

Palestine Polytechnic University

 Faculty of Engineering and TechnologyDepartment of Civil Engineering and Architecture Specialization in Civil Engineering-Building Engineering Branch

Project Name
Agriculture research center
Supervisor:
Eng. Khalil Karameh
Team:
Lama Masalmh
Humam Dabbas
Basheer Karajeh
Palestine - Hebron

Evaluation certificate graduation project page
Certification of Evaluate Graduation Project
Palestine Polytechnic University
Hebron - Palestine

Structural Design of Land of Civilizations Museum

Team:
Lama Masalmh
Humam Dabbas
Basheer Karajeh

Based on the instructions of Eng.Khalil Karameh and the approval of all members of the committee, this project was introduced to the department of Civil Engineering and Architecture in the Collage of Engineering and Technology for partial fulfillment of the requirements for The Bachelor Degree.

Supervisor signature
Eng. Khalil Karameh

Head of the department signature
Eng.Faydi Shabana

Dedication

we dedicate this project to God Almighty our creator, our strong pillar, our source of inspiration, wisdom, knowledge and understanding. He has been the source of our strength throughout this program and on His wings only have our soared. we also dedicate this work to our families and friends who have encouraged us all the way and whose encouragement has made sure that we give it all it takes to finish that which we have started.To our doctors and instructors, to our supervisor Eng.Khalil karameh and to all who helped this to workout .

Thank you
God bless you
Lama, Humam, Basheer

Abstract
 Structural Design for Agricultural Research Center

Supervision:

Eng. Fahed Salahat

Team:

Basheer Karajeh

Lama Masalmh

Humam Dababseh

We can summarize the aim of the project, is to work on the structural design for all elements in this edifice like slabs, beams, columns, foundations, walls and other structural elements. This project can distinguish in variety of construction methods. Mostly Is reinforcement concrete. There are different elements in this structure, such as columns, beams, slabs, etc. It contains different architecture blocks. Furthermore, this structure is comfortable and useful. it also can take large numbers of researchers and scientists.

The area of the ground and the first floors estimated to be 2400 m 2 while the second floor is estimated to be 350 m 2 . In consequences the whole area of the building estimated to be 2750 m .
Each floor has been prepared in a way to be fully functional and ready to understand all the scientific needs and requirements such as all needed labs, offices, deposits, halls, painting and publishing rooms in the first floor .And In addition to the bedrooms, bathrooms and lunch break halls in the second floor . While the ground floor is basically for the administrative purposes such as the director room, the secretary room and the accounting room.

American concrete institute (ACI 318-14) is the reference code during project analysis and design, we will use software applications such as: AutoCAD 2016, Microsoft Office, ETABS, SAFE, Atir, SpColumn.

Table of Contents

Title Page I
Project Report Page II
Evaluation Certificate Graduation Project Page III
Dedication IV
Thanks \& Appreciations V
Abstract VI
Chapter One: Project Introduction1
1.1 Introduction. 2
1.2 General identification. 2
1.3 Project choosing reason 2
1.4 The project objectives 2
1.5 The postulate of the project 3
1.6 Chapters of the project 4
Chapter Two: Architectural Description 6
2.1 Basic identification of project 6
2.2 Project site 7
2.2.1General climate description of the city 8
2.3 Project Components Descriptions 9
2.3.1 Project Plans Description 9
2.3.2 Project Elevation's Description 12
2.3.3 Sections 13
Chapter Three: Structural Description 15
3.1 The Purpose Of Structural Design 16
3.2 Theoretical Study of The Structural Elements of The Building 16
3.3 Types of Loads 16
3.3.1 Dead Load 17
3.3.2 Live Load. 18
3.3.3 Environmental Loads 18
3.3.3.1 Sesmic Load 19
3.3.3.2 Wind Load 19
3.3.3.3 Snow Load. 19
3.4 Practical Test 20
3.5 Structural Elements used in this Project 20
3.5.1 Slabs 20
3.5.1.1 Ribbed Slab 21
3.5.2 Beams 22
3.5.3 Columns 24
3.5.4 Shear Wall 25
3.5.5 Foundations 26
3.5.6 Stairs 27
3.5.7 Expansion Joint 28
Chapter Four: Structural Analysis \& Design 29
4.1 Introduction 29
4.2 Material Prosperities were used 31
4.3 Design of Rib 31
4.4 Design of Beam 39
4.6 Design of Staircase. 46
4.7 Design of Column 52
4.8 Design of Shear Wall 54
4.10 Design of Isolated Footing 61
Chapter Five: Results, Recommendations \& References 62
5.1 Results 63
5.2 Recommendation 63
5.3 References 64

List of Figures

2.1 General Picture of Project. 6
2.2 The location of the Project 7
2.3 Basement Floor 8
2.4 Ground Floor 9
2.5 First Floor 9
2.6 Second Floor 10
2.7 Third Floor 10
2.8 West Elevation 11
2.9 East Elevation 12
2.10 South Elevation 12
2.11 North Elevation 13
2.12 Section A-A 13
2.13 Section B-B 14
2.14 Section C-C 14
2.15 Section D-D 14
3.1 Dead Load. 17
3.2 Live Load. 18
3.3 Seismic Load 19
3.4 Wind Load 19
3.5 Snow Load 20
3.6 One Way Rib Slab 21
3.7 Tow Way Rib Slab 22
3.8 Solid Slab 22
3.9 Hidden Beam 23
3.10 Drop Beam 23
3.11 Square Column 23
3.12 Circular Column 23
3.13 Shear Wall 24
3.14 Isolated Footing 24
3.15 Strip Footing 25
3.16 Mat Footing 25
3.17 Stairs 28
3.18 Expansion Joints in the Project 27
4.1 Part of First Floor Slab 30
4.2 Topping System 31
4.3 Typical Section in Ribbed slab 33
4.4 Rib Geometry 34
4.5 Loading of Rib 34
4.6 Moment and Shear Envelope of Rib 35
4.7 Beam Geometry 46
4.8 Beam Loading 46
4. 24 Staircase Dimensions 58
4.25 Stair Loading 59
4. 26 Stair Bending Moment Diagram 60
4. 27 Stair Shear Force Diagram 60
4. 28 Landing Bending Moment Diagram 62
4. 29 Landing Loading System 62
4. 30 Landing Bending Moment Diagram. 62
4. 31 Landing Shear Force Diagram 63
4. 32: Column Reinforcement Details 66
4. 33: Shear Wall Dimensions and Loads 67
4. 34: Loads effects on Basement Wall 70
4. 35: Bending Moment Diagram of Basement Wall. 71
4. 36: Shear Force Diagram of Basement Wall 71
4. 37: Footing description 74
4. 38: One Way Shear of Footing. 75
4. 39: Plan with Reinforcement of the Footing 77
4. 40: Section in the Footing 78

List of Tables

1.1 The Time Line Table of the Project Stages 4
3.1 Specific Density of the Materials Used 18
3.2 Live Loads 19
3.3 Loads of Snow by Sea Level 20
4.1 Calculation of the total dead load on topping 31
4.2 Calculation of the total dead load for one way rib slab 33

List of Abbreviations

Vn
area of non-prestressed tension reinforcement. area of non-prestressed compression reinforcement. gross area of section area of shear reinforcement width of compression face of member compression resultant of concrete section. dead loads. distance from extreme compression fiber to centroid of tension reinforcement. compression strength of concrete. specified yield strength of non-prestressed reinforcement. overall thickness member.
live loads.
bending moment.
factored moment at section.
nominal moment.
nominal axial load.
factored axial load. spacing of shear in direction parallel to longitudinal reinforcement. nominal shear strength provided by concrete.
nominal shear stress.

Vs reinforcement.

Vu
We
W
Wu
φ
S_{c}
S_{s}

ρ

ε_{c}
Fsd, \mathbf{r}
Ved, 0
Ned, 0
α
nominal shear strength provided by shear
factored shear force at section.
weight of concrete. $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$
width of beam or rib.
factored load per unit area.
strength reduction factor.
compression strain of concrete.
strain of compression steel.
ratio of steel area.
compression strain of concrete $=0.003 \mathrm{~mm} / \mathrm{mm}$ total additional tension force above the support. shear force at critical section. normal tension force at support.
angel of stirrup.

Chapter 2 :

Architectural Description

2.1 Basic Identification of project
2.2 Project Site
2.2.1 Project Land Location
2.2.2 General Climate of the City
2.3 Project Components Description
2.3.1 Project Plans Description
2.3.2 Project Elevations Description
2.3.3 Project Sections Description

Chapter 2 :

Architectural Description

The basic aim of architecture is to make designs that are suitable for human to live, work, play in . it's very important to make sure that the resident is comfortable and satisfied. an excellent architect understands the past talk in addition to understanding how people's environment affect their whole life and to provide them with the desired atmosphere

Architecture, the art and technique of designing and building, as distinguished from the skills associated with construction. It requires a strong technical knowledge in the fields of engineering, logistics, geometry. Building techniques, functional design and ergonomics. It also requires a certain sensibility to arts and aesthetics. Finally, it also requires talking in consideration human questions and societies problems. Architecture is a very broad humanistic field that, at the same time, is technical artistic and social.

