
Palestine Polytechnic University

College of Information Technology and Computer Engineering

Department of Computer System Engineering

Gestures Controlled Robotics (GCR)

Project Team:

Abdelkhalik Aljuneidi

Fares AbuIram

Supervisors:

Dr. Alaa Halawani

Dr. Zein Salah

December 2021

Acknowledgment

In the name of "Allah", the most beneficent and merciful who gave us strength, knowledge and

helped us to get through this project.

This project gave us valuable experience in embedded systems and machine learning. For that,

we want to thank all the people who helped us through the project.

We would like to express our gratitude to our graduation project supervisors Dr. Alaa Halawani,

and Dr. Zein Salah for their guidance, support, and encouragement throughout the project.

Furthermore, we have to show our gratitude to Eng. Wael Takrouri for answering our questions

and providing us with valuable suggestions and tips that helped us in our project, especially in

the hardware problems.

Moreover, we must thank our families for their generous encouragement, and continuous support

throughout our life. For our friends, we are truly grateful for all of your support and help during

the project and throughout the educational stage.

Finally, we would like to thank all the people who helped and supported us even with their

feelings.

Ⅰ

Abstract

Each year, we lose many lives due to forcing humans to function in hazardous places.

In this project, we will focus on providing an alternative to putting human lives at risk. In

essence, we propose an embedded system for hand gesture based control of a robot

system.

Our system utilizes deep learning and computer vision algorithms for real-time hand

gestures detection in order to achieve a more natural approach of controlling robotic

systems, which will help minimize the distance between the digital world and the

physical world.

In this project, we designed, implemented, and trained an intelligent small-scale

gestures controlled car. The system was able to achieve great dynamic gesture

detection as it was tested with different people’s hands.

Ⅱ

Table of Contents

Acknowledgment Ⅰ

Abstract Ⅱ

Chapter 1: Introduction 1
1.1 Overview and motivation 1
1.2 System Objectives 1
1.3 General System Diagram 2
1.4 Problem Statement 3
1.5 List of Requirements 3
1.6 Expected Results 3
1.7 Constraints 3

Chapter 2: Background 4
2.1 Overview 4
2.2 Theoretical background 4

2.2.1 Machine learning 4
2.2.1 Deep learning 5
2.2.3 Computer vision 7

2.3 Literature review 7
2.4 Hardware components 9

2.4.1 Logitech camera C905 [15] 9
2.4.2 Raspberry Pi Camera[16] 9
2.4.3 Laptop or PC Camera 10
2.4.4 Raspberry Pi Model B 11
2.4.5 Jetson Nano Developer Kit 11
2.4.6 Motor Driver L293D 13
2.4.7 DC Motors 13

2.4.8 Arduino Uno[19] 14
2.4.9 Ultrasonic Distance Sensor - HC-SR04[20] 14
2.5 Software background 14

2.5.1 Programming languages 15
2.5.2 Frameworks and Libraries 15
2.5.3 Algorithms 17

Chapter 3: Design 21
3.1 Overview 21
3.2 Detailed Design 21
3.3 Block Diagram 22

Ⅲ

3.4 Pseudo-Code 23
3.4 Schematic Diagram 24
3.5 Detailed System Software Design 25

Chapter 4: Implementation 26
4.1 Overview 26
4.2 Hardware Implementation 26
4.3 Software Implementation 28

4.3.1 Packages installation 29
4.3.2 Detection module 29
4.3.3 Arduino Implementation 31

Chapter 5: Validation and Results 33
5.1 Overview 33
5.2 Hardware Testing 33

5.2.1 DC motors and L293D driver 33
5.2.2 Ultrasonic sensors 33
5.2.3 Test the Camera with Raspberry Pi 33
5.2.4 Test the communication between Raspberry Pi and Arduino. 33

5.3 Software Testing 33
5.3.1 Test Arduino Software 33
5.3.2 Test Gesture detection Model 34

Chapter 6: Conclusions and Future Work 37
6.1 Conclusion 37
6.2 Future Work 37

References: 38

Ⅳ

List of figures

Figure 1.1: Block diagram of the system 2
Figure 2.1: ML methods 5
Figure 2.2: Machine learning and Deep learning processing 6
Figure 2.3: Logitech camera 9

