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Abstract 

Design a single channel EEG system and processing the corresponding signals using 
HMM 

Hamza F. Altakroury 
By 

Shehdeh A.M. Zahdeh 

Palestine Polytechnic University- 2010 

Supervisor 
Dr. Hashem Tamimi 

Eng. Ali Amro 

The idea of Brian Computer interface solves the problems of the disables by analyzing 
their brain signals. These signals are acquired in the form of Electroencephalogram 
signals and then processed by the computer which controls other devices. 

This project aims to design a hardware device that is able to acquire the brain signals 
related to Motor Imagination with minimal noise effects. Then these signals are analyzed 
using Discrete Hidden Markov Model with the help of Fuzzy C-means Clustering and 
Discrete Cosine Transform. 

The results show that we were able to distinguish between silence state, left and right 
movements with high acceptable response time and low error rate. These results urge us 
to build a system in the Simulink to perform a real-time processing. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 
Brain Computer Interface (BCI) is the technology that allows the computer 
to interact with the brain. This interaction is realized by having computer 
signals entered into the brain, or by acquiring the signals from the brain to 
be analyzed using the computer. Fig 1.1 shows the BCI block diagram. 

The idea of having external signals penetrate into brain is found in the 
Neuroprosthetics field, but instead of a full computer, a hardware device is 
attached to the human skull to help disables to compensate their partially 
damaged senses. 

BCI improves the signal action between human brains and computers in 
a way that helps the persons who have totally damaged senses to compensate 
these senses, a good example of that, is the blind man Jens Neumann a man 
blinded in adulthood became able to drive slowly around the parking area of 
the research institute [26]. 

Interacting with the brain could be also based on analyzing signals coming 
out from the brain. Understanding brain signals means two things; first it is 
possible to check the healthiness of the brain through these signals, in other 
words, illness caused due to problems in brain could be recovered. Moreover, 
BCI is used to understand the imagination of a person. One type of imag­ 
ination signals is called the Motor Imagination, that is the imagination of 
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A----- ..... EEG Acquiring Computer 

Figure 1.1: BCI block diagram. 

body movements. 

Motor Imagination helps the disables to compensate their disability or 
loss in organs, like the loss of hands or legs. Even deaf persons would be 
understood through BCI. 

BCI depends on analyzing the brain signals, these signals are called Elec­ 
troencephalogram signals, EEG for short, but these signals can not be un­ 
derstood unless a well-designed signal processing technique is established. 

1.2 Objective 
This project tends to design a device which could acquires EEG signals with 
minimal noise effects. The device is designed to be portable in a way to be 
easy for the patients to hold it everywhere and every time. Also the project 
aims to find a reliable signal processing method from which leg movement 
signals can be understood. 

Fig 1.2 summarizes the project in three main stages: The first stage the 
electronic hardware that aims to acquire the EEG signals. This device is 
simplified to be only one channel device. 
The second stage is the Feature Extraction that aims to find the most sig­ 
nificant part of the signal in order to make the job of Hidden Makov Model 
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Engineering 

Figure 1.2: Block diagram summurize the project 

more efficient and fast. 
The final stage is the Hidden Markov Models block, this is a statistical model 
aims to study random signals like EEG. This block could contain many Hid­ 
den Markov Models, where each model is designed to understand only one 
signal. 

1.3 Time Schedule 
The time plan views the stages in studying, designing and building the entire 
system. This section includes two time schedules; the first one is done in the 
first semester while the second shows the task scheduling. for the second 
semester. 
Fig 1.3 shows the first semester tasks; all tasks are referred to the theoretical 
background and the whole system analysis. 

Fig 1.4 shows the second semester tasks schedule; all tasks are referred 
to the implementation and syatem testing. 
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Week 
Task 

Project 
Determination 

Data Gathering 

Design and 
Analysis 

Documentation 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 1.3: Time planning for the first semester 

Week 
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Hardware 
Design 

Software 
Design 

Implementation 
and Testing 

Documentation 

Figure 1.4: Time planning for second semester 

1.4 Economical Study 
This section lists the overall cost of the project, these costs are summarize 
in Fig 1.5. 
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Component Price 
Printed Board 100 $ 

IC's 50$ 
Resisters and Capacitors 20$ 
Cover and Battery 30$ 

Electrodes 40$ 
Leads 100$ 

{ .- 
>» Total 340$ 

Figure 1. 5: Hard ware Cost 

1.5 Project Contents 
In summary this project contains the following chapters: 

• Chapter 2: This chapter talks about the physiology of the brain, 
sources of EEG activity and brain rhythms, it also talks about the 
electrodes types and their placements. 

• Chapter 3: This chapter talks about the Hidden Markov Model as a 
statistical model used in analyzing random signals, this method prove 
its success in understanding random voice signals. 

• Chapter 4: This chapter talks about Feature Extraction methods used 
to get the most important data form the signal therefore easing the 
manipulation of signals. This method contains both Discrete Fourier 
Transform and Fuzzy C-means Clustering. 

• Chapter 5: This chapter describes the design of the EEG device and 
its electronic components requirements. 

• Chapter 6: This chapter presents the results of the Signal Processing 
results tested by MATLAB. 

• Chapter 7: This chapter explains the implementation of the entier 
system. 

• Chapter 8: The final chapter offers a recommendations for those who 
interest in working in this field. 
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Chapter 2 

BACKGROUND 

2.1 Introduction 
In order to analyze an EEG signal some background knowledge about the 
physiology of the brain ( with respect to its biopotentials), and an under­ 
standing of what is an EEG signal is necessary. This chapter gives a basic 
idea about the EEG signals, EEG electrodes placement, and types of EEG 
electrodes. 

2.2 The EEG signal 
Electroencephalogram (EEG): is a recording of electrical activity originating 
from the brain. It is recorded on the surface of the scalp using electrodes, 

~~ (t• Nerve impulse 
P\l) >, t7> A, Melin sheath Chemical 
~ (( Nucleus~ __ ,....__, __ ")...! 

1
cel~ transm1ss1on 

~~- ,r---- ' ►. .. ....,, ~~-·'?= ~ 
Dendrites , iL Cell bod Axon \l ~=- . .-~ '----v" e1 yr s 

. fe\( ¢ Axon»" 
\le=> Nodes of Ranvier terminal 

,,7,7 ~~ bundle 
V""' Stimulus 

Figure 2.1: The Neuron [2]. 
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thus the signal is retrievable non-invasively. The brain consists of billions of 
neurons making up a large complex neural network. Fig 2.1 depicts the Neu­ 
ron, it has several components: the soma is the cell body of the neuron and 
contains the nucleus, which houses genetic information; the dendrites extend 
from the soma, and receive chemical messages from other neurons; the axon 
transmits electro-chemical signals to other neurons; the myelin sheath con­ 
sists of fatty tissue cells that insulate the electrical current flowing through 
the axon [1, 2]. 

The brain is "defined as a large soft mass of nerve tissue contained within 
the cranium, the encephalon". Three major structures compose the brain 
[4], as shown Fig 2.2: 

1. The brain stem-automatic vital system control. 

2. The cerebellum-involuntary muscle control and coordination. 

3. The cerebrum-voluntary movement, sensation, and intelligence. 

The brain also includes tens of billions of brain neurons, these neurons 
are linked to one large group ( sometimes with thousands) of nerve fibers by 
neighboring synapses, this group transports information (meta nerve) from 
the brain to different organs and tissues of the body and vice versa. The 
networks of neurons that make it contacts together very similar to electrical 
circuits ,which comes to life when they pass through electricity .Therefore, 
the mechanism of sending and receiving electrical impulses between nerve 
cells is the same as the transfer of electric charges inside the wire. 

2.3 Source of EEG activity 
The electrical activity of the brain is usually divided into three categories: 
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1. Spontaneous activity: is measured on the scalp or on the brain, and is 
called the electroencephalogram. The amplitude of the EEG is about 
lOOµv when measured on the scalp, and about 1-2 m\V when measured 
on the surface of the brain. The bandwidth of this signal is less than 
50Hz. As phrase "spontaneous activity" implies, this activity goes on 
continuously in the living individual [5]. 

Neurons, or nerve cells, are electrically active cells which are primarily 
responsible for carrying out the brain's functions. Neurons create ac­ 
tion potentials [3]. Action potential (AP) is caused by an exchange of 
ions across the neuron membrane, and an AP is a temporary change in 
the membrane potential that is transmitted along the axon. It is usu­ 
ally initiated in the cell body and normally travels in one direction. The 
membrane potential depolarizes (becomes more positive), producing a 
spike. After the peak of the spike the membrane repolarizes (becomes 
more negative), as shown Fig 2.3. The potential becomes more nega­ 
tive than the resting potential and then returns to normal. The action 
potentials of most nerves last between 5 and 10 milliseconds [6]. Which 
are discrete electrical signals that travel down axons and cause the re­ 
lease of chemical neurotransmitters at the synapse, which is an area 
of near contact between two neurons. This neurotransmitter fits into 
a receptor in the dendrite or body of the neuron that is on the other 
side of the synapse, the post-synaptic neuron. The neurotransmitter, 
when combined with the receptor, typically causes an electrical current 
within dendrite or body of the post-synaptic neuron. Thousands of 
post-synaptic currents from a single neuron's dendrites and body then 
sum up to cause the neuron to generate an action potential. This neu­ 
ron then synapses on other neurons [3]. 

EEG reflects correlated synaptic activity caused by post-synaptic po­ 
tentials of cortical neurons. The ionic currents involved in the gener­ 
ation of fast action potentials may not contribute greatly to the av­ 
eraged field potentials representing the EEG; Fig 2.4 depicts current 
flow during synaptic activation. More specifically, the scalp electrical 
potentials that produce EEG are generally thought to be caused by 
the extra-cellular ionic currents caused by dendritic electrical activity, 
whereas the fields producing magneto encephalographic signals are as- 

9 



50 ----T----7-----r---------7 
I I I I 
I I I I 
I I I I 
I I I I I 

,----1-----r----+----7 
I I I I 
I I I I 
I I I I 
I I I I 

>»q%»=@» p»=»@»a»»] 
I I I I I 
I I 
l ! I I I 
j Negative after potential 

\{( p »ppr 

0 

0 2 4 6 8 IO 
Time, ms 

Figure 2.3: An example of Action Potential [3]. 

sociated with intracellular ionic currents [6]. 

2. Evoked potentials: components of the EEG that arise in response to 
a stimulus (which may be electric, auditory, visual, etc.). Such signal 
are usually below the noise level are not readily distinguished. Hence, 
and one must use a train of stimuli and signal averaging to improve the 
signal to noise ratio [5]. 

3. Bioelectric events produced by single neurons: single neuron behavior 
can be examined through the use of microelectrodes which impale the 
cells of interest. Through studies of cell networks actual tissue proper­ 
ties are reflected [5]. 

The electric potentials, generated by single neurons, are far too small 
to be picked by EEG. EEG activity, therefore, always reflects the sum­ 
mation of the synchronous activity of thousands or millions of neurons 
that have similar spatial orientation, radial to the scalp. Currents that 
are tangential to the scalp are not picked up by the EEG. Thus, the 
EEG benefits from the parallel, radial arrangement of apical dendrites 
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Figure 2.4: The neuron membrane potential changes [5] 

in the cortex. Because voltage fields fall off with the fourth power of 
the radius, activity from deep sources is more difficult to detect than 
currents near the skull [6]. 

Scalp EEG activity shows oscillations at a variety of frequencies. Sev­ 
eral of these oscillations have characteristic frequency ranges, spatial 
distributions and are associated with different states of brain function­ 
ing (e.g., the various sleep stages). These oscillations represent syn­ 
chronized activity over a network of neurons. The neuronal networks 
underlying some of these oscillations are understood, while many oth­ 
ers are not [6]. 
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2.4 Brain Rhythms 
EEG signal amplitude range from about 1 to 100V,, at low frequencies 
(0.5 to 100 Hz) [3]. The rhythm of EEG signal is illustrated in Fig 2.5, some 
of the well-known rhythms are explained below: 

1. Alpha: wave occurs at a frequency between (7.5- 13 Hz), the alpha 
waves are produced when a person is in a conscious, relaxed state with 
eyes closed; the activity is suppressed when the eyes are open. The 
maximum amplitude of the alpha rhythm is (10V, ,)[4], and intensely 
occurs in the occipital region and can be best recorded at parietal and 
frontal regions of the scalp. 

2. Beta waves normally occur in the frequency range of (14 - 30 Hz) 
and sometimes even as high as 50Hz for intense activity. Beta waves 
activity is present when people are alert or anxious, with their eyes 
open. The frequencies above 30 Hz ( mainly up to 45 Hz) correspond to 
the gamma range (sometimes called the fast beta wave). Although the 
amplitudes of these rhythms are very low (less than 20lV, , in Beta 
wave, and less than 2V,, in gamma wave) [4] and their occurrence is 
rare, detection of these rhythms can be used for confirmation of certain 
brain diseases. 

3. Theta waves potentials are relatively large amplitude (less than 100V, ,)\4], 
and low frequency (3.5- 7.5 Hz). Theta waves appeared in sleeping sit­ 
uation, small children, and occur mainly in the parietal and temporal 
region. 

4. Delta waves relatively have the largest amplitudes (100V, ,)[4] and 
the lowest frequency (0.5 - 3.5 Hz). It is normal rhythm for infants less 
than one year old and in adults in deep sleep. This wave can thus occur 
solely within the cortex, independent of the activities in lower regions 
of the brain [7]. 
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Figure 2.5: Four typical dominant brain normal rhythms [3]. 
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2.5 EEG electrodes placement system 

The electrical characteristics are determined primarily by the type of metal 
used. Several types of electrodes can be used to record EEG (Appendix A). 
EEG electrodes are smaller in size than ECG electrodes. They may be ap­ 
plied separately to the scalp or may be mounted in special bands, which can 
be placed on the patient's head. In either case, electrode jelly or paste is 
used to improve the electrical contact. If the electrodes are intended to be 
used under the skin of the scalp, needle electrodes are used. They offer the 
advantage of reducing movement artifacts. EEG electrodes give high skin 
contact impedance as compared to ECG electrodes [4, 5, 6]. 

The amplitude, phase, and frequency of EEG signals depend on electrode 
placement. This placement is based on the frontal, parietal, temporal, and 
occipital cranial areas. One of the most popular schemes is the 10-20% EEG 
electrode placement system [4]. The system does not show how many elec­ 
trode to be put on the scalp but rather it is a measurement of percentage of 
10% or 20% on a certain anatomical landmarks to standardize the placement 
of electrodes. The positions are defined by certain anatomical reference. Ref­ 
erence points are nasion, which is the delve at the top of the nose, level with 
the eyes; and inions, which is the bony lump at the base of the skull on the 
midline at the back of the head. From these points, the skull perimeters are 
measured in the transverse and median planes [7]. 

Electrode locations are determined by dividing these perimeters into 10% 
and 20% intervals. Three other electrodes are placed on each side equidistant 
from the neighboring points. They are identified according to their position 
on the head; Fp for frontal-polar. F for frontal, C for central, P for parietal, 
T for temporal and O for occipital. Odd numbers refer to electrodes on the 
left side of the head and even numbers represent those on the right while Z 
denotes midline electrodes. One electrode is labeled is ground and placed at 
a relatively neutral site on the head, usually the midline forehead [5]. 

In addition to the 21 electrodes of the international 10-20% system, inter­ 
mediate 10% electrode positions are also used. The locations and nomencla­ 
ture of these electrodes are standardized by the American Electroencephalo 
graphic Society. In this recommendation, four electrodes have different names 
compared to the 10-20% system; these are T}, T%, P}, and Pg. These elec­ 
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trodes are drawn black with white text in Fig 2.6. Besides the international 
10-20% system, many other electrode systems exist for recording electric po­ 
tentials on the scalp [5]. 

