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Abstract

Design a single channel EEG system and processing the corresponding signals using
HMM

By
Hamza F. Altakroury Shehdeh A.M. Zahdeh

Palestine Polytechnic University — 2010

Supervisor
Dr. Hashem Tamimi
Eng. Ali Amro

The idea of Brian Computer interface solves the problems of the disables by analyzing
their brain signals. These signals are acquired in the form of Electroencephalogram
signals and then processed by the computer which controls other devices.

This project aims to design a hardware device that is able to acquire the brain signals
related to Motor Imagination with minimal noise effects. Then these signals are analyzed
using Discrete Hidden Markov Model with the help of Fuzzy C-means Clustering and
Discrete Cosine Transform.

The results show that we were able to distinguish between silence state, left and right
movements with high acceptable response time and low error rate. These results urge us
to build a system in the Simulink to perform a real-time processing.
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Chapter 1
INTRODUCTION

1.1 Overview

Brain Computer Interface (BCI) is the technology that allows the computer
to interact with the brain. This interaction is realized by having computer
signals entered into the brain, or by acquiring the signals from the brain to
be analyzed using the computer. Fig 1.1 shows the BCI block diagram.

The idea of having external signals penetrate into brain is found in the
Neuroprosthetics field, but instead of a full computer, a hardware device is
attached to the human skull to help disables to compensate their partially
damaged senses.

BCI improves the signal action between human brains and computers in
a way that helps the persons who have totally damaged senses to compensate
these senses, a good example of that, is the blind man Jens Neumann a man
blinded in adulthood became able to drive slowly around the parking area of
the research institute [26].

Interacting with the brain could be also based on analyzing signals coming
out from the brain. Understanding brain signals means two things; first it is
possible to check the healthiness of the brain through these signals, in other
words, illness caused due to problems in brain could be recovered. Moreover,
BCI is used to understand the imagination of a person. One type of imag-
ination signals is called the Motor Imagination, that is the imagination of




EEG Acquiring &
omputer

Figure 1.1: BCI block diagram.

body movements.

Motor Imagination helps the disables to compensate their disability or
loss in organs, like the loss of hands or legs. Even deaf persons would be
understood through BCI.

BCI depends on analyzing the brain signals, these signals are called Elec-
troencephalogram signals, EEG for short, but these signals can not be un-
derstood unless a well-designed signal processing technique is established.

1.2 Objective

This project tends to design a device which could acquires EEG signals with
minimal noise effects. The device is designed to be portable in a way to be
easy for the patients to hold it everywhere and every time. Also the project
aims to find a reliable signal processing method from which leg movement
signals can be understood.

Fig 1.2 summarizes the project in three main stages: The first stage the
electronic hardware that aims to acquire the EEG signals. This device is
simplified to be only one channel device.

The second stage is the Feature Extraction that aims to find the most sig-
nificant part of the signal in order to make the job of Hidden Makov Model




Acquiring Feature Hidden Markov
EEG Extraction Models
Boimedical
Engineering
Signal Processing
Engineening

Figure 1.2: Block diagram summurize the project

more efficient and fast.

The final stage is the Hidden Markov Models block, this is a statistical model
aims to study random signals like EEG. This block could contain many Hid-
den Markov Models, where each model is designed to understand only one
signal.

1.3 Time Schedule

The time plan views the stages in studying, designing and building the entire
system. This section includes two time schedules; the first one is done in the
first semester while the second shows the task scheduling for the second
semester.
Fig 1.3 shows the first semester tasks; all tasks are referred to the theoretical
background and the whole system analysis.

Fig 1.4 shows the second semester tasks schedule; all tasks are referred
to the implementation and syatem testing.




Week
Task
Project
Determination

Data Gathering

Design and
Analysis

Documentation

Figure 1.3: Time planning for the first semester

Week
Task

Hardware
Design

Software
Design

Implementation
and Testing

Documentation

Figure 1.4: Time planning for second semester

1.4 Economical Study

This section lists the overall cost of the project, these costs are summarize
in Fig 1.5.




Component Price
Printed Board 1005
IC's 50%
Resisters and Capacitors 206
Cover and Battery 309
Electrodes 408
Leads 1009

Lagotd S gt

Figure 1.5: Hardware Cost

1.5 Project Contents

In summary this project contains the following chapters:

o Chapter 2: This chapter talks about the physiology of the brain,
sources of EEG activity and brain rhythms, it also talks about the
electrodes types and their placements.

e Chapter 3: This chapter talks about the Hidden Markov Model as a
statistical model used in analyzing random signals, this method prove
its success in understanding random voice signals.

e Chapter 4: This chapter talks about Feature Extraction methods used
to get the most important data form the signal therefore easing the
manipulation of signals. This method contains both Discrete Fourier
Transform and Fuzzy C-means Clustering.

e Chapter 5: This chapter describes the design of the EEG device and
its electronic components requirements.

o Chapter 6: This chapter presents the results of the Signal Processing
results tested by MATLAB.

e Chapter 7: This chapter explains the implementation of the entier
system.

e Chapter 8: The final chapter offers a recommendations for those who
interest in working in this field.




Chapter 2
BACKGROUND

2.1 Introduction

In order to analyze an EEG signal some background knowledge about the
physiology of the brain (with respect to its biopotentials), and an under-
standing of what is an EEG signal is necessary. This chapter gives a basic
idea about the EEG signals, EEG electrodes placement, and types of EEG
electrodes.

2.2 The EEG signal

Electroencephalogram (EEG): is a recording of electrical activity originating
from the brain. It is recorded on the surface of the scalp using electrodes,

4
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Figure 2.1: The Neuron [2].
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thus the signal is retrievable non-invasively. The brain consists of billions of
neurons making up a large complex neural network. Fig 2.1 depicts the Neu-
ron, it has several components: the soma is the cell body of the neuron and
contains the nucleus, which houses genetic information; the dendrites extend
from the soma, and receive chemical messages from other neurons; the axon
transmits electro-chemical signals to other neurons; the myelin sheath con-
sists of fatty tissue cells that insulate the electrical current flowing through
the axon [1, 2].

The brain is ”defined as a large soft mass of nerve tissue contained within
the cranium, the encephalon”. Three major structures compose the brain
[4], as shown Fig 2.2:

1. The brain stem-automatic vital system control.
2. The cerebellum-involuntary muscle control and coordination.
3. The cerebrum-voluntary movement, sensation, and intelligence.

The brain also includes tens of billions of brain neurons, these neurons
are linked to one large group (sometimes with thousands) of nerve fibers by
neighboring synapses, this group transports information (meta nerve) from
the brain to different organs and tissues of the body and vice versa. The
networks of neurons that make it contacts together very similar to electrical
circuits ,which comes to life when they pass through electricity .Therefore,
the mechanism of sending and receiving electrical impulses between nerve
cells is the same as the transfer of electric charges inside the wire.

2.3 Source of EEG activity

The electrical activity of the brain is usually divided into three categories:
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1. Spontaneous activity: is measured on the scalp or on the brain, and is
called the electroencephalogram. The amplitude of the EEG is about
100pv when measured on the scalp, and about 1-2 mV when measured
on the surface of the brain. The bandwidth of this signal is less than
50Hz. As phrase ”spontaneous activity” implies, this activity goes on
continuously in the living individual [5].

Neurons, or nerve cells, are electrically active cells which are primarily
responsible for carrying out the brain’s functions. Neurons create ac-
tion potentials [3]. Action potential (AP) is caused by an exchange of
ions across the neuron membrane, and an AP is a temporary change in
the membrane potential that is transmitted along the axon. It is usu-
ally initiated in the cell body and normally travels in one direction. The
membrane potential depolarizes (becomes more positive), producing a
spike. After the peak of the spike the membrane repolarizes (becomes
more negative), as shown Fig 2.3. The potential becomes more nega-
tive than the resting potential and then returns to normal. The action
potentials of most nerves last between 5 and 10 milliseconds [6]. Which
are discrete electrical signals that travel down axons and cause the re-
lease of chemical neurotransmitters at the synapse, which is an area
of near contact between two neurons. This neurotransmitter fits into
a receptor in the dendrite or body of the neuron that is on the other
side of the synapse, the post-synaptic neuron. The neurotransmitter,
when combined with the receptor, typically causes an electrical current
within dendrite or body of the post-synaptic neuron. Thousands of
post-synaptic currents from a single neuron’s dendrites and body then
sum up to cause the neuron to generate an action potential. This neu-
ron then synapses on other neurons [3].

EEG reflects correlated synaptic activity caused by post-synaptic po-
tentials of cortical neurons. The ionic currents involved in the gener-
ation of fast action potentials may not contribute greatly to the av-
craged field potentials representing the EEG; Fig 2.4 depicts current
flow during synaptic activation. More specifically, the scalp electrical
potentials that produce EEG are generally thought to be caused by
the extra-cellular ionic currents caused by dendritic electrical activity,
whereas the fields producing magneto encephalographic signals are as-
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Figure 2.3: An example of Action Potential [3].

sociated with intracellular ionic currents [6].

. Evoked potentials: components of the EEG that arise in response to
a stimulus (which may be electric, auditory, visual, etc.). Such signal
are usually below the noise level are not readily distinguished. Hence,
and one must use a train of stimuli and signal averaging to improve the
signal to noise ratio [5].

. Bioelectric events produced by single neurons: single neuron behavior
can be examined through the use of microelectrodes which impale the
cells of interest. Through studies of cell networks actual tissue proper-
ties are reflected [5].

The electric potentials, generated by single neurons, are far too small
to be picked by EEG. EEG activity, therefore, always reflects the sum-
mation of the synchronous activity of thousands or millions of neurons
that have similar spatial orientation, radial to the scalp. Currents that
are tangential to the scalp are not picked up by the EEG. Thus, the
EEG benefits from the parallel, radial arrangement of apical dendrites

10
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Figure 2.4: The neuron membrane potential changes [5]

in the cortex. Because voltage fields fall off with the fourth power of

the radius, activity from deep sources is more difficult to detect than
currents near the skull [6].

Scalp EEG activity shows oscillations at a variety of frequencies. Sev-
eral of these oscillations have characteristic frequency ranges, spatial
distributions and are associated with different states of brain function-
ing (e.g., the various sleep stages). These oscillations represent syn-
chronized activity over a network of neurons. The neuronal networks
underlying some of these oscillations are understood, while many oth-
ers are not [6].




2.4 Brain Rhythms

EEG signal amplitude range from about 1 to 100uV,_, at low frequencies
(0.5 to 100 Hz) [3]. The rhythm of EEG signal is illustrated in Fig 2.5, some
of the well-known rhythms are explained below:

1. Alpha: wave occurs at a frequency between (7.5 - 13 Hz), the alpha
waves are produced when a person is in a conscious, relaxed state with
eyes closed; the activity is suppressed when the eyes are open. The
maximum amplitude of the alpha rhythm is (10uV,_,)[4] , and intensely
occurs in the occipital region and can be best recorded at parietal and
frontal regions of the scalp.

2. Beta waves normally occur in the frequency range of (14 - 30 Hz)
and sometimes even as high as 50Hz for intense activity. Beta waves
activity is present when people are alert or anxious, with their eyes
open. The frequencies above 30 Hz (mainly up to 45 Hz) correspond to
the gamma range (sometimes called the fast beta wave). Although the
amplitudes of these rhythms are very low (less than 20uV,—, in Beta
wave, and less than 24V,_, in gamma wave ) [4] and their occurrence is
rare, detection of these rhythms can be used for confirmation of certain
brain diseases.

3. Theta waves potentials are relatively large amplitude (less than 100.V,—p)[4],
and low frequency (3.5 - 7.5 Hz). Theta waves appeared in sleeping sit-
uation, small children, and occur mainly in the parietal and temporal
region.

4. Delta waves relatively have the largest amplitudes (1001V,—,)[4] and
the lowest frequency (0.5 - 3.5 Hz). It is normal rhythm for infants less
than one year old and in adults in deep sleep. This wave can thus occur
solely within the cortex, independent of the activities in lower regions

of the brain [7].
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2.5 EEG electrodes placement system

The electrical characteristics are determined primarily by the type of metal
used. Several types of electrodes can be used to record EEG (Appendix A).
EEG electrodes are smaller in size than ECG electrodes. They may be ap-
plied separately to the scalp or may be mounted in special bands, which can
be placed on the patient’s head. In either case, electrode jelly or paste is
used to improve the electrical contact. If the electrodes are intended to be
used under the skin of the scalp, needle electrodes are used. They offer the
advantage of reducing movement artifacts. EEG electrodes give high skin
contact impedance as compared to ECG electrodes [4, 5, 6].

The amplitude, phase, and frequency of EEG signals depend on electrode
placement. This placement is based on the frontal, parietal, temporal, and
occipital cranial areas. One of the most popular schemes is the 10-20% EEG
electrode placement system [4]. The system does not show how many elec-
trode to be put on the scalp but rather it is a measurement of percentage of
10% or 20% on a certain anatomical landmarks to standardize the placement
of electrodes. The positions are defined by certain anatomical reference. Ref-
erence points are nasion, which is the delve at the top of the nose, level with
the eyes; and inions, which is the bony lump at the base of the skull on the
midline at the back of the head. From these points, the skull perimeters are
measured in the transverse and median planes [7].

Electrode locations are determined by dividing these perimeters into 10%
and 20% intervals. Three other electrodes are placed on each side equidistant
from the neighboring points. They are identified according to their position
on the head; Fp for frontal-polar. F for frontal, C for central, P for parietal,
T for temporal and O for occipital. Odd numbers refer to electrodes on the
left side of the head and even numbers represent those on the right while Z
denotes midline electrodes. One electrode is labeled is ground and placed at
a relatively neutral site on the head, usually the midline forehead [5].

In addition to the 21 electrodes of the international 10-20% system, inter-
mediate 10% electrode positions are also used. The locations and nomencla-
ture of these electrodes are standardized by the American Electroencephalo-
graphic Society. In this recommendation, four electrodes have different names
compared to the 10-20% system; these are Ty, Tz, P7, and Ps. These elec-
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trodes are drawn black with white text in Fig 2.6. Besides the international

10-20% system, many other electrode systems exist for recording electric po-
tentials on the scalp [5].

Unipolar or Bipolar electrodes can be used in the EEG measurement. In
the first method, EEG may be recorded by picking up the voltage difference
between an active electrode on the scalp with respect to a reference electrode
on the ear lobe or any other part of the body. However, bipolar recording
is more popular wherein the voltage difference between two scalp electrodes
is recorded; the following Fig 2.7 depicts the Unipolar and Bipolar measure-
ments. Such recordings are done with multi-channel electroencephalographs

[5].