Figure 2.4: Raspberry pi camera 9
Figure 2.5: Raspberry Pi 4 Model B 11
Figure 2.6: Jetson Nano Developer Kit 12
Figure 2.7: Arduino Uno 14
Figure 2.8: Ultrasonic Sensor 14
Figure 2.9: Mediapipe Hands model outputs 16
Figure 2.10: Hand landmark Coordinates details 16
Figure 2.11: RNN node 18
Figure 2.12: RNN unroled 18
Figure 2.13: LSTM internal structure 19
Figure 3.1: System Design 21
Figure 3.2: Block Diagram 22
Figure 3.3: Schematic Diagram 24
Figure 3.4: TTL to USB cable between Raspberry Pi and Arduino 25
Figure 3.5 LSTM Neural Network Architecture 25
Figure 4.1: Tinkercad Simulation 26
Figure 4.2: Serial Communications between Raspberry Pi and Arduino 27
Figure 4.3: Final Look for the Robot 28
Figure 4.4: LSTM Neural Network Model Summary 30
Figure 4.5: Epoch Categorical Accuracy 30
Figure 4.6: Epoch Loss 31
Figure 5.1: Serial Monitor 34
Figure 5.2 a & b 35
Figure 5.3 a & b 35
Figure 5.4 Dynamic Gesture Detection Module results 36

Ⅴ

List of Tables

Table 2.1: Difference between Logitech C905 and Raspberry Pi camera.. 10
Table 2.2: Difference between Raspberry Pi 4 and Jetson Nano. 13

List of Listing

Table 3.1: Pseudocode for remote desktop. 23
Table 3.2: Pseudocode for Raspberry Pi. 23

Ⅵ

Chapter 1: Introduction

1.1 Overview and motivation

In 2020 in California’s seasonal wildfires, four firefighters and 29 other people were devoured by

the flames [1]. And in Australia, at least 33 people died, including three volunteer firefighters

during the start of the fire season in late 2019 [2]. Many such accidents repeat each and every

year, where the humans are set to stay and function in hazardous places, where they put their life

at risk.

Having a robotic alternative to such risky human missions will save lives, and allow us to

discover more and more of the unreachable places on earth or outer space by using them instead

of people. And at the same time having a more naturalized way of controlling such robotic

systems, will allow us to expand their use to everyone, including disabled individuals, who face

huge challenges in their day-to-day tasks.

Although gesture detection is not an easy task, once a high-quality signal could be captured with

good accuracy, it can principally be used to control multiple systems, not only hardware robotic

systems, but also software systems, like opening an email or sending a text message.

In this project, we aim to build a robotic system that can be controlled by hand gestures that are

detected using deep learning techniques. The system is implemented using a microcontroller as a

proof of concept of the power of gestures in controlling certain types of systems.

1.2 System Objectives

In this project we aim to achieve the following objectives:

● Design a system based on deep learning and computer vision algorithms for real-time

hand gestures detection and control of a robotic system with those detected gestures.

● Propose a more natural approach to control systems, which will help minimize the

distance between the digital world and the physical world

● Conduct experiments to provide accuracy and performance reports of the system.

1

1.3 General System Diagram

Our system will capture images using a digital camera which is going to be stable on a remote

desktop. The camera will continuously capture images of the person's hand gestures and process

them in real-time to control the robot's movement. Also, there is another camera installed on the

front interface of the robot. It is a real-time live camera that sends what the robot sees to the

desktop machine. When the user changes his hand gesture, the system will determine the

meaning of the gesture using computer vision and deep learning techniques, the captured signal

will be sent to the robot to change its movement as intended, as shown in figure 1.1.

Figure 1.1: Block diagram of the system

2

1.4 Problem Statement

Each year, too many lives are to either die or get severely injured when sending them to

hazardous places like wildfires, outer space, and so on. Our suggestion is to use robotic machines

instead of people to save their lives. In this project, we will build a simple application to control

the movements of a robot using human hand gestures to achieve man-machine interaction that

feels as natural as possible, without overcomplicating such interactions by wearing any sensors

or wearable systems that cause some inconvenience to the end-user.

