with images except for the same number of rows and columns. 

There are two padding techniques in the project’s MATLAB two programs. The first 

technique is applied on all the images except black images (i.e., its pixels values are zeros) 

which gets the second padding technique. The techniques are: 

1- Zero-padding: 

This has been chosen instead of the NIST padding which is much better and secure 

because after the image gets processed in the FPGA, some bits interfere in the pixels 

of where the zero-padding resides, and they are all ones. Thus, a ratio of 87% is the 

best proportion for checking the number of zeros compared to the ones for the same 

row or column. The interfered bits exist because the padding gets processed as the 

image original pixels. 

NIST padding is not beneficial here since it adds unnecessary weight to the total size 

of the image. The bit of the NIST padding will not indicate the start of the padding as 

should do since there would be other bits of the same value in the padding. 

One possible issue that might arise is to have identical image paddings for two 

different images. 

2- Ones and zeros padding: 

This method is applied for any image of zero pixels such as black images. It is about 

starting the row and column of the padding with ones. The rows get padded first, and 

if the columns need padding then the zero-padding is applied even on the ones 
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generated in the columns because of the rows padding previously. This is illustrated in 

Fig.5.6. 

 

Fig.5.6: Ones and Zeros Padding technique 

The problem of the NIST padding arises when the bit has a high probability of getting 

removed after the image gets processed in the FPGA since the SPIHT is a lossy 

compression. 

Also, zero-padding won’t work as it will be a pure zero-padding and thus can’t be 

differentiated from the original zeros of the image. 

The disadvantage in this technique is to have one row or column or one row and 

column padding. The line of ones that precede the zero-padding won’t have a place in 

the image; therefore, it will become zero-padding and thus won’t be differentiated and 

removed on the receiver side. Increasing the padding to the next power of 2 is not a 

solution since it will add a great unnecessary weight compared to restore the image 

with one additional row or column or one row and column of zero pixels. 

5.4.1 Padding Test Cases 

The cases for the tested images of the padding are: 

1) The number of rows and columns is identical, and they are not in the range. (Test 

succeded) 
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2) The number of rows is less than the columns, and the columns are in the range. (Test 

succeded) 

3) The number of columns is less than the rows, and the rows are in the range. (Test 

succeded) 

4) The number of rows and columns is not identical, and they are not in the range. (Test 

succeded) 

The meaning of the range here is the allowable size for the DWT functions in the MATLAB 

programs, and it is any positive number to the power 2. 

5.5 Header Overhead 

Since the header of the images is transferred with the bitstream, its overhead has been 

calculated in Table 5.1 for Lena images. 

Table 5.1: The overhead percentage for Lena tested images 

In the software C/C++ code, each byte in the 1078 bytes for grayscale headers and 54 bytes 

for RGB headers is converted to 8 bits in ASCII. However, each bit whether it is 0 or 1 is 

dealt with as a byte in the terminal. This isn’t applied to the bits in the header only but the 

bitstream too. Therefore, there are 8624 bytes for the grayscale header and 432 bytes for the 

RGB header. 

Image size Image type Transferred bytes Bitstream bytes Header overhead 

16x16 px 
grayscale 10,642 2,018 81.037% 

RGB 6,358 5,926 6.795% 

32x32 px 
grayscale 16,760 8,136 51.456% 

RGB 24,476 24,044 1.765% 

64x64 px 
grayscale 39,440 30,816 21.866% 

RGB 91,221 90,789 0.005% 

128x128 px 
grayscale 126,589 117,965 6.813% 

RGB 347,692 347,260 0.124% 

256x256 px 
grayscale 434,034 425,410 1.987% 

RGB 1,319,505 1,319,073 0.033% 

512x512 px 
grayscale 1,473,208 1,464,584 0.585% 

RGB 4,771,081 4,770,649 0.009% 
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5.6 Discrete Wavelet Transform 

The DWT is used in this project to analyze the discrete images. The original image enters two 

analysis filter banks which are Low Pass Filter (LPF) and High Pass Filter (HPF). They 

produce the forward DWT coefficients after applying downsampling with a factor of 2 as 

shown in Fig.5.7. 