Unipolar or Bipolar electrodes can be used in the EEG measurement. In 
the first method, EEG may be recorded by picking up the voltage difference 
between an active electrode on the scalp with respect to a reference electrode 
on the ear lobe or any other part of the body. However, bipolar recording 
is more popular wherein the voltage difference between two scalp electrodes 
is recorded; the following Fig 2.7 depicts the Unipolar and Bipolar measure­ 
ments. Such recordings are done with multi-channel electroencephalographs 
[s] 

Fig 2.8 depicts the position of three electrodes which will be used in this 
project. Electrode (1) and electrode (2) will be used to acquire the EEG 
signal using unipolar (Monopolar) method, Monopolar recording is used in 
research, because it enables the researcher to localize the event of interest. 
These two electrode fixed in a distance of 5cm in an anterior posterior po­ 
sition on the vertex (Cz according to the international 10-20 system), while 
electrode (3) is the reference electrode, these positions have been chosen ac­ 
cording to the nerves that control the leg motion [8]. 

Tissue and Electrode System 
The series resistance capacitance equivalent circuit breaks down at the lower 
frequencies. Where this model would suggest an impedance going to infinity 
as the frequency approaches DC. To avoid this problem, convert this series 
RC circuit to a parallel RC circuit as shown Fig 2.9 that has purely resistive 
impedance at very low frequencies. 

Using the simple model of the electrode electrolyte interface of Fig 2.9, as 
well as the even simpler model previously developed for the electrical activity 
of the Brain. This overall equivalent circuit, as shown Fig 2.10. 

Although C and C', and RI', R2 and R2' may not be exactly equal (dif­ 
ferent sites and modes of application on the skin), E should be equal to E' 
(same type of electrode). Hence V represents the actual difference of ionic 
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(a) (b) 

(c) 

Figure 2.6: The international 10-20% system 
seen from (A) left and (B) above the head A= Ear lobe, C = central, P, = 

nasopharyngeal, P = parietal, F = frontal, F, = frontal polar, 0 = 
occipital. (C) Location and nomenclature of the intermediate 10% 

electrodes [3]. 
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Figure 2.7: Method of measurement 
(A) Bipolar and (B) Unipolar measurements.[27]. 

Electrode 1 
20% 

Electrode 2 

Figure 2.8: Electrode placements for a single channel unipolar system. 
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Figure 2.9: Equivalent circuit of the Ag-AgCl Interface[6]. 

17 



potential between the two points on the body from which the EEG is being 
recorded. 

; Res:stance 

II + I i · Rr ! E R: 

.5l L+----c=:J+,:1 R', ,,~ . ' ~ 
Boelectnc! R'; ! E R, 
generator j j 

Electrode electrolyte interface 

If 

Figure 2.10: Equivalent circuit for Tissue and Electrode system [6]. 

2.6 Types of EEG Electrodes 
Several types of surface electrodes can be used to acquire EEG signals. The 
main types are Suction,Floating, Flexible, and Needle electrodes (Appendix 
A describes these eectrodes deeply). These electrodes differ in their location 
in the cranial, as well their configuration. EEG electrodes transform ionic 
currents from cerebral tissue into electrical currents used in EEG pream­ 
plifiers. The electrodes are the most critical components of the recording 
chain. These electrodes are to be of easily fixed at the scalp with minimal 
disturbance of coiffure cause no discomforts and remain in place for extended 
period of time. The disposable self-adhesive pad is selected, we choose this 
pad because it's noninvasive and ideal for measuring low voltage Brain sig­ 
nals. Since human skin is a poor electrical conductor, a low-resistance gel is 
applied between the skin and the electrical contact [6]. The electrodes should 
be: 

• High sensitivity. 

• Low Electrode Offset Potentials. 

• Low Electrode Noise. 
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Figure 2.11: Ag/ AgCl electrode [28]. 

• Low Electrode Polarization effect. 

• Motion Artifact-about 5mV (By adding an electrode jelly or paste) 
[s]/6][9]. 

Ag/AgCl electrodes should offer the best combination of low offset po­ 
tentials and drift, low noise and relative immunity to motion artifact. These 
disposable electrodes require face to face bench testing to ensure that the 
offset voltage is less than 100mV, the noise is less than 150µV the 10Hz 
impedance is less than 2K, and the bias current tolerance to 200nA for 8 
hours yields less than 100m V offset. Hence, Ag/ AgCI will be used in this 
project [3, 8, 10]. 

19 



Chapter 3 

HIDDEN MARKOV MODEL 

3.1 Introduction 
This chapter presents the theory of Hidden Markov Model, and how can we 
utilize it in our project. 
Signals are physical quantities produced by variety of real-world processes. 
These signals can be discrete in nature, such as codebook characters, etc., or 
continuous in nature such as speech, music, temperature, etc. 
All signals are emitted from sources, these sources can be stationary, in which 
the signal's statistical properties do not vary with time, or nonstationary, in 
which the signal's statistical properties vary with time. 
Signals coming form one source are called pure signals, while those coming 
form many sources, for example the origin of the signal and the noise source, 
are called corrupted signals. 

Studying real-world signals is achieved using signal models, these models 
provide the basis for the theoretical description of a signal processing sys­ 
tem. Also signal models can be used to process the signal so as to provide a 
desired output, and they are potentially capable of letting us learn a great 
deal about the signal source without having to have the source available, i.e. 
we can simulate the source and learn as much as possible via simulation. 

Signal models can be divided into two types, deterministic models and sta­ 
tistical models. Deterministic models exploit some known specific properties 
of the signal, here the specification of the signal model is generally straight 
o 
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forward; like estimating frequency, amplitude, etc.In statistical models one 
tries to find statistical properties of the signal, random processes are used 
to characterize the signal here.One of the statistical models is called Hidden 
Markov Model, HMM for short, which is going to be applied in this project. 

HMM is very common in the field of speech recognition, the theory of 
HMM was first published in 1960's and first implemented in speech recogni­ 
tion system in 1970's. 

3.2 Discrete Markov Model 
Assume that we have a system with N different states, that is, the system 
can be in one of its different states at any given time T. Let w,(t) is the n 
state at time t, where n EN, then in the following example: 

the system visit the states 1, 4, 3 then 2, for short, it can be rewritten as: 

In general, a full probabilistic description of the systems like the one 
mention above requires a specification of the current state as well as all its 
predecessors. So if it is desired to find the probability of any sequence of 
states, we can use the following formula: 

P(0y,w2,w3, ...,wy) = P(w,)·P(wo\uw;)·P(ws]w,wa)···--P(w\w, ...,00N-1) 
(3.1) 

N 

=[[P(@olnc- w-,w-a,··3w-) 
i=l 

But in First Order Markov Process the probabilistic description depends 
only on the current state and the previous state, that is: 
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(3.2) 
N 

=[[Phu,-1,,-a,w,-s,··3u,-y-1) 
i=l 

If we define aij = P( Wj lwi) which is called the transition probability and 
m,P(w,) which is the initial probability,then the Eq 3.2 becomes 

P(wy,wg,w3,...,wy)=m1·@·@a3·"@(N-1)N (3.3) 
Usually systems like these are shown graphically as in Fig 3.1 

a33 

a32 

a22 

Figure 3.1: Markov Model with three states 

The transition probabilities have to obey the standard probabilistic con­ 

strains: 

(3.4) 

N 

S»= 
j=1 

(3.5) 
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b21 b11 

a12 

Figure 3.2: Hidden Markov Model with two states and two symbols for each 
state 

Eq 3.4 comes from the basic theorem in probability which states that any 
probability measure has to be greater than or equal to zero. And Eq 3.5, 
from basic probability, we are certain that w, will change certainly to one of 
the defined states, which means 1 in probability. 

The Markov model, mentioned above, could be called Observable Markov 
Model, because the states of the system can be observed. However this model 
does not has many practical applications, because if the states are usually 
Hidden. 

3.3 Hidden Markov Model 
In cases where the source of the signals is not available and/or its states are 
not observable, Markov Model described previously is not applicable. So it 
is worth while to use another model, or in other words, a modified model 
from which the sources and their states can be studied, this model is called 
the Hidden Markov Model HMM. 

In HMM, like the one shown in Fig 3.2, it is assumed that any stale 
can be inferred to from an observable symbol assigned to that state, these 
symbols are, in actual, signals. I.e. Instead of studying the system from its 
Hidden states, we can study the observable symbols. 

The symbols in HMM can be written in the form ,(t), for m € M and 
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t ET, where IV! is the total number of symbols and Tis the total time. 
To ease the problem we assume that each state is capable of producing the 
same set of symbols. 

To understand HMM, let us consider the following example: 
Assume that a person in a closed room is doing an experiment of choosing 
an urn and then choosing a colored ball from the urn, then saying the color 
of the ball by using a microphone. If you were given the following sequence: 

WY BBBWYYWBY BW... 

Here the colors of the balls are considered to be the visible symbols, and 
the urns are the hidden states of the model. 
The challenge in HMM is choosing the optimal number of unknown states, 
which is based on the application and can be optimized by find out the out­ 
put of different experiments. 

In general HMM has the following characteristics: 

1. The number of states which the system may visit at each time instant. 
For simplicity we assume that all the states are interconnected, in other 
words the system is ergodic. 

2. The number of observation symbols M which is assumed to be constant 
for the N states, i.e.: each state can emit the given set of symbols. 

3. The initial distribution of the system is m,, where 1 <i < N. 

4. The transition probabilities of the system a,,, where 1 <i,j < N. 

5. The emission probability b,, where 1 <j<N and 1 <k <M. 

The emission probability b;} is defined as following: 

(3.6) 
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(3.6) 
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As in the case of aij the emission probability has the properties: 

(3.7) 

(3.8) 
k=l 

Eq 3.8 states that any state will certainly emit one of the defined sym­ 
bols. Up to now we can conclude that with b; is doubly embedded stochastic 
process. 

3.4 Basic Problems of HMM 
HMM has three related problems, these are: 

• The Evaluation Problem: 
In this problem, the parameters of the system, a,,, b; and ,, are given 
and the probability of getting a special sequence of symbols P(") is 
to be determined. 

• The Decoding Problem: 
In this problem, the parameters of the models are given, and the opti­ 
mal path of states w, that emit the given sequence of symbols v, is 
to be found. 

• The Learning Problem: 
In this problem initial values of the parameters are given, and it is 
desired to adjust these values depending on the training sequence of 
symbols v. 

3.5 Computation of Hidden Markov Model 

3.5.1 Evaluation 
The evaluation problem enable us to find the chance of getting a sequence 
T from a specific model, i.e. how likely that v? can be emitted form the 
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model. 
The evaluation problem is co: id d · · ns ere as an Important problem because, It 
enables us to choose the best model among set of models, also it helps us to 
find the likelihood that an unknown signal be generated from the model. 

Now we want to find P(vr), it is given by the equation: 

Tmax 

P)= Plow)Pe") 
r==] 

(3.9) 

where Tnaa is the total number of combinations given by NT. But 
P(v"[u") and P(u') is given by Eq 3.10 and 3.11. 

T 

P\a")= [[P@@l,(@) (@.10) 
t=l 

T 

P@') = [[Po,(@)lot@= 19) 
t=l 

(3.11) 

Where P(vk(t)lwj(t)) is the emission probability and P(vk(t)lwj(t)) is the 
transition probability. 

Unfortunately this equation needs a huge calculation capacity. To ease 
the problem estimation we can use the Forward Algorithm or the Backward 
Algorithm. 

Forward Algorithm 
Let ai ( t) be the probability of the system to be in the state i at time t and 
emit the given symbol v(t). This is simplified in Fig 3.3. 

N 
as(@+1)= }a() -ay),(8 +1),1<5<N. (3.13) 

i=l 
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0 
P(v(1)) P(v(1 ))'P(v(2)) 

Figure 3.3: Estimating a in Forward Algorithm 

N 

Po)= @@ 
i=l 

(3.14) 

Backward Algorithm 

Let /3i(t) is the probability of being at state i in time instant t, then 

,(T)=1,1<i<N. (3.15) 

N 

6,)= }(9.@+1)-a,)·,(t+ 19,1<5<N. (3.16) 
i=l 

N 

PG)= @m 
i=l 

(3.17) 

3.5.2 Decoding 
Here the parameters and the sequence of symbols are given, in this problem 
the sequence of the hidden states that generates the given symbols is to be 
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found. As in the evaluation problem, we find ai(t) for all T and N. Then 
we consider the maximum value among N in each t. 

This is called Local Maximization algorithm. But this algorithm is not 
accurate, because a13, for example, could be zero and the maximal path 
contains {...,w1,w3}, i.e. this algorithm does not take the transition proba­ 
bilities in consideration. 
Instead we can use the Viterbi Algorithm, which is capable of getting the 
optimal path, it is summarized as follows: 
Initialization 

(3.18) 

(3.19) 

Recursion: 

Termination: 

p(t) = (t+ l)(p(t + 1)) 
A simple example is shown in Fig 3.4 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

3.5.3 Learning 
. bl which is performed once at the beginning, we try In the learnmg pro em, 1 · · 

d th d 1 to Specific pattern represented by a samp e or trammg to adapt e model %3jj9 tc th 
h d 1 . s trained so that any sequence s1m1 ar o e sequence. Here t e mo» e. 1 . 'li 

:..:. ill be generated with high probability. 
training sequence WI!_j,, st b,, and n, for all i and j. 
Our objective here is to adjust ay, '5k 'i 
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Figure 3.4: Example of Viterbi Algorithm where the upper right image is 0 
and lower right is , then the optimal path is shown in the right 
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Learning Computation 

We can define a,: as: tJ . 

P(wy, w,) 
P() (3.24) 

So we want to find P( w ) h. algorithm shown in p· 3 5j, wi , w ich can be found by the forward-backward 
lg . . 

(3.25) 

where P(") can be expressed as: 
N N 

P6) =Ye@)-as-06-+19-0,@+ 1) (@.26) 
i=l j=l 

Now we find P(wi) by: 

N 

«= Yao 
j 

Finally the equations become: 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

In the paper publish by Lee and Choi [20] used 2 HMMs for the right 
hand and 2 HMMs for the left hand, but in their paper they used Continu- 
ous HMM instead of Discrete. 

This project will use Discrete HMMs, using Discrete Hidden Markov 
Model simplify the theory and the manipulation and even more logic to 
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alj " bj(t+1) 

Figure 3.5: Forward-Backward Algorithm 

be programmed into programmable devices. 
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Chapter 4 

FEATURE EXTRACTION 

Hidden Markov Model is very efficient to be aware of the pattern of the sig­ 
nal, but the signal in its original form cannot be entered in the HMM for 
either training or evaluation. 
The signal originally is time varying and may have any value versus time, 
these values must be known precisely if the signal to be input directly into 
HMM, because HMM asks about the number of symbols that the signal has. 
To solve this problem a Feature Extraction methods are used to make the 
symbols defined in HMM as minimum as possible. 

4.1 Frequency Domain Representation 
The EEG signals are known to have very limited frequency components in 
their frequency domain. Many references tend to manipulate the first 100 
frequency components of the EEG signals [3]. And this is a very attractive 
property to manipulate the EEG signals in their frequency domain. 

Using the frequency components in processing EEG signal make it easy 
for the system to concentrate on limited frequency components instead of 
processing the whole signal. 

Transforming any signal into its frequency domain is done by using the 
very popular formula found by the French mathematician Jean Baptiste 
Joseph Fourier which was named after him [23]. The following equation 
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is known as the Fourier Transform equation 

n=fa@ea @ 
It is_ also known as the Continuous-Time Fourier Transform because it 

deals with contmuous data. 

Most of the applications deal with discrete data because they used com­ 
puters to process their signal. Computers deal only with discrete data, so 
mstead of usmg the above equation, the following Discrete-Time Fourier 
Transform must be used: 

00 

Xx(D)= } at)-e-+ro 
'n=O 

(4.2) 

The output of Fourier Transform is complex data in general, but the 
theories in this project deals only with real data points. To avoid dealing 
with complex numbers only real part, imaginary part or the magnitude has 
to be taken into consideration. 