1.5 List of Requirements

In a nutshell, the system we present within this project should achieve the following

requirements:

1. Detect the controlling person's hand gesture in real-time.

2. Live camera viewing the area that is in the front of the robot.

3. Move the robot based on the detected hand gesture.

1.6 Expected Results

1. A fully functioning model that can detect human hand gestures to control a robot in

real-time.

2. Decrease the distance between the digital world and the physical world, by using human

gestures to control electronic devices, and using such systems to reach places that are

unreachable to humans.

1.7 Constraints

In the currently implemented version, we should note that:

● This system responds only to 5 human hand gestures.

● Good lighting towards the user’s hand is important in order for the camera to detect the

user's hand gesture.

3

Chapter 2: Background

2.1 Overview

This chapter mainly provides a quick background about the important components in our project.

First, we will talk about the theoretical background, we will explain general terms like machine

learning, deep learning, and computer vision. Secondly, we will present a literature review to

show how previous studies achieved such objectives. Thirdly, we will look over the main

hardware devices we need and why we need them. Finally, we will talk about the software

background, generally about the programming languages and the algorithms we will use.

2.2 Theoretical background

In this section, we will provide some fundamental information about the main concepts on which

our system is based.

2.2.1 Machine learning

Machine learning is a branch of Artificial Intelligence concerned with building applications that

learn from the data and improve their accuracy over time without needing programmers to do

that. In traditional programming, the algorithm is a sequence of statistical processing steps, but in

machine learning, the algorithm is trained from the data features and patterns to make a

decision[3].

There are three main types of machine learning, Supervised, Unsupervised, and Semi-supervised

machine learning. Supervised machine learning is trained by using a labeled data set and the new

data is classified based on this data. For example, if you need to classify apples and bananas, you

should have labeled data with apples and bananas, that's like if you teach a kid, you hold an

apple and tell him this is an apple, and so on. On the other hand in unsupervised training no

labels are used. The program aggregates the common features between them and classifies them

based on those common features. Semi-supervised is a medium between supervised and

unsupervised. It uses small label data for classification and large unlabeled data for features

extraction. Figure 2.1 explains the difference between them [4].

4

Figure 2.1: ML methods [4]

Another really important type of machine learning is reinforcement machine learning which is

the training of machine learning models to make a sequence of decisions. The agent or in this

case is a robot that learns to achieve a goal in an uncertain environment. So, the artificial

intelligence faces a game-like situation. Where the computer employs trial and error to come up

with a solution to the problem. To get the machine to do what the programmer needs, the AI gets

either rewards or penalties for the actions it performs. The goal is to maximize the total reward.

2.2.1 Deep learning

Deep learning is a subset of machine learning that enables the machine to learn without human

supervision. Neural networks are the basic building block of deep learning. It contains nodes that

work together mimicking the human brain [5]. In terms of architecture, a neural network consists

of an input layer, an output layer, and hidden layers. Each layer consists of one or more

connected nodes, each node called a neuron or a perceptron. Each neuron has a weight and an

activation function. If the output of the neuron is above a specific threshold the neuron fires the

output data to the input of the next neuron. Otherwise, no data passes to the next neuron.

5

The deep learning models need a huge amount of data passed through their layers to apply tuning

for the weights and biases for each layer to get the best outcome. The Convolutional Neural

Networks (CNNs) is a great implementation of that, and it is used primarily for computer vision

applications, Which can detect patterns, features and recognize objects from images or videos

[6].

When it comes to the difference between machine learning and deep learning in terms of

processing Figure 2.2 explains that [7]. The feature extraction in machine learning is done by

feature engineering, then the classification happens depending on these features, But in deep

learning, you don't need to extract any features. It's done automatically inside the model.

Figure 2.2: Machine learning and Deep learning processing [7]

6

2.2.3 Computer vision

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to

extract information from digital images, videos, and other visual inputs, then make an action

depending on such information. So, we can say that the system can “think” based on what the

system “sees”.

Computer vision tasks include methods for acquiring, processing, analyzing and understanding

digital images, and extraction of high-dimensional data from the real world in order to produce

numerical or symbolic information, e.g. in the forms of decisions.