 

Fig.5.7: Forward DWT 

The downsampling divides the bandwidth in half so to preserve the bandwidth size ‘n’ such 

that 𝑛 =  0, 1, 2, … , 𝑁 − 1. After that, the 𝑁 samples enter the LPF and HPF again. Thus, the 

number of samples increase. In Fig.5.7, 𝜑(𝑛1, 𝑛2) =  𝜑(𝑛1)𝜑(𝑛2) represents the LL band, 

𝜓𝐻(𝑛1, 𝑛2) =  𝜓(𝑛1)𝜑(𝑛2) represents the HL band, 𝜓𝑉(𝑛1, 𝑛2) =  𝜑(𝑛1)𝜓(𝑛2) represents 

the LH band, and 𝜓𝐷(𝑛1, 𝑛2) =  𝜓(𝑛1)𝜓(𝑛2) represents the HH band, where 𝜑 is produced 

from the LPF, and 𝜓 is produced from the HPF. 

The image can be reconstructed through inverse DWT as the equation below shows, and 

synthesis filters are applied after applying upsampling by a factor of 2 as Fig.5.8 shows. 

𝑆∗(𝑛1, 𝑛2) =   
1

√𝑁1 × 𝑁2

∑ ∑ 𝑊𝜑(𝑗0, 𝑘1, 𝑘2)

𝑘1

𝜑𝑗0,𝑘1,𝑘2
(𝑛1, 𝑛2) +  

1

√𝑁1 × 𝑁2

 ∑ ∑ ∑ 𝑊𝜓(𝑗0, 𝑘1, 𝑘2)𝜓𝑗0,𝑘1,𝑘2
(𝑛1, 𝑛2)

𝑘2𝑘1

𝐿

𝑗=𝑗0𝑘2

 , where  

• 𝑆∗(𝑛1, 𝑛2) represents the reconstructed image. It might not be 100% the same as the 

original image except for the bare eye. 

• 𝐿 represents the level of partitions. 

 

Fig.5.8: Inverse DWT 

For more information about the DWT, refer to the book in [13]. 
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Chapter 6 
Validation and Discussion 

 
6.1 Implementation Issues 

To the best of our knowledge, MATLAB paths for writing and reading images should be 

fixed, and thus, they have been set manually in the two MATLAB programs in the project. 

6.2 Implementation Challenges 

The challenges that have been faced in this project are: 

1. The lack of resources about FPGA on the Internet: Xilinx Community Forums is one 

of the main resources but doesn’t provide solutions for beginners' understanding. 

Answers there are very few, too short, and generalized. 

2. No previous knowledge of the FPGA: Dealing with the FPGA for the first-time 

required reading, searching, discovering, trying, testing, understanding, and inquiring 

before implementing at the end something correct and right. 

3. Memory restrictions: Dealing with 512 MB RAM and dividing it into sections wasn’t 

easy and simple. 

4. BMP Images: A deep understanding has been necessary to deal with BMP images. So 

many images have been tested and checked to manually compare the differences in 

each image in the BMP format according to the pixels’ values. 

5. BMP headers: The RGB and grayscale headers differ in the initial set of bytes in 

images of different sizes. It has been necessary to understand where the difference 

occurs and when it occurs to convert and reconstruct them correctly. 

6.3 Description of the method used to validate the System 

The system validation has been done by several tools, and they are: 
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1) SDK Performance Analysis tool: It has been used to get the CPU usage percentage, 

data cache miss rate, and the number of CPU instructions per cycle. 

2) Vivado Implementation statistics: It has been used to get the power report of this 

system's hardware design. 

3) Microsoft Excel application: It has been used to create the graphs, plots, and tables for 

the validation results that are shown in figures. 

4) Xilinx functions are in-built functions in SDK: They have been used for calculating 

the time consumption and clock cycles precisely of the compression-encryption and 

decompression-decryption procedures. 

5) MATLAB application: It has been used in evaluating the correlation results by 

displaying and comparing the pixel values in the encryption images. 

6.4 Results Validation and Analysis 

6.4.1 Power Validation and Analysis 

One of these project goals is to achieve as minimum power consumption as possible. It is 

worth mentioning several factors that affect power. They are: 

1- Performance: Whenever the performance is high, the power consumption increses, 

and FPGAs are known for processing tasks with high performance using parallel 

procedures. 

2- Time: Whenever the processed data is large, the time increase and thus the power 

consumption increases.  