Fig 2.8 depicts the position of three electrodes which will be used in this
project. Electrode (1) and electrode (2) will be used to acquire the EEG
signal using unipolar (Monopolar) method, Monopolar recording is used in
research, because it enables the researcher to localize the event of interest.
These two electrode fixed in a distance of 5cm in an anterior posterior po-
sition on the vertex (Cz according to the international 10-20 system), while
electrode (3) is the reference electrode, these positions have been chosen ac-
cording to the nerves that control the leg motion [8].

Tissue and Electrode System

The series resistance capacitance equivalent circuit breaks down at the lower
frequencics. Where this model would suggest an impedance going to infinity
as the frequency approaches DC. To avoid this problem, convert this series
RC circuit to a parallel RC circuit as shown Fig 2.9 that has purely resistive
impedance at very low frequencies.

Using the simple model of the electrode electrolyte interface of Fig 2.9, as
well as the even simpler model previously developed for the electrical activity
of the Brain. This overall equivalent circuit, as shown Fig 2.10.

Although C and C', and R1’, R2 and R2' may not be exactly equal (dif-
ferent sites and modes of application on the skin), E should be equal to E’
(same type of electrode). Hence V represents the actual difference of ionic
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Figure 2.7: Method of measurement
(A) Bipolar and (B) Unipolar measurements.[27].

Electrode 1

Electrode 2

Electrode 3

Figure 2.8: Electrode placements for a single channel unipolar system.
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Figure 2.9: Equivalent circuit of the Ag-AgCl Interface[6].
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potential between the two points on the body from which the EEG is being
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2.6 Types of EEG Electrodes

Several types of surface electrodes can be used to acquire EEG signals. The
main types are Suction,Floating, Flexible, and Needle electrodes (Appendix
A describes these eectrodes deeply). These electrodes differ in their location
in the cranial, as well their configuration. EEG electrodes transform ionic
currents from cerebral tissue into electrical currents used in EEG pream-
plifiers. The electrodes are the most critical components of the recording
chain. These electrodes are to be of easily fixed at the scalp with minimal
disturbance of coiffure cause no discomforts and remain in place for extended
period of time. The disposable self-adhesive pad is selected, we choose this
pad because it’s noninvasive and ideal for measuring low voltage Brain sig-
- nals. Since human skin is a poor electrical conductor, a low-resistance gel is
applied between the skin and the electrical contact [6]. The electrodes should

be:
e High sensitivity.
e Low Electrode Offset Potentials.

e Low Electrode Noise.




Figure 2.11: Ag/AgCl electrode [28].

e Low Electrode Polarization effect.

e Motion Artifact—about 5mV (By adding an electrode jelly or paste)

[5][6][9]-

Ag/AgCl electrodes should offer the best combination of low offset po-
tentials and drift, low noise and relative immunity to motion artifact. These
disposable electrodes require face to face bench testing to ensure that the
offset voltage is less than 100mV, the noise is less than 150uV the 10Hz
impedance is less than 2K, and the bias current tolerance to 200nA for 8
hours yields less than 100mV offset. Hence, Ag/AgCl will be used in this
project [3, 8, 10].




Chapter 3

HIDDEN MARKOV MODEL

3.1 Introduction

This chapter presents the theory of Hidden Markov Model, and how can we
utilize it in our project.

Signals are physical quantities produced by variety of real-world processes.
These signals can be discrete in nature, such as codebook characters, etc., or
continuous in nature such as speech, music, temperature, etc.

All signals are emitted from sources, these sources can be stationary, in which
the signal’s statistical properties do not vary with time, or nonstationary, in
which the signal’s statistical properties vary with time.

Signals coming form one source are called pure signals, while those coming
form many sources, for example the origin of the signal and the noise source,
are called corrupted signals.

Studying real-world signals is achieved using signal models, these models
provide the basis for the theoretical description of a signal processing sys-
tem. Also signal models can be used to process the signal so as to provide a
desired output, and they are potentially capable of letting us learn a great
deal about the signal source without having to have the source available, i.e.
we can simulate the source and learn as much as possible via simulation.

Signal models can be divided into two types, deterministic models and sta-
tistical models. Deterministic models exploit some known specific properties
of the signal, here the specification of the signal model is generally straight
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forward; like estimating frequency, amplitude, etc.In statistical models one
tries to find statistical properties of the signal, random processes are used
to characterize the signal here.One of the statistical models is called Hidden
Markov Model, HMM for short, which is going to be applied in this project.

HMM is very common in the field of speech recognition, the theory of
HMM was first published in 1960’s and first implemented in speech recogni-
tion system in 1970’s.

3.2 Discrete Markov Model

Assume that we have a system with N different states, that is, the system
can be in one of its different states at any given time T'. Let w,(t) is the n
state at time ¢, where n € N, then in the following example:

2

wT = {w1 (1), wa(2), ws(3), wa(4)}

the system visit the states 1, 4, 3 then 2, for short, it can be rewritten as:

wT = Wy, Wy, W3, W2
In general, a full probabilistic description of the systems like the one
mention above requires a specification of the current state as well as all its
predecessors. So if it is desired to find the probability of any sequence of
states, we can use the following formula:

P(wl,wg,w3, 5685 ’LUN) = P(wl) 2 P(wglwl) ¥ P(w3|w1,w2) ----- P(leu)l, ,,"wN_l)
(3.1)
N
= HP(wilwi-l,wi-z,wi—s, cee  WimN-1)
i=1

But in First Order Markov Process the probabilistic description depends
only on the current state and the previous state, that is:




P(wy, wa, ws, ..., wy) = P(wy) - P(wa|w;) - P(ws|ws) - -+ - - P(wy|wy—1)

(3.2)
N

= HP(wilwi-l,wz‘—mwi-s,“' Wi N—1)
=1

If we define a;; = P(w;|w;) which is called the transition probability and
7;P(w;) which is the instial probability,then the Eq 3.2 becomes

P(wl,wz,’ws, ---,’UJN) =T1-0Q12 Q23" AG(N-1)N (3-3)

Usually systems like these are shown graphically as in Fig 3.1

Figure 3.1: Markov Model with three states

The transition probabilities have to obey the standard probabilistic con-

strains:
a;; > 0, (3.4)
N
9=1

22




b21 b11

b12

al2

Figure 3.2: Hidden Markov Model with two states and two symbols for each
state

Eq 3.4 comes from the basic theorem in probability which states that any
probability measure has to be greater than or equal to zero. And Eq 3.5,
from basic probability, we are certain that w; will change certainly to one of
the defined states, which means 1 in probability.

The Markov model, mentioned above, could be called Observable Markov
Model, because the states of the system can be observed. However this model
does not has many practical applications, because if the states are usually
Hidden.

3.3 Hidden Markov Model

In cases where the source of the signals is not available and/or its states are
not observable, Markov Model described previously is not applicable. So it
is worth while to use another model, or in other words, a modified model
from which the sources and their states can be studied, this model is called

the Hidden Markov M odel HMM.

In HMM, like the one shown in Fig 3.2, it is assumed that any stale
can be inferred to from an observable symbol assigned to that state, the.se
symbols are, in actual, signals. Le. Instead of studying the system from its
Hidden states, we can study the observable symbols.

The symbols in HMM can be written in the form vm(t), for m € M and
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t € T, where M is the total number of symbols and T is the total time.

To ease the problem we assume that each state is capable of producing the
same set of symbols.

To understand HMM, let us consider the following example:
Assume that a person in a closed room is doing an experiment of choosing
an urn and then choosing a colored ball from the urn, then saying the color
of the ball by using a microphone. If you were given the following sequence:

WYBBBWYYWBY BW...

Here the colors of the balls are considered to be the visible symbols, and
the urns are the hidden states of the model.
The challenge in HMM is choosing the optimal number of unknown states,
which is based on the application and can be optimized by find out the out-
put of different experiments.

In general HMM has the following characteristics:

1. The number of states which the system may visit at each time instant.
For simplicity we assume that all the states are interconnected, in other
words the system is ergodic.

9. The number of observation symbols M which is assumed to be constant
for the N states, i.e.: each state can emit the given set of symbols.

3. The initial distribution of the system is m;, where 1 <1 < N.
4. The transition probabilities of the system aij, where 1 <i4,7 < N.

5 The emission probability bjx, where 1<j<Nand1<k<M.

The emission probability bjx 1S defined as following:

bi = P(vk/w;) (3.6)
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t € T', where M is the total number of symbols and T is the total time.

To ease the problem we assume that each state is capable of producing the
same set of symbols.

To understand HMM, let us consider the following example:
Assume that a person in a closed room is doing an experiment of choosing
an urn and then choosing a colored ball from the urn, then saying the color
of the ball by using a microphone. If you were given the following sequence:

WYBBBWYYWBY BW...

Here the colors of the balls are considered to be the visible symbols, and
the urns are the hidden states of the model.
The challenge in HMM is choosing the optimal number of unknown states,
which is based on the application and can be optimized by find out the out-
put of different experiments.

In general HMM has the following characteristics:

1. The number of states which the system may visit at each time instant.
For simplicity we assume that all the states are interconnected, in other
words the system is ergodic.

9. The number of observation symbols M which is assumed to be constant
for the N states, i.e.: each state can emit the given set of symbols.

3. The initial distribution of the system is m;, where 1 <1 < N.
4. The transition probabilities of the system aij, where 1 < 4,5 < N.

5. The emission probability bjk, where1<j< Nand1<k< M.

The emission probability bk 1 defined as following:

bik = P(vx/w;) (3.6)
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As in the case of a;; the emission probability has the properties:

aij > 0, (R
M
> (bl 1 (3.8)
k=1

Eq 3.8 states that any state will certainly emit one of the defined sym-

bols. Up to now we can conclude that with b is doubly embedded stochastic
process.

3.4 Basic Problems of HMM

HMM has three related problems, these are:

e The Evaluation Problem:
In this problem, the parameters of the system, as;, bjx and m;, are given
and the probability of getting a special sequence of symbols P(vT) is
to be determined.

e The Decoding Problem:
In this problem, the parameters of the models are given, and the opti-
mal path of states w”, that emit the given sequence of symbols v7, is
to be found.

e The Learning Problem:
In this problem initial values of the parameters are given, and it is
desired to adjust these values depending on the training sequence of

symbols v”.

3.5 Computation of Hidden Markov Model

3.5.1 Evaluation

The evaluation problem enable us to find the chance of getting a sequence
oT from a specific model, i.e. how likely that 7 can be emitted form the
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model.

The evaluation problem is considered as an important problem because, it
enables us tg choose the best model among set of models, also it helps us to
find the likelihood that an unknown signal be genecrated from the model.

Now we want to find P(vT), it is given by the equation:

Tmaz

P(v") =Y P@T|wT) - P(wT) (3.9)

vj\:here Tmaz 1S the total number of combinations given by NT. But
P(vT|wT) and P(w7) is given by Eq 3.10 and 3.11.

T
P("|w") = [ ] P(vk(t)|w; (t)) (3.10)
P(w”) = [ ] P(w;(®)lwit — 1)) (3.11)

t=1
Where P(vg(t)|w;(t)) is the emission probability and P(vi(t)|w;(t)) is the
transition probability.

Unfortunately this equation needs a huge calculation capacity. To ease
the problem estimation we can use the Forward Algorithm or the Backward

Algorithm.

Forward Algorithm

Let a;(t) be the probability of the system to be in the state ¢ at time ¢ and
emit the given symbol v(t). This is simplified in Fig 3.3.

a;(1) = m; - b, L <4 S N. (3.12)
N
it +1) = ) (e(t) - aij) - byt +1), 1 SF < N. (3.13)
=1
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/‘\ :
i1"b1(1)

P((1)) P{v(1))'P(«(2))

Figure 3.3: Estimating a in Forward Algorithm

N
P(wT) = (au(T)). (3.14)

Backward Algorithm
Let B;(t) is the probability of being at state i in time instant ¢, then

Bi(T)=11<i<N. (3.15)
N
Bi(t) =S (Bt +1) - az) - bt +1),1 < j < N. (3.16)
5 N
P(™) = (A1) (3.17)

3.5.2 Decoding

Here the parameters and the sequence of symbols are given, in this problem
the sequence of the hidden states that generates the given symbols is to be
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found. As in the evaluation problem, we find ;(t) for all T and N. Then
we consider the maximum value among N in each t.

This is called Local Maximization algorithm. But this algorithm is not
accurate, because a3, for example, could be zero and the maximal path

contains {..., w1, ws}, i.e. this algorithm does not take the transition proba-
bilities in consideration.

Instead we can use the Viterbi Algorithm, which is capable of getting the
optimal path, it is summarized as follows:
Initialization

91(1) = g * bik,l S 1 S N. (318)

¢i(1) = 0. (3.19)

Recursion:

Hj(t) = maiElSisN{ei(t = 1) 0 CLij} Q bjk,l S] S N,2 S t S IR (320)

¢J(t) = argmaxlSiSN{Hi(t = 1) ® G,ij},l S j S N,2 St JE. (321)
Termination:

p(T) = argmaa:lSiSN(Qi(T)) (322)

p(t) = ¢(t + 1)(p(t + 1)) (3.23)

A simple example is shown in Fig 3.4

3.5.3 Learning

In the learning problem, which is performed once at the beginning, we .try
to adapt the model to specific pattern represented by a sampI.e or training
sequence. Here the model is trajned. o) l?hat any sgguence similar to the
training sequence will be generated with high proba.b'ﬂlty(.i '
Our objective here is to adjust ai;, bjk and m; for all i and j.
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Learning Computation
We can define a;; as:
P(w;, w;)
. (3.24)

So we want to find P(w;, w;), which can be found by the forward-backward
algorithm shown in Fig 3.5.

@i(t) - ag; - Bi(t + 1) - bjx(t + 1).

i,5(t) = .
77 :.7( ) P(UT) (3 25)
where P(vT) can be expressed as:
N N
PT) =D (e(t) - ay; - Byt +1) - byn(t +1)) (326)
i=1 j=1
Now we find P(w;) by:
N
Tt = 705 (3.27)
J
Finally the equations become:
™ = (1) (3.28)
T
ai; = Et:; 7i,3(t) (3.29)
Zt 7i(t)
i
b 2=t i) (3.30)

o e
where 6;(t) = 7:(t) - bi-

In the paper publish by Lee and Choi [20] used 2 HMMs for the r?ght
hand and 2 HMMs for the left hand, but in their paper they used Continu-

ous HMM instead of Discrete.