In the last five years, computer vision has witnessed continuous developments. The best

performance came with the introduction of CNN. Today, deep learning with CNNs is the crux of

most computer vision applications, such as self-driving cars, facial security features, gesture

recognition, etc.

When it comes to sequence-based recognition, Recurrent Neural Networks (RNN) are used.

RNN is a class of neural networks that allow previous outputs to be used as inputs while having

hidden states. A drawback of RNN is the difficulty of accessing information from a long time

ago, here where long Short-Term Memory (LSTM) shine, a special kind of RNN, capable of

learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber [8].

2.3 Literature review
Many studies have examined gestures recognition. Looking at those studies with a critical eye

helped us choose the techniques that suit the needs of our project.

Some of those studies focused on capturing the hand gestures using a wearable device that is

based on an accelerometer [9], although this technique had an impressive hand gesture capturing

accuracy, it is still far a little bit from the way we intended to capture those signals since we are

focused to have a more natural way of controlling the digital world. Other studies concentrated

7

on real-time video capturing of the hand gestures and then analyzing them to output the proper

signals [10], we choose to focus on this type of recognition for our project.

Real-time recognition of dynamic hand gestures from video streams is challenging since there is

no indication of when a gesture starts and ends in a video. Also, the performed gestures should

be only recognized once. Such challenging components were resolved by proposing a

hierarchical structure enabling offline-working CNN architectures to operate online efficiently

by using the sliding window approach [11]

Another study used a hidden Markov model (HMM) which takes a continuous stream as an input

and can automatically segment and recognize human gestures, here the HMM’s gesture

recognizer performs both segmentation and recognition of the human gesture simultaneously

[12]. Although this study did design the system to recognize the entire movements of an

individual, which is not detail-focused as the system we want to achieve. But their results were

really promising and that is why we decided to consider their research.

To deal with those challenges in dynamic hand gestures recognition, another research group

focused on coarticulation. Moreover, a new set of novel features in the feature extraction stage

was used such as the position of the hand, self co-articulated features, ratio and distance features.

The Artificial Neural Network (ANN) and Support Vector Machine (SVM) was used to develop

two independent models using a new set of features as input [13].

Although most of the researchers focused on architecting an intelligent system that can adapt its

input and improve its accuracy over time, some researchers tried to improve and add on to

common image processing techniques like Finger Segmentation [14]. In such a method the hand

region is extracted from the background with the background subtraction method. Then, the palm

and fingers are segmented to detect and recognize the fingers. Finally, a rule classifier is applied

to predict the labels of hand gestures.

8

2.4 Hardware components

In this section, we will present the main hardware components of the project and some detailed

descriptions of them. For most components, we actually present

different options that are available and explain the reason behind our

choice.

2.4.1 Logitech camera C905 [15]

The C905 Logitech camera (see Figure 2.3) is a USB camera 2 MP
Portable Webcam, Ultra-smooth AutoFocus with Carl Zeiss optics,
and 2-megapixel resolution for high-clarity video and vibrant photos
up to 8 MP, RightLight2 Technology light correction for the best
images, even in dim and backlit conditions.

2.4.2 Raspberry Pi Camera[16]

The Raspberry Pi camera module v1.3 (Figure 2.4) is an official product of the Raspberry Pi

foundation. This means it has software and hardware support from the original developers of the

credit-card-sized computer itself. For that matter, even enthusiasts are active in developing

beginner to advanced libraries for this camera module.

Table 2.1 shows the difference between the two cameras:

9

Raspberry Pi camera Logitech C905

Not autofocus Autofocus

Video: Supports 1080p @ 30fps, 720p @
60fps and 640x480p 60/90 Recording

Up to 30-frames-per-second video

5MP Omnivision 5647 Camera Module Up to 8-megapixel photos (enhanced from the
native 2-MP sensor)

Picture Resolution: 2592 x 1944 720 p widescreen mode with recommended
system
High-definition video(up to 1600 X 1200)

15-pin MIPI Camera Serial Interface - Plugs
Directly into the Raspberry Pi Board

Hi-Speed USB 2.0 certified

We choose the Logitech C905 to capture the live feed from the robot and send it to the remote

desktop due to of these reasons:

1. Logitech is available for us.

2. When using the Raspberry Pi with 64 bit, you need to download the Libcamera driver to

work but the USB camera works directly.