2.1 Basic Identification of Project

The Idea of the project is the structural design of the agriculture research center in Aroub. The center consists of three floors

1. The ground Floor : with a height of 3.37 meters and an area of $2400 \mathrm{~m}^{2}$. It includes of a large multipurpose hall, a general hall, six water cycles, a library, a library deposits, painting and publishing room, a raw materials room, a plant pathology library, analysis of fertilizers laboratory, plant analysis laboratory, a laboratory store ,teaching rooms, offices and a reception.
2. The first floor : with a height of 3.4 meters and an area of $2400 \mathrm{~m}^{2}$. it includes of meeting hall, researcher offices, conference rooms ,soil section, water section, a buffer , department of biotechnology, seed bank, feed section, animal health section, plant processing and classification room, vacuum matters room , plant drying room, plant conservation room, accounting room, personal affairs rooms, reception and rest room , director room, secretary room, vice president room, and two water cycles .
3. The third floor : with a height of 3.42 meters and an area of $350 \mathrm{~m}^{2}$. it includes of a lunch break hall, water cycles, bedrooms and bathrooms .

2.2 Project Site

The site is located besides Palestine Technical University / Kadoorie It is bounded by paved street from the east (Hebron - Bethlehem street / 60 street) . Entrance to the project site is provided via the paved street from the south side. Figure (2.2) shows the site of the project and site plan is shown in architectural plans. The site land is almost rectangular shape, and covers an approximately $41000 \mathrm{~m}^{2}$. It lies at elevation of approximately 970 m above mean sea level. electric poles and sewer pipeline were observed within the site. Its recommended that we can't build on this site, because it taken by Israeli occupation.

Figure 2.1: The location of the Project.

2.2.1 General climate of the Area

This area generally enjoys a Mediterranean climate of a dry summer and mild, rainy winter with occasional snowfall. The recorded average of Aroub's rainfall is about 800 mm . While the western winds dominate, the northern winds are light and the eastern winds still blow on occasion.

2.3 Project Components Description

The designer used many declines which add special architecture beauty to the structure.

2.3.1 Project Plans Description

The center has three floors with total area of $2750 \mathrm{~m}^{2}$.

1. The ground floor Plan

The area of this floor is $2400 \mathrm{~m}^{2}$, its level is +4.45 .

Figure 2.2: The Ground Floor Plan.

2. First Floor Plan

The area of this floor is $2400 \mathrm{~m}^{2}$, its level is +8.45 .

Figure 2.3: The First Floor Plan.

3. second Floor Plan

The area of this floor is $350 \mathrm{~m}^{2}$, its level is +12.45 m .

Figure 2.4: The Second Floor Plan.

2.3.2 Project Elevations Description

The interest of elevation for any architect is great as the elevation appearance should be suitable with the kind of the building and its uses, so its duty of the engineer to consider every detail of the elevations in terms of materials used, the distribution of the openings, and other factors that highlight the beauty of elevations design.

South Elevation

Figure 2.5: The South Elevation

East Elevation

Figure 2.6: The East Elevation

West Elevation

Figure 2.7: The West Elevation

North Elevation

Figure 2.8: The North Elevation

2.3.3 Description of Sections

The designer distributed the movement through the horizontal and vertical axes through stairs and corridors, according to the number of users and the allowable distance between each vertical axis for easy movements between the floors and to facilitate exiting in case of emergency.

Figure 2.9: A-A Section

Figure 2.10: B-B section

Chapter 3:

Structural Description

After completing the process of the architectural project explanation of all the details, we must move to the construction phase of the study for the project, in order to choose the appropriate structural system for each element in the building, in order to provide all requirement and design all elements necessary for the system. So that it is taking into account the loads affecting the types of elements, showing how to deal with them and work to resist them, so we must know these structural elements in detail, in order to be customized and analyzed accurately.

3.1 The purpose of structural design

The purpose of structural design is to find the building is available where all safety requirements, in order to resist all the forces that affect the building in different forms, such as loads of dead and live or external forces such as earthquakes, wind and landing in the soil. When designing any element of these it should be taken in consideration the following standers:
1.Safety: is the essential element that must be provided in the design, so choosing the appropriate element of each region to resist loads that affecting them.
2. Economy: must be supplied when working on the selection of appropriate materials, and sufficient for its desired purpose and appropriate quantity, with lowest cost and highest quantity.
3.Serviceability: work to avoid any external failures, such as the decline in soil or any cracks in the external shape, or anything that works to increase this failure.
4.Architectural side: work to take into account the architectural elements in the building and try to keep it as much as possible.

3.2 Theoretical studies of the structural elements of the building

The most important step that should work out of the project before starting the structural design, working on a comprehensive study of the project in terms of its size the nature of its work, how to estimate the loads that effect on the building, choose items that are exposed to these loads, and identify system construction, which used to resist these loads.

3.3 Types of Loads

Loads are the base of design process, so they must have great consideration is specialty, identifying and study. Accurately, so differing building from another depends on the architectural design, project site, materials used in construction and other influences, therefore loads can be classified as follow:

1.Basic loads:

The loads which must be taken into account in the structural design of the building in all cases ,it includes: Dead load, Live load and Environmental loads.
2.Secondary loads: The loads that should be take into account in the design in some buildings, depending on the nature of the building and other influences, it includes: Shrinkage load, Thermal load, Snows load, Dynamic load, Seismic load.

3.3.1 Dead Load

These loads are permanent loads which are carried to the structure throughout their lifespan. Dead loads are also called as stationary loads. These loads occur mainly due to the self-weight of the structural members, fittings, fixed partitions, fixed equipment, etc.

Dead loads are calculated by estimating the quantity of each material and then multiplying it with the unit weight of that specific material.

Figure 3.1 Dead Loads

Table 3.1: Specific Density of the Materials Used

Number	Material	Density $\left(\mathrm{KN} / \mathrm{m}^{3}\right)$
1.	Tiles	23
2.	Mortar	22
3.	Sand	16
4.	Plaster	22
5.	Block	15
6.	Reinforcement Concrete	25

3.3.2 Live load

As the name itself resembling that these type of loads are real-time loads. Live loads are also called as imposed or sudden loads. Live loads changes with respect to time. This type of loading may come and go. For example, At one moment the room may be empty hence the live load is zero. If the same room is packed with the people, then the live load intensity will vary considerably. The live load includes the weight of furniture, people occupying the floor, etc.

Figure 3.2 Live Loads

Table 3.2: Live Loads (Ref.: Jordan Code)

Number	Use	Live Load $(\mathrm{KN} / \mathrm{m} 2)$
1.	Apartments	2.0
2.	Stairs	4.0
3.	Museums Floors	4.0
4.	Banking Halls	3.0
5.	Parking	5.0

3.3.3 Environmental loads

The loads arising from the changes in the environmental such as seismic, wind and snow.
3.3.3.1 Seismic load (Earthquake load) :

These type of loads causes movement of the foundation of structures. Earthquake forces are internal forces that developed on the structure because of ground movements.

Three mutually perpendicular forces act on the structure during an earthquake, two horizontal forces which acts in opposite direction and one vertical force due to the weight of the structure. As vertical force doesn't affect much during earthquake whereas two opposite horizontal forces results in movement of the building during an earthquake. These two horizontal direction forces are considered in the design.

Horizontal earthquake forces (back-and-forth shaking) create 'whipping' forces in all parts of a building. These forces must transfer between parts of the buliding to the foundation.

Figure 3.3 Seismic Load

3.3.3.2 Wind load:

This types of loads are considered in design for high-rise buildings. Wind loads are occurred due to the horizontal load caused by the wind. As an increase in using lighter materials in the construction, wind load for a building should be considered. The structure should be strong enough with the heavy dead weights and anchored to the ground to resist this wind load. If not, the building may blow away. Wind load acts horizontally towards roofs and walls.

Figure 3.4 Wind Loads

3.3.3. 3 Snow load:

The building must be designed to resist snow loads and to be taken into account the design and it depends on the height of the building and the area of this building.

Snow Loads on a Structre
Figure 3.5 Snow Load

Table 3.3: Loads of Snow (Ref.: Jordan Code)

Building height above sea level	The value of load in surface $(\mathrm{KN} / \mathrm{m} 2)$
$250>\mathrm{h}$	0
$500>\mathrm{h}>250$	$(\mathrm{~h}-250) / 800$
$1500>\mathrm{h}>500$	$(\mathrm{~h}-400) / 320$

3.4 Practical Tests

Before you begin the process of design and construction, should work some of necessary tests at the site, especially on the soil, and work to see the quality of the rocks in the region, and work to deviate place waterfalls groundwater and its impact on the building, and work to resolve the problems if available of these problems, as soil test.

3.5 Structural Elements

There are many structural elements used in the buildings as the slab, beam, column, stairs, the shear wall and foundations

3.5.1 The Slabs

Is an element which transfers the loads that are exposed to other structural elements such as column, beam, wall. They many factor to select type of slabs:

+ Spacing between columns.
+ Intensity of live loads.
+ Architectural requirements and limitations.
+ Total number of stories.

In our project, we will use Ribbed slab .

Why have we chosen one way ribbed slab?