3- Utilization: Low utilization in FPGA components would result in an unnecessary 

power consumption. The power utilization is shown in Table 6.1. 
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Table 6.1: Design components with power consumption and utilization percentages 

Table 6.1 is also shown graphically in Fig.6.1. It is a screenshot taken from Vivado. 

 

Fig.6.1: The power chart of Cora Z7 in Vivado 

6.4.2 Time Validation and Analysis 

Lena images of different sizes have been used to validate the time consumed for processing 

in the FPGA. Lena images of different sizes are shown in Fig.6.2, and the time calculations 

for two Lena images is shown in Table 6.2. 

On-Chip Power (W) Used Available Utilization (%) 

Clocks 0.005 3 - - 

Slice Logic 0.003 4490 - - 

 LUT as Logic 0.002 1690 14400 11.74 

 LUT as Distributed RAM <0.001 112 6000 1.87 

 Register <0.001 1869 28800 6.49 

 LUT as Shift Register <0.001 134 6000 2.23 

 CARRY4 <0.001 4 4400 0.09 

 F7/F8 Muxes <0.001 1 17600 <0.01 

 Others 0.000 356 - - 

Signals 0.004 3036 - - 

Block RAM 0.022 32 50 64.00 

PS7 1.251 1 - - 
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Fig.6.2: Lena images of different sizes 

Table 6.2: Time calculations for 512x512 px image 

Tables 6.2  has a 99% CPU usage and 0% data cache miss rate with 25 cycles for processing 

one instruction. These statistics have been taken from the SDK Performance Analysis tool 

which is shown in Fig.6.3. 

512x512x3 px lena image 512x512x3 px lena image 512x512 px lena image 512x512 px lena image For 100 keys & 
100 sequence-

long 
Decompression & Decryption Compression & Encryption Decompression & Decryption Compression & Encryption 

786,486 bytes 786,486 bytes 263,222 bytes 263,222 bytes Image Size 

3,145,782 bytes 3,145,782 bytes 1,049,654 bytes 1,049,654 bytes 
Stretched Image 
Size 

4,771,081 bytes 4,771,081 bytes 1,473,208 bytes 1,473,208 bytes 
Transferred 
Bytes 

414,124.201969230 ms 414,124.201969230 ms 127,868.824243076 ms 127,868.824243076 ms Elapsed Time 

11.12 KB/s 11.12 KB/s 11.56 KB/s 11.56 KB/s Transfer Speed 

4,129,715,757 cycles 3,068,890,984 cycles 1,195,227,788 cycles 916,114,054 cycles Clock Cycles 

12,706.817713846 ms 9,442.741489230 ms 3,677.623963076 ms 2,818.812473846 ms Processing Time 

16.545335769 ms 12.295236587 ms 14.365718841 ms 11.10986328 ms 

Average 
Generation 
Time 

0.517041742 ms 0.384226143 ms 0.448928713 ms 0.344093322 ms 

Mean 
Computation 
Time 

1.934079766 mHz 2.602633953 mHz 2.227525234 mHz 2.906188249 mHz Sample Rate 

61.890552520 ms 83.284286499 ms 71.280807495 ms 92.998023986 ms Bit Rate 
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Fig.6.3: CPU utilization and miss rate in SDK 

In this section, each category in Table 6.2 is discussed: 

1- Image size: 𝐼𝑚𝑎𝑔𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 =  2𝑘  such that 𝑘 =  1,2,3, … 

2- Stretched image size: The Matlab program stretches the image in the sender and 

returns it to its original structure in the receiver. 

3- Transferred bytes:  The bytes intended here are the header and bitstream bytes.  

4- Elapsed time: It is the time consumed in transferring the bytes to and from the FPGA. 

TeraTerm elapsed time calculations are shown in Fig.6.4. 

 

Fig.6.4: Elapsed time of 256x256x3 px in TeraTerm approximate measurements 

5- Transfer speed: The speed is measured in TeraTerm automatically on the receiver 

side. 

6- Clock cycles: 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = 𝐸𝑛𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 –  𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 , where 

• Starting Time is calculated with the number of clock cycles in SDK by 

XTime_SetTime() and XTime_GetTime() functions and has units of cycles. 
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• Ending time is calculated with the number of clock cycles in SDK by 

XTime_GetTime() function and has units of cycles. 