2.4.3 Laptop or PC Camera

We choose to use the camera of the laptop or PC to capture the gesture from the user then we

transfer the picture to the respray pi to determine the intended direction of the robot movement.

10

2.4.4 Raspberry Pi Model B

Raspberry Pi 4 Model B (as shown in figure 2.5) is the latest product in the popular Raspberry Pi

range of computers. It offers ground-breaking increases in processor speed, multimedia

performance, memory, and connectivity compared to the prior-generation Raspberry Pi 3 Model

B+ while retaining backward compatibility and similar power consumption. For the end-user,

Raspberry Pi 4 Model B provides desktop performance comparable to entry-level x86 PC

systems [17].

This product’s key features include a high-performance 64-bit quad-core processor, dual-display

support at resolutions up to 4K via a pair of micro-HDMI ports, hardware video decode at up to

4Kp60, up to 8GB of RAM, dual-band 2.4/5.0 GHz

wireless LAN, Bluetooth 5.0, Gigabit Ethernet, USB

3.0, and PoE capability (via a separate PoE HAT

add-on).

The dual-band wireless LAN and Bluetooth have

modular compliance certification, allowing the board to

be designed into end products with significantly

reduced compliance testing, improving both cost and

time to market.

Figure 2.5: Raspberry Pi 4 Model B [17]

2.4.5 Jetson Nano Developer Kit

The NVIDIA® Jetson Nano™ Developer Kit (as shown in figure 2.6) delivers the compute

performance to run modern AI workloads at unprecedented size, power, and cost. Developers,

learners, and makers can now run AI frameworks and models for applications like image

classification, object detection, segmentation, and speech processing [18].

The developer kit can be powered by micro-USB and comes with extensive I/Os, ranging from

GPIO to CSI. This makes it simple for developers to connect a diverse set of new sensors to

11

enable a variety of AI applications. And it is incredibly power-efficient, consuming as little as 5

watts.

Jetson Nano is also supported by NVIDIA JetPack, which includes a board support package

(BSP), Linux OS, NVIDIA CUDA®, cuDNN, and TensorRT™ software libraries for deep

learning, computer vision, GPU computing, multimedia processing, and much more. The

software is even available using an easy-to-flash SD card image, making it fast and easy to get

started.

Figure 2.6 Jetson Nano Developer Kit [18]

As you see from the below list of initial specs of both boards, there certainly are some

similarities. Let’s take a look at comparing the specifications of both the Raspberry Pi 4 and

NVIDIA Jetson Nano Developer Kit. look at table 2.2

12

Raspberry Pi 4 Nvidia Jetson Nano

CPU Quad- core ARM cortex-A72 64-bit @ 1.5 Ghz Quad- core ARM cortex-A57 64-bit @ 1.42 Ghz

GPU Broadcom VideoCore VI (32-bit) NVIDIA Maxwell w/128 CUDA @ 921 MHZ

Memory 4 GB LPDDR4 4 GB LPDDR(2GB version also available

Networking Gigabit Ethernet/ wifi 802.11ac Gigabit Ethernet / M.2 key E (for wifi support)
(2 GB version includes USB Wireless adaptor)

Display 2x micro- HDMI (up to 4Kp60) HDMI 2.0 and eDP 1.4

USB 2x USB 3.0 2x USB 4x USB 3.0 USB 2.0 Micro-B

Other 40-pin GPIO 40-pin GPIO

Video Encode H264(1080p30) H264/H265 (4kp30)

Video Decode H265(4Kp60), H264(1080p60) H264/H265 (4k p60, 2x 4kp30)

Camera MIPI CSI port MIPI CSI port

Storage Micro-Sd Micro-Sd

Price 55$ USD 99$ USD

Table 2.2: Difference between Raspberry Pi 4 and Jetson Nano.

The two kits have similar specifications, but we choose the Raspberry pi model B 64bit 8GB

because it is the best version of raspberry pi available in our hands. Another reason, prior

experience of colleagues revealed several problems with the versioning for some libraries and

the set up of the Jetson Nano Kit, which discouraged us from choosing it.