In our project one way ribbed slab is chosen because of many reasons :

1) In this type of slab, the tension stress is eliminated in the tension side of the slab. The strength of concrete in tension is very small and so elimination of much of the tension concrete is done by the use of pan forms.
2) Reducing the extent of foundations by reducing the ultimate load.
3) Provide architectural advantages. All the Electrical appliances can be installed easily in the gap of the ribs which can be architecturally aesthetic.
4) Economical where the live loads are fairly small such as apartment houses, hotels.

3.5.1.1 Rib Slab:

In general, this type is most commonly used in our project, this contains the steel bars use to transfer the loads, and block and the concrete between this block and the topping of all.

One way ribbed slab are used when it is intended to cover areas without bridges falling, was the use of these tiles in all floors of this project, to lightweight and effectiveness.

Figure 3.6 One Way Rib Slab

3.5.2 Beams

Use this element to transfer the load from the slab to the column, and have the type as hidden beam when have the same thickness of slab and drop beam when have different thickness.

Figure 3.7 Hidden Beam.

Figure 3.8 Drop Beam.

3.5.3 Columns

This element is uses to transfer the load from the slab to the foundation, and it helps in the stability of the building, and when design we will know the type design if short or slender column.

Figure 3.9 square Column.

Figure 3.10 Circular Column.

3.5.4 Shear Wall

Shear wall is the important element structure because it is uses to resist the vertical and horizontal load; Shear wall is a type of structural system that provides lateral resistance to the building or structure. It resist loads as the wind and earthquake. When design this wall, we use two layer steel to give it more strength.

Figure 3.11 Shear wall.

3.5.5 The Foundations

The first element we implemented on the ground, but is the last element we design, because all loads are transmitted to it whether the basic load as dead or live load or secondary load. So is the basic element, which receives all the loads and distributed it to the soil.

ISOLATED FOOTING
Figure 3. 12 Isolated Footing.

Figure 3.13 Strip Footing

Figure 3.14 Mat Footing.

3.5.6 Stairs

The stairs is a vertical transmission element between the levels, and we used the one way solid slab in the landing structural design.

Figure 3.15 Stairs.

3.5.7 Expansion joints

Is a spacer which are used in order to avoid getting any expansion or other effects that may impair the building, where the building is separated entirely, and the building is separated after increasing distanced (35-45) m.

When you use joints must take into account the vast spaces of the building:

1. 40 m areas with high humidity.
2. 36 m areas with normal humidity.
3. 32 m areas with medium humidity.
4. 28 m with dry areas.

Chapter 4

Structural Analysis and Design

4.1 Introduction.
4.2 Materials Properties were used.
4.3 Design of Rib
4.4 Design of Beam
4.5 Design of Staircase.
4.6Design of Column
4.7 Design of Shear Wall.
4.8 Design of Isolated Footing.

4.1 Introduction

Concrete is the only major building material that can be delivered to the job site in a plastic state. This unique quality makes concrete desirable as a building material because it can be molded to virtually any form or shape.

Concrete used in most construction work is reinforced with steel. When concrete structure members must resist extreme tensile stresses, steel supplies the necessary strength. Steel is embedded in the concrete in the form of a mesh, or roughened or twisted bars.

A bond forms between the steel and the concrete, and stresses can be transferred between both components. In This Project, there are two types of slabs: solid slabs and one-way ribbed. They would be analyzed and designed by using finite element method of design, with aid of a computer Program called " ATIR- Software" to find the internal forces, deflections and moments for ribbed slabs.

The design strength provided by a member, its connections to other members, and its crosssections in terms of flexure, and load, and shear is taken as the nominal strength calculated in accordance with the requirements and assumptions of ACI-code.

4.2 Materials Properties were used

For concrete, it was used a B300 ($f c^{\prime}=30 * 0.8=24 M P a$) concrete compressive strength for slabs, beams and columns and B350 ($f c^{\prime}=35 * 0.8=28 M P a$) for foundations.

For reinforcement steel, it is used a 420Mpa steel yielding strength.

4.3 Design of Rib (R20)

The structure may be exposed to different loads such as dead and live loads. The value of the load depends on the structure type and the intended use. The factored loads on which the structural analysis and design is based for our project members, is determined as follows:

$$
q_{u}=1.2 D L+1.6 L
$$

$$
A C I-318-14(9.2 .1)
$$

Slabs thickness calculation:

Determination of Thickness for One Way Ribbed Slab:

According to ACI-Code-318-08, the minimum thickness of no prestressed beams or one-way slabs unless deflections are computed as follow:

The maximum span length for one end continuous (for ribs):
$\mathrm{h}_{\text {min }}$ for one-end continuous $=\mathrm{L} / 18.5$

$$
=688 / 18.5=37.18 \mathbf{c m}
$$

The maximum span length for both end continuous (for ribs):
$\mathrm{h}_{\text {min }}$ for both-end continuous $=\mathrm{L} / 21$

$$
=800 / 21=\mathbf{3 8} \mathbf{~ c m}
$$

Select Slab thickness $\mathbf{h}=\mathbf{3 6} \mathbf{c m}$ with block $28 \mathbf{c m} \& ~ T o p p i n g ~ 8 c m . ~$

Load calculations:

One-way ribbed slab:

For the one-way ribbed slabs, the total dead load to be used in the analysis and design is calculated as in the following table:

Table (4-1) Calculation of the total dead load for one-way rib slab.

Parts of Rib	Density	Calculation
RC. Rib	25	$0.12^{*} 0.28^{*} 25=0.84 \mathrm{KN} / \mathrm{m}$
Top Slab	25	$0.08^{*} 0.52^{*} 25=1.04 \mathrm{KN} / \mathrm{m}$.
Plaster	22	$0.03^{*} 0.52^{*} 22=0.343 \mathrm{KN} / \mathrm{m}$.
Block	10	$0.4^{*} 0.28^{*} 10=1.12 \mathrm{KN} / \mathrm{m}$
Sand Fill	17	$0.07^{*} 0.52^{*} 17=0.5824 \mathrm{KN} / \mathrm{m}$
Tile	23	$0.03^{*} 0.52^{*} 23=0.359 \mathrm{KN} / \mathrm{m}$
Mortar	22	$0.03^{*} 0.52^{*} 22=0.343 \mathrm{KN} / \mathrm{m}$.
partition	-	$2.3^{*} 0.52=1.196 \mathrm{KN} / \mathrm{m}$

Nominal Total Dead load $=\mathbf{5 . 8 2 3} \mathbf{K N} / \mathbf{m}$ of rib
Nominal Total live load $=3.5 * 0.52=\mathbf{1 . 8 2} \mathbf{K N} / \mathbf{m}$ of rib

4. 5 Design of Topping:

The calculation of the total dead load for the topping is shown below:

Table (4-1) Calculation of the total dead load on topping

No.	Material	Calculation
1	Tile	$0.03 * 23 * 1=0.69 \mathrm{KN} / \mathrm{m}$
2	mortar	$0.03 * 22 * 1=0.66 \mathrm{KN} / \mathrm{m}$
3	Coarse sand	$0.07 * 16 * 1=1.12 \mathrm{KN} / \mathrm{m}$
4	topping	$0.08 * 25 * 1=2.0 \mathrm{KN} / \mathrm{m}$
5	Interior partitions	$2.3 * 1=2.3 \mathrm{KN} / \mathrm{m}$
	Sum	$6.77 \mathrm{KN} / \mathrm{m}$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{u}}=1.2 \mathrm{DL}+1.6 \mathrm{LL} \\
& =1.2 * 6.77+1.6 * 3.5=13.724 \mathrm{KN} / \mathrm{m}^{2} . \quad(\text { Total Factored Load }) \\
& \\
& \quad M_{u}=\frac{W_{u} * l^{2}}{12}=\frac{13.724 * 0.4^{2}}{12}=0.183 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

$$
M_{n}=f_{r} * S
$$

$$
=0.42 \sqrt{f_{c}^{\prime}} * \frac{b h^{2}}{6}=0.42 \sqrt{24} * \frac{1 * 0.08^{2}}{6} * 10^{3}=2.194 \mathrm{KN} . \mathrm{m}
$$

$$
\phi M_{n}=0.55 * 2.19=1.207 \mathrm{KN} . \mathrm{m}
$$

$$
\phi M_{n}=1.207 K N . m>M_{u}=0.183 K N . m
$$

\therefore No structural reinforcement is needed
Shrinkage and temperature reinforcement must be provided.
For the shrinkage and temperature reinforcement: -

$$
\begin{aligned}
& \rho=0.0018 \\
& A_{s}=\rho * b * h=0.0018 * 1000 * 80=144 \mathrm{~mm}^{2} . \\
& \# 0 \mathrm{f} \Phi 8=\frac{A s_{r e q}}{A_{b a r}}=\frac{144}{50.27}=2.86 \rightarrow \operatorname{Spacing}(\mathrm{~S})=\frac{1}{2.86}=0.349 \mathrm{~m}=349 \mathrm{~mm} . \\
& \leq 380\left(\frac{280}{f s}\right)-2.5 * \mathrm{C}_{\mathrm{c}} \leq 380\left(\frac{280}{f s}\right) \\
& =380 *\left(\frac{280}{\frac{2}{3} f_{y}}\right)-2.5 * 20 \leq 380 *\left(\frac{280}{\frac{2}{3} f_{y}}\right) \\
& =380 *\left(\frac{280}{\frac{2}{3} * 420}\right)-2.5 * 20 \leq 380 *\left(\frac{280}{\frac{2}{3} * 420}\right) \\
& =330 \mathrm{~mm} . \leq 380 \mathrm{~mm} . \\
& \leq 3 * \mathrm{~h}=3 * 80=240 \mathrm{~mm}, \text { CONTROL! } \\
& \leq 450 \mathrm{~mm} .
\end{aligned}
$$

\therefore Use $\Phi 8 @ 20 \mathrm{Cm}$ C/C in both directions.