7- Processing time: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =
 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 

650,000,000×1000

2

 , where 

• 650 million is a macro in C language with the name COUNTS_PER_SECOND (it 

is divided by 2 because the clock cycles are in two directions). 

• The clock cycles are divided by 1000 to get the processing time in milliseconds 

(ms) instead of seconds (s). 

8- Average generation time: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝐼𝑚𝑎𝑔𝑒 𝑃𝑎𝑟𝑡𝑠
 , where 

• Image Parts are the outer loop in image processing in the SDK. The image gets 

partitioned if its size is over 32x32 px for memory efficiency. 

9- Mean computation time: 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒

𝑃𝑎𝑟𝑡 𝑆𝑖𝑧𝑒
 , where 

• Part Size represents the size of one image part after the image gets partitioned. 

10- Sample rate: 𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 =  
1

𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒
  

11- Bit rate: 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒 =  𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 × 32 

6.4.3 Security Validation and Analysis 

The encryption and decryption techniques are the ones used in Hraini’s thesis while the 

security tests are from the Ph.D. thesis in [14] in addition to a comparison between the 

hardware implementation of the system and the software solution in Hraini’s thesis is at the 

end of this section. 

6.4.3.1 Encryption/Decryption technique 

The equation used in encryption is: 

𝐵’ =  𝐵 ⊕  𝐾[𝑖] , where 

• B’ is the bit after getting encrypted. 

• B is the bit before getting encrypted. 

• K is the keys array. 

• i is the index that starts at 0 and increases by 1 with each invocation.  

Notes: 
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- K[i] is converted to binary from hex, and its bits get XORed from the rightmost bit to 

the leftmost one. Then it becomes ready to get XORed with the desired bit in the 

bitstream. 

- If the keys in the array aren’t enough to cover all the bits, the array starts over from i 

equals 0 and continues to encrypt each key with one bit in the bitstream. 

The equation used in decryption is: 

𝐵 =  𝐵’ ⊕  𝐾[𝑖] , where 

• B is the recovered bit after getting decrypted. 

• B’ is the encrypted bit. 

If the keys are larger or equal to the bits that should be encrypted, the cipher is secure as it 

would be one-time pad encryption. However, if the keys are reused because they weren’t 

enough to cover all the bits, the cipher would become exposed to two-time pad attacks. 

Therefore, a recommended range of the array length is shown in Table 6.3. 

 

Image size 
Key range 

grayscale RGB 

4x4 px 20 keys at most 60 keys at most 

16x16 px 260 keys at most 780 keys at most 

32x32 px 1,028 keys at most 3,084 keys at most 

64x64 px 4,100 keys at most 12,300 keys at most 

128x128 px 16,388 keys at most 49,164 keys at most 

256x256 px 65,540 keys at most 196,164 keys at most 

512x512 px 262,148 keys at most 786,444 keys at most 

Table 6.3: Array recommended length for each image size 

Notice that if the image is an RGB image, the maximum number of keys is tripled. 

The calculations that have been done to get the results in Table 6.3 are explained in the 

following example: 

“A 4x4 px image has 16 pixels. It gets converted to DWT and divided as a result into 

the LL, HL, LH, and HH bands. Each band have 4 pixels. The sign of significant 

coefficients in HL, LH, and HH bands will be encrypted at some point in the sorting 

pass, so 12 keys are needed. In the LL band, the magnitude and sign of the significant 

bits will be encrypted in the first pass but magnitude only for insignificant bits, so 8 
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encryption procedure at most would happen here. Therefore, the total keys are 

approximately 20 keys to ensure one-time pad encryption.” 

The encryption equation in the software code is: 

bitstream[pointer] = encrypt.xoring(bitstream[pointer]); 

where: 

• bitstream[pointer] is an array that has all the output bits of the DWT image. 

• encrypt is an object of a class where the XORing process takes place. 

• xoring is a function in the class in which the XORing process happens. 

• pointer is an index of the bitstream array, and it increases by 1 after each invocation. 

The encryption occurs in four different places in the software code, and they are: 

1. Encrypting the magnitude of LL coefficients that reside in the LIP and satisfy the 

threshold condition in the first pass. 