2.4.6 Motor Driver L293D

It is an IC that contains 16 pins. It is capable of running two dc motors at the same time and
controlling their direction independently. We will use it to enable the dc motors.

2.4.7 DC Motors

It is a device that converts direct current electrical energy into mechanical energy and uses the
electricity generated to produce motion for wheels.

13

2.4.8 Arduino Uno[19]

Arduino Uno is a microcontroller board based on the ATmega328P

(datasheet). It has 14 digital input/output pins (of which 6 can be used

as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB

connection, a power jack, an ICSP header, and a reset button. It

contains everything needed to support the microcontroller; simply

connect it to a computer with a USB cable or power it with an

AC-to-DC adapter or battery to get started. Look at figure 2.7.

The reason to choose Arduino in our system is that the response time for the low-level hardware

components like ultrasonic and motors in Arduino is less than Raspberry Pi. So, the system

response speed will increase.

2.4.9 Ultrasonic Distance Sensor - HC-SR04[20]
This economical sensor provides 2cm to 400cm of non-contact

measurement functionality with a ranging accuracy that can reach up

to 3mm. Each HC-SR04 module (Figure 2.8) includes an ultrasonic

transmitter, a receiver, and a control circuit.

There are only four pins that you need to worry about on the

HC-SR04: VCC (Power), Trig (Trigger), Echo (Receive), and GND

(Ground).

2.5 Software background

Software is a really important part of our system. In this section, we give an overview of the

programming languages, frameworks, and libraries that have been used. In addition, we present a

brief description of the adopted algorithms.

14

2.5.1 Programming languages

Primarily, Python is used as our programming language since it deals with the complex

algorithms in machine learning efficiently and it is also widely used by the machine learning

community, in addition, most of the research work we saw uses python as a primary tool to build

the model that was responsible for the gestures detection.

2.5.2 Frameworks and Libraries

MediaPipe

MediaPipe [21] is a cross-platform framework for building multimodal applied machine learning

pipelines. One of the most useful models for our project is the Hands model which is a

high-fidelity hand and finger tracking solution for both right and left hand. It employs machine

learning (ML) to infer 21 3D landmarks of a hand from just a single frame and in real-time.

MediaPipe Hands solution utilizes an ML pipeline consisting of several models working

together. The first one is a palm detector model called BlazePalm which is a single-shot detector

model optimized for real-time uses. A single-shot detector model is a model that puts a detected

object in a bounding box, that is why the MediaPipe team decided to detect the palm first

because it is easier to put the palm in a bounding box than to figure out all the finger's details.

Then the result of that BlazePalm detector will run into a hand landmark model that performs

precise landmark localization of 21 2.5D coordinates inside the detected

hand regions via regression. The model learns a consistent internal hand pose representation and

is robust even to partially visible hands.

The model has three outputs (see Figure 2.9):

1. 21 hand landmarks consisting of x, y, and relative depth.

2. A hand flag indicates the probability of hand presence in the input image.

3. Binary classification of handedness e.g. left or right hand.

15

Figure 2.9: Mediapipe Hands model outputs [22]

Hand landmark Coordinates are presented in the below figure. Here

Figure 2.10: Hand landmark Coordinates details [21]

PyTorch

PyTorch [23] is an open-source machine learning library based on the Torch library, used for

applications such as computer vision and natural language processing, primarily developed by

Facebook's AI Research lab. It is free and open-source software released under the Modified

BSD license. Such libraries allow tensor computing with the ability for accelerated processing

via GPU, an important point also that this library has good support for neural networks, since

they are built on a tape-based auto diff system.

16

TensorFlow

TensorFlow [24] is an open-source platform that was developed by Google’s Brain team, that

contains a comprehensive, flexible ecosystem of tools, libraries, and community resources. This

tool is widely used within the community, where huge contributions to make such models and

algorithms be more and more accurate and efficient will help us out during our work on this side

of the project.

We will be using TensorFlow instead of PyTorch since it has a much bigger community behind it

than PyTorch, which means that it is easier to find resources to learn Tensorflow, this point is

important for us since installing such libraries into microcontrollers like Raspberry pi is mostly

bug full and having such community will be a great resource for us. Also, it was proven that

TensorFlow is much better for production models and scalability since it was built to be

production-ready.