This project will use Discrete HMMs, using Discrete Hidden Ma%rkov
Model simplify the theory and the manipulation and even more logic to
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Figure 3.5: Forward-Backward Algorithm

be programmed into programmable devices.




Chapter 4

FEATURE EXTRACTION

Hidden Markov Model is very efficient to be aware of the pattern of the sig-
nal, but the signal in its original form cannot be entered in the HMM for
either training or evaluation.

The signal originally is time varying and may have any value versus time,
these values must be known precisely if the signal to be input directly into
HMM, because HMM asks about the number of symbols that the signal has.
To solve this problem a Feature Extraction methods are used to make the
symbols defined in HMM as minimum as possible.

4.1 Frequency Domain Representation

The EEG signals are known to have very limited frequency components in
their frequency domain. Many references tend to manipulate the first 100
frequency components of the EEG signals [3]. And this is a very attractive
property to manipulate the EEG signals in their frequency domain.

Using the frequency components in processing EEG signal mgke it easy
for the system to concentrate on limited frequency components instead of

processing the whole signal.

any signal into its frequency domain is done by using the
h mathematician Jean Baptiste

]. The following equation

Transforming
very popular formula found by the Fren'c
Joseph Fourier which was named after him [23

32




is known as the Fourier Transform equation

X(f)= /_ o z(t) - e 1) gy (4.1)

oo

It is. also known as the Continuous-Time Fourier Transform because it
deals with continuous data.

Most of the applications deal with discrete data because they used com-
puters to process their signal. Computers deal only with discrete data, so

instead of using the above equation, the following Discrete-Time Fourier
Transform must be used:

o

X(f)= > x(n)-e?nm (4.2)

n=—co

The outpuf of Fourier Transform is complex data in general, but the
theories in this project deals only with real data points. To avoid dealing
with complex numbers only real part, imaginary part or the magnitude has
to be taken into consideration.

4.1.1 Discrete Cosine Transform

The Discrete Cosine Transform is simply the real part of the Discrete-Time
Fourier Transform. Taking the real part of Eq 4.2 the following equation will
be evolved which is known as the Discrete Cosine Transform:

N
X(f) = z(n) - cos(2mfn) (4.3)

n=1

where N is the window length

This equation is‘ used in many applications related to signal and image
processing like image compression, and its output is real number data point.
In this project Eq 4.3 is used to transform the signal into its frequency do-

main.

its frequency domain reduce the dimensions

ing the signal into
L - als have limited frequency components, but

of the signal, because EEG sign
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until now the problem of determining the symbols to be entered into the
HMM is not sol.ved. The frequency domain only reduces the dimension of
the ERG data signals which are going to be processed, therefore additional
theory must be found to help in estimating the numbe; of symbols.

4.2 Clustering

Clustering is the operation of assigning a group of data points into subgroups,
these subgroups are called clusters. Each cluster is given a label and so its
data point related to it. Here instead of dealing with each data, point individ-
ually, it is possible to deal with a limited and manageable number of groups.
Clustering aims to expand the uniqueness of the signal in an efficient way by
transforming the pattern of the signal into a sequence of labels, also it can
be considered as a tool to reduce the size of the data.

There are many theories that perform the clustering operation. In this
project the Fuzzy C-means clustering is used to divide the signal pattern into
single label. This label it treated as a single symbol.

4.2.1 Fuzzy C-means Clustering

What distinguish the Fuzzy C-means that it assign gradual memberships of
the data points in the cluster, instead of assigning the data point completely
in one cluster as the Hard C-means theory does. [24]

If the data points are given the following symbols:

X = {111,252,373,...,1:”} (44)
And clusters are:

P13P27"'7Fc (45)
egree of membership as U, where u;; is

a degree of membership of the j data point into the 7 cluster. The degree of
membership is given a values between 0 and 1, where zero degree of mem-
bership means no membership, and 1 means full membership.

Then it is possible to define the d




Two constrains must be under consi
means. The first states that there must b
by the following equation:

deration when studying Fuzzy C-
e no empty cluster, this is clarified

e R e (4.6)
=1

. The apother constrain states that each datum receives the same weight
n comparison to all the other data, this appears in the following equation:

Z“iﬁ = Lost weVaedl o} (4.7)
i=1 ;

The algorithm of the Fuzzy C-means depends on the Objective Function,
this function is defined as following:

TR =R i (4.8)
i=1 j=1
where d;; is the distance between the 4 center and the j element. m is the
weighting exponent and it is usually equal 2 for the Fuzzy C-means Cluster-
ing.

Note that the distance is used as a parameter of similarity between the
data and the cluster also note that the membership is inversely proportional

with the distance.
It is easy to be aware that the best result of clustering occurs when the

highest value of membership u;; encounter the smallest value of distance d;;
so the objective is to minimize the squared distance of data points to their
cluster centers and so get the maximum degree of memberships.

The algorithm that is used to get the best result of Fuzzy C-means Clus-

tering is called the Alternating Optimization (AO) Scheme, the.is u; are
optimized for fixed cluster centers, then the cluster centers are optimized for

fixed memberships as the equations clarify

U, = Ju(Cr-1) (4.9)

o= i) (4.10)




The Jc and Jy are obtained b

2 y deriving the Object; b
make it equal to zero. By o g Jective Function J; and

o the following equation evolved:

g
Usj = ; : =3 (4.11)
Zl:l dl]
Z?:l u;’;a;]
ey — e 4.12
Zj:] U'ZL ( )

Note in Eq 4.11 that it does not depend only on the distance between
the data points and their center but also it depends on the distance between
data point and the centers of other clusters.

Initially cluster centers are determined randomly before the first update of
the membership equation Eq 4.11.

Fuzzy C-means clustering is used in many publications,like [25] that used
the wavelet space to extract the feature of EEG signals then FCM is used to
maximize the separability of different signals.




Chapter 5
SYSTEM DESIGN

This chapter talks about the design of the overall system and its two major
parts; the EEG acquiring system and the design of the signal processing
system.

2

5.1 Introduction to Acquiring System Design

The EEG signal like other biopotentials is a relatively small signal that exists
in the level of ambient noise. The EEG amplifier shall acquire the small EEG
signal, amplify it without any significant distortions, and suppress any noise
below a sufficient level. This task can be described by basic requirements.

In order to design an EEG system, an understanding of exactly what is
an EEG artifacts is necessary. This chapter consists basically of two sections,
the noise artifacts of EEG, and EEG hardware .

5.2 EEG Noise and Artifacts

EEG signals may be corrupted by various kinds of noise. The main sources

of noise are:

o Power-line interference: 50\60 Hz pickup and harmonics from the power

lines.




Electrode contact noise: vari
' i : iable contact between th
skin, causing baseline drift. T e

M_Otifm artifacts: shifts in the baseline caused by changes in the electrode-
skin impedance.

o Musclej contraction: electromyogram-type signals (EMG) are generated
and mixed with the EEG signals.

o Respiration, causing drift in the baseline.

e Electromagnetic interference from other electronic devices, with the
electrode wires serving as antennas, and noise coupled from other elec-
tronic devices, usually at high frequencies. For more details Appendix
B describes EEG artifacts.

In summary, the EEG signals - which range from 20uV to 100uV - are
combined with a differential mode dc component of up to 300mV result-
ing from the electrode skin contact, plus a common mode component of up
to 1.5V resulting from the power line potential between the electrodes and
ground.

Generally the common mode noise can be minimized by using EEG am-
plifier that features high common mode rejection ratio (CMRR), and by
applying Notch filter circuit. Whereas the differential mode noise can be

minimized by using suitable filters.

The skin electrode impedances may differ by as much as 20k in mag-
nitude. The EEG source impedance is relatively high. Thus, the input
impedance of the amplifier should be much higher than the source impedance

to minimize the source impedance effects.

5.3 Typiccal Biomedical Measurement Sys-

tems

amplifier shall have high CMRR which is de-

] mode gain over the common mode gain to
proximately the same

As mentioned before the EEG

fined as the ratio of differentia
attenuate the line frequency interference that causes ap
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Xilta%fl b'etweel? the amplifier inputs and ground (common mode voltage).
_ so the input 1mp§dance of the amplifier should be high enough to prevent
the problems resulting from source impedance unbalances.

Since source impedance unbalances mainly caused by electrodes are not
uncommon and sufficient rejection of line frequency interferences requires a
minimum CMRR of 100dB, the input impedance of the amplifier should be at
least 10°Q2 at line frequency (50Hz) to prevent noise due to source impedance
unbalances from deteriorating the overall CMRR. of the amplifier.

In order to provide optimum signal quality and adequate voltage level for
further signal processing, the amplifier has to compromise between providing
high voltage gain and avoiding the desired signal distortion. Also it needs to
maintain the best possible signal-to-noise ratio.

5.4 Overall System Design

The aim of this section is to design a portable EEG system. Fig 5.1 depicts
the main components of the hardware system, the electrodes will be used
to transform the ionic current in tissue of brain to electrical current, INA
circuit amplify the useful signals, and reduce the common mode voltage by
high CMRR, HPF to climinate the DC offset voltage, Notch filter to remove
the residual common mode voltage, inverting amplifier to amplifying the
signal, and LPF eliminate the high frequency noise above 80Hz.

5.4.1 FElectrodes and Cables

The disposable self-adhesive pad selected secures to the patients skin and
connects to the electrode. We choose this pad because it was noninvasive

and ideal for measuring low voltage brain signals. Since human skix:q is a poor
resistance gel is applied between the skin and the

ctrode is chosen (section 2.6 describes why
The patient cable is a shielded cable that
NA, Fig 5.2 show the electrodes and leads

electrical conductor, a low-
electrical contact. Ag/AgCl Ele
we have chosen this electrode).
carries the electrical signal to the I
that carries the signal to INA.




Aquiring System

Pitient (== | | Electrodes | | iy HIF Natch || luvertug

Flter | | Amplifier

Decision | === | DMMs | |Clustering| | peT ADC

Signal Processing

o

Figure 5.1: Block diagram of EEG system.

5.4.2 Instrumentation Amplifier (INA)

The main tasks of the EEG amplifier input stage are to detect the volt-
age between two electrodes while suppressing the common mode signal and
minimizing the effect of EEG source impedance. Thus, such a differential
amplifier cannot be realized using a standard single op-amp design (A3 in
Fig 5.2), as this doesnt provide the necessary high input impedance. To
attain high input impedance, two non inverting amplifiers could be imple-
mented to the input terminals of the single op-amp as shown in Fig 5.2(a).
However, the non inverting amplifiers will amplify any common m(?de v?lt-
age. With the same amount as the differential voltage gain, the typical high
evel may drive the amplifier to saturation. Hence the
ed by voltage followers, as shown in
pedance and unity gain. With the
¢ common mode rejection must be
iring very precise resistor match-

common mode noise 1
non inverting amplifiers could be replac
Fig 5.2(b), which provide high input im
input buffers working at unity gain, all th

accomplished in the output amplifier, requiring e
ing. Additionally, the noise of the final op-amp 19 added at a low signal level,

decreasing the signal-to-noise ratio unnecessarily. The -circ':uit in Fig 5.2,(c)
eliminates this disadvantage. It represents the normal instrumentation am-
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plifier configuration. The two in
but only unity common mode
matching [15].

Put Ob-amps provide high differential gain
gain without the requirement of close resistor

The output voltages of the normal INA in
Fig 5.2(c) are derived in terms of the input v
output voltages are used to derive the norm
Adigs, and common mode voltage gain A,,,.

put stage V,; and V}; (shown in
oltages V, and V;. The resulting
al INA differential voltage gain,

The output voltages of the normal INA input stage V,; and Vj; are de-
rived using nodal analysis. It is based on finding the voltages at each node
in the circuit using Kirchhoffs current law. Kirchhoffs current law (KCL)
states that the sum of all currents in a node equals zero. Applying KCL at
junctions J; and J; yield Eq(5.1) and (5.2) respectively as follows

KCL at J]Z
Val o Va % — %
Ry Ry
5 Va — VA
oyt el s
B
KCL at 1]2:
Vo=V Vo —Va
Rf2 Rgg
. Ve L 5.2
Vor = Vo + T ( )
Subtracting Eq(5.1) from Eq(5.2) yields
2R
Vi = Vi = [1+ =2 - [Va = Vil (5.3)

Rg?

From Eq(5.3), the normal INA differential voltage gain, Adiff,
as follows

can be derived

41




i

-4 Va >
) Val
S Rt
2 < Rr %
J1ld Rg
s R

—AN— \
A3

ou

AM
YWy +

Jz 4

% RT
i Rf2 LS
o G
tn VP Vbl =

(c)

Figure 5.2: Circuit Drawing for Three Different Realizations of INAs
Non Inverting Amplifiers input stage (a), Voltage Follower Input Stage (b),
and improved, amplifying input stage (c)[15].




Aggr=1+ 2

; (5.4)

: Tgi common mode voltage gain of the INA input stage A, can be deter-
mllI;e yVassurr(liu;/g Vo=V, =V, and calculating the corresponding output
voltages Vo, and V. Eq(5.1) and (5.2) are written here as Eq(5.5) and (5.6)
respectively, with plugging in V,,, for V. and V,

ol [R . v, (5.5)
9
Rpz [Vom —

Vot = Ve + =L [R2 Veul _ v (5.6)
g

Consequently, the common mode voltage gain of the normal INA input stage
(Aen) equals 1, as illustrated in Eq(5.7)

A
T 2
According to above, the requirements CMRR of INA 100dB is needed to

reject the common mode voltage:

Aem =

CMRR = Agiff/Acm (5.8)
The total gain of INA is:
2R, Ry
A=[1+ - == (5.9)
[ Ry ) R,

From above the AD620 INA chosen , because it has the following char-
acteristics:

1. Low internal noise.

9. High common mode rejection ratio (CMRR of 100dB).

3. High input impedance (10M and above).
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4. Power supply +9V/.

5. Low power consumption.

The fig 5.3 expresses an AD620 INA circuit.

VCC
Y

Electrode 1 O—..L - :
ADGZOAI/\{—‘— Qutput 1

Electrode 2 O-——‘*—//

¢ |5

Refrence Electrade ()

'
VEE

Figure 5.3: AD620 INA schematic.