Design of Rib (20):

Section: -

$\mathrm{b}=12 \mathrm{~cm}$	$\mathrm{~b}_{\mathrm{f}}=52 \mathrm{~cm}$
$\mathrm{~h}=36 \mathrm{~cm}$	$\mathrm{~T}_{\mathrm{f}}=8 \mathrm{~cm}$

Loading

Figure (4-1): Rib geometry.

Loading

Figure (4-2): loading of rib (20)

Figure (4-3): Moment Envelop of rib (62)

Figure (4-4): Shear Envelop of rib (62)

Design of flexure:

Design of Positive moment of rib (RIB 20):

d $=$ depth - cover - diameter of stirrups $-($ diameter of bar/ 2$)$
$=360-20-10-\frac{12}{2}=324 \mathrm{~mm}$.
$\rightarrow \mathrm{M}_{\mathrm{u} \text { max }}=37.1 \mathrm{KN} . \mathrm{m}$
$b e \leq$ Distance center to center between ribs $=520 \mathrm{~mm} \ldots \ldots \ldots .$. Controlled.
\leq Span $/ 4=5670 / 4=1417.5 \mathrm{~mm}$.
$\leq\left(16^{*} \mathrm{t}_{\mathrm{f}}\right)+\mathrm{b}_{\mathrm{w}}=\left(16^{*} 80\right)+120=1400 \mathrm{~mm}$.
$\rightarrow b_{E}=520 \mathrm{~mm}$.
$\rightarrow M_{n f}=0.85 f_{c}^{\prime} * b_{E} * t_{f} *\left(d-\frac{t_{f}}{2}\right)$
$=0.85 * 24 * 0.52 * 0.08 *\left(0.324-\frac{0.08}{2}\right) * 10^{3}=241.01 \mathrm{KN} . \mathrm{m}$
$\phi \mathrm{M}_{\mathrm{nf}}=0.9 * 241.01=216.9 \mathrm{KN} . \mathrm{m}$
$\rightarrow \phi \mathrm{M}_{\mathrm{nf}}=216.9 \mathrm{KN} . \mathrm{m}>\mathrm{M}_{\mathrm{u} \max }=37.1 \mathrm{Kn} . \mathrm{m}$.
\therefore DESIGN AS RECTANGULAR SECTION WITH $\mathbf{b}=\mathbf{5 2 0} \mathrm{mm}$

1) Maximum positive moment $M u^{(+)}=37.1 \mathrm{KN} . \mathrm{m}$
$M_{n}=\mathrm{Mu} / \phi=37.1 / 0.9=41.2 \mathrm{KN} . \mathrm{m}$
$m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 * 24}=20.58$
$R_{n}=\frac{M_{n}}{b * d^{2}}=\frac{41.2 * 10^{6}}{520 *(324)^{2}}=0.754 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 * R_{n} * m}{f_{y}}}\right)=\frac{1}{20.58}\left(1-\sqrt{1-\frac{2 * 0.754 * 20.58}{420}}\right)=0.00183$
$\rightarrow \mathrm{A}_{\mathrm{s}}=\rho * \mathrm{~b} * \mathrm{~d}=0.00183 * 520 * 324=308.31 \mathrm{~mm}^{2}$.
$A s_{\text {min }}=\frac{\sqrt{f_{c}^{\prime}}}{4\left(f_{y}\right)} * b_{w} * d \geq \frac{1.4}{f_{y}} * b_{w} * d$
$=\frac{\sqrt{24}}{4 * 420} * 120 * 324 \geq \frac{1.4}{420} * 120 * 324$
$=113.37 \mathrm{~mm}^{2}<129.6 \mathrm{~mm}^{2} \ldots \ldots \ldots \ldots$. Larger value is control.
$\rightarrow \mathrm{As}_{\text {min }}=106.4 \mathrm{~mm}^{2}<\mathrm{As}_{\mathrm{req}}=308.31 \mathrm{~mm}^{2}$.
$\therefore \mathrm{As}=308.31 \mathrm{~mm}^{2}$.
$2 \Phi 16=402.12 \mathrm{~mm}^{2}>\mathrm{As}_{\mathrm{req}}=308.1 \mathrm{~mm}^{2}$. OK.

\therefore Use 2 Ф16

\rightarrow Check for strain:- $\left(\varepsilon_{s} \geq \mathbf{0 . 0 0 5)}\right.$
Tension $=$ Compression
$\mathrm{A}_{\mathrm{s}} * \mathrm{fy}=0.85 * f_{c}^{\prime} * \mathrm{~b} * \mathrm{a}$
$401.12 * 420=0.85 * 24 * 120 * \mathrm{a}$
$\mathrm{a}=68.81 \mathrm{~mm}$.
$f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$

$$
\begin{aligned}
c & =\frac{a}{\beta_{1}}=\frac{68.81}{0.85}=80.96 \mathrm{~mm} . \\
\varepsilon_{S} & =\frac{d-c}{c} * 0.003 \\
& =\frac{324-80.97}{80.96} * 0.003=0.009>0.005 \quad \therefore \Phi=0.9 \ldots \mathrm{OK}!
\end{aligned}
$$

2)

\therefore Use $2 \boldsymbol{\Phi} 12$ for Bottom reinforcement .
Design of shear of rib (RIB 20):

1) $\mathrm{Vu}=23.4 \mathrm{KN}$.
$\mathrm{V}_{\mathrm{c}}=\frac{\sqrt{f_{c}^{\prime}}}{6} * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}$
$=1.1 * \frac{\sqrt{24}}{6} * 0.12 * 0.324 * 10^{3}=34.91 \mathrm{KN}$.
$\phi \mathrm{V}_{\mathrm{c}}=0.75 * 34.91=26.18 \mathrm{KN}$.
\rightarrow Check for Cases: -
1-Case 1: $\mathrm{V}_{\mathrm{u}} \leq \frac{\phi V_{c}}{2}$.
$23.4>\frac{26.18}{2}=13.1$
\therefore Case (1) is NOT satisfied
2- Case 2:
$\frac{\phi V_{c}}{2}<\mathrm{V}_{\mathrm{u}} \leq \phi \mathrm{V}_{\mathrm{c}}$
$13.1 \leq 24.8 \leq 26.18 \mathrm{kn}$
\therefore Case (2) is satisfied \rightarrow shear reinforcement is required.
Vs max $=\frac{2}{3} * \sqrt{f_{c}^{\prime}} * 324 * \mathbf{b}_{\mathbf{w}}=\frac{2}{3} * \sqrt{\mathbf{2 4}} * \mathbf{1 2 0} * \mathbf{3 2 4} * 10^{-3}=190.47 \mathrm{~mm}$
$\mathrm{Vs}^{\prime}=\frac{\mathrm{Vs} \text { max }}{2}=\mathbf{9 5 . 2 3} \mathbf{~ k n}$
$\mathbf{V s}<\mathbf{V s}_{\text {max }} \ldots$... The section is large enough
Vs min $=\frac{1}{16} * \sqrt{f_{c}^{\prime}} * b_{w} * \mathbf{d}=11.9$
Vs min $=\frac{1}{3} * b_{w} * \mathbf{d}=12.96 \ldots$ Control.
Try 2Ф8: -

$$
\begin{aligned}
& \frac{100.5 * 420 * 264}{S}=6.48 * 10^{3} \rightarrow \mathrm{~S}=2546 \mathrm{~mm} \\
& \mathrm{~S} \leq \frac{d}{2}=\frac{324}{2}=162 \mathrm{~mm} \\
& \leq 600 \mathrm{~mm} .
\end{aligned}
$$

\therefore Use 2 Ф8 @ 10 Cm

4.4 Design of Beam (B-40):

Section: -

$$
\mathrm{B}=60 \mathrm{~cm}
$$

\rightarrow Select Total depth of beam $\mathbf{h}=\mathbf{3 6} \mathbf{c m}$.
"for deflection requirements L/240"

Figure (4-5): Beam Geometry.