OpenCV

OpenCV, short for open-source Computer Vision, is a cross-platform open-source programming

library that includes a numerous number of Computer Vision algorithms and Functions [25].

NumPy

NumPy is an open-source python library that includes powerful functions and mechanisms for

handling matrix arithmetic as well as functions in Linear Algebra, Fourier transform, and others

[26].

2.5.3 Algorithms

This section describes the algorithm needed to implement the gestures recognition function of

our system. Where we looked at multiple intelligent and classical algorithms and compared them

to choose the best approach.

17

2.5.3.1 Recurrent Neural Networks

A recurrent neural network is a type of artificial neural network commonly used in speech

and video recognition and natural language processing. Recurrent neural networks

recognize data's sequential characteristics and use patterns to predict the next likely

scenario. They are networks with loops in them, allowing information to persist. Figure

2.11 explains a single node of RNN.

This loop-like structure can be unfolded as well to form the regular shape RNN as in

Figure 3.12

Figure 2.12: RNN unrolled [27]

The problem with RNN is Long-Term Dependencies where it is hard for the network to consider

far-away data into its prediction, and limiting its prediction to short-term data span. That is where

Long Short-Term Memory comes in use.

2.5.3.2 Long Short-Term Memory

Long Short-Term Memory Networks (LSTM) is a special kind of RNN, capable of learning

long-term dependencies. They are explicitly designed to avoid long-term dependency problems.

Remembering information for long periods of time is particularly their default behavior.

LSTMs also have this chain-like structure as you can see in Figure 2.13, but the repeating

module has a different structure. Instead of having a single neural network layer, there are four,

interacting in a very special way.

18

Figure 2.13: LSTM internal structure [27]

We will use LSTMs as a basis for our gestures sequence detection deep neural network model

since it is more able to remember inputs over a long period of time better than the vanilla RNN.

2.5.3.3 Finite State Machine

A Finite State Machine is used to model four qualitatively distinct phases of a generic gesture

[28]. Fingertips are tracked in multiple frames to compute motion trajectories, which are then

used for finding the start and stop position of the gesture. Gestures are represented as a list of

vectors and are then matched to stored gesture vector models using table lookup based on vector

displacements. Such a method seems extremely limited to certain motion trajectories, and we see

that the LSTM architecture is more helpful in our case than the Finite State Machine.

2.5.3.4 Finger Segmentation

Since the palm is static, while the fingers are not, detecting their movement is a huge part of the

recognition process[14], a way of doing that is to start by detecting the hand using the

background subtraction method and then the result of this process is transformed to a binary

image. Then, the fingers and palm are segmented to facilitate finger recognition. Moreover, the

fingers are detected and recognized. Finally, hand gestures are recognized using a simple rule

classifier.

In the segmentation image of the fingers, the labeling algorithm is applied to mark where the

fingers are. Only the regions of enough pixels are regarded as fingers. For each remaining region,

19

that is, a finger, the minimal bounding box is used to enclose the finger. Then, the center of the

minimal bounding box is used to represent the center point of the finger.

The type of recognition resulting from such a method is limited to certain hand color, and

background color compared to other intelligent methods, where the limitation was minimized

resulting in a better gestures recognizer. So a combination of Mediapipe for hands key points

extractor and an LSTM Neural Network where we can detect those dynamic gestures. Will be the

best compared to the proposed solutions, since it will have the ability to detect dynamic gestures,

and will not be limited by any kind of background or any other elements within the frame other

than the user’s hands.

20

Chapter 3: Design

3.1 Overview

This chapter discusses the overall design of the gestures controlled robotic embedded system and

the way its components are integrated together, showing the block diagram and schematic

diagram for the design, in addition to some details about the software gestures recognition side of

our project.

3.2 Detailed Design

The system design, shown in Figure 3.1, explains the general overview of the system’s main

components and the connection between them. On the left part, the user uses the laptop's camera

to capture his hand gesture and send it over the internet to Raspberry Pi on the right. The gesture

is passed into our model to determine the movement. After that, we notify Arduino to change the

car movement. On the other hand, we send a live video from the robot to the remote desktop to

see what the robot sees.