From the data sheet of this IC, the gain can be calculation by this equation

_ 49.9KQ i)

= 1
1 RG+

Where,

A; : INA voltage gain.
o achieve a determined voltage gain.

R : External resistance added t

d in this stage is (6)
al more t

alue of Rg is 10KS.

because the DC offset voltage
han 6 to attenuate the

So, the gain that neede _
in milli-volt ,so can’t amplifying the sign
saturation , by using equation (5.10) the v
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5.4.3 High Pass Filter

Afte'r calculapmg the optimum values of the INA input stage components in
previous sectlon , an optimum HPF will be designed in this sectionpto attenu-
ate .the Qowly varying voltages created by chemical reaction at the electrode
patient interface which far exceed the size of the EEG voltages. Higher-order
pass filters are required to sharpen a desired filter characteristic, so will be
used 2nd order (Sallen-Key Butterworth Filter) to do this purp(;se Fig 5.4
depicts the high pass filter and it components. e

1l

Lt (5.11)
2mvVR2R3C1C2
R5
Ll (5.12)
Quality Factor:
Q= 5.13
E 30 Ay (5.13)

The DC offset frequency that required in this project is Fh =0.5Hz. And
the gain not more 3 to avoid accesses to saturation because the residual com-
mon mode voltage and ( Q = 0.71) in Butterworth coefficients filter [19],s0

A =15

Let C;= 330nF , by using equation(5.11):
Ry=1M(Q, and C1=Co= 330nF,R;=R,=1M(.

The gain of this stage (1.5), so by using equation (5.12), let R4=10K%2,
so Rs=5.1K(2.

The overall gain of these two stages will be:

Atota11=A1 - A2.
Atatall= 6-1.5
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c.1 CZ \7 1 |8
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B k3 ’\‘/\V{\‘l
RI | 5.1k0
10k
KA
VEE

Figure 5.4: 2nd order high pass filter .

Atotall =9

Properties of Sallen-Key Filters:

o Simplicity of the design.

o Non-Inverting Amplifier (positive Gain), high input impedance.
e Replication of elements.

The Op-Amps that will be used in this circuit OP07 that has following

characteristic:
1. Power supply £9V.
2. Low internal noise.

3. Low power consumption.
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Figure 5.5: High pass response.

C3 4
+= { +{ { VCC
47nF 47nF
R8
34k

1
Output 2 {}———

R10
?10k0

9V
VEE

Figure 5.6: Twin-T filter.
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5.4.4 Notch Filter (50Hz)

From the preced.ing section, DC voltage is attenuated by the HPF circuit
Howe.ver, th.e residual common mode voltages created by power line are still
combmgd with the EEG signal. On the other hand, the EEG signals should
be amplified to provide adequate voltage level for further signal processing.
Hence, the Notch filer will be used. Notch filter is known as band-cut filter
or band-reject filter, the function of this filter is to remove some frequency
portion of a signal. Fig 5.6 depicts a OP-Amp Twin-T Notch Filter. The
Twin-T Notch filter uses one Op-Amp. It based on a passive (RC) that uses
three resistors and three capacitors. When deign a Notch filter and band
pass filter circuit the Quality factor (Q) must be high [17] [18] .

The formula to calculate the resistor and capacitor values for the notch
filter:
er — (@ e ms RO
C’3=C'4=C,andR6=R7=R.
Froten = 50H 2z, so by using the previous equation:
Fel@© = 4nE SelCs = Cy = A7nF.
And From the same equation R=68KS), R¢=R,;=68K).
Rg =05 R(; , SO Rg = LU0,
And C5 = C4, SO C5 = 94nF.

Where :
E,..cn=center frequency of the notch filter in Hertz (50Hz).
The gain A = 1.5, and by using Eq 5.12 , and let Ry = 10KQ , so Ry =
5.1KQ. The overall gain of these three stages will be :
Atotal2 = Atotall *AB
Atotal2 — OIS
AtotalZ = 13.5.

5.4.5 Inverting Amplifier

After using the Notch flter the common mode voltage rerr.love : st now can
be amplified the relatively pure EEG signal as the signal is relatively small
in (microvolt). Hence, an inverting amplifier ([?4) 18 1.n1p1ementcd to amph}fy
the desired signal (A4 = -50), inverting Amplifier will be'used because the
Bias curbent is zero and non-inverting terminal is virtual ground. Fig 5.7
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depicts the inverting amplifier and its components

VCC
9V

R12
Output 3 (J-AAA——s
1k}

E'E
VEE

Figure 5.7: Inverting amplifier.

The gain of this amplifier

Ri3
Ay= = (5.14)
By using Eq 5.14, A4 = -50, let Rjz = 1K), so Ryj3 = 50KS2
The overall gain of these four stages will be :
Atotal3 = Atotal2*A4
Awtalg = 135*-50
AtotalB = -675.

5.4.6 Active Low pass filter

A low-pass filter, as shown Fig 5.8, passes low-frequency signals but atten-
uates frequencies higher than the cutoﬁ" frequency up to 80Hz, as shown fig
5.9. In this stage it’s enough to using first order low pass filter .

i

T 5.15
2% x RC ( )

Fr =
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The cutoff frequenc
y Fr =
Ry = 51KQ . % 0z b

The gain of this amplifier is :

y using Eq 5.15, let C; = 39nF, so

Rig

After using all previ i "

' pE vious stages, the signal relatively small in mV. Hence, (4
; g Eq 5.16, A5 = 10, and let R;5 = 1KQ, so Rys = 10KQ ok

The overall gain of all stages will be : : : g7 .

Atotal4 = Atotal3*A5

Atotals = -675%10

Atotars =-6750.

fe=Lf (5.16)

R14
Output 4 (J—A—

51k}

J_U ; Output 5

T39nF

e

10k}
1kfl§R15
=
VEE

Figure 5.8: Active LPF .

5.4.7 Power Supply

ds power supply to power up the entire hardware ,

The portable device nee
he following characteristics:

so need a Battery that has t

1. Lightweight.
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oo

Increasing frequancy F=80Hz

Figure 5.9: Theoretical Response Of LPF .

2. Enough supply voltage.
3. Enough supply current.

From Previous characteristics the 9V battery would be enough to power
up the entire hardware, as shown Fig 5.10.

L 18

s G g
[} o

= WiEe +/CC

Figure 5.10: 9V power supply.
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5.5 Introduction to Signal Processing Design

é;aéziuﬁaifsl\zlogéz? érlld;};s I\IZrOJect, mostly depends on the t:}%eory.of
arkov Model, HMM, become familiar with
the signals that are used in training the model. The model becomes familiar
with such signals by adjusting its parameters according to the input values
of the signals during the training phase. And after training the model, it
becomes specific for these ”training signals” only, now the model can identify
and produce such signals.
To make HMM works efficiently, the data on which different HEMMs are
trained have to be as different as possible. Although the data are generally
different the system has to extract this ”difference” for HMM. In other words
HMM has to deal with parameters of the signals that can be found only in
this signals and similar signals.
This project deals with three type of signals; left leg movement, right leg
movement and silence state, Fig 5.11.

. 0 1b 20 E\I] 4.0 507 B0, 707 80 - 90" 400

Figure 5.11: Up: silence, middle: right and bottom: left.
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5.6 Discrete Cosine Transform

S{tudy111_g mgnals can.be done in time domain or in frequency domain. The
s1g'n.als In time domain can be obtained straight forward from the EEG ac-
quiring system. Processing the signals in time domain has many problems
because the amplitude of the signals in time domain is sensitive to noise and
it depends on the strength of the movement and
the test.

So it is found that the frequency domain can be a solution to the previous
problems. On the other hand the frequencies of the EEG signals are limited.
Here instead of considering the whole signals it is possible to consider some
frequency components between in the interval [1,100] Hz.

the persons that are under

To avoid the effect of the power in the signal, normalizing is used; that is
after transforming the signals into its frequency domian it is normalized by
dividing its values on the difference between the maximum and minimum.
Here the frequency components is the only parameter to be considered. Fig
5.12 shows the DCT transforms of the silence, right and left samples form
Fig 5.11, note that the frequency components are concentrated before 30H z.

20 : ;
10}

]

A T g a 4050 80 700 B0, 90 400
0 J\IMN\JVWW\WW
"50 16265040 50 60 70 60 9 100
10 . : : : . : : : :

5-

)

g 15‘263'04050607080 100

Figure 5.12: DCT of the silence, right and left signals.

53




ST Clustering

Transforming the signals into their frequency domain solves only a portion
of the prob}em but not the whole problem. Because entering the daI‘)ca into
HMM required the signal to be consists of specific and limited number of
syn.ﬂ:).ols, and these symbols have to be defined for the model through the
traiing stage.

To solve this problem it is found that dealing with the amplitude of the
frequency components as symbols is not practical because the amplitude of

frequency components could vary slightly from signal to another similar sig-
nal.

To solve the problem of defining the symbols for HMM, it is estimated
that each pattern of the data in the frequency domain can be classified in a
specific cluster that has a special label. On other words the pattern of the
signal in the time domain can be transformed into a sequence of symbols,
each symbol is given according to the form of the potion of the signal, Fig
5.13.

20

(O3]

3 5 | 1
4
0 .

.501'0263'0405030703090100

Figure 5.13: Clustering each signted
the window size equal 50 in clustering.

Now with the above constrains are considered, the system is ready to

analyze and understand the signals.
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Chapter 6

IMPLEMENTATION,
EXPERIMENTS AND
RESULTS

6.1 Introduction

Practical implementation and testing of the project have been done in the
second semester, implementation started by implementing each individual
subsystem, then the system is built by connecting these individual units.
At the same time analyzing signals was being done by taking signals form
students and testing them on MATLAB software.

6.2 EEG acquiring system

6.2.1 Electrode placement

ect is to acquire an EEG signal, which corresponds to

The idea of this proj s
trode’s placement for acquiring

patient leg movement. Fig 6.1 depicts the elec
the signals.

6.2.2 Instrumentation Amplifier (INA)

cted as the first component in the project,

The INA circuit has been conne AT9620 A, and the result

the following Fig 6.2 views the connection of the
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Figure 6.1: Electrodes Placements.

of this stage is shown Fig 6.3.

Figure 6.2: AD620 practical connection.

6.2.3 High pass filter

he implementation of 2nd orde
07 as shown Fig 6.4, and the

This stage show t r HPF ,the Opamp that used
in this stage is OP result of this stage is shown

Fig 6.5.
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Figure 6.4: 2nd order HPF.
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Figure 6.5: Output ofitHIZ/EE
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6.2.4 Notch Filter

The Notgh filter (shov.vn Fig 6.6) is implemented to remove the residual com-
mon mode voltage, Fig 6.7 depicts the result of this stage.

Figure 6.7: Output of Notch filter.

6.2.5 Inverting Amplifier

Inverting Amplifier (shown Fig 6.8) is implemented to understand and display
the signals by amplifying it, and the result of this stage is shown Fig 6.9.

6.2.6 Active Low Pass Filter

LPF is implemented to eliminate the high frequency noise above 80 Hz as
shown Fig 6.10, and the result of this stage as shown Fig 6.11.
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Figure 6.10: Active LPF.
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6.2. i
7 Total Practical circuit Implementation

This stage shows all
parts of t i
s T e of the design and how each connect to other as

After implementin indi
g all individual
ether, s : subsystems and co i
% % fo’l lotz:eralﬁoutput s1gnals of the system are a;cquirednirrlle(c:ltiglg e
ing figures depict the output signals for each state e

EXURA NEAVY DUT

Figure 6.12: Output signal for silence state.

60




Figure 6.15: Output signal for movement left leg .
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Figure 6.16: Noise from motion around the patient.

6.3 Signal Processing Testing

In this project three continuous-movement sets of data are acquired two from
the same person at different time and one from a different person. Each set
of data contains left movement samples, right movement samples and silence
state. In two of the sets the person moved each leg continuously for 98 sec-
onds and the third person moved each for 38 seconds. These data sets are
used in what is called three-fold test.

In the three fold test each data set are divided into three portions. Each
models are trained on two portion and tested on the third portion. This test
is repeated three times because three combinations can be formed from these

three portions. ; :
This test is repeated until an acceptable error rate is got with acceptable
response time. The parameters of the system that are explained followed are

determined through trial and error procedures.
The parameters are found to be:

The window size 35 sample.

Frequency components between [7,12].
e Number of clusters 4.
e Number of states 3.

o Number of symbols in decoding is 5.
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These parameters enable the

: system to identifies the si ith e
rates 5% for silence state, 15% T e

for right and 17% for left.

To make sure of the previous results, 5 sets of discontinuous movement

are used to verify the results. Two of these 5 sets are acquired from one
person and the other three form different three persons. First the models
were trained on continuous data and these discontinuous data are used in
evaluation stage.
By doing so the system could verify the left movements form the right move-
ments with high precision. But sometimes it is important to change the data
on which the models are trained to obtain good results. Of course the silence
state is not used because discontinuous data contains silence state.

6.4 Steps of training HMM

e Acquiring continuous data.

(]

Figure 6.17: Left: data related to the pure left leg movement. Right: data

related to the pure right leg movement. Bottom: no motion

e Windowing the data.

e Transforming each window into its frequency domain.
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Figure 6.18: Arranging the data in a matrix, here the window size equal 1000
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Figure 6.19: Transforming the data from the time domain into the frequency
domain

e Assign a specific label to cach pattern.
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ing the samples, each sample is given a label.

Figure 6.20: Example of label
he same label.

Note that two samples may have t

e Training HMM.
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Left sequence: 11432 HMM ?
; T P HMM Left
Right sequence: 22313 HMM 2
< 3 o e i 1
HMM right
Silence sequence: 34523 |HMM ? > HMM silence

Figure 6.21: Each model is trained on specific sequence of data, after training
the model can identify similar signals.

Note that the steps in evaluation are identical with those for training, the
difference is that the models in evaluation have the probability measures for
specific signals.

6.5 Signal Processing Implementation

The implementation of the signal processing hardware is done by using
Simulink toolboxes, Simulink enable the system to perform a real-time pro-
cessing if a suitable acquisition card is used.

ex acquisition card, because the max-

This project do not require a compl ) :
al equal 30 Hz, by nyquist theorem it

imum frequency component of the sign . .
is possible to get sample such signal with sampling rate higher than 60 Hz.

The DAQ used in this project is the PCI-6024E produced by .National_In-
struments company, it has a 200 kS /sec sample rate and 12 bit resolution.