4. 1. 1 Discrete Cosine Transform 
The Discrete Cosine Transform is simply the real part of the Discrete-Time 
Fourier Transform. Taking the real part of Eq 4.2 the following equation will 
be evolved which is known as the Discrete Cosine Transform: 

N 

x(J)= +r) cos(2cf) 
n=l 

where N is the window length 

(4.3) 

This equation is used in many applications related to signal and image 
processing like image compression, and its output is real number data point. 
In this project Eq 4.3 is used to transform the signal into its frequency do- 
main. 

Transforming the signal into its frequency domain reduce the dimensions 
of the signal, because EEG signals have limited frequency components, but 
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until now the problem of determining the symbols to be entered into the 
HMM is not solved. The frequency domain only reduces the dimension of 
the EEG data signals which are going to be processed, therefore additional 
theory must be found to help in estimating the number of symbols. 

4.2 Clustering 
Clustering is the operation of assigning a group of data points into subgroups, 
these subgroups are called clusters. Each cluster is given a label and so its 
data point related to it. Here instead of dealing with each data point individ­ 
ually, it is possible to deal with a limited and manageable number of groups. 
Clustering aims to expand the uniqueness of the signal in an efficient way by 
transforming the pattern of the signal into a sequence of labels, also it can 
be considered as a tool to reduce the size of the data. 

There are many theories that perform the clustering operation. In this 
project the Fuzzy C-means clustering is used to divide the signal pattern into 
single label. This label it treated as a single symbol. 

4.2.1 Fuzzy C-means Clustering 
What distinguish the Fuzzy C-means that it assign gradual memberships of 
the data points in the cluster, instead of assigning the data pomt completely 
in one cluster as the Hard C-means theory does. [24] 

If the data points are given the following symbols: 

(4.4) 

And clusters are: 

T,,1s.T, (4.5) 
;s, a define the degree of membership as U, where u;; is 

Then it is possible V,,,, ; data point into the i cluster. The degree of 
a degree of membership of 1eJ ad 1, where zero degree of mem­ 
membership is given a values between an ' b» h; 

h. d 1 means full mem ers. ap. bership means no members 1P, an 
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Two constrains must be under . 
means. The first states that th consideration when studying Fuzzy C­ 
by the following equation: ere must be no empty cluster, this is clarified 

n 

3%> 0, \:/i E {1, ... c} (4.6) 
j=1 

. The another constrain states that each datum receives the same wei ht 
m comparison to all the other data, this appears in the following equatio:: 

C 

3%= 
i=] 

\:/j E {1, ..., n} (4.7) 

. The algorithm of the Fuzzy C-means depends on the Objective Function, 
this function is defined as following: 

c n 

ox.,oy- SY «4¢ (4.8) 
i=l j=] 

where d,, is the distance between the i center and the j element. m is the 
weighting exponent and it is usually equal 2 for the Fuzzy C-means Cluster­ 
ing. 

Nate that the distance is used as a parameter of similarity between the 
data and the cluster also note that the membership is inversely proportional 
with the distance. 
It is easy to be aware that the best result of clustering occurs when the 
highest value of membership Uij encounter the smallest value of distance dij 
so the objective is to minimize the squared distance of data points to their 
cluster centers and so get the maximum degree of memberships. 

The algorithm that is used to get the best result of Fuzzy C-means Clus­ 
tering is called the Alternating Optimization (AO) Scheme, the is Uij are 
optimized for fixed cluster centers, then the cluster centers are optimized for 
fixed memberships as the equations clarify 

(4.9) 

(4.10) 
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The Jc and Ju are obtained by deriving the Objective Function J and 
make it equal to zero. By doing so the following equation evolved: ' 

-2 
dy­ 

Uij = tJ -2 

·¢ 3m-1 Z l=l 'lj 
n m 2j=1 5'@5 

Ci= ~n m 
L..,j=l Uij 

(4.11) 

(4.12) 

Note in Eq 4.11 that it does not depend only on the distance between 
the data points and their center but also it depends on the distance between 
data point and the centers of other clusters. 
Initially cluster centers are determined randomly before the first update of 
the membership equation Eq 4.11. 

Fuzzy C-means clustering is used in many publications, like [25] that used 
the wavelet space to extract the feature of EEG signals then FCM is used to 
maximize the separability of different signals. 
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Chapter 5 

SYSTEM DESIGN 

This chapter talks about the design of the overall system and its two major 
parts; the EEG acquiring system and the design of the signal processing 
system. 

5.1 Introduction to Acquiring System Design 
The EEG signal like other biopotentials is a relatively small signal that exists 
in the level of ambient noise. The EEG amplifier shall acquire the small EEG 
signal, amplify it without any significant distortions, and suppress any noise 
below a sufficient level. This task can be described by basic requirements. 

In order to design an EEG system, an understanding of exactly what is 
an EEG artifacts is necessary. This chapter consists basically of two sections, 
the noise artifacts of EEG, and EEG hardware . 

5.2 EEG Noise and Artifacts 
EEG signals may be corrupted by various kinds of noise. The main sources 

of noise are: 

• Power-line interference: 50\60 Hz pickup and harmonics from the power 

lines. 
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• Electrode contact noise· · bl 
Ski·n . b 

1
. · :7ana e contact between the electrode and the 

, causmg ase me dnft. 

• Motion artifacts: shift± ' th b; 
k
. . d · · 1.S m e iaseline caused by changes in the electrode- 

s) 1n imper .ance. 

% Muscle contraction: electromyogram-type signals (EMG) are generated 
and mixed with the EEG signals. 

• Respiration, causing drift in the baseline. 

• Electromagnetic interference from other electronic devices with the 
electrode wires serving as antennas, and noise coupled from other elec­ 
tronic devices, usually at high frequencies. For more details Appendix 
B describes EEG artifacts. 

In summary, the EEG signals - which range from 20V to lOOµV - are 
combined with a differential mode de component of up to 300m V result­ 
ing from the electrode skin contact, plus a common mode component of up 
to 1.5V resulting from the power line potential between the electrodes and 
ground. 

Generally the common mode noise can be minimized by using EEG am­ 
plifier that features high common mode rejection ratio (CMRR), and by 
applying Notch filter circuit. Whereas the differential mode noise can be 
minimized by using suitable filters. 

The skin electrode impedances may differ by as much as 20k©? in mag­ 
nitude. The EEG source impedance is relatively high. Thus, the input 
impedance of the amplifier should be much higher than the source impedance 
to minimize the source impedance effects. 

5.3 Typiccal Biomedical Measurement Sys- 
tems 

As mentioned before the EEG amplifier shall have high CMRR which is de­ 
fined as the ratio of differential mode gain over the common mode gain to 
attenuate the line frequency interference that causes approximately the same 
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voltage between the amplifier in uts a 
Also the input impedance of th% ,,,""® ground (common mode voltage). 
the problems resulting fr 2plifier should be high enough to prevent 

rom source impedance unbalances. 

Since source impedance unbal . 1 ances mainly caused by electrodes are not 
uncommon and sufficient rejeciio fli, fr · · CMRR ° me equency interferences requires a 

l
mm~mluO~ 

1
. of lOOdB, the input impedance of the amplifier should be at 

east ~ i at me frequency (50Hz) t t · o preven noise due to source impedance 
unbalances from deteriorating the overall CMRR of the amplifier. 

In order to provide optimum signal quality and adequate voltage level for 
further signal processing, the amplifier has to compromise between providing 
high voltage gam and avoiding the desired signal distortion. Also it needs to 
maintain the best possible signal-to-noise ratio. 

5.4 Overall System Design 
The aim of this section is to design a portable EEG system. Fig 5.1 depicts 
the main components of the hardware system, the electrodes will be used 
to transform the ionic current in tissue of brain to electrical current, INA 
circuit amplify the useful signals, and reduce the common mode voltage by 
high CMRR, HPF to eliminate the DC offset voltage, Notch filter to remove 
the residual common mode voltage, inverting amplifier to amplifying the 
signal, and LPF eliminate the high frequency noise above 80Hz. 

5.4.1 Electrodes and Cables 
The disposable self-adhesive pad selected secures to the patients skin and 
connects to the electrode. We choose this pad because it was noninvasive 
and ideal for measuring low voltage brain signals. Since human skin is a poor 
electrical conductor a low-resistance gel is applied between the skin and the 
electrical contact. Ag/AgCl Electrode is chosen (section 2.6 describes why 
we have chosen this electrode). The patient cable is a shielded cable that 
carries the electrical signal to the INA, Fig 5.2 show the electrodes and leads 
that carries the signal to IN A. 
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Acquiring System 

EJ rr=-=-~~===-~~-::-__--=--- 
r,rti,nt --+ El1.r1Mles G [:] :>wit Jnv,nini C 

. A HPF ril_te_r --1 ._A_1111_llif_i·e--1r LJ 

~De-ds-io1_,1 ..---11 ID~ti I Clu~,ru,g [:] [:] 

Signal Processing 

Figure 5 .1: Block diagram of EEG system. 

5.4.2 Instrumentation Amplifier (INA) 
The main tasks of the EEG amplifier input stage are to detect the volt­ 
age between two electrodes while suppressing the common mode signal and 
minimizing the effect of EEG source impedance. Thus, such a differential 
amplifier cannot be realized using a standard single op-amp design (A3 in 
Fig 5.2), as this doesnt provide the necessary high input impedance. To 
attain high input impedance, two non inverting amplifiers could be imple­ 
mented to the input terminals of the single op-amp as shown in Fig 5.2(a). 
However, the non inverting amplifiers will amplify any common mode volt­ 
age. With the same amount as the differential voltage gain, the typical high 
common mode noise level may drive the amplifier to saturation. Hence the 
non inverting amplifiers could be replaced by voltage followers, as shown in 
Fig 5.2(b), which provide high input impedance and unity gain. With the 
input buffers working at unity gain, all the common mode rejection must be 
accomplished in the output amplifier, requiring very precise resistor match­ 
ing. Additionally, the noise of the final op-amp is added at a low signal level, 
decreasing the signal-to-noise ratio unnecessarily. The circuit in Fig 5.2 (c) 
eliminates this disadvantage. It represents the normal instrumentation am­ 
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plificr configuration. The two input op-amps provide high differential gain 
but only umty common mode gain without the requirement of close resistor 
matching [15]. 

The output voltages of the normal INA input stage Va
1 
and V,, (shown in 

Fig 5.2(c) are derived in terms of the input voltages V, and VM. The resulting 
output voltages are used to derive the normal INA differential voltage gain, 
Adiff, and common mode voltage gain Acm. 

The output voltages of the normal INA input stage Va1 and ½1 are de­ 
rived using nodal analysis. It is based on finding the voltages at each node 
in the circuit using Kirchhoffs current law. Kirchhoffs current law (KCL) 
states that the sum of all currents in a node equals zero. Applying KCL at 
junctions J1 and J2 yield Eq(5.l) and (5.2) respectively as follows 

KCL at J;: 

Val - Va Va - ½ 
Rr R, 

R12 · [Va - ½] 
V,1 = V%+ R 

g2 

Vr- V% -V, 
Rr R, 

R12 ·[½-Va] 
½1 = ½+ R g2 

(5.1) 

(5.2) 

Subtracting Eq(5.1) from Eq(5.2) yields 

V = [l + 2R12] ·[Va_½] (5.3) 
Val bl R 2 s. A . can be derived ] INA differential voltage gam, diff, From Eq(5.3), the norma .... 

as follows 
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Figure 5.2: Circuit Drawing for Three Different Realizations of INAs 
Non Inverting Amplifiers input stage (a), Voltage Follower Input Stage (b), 

and improved, amplifying input stage (c)[15]. 
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2R Adif J = 1 + ____E_ R,, 
. The common mode voltage gain of the INA input stage A, can be deter- 

mmed by assuming V, = V,= V, a d 1 1 -· h · a cm, n ca cuuating t e correspondmg output 
voltage~ Va1 an_d ½1- E~(5.l) and (5.2) are written here as Eq(5.5) and (5.6) 
respectively, with pluggmg in V cm for Va and V, 

(5.4) 

V, = V, + R f2 · [V cm - V cm] _ V, 
al cm R, cm 

g2 

V, = V, + R12 · [Vern - Val_ y 
bl cm R, cm 

g2 

Consequently, the common mode voltage gain of the normal INA input stage 
(Acm) equals 1, as illustrated in Eq(5.7) 

A = Val = Vbl = Vern = l (5.7) 
o VG Va Va 

According to above, the requirements CMRR of INA l00dB is needed to 
reject the common mode voltage: · 

CMRR = Adiff/Acm (5.8) 

The total gain of IN A is: 

2Rp R; 
A=[l+-]·­ R,» R, 

From above the AD620 INA chosen, because it has the following char- 

(5.9) 

acteristics: 

1. Low internal noise. 

2. High common mode rejection ratio (CMRR of lOOdB). 

3. High input impedance (10M and above). 

(5.5) 

(5.6) 
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4. Power supply ±9V, 

5. Low power consum t· paon. 

The fig 5.3 expresses an AD620 INA . . circuit. 

vcc 
9V 

RG vv 
10k 

7 l ¢ 

Electrode 1 } 

Electrode 2 
Output 1 

.9V 
VEE 

Figure 5.3: AD620 INA schematic. 

From the data sheet of this IC, the gain can be calculation by this equation 

Al 
49.9KD 

=--+1 Rc 
(5.10) 

Where, 

A : INA voltage gain. 

Ra : External resistance added to achieve a determined voltage gain. 

So, the gain that needed in this stage is (6)because the DC offset voltage 
in milli-volt ,so can't amplifying the signal more than 6 to attenuate the 
saturation, by using equation (5.10) the value of Ra is lOKD. 
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5.4.3 High Pass Filter 

After calculating the optimum values of the INA input stage components in 
previous section, an optimum HPF will be designed in this section to attenu­ 
ate the slowly varying voltages created by chemical reaction at the electrode 
patient interface which far exceed the size of the EEG voltages. Higher-order 
pass filters are required to sharpen a desired filter characteristic, so will be 
used 2nd order (Sallen-Key Butterworth Filter) to do this purpose. Fig 5.4 
depicts the high pass filter and it components. 

1 %5me soc 

R5 A2=1+ 
R4 

Quality Factor: 

(5.11) 

(5.12) 

1 
Q 3- Av 

The DC offset frequency that required in this project is Fh =0.5Hz. And 
the ain not more 3 to avoid accesses to saturation because the residual com- 

g 1 d (Q= 0 7l) in Butterworth coefficients filter [19],so mon mode vo tage an - • 
A =1.5. 

(5.13) 

Let Ci= 330nF 'by using equation(5.11): 
Rs=1M2, and C,=Cy= 330nF,R,=R»=1MQ. 

. .. (1.5) so by using equation (5.12), let R,=10KQ, The gam of this stage · , 
so Rs=5.1K2. 

The overall gain of these two stages will be: 
Aoan=A1 <A2. 
Act= 6 · 1.5 
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vcc 
9V 

R2 

C1 
Output 1 (} ] 

330 nF 

1MQ 

C2 
+ 
330nF R3 

1a 
~ -----4.,.. 

R4 
10k 

Output 2 

.9V 
VEE 

Figure 5.4: 2nd order high pass filter . 

Acct== 9 

Properties of Sallen-Key Filters: 

• Simplicity of the design. 

• Non-Inverting Amplifier (positive Gain), high input impedance. 

• Replication of elements. 

The Op-Amps that will be used in this circuit OP07 that has following 
characteristic: 

1. Power supply ±9V. 

2. Low internal noise. 

3. Low power consumption. 
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A2 

----------------------- 

/ 
I 
I 

o I 
Comer frequency » 

Fh= 0.5Hz 

+ '4 
p> f 

stop-band pass-band 

Figure 5.5: High pass response. 