2. Encrypting the sign for LL coefficients that reside in the LIP and satisfy the threshold 

condition in the first pass. 

3. Encrypting the output for LL coefficients that reside in the LIP and doesn't satisfy the 

threshold condition in the first pass.  

4. Encrypting the sign of significant coefficients in the LIS. 

 The decryption equation in the software code is: 

bit = decrypt.xoring(bit); 

where: 

• bit is the recovered bit after decryption. 

• decrypt is an object of a class where the XORing process takes place. 

• xoring is a function in the class in which the XORing process happens. 

The decryption occurs in four different places in the software code, and they are: 

1. Decrypting the magnitude of LL coefficients that reside in the LIP and satisfy the 

threshold condition in the first pass. 

2. Decrypting the sign of LL coefficients that reside in the LIP and satisfy the threshold 

condition in the first pass. 

3. Decrypting the sign of significant coefficients in the LIS. 

4. Decrypting the sign of insignificant coefficients in the LIP if they satisfy the threshold 

condition and are not in the first pass. 
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6.4.3.2 Security Tests 

Tests Results Optimal Results 

Plain-text sensitivity 

Number of Pixel Change Rate (NCPR) 89.36% 99.61% 

Unified Average Changing Intensity (UACI) 9.54% 33.46% 

Hamming Distance (HD) 38.53% close to 50% 

Key sensitivity 

Number of Pixel Change Rate (NCPR) 88.01% 99.61% 

Unified Average Changing Intensity (UACI) 19.03% 33.46% 

Hamming Distance (HD) 39.37% close to 50% 

Histogram Analysis 

chi-square 242.5 293 (σ is 0.05) 

Correlation Analysis 

1 -0.0738 (0,0) (0,1) 

-0.0738 1 (1,0) (1,1) 

Information entropy 

Information entropy (H) 7.51 8 

Measurement of encryption quality 

Encryption Quality (EQ) 37.12 127.5 

Time performance 

Encryption Throughput (ET) 676,186.55 - 

CPU speed 667 MHz - 

Number of cycles per Byte (NCpB) 0.99 cycles - 

Table 6.4: Security results for 128x128 px Lena image 

In Table 6.4, the first column is for the tests applied, the second column is for the test results 

according to the hardware implementation calculations, and the third column is for the 

optimal results according to the Ph.D. thesis in [14]. All the tests are well-explained in the 

Ph.D. thesis. As for the plain-text sensitivity test, the first pixel’s most-significant bit has 

been changed, and in the key sensitivity test, the second bit in a 100 keys array has been 

changed. 
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6.4.3.3 A Comparision with the Thesis Results 

Several tests have been made on the software solution[1] and thus, in this section, the 

hardware implementation results are compared with Hraini’s thesis results to show if this 

project’s results are like them or even better. 

- Consumed Time: 

In the software solution, the processing time has been calculated for Lena image of 

512x512 px, and it equaled 12.66 s. In the hardware implementation, the time consumed 

for the initial steps of processing the image in MATLAB is 4.66 s, and the compression-

encryption procedure in FPGA is 1.50 s. Therefore, the total processing time is 6.16 s 

which is half the time in Hraini’s result. However, the FPGA processing alone 

corresponds to 8 s in the software solution and thus is twenty times better. That result 

shows how much FPGA is fast in processing (i.e., providing high performance) as 

required. 

- Time Overhead: 

The time overhead according to Hraini’s thesis for a 512x512 px Lena image is 

0.002914 s and for a key generation time that equals 0.0000722789 s. The time 

overhead in the hardware implementation for the same key generation time is 0.21441 s 

as shown in the following equation: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =  
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 +  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐾𝑒𝑦𝑠 𝑇𝑖𝑚𝑒 

                      =  
1.31967

(4.65772 MATLAB +  1.49914 FPGA)
 +  0.00007 =  0.21441 𝑠 

The overhead percentage is 21.4% which is larger than 1% as in the software solution 

by 20 times. It is still small although not negligible. The reason for this difference is 

because, for each pixel in the image, one bit will be dedicated for the sign and is 

encrypted; thus, it isn’t a small amount of data getting encrypted. Also, the encryption 

process is not a simple XORing equation; it is getting the key from the secret keys array, 

then increasing the pointer by one, then checking if the array came to an end, then 

converting the key’s digits to binary, then XORing the bits with each other till the result 

is one bit, and finally, XORing that resulted bit with the desired bit in the bitstream. 
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In Fig.6.5 and Fig.6.6 appears the calculated time for FPGA processing only with and 

without the encryption/decryption time. The MATLAB application time is not added in 

the graph as it doesn’t affect the comparison here. The two curves in each figure 

indicates the time overhead for each Lena image sample. 