Figure (4-6): Load of Beam (B.F-40)

Figure (4-7): Moment Envelop for Beam (B.F-40)

Figure (4-8): Shear Envelop for Beam (B.F-40)

Design of flexure:

Design of Positive moment:
\rightarrow Mu $_{\text {max }}=180 \mathrm{KN} . \mathrm{m}$
$\mathrm{b}=80 \mathrm{Cm} . \mathrm{h}=36 \mathrm{Cm}$.
d $=$ depth - cover - diameter of stirrups $-($ diameter of bar/ 2$)$
$=360-40-10-\frac{18}{2}=301 \mathrm{~mm}$
$\mathrm{C}_{\text {max }}=\frac{3}{7} * \mathrm{~d}=\frac{3}{7} * 301=129 \mathrm{~mm}$.
$f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$a_{\max }=\beta_{1} * C_{\max }=0.85 * 129=109.65 \mathrm{~mm}$.
*Note:

$$
\begin{aligned}
M_{n \max } & =0.85 * f_{c}^{\prime} * \mathrm{~b} * \mathrm{a} *\left(\mathrm{~d}-\frac{a}{2}\right) \\
& =0.85 * 24 * 600 * 109.65 *(301-109.65 / 2) * 10^{-6} \\
& =330.39 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

$\epsilon_{\mathrm{s}}=0.004$
$\phi=0.65+\frac{250}{3} *(0.004-0.002)=0.82$
$\rightarrow \phi \mathrm{Mn}_{\text {max }}=0.82 * 330.39=270.92 \mathrm{KN} . \mathrm{m}$
$\rightarrow \mathrm{Mu}=180 \mathrm{KN} . \mathrm{m}<\phi \mathrm{Mn}_{\max } 270.92 \mathrm{KN} . \mathrm{m}$
\therefore Singly reinforced concrete section.

1) Maximum positive moment $M u^{(+)}=180.5 \mathrm{KN} . \mathrm{m}$
$\mathrm{Mn}=\mathrm{Mu} / \phi=180.5 / 0.9=200.55 \mathrm{KN} . \mathrm{m}$.
$\rightarrow \mathbf{m}=20.6$

$$
\begin{aligned}
& R_{n}=\frac{M_{n}}{b * d^{2}}=\frac{200.55 * 10^{6}}{600 *(301)^{2}}=3.689 \mathrm{MPa} \\
& \quad \rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 * R_{n} * m}{f_{y}}}\right) \\
& \quad \frac{1}{20.6}\left(1-\sqrt{1-\frac{2 * 3.689 * 20.6}{420}}\right)=0.01
\end{aligned}
$$

$\mathrm{A}_{\mathrm{s}}=\rho * \mathrm{~b} * \mathrm{~d}=0.01 * 600 * 301=1806 \mathrm{~mm}^{2}$
$A s_{\text {min }}=\frac{\sqrt{f_{c}^{\prime}}}{4\left(f_{y}\right)} * b * d \geq \frac{1.4}{f_{y}} * b * d$
$\frac{\sqrt{24}}{4 * 420} * 600 * 301 \geq \frac{1.4}{420} * 600 * 301$
$=526.63 \mathrm{~mm}^{2}<602 \mathrm{~mm}^{2} \ldots$. Larger value is CONTROL
As $=1806 \mathrm{~mm}^{2}$
Use $Ф 25 \ldots$. As $=490.87 \mathrm{~mm}^{2}$
\therefore Use $\mathbf{4}$ Ф25...As=1963 > $1806 \mathrm{~mm}^{2}$
\rightarrow Check for strain:- $\left(\varepsilon_{s} \geq 0.005\right)$

Tension $=$ Compression

$\mathrm{A}_{\mathrm{s}} * \mathrm{fy}=0.85 * f_{c}^{\prime} * \mathrm{~b} * \mathrm{a}$
$1963 * 420=0.85 * 24 * 600 * \mathrm{a}$
$\mathrm{a}=67.35 \mathrm{~mm}$.
$f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$c=\frac{a}{\beta_{1}}=\frac{67.35}{0.85}=79.24 \mathrm{~mm}$.
$\varepsilon_{s}=\frac{d-c}{c} * 0.003$
$=\frac{301-79.24}{79.24} * 0.003=0.008>0.005 \quad \therefore \phi=0.9 \ldots \mathrm{OK}!$

Design of shear: -

1) $\mathbf{V u}=85.8 \mathrm{KN}$.

$$
\begin{aligned}
\phi \mathrm{Vc}= & \phi * \frac{\sqrt{f_{c}^{\prime}}}{6} * \mathrm{~b} * \mathrm{~d} \\
& =0.75 * \frac{\sqrt{24}}{6} * 600 * 301 * 10-{ }^{3}=110.6 \mathrm{KN} .
\end{aligned}
$$

\rightarrow Check For dimensions: -
$\phi \mathrm{Vc}+\left(\frac{2}{3} * \phi^{*} \sqrt{f_{c}^{\prime}} * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}\right)=110.6+\left(\frac{2}{3} * 0.75 * \sqrt{24} * 0.8 * 0.301 * 10^{3}\right)$

$$
=700.4 \mathrm{KN}>\mathrm{Vu}=85.8 \mathrm{KN} .
$$

\therefore Dimension is adequate.
\rightarrow Check For Cases: -

1-Case1: $\mathrm{V}_{\mathrm{u}} \leq \frac{\phi V_{c}}{2}$.
$85.5 \leq \frac{110.6}{2}=55.3 \quad \ldots$. Not SATISFIED!
2- Case $2: \frac{\phi V_{c}}{2}<\mathrm{V}_{\mathrm{u}} \leq \phi \mathrm{V}_{\mathrm{c}}$
$55.3<85.5 \leq 110.73 \quad \ldots$. SATISFIED!
\therefore Use 4 Ф12 @ 15 Cm
$\mathrm{Vc}=\frac{216.04}{0.75}=288.05 \mathrm{KN}$
$=\left(\frac{233.2}{0.75}-288.05\right)=22.88 \mathrm{KN}$.
Try $2 \Phi 10=2 * 78.5=157 \mathrm{~mm}^{2}$.
$\frac{2 * 135.7 *}{\mathrm{~S}}=\frac{11.68 * 10^{-3}}{(420 * 441)} \mathrm{s}=1270.96 \mathrm{~mm}$
$\mathrm{s} \leq \frac{d}{2}=\frac{301}{2}=150 \mathrm{~mm} \quad \ldots$. CONTROL $\leq 600 \mathrm{~mm}$.
l.: Use $\boldsymbol{\Phi} 12 @ 15 C m$ 2L.

4.6 Design of Staircase:

Minimum slab thickness:

Minimum slab thickness for deflection is (for simply supported one-way solid slab):
$\mathrm{h}_{\text {min }}=\mathrm{L} / 20$
$\mathrm{h}_{\text {min }}=7 / 20=35 \mathrm{~cm}$
Take $\mathrm{h}=35 \mathrm{~cm}$

Figure 4. 1: Staircase Dimensions

4.6.2 Load Calculation:

Load: the applied live loads are based on the plan area (horizontal) projection, while the dead load is based on the sloped length to transfer the dead load into horizontal projection. The Stair Sloped by $\theta=\tan ^{-1}$ (riser / run)

$$
=\tan ^{-1}(15.5 / 30)=29.85^{\circ}
$$

- Flight dead load computation:

Table 4. 4: Flight Dead Load Computation

Parts of Flight	Quality Density $\mathbf{k N} / \mathbf{m}^{\mathbf{3}}$	Calculation of(W) kN/m
Tiles	$\mathbf{2 7}$	$27 * 0.03 * 1 *((0.35+0.155) / 0.3)=1.36$
Mortar	$\mathbf{2 2}$	$22 * 0.03 * 1 *((0.35+0.155) / 0.3) 1.001$
Stair Steps	$\mathbf{2 5}$	$(25 / 0.3) *((0.155 * 0.3) / 2)) * 1=1.39$
R.C Solid Slab	$\mathbf{2 5}$	$25 * 0.3 * 1 /\left(\cos 27.32^{\circ}\right)=8.44$
Plaster	$\mathbf{2 2}$	$22 * 0.03 * 1 /\left(\cos 27.32^{\circ}\right)=0.75$
Total Dead Load	$\mathbf{1 3 . 4 8} \mathbf{k N} / \mathbf{m}$	

Landing dead load computation:
Table 4.5: Landing Dead Load Computation.

Parts of Flight	Quality Density $\mathbf{k N} / \mathbf{m}^{\mathbf{3}}$	Calculation of(W) kN/m
Tiles	$\mathbf{2 3}$	$23 * 0.03 * 1 *=0.69$
Mortar	$\mathbf{2 2}$	$22 * 0.03 * 1 *=0.66$
R.C Solid Slab	$\mathbf{2 5}$	$25 * 0.3 * 1=7.5$
Plaster	$\mathbf{2 2}$	$22 * 0.03 * 1=0.66$
Total Dead Load		$\mathbf{9 . 5 1} \mathbf{~ k N} / \mathbf{m}$

- Live Load: LL $=3.5 \mathrm{kN} / \mathrm{m}^{2}$.
- Total factored load: $\mathrm{w}=1.2 \mathrm{DL}+1.6 \mathrm{LL}$

For flight

$$
\mathrm{w}=1.2 * 13.48+1.6 * 3.5 * 1=21.7766 \mathrm{kN} / \mathrm{m}^{2}
$$

For landing

$$
\mathrm{w}=1.2 * 9.51+1.6 * 3.5 * 1=17.012 \mathrm{kN} / \mathrm{m}^{2}
$$

Because the load on landing, where the shear wall surrounding it, is carried into two directions, only half the load will be considered in each direction (17.012 / $2=8.506$ kN / m).
4.6.3 Design of slab S1:

Figure 4. 2: Stair Loading.
Moment/Shear Envelope (Factored) Units:kN,meter

Figure 4. 3: Stair Bending Moment Diagram.