Output 2 

C3 C4 

+I + f--- vcc 
47nF 47nF 9V 

R8 7 
34kf? 

RG R7 

68k0 68kfl :l C5 
=[w­ 
~ 

>-"--+------1. Output 3 

5.11<..<l 
R10 3 
10k!LJ_ 

.9V 
VEE 

Figure 5.6: Twin-T filter. 

47 

- 



5.4.4 Notch Filter (50Hz) 
From the preceding section, DC voltage is attenuated by the HPF circuit 
However, the residual common mode voltages created by power line are still 
combined with the EEG signal. On the other hand, the EEG signals should 
be amplified to provide adequate voltage level for further signal processing. 
Hence, the Notch filer will be used. Notch filter is known as band-cut filter 
or band-reject filter, the function of this filter is to remove some frequency 
portion of a signal. Fig 5.6 depicts a OP-Amp Twin-T Notch Filter. The 
Twin-T Notch filter uses one Op-Amp. It based on a passive (RC) that uses 
three resistors and three capacitors. When deign a Notch filter and band 
pass filter circuit the Quality factor (Q) must be high [17] [18] . 

The formula to calculate the resistor and capacitor values for the notch 
filter: 
Fnotch = 1/(2 k 77 k RC) 
Ca=C,= C, and Rs = R, = R. 
Fnotch = 50Hz, so by using the previous equation: 
Let C = 47nF, So C% = CA = 47nF. 
And From the same equation R=68K2, R,=R,=68K2. 
Rs = 0.5 * Rs, so Rs = 34K2. 
And C% = 2 C,, so C; = 94nF. 

Where: e 
Fnotch =center frequency of the notch filter in Hertz (50Hz). 
The gain As = 1.5, and by using Eq 5.12, and let Ro = lOKD , so R = 
5.1KO. The overall gain of these three stages will be . 
Aocaa = AoanA3 
Aoaaa 9* 1. 5 
Atotal2 = 13.5. 

5.4.5 Inverting Amplifier 
. t the common mode voltage remove' so now can 

After usmg the Notch fil er ure EEG signal as the signal is relatively small 
be amplified the relatively P . 1t=:fier (U4) is implemented to amplify . . 1 ) H an inverting amp 1 - 
m (microvolt . ence, : ·ti Amplifier will be used because the 

d . d . 1 (A, = -50), inverting F. 5 7 
the lesirec signal 14 '' rtir terminal is virtual ground. 7ig ». 
bias current is zero and non-inverting 
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depicts the inverting amplifier d it an 1 s components. 

vcc 
9V 

R12 
Output 3 (}-- { 1 ] 

1kQ 
R'13 

4//g 
50kf! 

4 

.9V 
VEE 

Figure 5.7: Inverting amplifier. 

Output 4 

The gain of this amplifier 

A, Ba 
R,, 

By using Eq 5.14, A4 = -50, let R12 = !KO, so Rs = 50KO 
The overall gain of these four stages will be : 
Atotal3 = Atotal2 A, 
Atotal3 = 13.5*-50 
Atotal3 = -675. 

(5.14) 

5.4.6 Active Low pass filter 
A low-pass filter, as shown Fig 5.8, passes low-frequency signals but atten­ 
uates frequencies higher than the cutoff frequency up to 80Hz, as shown fig 
5.9. In this stage it's enough to using first order low pass filter . 

1 n.= 5.4- c (5.15) 

49 --------- ' r~~ · ... t..,,.l_·c. JI ~I!'":_,, "I •- " 6, /@&it1 kl&th } ta6 ? 
] '} aiisttas atyeic vtvarsity 
~ ~ {PPU} 
~..,)./'-- The libra-ry ~I _ 

Acc L~.~.1.6.. _µ..:.i, ~..-J' 

CIOSS. ·······••"'·······"·····" ~
1
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The cutoff frequency FL = 80Hz, by using Eq 5.15, let C
7 
= 39nF, so Rs = 51KO. 

The gain of this amplifier is : 

R,s A5=l+ 
Rrs (5.16) 

After using all previous stages, the signal relatively small in m V. Hence, (As 
= 10),By using Eq 5.16, As = 10, and let Rs = lKO, so R16 = lOKO. 
The overall gain of all stages will be : 
Aotau == Ao&us A, 
Atotal4 = -675*10 
Atotal4 =-6750. 

vcc 
9V 

T 
R14 

Output 4 O__/w•\,-+---------'---j 
51kf! 

+ C7 
7 39nF 
_L 

1kn R15 
--~ 

4 R16 
V 

10kf! 

.9V 
VEE 

Figure 5.8: Active LPF . 

Output 5 

5.4. 7 Power Supply 
1 to power up the entire hardware, The ortable device needs power supp y • · . 

P h t h the following characteristics. so need a Battery t a as 

1. Lightweight. 
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A5 

Figure 5.9: Theoretical Response Of LPF . 

2. Enough supply voltage. 

3. Enough supply current. 

From Previous characteristics the 9V battery would be enough to power 
up the entire hardware, as shown Fig 5.10. 

V1 
-=-9V 
I 
-vcc 

V2 
=9V 
T 

+VCC 

Figure 5.10: 9V power supply. 
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5.5 Introduction to Signal Processing Design 
Analyzing EEG signals, in this project, mostly depends on the theory of 
Hidden Markov Models. Hidden Markov Model HMM become familiar with 

l l 

the signals that are used in training the model. The model becomes familiar 
with such signals by adjusting its parameters according to the input values 
of the signals during the training phase. And after training the model, it 
becomes specific for these "training signals" only, now the model can identify 
and produce such signals. 
To make HMM works efficiently, the data on which different HMMs are 
trained have to be as different as possible. Although the data are generally 
different the system has to extract this "difference" for HMM. In other words 
HMM has to deal with parameters of the signals that can be found only in 
this signals and similar signals. 
This project deals with three type of signals; left leg movement, right leg 
movement and silence state, Fig 5.11. 

< % io 20 so 4D 50 6o 70 ea so 100 

Up·. silence, middle: right and bottom: left. Figure 5.11: 
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5.6 Discrete Cosine Transform 

Studying signals can be done in time domain or in frequency domain. The 
signals in time domain can be obtained straight forward from the EEG ac­ 
quiring system. Processing the signals in time domain has many problems 
because the amplitude of the signals in time domain is sensitive to noise and 
it depends on the strength of the movement and the persons that are under 
the test. 
So it is found that the frequency domain can be a solution to the previous 
problems. On the other hand the frequencies of the EEG signals are limited. 
Here instead of considering the whole signals it is possible to consider some 
frequency components between in the interval [1, 100] Hz. 

To avoid the effect of the power in the signal, normalizing is used; that is 
after transforming the signals into its frequency domian it is normalized by 
dividing its values on the difference between the maximum and minimum. 
Here the frequency components is the only parameter to be considered. Fig 
5.12 shows the DCT transforms of the silence, right and left samples form 
Fig 5.11, note that the frequency components are concentrated before 30Hz. 

::r5: : : : : : : : l 
10, f0 20 sj40 5i 6i 70 so so 1oo 

E :,"°ti 
: 5~ 60 70 00 90 100 
: - 0 . 10 • 20, 3J 40 , - , - . - - , 
Wt a) 

DCT of the silence, right and left signals. Figure 5.12: 
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5.7 Clustering 

Transforming the signals into their frequency domain solves only a portion 
of the problem but not the whole problem. Because entering the data into 
HMM required the signal to be consists of specific and limited number of 
symbols, and these symbols have to be defined for the model through the 
training stage. 
To solve this problem it is found that dealing with the amplitude of the 
frequency components as symbols is not practical because the amplitude of 
frequency components could vary slightly from signal to another similar sig­ 
nal. 

To solve the problem of defining the symbols for HMM, it is estimated 
that each pattern of the data in the frequency domain can be classified in a 
specific cluster that has a special label. On other words the pattern of the 
signal in the time domain can be transformed into a sequence of symbols, 
each symbol is given according to the form of the potion of the signal, Fig 
5.13. 

7 I 9, To 20 so 46 so 6o 76 si so iio 

±:=7 
=¢ 5-~ 60 70 80 90 100 . 0 10 20 30 40 5 

1 

4 
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1 

3 

F. e 5.13: Clustering ea.ch signal 1gur.· · 
the window size equal 50 in clustermg. 

: are considered, the system is ready to Now with the above constrains 
h · als analyze and understand the s1gn% ­ 
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Chapter 6 

IMPLEMENTATION 
' EXPERIMENTS AND 

RESULTS 

6.1 Introduction 
Practical implementation and testing of the project have been done in the 
second semester, implementation started by implementing each individual 
subsystem, then the system is built by connecting these individual units. 
At the same time analyzing signals was being done by taking signals form 
students and testing them on MATLAB software. 

6.2 EEG acquiring system 

6.2.1 Electrode placement 
The idea of this project is to acquire an EEG signal, which corresponds to 
patient leg movement. Fig 6.1 depicts the electrode's placement for acquiring 
the signals. 

6.2.2 Instrumentation Amplifier (INA) 
The INA circuit has been connected as the first component in the project, 
the following Fig 6.2 views the connection of the AD620 INA, and the result 
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Figure 6.1: Electrodes Placements. 

of this stage is shown Fig 6.3. 
e mg e 

•·. ·.::~ 

Figure 6.2: AD620 practical connection. 

6.2.3 High pass filter 
This stage show the implementation of 2nd order HPF ,the Opamp that used 
in this stage is OP07 as shown Fig 6.4, and the result of this stage is shown 
Fig 6.5. 
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Figure 6.3: Output of INA. 

Jl l l®AN4I e . . 
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Figure 6.4: 2nd order HPF. 

17: 40-j+ C7 

Figure 6.5: Output of HPF. 
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6.2.4 Notch Filter 
The Notch filter (shown Fig 6 6) • . 1 mon ode olte ? Is1mplemented to remove the residual com­ 

mo e vo age, Fig 6. 7 depicts the result of this stage. 

less 
- .' 

Figure 6.6: Notch Filter. 

Figure 6.7: Output of Notch filter. 

6.2.5 Inverting Amplifier 
Inverting Amplifier (shown Fig 6.8) is implemented to understand and display 
the signals by amplifying it, and the result of this stage is shown Fig 6.9. 

6.2.6 Active Low Pass Filter 
LPF is implemented to eliminate the high frequency noise above 80 Hz as 
shown Fig 6.10, and the result of this stage as shown Fig 6.11. 
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Figure 6.8: Inverting Amplifier. 

DEE1 2.00U - I 50.0s CH1± 0.00U 
+. 9=5 

. . . - . . . . . . - . . . 

Figure 6.9: Output of Inverting Amplifier. 

Figure 6.10: Active LPF. 
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6.2.7 Total Practical circuit Implementation 

This stage shows all parts of the design and how each connect to other as 
shown in Fig 6.12. 

After implementing all individual subsystems and connecting them to­ 
gether, several output signals of the system are acquired in different cases. 
The following figures depict the output signals for each state. 

Figure 6.11: Total practical project implementation. 

... - ···••·•······ ·····•-··•·• ···•··· .. . . . . . - ... - ·- .. 

"RE!'''R''i'} g :] 
...... : .... : .... : .... : .... : ... : ... 

n so.oms cm f-ea.011v 
g ... -::. t:'-)(·es 

. 6.12: Output signal for silence state. Figure . . 
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Figure 6.13: silence state with close Eye. 
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Figure 6.14: Output signal for movement right leg. 

Figure 6.15: Output signal for movement left leg. 
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17:47%',+ 

Figure 6.16: Noise from motion around the patient. 

6.3 Signal Processing Testing 
In this project three continuous-movement sets of data are acquired two from 
the same person at different time and one from a different person. Each set 
of data contains left movement samples, right movement samples and silence 
state. In two of the sets the person moved each leg continuously for 98 sec­ 
onds and the third person moved each for 38 seconds. These data sets are 
used in what is called three-fold test. 

In the three fold test each data set are divided into three portions. Each 
models are trained on two portion and tested on the third portion. This test 
is repeated three times because three combinations can be formed from these 
three portions. 
This test is repeated until an acceptable error rate is got with acceptable 
response time. The parameters of the system that are explained followed are 
determined through trial and error procedures. 
The parameters are found to be: 

• The window size 35 sample. 

• Frequency components between [7,12]. 

% Number of clusters 4. 

• Number of states 3. 
• Number of symbols in decoding is 5. 
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These parameters enable the system to identifies the signal with error 
rates 5% for silence state, 15% for right and 17% for left. 

To make sure of the previous results, 5 sets of discontinuous movement 
are used to verify the results. Two of these 5 sets are acquired from one 
person and the other three form different three persons. First the models 
were trained on continuous data and these discontinuous data are used in 
evaluation stage. 
By doing so the system could verify the left movements form the right move­ 
ments with high precision. But sometimes it is important to change the data 
on which the models are trained to obtain good results. Of course the silence 
state is not used because discontinuous data contains silence state. 

6.4 Steps of training HMM 
• Acquiring continuous data. 

1 t d to the pure left leg movement. Right: data Figure 6.17: Left: data related 4¢. Bottom: no motion 
related to the pure right leg movemen · 

• Windowing the data. 
r · ach window into its frequency domain. % Transtorming e 
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. 6 

Figure 6.18: Arranging the data in a matrix, here the window size equal 1000 
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Figure 6.19: Transforming the data from the time domain into the frequency 
domain 

• Assign a specific label to each pattern . 

: l : : : 1 

0 10 15 "' 25 

~f : j 2 

·"'o 10 IS 3l 2 

A : : j 
s; 10 15 ,0 E y : j 4 

®, 10 15 3l "· : j 
10 " 3l 2 

. 0 

Figure 6.20: Example of labeling the samples, each sample is given a label. 
Note that two samples may have the same label. 

• Training HMM. 
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Left sequence: 11432 

Right sequence: 22313 

Silence sequence: 34523 

[inu»] 

[inn] 
HMM Left 

HMM right ~ 

HMM silence 

Figure 6.21: Each model is trained on specific sequence of data ft t .. 
them d 1 

·d ·fy . . , a er rammg 
olel can ilentif similar signals. 

. Note that the steps in evaluation are identical with those for training, the 
difference is that the models in evaluation have the probability measures for 
specific signals. 

6.5 Signal Processing Implementation 
The implementation of the signal processing hardware is done by using 
Simulink toolboxes, Simulink enable the system to perform a real-time pro­ 
cessing if a suitable acquisition card is used. 

This project do not require a complex acquisition card, because the max­ 
imum frequency component of the signal equal 30 Hz, by nyquist theorem it 
is possible to get sample such signal with sampling rate higher than 60 Hz. 
The DAQ used in this project is the PCI-6024E produced by National In­ 
struments company, it has a 200 kS/sec sample rate and 12 bit resolution. 
Data sheet for E series DAQ is shown in Appendix D. 

In Simulink the Hardware is implemented using predefined blocks, but 
) 

some blocks are not found so it was desired to design them in Simulink. 
After implementing the Hardware in Simulink, the Real-Time Windows Tar­ 
get toolbox is used to obtain real-time processing. 
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Before start evaluation process, it is preferred to connect the person to the 
system and train and models on some continuous mc 1t 5le 5ff-l; . . ovement samples o - me, 
and after storing required parameters the process can be started. 

In the system the first buffer is used to store windows when the buffer is 
filled with the required number of samples the processing starts. The window 
is transformed into the frequency domain by the DCT block. 

To neglect the strength of the signals, normalizing the signal is impor­ 
tant, normalizing the signal is done by dividing the signal on the difference 
between the maximum and minimum. 

Distance block performs clustering depending on the stored values, these 
values represents the center of each cluster. For each window, by now the 
data buffered in the first buffer is transformed into one symbol. 

To get a sequence of symbols the second buffer is required and after the 
buffer is filled, the sequence of symbols can be entered into HMM. Each 
HMM is special for one aspect, one for the right leg movement, another for 
silence state and the third for left leg movement. One thing distinguish one 
model from another is the predefined probabilities. 