 

Fig.6.5: A comparison between compression & encryption Vs compression time 

 

 

Fig.6.6: A comparison between decompression & decryption Vs decompression time 
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The number of bits in the compression is the same as the number of bits in the 

compression and encryption in the software solution and hardware implementation. 

- Histogram: 

The histogram in the software solution is uniform in the encrypted image as opposed to 

the plain image for a 512x512 px Lena image. Fig.6.7 shows Hraini’s results. 

 

Fig.6.7: Software solution histogram results 

It is necessary for the histogram in the encrypted image to be equally distributed as to 

not leak any information about the image and would indicate that the image is secured 

from any gaps for starting attacks. This is what the results show in Fig 6.8 and thus 

the hardware implementation corresponds to Hraini’s results and is greatly secured. 

 

Fig.6.8: Hardware implemenation histogram results 
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6.5 Recommendations based on the Results 

It is recommended to increase the security technique used with less time. Also, to optimize 

the C/C++ code as highly as possible after writing it professionally. Moreover, to make use of 

all the FPGA components and features to not go to waste and to achieve the best level of 

utilization which has a huge effect on power consumption. Furthermore, fully understanding 

the FPGA board in use to attain the best performance and results such as the results related to 

time and security. 
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Conclusion 

It can be summarized from this document that the FPGA board is the best choice for image 

processing. Also, Hraini’s encryption technique with the SPIHT algorithm can deliver a 

secure transmission with a constant bitrate. 

The system has been expected to perform the proposed security solution in the thesis in a way 

that guarantees the minimum use of power consumption and high performance. Adding to 

that, satisfying data confidentiality and privacy which the software solution aimed to apply. 

In the hardware implementation, these goals have been achieved in addition to the inclusion 

of RGB images. It is considered as an improvement to the software solution which dealt with 

grayscale images only. 
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Appendix A 

System Flowchart 

 

 
Fig.5.1: System Flowchart 
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Appendix B 

System Pseudocode 

 

 

//DWT in the MATLAB program "Sender Party" 
 
 
Read the image entered by the user in the program path 
Calculate the image size 
Add zero padding if the image dimentions are not equal 
Add zero padding if the image size is not in the DWT function range 
Create a DWT image of double type 
Zero the DWT image 
Determine the DWT filter to be "bior4.4" 
Get the lowpass value from the filter 
Get the highpass value from the filter 
Calculate the levels through the equation "log2(number of rows/cols)" 
 
For each channel in the image, do { 
 Enter the DWT function parameters (the image, levels, lowpass, highpass) 
 Get the DWT image   
} 
 
Check the number of channels 
If 3 
 Concatenate the three DWT images into one DWT image 
Else 
 Do nothing 
Covert the DWT image to integer type 
Create an image of the same dimentions as the DWT image but four times in width 
Determine the image type to be unsigned byte 
 
For each channel, do { 
 For each row, do { 
  For each column, do { 
   Check the pixel sign 
   If negative 
    Set 1 in the first byte 
    Remove the negative sign from the value 
   Else 
    Do nothing 
   For each byte of the rest three bytes in the image, do { 
    Assign two digits of the pixel value in the byte of the image 
   }  

  } 
 } 
} 
 
Write the image on the micro SD memory card 
Display the image 
 Fig.5.2: Sender’s MATLAB program  
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Fig.5.3: Sender's SDK program 

// The SPIHT compression with the selective-encryption technique 
Print the prompt message “Open a log file and set it at Pause!” 
Generate the keys array { 
 Print the prompt message “Enter the number of secret keys:” 
 Print the prompt message “Enter the length of sequence:” 
 Calculate the consumed time and its variable 
 Print the time calculations in Time.txt file 
} 
Print the prompt message “Start the logging within approximately 3 seconds!” 
Wait for 3 seconds 
Start the timer 
Initialize the keys array pointer to point at the beginning of the array 
Define the user’s image data 
Determine the image size for a single image part 
Calculate the number of levels of the image part 
For each part of the image parts, do  { 
 Organize the data of the image part { 
  Take the pixels from the DWT image 
  Orginze the pixels in a vector 
 } 