: i i dix D.
Data sheet for E series DAQ is shown 1n Appen '
In Simulink, the Hardware is implemented using predefined blocks, but

some blocks are not found so it was desired to design therp in Si‘mulink.T
After implementing the Hardware in Simulink, the Real-Time Windows Tar-

get toolbox is used to obtain real-time processing.

65




Before start evaluation it i
! process, it is preferred to ¢ G '
system and train and models on S(;me co il T e

and after storing required parameters t,

{in tbe system the first buffer is used to store windows when the buffer is
fille with the r§qu1red number of samples the processing starts. The window
is transformed into the frequency domain by the DCT block.

ntinuous movement samples off-line,
he process can be started.

To neglect the strength of the signals, normalizing the signal is impor-

tant, normalizing the signal is done by dividing the signal on the difference
between the maximum and minimum.

Distance block performs clustering depending on the stored values, these
values represents the center of each cluster. For each window, by now the
data buffered in the first buffer is transformed into one symbol.

To get a sequence of symbols the second buffer is required and after the
buffer is filled, the sequence of symbols can be entered into HMM. Each
HMM is special for one aspect, one for the right leg movement, another for
silence state and the third for left leg movement. One thing distinguish one
model from another is the predefined probabilities.

The decision maker uses output values of probability to display a specific
value, this value represent the kind of movement.
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Chapter 7

CONCLUSION AND
FUTURE WORK

A single channel EEG acquiring system with signal processing hardware have
been designed and implemented in the second semester. They are managed
to capture some brain wave react to leg movement.

In this project, it was trained to make the noise entered to the signal pro-
cesser as minimum as possible, but this did not eliminate the noise totally,
so additional components could be used like isolator circuit or covering the
module with isolation materials. Also wires movement generate unwanted
signals, this can be solved by make these movement as minimum as possible.

The parameters of HMM chosen in this project were based on trail and
error procedure, so these parameters can be changed if high precision proces-
sors are found, because increasing the parameters of the HMM, which are the
symbols and states cause some probabilities to be very small and considered

to be zero.

Frequency components of the signals are less sensitive to noise than am-
plitudes of the time domain, but choosing the better frequency components

that could reflect the fingerprint of the signal was based on testing.

Processing the signals done off-line in this project by.using I\/‘IAT‘LAB sqft-
ware. and the hardware for real-time processing was built by Simulink which
was 1iun on PC. Real-time processing can be programmed on programmable
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IC’s to make the whole system portable.
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Appendix A

Electrodes types

A.1 Swuction Electrodes

e No straps or adhesives are required for holding.

e Such electrode are frequently used in ECG as the precordial (chest)
leads.

This electrode can be used only for short periods of time.

The suction and the pressure of the contact surface against the skin
can cause irritation.

Fig A.1 shows that the actual contacting area is relatively small.

The electrode is quit large [6].

A.2 Floating Electrodes

center perforation admits the point of a glass

ilver disc- ;
S o d to the skin until collodion gets dry.

rod by which it can be seale
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T T e -

Figure A.1: Suction electrode [32].

e Or it allows spraying through the electrode paste.

Scarp the skin with needle.

Useful for restless patients.

Position cannot be changed [6][8].

A.3 Flexible Electrodes

o Avoid the curvature that occurs from movement of patient in the body

surface.

e Are especially important for monitoring premature infants.




Figure A.2: Adhesive electrode [30].

o They cannot conform to the shape of the infant’s chest and can cause
severe skin ulceration at pressure points.

e Require some type of adhesive tape to hold them in place against the
skin [6].

A.4 Needle Electrode

e Consists of a solid needle, usually made of Stainless steel or silver, with

a sharp point.

e Contact resistance-high.

e A variation of this type of electrode is used on patients undergoing

1 8.
surgery to monitor the EEG continuously [6][8]
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Figure A.3: Needle electrode [31].

w'is

#3

\

Figure A.4: Sphenoidal Electrodes [32].

A.5 Sphenoidal Electrodes

e Injection needle 5cm long varnish insulated has a point bare at end.

e Need surgery [6][8].

i




A.6 Dry Electrodes

e Not requiring the electrolyte gel.

e Consists of a 7Tmm diameter stainless steel digk.

e The amplifier that connection with this electrode should locate as close

to the electrode as possible to reduce noise from electrostatically de-
tected signals.

e For this electrode, care must be taken that any half-cell potentials that
exist do not saturate the amplifier.

e If the electrode is not good contact with the skin, this can have two
effects:

1. The low frequency response of the electrode can be compromised.

2. If any charge on the capacitance, the changing capacitance can
result in a changing voltage and hence artifacts.

e Another serious source of artifacts in this electrode results from the
very high impedance amplifier [6] [8].
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Appendix B
EEG Artifacts

This Appendix discusses different artifacts of EEG and presents methods to
remove them.

B.1 Transient Activities

Artifacts are caused by muscle activity, movement, electrocardiographic (ECG)
activity, blood-flow pulse waves, and electrode or equipment problems. Al-
though marked by differences in amplitude, frequency of occurrence, and
scalp distribution, share one useful common characteristic for automatized
detection of theses artifacts. In particular, they mostly consist of high am-
plitude spikes that are easily detectable using a peak to peak amplitude test.

B.1.1 Muscle Activity

Muscle can cause transient high-amplitude spikes, as shown Fig B.1(e), wiliCh
are mainly generated by scalp and face muscles in frontal and temporal re-

the
lons; d by electrodes nearly anywhere on
gions; however, they may be recorded by be reduced, or even completely

scalp surface. This type of arti'fact can Oﬁin or change the position. When
eliminated, by asking the subjects to relax, pushing on or reapplying the

this type of artifact occurs a S-ingrll?helzcggr?;s have a wide frequency range
electrode can sometimes stop it £8 3 ding on the
and can be distributed across different sets of electrodes depending
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Figure B.1: Artifacts Waveforms :

location of the source muscles [11][12].

B.1.2 Movement

Head and body movements or movement of electrode wires can cause arti-
facts even when all electrodes make good mechanical and electrical contact.
These types of artifacts are often erratic and not repetitive, unless the move-
ment is rhythmical. This type of artifact can result from tremor, thinking,

breathing, or head movements [8][12].

B.1.3 Movements in the environment

Movement of other persons around the patient can generate artifacts. A}:I)l—
other artifact, probably due to electrostatic changes on the drops, can be

introduced by a gravity-fed intravenous infusion.

With the increasing use of automatic electric 'inquii/? pulllrcl)Il)s, lacafii‘,"’ ILIB\,/Ip:
of artifact, infusion motor artifact (IMA), ha.s arls%erlliowe?ir%y a sglow éc;mp&
appears as very brief spiky transients, sometimes ? te directly to drop rate.
nent of the same polarity. Its frequency does not relate

' es.
This artifact arises from electromagnetic Soure
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B.1.4 Electrocardiographic Activity

ECG activity can be picked up ;
: ) P In the E c : :
inter electrode distances, especially i thgrer;a,mly in recording with wide

left ear. The artifact may appear in a]] T

an be in just a few
wave of the ECG, whereas larger
nents [11][12].

channels. Small artifacts may reflect the R-
artifacts can reflect additiona] ECG compo

B.1.5 Pulse-Wave Artifacts

The pulse, or heart rate, artifact, as shown Fig B.1 (f), occurs when an elec-
trode is placed on or near a blood vessel. The expansion and contraction of
the vessel introduce voltage changes into the recordings. The artifact signal
has a frequency 1.2Hz, but can vary with the state of the patient. This arti-
fact can appear as a sharp spike or smooth wave [12].

B.1.6 Respiration artifacts

Respiration can produce two kinds of artifacts. One type is in the form of
slow and rhythmic activity, synchronous with the body movements of respi-
ration and mechanically affecting the impedance of (usually) one electrode.
The other type can be slow or sharp waves that occur synchronously with
inhalation or exhalation and involve those electrodes on which the patient is
lying. Several commercially available devices to monitor respiration can bg
coupled to the EEG machine. As with the ECG, one channel can be dedi-

cated to respiratory movements [12].

B.2 Eye Blink Artifact

i i ..+ o tole oriented anteriorly (cornea)
The eyeball acts as a dipole with a pos1t1v?r§tina)' S L A
es a large amplitude alter-
near the

teriorly
it generat ar
f the electrodes positioned

and a negative pole oriented pos
about its axis, as shown Fig B.1(b),
nate current field detectable by any ©
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eye. A blink causes the positive pole

th
lar FP1, FP2 electrodes, producing S)( € cornea)

to move clog
: er to front
‘mmetric dg i

wnward deflections [11][12]

B.3 Interference Artifacts

regardless of current flow, or electromagnetically by strong currents flow-
ing through cables and equipment such as transformers or electro motors.
Shielding the offending power cables and cables and using a shielded room
for the recording can reduce electromagnetic interference by proper wiring
of the power cables. The cutting and/or coagulating electrode used in the
operating room also generates high-voltage high-frequency signals that inter-
fere with the recording system. The best thing to do is turn off the EEG
machine while using this instrument [13].

B.3.1 Electrodes-skin Interference

Surface electrodes such as the ones used in EEG must create an interface
between an ionic solution (the subject) and a metallic con(.iuctor (the el_ec-
trode). This leads to a half-cell potential whi§h can be quite large rélatlve
to the signal being recorded .To minimize this problem of polarization f)f
the electrode, with application of a liquid or gel electrolyte bgtween the sklp
and electrode. This bridges the electrode surface to the sklp. Tge gei hxs
an aqueous chloride-bearing solution that will hydfate the s;m, r;a uc}tlaaI :
impedance of the corneum, and produce a more uniform me 1unlzh orh S;dra%e
transfer. Skin clectrode impedance can drop below ?KQ&(;EESS betbwe:a o
skin.Gel electrolyte provides a convenient method (')I‘ cot}lll?n %he e
silver-silver chloride electrodes to the skin surface. (;zgn elge R
during recording can produce artifacts. The most ﬁom Bt
is the electrode popping, which is due to a sudden chang

causing amplitude changes that rise an 11
ing these types of artifacts is to check 2 be broken, 0
be detached or loose, the lead wire may

d fall abruptly. The first step in avoid-
the connections: the electrode may
r the conductive paste
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B.3.2 Electrical Interferenc

€ PrOblemS in i s
Measurement Bioptential

Power Line Interference

In modern society we are immersed in a complex electromagnetic environ-
ment originating from power wiring in buildings, radio transmitters of various
sorts, radiofrequency-emitting appliances such as computers. And natural
sources such as atmospheric electricity. Within the home, environmental
electric fields will typically induce in the human body a few tens of millivolts
with respect to a ground reference. These fields can be much larger, as high
as a few volts, if someone is using a cell phone or is located within a foot of
power-line wiring or near a radio station. These induced voltages are thou-
sands of times larger than bioelectric signals from the heart as recorded on

the chest surface [14][16][19)].

Electric-field coupling between the power lines anq the EEG and/or the
patient is a result of the electric fields surrounding main power lines and the
power cords connecting different pieces of apparatus to electric outlets.

Electric coupling of the body to environmental sources is usually due to

proximity capacitance and, to a lesser extent, e (Hiagtn ?tl(gelfciiellf:.'
Capacitive coupling between two objects.results frgm the te e:; chielectric
tween them. The space or air gap separating the objects acts X

The coupling can be simply modeled as a parallel-plate capacitor, which can
be determined by g A (B.1)
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Where ¢ = ¢, - ¢, where the
space and air, respectively
A = area of mutual conductor
d = separation distance

i ! 3
dividua] ¢ dielectric constants are for free

plate interception

le'ne = 27‘-fCline- (B2>

Zground T 27rfcg7‘ound- (B.3)

This arrangement is shown in Fig B.2 and ignores any ground resistance
since 1t is usually negligible. The body itself is a volume conductor with such
a low relative resistance that it is not significant to this analysis. In this case,
a subjects floating potential is given by the impedance divider relationship:

Vline Vo Zground (B4)
Zline S Zground

The floating potential can be a relatively large induced potential. Take,
for example, a person sitting in a metal chair. If the persons prgximity ca-
pacitance to the power line is assumed to be 1 pF, the ground impedance
Zgrouna is 107€2, and the line voltage is 220V;ms (622V;,) at 50H 2, then the
calculated floating potential is [14].

Vf loat =

By using Eq (B.2)and Eq(B.4), the value of Ziine Was 3.18 x 10°Q, and
Vitoat €qual 1.94V,.

body and will sum with a skin
Vit is the sum of all potentials
d with the biopotential:

(B.5)

This Vjioq: is present uniformly over Fhe
biopotential Vj;,. The output of the a,r.npl.lﬁer s
at its input. Thus the floating potential is sum

Vot — Vfloat + Viio
ced interference is greater than

ifact with a sinusoidal waveform

e, the line indu
ing. It is an artl

In the preceding exampl
could be tolerated in a record
characteristic.
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Figure B.2: Illustration of body capacitive line coupling [18].

Single-Ended Biopotential Amplifiers

A single-ended biopotential amplifier monitors an input voltage with respect
to its reference. Its reference completes an electric circuit to the object of
study. Because they are simple, single-ended amplifiers, they are somet.imes
used in biopotential monitoring. They need only two electrodejs, a single
monitoring electrode and a reference electrode. This kind of amplifier §hou1d
not to be confused with a differential amplifier, where there are‘two inputs
that subtract from one another. Fig B.3 shows a schema‘.cic of a single-ended
amplifier where its reference is connected to both the subject and ground [14]

[11].
frequency interference coupled to the subject is ?. ina-
jor challenge for this amplifier configuration. One approach to reduce inter-

d.
ference is to ground the body with a reference electrode to an earth groun

i iologi j i1l reduce Viioat t0 2€10 if Zground
In principle, grounding a biological object V\;l biopotentiajo Sy

is zero. With this idealized Conﬁgurati?;i S o In practice, bioclectrodes
. - ironmen :

plified without concern for environ

have significant electrical impedances.

Environmental line-
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Figure B.3: Recording of a biopotential using a single ended amplifier [18].

This means that the divider ratio defined by Zn. and Zground Produces a
Vfloat value that is not reduced to zero by the grounding electrode. There-
fore, to achieve quality single-ended amplifier recordings, it is essential to
minimize coupling capacitance and ensure low-impedance reference electrodes.

Low line-coupling capacitance reduces noise and can often be achieved
with small biological specimens by (1) removing the work area from power-
wire proximity and/or (2) shielding the specimen with a metal enclosure
or copper mesh connected to ground. Capacitive coupling does not oceur
through grounded conductive enclosures unless line-frequency power wires

to equipment are allowed to enter the enclosure.