Figure 4. 4: Stair Shear Force Diagram.

4.6.3.1 Check for shear strength:

Assume initial bar diameter $\emptyset 14$ for main reinforccment, $\Phi=0.75$ for shear
Assume bar diameter $\emptyset 14$ for main reinforcement
$\mathrm{d}=\mathrm{h}-$ cover $-\frac{d_{b}}{2}=350-20-\frac{14}{2}=323 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{c}}=\frac{1}{6} \sqrt{f c^{\prime}} b_{w} d==\frac{1}{6} \sqrt{24} * 1000 * 323=263.72 \mathrm{kN}$.
$\Phi \mathrm{V}_{\mathrm{c}}=0.75^{*} 263.72=197.79 \mathrm{kN}$
$197.79 \mathrm{kN}>\mathrm{Vu}=62.7 \mathrm{kN}$, the slab thickness is adequate enough.

4.6.3.2 Design the flight for bending moment:

$\mathrm{Mu}=133.5 \mathrm{kN} . \mathrm{m}$
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{133.5 \times 10^{6}}{0.9 \times 1000 \times 323^{2}}=1.42 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 1.42}{420}}\right)=0.0035$
$\mathrm{A}_{\mathrm{s}, \text { req }}=\rho . \mathrm{b} . \mathrm{d}=0.0035 \times 1000 \times 323=1134.4 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{A}_{\mathrm{s}, \min }=0.0018 * 1000 * 360=630 \mathrm{~mm}^{2} / \mathrm{m}$
A_{s}, req $=1134.4 \mathrm{~mm}^{2}>\mathrm{A}_{\mathrm{s}, \min }=630 \mathrm{~mm}^{2} / \mathrm{m}$

Check for which maximum spacing is control:

1. $S=3 \mathrm{~h}=3^{*} 360=1080 \mathrm{~mm}$
2. $\mathrm{S}=380 *\left(\frac{280}{\frac{2}{3} * 420}\right)-2.5 * 20=330 \mathrm{~mm}$ OR $300 *\left(\frac{280}{\frac{2}{3} * 420}\right)=300 \mathrm{~mm}$ control
3. $S=450 \mathrm{~mm}$

- $\mathrm{S}=300 \mathrm{~mm}$ is control
- Use $\emptyset 16 @ 200 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s} \text {, provided }}=1206.3 \mathrm{~mm}^{2}>\mathrm{A}_{\mathrm{s} \text {, required }}=1134.4 \mathrm{~mm}^{2} \ldots \ldots \ldots \ldots . .$. Ok

Check for strain:-
$\mathrm{a}=\frac{A_{\text {s.fy }}}{0.85 \mathrm{~b} f_{c}^{\prime}}=\frac{1134.4 \times 420}{0.85 \times 1000 \times 24}=23.35 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\mathcal{B}_{1}}=\frac{23.35}{0.85}=27.47 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d-c}{c}\right)=0.003\left(\frac{323-27.47}{27.47}\right)=0.035>0.005 \ldots \ldots \ldots \ldots \ldots .0 k
$$

Temperature and shrinkage reinforcement:
$\mathrm{A}_{\mathrm{s}, \text { req }}=\mathrm{A}_{\mathrm{s}, \min }=0.0018^{*} 1000 * 350=630 \mathrm{~mm}^{2}$

Figure 4. 5 Landing Loading

Figure 4. 6: Landing Bending Moment Diagram.

Figure 4. 5: Landing Shear Force Diagram

4.6.4.1 Check for shear strength:

Assume bar diameter $\varnothing 14$ for main reinforcement
$\mathrm{d}=\mathrm{h}-$ cover $-\frac{d_{b}}{2}=350-20-\frac{14}{2}=323 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{c}}=\frac{1}{6} \sqrt{f c^{\prime}} b_{w} d==\frac{1}{6} \sqrt{24} * 1000 * 323=263.72 \mathrm{kN}$
$\Phi^{*} \mathrm{~V}_{\mathrm{c}}=0.75^{*} 263.72=197.7 \mathrm{kN}$
$197.7 \mathrm{KN}>\mathrm{Vu}=9.1 \mathrm{kN}$, the slab thickness is adequate enough.

4.6.4.2 Design the landing for bending moment:

$\mathrm{Mu}=13.3 \mathrm{kN} . \mathrm{m}$
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\emptyset b d^{2}}=\frac{9.1 \times 10^{6}}{0.9 \times 1000 \times 273^{2}}=0.1 \mathrm{Mpa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 \cdot m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 0.1}{420}}\right)=0.00027$
$\mathrm{A}_{\mathrm{s}, \text { req }}=\rho . \mathrm{b} . \mathrm{d}=0.00027 \times 1000 \times 323=74.71 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{A}_{\mathrm{s}, \min }=0.0018 * 1000 * 350=630 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s, \text { req }}=74.71 \mathrm{~mm}^{2}<A_{s, \min }=630 \mathrm{~mm}^{2} / \mathrm{m}$, use $A_{s, \min }=630 \mathrm{~mm}^{2} / \mathrm{m}$.

Check for which maximum spacing is control:

1. $\mathrm{S}=3 \mathrm{~h}=3 * 350=1050 \mathrm{~mm}$
2. $\mathrm{S}=380 *\left(\frac{280}{\frac{2}{3} * 420}\right)-2.5 * 20=330 \mathrm{~mm}$ OR $300 *\left(\frac{280}{\frac{2}{3} * 420}\right)=300 \mathrm{~mm}$ control
3. $S=450 \mathrm{~mm}$

- $\mathrm{S}=300 \mathrm{~mm}$ is control, use $\emptyset 12 @ 150 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s} \text {, provided }}=791.6 \mathrm{~mm}^{2}>\mathrm{A}_{\mathrm{s} \text {, required }}=630$ $\mathrm{mm}^{2} \ldots$. Ok
Temperature and shrinkage reinforcement:
$\mathrm{A}_{\mathrm{s}, \text { req }}=\mathrm{A}_{\mathrm{s}, \text { min }}=0.0018 * 1000 * 350=630 \mathrm{~mm}^{2}$
Use $\emptyset 12 @ 150 \mathrm{~mm}, \mathrm{~A}_{\mathrm{s} \text {, provided }}=791 \mathrm{~mm}^{2}>\mathrm{A}_{\mathrm{s} \text {, required }}=630 \mathrm{~mm}^{2} \ldots \ldots \ldots .$. Ok

4.7 Design of Column 1 (Group 1):

Figure (4-12): Location of Column

4.7.1 Load Calculation

Service Load: -
Dead Load $=2380 \mathrm{KN}$
Live Load $=1020 \mathrm{KN}$
Factored Load: -
$\mathrm{P}_{\mathrm{U}}=1.2 \times 2380+1.6 \times 1020=4488 \mathrm{KN}$

4.7.2 Column Dimensions

Assumepg $=0.01$
$\phi^{*} \mathrm{Pn}=0.65 \times 0.8 \times \mathrm{Ag}\left\{0.85 f c^{\prime}(1-\rho g)+\rho g * F y\right\}$
$4488 * 1000=0.65 \times 0.8 \times \mathrm{Ag}\{0.85 * 24(1-0.01)+0.01 * 420\}$
$\mathrm{Ag}=353865 \mathrm{~mm} 2$
Assume Rectangular Section
Try h $=750 \mathrm{~mm}$

$$
\mathrm{b}=900 \mathrm{~mm}
$$

$\mathrm{Ag}=675000 \mathrm{~mm}^{2}$

Selecting Longitudinal Bars:
$4488 * 1000=0.65 \times 0.8 \times\{0.85 * 24(675000-$ Ast $)+$ Ast $* 420\}$
Ast $=12690 \mathrm{~mm}^{2}$
Use $26 ø$ 25, Ast $($ prov $)=12762.7 \mathrm{~mm}^{2}>$ Ast $=12690 \mathrm{~mm}^{2}$
$\rho g=\mathrm{Ast} / \mathrm{Ag}=0.01$

4.7.3 Design of Tie reinforcement

$\mathrm{S} \leq 16 \mathrm{db}$. (longitudinal bar diameter)
$\mathrm{S} \leq 48 \mathrm{dt}$ (tie bar diameter).
$\mathrm{S} \leq$ Least dimension.
spacing $\leq 16 \times d_{b}=16 \times 2.5=40 \mathrm{~cm}$ Control
spacing $\leq 48 \times \mathrm{dt}=48 \times 1.0=48 \mathrm{~cm}$
spacing \leq least. Dim $=75 \mathrm{~cm}$

Useø10@20 cm

Figure (4-13): Detailing of Column

4.8 Design of Shear Wall:

4.8.1 Shear wall general information:

\Rightarrow Shear Wall Thickness $\quad \mathrm{h}=30 \mathrm{~cm}$
\Rightarrow Shear Wall Width \quad Lw $=6.00 \mathrm{~m}$
\Rightarrow Shear Wall Height $\quad \mathrm{Hw}=3.75 \mathrm{~m}$

Figure 4. 6: Shear Wall Dimensions and Loads .