 // Pass 1 in Hraini’s thesis: Initialization 
 Calculate the maximum pixel value based on magnitude only 
 Determine number of cycles for the upcoming three passes based on the maximum pixel 
 Zero the list of insignificant sets (LIS) 
 Fill LIS with the pixels in the LH, HL, and HH subbands 
 Zero the list of significant pixels (LSP) 
 Zero the list of insignificant pixels (LIP) 
 Fill LIP with the four pixels in the LL subband 
 While the number of cycles is larger or equals zero, do { 
  // Pass 2 in Hraini’s thesis: Sorting 
  Calculate the threshold 
  For each pixel in LIP, do { 
   Split it from its sign 
   Check if the it is larger than the threshold: 
   If yes 
    Move the pixel to LSP 
    Add 1 to the bitstream 
    Check if we are in the first pass: 
    If yes 
     Encrypt the bit 
    Else 
     Do nothing 
    Check the sign of the pixel: 
    If positive 
     Add 1 to the bitstream 
    Else 
     Add 0 to the bitstream 
    Encrypt the sign 
   Else 
    Add 0 to the bitsream 
    Check if we are in the first pass: 
    If yes 
     Encrypt the bit 
    Else 
     Do nothing 
   Return the sign for the pixel magnitude 
  } 

  For each subband in LIS, do { 
   For each pixel in the subband, do { 
   Split it from its sign 
   Check if it is larger than the threshold: 
   If yes 
    Add 1 to the bitstream 
    For each pixel in the subband, do { 
     Split it from its sign 
     Check if it is larger than the threshold: 
     If yes 
      Moves the pixel to LSP 
      Add 1 to the bitstream 
      Check the sign of the pixel: 
      If positive 
       Add 1 to the bitstream 
      Else 
       Add 0 to the bitstream 
      Encrypt the sign 
     Else 
      Moves the pixel to LIP 
      Add 0 to the bitsream 
     Return the sign for the pixel magnitude  
    }  
   Else 
    Do nothing 
   Check if no pixel in the subband was larger than the threshold: 
   If yes 
    Add 0 to the bitsream 
   Else 
    Do nothing 
   } 
  } 

  // Pass 3 in Hraini’s thesis: Refinement 
  Check if we are in the first pass: 
  If yes 
   Do nothing 
  Else 
   For each element magnitude in LSP except LSP elements for this cycle, do { 
    Convert the element to binary 
    Check the bit that corresponds the number of this cycle: 
    If 1 
     Add 1 to the bitstream 
    Else 
     Add 0 to the bitstream    
   } 

  // Pass 4 in Hraini’s thesis: Quantization 
  Decrease the number of cycles by one 
 } 