It is more difficult to shield the human body thag biological spe.cxtmens
because of the bodys bulk and greater surface area. S‘km-.ellect‘rociesreeszismaer;cse
is also greater than that of invasive electrodes used in bkl)O gglchczpt unde;
and this causes higher floating potentials.on the human 063; o
certain conditions discussed later, these circumstances can

in using single-ended amplifiers for human recording.
de-skin impedance e 15 201k,

tes over his or her ground capacitax.lce
Assuming the same line-coupling

For example, if a subjects elect}ro
this value is low enough that it domina
such that essentially Zground = Zelectrode-
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capacitance as before (1 pF)
earlier, the calculated floating
, it is now much lower , but ig
[14][15][16]:

and using the voltage-
potentia] Viioar Was 3.9
greater than could be ¢,

divider relation given
mV by using Eq(B.4)

olerated in g recording

Sosnr i Yeadany

Figure B.4: 50H 2 Artifacts[32).

Differential Biopotential Amplifiers

The use of differential amplifiers is common in biopotential measurements
because of a greater ability to reject environmental interference compared
with ground-referenced single-ended amplifiers. Differential amplifiers sub-
tract the electric potential present at one place on the body from that of
another. Both potentials are measured with respect to a third body location
that serves as a common point of reference.

Differential amplifiers are useful because biopotentials.generated within
the body vary over the body surface, but line-coupled noise does not. Elil—
vironmental electric fields from the power line are more .remote and coutph e
such that they are present uniformly over the body. This is parltly d;lg g(()) )H:
distributed nature of capacitive coupling. It is also because tl(lie 3“ (f n-leters)
line frequencies have electric field wavelengths 50 long (hundreds a(; Ui,
that a persons body can be considered to be, in some sense, an
the uniform near field of an electric field source.

i i both inputs of a difference

The induced body potentla.l. Vioat 18 preier;z 2:;1 : Comm};n_mOde S
amplifier, and as used here, it is also know S i

Vem. This is so because it is common (equaé?ﬁ e
of the two amplifier inputs. Thus, for our aiie

ch = V}loat

(B.6)
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electrode, as in the preceding single-
mode potential on the body surface, Even if the groung
to a large electrode resistance, withip a fairly 1§I o
levels, the differential amplifier would be capable
of the common-mode signal.

Differential amplifiers of gain A perform the following operation:

Were not effective dye
&€ range of common-mode
of near-perfect cancellation

Vour = A(V1 - V) (B.7)

Where Vi and V; are the signal levels on each of the Non-inverting and
inverting inputs of the amplifier, respectively, with respect to a reference.
In practice, differential amplifiers very closely approach this ideal. Modern
differential amplifiers can have common-mode rejection ratios of 120 dB or
bett:er, meaning that they perform the subtraction to better than one part
per million.

In practice, this interference cancellation process works fairly well; how-
ever, the assumption that the power-line-induced signal is common mode
(uniform) over the body does not hold perfectly in all situations. Slight
differences in its phase or amplitude over the subjects body when in close
proximity to some electric field source or unbalanced electrode impedan(':es
can cause this cancellation process to be less than perfect. Some ling noise
may still pass through into the recording. Usually, improvements in skin
electrode preparation can remedy this problem [14].

E‘GQUency Distortion Artifacts

t have
The EEG does not always meet the frequency-response standards that hav

L
: i G when passed through a circui
i = this pattern is said to have high-

that has diminished gain at high frequencies, lifier that has
frequency distortion. And when EEG Passed L roq%htznhzzpl;\;frequency
inadequate gain for low frequencies, this type 18 i
distortion [6].
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Saturation or cutoff distortj
on

bbb L

()
0.02-150 Hz
(b}
0.02-25 Hz
(<} 1-150 Hz

Figure B.5: Affects of saturation or cutoff distortion [6].

Ground Loop
frequency

intractable problems with line-
They of-

Ground loops can create seemingly
Jevel biopotential recordings.

Ezg gz 60 Hz) intfarference in low-
o Gl when biopotential amplifiers are connec
i C_)rflmg systems such as filters, oscilloscopes, O
cag}nSl.tlon systems. The root causeé is often that the referenc

es interconnect the ground references of 3ll the instrumen

ted to signal processing
r computer-based data-
e wires of signal
ts, Fig B.6 de-
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picts ground loop. However, each Instrument ;

2 . . . t

line ground Lhrough 1ts third-wire grounding pﬁl 5;150 }rleferenced i op
required by electrical safety codes [6][14). * the power-line plug, as

Interference arises from the fact that
references are not equal. Line-powered ;

Currents ﬂO.WiFlg in the power-line ground cause voltage drops in the resis-
tance of the building wiring ground. As s result, a voltmeter will often show
several tens of millivolts between one, power outlet ground and another even
in the same room. Since recording amplifier grounds are usually referenced
to the instrument power-line ground, millivolt-level potential differences can
create circulating currents between power-ground and instrument-ground ref-
erences. By the same process, there can also arise current flows between
various instruments through their individual ground references [6][14][15].

The result is that small line-frequency currents flow in loops between dif-
ferent instruments interconnected by multiple signal and ground refgrences.
Line—frequency voltage drops in the interconnecting reference path wiring can

appear as a signal across the amplifier inputs [14].

The ground loop can be eliminated by many solutions:

1. Use of isolation modules on the amplifier.
2. Earth grounding the amplifier input stages.

3. Using battery-powered equipment.

ine only one connec-
4. Connecting machines to the same ground and having Oy

tion to the patient.
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kElccltocardiogr.xph Machi
achine X

{a)

Flcctrocardiograph) Machine X

(b}

Figure B.6: Example of a ground loop between an ECG device and another

electric machine connected to the same patient [6].
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Appendix C

Three fold testing code

function [error_si, error_ril,error 11, error_s2,error_r2,error_12.. ..
error_s3,error_r3,error_13] = bestlB(L,freql,freq2,clustnum,statnum,leng)

% Returns errors of the silence, right and left.

% L is the length of each window.

 Range of frequencies between freql and freq?.

» leng is the length of the data in the decoding stage.

% Clustnum is the number of clusters which equal the number of symbols.
% statnum is the number of states.

» leng is the length of data during the evaluation stage.

data = load(’data.mat’);
silence = data.silence;
right = data.right;

left = data.left;

1 = length(silence);
rws = 1/L;

3 = reshape(silence,L,rws)’;
b = reshape (right,L,rws)’;
= reshape (left,L,rws)’;

(@]
I
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YDCT
for 1 = l:xws
2GR = CRHEGIDIE
pi,: JNERdet(bi@E )
i@ )EsRdeti(ciCi )
end

Il

%Frequencies from 5 to 10 only.
aaa = a(:,freql:freq2);
bbb = b(:,freql:freq2);
ccc = c(:,freql:freq2);

/Normalizing
for i = 1l:rws 3
maxaaa = max(aaa(i,:));
minaaa = min(aaa(i,:));
if (maxaaa~=minaaa)
aaa(i,:) = aaa(i,:)/(maxaaa-minaaa);
end

maxbbb = max(bbb(i,:));
ninbbb = min(bbb(i,:));
if (maxbbb~=minbbb)
bbb(i,:) = bbb(i,:)/(maxbbb-minbbb);
end

maxcece = max(cee @ne))i
ninceel=" minlcece G}
if (maxccc ~= minccc) : .
cee(it,5) = cce(d, 1)/ (maxcee-minece);
end
end

Portion = fix(rws/3);

£ rows into 3
% to make three folds we divide the pumber ©O
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clear left right silence datga

Train = 2*portion;
Test = portion;

%Fold 1

%Data for training
silenceT = aaa(l:Train,:);
rightT = bbb(1:Train,:);
ilefitT = ccc (@ aTrain, <)

JData for testing

silence = aaa(Train:rws,:);
right = bbb(Train:rws,:);
lleftr= ccelrain:zws,:);

data = [silenceT;rightT;leftT];
[center,U] = fcm(data,clustnum);
maxU = max(U) ;
for i = 1:clustnum
index{i} = find(maxU == U(i,:));
data(index{i},:)=1;
end
» Sequence of labels
data = data(:,1)’;
clear silenceT leftT rightT
silenceT = data(l : Train);

TrightT = data(Traintl : 2*Trai§);.
leftT = data(2*Train+l : 3xTrain) ;
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yCluster the data for testing
newdata = [silence;right;left];
out = distfcm(center,newdata) .
YWe intrest in the minimunm distance
minout = min(out);
for i = 1:clustnum
index{i} = find(minout == out(i,:)):
newdata(index{i}, :)=i; ’
end

newdata = newdata(:,1)’;

clear silence right left

silence = newdata(l : Test);

right = newdata(Test + 1 : 2xTest);
left = newdata(2*Test + 1 : 3%Test);

JHMM

%2 states and 5 symbols

trs = normalise(rand(statnum),2);

es = normalise(rand(statnum,clustnum),2);
trr = normalise(rand(statnum),2);

er = normalise(rand(statnum,clustnum),2);
trl = normalise(rand(statnum),2);

el = normalise(rand(statnum,clustnum),2);

#Training
[trs,es] = hmmtrain(silenceT,trs,es);
[trr,er] = hmmtrain(rightT,trr,er);

[trl,el] = hmmtrain(leftT,trl,el);

error_si1 = 0;
error_rl = 0;
error_11 = 0;

1)) ,trs,es);

for i = 1:1eng:(Test—leng+1)

ilence(di: (itleng~
[states, probability_O] de(s

= hmmdeco
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x = probability_o;
[states, probability o] hmmde : :

y = probability_o; code(right ;. (i+leng-1)) »trr,er);
[states, probability_ o]
z = probability_o;

n

]

hmmdecode(left(i:(i+leng-1)),tr1 el);

%» All combinations

[states, probability_o1] = hmmdecode (1eft (-

[states, probability_o2] = hmmdecode(right(i

if (probability_oi1>=x || probability_o2>=x)
error_sl = error_si + 1;

end

(i+leng—1)),trs,es);
:(i+1eng~1)),trs,e8);

[states, probability_oi] hmmdecode(silence(i:(i+1eng—1)),trr,er);
[states, probability o02] = hmmdecode (left (i: (i+leng-1)),trr,er);
if (probability_ol>=y || probability_o2>=y)
enter. Flil=Serror. v+ i
end

[states, probability_ol] = hmmdecode(silence(i: (i+leng-1)),trl,el);
[states, probability_o2] = hmmdecode(right(i:(i+leng-1)),trl,el);
if (probability_ol>=z || probability_o2>=z)

erroxille=Herror 11 sty

end
end
error_si = error_sl/length(l:leng:(190—leng+1))f
error_ri = error_rl/length(l:leng:(190—leng+1§§f
error_11 = error_ll/length(ltlengi(190’1€ng+1 ;
KEND Fold 1
WFold 2

MData for training
SilenceT = aaa(Test:rws,:);
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rightT = bbb(Test:rus,:)
1eftT = ccc(Test:rws,:);
yData for testing
silence = aaa(1:Test,:);
right = bbb(1:Test,:);
left = ccc(1:Test,:);

)

data = [silenceT;rightT;leftT];
[center,U] = fcm(data,clustnum);
paxU = max(U) ;

for i = 1l:clustnum
index{i} = find(maxU == U(i,:));
data(index{i}, :)=i;

end

% Sequence of labels
data = data(:,1)’;

clear silenceT leftT rightT

silenceT = data(l : Train);
rightT = data(Train + 1 : 2*Train);
leftT = data(2*Train + 1: 3 * Train );

iCluster the data for testing

nevdata = [silence;right;left];

out = distfcm(center,newdata);

WWe intrest in the minimum distance

ninout = min(out);

for i = 1:clustnum
index{i} = find(minout == out(i,:));
newdata(index{i}, :)=1;

end

Dewdata = newdata(:,1)’;

Clear silence right left
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silence = newdata(1:Test);
right = newdata(Test + 1 . 2%Test) .
left = newdata(2*Test + 1 : 3*Test5~

%HMM

%2 states and 5 symbols

trs = normalise(rand(statnum),?2);

es = normalise(rand(statnum,clustnum),2);
trr = normalise(rand(statnum),?2);

EE= normalise(rand(statnum,clustnum),2);
trl = normalise(rand(statnum),2);

el = normalise(rand(statnum,clustnum),2);
%Training

[trs,es] = hmmtrain(silenceT,trs,es);
[trr,er] = hmmtrain(rightT,trr,er);

it ell hmmtrain(leftT,trl,el);

error_s2 = 0;
error_r2 = 0;
error_12 0;

Il

for i = 1:leng: (Test-leng+1)
[states, probability_o]
X = probability_o; % Co
[states, probability_ol] =
y = probability_o;
[states, probability_o] =
z = probability_o;

= hmmdecode(silence(i:(i+1eng-1)),trs,§s);
uld be assumed as the threshold for Silence

hmmdecode(right(i:(i+leng—1)),trr,er);

hmmdecode(left(i:(i+leng—1)),tr1,el);

.. (i+1leng-1)) ,tTs,€8);
i 1)),trs,es);

% All combinations

[states, probability_olg
[states, probability_o2] = Ea
if (probability_o1>=x || probability-

= hmmdecode(le ( !
hmmdecode(right(lz(1+leng
2>=X)
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error_s2 = €rror_s2 + 1.
b
end

[states, probability od] = hgp
- decode(silence(i.(-
e o a ‘(1tleng-~ ;
Fstates, Pr?bablllty_02] = hmmdeCOde(left(i;(i+1en f?? 1)) ,trr,er);
if (probability _oi>=y || Probability 02>=y) §-1)),trr,er);

error_r2 = error_r?2 + 1
end

[states, probability o1] = hmmdecode(silence(i:(i+len Fl)tTd Je)

[states, probability_o2] hmmdeCOde(right(i;(i+1eng_§)) t;lr i?-)’

if (probability_ol>=z || probability_o2>=z) s
error_l12 = error_12 + il

end

]

end

error_s2 = error_s2/length(1:1eng:(190—1eng+1));
error_r2 = error_r2/length(1:leng: (190-leng+1));
error_12 = error_12/length(1:leng: (190-leng+1));

half = fix(Train/2);
shalf = rws-half;

WFold 3

#Data for training i
silenceT = cat(1,aaa(l:half,:),aaa(shalf:rvs,:));

rightT = cat(1,bbb(1:half,:),bbb(shalf:rws,:));
leftT = cat(1,ccc(1:half,:),ccc(shalf:Tws,:));
#Data for testing