The decision maker uses output values of probability to display a specific 
value, this value represent the kind of movement. 
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Chapter 7 

CONCLUSION AND 
FUTURE WORK 

A single channel EEG acquiring system with signal processing hardware have 
been designed and implemented in the second semester. They are managed 
to capture some brain wave react to leg movement. 

In this project, it was trained to make the noise entered to the signal pro­ 
cesser as minimum as possible, but this did not eliminate the noise totally, 
so additional components could be used like isolator circuit or covering the 
module with isolation materials. Also wires movement generate unwanted 
signals, this can be solved by make these movement as minimum as possible. 

The parameters of HMM chosen in this project were based on trail and 
error procedure, so these parameters can be changed if high precision proces­ 
sors are found, because increasing the parameters of the HMM, which are the 
symbols and states cause some probabilities to be very small and considered 
to be zero. 

Frequency components of the signals are less sensitive to noise than am­ 
plitudes of the time domain, but choosing the better frequency components 
that could reflect the fingerprint of the signal was based on testing. 

Processing the signals done off-line in this project by using MATLAB soft­ 
ware. and the hardware for real-time processing was built by Simulink which 
was run on PC. Real-time processing can be programmed on programmable 
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IC's to make the whole system portable. 
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Appendix A 

Electrodes types 

A.1 Suction Electrodes 
• No straps or adhesives are required for holding. 

• Such electrode are frequently used in ECG as the precordial (chest) 
leads. 

• This electrode can be used only for short periods of time. 

• The suction and the pressure of the contact surface against the skin 
can cause irritation. 

• Fig A.1 shows that the actual contacting area is relatively small. 

• The electrode is quit large [6]. 

A.2 Floating Electrodes 
• 5mm curved silver disc-center perforation admits the point of a glass 
rod by which it can be sealed to the skin until collodion gets dry. 
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Figure A.1: Suction electrode [32]. 

• Or it allows spraying through the electrode paste. 

• Scarp the skin with needle. 

• Useful for restless patients. 

• Position cannot be changed [6][8]. 

A.3 Flexible Electrodes 
• A void the curvature that occurs from movement of patient in the body 
surface. 

• Are especially important for monitoring premature infants. 
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Figure A.2: Adhesive electrode [30]. 

• They cannot conform to the shape of the infant's chest and can cause 
severe skin ulceration at pressure points. 

• Require some type of adhesive tape to hold them in place against the 
skin [6]. 

A.4 Needle Electrode 
• Consists of a solid needle, usually made of Stainless steel or silver, with 
a sharp point. 

• Contact resistance-high. 

. . f th' t of electrode is used on patients undergoing • A vanat10n o) us ype ] 
surgery to monitor the EEG continuously [6][8]. 
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Figure A.3: Needle electrode [31]. 

Figure A.4: Sphenoidal Electrodes [32]. 

A.5 Sphenoidal Electrodes 
• Injection needle 5cm long varnish insulated has a point bare at end. 

• Need surgery (6][8]. 
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A.6 Dry Electrodes 
• Not requiring the electrolyte gel. 

• Consists of a 7mm diameter stainless steel disk. 

• The amplifier that connection with this electrode should locate as close 
to the electrode as possible to reduce noise from electrostatically de­ 
tected signals. 

• For this electrode, care must be taken that any half-cell potentials that 
exist do not saturate the amplifier. 

• If the electrode is not good contact with the skin, this can have two 
effects: 

1. The low frequency response of the electrode can be compromised. 

2. If any charge on the capacitance, the changing capacitance can 
result in a changing voltage and hence artifacts. 

• Another serious source of artifacts in this electrode results from the 
very high impedance amplifier [6] [8]. 
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Appendix B 

EEG Artifacts 

This Appendix discusses different artifacts of EEG and presents methods to 
remove them. 

B.1 Transient Activities 
Artifacts are caused by muscle activity, movement, electrocardiographic (ECG) 
activity, blood-flow pulse waves, and electrode or equipment problems. Al­ 
though marked by differences in amplitude, frequency of occurrence, and 
scalp distribution, share one useful common characteristic for automatized 
detection of theses artifacts. In particular, they mostly consist of high am­ 
plitude spikes that are easily detectable using a peak to peak amplitude test. 

B.1.1 Muscle Activity 
Muscle can cause transient high-amplitude spikes, as shown Fig B.1(e), which 
are mainly generated by scalp and face muscles in frontal and temporal re­ 
gions· however they may be recorded by electrodes nearly anywhere on the 

3 3 5f¢ 5ft be reduced, or even completely scalp surface. This type of artiract can o en , . . : el change the position. When eliminated, by asking the subjects to relax, or 5j-+% th ' . 1 1 t ode, pushing on or reapp ymg e this type of artifact occurs a smg e e ec r ' . fr The signals have a wide requency range 
electrode can sometimes stop it. 1ese .r ·le:trodes depending on the 
and can be distributed across different sets O e ec ro 
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Figure B.l: Artifacts Waveforms . 

location of the source muscles [11][12]. 

B.1.2 Movement 
Head and body movements or movement of electrode wires can cause arti­ 
facts even when all electrodes make good mechanical and electrical contact. 
These types of artifacts are often erratic and not repetitive, unless the move­ 
ment is rhythmical. This type of artifact can result from tremor, thinking, 
breathing, or head movements [8][12]. 

B.1.3 Movements in the environment 
Movement of other persons around the patient can generate artifacts. An­ 
other artifact, probably due to electrostatic. changes on the drops, can be 
introduced by a gravity-fed intravenous infusion. 

wacer&ass soofaotomacaocfk";;"",t,"; 
t.f t (IMA) has arisen. .orp o og1c Y, of artifact, infusion motor ar 1 ac ' . c 11. ed by a slow compo- 

. f k; t . nts sometimes io ow appears as very brief spiky ransie ' s not relate directly to drop rate. 
nent of the same polarity. Its frequency doe 
This artifact arises from electromagnetic sources. 
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B.1.4 Electrocardiographies:., ·· uc ctivity 
ECG activity can be picked up ·· th . l d . m e EEG main] . . mter e ectro e distances, especially in linka n Y m recordmg with wide 
left ear. The artifact may appear 5 11 ges across the head and to the 

d d • • . r in a channels · f use an it is being picked up at th t f 1 a common reference is 
h l 8 1 . a re erence or it b - . c anne s. ma l artifacts may reflect th R ' can e m Just a few 
artifacts can reflect additional EGg, "@ye of the ECG, whereas larger 

components [11][12]. 

B.1.5 Pulse-Wave Artifacts 
The pulse, or heart rate, artifact as shown Fig B 1(f). . , . , occurs w en an elec­ 
trode is placed on or near a blood vessel. The expansion and contraction of 
the vessel mtroduce voltage changes into the recordings. The artifact signal 
has a frequency l.2Hz, but can vary with the state of the patient. This arti­ 
fact can appear as a sharp spike or smooth wave [12]. 

B.1.6 Respiration artifacts 
Respiration can produce two kinds of artifacts. One type is in the form of 
slow and rhythmic activity, synchronous with the body movements of respi­ 
ration and mechanically affecting the impedance of (usually) one electrode. 
The other type can be slow or sharp waves that occur synchronously with 
inhalation or exhalation and involve those electrodes on which the patient is 
lying. Several commercially available devices to monitor respiration can be 
coupled to the EEG machine. As with the ECG, one channel can be dedi- 
cated to respiratory movements [12]. 

B.2 Eye Blink Artifact 
.. iti pole oriented anteriorly (cornea) 

The eyeball acts as a dipole with a positive When the globe rotates 
and a negative pole oriented posteriorly (retina) e e amplitude alter- 
b h F" B.1(b) it generates a .arg 
a out its axis, as s own 1g · ' he electrodes positioned near the 
nate current field detectable by any of t 
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eye. A blink causes the positive pole (the corr 1) t 
Fp2 1 d nea o move closer to front po- lar FPl, e ectro es, producing symmetric d d d . 

ownwar eflections [11 ][12]. 

B.3 Interference Artifacts 

From high-frequency radiation from radio, television, hospital paging sys­ 
tems, power lines, and other electronic devices can overload EEG amplifiers. 
May be introduced either electro statically by unshielded power cables and 
regardless of current flow, or electromagnetically by strong currents flow­ 
ing through cables and equipment such as transformers or electro motors. 
Shielding the offending power cables and cables and using a shielded room 
for the recording can reduce electromagnetic interference by proper wiring 
of the power cables. The cutting and/or coagulating electrode used in the 
operating room also generates high-voltage high-frequency signals that inter­ 
fere with the recording system. The best thing to do is turn off the EEG 
machine while using this instrument [13]. 

B.3.1 Electrodes-skin Interference 
Surface electrodes such as the ones used in EEG must create an(inhter~ace 

. ( h b • t) and a metallic conductor t e e ec- between an ionic solution t e suvject al hi:h be quite large relative 
rode). This leads to a half-cell potenti """,,,% or polarization or 

h . 1 b • ded To minimize us pr 
to the signal eing recorc · j; ·5d. el electrolyte between the skin 
the electrode, with application of a liqui€,",,, o ihe slain. The gel is 

Th. b id,:es the electro e sur h and electrode. is rilg . h t ill hydrate the skin, reduce tie 
an aqueous chloride-bearing solutwn t a wi niform medium for charge 

d produce a more u impedance of the corneum, an d b low 5KS2across the hydrate 
d · dance can rop e th transfer. Skin electro e impe . thod of coupling between e 

id convenient me 1 t d skin. Gel electrolyte provides a : ·f :e Touching the e ec ro es 
. d t the skm sur ac . if ·t silver-silver chloride electro es ~ Th ost common electrode artifac 

;, duce artifacts. 1em 5fele:trode contact during recordmg can pro u dden change o e ec ro ' 
• h · d e to a su · · d is the electrode popping, which is',) all abruptly. The first step in avoid- 

. • d h es that rise an • . the electrode may causing amplitude change al] the connections: ,, 
ing these types of artifacts is to check a be broken, or the conductive pas e 
be detached or loose, the lead wire may 
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may have dried. Next check the 1 · 1 e ectrode imp d I . . that all connections between electrodes. 43 ?®dance. In addition, check 
an amplifier are sufficiently dry [14]. 

B.3.2 Electrical Interference Probler : B. . 
M ms 1n 10ptential easurement 

Bioelectric potentials are relatively low-level 1 t · · 
1 : is. electric signals and must be substantially amplified before a recording can b ·1 d' 1 . . . . e easily 1sp ayed. Modern integrated circuit amplifiers are well suited to this t k · th he hi:h . . . . as smce ey ave ug 

gams and contribute little noise to the biopotential measurement [13][14][15]. 

Power Line Interference 

In modern society we are immersed in a complex electromagnetic environ­ 
ment originating from power wiring in buildings, radio transmitters of various 
sorts, radiofrequency-emitting appliances such as computers. And natural 
sources such as atmospheric electricity. Within the home, environmental 
electric fields will typically induce in the human body a few tens of millivolts 
with respect to a ground reference. These fields can be much larger, as high 
as a few volts, if someone is using a cell phone or is located within a foot of 
power-line wiring or near a radio station. These induced voltages are thou­ 
sands of times larger than bioelectric signals from the heart as recorded on 
the chest surface [14][16][19]. 

Electric-field coupling between the power lines and the EE~ and/or the 
patient is a result of the electric fields surrounding main power lines and the 

· diffe t · of apparatus to electric outlets. power cords connecting eren pieces o 

· mental sources is usually due to Electric coupling of the body to environ . d ·ti ve (magnetic) fields 
. . • d to a lesser extent. in'uc iv · proximity capacitance ana, ,jte from the electric field be­ e . . 1. b t n two objects resu s 0 

apacitive coupling vetweer % the objects acts as a dielectric. 
h Th air gap separating 1e tween t em. e space or as a varallel-plate capacitor, which can 

The coupling can be simply modeled p 
be determined by c- A (B.1) 

C=a 
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Where c == c,·cg, where the individual ; 
d · . ue c lielectric st space an a1r, respectively cons ants are for free 

A = area of mutual conductor plate i·nte • : . rception d= separation distance 

A person usually will have greater couplin t 
· h b f mg O ground than to the power line, per aps y a actor of 100 or more. As a lt 

1 
. . . 

d d h b d . resu , a voltage divider is create., an t e o Y acquires a potential know fl • • . , n as a loating potential 
VJloat· Its magmtude, as measured by a voltmeter ·ith d f . . · WI a groun rererence, is determmed by the ratio of impedances of the body to th li Z. 

· · E (B ) · e power ne line ,given m q .2 , and ground impedance, given in Eq(B.3). 

h. =2rfC.. (B.2) 
roa=2nfCGrona. (B.3) 

This arrangement is shown in Fig B.2 and ignores any ground resistance 
since it is usually negligible. The body itself is a volume conductor with such 
a low relative resistance that it is not significant to this analysis. In this case, 
a subjects floating potential is given by the impedance divider relationship: 

V _ Viine · · · Zground (B.4) 
float - Z z 

line + ground 

The floating potential can be a relatively large induced potential. Take, 
for example, a person sitting in a metal chair. If the persons proximity ca­ 
pacitance to the power line is assumed to be 1 pF, the ground impedance 
Zground is 1070, and the line voltage is 220V,, (622V,,) at 50Hz, then the 
calculated floating potential is [14]. 

By using Eq (B.2)and Eq(B.4), the value of Zzine was 3.18 * 1090, and 
Vraa equal 1.94V,,. 

. . . over the body and will sum with a skin 
Tlus Vf loat is present umformly .fi 17 • the sum of all potentials 

b. . Th t t f the amph er Vout is . i0potential V,,,. e output o1, % 1mmed with the biopotential: 
at its input. Thus the floating potential is su (B.S) 

V,, = Vjssa + Veto 
. . d d interference is greater than . 1 the hne m uce . al ·f In the preceding example, ·tifact with a sinusoid wave orm 

could be tolerated in a recording. It is an ar 1 a 
characteristic. 
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Figure B.2: Illustration of body capacitive line coupling [18]. 

Single-Ended Biopotential Amplifiers 

A single-ended biopotential amplifier monitors an input voltage with respect 
to its reference. Its reference completes an electric circuit to the object of 
study. Because they are simple, single-ended amplifiers, they are sometimes 
used in biopotential monitoring. They need only two electrodes, a single 
monitoring electrode and a reference electrode. This kind of amplifier should 
not to be confused with a differential amplifier, where there are two inputs 
that subtract from one another. Fig B.3 shows a schematic of a single-ended 
amplifier where its reference is connected to both the subject and ground [14] 
[n] 

Environmental line-frequency interference coupled to the subject is a ma­ 
jor challenge for this amplifier configuration. One approach to reduce inter­ 
ference is to ground the body with a reference electrode to an earth ground. 
In principle, grounding a biological object will reduce Vj,a to zero if Z,round 
is zero. With this idealized configuration, a biopotential ~bio w~uld be am- 
lifi d 

· c · mental noise. In practice, bioelectrodes 
pl iec without concern for environ 
have significant electrical impedances. 
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Figure B.3: Recording of a biopotential using a single ended amplifier [18]. 

This means that the divider ratio defined by Z, and Z,,a produces a 
Vfloat value that is not reduced to zero by the grounding electrode. There­ 
fore, to achieve quality single-ended amplifier recordings, it is essential to 
minimize coupling capacitance and ensure low-impedance reference electrodes. 

Low line-coupling capacitance reduces noise and can often be achieved 
with small biological specimens by (1) removing the work area from power­ 
wire proximity and/or (2) shielding the specimen with a metal enclosure 
or copper mesh connected to ground. Capacitive coupling does not occur 
through grounded conductive enclosures unless line-frequency power wires 
to equipment are allowed to enter the enclosure. 