4.8.2 Check for shear strength:

4.8.2.1 Maximum shear strength permitted:
$\emptyset V_{\text {nax }}=\emptyset \frac{5}{6} \sqrt{f_{c}^{\prime}} h d, \mathrm{~d}=0.8 \mathrm{~L}_{\mathrm{w}}=0.8 * 6=4.8 \mathrm{~m}$.
$=0.75 * 0.83 * \sqrt{24} * 480 * 6=8783.89 \mathrm{kN}>\mathrm{V}_{\mathrm{u}, \max }=612 \mathrm{kN}$.
4.8.2.2 Shear strength provided by concrete $V c$:

Critical Section for shear is the smaller of:
$\frac{l w}{2}=\frac{6}{2}=3 m-$ control
$\frac{h w}{2}=\frac{12.5}{2}=6.25 \mathrm{~m}$
Story height $=4 \mathrm{~m}$.
V_{c} is the smallest of :
$1-V_{c}=\frac{1}{6} \sqrt{f_{c}{ }^{\prime}} h d=\frac{1}{6} \sqrt{24} * 300 * 4.8=1175.75 K N \ldots \ldots .$. Control
$2-V_{c}=0.27 \sqrt{f_{c}{ }^{\prime}} h d+\frac{N_{u} d}{4 l_{w}}=0.27 \sqrt{24} * 300 * 4.8+0=1904.7 \mathrm{KN}$
$3-V_{c}=\left[0.05 \sqrt{f_{c}}+\frac{l_{w}\left(0.1 \sqrt{f_{c}^{\prime}}+0.2 \frac{N_{u}}{l_{w} h}\right)}{\frac{M_{u}}{V_{u}}-\frac{l_{w}}{2}}\right] h d$
$\Rightarrow M_{u}=1747.92+326 *(3-2.65)=1862.02 k N . m$
$\frac{M_{u}}{V_{u}}-\frac{l_{w}}{2}=\frac{1862.02}{612}-\frac{6}{2}=0.4<1$, so the previous equation does not available to apply for shear calculations.

- Determine required horizontal shear reinforcement:
$V u=612>\frac{1}{2} V c=\frac{1}{2} * 0.75 * 1175.75=440.9 \mathrm{kN} \ldots$ reinforcement is required.
Shear reinforcement must be provided in accordance with 11.9.9.
Assume $\emptyset 10$ for shear reinforcement.
$V u \leq \emptyset V n=\emptyset(V c+V s)$
$V s=\frac{V u}{\emptyset}-V c=\frac{612}{0.75}-1175.75=-359.75$, use minimum ratio of $\rho \mathrm{t}=0.0025$
Minimum shear reinforcement is required,
Maximum spacing is the least of:
$\frac{L w}{5}=\frac{6000}{5}=1200 \mathrm{~mm}$.
$3 h=3 * 300=900 \mathrm{~mm}$.
450 mm - control.
Select $\emptyset 10$, two layers:
$\rho \mathrm{t}=\frac{A v h}{h S_{2}}=\frac{2 * 78.5}{300 * S_{2}}=0.0025$
So that $S_{2}=209.4 \mathrm{~mm}<450$, Take Ø10@200 mm in both sides.
- Determine vertical shear reinforcement:
$\frac{\mathrm{h}_{\mathrm{w}}}{L \mathrm{w}}=\frac{12.25}{6}=2.04$
$\rho \mathrm{l}=\left[0.0025+0.5\left(2.5-\frac{h_{w}}{L w}\right)(\rho \mathrm{t}-0.0025)\right] \geq 0.0025$

$$
=[0.0025+0.5(2.5-2.04)(0.0025-0.0025)] \geq 0.0025
$$

So, $\rho \mathrm{l}=0.0025$.
Maximum spacing is the least of:
$\frac{L w}{5}=\frac{6000}{5}=1200 \mathrm{~mm}$.
$3 h=3 * 300=900 \mathrm{~mm}$.
450 mm - control.
Select Ø10 @ 200 mm .

4.8.3 Design of shear wall for flexure:

Uniformly distributed flexure reinforcement method was followed.
The uniformly distributed vertical reinforcement Ø10@ 200 mm

$$
\begin{aligned}
& A_{s t}=\left(\frac{6000}{200}\right) * 2 * 78.5=4710 \mathrm{~mm}^{2} \\
& \begin{array}{c}
w=\left(\frac{A_{s t}}{L_{w} h}\right) \frac{f_{y}}{f_{c}{ }^{\prime}}=\left(\frac{4710}{6000 * 300}\right) \frac{420}{24}=0.045 \\
\qquad \alpha=\frac{P_{u}}{l_{w} h f_{c}{ }^{\prime}}=0 \\
\quad \frac{C}{l_{w}}=\frac{w+\alpha}{2 w+0.85 \beta_{1}}=\frac{0.045+0}{2 * 0.045+0.85 * 0.85}=0.066 \\
\emptyset M_{n}=\emptyset\left[0.5 A_{s t} f_{y} l_{w}\left(1+\frac{P_{u}}{A_{s t} f_{y}}\right)\left(1-\frac{c}{l_{w}}\right)\right] \\
=
\end{array} \\
& =0.9[0.5 * 4.710 * 420 * 6.000(1+0)(1-0.066)]=4988.62 \mathrm{kN} . \mathrm{m}>2460 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Vertical reinforcement provided is enough.

4.10 Design of Isolated Footing: (Footing Group 7)

Material:
Concrete B300 $\quad \mathrm{Fc}^{\prime}=24 \mathrm{kN} / \mathrm{m}^{2}$
Reinforcement Steel Fy $=420 \mathrm{kN} / \mathrm{m}^{2}$
4.10.1 Load Calculations:

Dead Load $=2397.5 \mathrm{kN}$ "included own weight"
Live Load $=1020 \mathrm{kN}$
Total services load $=1020+2397.5=3417.5 \mathrm{kN}$
Total Factored load $=1.2 * 2397.5+1.6 * 1020=4509 \mathrm{kN}$
Column Dimensions $\left(a^{*} \mathrm{~b}\right)=75 * 90 \mathrm{~cm}$
Soil density $=17 \mathrm{Kg} / \mathrm{cm} 3$
Allowable Bearing Capacity $=400 \mathrm{KN} / \mathrm{m} 2$
Assume $\mathrm{h}=70 \mathrm{~cm}$
$q_{\text {net-allow }}=400-25 * 0.7-17 * 1.3=360.4 \mathrm{KN} / \mathrm{m}^{2}$
4.10.2 Area of Footing:
$A=\frac{P_{\text {total service }}}{q_{\text {net-allow }}}=\frac{3417.5}{360.4}=9.48 \mathrm{~m}^{2}$
Assume Square Footing
b required $=3.08 \mathrm{~m}$
Select $b=3.08 \mathrm{~m}$
Take 3.1
Bearing Pressure:
$q_{u, n e t}=\frac{P_{\text {total factored }}}{A}=\frac{4509}{3.1 * 3.1}=469.2 \mathrm{KN} / \mathrm{m}^{2}$
4.10.3 Design of Footing:
4.10.3.1 Design footing for one way shear:

Critical Section at distance (d) from face of column.
Assume $\mathrm{h}=700 \mathrm{~cm}$, bar diameter $\emptyset 12$ for main reinforcement and 7.5 cm Cover.
$\mathrm{d}=700-75-12=613 \mathrm{~mm}$
$\mathrm{Vu}=\mathrm{qu}_{\mathrm{u}} *\left(\frac{B-a}{2}-d\right) * L$
$\mathrm{Vu}=469.28 *\left(\frac{3.1-0.75}{2}-0.613\right) * 3.1$

$$
=817.5 \mathrm{KN}
$$

$\emptyset V_{c}=0.75 * 0.17 * \sqrt{f^{\prime}}{ }_{c} * b_{w} * d$
$\emptyset V_{c}=0.75 * 0.17 * \sqrt{24} * 3100 * 613 * 10^{-3}$

$$
=1186.96 \mathrm{KN}
$$

$\emptyset V_{c}>V_{u} \quad \ggg \ggg \ggg>$ okay

Figure 4. 7: One Way Shear of Footing.