Silence = aaa(half:shalf,:);

right = bbb(half:shalf,:);

left = ccc(half:shalf,:);

data = [silenceT;rightT;leftT];
[center,u] = fcm(data,clustnum);
XY= man (W)
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for i = l:clustnum
index{i} = find(maxy == UG, )
data(index{i}, :)=i, ’
end

% Sequence of labels
data = data(:,1)’;

clear silenceT leftT rightT

silenceT = data(l:Train);
rightT = data(Train + 1 : 2%Train) ;
leftT = data(2*Train + 1 3*Train) ;

#Cluster the data for testing

newdata = [silence;right;left];

out = distfcm(center,newdata);

#We intrest in the minimum distance

minout = min(out);

for i = 1:clustnum
index{i} = find(minout == out(i,:));
newdata(index{i}, :)=1;

end

newdata = newdata(:,1)’;

clear silence right left

silence = newdata(l:Test);

right = newdata(Test + 1 : 2%Test );
left = newdata(2*Test + 1 : 3xTest);

HMM
2 states and 5 symbols .
trs = normalise(rand(statnum),2);
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= normalise(rand(statnum,clustnum)

tre = normalise(rand(statnum),2)' o
e normalise(rand(statnum,clust’:num) 2).:
ol = normalise(rand(statnum),2); o
el = normalise(rand(statnum,clust
%Training

[trs,es] = hmmtrain(silenceT,trs,es)-
[trr,er] hmmtrain(rightT,trr,er);,
[trl,el] = hmmtrain(leftT,trl,el);

num) , 2) :

error_s3 = 0;
error_r3 (0)¢
error_13 0;

for i = 1:leng: (Test-leng+1)
[states, probability_o] = hmmdecode(silence(i:(i+1eng—1)),trs,es);
X = probability_o; % Could be assumed as the threshold for Silence
[states, probability_o] = hmmdecode(right (i: (i+leng-1)),trr,er);
y = probability_o;
[states, probability_o] = hmmdecode(left(i:(i+leng-1)),trl,el);
z = probability_o;

% All combinations
[states, probability_ol] = hmmdecode(left(i:(it+leng-1)),trs,es);

[states, probability_o2] = hmmdecode(right(i:(i+leng-1)),trs,es);
if (probability_ol>=x || probability_02>=x)

error_s3 = error.s3 + 1;
end

hmmdecode(left(i:(i+leng—1)),trr,er); .
hmmdecode(silence(i:(i+1eng—1)),trr,er),

02>=y)

[states, probability_ol]

[states, probability_o2] = e

if (probability_o1>=y || probability_
error_r3 = error_r3 + 1;

end

(silence(i;(i+1eng-1)),trl,el);

hmmdecode i+leng-1)),trl,el);

hmmdecode(right(i:(

I

[states, probability_oll
[states, probability_o2]

1}

102




. il
r_13 = 111
- error_13 + 1. 1ty_o02>=7)

end

error_s3 = error_s3/length(1:]
error_r3 = error_rs/length(lzlen
error_13 error_13/length(1:1:§

g: (190-1eng+1)) 3
g: (190-1eng+1));
g: (190—leng+1));
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Appendix D
DAQ data sheet

This is the d
atasheet
of PCI-6024E from Natio al I
nal instrument
Compan
y.
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Low-Cost E Series Multifuncti
_ nction DAQ -
12 or 16-Bit, 200 kS/s, 16 Analog In:u(:s

NI E Series — Low-Cost

* 16 analog inputs at up to 200 kS/s,
12 or 16-bit resolution

* Up 102 analog outputs at 10 kS/s,
12 or 16-bit resolution

* Bdigital I/ lines (TTL/CMOS);

Operating Systems
* Windows 2000/NT/xp

two 24-bit counter/timers Recommended Software
 Digital triggering * LabVIEW
* 42analog input signal ranges * LabWindows/CVI
« NI-DAQ driver that simplifies * Measurement Studio
configuration and measurements * VI Logger
Families Other Compatible Software
. :: ggig * Visual Basic, C/C++, and C#
o NGRS Driver Software (included)
o NI 6024E )
* NI6023E

05)("3

* Real-time performance with LabVIEW
* Others such as Linux® and Mac

S e e s S R E T e T

Analog Input Max Analog  Output
Famil i i
o smys A pa:;cu 1;;2::[)' R:‘s:l!::n > San;;n:; l:m ;T::‘.’;’v Ou;uu N-:::;on 0\:::/ Rfu Output Range Digital VO  Counter/Timers Triggers
£ st 210V [} 2,240t Digal
1 NI BO34E PCI 16 SE/B DI 16 bits 200kS/s 200510210V 0 = - - ] 2,24bt Digtat
NIBOZSE  PCLPXI 16 SE/B D! 12 bits 200kS/s 20050210V 2 12bits 10kS/st 210V 8 7. 24t D:xul
NIB024E PCI,PCMCIA 16 SE/B DI 12 bits 200kS/s 200510210V 2 12bits 10kS/e! 210V B 2,24bt Digital
NI 6023E PCl 16 SEARDI 12 bits 200kS/s 2005t0210V 0 - - - B ZZZLM Digial
110 K5/3 typzl wher sing el for 115, the sngle DMA charred for ether eralog inpedt o conrter fumes opesators. | KS/s maomum for POMOA DAOC0 cevices i 2l cases

Table 1. Low-Cost E Series Model Guide
Overview and Applications

National Instruments low-cost E Series multifunction data acquisition
devices provide full functionality at a price to meet the needs of the
budget-conscious user. They are ideal for applications ranging from
continuous high-speed data logging to control applications to high-voltage
signal or sensor measurements when used with Ni signa! conditioning.
Synchronize the operations of multiple devices using the RTSI bus or PXI
trigger bus to easily integrate other hardware such as motion control and
machine vision to create an entire measurement and control system.

Highly Accurate Hardware Design
NI low-cost E Series DAQ devices include the following features

and technologies:
Temperature Drift Protection Circuitry — Designed with companents

NI DAQ-STC - Timing and control ASIC designed to provide more
flexibility, lower power consumption, and a higher immunity to noise
and jitter than off-the-shelf counter/timer chips

NI MITE — ASIC designed to optimize data transfer for multiple

i using bus ing with one DMA channel,

interrupts, or programmed 1/0.

NI PGIA — Measurement and instrument class amplifier that guarantees
settling times at all gains. Typical commercial off-the-shelf amplifier
components do not meet the settling time requirements for high-gain
measurement applications.

PFI Lines — Eight programmable function input (PFI) lines that you can
lled routing of i rdand i digital

use for softwa

and timing signals.
RTS! or PXI Trigger Bus — Bus used to share timing and control signals

between two or more PCl or PXI devices to synchronize operations.

RSE Mode — In addition to differential and nonreferenced single-ended
E Series devices offer the referenced single-ended
(RSE) mode for use with fioating-signal sources in applications with

channel counts higher than eight. \
rd Temperature Sensor— Included for monitoring the operating

of the device to ensure that it is operating within the

that the effect of temp changes on 10
less than 0.0010% of reading/°C. 1 modes, NI low-cast
Resolution-Imp t Technol — Carefully designed noise
floor maximizes the resolution. )
Onboard Self-Calibration - Precise voltage reference included for Onboa

i is completel

calibration and measurement accuracy. Self-

f \led, with no p 10 adjust.

Figure D.

specified range.

NATIONAL
"7INSTRUMENTS”

1: Data sheet

105




Low-Cost E Series Multifunction DAQ - 12 or 16-

Bit, 200 kS/s, 16 Analog Inputs

Full Featured E Series

Mod 0
NISO30E, Low-Co
Momos WOIIE  MEEZE  NOmE MEmE st AESey See
o 2 NIBO34E NIBIGSE  NIGOZ3E NIGUR4E,  Pehe0n3, Poveons
F Nominal Range (v) 7 wr .. e 0.0025 0.008 0003 NI BO2SE ),
[postvers . Nogavers | R B e S
;" 4 ‘g ST R izt Ao, " =
: - e L 15;775 2550 Cmss e
- 100 17%0 5.
3 2 083 = Ees . ; = 25
a 062 = = = -
0479 1 = E
nnj.s ‘ 05 0215 0263 o‘; :‘355 o - o
. 12 St - S i 788 03% 0845 o
02 0102 3 o = &
g :;5 ¢ .2:5 0.061 0.084 0163 0. 1_75 = . =
1 -0 - 0.035 0031 OFI % g P
;o 0 0537 122 8765 ung et o e
& 0 1.932 ms 539 5645 s " -
‘ g 082 0850 2167 22m e 2 >
" 0405 0e28 102 116 3 - s
fus ) 0z 0202 o8z osa - = :
o3 0 0.038 om 0235 0247 - . _
X 0 0.053 0059 0177 01357 - - 2

Note: Accuracses are valio lor measusemerts loliowrg en interral cal
g caiteztior. Mezsutemert sccureoes a1o hiiad fr Gpera oral Umyartiures winr =1 °C ol Tl GLbrabon vt 70 210 °C of el o ey

cebbration lemperziure. Ore-year ca S
o0 100 Aoveraging o o racy et Full fox 2 s gt voltage (for eemple. 10V for the 210 V range) eiter ore yeat.
Smallest cetectable valtoge change in the input sigral ot the smallest input nrge
Table 2. E Series Analog Input Absolute Accuracy Specifications
T
[T Full-Featured E Series Low-Cost E Series
% 4 2 Ve A .. Basic
Models NI BO30E, NI BI3IE, NI B0S2E N!E070€, NI BOT1E NI B00E NIBOG4E. NIBO3SE  NISOZ3E, NIGO24E,  PCHE013, PCI6014
NI GO3ZE, NI GUE NIEOSE 7
8127 Tams
1176 565 =

Table 3. £ Series Analog Output Absolute Accuracy Specifications

High-Performance,
Easy-to-Use Driver Software

NI-DAQ is the robust driver software that makes it easy to access the

functionality of your data whether you are 2
beginning or advanced user. Helpful features include:

A ic Code G -DAQA t is an interactive
guide that steps you through configuring, testing, and programming
measurement tasks and g es the y code automatically
for NI LabVIEW, Lal /CVI, or A t Studio.

Cleaner Code Development — Basic and advanced software functions
have been combined into one easy-to-use yet powerful set to help you
build cleaner code and move from basic to advanced applications

without replacing functions. Wi
High-Performance Driver Engine — Software-timed single-point input

(typically used in control loops) with NI-DAQ achieves rates of up to 50 kHz.
NI-DAQ also delivers maximum I/0 system throughput with @
multithreaded driver.

Figure

Test Panels — With NI-DAQ, you can test ll of your device functionality
before you begin development.

Scaled Channels — Easily scale your voltage data into the proper
engineering units using the NI-DAQ Measurement Ready virtual
channels by choosing from a list of common sensors and signals or
creating your own custom scale.

LabVIEW Integration — All NI-DAQ functions create the waveform data
type, which carries acquired data and timing information directly into
more than 400 LabVIEW built-in analysis routines for dispiay of results in
engineering units on 2 graph.

timabl, i

for NI-DAQ 7,

r inft ion on app
visit ni.com/dataacquisition.

foem for quantity di:

Visit ni.

BUY ONLINE at ni.com of CALL (800) 813 3683 (U.S.)

D.2: Data sheet
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Low-Cost E Series Multifunction DAQ - 12 or 16-Bit, 200 kS/s, 16 Analog |
: b og Inputs

Recommended Accessories

' Sensor/Signals IOV

Signal conditioning is required for sensor measurements or voltage M
inputs greater than 10 V. National Instruments SCXI is a versatile Wﬂm’i ::22' xz:; gﬁ:&smé b = :
high-performance signal conditioning platiorm, intended for ' Signals (<10 v . T =
high-channel-count applications. NI SCC products provide portable, £ System Description DA Dovi ;

flexible signal conditioning options on a per-channel basis. Both signal AR mé";:!w hw:h!';cn:;luhs’:;:‘;
conditioning platforms are designed to increase the performance a;m 3::: nA:(c::m 3 W
reliability of your DAQ system, and are up to 10 times more accurate ok m-anw;ﬁ;a "“S’c::& 55’:%
than terminal blocks (please visit ni.com/sigcon for more details), ::::: PCI-E?::E/PXI—&ME o oo
Refer to the table below for more information: Nermsrel ocks o et provioe wgrel ::awf oﬁsnm — e

recesss enghczter, ixitor, .
Wichmy e recesary e Do scvrcy o s e RO

Table 4. Recommended Accessories

Ordering Information

PCI

NI PCI-6036E. 77846501
NI PCI-6034E 778075-01
NI PCI-6025E 777744-01
NI PCI-6024E. 77774301
NI PCI-6023E 77774201
PCMCIA

NI DAQCard-6036E 778561-01
Ni DAQCard-6024E 778269-01
PXI

NI PXI-6025E..... 77779801
Includes NI-DAQ driver safware.

BUY.NOW! £

A};nr complete product sp_ecmcannns. nn:ing, and accessory m[{ymuuon,
call (800) 8133633 (U.S)) or go to ni.com

BUY ONLINE at ni.com of CALL (800) 813 3693 (U.S.)

Figure D.3: Data sheet

107




ANALOG
DEVICES

FEATURES
Gain Set with One External Resistor
(Gain Range 1 to 1000)
Wide Power Supply Range (2.3 V to +18 )
Higher Performance than Three Op Amp IA Designs
Available in 8-Lead DIP and SOIC Packaging
Low Power, 1.3 mA max Supply Current

EXCELLENT DC PERFORMANCE (“B GRADE”)

50 wV max, Input Offset Voltage

0.6 pV/°C max, Input Offset Drift

1.0 nA max, Input Bias Current

100 dB min Common-Mode Rejection Ratio (G = 10)

LOW NOISE
9nV/VHz, @ 1 kHz, Input Voltage Noise
0.28 pV p-p Noise (0.1 Hz to 10 Hz)

EXCELLENT AC SPECIFICATIONS
120 kHz Bandwidth (G = 100)
15 ps Settling Time to 0.01%

APPLICATIONS

Weigh Scales

ECG and Medical Instrumentation
Transducer Interface

Data Acquisition Systems

Industrial Process Controls

Battery Powered and Portable Equipment

PRODUCT DESCRIPTION : :
The AD620 is a low cost, high accuracy instrumentation ampli-
fier that requires only one external resistor to set gains of 1 to

30,000
w
2 25,000 <7 3 OP-AMP
B IN-AMP
2 (3 OP-07s)
3 20,000 } il
w
& [
= } °_
& 15,000 o
g AD620A 'y
7 =

& 10,000 |— -
w
5 Rg
=
O 5,000

¢ 15 20

0 5 10
SUPPLY CURRENT - mA

Figure 1. Three Op Amp IA Designs vs. AD620
REV. E

i ; urate and
i:{i()rmatlon furnished by Analog Devices is believed t?obeDa‘et:\zces i
Useable' However, no responsibility is assumed by A'n?usgof Shird parties
Whi'cnor for any infringements of patents or othe;{é% by implication o
Otherw',“ay result from its use. No license is gra r Dovices.