It is more difficult to shield the human body than biological specimens 
because of the bodys bulk and greater surface area. Skin-electrode resistance 
is also greater than that of invasive electrodes used in biological specimens, 
and this causes higher floating potentials on the human body. Except under 

h · stances can create frustration 
certain conditions discussed later, t ese circum 
in using single-ended amplifiers for human recording. 

. . 1 ti-ode-skin impedance Zeiectrode is 20 kD, 
For example, if a subJects e ect hi her ground capacitance 

thi: th that it dominates over 11S O is value is low enoug t a 1 0 Assuming the same line-coupling 
such that essentially Zground = Zezectrode· 
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capacitance as before (1 pF) and . 
1. th 1 l usmg the volt d' . ear 1er, e ca cu ated floating potential V age-divider relation given 

,it is now much lower, but is greater th float was 3.9mV by using Eq(B.4) 
[14)[15)[16]: an could be tolerated in a recording 

0 

Figure B.4: 50H z Artifacts[32]. 

Differential Biopotential Amplifiers 

The use of differential amplifiers is common in biopotential measurements 
because of a greater ability to reject environmental interference compared 
with ground-referenced single-ended amplifiers. Differential amplifiers sub­ 
tract the electric potential present at one place on the body· from that of 
another. Both potentials are measured with respect to a third body location 
that serves as a common point of reference. 

Differential amplifiers are useful because biopotentials generated within 
the body vary over the body surface, but line-coupled noise does not. En­ 
vironmental electric fields from the power line are more remote and couple 
such that they are present uniformly over the body. This is partly due to the 
distributed nature of capacitive coupling. It is also because the low (50-60)Hz 
line frequencies have electric field wavelengths so long (hundreds of meters) 
that a persons body can be considered to be, in some sense, an antenna m 
the uniform near field of an electric field source. 

. t t both inputs of a difference 
The induced body potential V11oat is presen a de potential . . 1 k1 n as the common-mo 

amplifier, and as used here, it is also KnO" ,jjtde and phase at each 
Vs. This is so because it is common (equal) ·""""[,,ner r, r ditferentuau at > of the two amplifier inputs. Thus, tor ou 

V,,, = Vpc 
(B.6) 
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The connection of a differential amplifi 
p.It .er always r • since a common reference point for the 5];s, . {ires three electrodes 

. h amp l er is ne d d T electrode, as in te preceding single-ended e e · he grounding 
. 1 case also red h mode potentia on the body surface. Even if th ' uces t e common- 

to a large electrode resistance within a fa· 1 elgrou
nd were not effective due 

' ir Y arge range f levels, the differential amplifier would be ca bl f O common-mode 
of the common-mode signal. pa e O near-perfect cancellation 

Differential amplifiers of gain A perform th c 11 · . e following operation: 

Vea =A(V1- V2) (B.7) 
Where Vi and V-2 are the signal levels on each of the No ·ti id . . . . n-mver mg an 

mvertmg mputs of the amplifier, respectively, with respect to a reference. 
In practice, differential amplifiers very closely approach this ideal. Modern 
differential amplifiers can have common-mode rejection ratios of 120 dB or 
better, meaning that they perform the subtraction to better than one part 
per million. 

In practice, this interference cancellation process works fairly well; how­ 
ever, the assumption that the power-line-induced signal is common mode 
(uniform) over the body does not hold perfectly in all situations. Slight 
differences in its phase or amplitude over the subjects body when in close 
proximity to some electric field source or unbalanced electrode impedances 
can cause this cancellation process to be less than perfect. Some line noise 
may still pass through into the recording. Usually, improvements in skin 
electrode preparation can remedy this problem [14]. 

Frequency Distortion Artifacts 

Ponse standards that have The EEG does not always meet the frequency-res d th gh a circuit 
. EEG hen passe irou described in the chapter one. The same w • ·d to have high- :· this pattern issai that has diminished gain at high frequencies, h amplifier that has 

fr . . h EEG passed throug an equency distortion. And when :. id to have low-frequency 
.: this type is sa inadequate gain for low frequencies, 
distortion [6]. 
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Saturation or cutoff d; : istortion 
High offset voltages at th 1 

d 
e e ectrod . 

can pro uce saturation O es or 1mprop 1 · orcutoff di 2erly amplifi 
ration or cutoff distortion [6] istortion, Fig B.5 d ~ I ers in the EEG · tepcts affects of satu­ 

0.02-IS0 Hz 

(c) 1-150 Hr 

Figure B.5: Affects of saturation or cutoff distortion [6]. 

Ground Loop 
~(~ound loops can create seemingly intractable problems with line-frequency 

or 60 Hz) mterference in low-level biopotential recordings. They of­ 
ten occur when biopotential amplifiers are connected to signal processing 
or recording systems such as filters oscilloscopes, or computer-based data­ 
acquisition systems. The root cause 'is often that the reference wires of signal 
cables interconnect the ground references of all the instruments, Fig B.6 de­ 
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picts ground loop. However each inst . 
d h h . ' rument 1s als c line groun through its third-wire ground;» 59 referenced to a power 

'ed by l : hmng pin on the , reqmre y electrical safety codes [6)[14]. e power-hne plug, as 

Interference arises from the fact that all 
references are not equal. Line-powered 5,°"® grounds and signal-ground 

ruments and appli supposed to draw current through the hot d lances are on y 
h h. d . . an neutral wires of the li However, t e t 1rd-pin instrument power grou d d me. 

· · 1 k n con ucts small capacitive and resistive leakage currents from its power supply (c ,1 
d 1 ak PY o wau-outlet ground These groun e age currents originate mostly in th · tu 

. . . e instrument power-line transformer winding capacitance to ground and in resistive leakag»fro.] . . . e ea ge om ess than perfect wire insulation [14]. 

Currents flowing in the power-line ground cause voltage drops in the resis­ 
tance of the building wiring ground. As a result, a voltmeter will often show 
several tens of millivolts between one, power outlet ground and another even 
in the same room. Since recording amplifier grounds are usually referenced 
to the instrument power-line ground, millivolt-level potential differences can 
create circulating currents between power-ground and instrument-ground ref­ 
erences. By the same process, there can also arise current flows between 
various instruments through their individual ground references [6][14][15]. 

The result is that small line-frequency currents flow in loops between dif­ 
ferent instruments interconnected by multiple signal and ground references. 
Line-frequency voltage drops in the interconnecting reference path wiring can 
appear as a signal across the amplifier inputs [14]. 

The ground loop can be eliminated by many solutions: 

1. Use of isolation modules on the amplifier. 

2. Earth grounding the amplifier input stages. 

3. Using battery-powered equipment. 

d and having only one connec­ 
4. Connecting machines to the same groun 
tion to the patient. 
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l::lcctrocardiogr;aph Machine X 

co 
-=--@=»-» 'p 

(a) 
A - II 

lcc1roc:,rcliograph 

l's> I',. 

Machine X 

(b) 

x lircak 

- -----------· i 
Figure B.6: Example of a ground loop between an ECG device and another 
electric machine connected to the same patient [6]. 
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Appendix C 

Three fold testing code 

function [error_·s1, error_r1, error_l1, error_s2,error_r2, error_l2, ... 
error_s3,error_r3,error_l3] = best13L,freq1,freq2,clustnum, statnum,leng) 

/ Returns errors of the silence, right and left. 
% Lis the length of each window. 
/ Range of frequencies between freq1 and freq2. 
% leng is the length of the data in the decoding stage. 
Clustnum is the number of clusters which equal the number of symbols. 
/ statnum is the number of states. 
% leng is the length of data during the evaluation stage. 

data= load('data.mat'); 
silence= data.silence; 
right = data.right; 
left= data.left; 

1 = length(silence); 
rws = 1/L; 

a = reshape(silence,L,rws)'; 
b = reshape(right,L,rws)'; 
c = reshape(left,L,rws)'; 
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DCT 
for i = 1: rws 

a(i, :) = dct(ai,:)); 
bi,:) =dct(bi,:)); 
ci,:) = dct(c(i, :)); 

end 

%Frequencies from 5 to 10 only. 
aaa = a(:, freq1: freq2); 
bbb = b(:,freq1:freq2); 
ccc = c(:,freq1:freq2); 

%Normalizing 
for i = 1:rws 

maxaaa = max(aaa(i,:)); 
minaaa = min(aaa(i,:)); 
if (maxaaa"=minaaa) 

aaa(i,:) = aaa(i,:)/(maxaaa-minaaa); 
end 

maxbbb = max(bbb(i,:)); 
minbbb = min(bbb(i,:)); 
if (maxbbb"=minbbb) 

bbb(i,:) = bbbi,:)/(maxbbb-minbbb); 
end 

maxccc = max(ccc(i,:)); 
minccc = min(ccc(i,:)); . 
if(maxccc "= minccc) 

(. ) = ccc(i,: ) / (maxccc-minccc) ; ccc 1,: 
end 

end 

portion = fix(rws/3) ; 

b of rows into 3 
o/, We dl·v1·de the number 
o to make three folds 
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clear left right silence data 

Train = 2portion; 
Test= portion; 

{Fold 1 
%Data for training 
silenceT = aaa(1:Train, :); 
rightT = bbbi:Train, :); 
leftT = ccc(1:Train, :); 

%Data for testing 
silence= aaa(Train:rws,:); 
right = bbb(Train:rws,:); 
left= ccc(Train:rws, :); 

data= [silenceT;rightT;leftT]; 
[center,U] = fcm(data,clustnum); 
maxU = max(U); 

for i = 1:clustnum 
index{i} = find(maxU -- U(i,:)); 
data(index{i}, :)=i; 

end 

% Sequence of labels 

data= data(: ,1)'; 

clear silenceT leftT rightT 

silenceT = data(1 : Train); 
rightT = data(Train+1 : 2«Train); 
leftT = data(2+Train+1 : 3+Train); 
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[Cluster the data for testing 
newdata = [silence;right;left]: 
out = distfcm(center,newdata); 
%We intrest in the minimum distance 
minout = min(out); 
for i = 1:clustnum 

index{i} = find(minout == out(i,:)); 
newdata(index{i},:)=i; 

end 

newdata = newdata(: ,1)'; 

clear silence right left 
silence= newdata(1 : Test); 
right = newdata(Test + 1 : 2#Test); 
left = newdata(2+Test + 1 : 3¥Test); 

'XHMM 

2 states and 5 symbols 
trs = normalise(rand(statnum),2); 
es= normalise(rand(statnum,clustnum),2); 
trr = normalise(rand(statnum),2); 
er= normalise(rand(statnum,clustnum),2); 
trl = normalise(rand(statnum),2); 
el= normalise(rand(statnum,clustnum),2); 
%Training 
[trs,es] = ·hmmtrain(silenceT,trs,es); 
[trr,er] = hmmtrain(rightT,trr,er); 
[trl,el] = hmmtrain(leftT,trl,el); 

error _s1 = O· ' error _r1 = O· ' error 11 = O· ' 

for i = 1:leng: (Test-leng+1) ( .1 nce(i:(i+leng-1)),trs,es); 
; : 5] = hmmdecode\s1.-© [states, probability_o. 
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x = probability_o; 
[states, probability_o] 
y = probability_o; 
[states, probability_o] 
z = probability_o; 

= hmmdecode(right(: (3 
a:.i+leng-1)) .s» -) , rr,er; 

= hmmdecode(left(i:(i+leng-1)) trl 1)· 
' ,e ' 

% All combinations 

[states, probability_ol] = hmmdecode(left(i· i+ _ 
[states, probability_o?] = hmmdecode( . h (: ( . leng 1)) ,trs,es); 

er1ghti:(i+leng-1)) tu ,) if (probability_ol>=x ll probability_o2>=x) , rs,es ; 
error_sl = error_s! + 1; 

end 

[states, probability_o1] = hmmdecode(silence(i:(i+leng-1)),trr,er); 
[states, probab1l1ty_o2] = hmmdecode(left(i:(i+leng-1)),trr,er); 
if(probability_ol>=y I I probability_o2>=y) 

error rl = error_rl + 1; 
end 

[states, probability_ol] = hmmdecode(silence(i:(i+leng-1)),trl,el); 
[states, probability _o2] = hmmdecode (right (i: (i + leng-1)), trl, el); 
if(probability_ol>=z I I probability_o2>=z) 

error_l1 = error_l1 + 1; 
end 

end 

error_s1 
error_r1 
error_l1 

= error_s1/length(1:leng:(190-leng+1)); 
= error_r1/length(1:leng:(190-leng+1)); 
= error_l1/length(1:leng:(190-leng+l)); 

%END Fold 1 

'kFo1a 2 
XData for training 
silenceT = aaa(Test:rws,:); 
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rightT = bbbTest:rws,:); 
leftT = ccc(Test:rws,:); 
%Data for testing 
silence= aaa(1:Test, :); 
right= bbb(1:Test, :); 
left = ccc (1: Test, : ) ; 

data= [silenceT;rightT;leftT]; 
[center, U] = f cm(data, clustnum); 
maxU = max (U) ; 

for i= 1:clustnum 
index{i} = find(maxU -- U(i,:)); 
data(index{i},: )=i; 

end 

% Sequence of labels 
data= data:,1)°; 

clear silencer leftT rightT 

silenceT = data(1 : Train); 
rightT = data(Train + 1 : 2¥Train); 
leftT = data(2»Train+ 1: 3 Train ); 

/Cluster the data for testing 
newdata = [silence;right;left]; 
out= distfcm(center,newdata); 
%We intrest in the minimum distance 
minout = min(out); 
for i= 1:clustnum 

index{i} = find(minout -- out(i,:)); 
newdata(index{i}, :)=i; 

end 

nevdata = newdata(:,1); 

clear silence right left 
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silence = newdata1:Test); 
right= newdata(Test + 1 . 
1 ft - d ( . 2Test) e - new ata 2*Test + 1 . , . 3+Test); 

%HMM 
%2 states and 5 symbols 
trs = normalise(rand(statnum) 2)· 
es= normalise(rand(statnum. ;1, ,c ustnum) 2)· 
trr = normalise(rand(statnum) 2): " 
er = normalise(rand(statnum, clustnum),2): 
trl = normalise(rand(statnum),2): ' ' 
el = normalise(rand(statnum, clustnum),2); 
/Training ' 
[trs, es] 
[trr,er] 
[trl, el] 

= hmmtrain(silenceT,trs,es); 
= hmmtrain(rightT,trr,er); 
= hmmtrain(leftT,trl,el); 

error_s2 = O; 
error_r2 = O; 
error _12 = 0; 

for i = 1:leng:(Test-leng+1) 
[states, probability_o] = hmmdecode(silence(i:(i+leng-1)),trs,es); 
x = probability_o; Could be assumed as the threshold for Silence 
[states, probability_o] = hmmdecode(right(i:(i+leng-1)),trr,er); 
Y = probability_o; 
[states, probability_o] = hmmdecode(left(i:(i+leng-1)),trl,el); 
z = probability_o; 

% All combinations [states, probability_ot] = hmmdecode(left(i:(i+leng-1)),trs,es; 
[states, probability_o2] = bmmdecode(right(1:(1+leng-1)),trs,es), 

if(probability_ot>=x I I probability_o2>=x) 
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end 
error_s2 = error_s2 + 1· 

[states, probability_ot] =hmmdecode(silence(i:(i+lens-±)p+- \, 
b b · 1 · t 2] , rr , er , [states, probability_o2 =hmmdecode(left(i:(i+leng-i)+- (, b . 1 . 1 I I s rr,er ' if(probability_o1>=y probability_o2>=y) 

error_r2 = error_r2 + 1; 
end 

[states, probability_o1] = hmmdecode(silence(i:(i+leng-1)),trl,el); 
[states, probability_o2] == hmmdecode(right(i: (i+leng-1)) ,trl,el); 
if(probability_o1>=z I l probability_o2>=z) 

error_l2 = error_l2 + 1; 
end 

end 

error_s2 = error_s2/length(1:leng:(190-leng+1)); 
error_r2 = error_r2/length(1:leng:(190-leng+1)); 
error_l2 = error_l2/length(1:leng:(190-leng+1)); 

half= fix(Train/2); 
shalf = rws-half; 