4.10.3.2 Design Footing for two way shear:

$V_{u}=P_{u}-F R_{b}$
$F R_{b}=q_{u, n e t} *$ area of critical section
$V_{u}=4509-469.28 *((0.75+0.613) *(0.9+0.613))=3541.24 \mathrm{KN}$
The punching shear strength is the smallest value of the following equations:-
$\phi . V_{c}=\phi \cdot \frac{1}{6}\left(1+\frac{2}{\beta_{c}}\right) \sqrt{f_{c}^{\prime}} b_{o} d$
$\phi \cdot V_{c}=\phi \cdot \frac{1}{12}\left(\frac{\alpha_{s}}{b_{o} / d}+2\right) \sqrt{f_{c}^{\prime}} b_{o} d$
$\phi \cdot V_{c}=\phi \cdot \frac{1}{3} \sqrt{f_{c}^{\prime}} b_{o} d$
Where:-
$\beta_{C}=\frac{\text { Column Length (a) }}{\text { Column Width (b) }} \quad \ggg>\frac{90}{75}=1.2$
$b_{o}=$ Perimeter of critical section taken at $(\mathrm{d} / 2)$ from the loaded area
$b_{o}=2 *(61.3+75)+2 *(61.3+90)=575.2 \mathrm{~cm}$
$\alpha_{s}=40$ for interior column
$\phi \cdot V_{C}=\phi \cdot \frac{1}{6}\left(1+\frac{2}{\beta_{c}}\right) \sqrt{f_{c}^{\prime}} b_{o} d=2267.17 \mathrm{kN}$
$\phi \cdot V_{C}=\phi \cdot \frac{1}{12}\left(\frac{\alpha_{s}}{b_{o} / d}+2\right) \sqrt{f_{c}^{\prime}} b_{o} d=4602.2 \mathrm{kN}$
$\phi \cdot V_{C}=\phi \cdot \frac{1}{3} \sqrt{f_{c}^{\prime}} b_{o} d=4318.42 \mathrm{kN}$
$\emptyset V_{c}=2267.7 K N>V_{u}=817.5 k N \ggg \ggg$ okay
4.10.3.3 Design of Bending Moment:

Critical section at the face of column.
$M_{u}=469.28 *\left(\frac{3.1}{2}\right) *\left(\frac{3.1-0.75}{2}\right)^{2}=1004.24$ KN. m
$\mathrm{R}_{\mathrm{n}}=\frac{M_{u}}{\phi b d^{2}}=\frac{1004.24 \times 10^{6}}{0.9 \times 3100 \times 613^{2}}=0.95 \mathrm{MPa}$
$\mathrm{m}=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 24}=20.6$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 . m \cdot R_{n}}{420}}\right)=\frac{1}{20.6}\left(1-\sqrt{1-\frac{2 \times 20.6 \times 0.95}{420}}\right)=0.0023$
$\mathrm{A}_{\mathrm{s}, \mathrm{req}}=\rho \cdot \mathrm{b} \cdot \mathrm{d}=0.0023 \times 3100 \times 613=43.70 \mathrm{~cm}^{2}$
$\mathrm{A}_{\mathrm{s}, \min }=0.0018 * 3100 * 700=39.06 \mathrm{~cm}^{2}$
$A_{s, \text { req }}$ is control

Check for Spacing:
$\mathrm{S}=3 \mathrm{~h}=3 * 70=210 \mathrm{~cm}$
$\mathrm{S}=380 *\left(\frac{280}{\frac{2}{3} * 420}\right)-2.5 * 75=192.5 \mathrm{~cm}$
$\mathrm{S}=45 \mathrm{~cm}$ \qquad is control

Use $23 ø 18$ in Both Direction

4.10.3.4 Development length of steel reinforcement in footing:

- Tension development length in footing:
$L d_{\text {T req }}=\frac{9}{10} * \frac{F_{y}}{\lambda \sqrt{f_{c}}} * \frac{\psi_{e} \psi_{s} \psi_{t}}{\frac{k t r+c b}{d b}} * d b \geq 300 \mathrm{~mm}$

Ktr $=0$ (Nostripes)
$c b=75+\frac{12}{2}=81 \mathrm{~mm}$
Or $c b=\frac{150}{2}=75 \mathrm{~mm}$ is control
$\frac{k t r+c b}{d b}=\frac{0+75}{12}=6.25>2.5$
$\frac{k t r+c b}{d b}=2.5$
$D=\frac{9}{10} * \frac{420}{1 * \sqrt{24}} * \frac{1 * 1 * 0.8}{2.5} * 12=296.3 \mathrm{~mm}<300 \mathrm{~mm}$
So, $L d_{\text {T req }}=300 \mathrm{~mm}$
$L d_{T}$ available $\frac{1650-500}{2}-75=500 \mathrm{~mm}$
$L d_{T \text { available }}=500 \mathrm{~mm}>l d_{\text {req }}=300 \mathrm{~mm} \ggg \ggg$ okay

- Compression development length in footing:(For Dowels)
$L d_{\text {creq }}=\frac{0.24 * F y * d B}{\sqrt{f_{c}^{\prime}}} \geq 0.043 * \mathrm{f}_{y} * \mathrm{~d}_{B} \geq 200 \mathrm{~mm}$
$L d_{\text {creq }}=\frac{0.24 * 420 * 14}{\sqrt{24}}=288.05 \mathrm{~mm} \geq 0.043 * 420 * 14=252.84 \mathrm{~mm} \geq 200 \mathrm{~mm}$
$L d_{\text {creq }}=288.05 \mathrm{~mm}$
$L d_{\text {cava }}=400-75-12-12=301 m m>L d_{\text {creq }} \ggg \ggg$ okay
Lap splice of dowels in column:
$L_{s c}=0.071 * f_{y} * d_{B}=417.48 \mathrm{~mm}>300 \mathrm{~mm}$
Select $L_{s c}=45 \mathrm{~cm}$

Figure 4. 8: Plan with Reinforcement of the Footing.

Figure 4. 9: Section in the Footing.

Chapter Five

Results, Recommendations and References

5.1 Results.
5.2 Recommendations.
5.3 References.
5.4 Appendix.

5.1 Results:

1. Each student or structural designer should be able to design manually, so he can get the experience and knowledge in using the computer software.
2. One of the factors that must be taken in consideration is the environment factors surrounding the building, the site terrains, and the forces effects on the site.
3. One of the important steps of the structural design is how to connect the structural members to work together, then to divide these members and design them individually, and should take the surrounding condition in the consideration.
4. Various types of slabs have been used: one-way ribbed slabs, in some slabs that have a regular or nearly regular distribution of columns and beams. One-way solid slabs mainly in the stairs, because it has high resistance to the concentrated forces.
5. The useful software programs were used:

- AutoCAD 2016, to draw the detail of drawings for structural drawings.
- ATIR, Etabs, Safe, Sp column, adapt to analysis and design the structural members.

a. Recommendations:

This project has an important role in widening and enhancing the understanding to the nature of the structural project including all the details, analysis, and designs. It is very helpful-through this experience-to introduce a group of recommendations. At the beginning, the architectural drawings have to be prepared and ordered and the construction material and the structural system have to be choose alongside. And it is essential at this stage to have information about the project site, the soil, the soil strength capacity at the site from the geotechnical report, after that the bearing walls and the columns is going to be set up alongside the architectural team in a compatible manner. The civil engineer tries at this stage to plant as much as possible the reinforced concrete walls, which should be use after that in resisting the earthquake loads and other lateral loads.

5.3 References:

1. American concrete institute, Building code requirements for structural concrete ACI 318M, 2011.
2. American concrete institute, Details and Detailing of Concrete Reinforcement ACI315, 1999.
3. Abboushi, Nasr, Reinforced concrete, Palestine polytechnic university, 2013.
4. National Jordanian Construction Council, Jordanian Building Code.

Appendix

TABLE 9.5(a)—MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED

	Minimum thickness, \boldsymbol{h}			
	Simply supported	One end continuous	Both ends continuous	Cantilever
	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.			
Member				
Solid one- way slabs	$\ell / 20$	$\ell / 24$	$\ell / 28$	$\ell / 10$
Beams or ribbed one- way slabs	$\ell / 16$	$\ell / 18.5$	$\ell / \mathbf{2 1}$	$\ell / 8$

Notes:
Values given shall be used directly for members with normalweight concrete (density $w_{c}=2320 \mathrm{~kg} / \mathrm{m}^{3}$) and Grade 420 reinforcement. For other conditions, the values shall be modified as follows:
a) For structural lightweight concrete having unit density, w_{c}, in the range $1440-1920 \mathrm{~kg} / \mathrm{m}^{3}$, the values shall be multiplied by ($1.65-0.003 w_{c}$) but not less than 1.09 .
b) For f_{y} other than 420 MPa , the values shall be multiplied by $\left(0.4+f_{y} / 700\right)$.
[1] MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR
ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED. -ACI Code-

الحمل البركز	ل 	الإستعلال	نوع المبى	
ك	ك\%/3	ل)	خاص	P6
4.5	4.0	المه . برات ولا . . لـداءل والأدراج و؛ . . . سطات الأدراج والممرات للرتغعة الكوصلة بين المبانِ.	تابع القاعات، قاء اتا الاجتماعات، الطاعاعم، رلمثاحن، ،لمكتبات،	نابع ثهاتٌ الـتحععات العامة
4.5	7.5	المنص .	التوادي، المـسـارح'	
4.5	4.0	أرضح ات المثا> وصالات عرض القتون.	ستوديوهات الاذاعة.	
2.7	3.0	أماكن العبادة (لا مـاجاجد والكنائسر).		
9.0	$4 \text { لككل متر }$ من ارتناع التخزين	مستودعات القرطاسية.	المكاتب والبنوك.	مبات المكاتب
4.5	5.0	غ		
-	3.0	فاعات اليبوك.		
2.7	2.5	مكاتب للاستعـ . الات المانيف		
4.5	4.0	لا لمه رات والم . والأدرا الأدراج والمدرات المرات المعة لالوصلة بين للباز		