1Se under any patent or patent rights of An2

Low Cost, Low Power
Instrumentation Amplifier

AD620

8-Lead Plastic Mini-DIP (N), Cerdip (Q)
and SOIC (R) Packages

Ro [1] 2] Re

il E 3 +Vs
N E— El OUTPUT

“s[¢] ape20 [5]rer

TOP VIEW

1000. I_'“urthermore, the AD620 features 8-lead SOIC and DIP
packaging that is smaller than discrete designs, and offers lower
power (only 1.3 mA max supply current), making it a good fit
for battery powered, portable (or remote) applications.

The AD620, with its high accuracy of 40 PPm maximum
nonlinearity, low offset voltage of 50 1V max and offset drift of
0.6 uV/°C max, is ideal for use in precision data acquisition
systems, such as weigh scales and transducer interfaces. Fur-
thermore, the low noise, low input bias current, and low power
of the AD620 make it well suited for medical applications such
as ECG and noninvasive blood pressure monitors.

The low input bias current of 1.0 nA max is made possible with
the use of Superfieta processing in the input stage. The AD620
works well as a preamplifier due to its low input voltage noise of
9 nV/VHz at 1 kHz, 0.28 pV p-p in the 0.1 Hz to 10 Hz band,
0.1 pA/\/—H—z input current noise. Also, the AD620 is well suited
for multiplexed applications with its settling time of 15 pis to
0.01% and its cost is low enough to enable designs with one in-

amp per channel.

10,000

1,000
TYPICAL STANDARD
BIPOLAR INPUT
: IN-AMP
100 7 4
100

10 7 4 \
AD620 SUPERBETA
BIPOLAR INPUT
/ IN-AMP =

RTI VOLTAGE NOISE
(0.1 = 10Hz) = pV p-p
(2]

n

_.__/
0.11’(————-1“( 100k ™ 10M 100M

SOURCE RESISTANCE -

Figure 2 Total Voltage Noise vs. Source Resistance
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§20-SPECIFICATIONS

(Typical @ +25°C, Vg =

15V, and R
' L=2k ;
Coadh,  ADen €, unless otherwise noted)
n Typ Max ; AD620B
ol G =1+ (49.4 KRg) s M Ty Mes Mo
a 1 D L R 1
G'mmr’ Vour =10V 10,000 1
Py 10,000 1 10
6= :0 0.03 0.10 0.01 e
G= 0.15 01 0.02
6=100 Sy 010, 015 0.03 0.10 %
T 15 0.30 010 o 0.15 0.30 %
ety Vour =-10V to +10 V, 0.40 0.70 035 050 SAF O %
Non! 1000 R, = 10 kQ & 0.40 0.70 %
o m R_=2k0 el 10
G:i(l;l:sl'_l‘cmpcramrc e 10 ;2 A S
i G =1 109 ppm
Gain >12 i 10 " :
o L S e -50 ppm/°C
TOLTAGE OFFSET (Total RTI Error = Vog; + Voso/G) e ———— . ik
Toput Offset; Vost Vs=15Vtoz15V 3
pu 2 0 125 .

Over Temperature Vs=25Vio 15V 185 15 50 30 125 uv
Soerage TC Vs=15V 015V 03 10 s 0 225 Y
Qurput Offset, Voso Vs f fls A% 400 1000 2010 2060 0.3 1.0 uv/eC

Vi £50V 1500 400 1000 uv
QOver Temperature Vs=4#5Viwo+l5V 2000 750 1500 uv
Average TC Vs=25V 015V 50 15 o 2000 |
Ofet Referred to the 25 7.0 50 15 uv/°C
Input vs.
Supply (PSR) Vs=+23V1two 18V
G=1 80 100 80 100 80 100 dB
G=10 95 120 100 120 95 120 dB
G =100 110 140 120 140 110 140 dB
G=1000 110 140 120 140 110 140 dB
INPUT CURRENT
Input Bias Current 0:5¢ 20 05 1.0 05 2 nA
Over Temperature 25 1.5 4 nA
Average TC 3.0 3.0 8.0 pA/°C
Input Offser Current 0331150 03 05 03 1.0 nA
Over Temperature 1.5 0.75 2.0 nA
Average TC 1.5 1.5 8.0 pA/°C
INPUT
Input Impedance
Differential 10[2 102 10]2 GQ||pF
Common-Mode 10]2 1oz fofe ShieP
put Voltage Range® | Vg =423 Vto£5V Vg + 1.9 ESIaE Rl | Vet 1S s-12 Y
Over Temperature Vs + 2.1 +Vs-1.3 | -Vs+2.1 L e I
Vs=5V10+18V Vs + 1.9 +Vs-14 | -Vs+1.9 Wseld | Ny 19 i
Over Temperature Vs +2.1 +Vs-1.4 | Vs+2.1 iVl | Vet 2 e
C°mﬂ1_0n-Mode Rejection
Fauo DC 10 60 Hz with
K2 Source Imbalance | Ve =0V to 10V 90 73 90 dB
G=1 73 90 o0 110 dB
G=10 93 110 100 110 93
G= 30 120 130 110 130 dB
=100 110 1 130 110 130 dB
G=1000 110 130 120
Oln'pUT
Outpur Sy
e 5 ~1.2 | ~Vg+1.1 +Vs-12 |V
Wing Ry =10kQ, ol i +Vg-1.2 | Vst 1.1 Vs : _v5+16 +v:-1.3 v
Ov Vs=+23Viwox5V St +Ve—13 | Vs+14 +Vs-1. S
BREp ers rure Vg + 1.4 e i +Vg-14 | Vs+1.2 +Vs-14 |V
+Vs-1. S 0 N 403 +Vs-15(V
Vs=45Vi0+18V Vs +12 “15 | Vet+16 EYsm Lo | ~Ys
:)verTempemmre 2 Vg + 1.6 % +Vs- 1.5 S +18 +18 mA
1 Curreny Circuit £18 e
REV. E
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AD620

6 AD62
od! Conditions Min o OAMax : ADSIE == 1
SE e Min Typ Max s 620S
YNAMIC RESPON . F—————oieex | ) Min Typ Max Units
small Signal -3 dB Bandwidth
G=1 1000
G=10 800 1000 1000 kHz
G=100 120 800 800 KH
G = 1000 12 120 120 kHZ
Slew Rate ; 0.75 12 12 12 kHZ
Settling Time t0 0.01 % 10 V Step 0.75 1.2 0.75 1.2 v/ "
G =1-100 s : S
G= 1000 150 15 15 s
et sl & ] 150 150 s
NOISE e ek = ———
Voltage Noise, 1 kHz Total RTI Noise = \/(ezm. )+ (eno | GY?
Input, Voltage Noise, e,; 9 13
Output, Voltage Noise, e, 72 100 9 13 9 13 nVAVHz
RTI, 0.1 Hz to 10 Hz 72 100 72 100 nVAHz
G=1 3.
G=10 0.25 325 gg 3.0 6.0 v p-p
G = 100-1000 0.28 il 055 0.8 KV p-p
Current Noise f=1kHz 100 100 s e
0.1 Hzt0 10 Hz 10 10 100 fANHz
10 PA p-p
REFERENCE INPUT
Ry 20 20 20 kQ
I Vings VRer = 0 +50 +60 +50 +60 +50 +60 pA
Voltage Range Vs + 1.6 +Vs-1.6 | Vs+1.6 +Vs-1.6 | -Vs+ 1.6 +Vs-1.6 |V
Gain to Output 1£0.0001 1 £ 0.0001 1 0.0001
POWER SUPPLY
Operating Range* +2.3 +18 +2.3 +18 +23 +18 %
Quiescent Current Vs=+23Viwo+18V 19013 { 1.3 A 1.3 mA
Over Temperature Ll 16 11 1.6 1.1 1.6 mA
TEMPERATURE RANGE
For Specified Performance —-40 to +85 -40 to +85 -55 to +125 g
NOTES
ISee Analog Devices military data sheet for 883B tested specifications.
*Does not include effects of external resistor Rg.
*One input grounded. G = 1.
*This is defined as the same supply range which is used to specify PSR.
Specifications subject to change without notice.
-3-
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NALOG
SEVICES Ultralow Offset Voltage

Operational Amplifiers
0P07

FEATURES
Low Vos: 75 pV Ma);/ - PIN CONNECTIONS
Low Vs Drift: 1.3 pV/°C Max B L ok

e Xy Mini-Dip (P-Suffix
Ultra-Stable vs. Time: 1.5 nV/Month Max 8-Pin SO (S-Suffin) )

Low Noise: 0.6 wV p-p Max
Wide Input Voltage Range: =14 V

wide Supply Voltage Range: 3 V to 18 v Vos TR [7] #]vsstam
Fits 725,108A/308A, 741, AD510 Sockets N [E] by
125°C Temperature-Tested Dice +IN u‘ 5] out

“E 7 [
APPLICATIONS NC = NO CONNECT

Wireless Base Station Control Circuits
Optical Network Control Circuits
Instrumentation
Sensors and Controls

Thermocouples

RTDs

Strain Bridges

Shunt Current Measurements

Pracision Filters high closed-loop gains. Stability of offsets and gain with time or

variations in temperature is excellent. The accuracy and stability
of the OPO07, even at high gain, combined with the freedom
from external nulling have made the OP07 an industry standard
for instrumentation applications.

GENERAL DESCRIPTION

The OP07 has very low input offset voltage (75 pV max for
OP07E) which is obtained by trimming at the wafer stage. These
low offset voltages generally eliminate any need for external null- The OP07 is available in two standard performance grades. The
ing. The OP07 also features low input bias current (+4 nA for OPO7E is specified for operation over the 0°C to 70°C range, and
OP07E) and high open-loop gain (200 V/mV for OP07E). The OP07C over the —-40°C to +85°C temperature range.

low offsets and high open-loop gain make the OPO7 particularly  he OPO7 is available in cpoxy 8-lead Mini-DIP and 8-lead SOIC.
useful for high-gain instrumentation applications. It is a direct replacement for 725,108A, and OP05 amplifiers;
741-types may be directly replaced by removing the 741’s nulling
potentiometer. For improved specifications, see the OP177 or
OP1177. For ceramic DIP and TO-99 packages and standard
micro circuit (SMD) versions, see the OP77.

The wide input voltage range of +13 V minimum combined with

high CMRR of 106 dB (OP07E) and high input impedace pro-
vides high accuracy in the noninverting circuit configuration.
Excellent linearity and gain accuracy can be maintained even at

V+ O—
7 e R28*
PYIONAL
D Lt c1
U Y R1B
*NOTE:
:> R1A >

R2A AND R2B ARE
ELECTRONICALLY
Q9

ADJUSTED ON CHIP
AT FACTORY FOR
MINIMUM INPUT
OFFSET VOLTAGE.
c3
7
RS
3

0z
Q2

NON-
INVERTING
INPUT

2 R4
! A
|:X5$“NG O—~AN

Figure 1. simplified Schematic
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T-SPECIFICATIONS
og7E ELECTRICAL CHARACTERISTICS

0 . = £15V, Ty = 25°C, ypless otherwise noted.)
ymbol Conditions E———
eter Min Typ Max Unit
 CHARACTERISTICS B O v |
[oput Offset VoltagiTth XOS/Ti 30 75 o
me
pg-Term Vos Stit i IO‘ZS 0.3 1.5 UV/Mo
Input offse(t; Crlrlgft I 0.5 1748 nA
t Bias Cu *1.2 +4.0 nA
l;g:[ Noise Voltage : €, P-p 0.1 Hz to 10 Hz? 0.35 0.6 UV p-p
[aput Noise Voltage Density € go % igoﬁé : 103 180 nVVHz
0= z 10,0  13.0 nVVHz
. fo=1kHz 9.6 11.0 nVVHz
t Noise Current . o P-P 14 30 PA p-p
[Iigzt Noise Current Density L gg = igOHI_zIZ3 032  0.80 pAﬁ
= 0.14 023 pAVHz
fo=1kHz 0312 - 017 pAVHz
Japut Resistance—Differential Mode?| Rpy 15 50 il
Joput Resistance—Common-Mode | Rincm i60 SQ
fnput Voltage Range ‘ TR o = dB
Common-Mode Rejection Ratio CMRR Vem =£13V 106 123 o
Power Supply Rejection Ratio PSRR Vs =43V I8V 5 20 l'\l,\/f v
urge-Signal VOltage Gain AVO RL 22 k.Q, Vo =xI0V 200 500 m
Ry 2500 Q, Vo = +0.5 V,
Vs = +3 V! 150 400 V/mV
OUTPUT CHARACTERISTICS L 185 £13.0 v
Output Voltage Swing o RL & 2 kO +12.0 +12.8 \
L =
Ry 2 1kQ 105 %120 W
DYNAMIC PERFORMANCE 0.3 Vips
SR Ry 22 kQ’ 4 MHz
Slew Rate - 15 0.4 0.6
Closed-Loop Bandwidth BW QVO_L i 60 Q
Closed-Loop Output Resistance Ro VO ¥ +’150V No Load 75 120 mg
Power Consumption Py Vz 5 ;_:1 3V, No Load 14 g :V
Offset Adjustment Range Rp= 2012
NOTES

i conds after application of power. : ; et
mSappr;fuT:Zroe‘:t:;ded periods after the first 30 days of operation. Excluding the ini
OS vs. Tim

2.5 pV refer to the typical performance curves. Parameter is sample tested.
lly 2.5 pV r

uipme!
Tnpuy offset voltage measurements are performed by automated tccsll ;; A ?;fv
*O0g-term input offset voltage stability refers to the averaged tren

tial hour of operation, changes in VOS during the first 30 operating days are typica
Sample testeq,

5. aranteed by design.
nieed but not tested,

Spefcarions subject to change without notice.
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