%Fold 3 

%Data for training ( h lf:rws ·)) · 
silenceT= cat(t,aaal:half,:),aaashal {' 

lf . ) bbbshalf:rws,. ' rightT == cat ( 1, bbb (1 : ha , · , . ) ) . 
·) cc(shalf:rws,., leftT = cat(1,ccc(1:half,. ,c 

%Data for testing 
silence= aaa(half:shalf,:); 
right= bbb(half:shalf,:); 
left= ccc(half:shalf,:); 

data== [silenceT;rightT;leftT]; 
[ lustnum); center,U] = fcm(data,c 
maxU= max(U) ; 
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for i = 1:clustnum 
index{i} = find(maxU == 
data(index{i},:)=i; 

end 

U(i,:)); 

% Sequence of labels 
data = data(:, 1)'; 

clear silenceT leftT rightT 

silenceT = data(1:Train); 
rightT = data(Train + 1 : 2#Train); 
leftT= data(2+Train + 1 : 3¥Train); 

%Cluster the data for testing 
newdata = [silence;right;left]; 
out= distfcm(center,newdata); 
%We intrest in the minimum distance 
minout = min(out); 
for i = 1:clustnum 

index{i} = find (minout -- out (G,: ) ) ; 
newdata(index{i}, :)=i; 

end 

newdata = newdata ( : , 1) ' ; 

clear silence right left 
silence= newdata(1:Test); 
right = newdata(Test + 1 : 2Test ); 
left = newdata(2+Test + 1 : 3»Test); 

'XHMM 

%2 states and 5 symbols 
trs = normalise(rand(statnum) ,2); 
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es= normalise(rand(statnum clu t ) 
> snum, 2)­ trr = normalise(rand(statnum),2). ' ' 

er= normalise(rand(statnum, clustnu),5)­ 
trl = normalise(rand(statnum) 2)· ' ' 
el = normalise(rand(statnum, clustnum),2), 
/Training 
[trs,es] = hmmtrain(silenceT,trs,es); 
[trr,er] = hmmtrain(rightT,trr,er); 
[trl,el] = hmmtrain(leftT,trl,el); 

error_ s3 = O· ' 
error_ r3 = O· ' error_ 13 = O· ' 

for i = 1:leng: (Test-leng+1) 

[states, probability_o] = hmmdecode(silence(i:(i+leng-1)),trs, es); 
x = probability_o; / Could be assumed as the threshold for Silence 
[states, probability_o] = hmmdecode(right(i:(i+leng-1)),trr,er); 
y = probability_o; 
[states, probability_o] = hmmdecode(left(i:(i+leng-1)),trl,el); 
z = probability_o; 

Z A11 combinations 
[states, probability_o1] = hmmdecode(left(i:(i+leng-1)),trs,es); 
[states, probability _o2] = bmmdecode (right(i:(i+ leng-1)), trs, es), 
if(probability_o1>=x I I probability_o2>=x) 

error_s3 = error_s3 + 1; 
end 

d(left(i:(i+leng-1)),trr,er); 
[states, probability_o1] = hmmdeco0°".,,,ce(±:(i+leng-1)),trr,er); 
[ 2] bmmdecode s1 en · states, probability_o' = 2=) 
if (probability _o1>=y I I probability_o >-y 

error_r3 = error_r3 + 1; 
end 

[states, 
[states, 

. ('•(i+leng-1)),trl,el); de ode(silence1. 3l): 
Probability_o1] = hmm ec . C • (i+leng-1)),trl,e ' = hmmdecode(right .2: probability_o2] 
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if(probability_o1>=z I I probability_o2>=z) 
error_13 = error_l3 + 1, 

end 
end 

error_s3 = error_s3/length(1:leng:(190-leng+1)); 
error_r3 = error_r3/length(1:leng:(190-leng+1)); 
error_l3 = error_l3/length1:leng: (190-leng+1))­ 
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Appendix D 

DAQ data sheet 

This is the datasheet of PCI-6024E from National Instrument Company. 
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Low-Cost ~ Series Multifunction DAO - 
12 or 16-Bit, 200 kS/s, 16 Analog Inputs 

NIE Series Low-Cost 
• 16 analog inputs at up to 200 kS/s, 

12 or 16-bit resolution 
• Up to 2 analog outputs at 10 kS/s. 

12 o: 16-bit resolution 
• B digital VO lines (TTL/CMOS): 

two 24-bit counter/timers 
• Digital triggering 
• 4 analog input signal ranges 
• NI-DAO drivt!r !hat simplifies 

configuration and measurements 
Families 
• NI 6036E 
• NI 6034E 
• NI 6025E 
• NI 6024E 

• NI 6013E 

Operating Systems 
• Window, 2000/NT/XP 
• Heal-time performance with L:ibVIEW 
• Others such as Linux® and Mac OS X 1. . . . 
Recommended Software ,"

1 

•. y=.; 
• labVIEW I '' ,t:,,c, -: 
"Lab\Windows/CI {t CE".2: 

• Measurement Studio f ·. , 
• VI logger 

Other Compatible Software 
• Visual Basic. CIC++ . and c, 
Driver Software (included) 
• NI-OAO7 

! 
{ 
; 
"ii"EE? 

= j--"i!"l: 

Analog Input Max Analog Output 
Family Bus Inputs Resolution ,Sampling Rate Input Range Out puts Resoluti on 01.fput Rall 01.fput R,nge Digital /O Counter/'Timers 'Trigger 

, NI 6C3SE PCL PCMCA 16 SE/8 DI 161NU 2001:S/, !01!5to:t10V 2 16 bits 10 S/s­ ::t.10V 8 2.24-bt .,,.., 
NI61l34E PCI 16SE/80I 16 bits 200 S/s :D.OSto:tlOV 2,74-bt Dpga! 
'N1602SE PCL PX 16SE/801 12 bts 200kSI, ±DD5 to ±10 V 12 bts 1DkSh1 ,:IOV 2. 24-b Digital 
N16024E PC), PCMCIA 16 SE/@ D 12bfls 200 S/s ±0 D05 to ±10 V 12blu 10 S/s' ±10 V 2,24b! Dg.ta! 
NI611ZlE PCI 16SE/801 12 bts 200 S/s ±0 D5 to ±0 V 2.24bl Dgtal 

Table 1. LDw-Cost E Series Model Guide 

Overview and Applications 
National Instruments low-cost E Series multifunction data acquisition 
devices provide full functionality at a price to meet the needs of the 
budget-conscious user. They are ideal for applications ranging from 
continuous high-speed data logging to conuol applications to high-voltage 
signal or sensor measurements when used with NI signal conditioning. 
Synchronize the operations of multiple devices using the RTSI bus or PXI 
trigger bus to easily integrate other hardware such as motion control and 
machine vision to create an entire measurement and control system. 

Highly Accurate Hardware Design 
NI low-cost E Series DAO devices include the following features 
and technologies: 
Temperature Drift Protection Circuitry - Designed with components 
that minimize the effect of temperature changes on measurements to 
less than 0.0010% of reading/'C. 
Resolution-Improvement Technologies - Carefully designed noise 
floor maximizes the resolution. 
Dnboard Self-Calibration - Precise voltage reference included for 
calibration and measurement accuracy. Self-calibration is completely 

software controlled, with no potentiometers to adjust. 

NI DAO-STC - liming and control ASIC designed to provide more 
flexibility, lower power consumption, and a higher immunity to noise 
and jiner than oH-the-shelf C1Junter/1imer chips. 
NI MITE -ASIC designed to optimize data transfer for multiple 
simultaneous operations using bus mastering with one DMA channel, 

interrupts. or programmed 1/0. 
NI PGIA- Measurement and instrument class amplifier that guarantees 
settling times at all gains. Typical commercial off-the-shelf amplifier 
components do not meet the settling time requirements for high-gain 
measurement applications. 
PR Lines- Eight programmable function input {PFII lines that you can 
use for software-controlled routing of interboard and intraboard digital 
and timing signals. 
RTSI or PXf Trigger Bus - Bus used to share timing and control signals 
between tw0 or more PC! or PXI devices to synchronize operations. 
RSE Mode - In addition 10 differential and nonrelerenced single-ended 
modes, NI low-<:ost E Series devices offer the relerenced single-ended 
(RSE) mode for use with floating-signal sources in applications with 

channel C1Jun1S higher than eight. 
Onboard Temperature Sensor- Included for monitoring the operating 

temperature of the device 10 ensure that ii is operating within the 
specified range. 

<;7 NATIONAL 
j INSTRUMENTS 

Figure D.1: Data sheet 
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Low-Cost E Series Multifunction DAQ -12 . 
or 16-Brt, 200 kS/s, 16 Analog Inputs 

·1 os 
ll.2S 
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·o 

D0.s76 

221 
1 14E 
ll.!i!3 , 

00s8 0111 0235 027 
. D.m9 0ll59 11127 0.135 _ • 

l.!192 
D.812 
0 45 
Q.2D) 

0.'79 
0 2743 
0137 

D0 064 
0 cg5 

1.22 
2119 
o.e;o 
0,428 
0242 

- 0.16.1 .•• :.. •• :. 0.176 
0.091 0.100 
&.165 ·_7.259 
5391 5645 

ii.846 07 

0.106 

2167 
1.092 
0ssa 

Table 2. E Se,ies Analog Input Absolute Accuracy Specifications 

!. 
NI 6CDOE, NI 6!01E, 
NI 6C32£, N 6033E 

[Norinalbnf•IY! : •• ·:. . . 
\Positive FS ; Nspiv9S_}':-4 , 

10 -10 1430 
1D D 1.201 

Models 
Fut-Featured E Series., 

N16C62E Nl6tl'7DE.N16071E 

Absolute Accuracy (mnY] 

1405 8127 
1.176 £5.685 

ei27 2417 
s sES 

8.177 3 835 

Table :J. E Sen·es Anilog Ourput Absolute Aa:v,;r.y $fX1cific,arions 

High-Performance, 
Easy-to-Use Driver Software 
NI-DAD is the robust driver software that makes it easy to access the 
functionality of your data acquisition hardware, whether you are a 
beginning or advanced user. Helpful features include: 
Automatic Code Generation - DAO Assistant is an interactive 
guide that steps you through configuring. testing, and programming 
measurement tasks and generat_es the necessary code automatically 

for NI LabVIEW, LabWindows/CVI. or Measurement Studio. 
Cleaner Code Development - Basic and advanced software functions 
have been combined into one easy-to-use yet powerlul set to help you 
build cleaner code and move from basic to advanced applications 
without replacing functions. 
High-Performance Driver Engine - Software-timed single-point input 
(typically used in control loops) with NI-DAD achieves rates of up to 50 Hz. 

NI-DAO also delivers maximum VO system throughput with a 
multithreaded driver. 

Test Panels - With N-DAO, you can test all ol your device functionality 
belore you begin development. 
Scaled Channels - Easily scale your voltage data into the proper 
engineering units using the NI-DAO Measurement Ready vinual 
channels by choosing from a list of common sensors and signals or 
creating your own custom scale. 
Lab VIEW ln1egration -All NI-DAO functions create the waveform data 
type, which caries acquired data and timing information directly into 
more than 400 LabVIEW built-in analysis routines for display of results in 
engineering units on a graph. 

For information on applicable hardware tor NI-DAO 7. 
visit ni.com/dataacquisition. 

Visit ni.com/oem for quantity discount information. 

BUY ONLINE at ni.com or CALL (BODI 113 3S93 (U.S.I 
2 

Figure D.2: Data sheet 
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Low-Cost E Series Multifunction DAQ - 12 or 16-Bit, 200 kS/s, 16 Analog Inputs 

Recommended Accessories 
Signal conditioning is required for sensor measurements or voltage 
inputs greater than 10 V. National Instruments SCXI is a versatile, 
high-performance signal conditioning platlorm, intended for 
high-channel-count applications. NI SCC products provide ponable. 
flexible signal conditioning options on a per-channel basis. Both signal 
conditioning platforms are designed to increase the pertormance and 
reliability of your DAO system, and are up to 10 times more accurate 
than terminal blocks (please visit ni.com/sigcon for more details). 
Refer to the table below for more information: 

Sensor/Sig111lst>tDV) 

[srsirs Er....Fi@w 
shpertorrence PC}Sia£, PXG-50E, DA0Car6 60£ SYD 

'lDw<0:st. PQ'tilblt PCI-Bh:at PXl-8Ja£, OAOC,r d-60o£ set 
Signals (<1O V 

[Sr@wwvwi@. iiii • iiilsk] F@Ni 
Shieldl'd f'Cl.60ul: SCS-68 SHSS»EP 

15:lieldeid. ·- PXi-Slal: .._ 1'B-77DS Sl-QE3.EP 
Slueldi!d OAOC-lrO.OOu: SCS-62 S~EP 
twcast PG2SE/PXG-EC2SE wo TB-6&s SHI0Se2 
- lDw<CtSI f'CI.Sh:lEJP».S'JqE ca.t8t.P RS868 
twcst DACar6-naE CB-68LP RCS&SS 
ierm=rel pois ca rat prvie gal oratoning le, fnrg rplbiatior, iscttr., u€ e or; 
wtact nay be recess2y to irese the tarry e! you mocsumer pt 

Tible 4. lieaxnmsnded Ac:essories 

Ordering Information 
PCI 

· NI PCl-6036,L---------~__: 
NIPCl-6034IL-----------:_: 
NI PCl-6025E-----------: 743-01 
N! PI-6024E.....---------+--rs-n-sorry""~ ' 
NIPCl-60231L---------- 

PCMCIA .778561-01 
NI DA0Card-li036E--------- 78269·01 
NI DA0Card-6024E-,.--------- 

PXI ... 7m9B•Ol 
NIPXi-li025E .... ---------- 
Includes NL-DAD drver software. 

BUY NOW! _ ,,;,,,,rmauon. 
For complete produttspccifrcations, pncmg, and acce~ - -=.. 
call 1800) 8133693 IU S) or go to ni.rom/ 

• CALL (100) 113 3693 (U.S.) BUY ONLINE at n1.com or 

. D 3· Data sheet Figure .v 
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r] ANALOG 
Ll DEVICES Low Cost, Low Power 

" hi6hmumentation /Aimlitier FEATURES AD620 I 
EASY TO USE 
Gain Set with One External Resistor 

(Gain Range 1 to 1000) 
Wide Power Supply Range (±2.3 V to ±18 V) 
Higher Performance than Three Op Amp IA Designs 
Available in 8-Lead DIP and SOIC Packaging 
Low Power, 1.3 mA max Supply Current 

EXCELLENT DC PERFORMANCE ("B GRADE") 
50 V max, Input Offset Voltage 
0.6 µV/°C max, Input Offset Drift 
1.0 nA max, Input Bias Current 
100 dB min Common-Mode Rejection Ratio (G = 10) 

LOW NOISE 
9 nV/HZ, @ 1 kHz, Input Voltage Noise 
0.28 pV p-p Noise (0.1 Hz to 10 Hz) 

EXCELLENT AC SPECIFICATIONS 
120 kHz Bandwidth (G = 100) 
15 ps Settling Time to 0.01% 
APPLICATIONS 
Weigh Scales 
ECG and Medical Instrumentation 
Transducer Interface 
Data Acquisition Systems 
Industrial Process Controls 
Battery Powered and Portable Equipment 

PRODUCT DESCRIPTION 
The AD620 is a low cost, high accuracy instrumentation ampli­ 
fier that requires only one external resistor to set gains of I to 

30,000 r------r-----,----,---7 

CONNECTION DIAGRAM 

8-Lead Plastic Mini-DIP (N), Cerdip (Q) 
and SOIC (R) Packages 

TOP VIEW 

1000. Furthermore, the AD620 features 8-lead SOIC and DIP 
packaging that is smaller than discrete designs, and offers lower 
power (only 1.3 mA max supply current), making it a good fit 
for battery powered, portable (or remote) applications. 