} 
Erase the keys array content in memory 
Stop the timer 
Calculate the consumed time and its variable 
Append the time calculations in Time.txt file 
Print the bitsream on the terminal 
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//The SPIHT decompression with the selective-decryption technique 
Generate the keys array { 
 Print the prompt message “Enter the number of secret keys:” 
 Print the prompt message “Enter the length of sequence:” 
 Calculate the consumed time and its variable 
 Print the time calculations in Time.txt file 
} 
Read the bitsream from the terminal { 
 Print the prompt message “Insert the bitstream, then press Enter” 
 Transfer the bitsream from the terminal to FPGA 
} 
Start the timer 
Initialize the keys array pointer to point at the beginning of the array 
Get the number of levels of the image from the bitstream 
Determine the number of channels of the image 
Calculate the image size for a single image part 
Determine the final image file size in the BMP format 
Write the header of the image into a new BMP file 
While the bitstream didn’t reach its end, do { 
 Get an image part based on the precalculated size 
 Get the number of cycles for this image part 
 Determine the size of the list of significant pixels (LSP) vector based on the number of cyles minus 1 
 //Pass 1 in Hraini’s thesis: Initialization 
 Zero the image vector 
 Zero the list of insignifiant pixels (LIP) vector 
 Zero the list of insignifiant sets (LIS) vector 
 Zero the list of significant pixels (LSP) vector 
 Set the first four pixels in LIP to 1 
 While the number of cycles is larger or equals zero, do { 
  //Pass 2 in Hraini’s thesis: Sorting 
  Calculate the threshold 
  For the first four pixels in LL subband, do { 
   Get a bit from the bitstream 
   Check if we are in the first pass: 
   If yes 
    Decrypt the bit 
   Else 
    Do nothing 
   Check the value of the bit: 
   If 1 
    Get a bit from the bitstream 
    Decrypt the bit 
    Check the value of the bit: 
    If 1 
     Set the image vector with the threshold value 
    Else 
     Set the image vector with the negative threshold value 
    Zero the corresponding LIP pixel 
    Store 1 in the LSP 
   Else 
    Do nothing 
  } 
  For each element in the subband, do { 
   Check its equivalent in LIP: 
   If 1 
    Get a bit from the bitstream 
    Check the value of the bit: 
    If 1 
     Get a bit from the bitstream 
     Decrypt the bit 
     Check the value of the bit: 
     If 1 
      Set the image vector with the threshold value 
     Else 
      Set the image vector with the negative threshold value 
    Else 
     Do nothing    
    Zero the corresponding LIP pixel 
    Store 1 in the LSP 
   Else 
    Do nothing 
  } 
  For the three subbands in each level, do { 
   For each subband elements, do { 
    Check if the subband has been checked before: 
    If yes 
     Do nothing 
    Else 
     Get a bit from the bitstream 
     Check the value of the bit: 
     If 1 
      Mark the subband as checked 
      For each element in the subband, do { 
       Get a bit from the bitstream 
       Check the value of the bit: 
       If 1 
        Get a bit from the bitstream 
        Decrypt the bit 
        Check the value of the bit” 
        If 1 
         Set the image vector with the threshold 
value         Else 
         Set the image vector with the negative 
threshold value         Increase LSP value 
        Store LSP value in the corresponding pixel 
        Else 
        Set the corresponding LIP pixel to 1 
      } 
     Else 
      Do nothing 
   } 
  } 
  //Pass 3 in Hraini’s thesis: Refinement 
  Check if we are in the first pass: 
  If yes 
   Do nothing 
  Else 
   While LSP value minus 1 doesn't equal 0, do { 
    Get a bit from the bitstream 
    Check the value of the bit: 
    If 1 
     Check the sign of the corresponding pixel in the image vector: 
     If negative 
      Split it from its sign 
      Add the threshold value to the array pixel magnitude 
      Return the sign 
     Else 
      Add the threshold value to the array pixel 
    Else 
     Do nothing 
    Decrease the LSP value by 1     
   } 
  //Pass 4 in Hraini’s thesis: Quantization 
  Decrease the number of cycles by one 
 } 
 Add the image part to the image file    
} 
 Erase the keys array content in memory 
 Stop the timer 
 Calculate the consumed time and its variable 
 Append the time calculations in Time.txt file 

Fig.5.4: Receiver's SDK program 
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//Inverse DWT in the MATLAB program "Receiver Party" 
 
 
Read the image from the user's desktop 
Calculate the image size 
Convert the image to integer type 
Create an array of the same dimentions as the Inverse DWT image but the width is divided by four 
Zero the array 
For each channel, do { 
 For each row, do { 
  For each column, do { 
   Assign the last three bytes of the Inverse DWT to the array element 
   Check the first byte 
   If 1 
    Multiply the array element with -1 
   Else 
    Do nothing 
  } 
 } 
} 
Determine the Inverse DWT filter to be "bior4.4" 
Get the lowpass value from the filter in the reverse mode 
Get the highpass value from the filter in the reverse mode 
Prepare an array of the Inverse DWT coefficients 
Calculate the levels through the equation "log2(number of rows/cols)" 
 
For each channel in the image, do { 
 Enter the Inverse DWT function parameters (the array, lowpass, highpass, levels) 
 Restore the original image 
} 
 
Check the number of channels 
If 3 
 Concatenate the three reconstructed images into one DWT image  
Else 
 Do nothing 
Remove the zero padding from the image rows  
Remove the zero padding from the image columns 
Display the image 
Write the image oo the user's desktop 

Fig.5.5 : Receiver’s MATLAB program 
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