The AD620, with its high accuracy of 40 ppm maximum 
nonlinearity, low offset voltage of 50 µV max and offset drift of 
0.6 µV/°C max, is ideal for use in precision data acquisition 
systems, such as weigh scales and transducer interfaces. Fur­ 
thermore, the low noise, low input bias current, and low power 
of the AD620 make it well suited for medical applications such 
as ECG and noninvasive blood pressure monitors. 

The low input bias current of 1.0 nA max is made possible with 
the use of Super}eta processing in the input stage. The AD620 
works well as a preamplifier due to its low input voltage noise of 
9 nVHZ at 1 kHz, 0.28 V p-p in the 0.1 Hz to IO Hz band, 
0.1 pANHZ input current noise. Also, the AD620 is well suited 
for multiplexed applications with its settling time of 15 s to 
0.01 % and its cost is low enough to enable designs with one in­ 
amp per channel. 

10,000 ~---,----,----,----,---""1 

Ill 
-.:_ 25,000 1----+----t-----:;:;,,.-=- 3 OP-AMP 
o IN-AMP 
~ (3 OP--07s) 

~ 20,000 ~:- -. 

f 15,000 t--.:#'---+----t­ .. 
Ii AD620A 
0 gr">» 
~ ~ g 5,000 l---=-+----l-----t---7 

{pg}I[' +/ J 
TYPICAL STANDARD 

uin BIPOLAR INPUT 
!!la. IN-AMP 
? 4go]][ L { 
s] 
~~ 
e [4 [ 3f' + gT ol 
~~ 

G=100 

oL ,, 
0 5 10 

SUPPLY CURRENT - mA 

Figure 1. Three Op Amp IA Designs vs. AD620 

Rev.e 
lnfor} .., , 3d to be accurate and 
n,"?\!9n furnished by Analog Devices is belie©" ,j,j Devices for its 
,,,""® However, no responsibility is assumed by· Gr ihird parties 
Wh-' hnor for any infringements of patents or 0ther rigd by implication or 
ch may 4 fir is grante othe . result from its use. No icense 

1 
Devices. 

I'wise under any patent or patent rights of Ana og 

csl.{ as id a k 1k SOURCE RESISTANCE - £2 

Figure 2. Total Voltage Noise vs. Source Resistance 

av, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. 
One Technology W y World Wide Web Site: http://www.analog.com 
Tel: 781/329-4700 © Analog Devices, Inc., 1999 
Fax: 781/326-8703 
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&20 SPEC IFI CAT ID NS (Typical @ +25°C, v, , ,e 15 V, and R, = 2 kn, unless otherwise noted! AD - 
AD620A 

AD620B 
AD620S' 

Min Typ Max Min Typ Max Min Typ Max Units 

Con ditions 
gel' G = 1 + (49.4 k/R,) 

1 0,000 I 
10,000 I 10,000 

I ,,re v, ur= ±l0 V 

0.02 0.03 0.10 % 

0.03 0.10 
0.01 

®'%.7 

0.15 0.30 % 

0.15 0.30 
0.10 0.15 

% 

Git 

0.15 0.30 

G= 

0.15 0.30 
0.10 0.15 

0.70 % 

G=10 

0.40 0.70 
0.35 0.50 0.40 

G= 100 

lIT = -10 V to +10 V, 

10 40 ppm 

G= 1000 v, 
10 40 

10 40 

95 ppm 

R, = 10 k2 

10 

gaalinearity; 

10 95 
10 95 

G= 1-1000 
R, =2 kQ 

10 ppm/'C 

G= 1-100 

10 
JO 

-50 ppml'C 

. Temperature 
G I 

-50 -50 
- 

Gain VS. 

Gain >1° 

(Total RTI Error - Vos,+ Voso/G) 

30 125 µV 
30 125 15 50 

225 µV 

LTAGE OFFSET 
Vs =±5 V to±15 V 

185 85 
0.3 1.0 µV/'C 

VO t Offset, Vos 
Vs =±5 V to±15 V 

0.3 1.0 0.1 0.6 
400 l000 µV 

Jnpu Temperature 
Vs=±5Vto±15V 

1000 200 500 
1500 µV 

Om 

400 

750 
µV 

Average TC 
Vs=±l5V 

1500 

2000 

Output Offset, V oso 
Vs= ±5 V . 

2000 l000 
5.0 15 µV/'C 

Vs= ±5 Vto±l5 V 

2.5 7.0 5.0 15 
Over Temperature 

V, =±5 V to±15 V Average TC 

dB 

Offset Referred to the 

80 100 
dB 

Vs= ±2.3 Vto±l8 V 

80 100 
120 

Input vs. 

80 100 
120 95 

dB 

Supply (PSR) 

100 
110 140 

95 120 
120 140 

140 dB 

G=I 

110 140 
140 110 

G= 10 

140 120 110 
G= 100 

0.5 2 nA 

G=1000 

0.5 1.0 
4 nA 

0.5 2.0 
1.5 

8.0 pN'C 

JNP!IT CURRENT 

2.5 
3.0 

0.3 1.0 nA 

Input Bias Current 

3.0 
0.3 0.5 

2.0 nA 

Over Temperature 

0.3 1.0 
0.75 

8.0 pN'C 

Average TC 

1.5 
1.5 

Inpur Offset Current 

1.5 
Over Temperature 

GO\pF 

Average TC 

10\2 
GOpF 

10\\2 
10\2 

+Vs - 1.2 V 

INPUT 

10\2 
10p2 

+Vy-1.2 --V, +1.9 
+Vs - 1.3 V 

Input Impedance 

10[[2 
V, + 1.9 

-V, + 2.1 
V 

Differential 

--V, + 1.9 +Vs-1.2 
-V, + 2.1 +V,-1.3 

-V, + 1.9 +V,- 1.4 
V 

+V, -1.3 
+V,-1.4 

+Vs ­ 1.4 

Common-Mode 
Vs= ±2.3 V to ±5 V 

-V, +2.1 
V, +1.9 

+V,-1.4 -Vs + 2.3 

Input Voltage Range3 

-V, + 1.9 +V,-1.4 
-Vs+ 2.1 

Over Temperature 
Vs=±5Vto±l8V 

-Vs+ 2.1 +V,- 1.4 

dB 

Over Temperature 

73 90 
dB 

Common-Mode Rejecti on 

90 
93 110 

dB 

80 

Ratio DC to 60 Hz with 
Vcu = 0 V to ±10 V 

90 
110 

110 130 
dB 

73 
100 

130 
130 

I kn Source lmbala nee 

110 
120 

110 

G=] 
93 

130 
120 130 110 

- 

G=10 

130 110 

+V, -1.2 V 

G= 100 

V, +1.1 
-1.3 V 

G = 1000 

+V, -1.2 
-V, + 1.6 +V, 

V 

- 

-1.2 -Ve+ 1.1 
+V, 1.3 

-V, + 1.2 +v s-1.4 

OUTPUT 

+Vs 
y,+ 1.4 

-1.4 
+v s-1.5 V 

R, = 10 k2, 
V, +1.1 

-1.3 +V, 
V, +2.3 

mA 

Output Swing 

+Vs 
V, + 1.2 s-1.5 

=±2.3 V to ±5 V 
-V% + 1.4 

+Vs 1.4 
-V,+ 1.6 +V 

±18 

Vs -- · 

V, +1.2 
+Vs -1.5 ±18 J. 

Over Temperature 

Vs= ±5 V to ±18 V 
V, + 1.6 

L-- ±18 
Over Temperature 

Shon Current Circuit o, 
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• 
AD620 Conditions AD620A 

Model Min Typ Max AD620B 
Min AD620S! 

NAMIC RESPONSE Typ Max Min Typ Max "s Signal -3 dB Bandwidth Units 

G=I 
1 000 G= 10 800 1000 

1000 G= 100 800 kHz 120 800 G= 1000 120 kHz 
12 120 kHz Slew Rate 0.75 1.2 12 12 Settling Time to 0.01 % 10 V Step 0.75 1.2 kHz 

0.75 1.2 V/us G= 1-100 15 G= 1000 150 15 15 ts - 150 150 NOISE Is 

Voltage Noise, 1 kHz Tora/ RTI Noise= (e®,; )+(a /G} 
Input, Voltage Noise, e, 9 13 9 13 Output, Voltage Noise, e,, 72 100 9 13 aVHE 

RTI, 0.1 Hz to 10 Hz 72 100 72 100 nV AH? 
G== 1 3.0 3.0 6.0 G=10 0.55 3.0 6.0 µV p-p 
G= 100-1000 0.55 0.8 0.55 0.8 µVp-p 0.28 0.28 0.4 Current Noise f= 1 kHz 100 0.28 0.4 µVp-p 
0.1 Hzto IO Hz 100 100 W"lliz. 10 IO 10 pA p-p 

REFERENCE INPUT 
R 20 20 20 k2 ls Vnsss Vu+ = 0 +50 +60 +50 +60 +50 +60 µA Voltage Range -V, + 1.6 +V,- 1.6 -V, +1.6 +V,-1.6 -V, + 1.6 +V,-1.6 V Gain to Output 1 ± 0.0001 I± 0.000! I ± 0.0001 

POWER SUPPLY 
Operating Range ±2.3 ±18 ±2.3 ±18 ±2.3 ±18 V 
Quiescent Current Vs =±2.3 V to ±18 V 0.9 1.3 0.9 1.3 0.9 1.3 mA 

Over Temperature I.I 1.6 I. I 1.6 I.I 1.6 mA 

TEMPERATURE RANGE 
For Specified Performance -40 to +85 -40 to +85 -55 to +125 ·C 

NOTES 
'See Analog Devices military data sheer for 883B rested specifications. 
Does not include effects of external resistor Jlo. 
30a, input grounded. G :: 1. 
'This is defined as the same supply range which is used to specify PSR. 
Specifications subject to change without notice. 
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r ANALOG I.ii DEVICES Ultralo~ Offset Voltage 

maratianal.Amplifiers 
FEATURES OP07 I 
Low Vos: 75 V Max 
Low Vos Drift: 1.3 V/C Max 
Ultra-Stable vs. Time: 1.5 V /Month Max 
Low Noise: 0.6 V p-p Max 
Wide Input Voltage Range: ±14 V 
Wide Supply Voltage Range: 3 V to 18 v 
Fits 725,108A/308A, 741, AD510 Sockets 
125C Temperature-Tested Dice 

APPLICATIONS 
Wireless Base Station Control Circuits 
Optical Network Control Circuits 
Instrumentation 
Sensors and Controls 
Thermocouples 
RTDs 
Strain Bridges 
Shunt Current Measurements 

Precision Filters 

PIN CONNECTIONS 

Epoxy Mini-Dip (P-Suffix) 
8-Pin SO (S-Suffix) 

Vos TRIM 

NC = NO CONNECT 

GENERAL DESCRIPTION 
The OP07 has very low input offset voltage (75 µV max for 
OP07E) which is obtained by trimming at the wafer stage. These 
low offset voltages generally eliminate any need for external null­ 
ing. The OP07 also features low input bias current (±4 nA for 
OP07E) and high open-loop gain (200 V/mV for OP07E). The 
low offsets and high open-loop gain make the OP07 particularly 
useful for high-gain instrumentation applications. 
The wide input voltage range of± 13 V minimum combined with 
high CMRR of 106 dB (0P07E) and high input impedace pro­ 
vides high accuracy in the noninverting circuit configuration. 
Excellent linearity and gain accuracy can be maintained even at 

high closed-loop gains. Stability of offsets and gain with time or 
variations in temperature is excellent. The accuracy and stability 
of the OP07, even at high gain, combined with the freedom 
from external nulling have made the OP07 an industry standard 
for instrumentation applications. 
The OP07 is available in two standard performance grades. The 
OP07E is specified for operation over the 0°C to 70°C range, and 
OP07C over the -40°C to +85°C temperature range. 
The OP07 is available in epoxy 8-lead Mini-DIP and 8-lead SOIC. 
It is a direct replacement for 725,108A, and OP05 amplifiers; 
741-types may be directly replaced by removing the 7 41's nulling 
potentiometer. For improved specifications, see the OPl 77 or 
OP1177. For ceramic DIP and TO-99 packages and standard 
micro circuit (SMD) versions, see the OP77. 

NOTE: 
R2A AND R2B ARE 
ELECTRONICALLY 
ADJUSTED ON CHIP 
AT FACTORY FOR 
MINIMUM INPUT 
OFFSET VOLTAGE. 

R2A 
(OPTIONAL 
NULL! 

8 
R1A 

R? 

R1B 019 

NON­ 
INVERTING O-/AA Q 
INPUT pp {( 

R9 
OUTPUT 

6 
R10 

Figure 1. Simplified Schematic 
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- 
oP07-SPECIFICATIONS 
9E ELECTRICAL CHARACTERISTICS - - I = 250, , 
parameter Symbol Conditions 

, unless otherwise noted.) 

{UT CHARACTERISTICS Min Typ Max 
[npUI offset Voltage Vos 

Unit 

Lg-Term Vos Stabilicy2 Vos/ Time 30 75 
Input offset Current Ios µV 

put Bias Current I 
0.3 1.5 µV/Mo 
0.5 3.8 nA 

put Noise Voltage . Cr p-p 0.1 Hz to 10 Hz? ±1.2 ±4.0 nA 
Input Noise Voltage Density c, fo = 10 Hz 0.35 0.6 µVp-p 

fo = 100 Ha? 10.3 18.0 VVHE 
fo = 1 kHz 10.0 13.0 nVfHz 

Input Noise Current I, p-p 9.6 11.0 nVWHE 
Input Noise Current Density L, fo = 10 Hz 14 30 pA p-p 

fo = 100 Hz3 0.32 0.80 pAVH? 
fo= 1 kHz 0.14 0.23 pAVHE 

Input Resistance-Differential Mode4 Rn 0.12 0.17 pANHE 
Input Resistance-Common-Mode RpcM 15 50 mQ 

Input Voltage Range IVR 160 GQ 
Common-Mode Rejection Ratio CMRR Vcu =±13 V 

±13 ±14 V 
Power Supply Rejection Ratio PSRR Vs=±3Vto±l8V 

106 123 dB 
Large-Signal Voltage Gain Ayo R, > 2k2, V,% =±10 V 

5 20 µVN 
200 500 V/mV 

~ ~ 500 2, Vo = ±0.5 V, 
V, =±3 V 150 400 V/mV 

OUTPUT CHARACTERISTICS ~ 
Output Voltage Swing Vo R; > 10 kQ ±12.5 ±13.0 V 

R, > 2 kQ ±12.0 ±12.8 V 
R, > 1 k2 +10.5 ±12.0 V 

DYNAMIC PERFORMANCE 
Slew Rate SR R, > 2 k? 0.1 0.3 V/µs 
Closed-Loop Bandwidth BW AvoL = 15 0.4 0.6 MHz 
Closed-Loop Output Resistance Ro Vo=0, 1,= 0 60 Q 
Power Consumption P, Vs= ±15 V, No Load 75 120 mW 

Vs= ±13 V, No Load 4 6 mW 
_Offset Adjustment Range R» = 20 k.Q ±4 mV 

NOTES tu~ offset_ voltage measurements are performed by automated test equipment appro'?mately 0.5 seconds after application of power. . . . . 
tiJ! ng tenn mput ?ffset voltage stability refers to the averaged trend time of VOS vs. Time over extended periods after the first 30 days of operation. Excluding the 101- 
3s hour of operation, changes in VOS during the first 30 operating days are typically 2.5 V refer to the typical performance curves. Parameter is sample tested. 
ample tested. 
;aranteed by design. 

uaranteed but not tested. 
Specifications ib; suiject to change without notice. 
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