21

3.3 Block Diagram

The system diagram in figure 3.2 shows how the communication happened between the system

sides (laptop and robot). We are using WebRTC [29] and Firebase to create a channel between

these sides in real-time, that allows both sides to see the video from the other side.

Also, Arduino calculates the distance between the car and anything in front or back of it using

Ultrasonic sensors. The car stops if the distance is less than 30 cm.

22

3.4 Pseudo-Code
The following pseudo-codes describe the whole project process and how the components are

connected using WebRTC and Firebase. The first pseudo-code explains how the remote desktop

connects with the WebRTC and FireBase channel and sends the gesture to the other side.

The second pseudo-code explains how the raspberry pi connects with the WebRTC and FireBase

channel and sends the live video to the remote side. Also, it describes how to move the robot

based on the result of the detection model over various movements.

23

3.4 Schematic Diagram

Figure 3.3 shows the schematic diagram of the hardware components. It shows how the L293D

IC is connected with the DC motors and Arduino to control the directions and speed of the car.

Also, it shows how the ultrasonic sensors are connected with Aurdino to calculate the distances

between the car and any object on the front of the movement.

We’ve connected the Arduino with Raspberry pi using TTL to USB capel to make serial

communications between them. Look at 3.4 Figure.

24

3.5 Detailed System Software Design
This section describes the software logic of the system. It briefly explains how to employ some

of the techniques discussed in the previous chapter of this document.

LSTM Neural Network Specifications

Figure 3.4 describes the LSTM Neural Network architecture used in our main detection model.

The input is a 30 × 126 2D vector, where each frame of the 30 frames that represent the input

video clip will consist of 126 key points value, where for each hand we will have 21 key points,

and each key point consist of 3 direction, [x, y, z] represents the positions of each key point in a

3D space. Those key points directions from both hands will be flattened into a 126 1D vector.

The first layer consists of 64 LSTM units, the second layer consists of 128 LSTM units, the third

layer consists of 64 LSTM units to shape a kind of symmetrical shape. The next layer is fully

connected and contains 64 units. The next layer is also a fully connected layer with 32 units. The

rectified linear unit (ReLU) is used as an activation function over all the layers except for the last

Softmax layer.

Figure 3.5: LSTM Neural Network Architecture

25

Chapter 4: Implementation

4.1 Overview

This chapter explains the implementation part for the hardware components and the software

algorithms. It dives into more details in the project overall different hardware components and

software modules.

4.2 Hardware Implementation

Figure 4.1 shows the hardware components we used to implement the subsystem responsible for

moving the robot. The figure was generated using an online simulator called Tinkercad which

demonstrates the actual design of each component as well as the connections between them.

26

To send the detected movement from the Raspberry Pi to the Arduino after detecting the gesture,

we connect them using TTL to USP capel to make serial communications between them using

the library in Python called serial. Look at Figure 4.2.

The steps below show the hardware implementation for the

robot:

1. Connect the DC motors with the L293D driver, the

following steps describe the process:

a. The first DC motor connects with the pins

(3,6) on the IC board to set it as output.

b. The second DC motor connects with the pins

(11,14) on the IC board to set it as output.

2. Connect the L293D driver with the Arduino, follow the steps

below:

a. The (2,7) pins from the IC connect with the pins (7,6) from Arduino respectively

to control the direction of the first motor.

b. The (10,15) pins from the IC connect with the pins (5,4) from Arduino

respectively to control the direction of the second motor.

c. The first pin from the IC connects with the eleventh pin from Arduino to control

the speed of the first motor.

d. The ninth pin from the IC connects with the tenth pin from Arduino to control

the speed of the second motor.

3. The pins (8,16) connect to the VCC and The pins (4,5,13,14) connect to the ground.

4. Connect the Ultrasonic sensors with the Arduino:

a. Every sensor has 4 pins (VCC, Trigger, Echo, Ground).

b. The trigger pin from the first sensor connects with the ninth pin from the

Arduino, and the echo pin connects with the eighth pin.

c. The trigger pin from the second sensor connects with the third pin from the

Arduino, and the echo pin connects with the second pin.

27

d. The VCC and Ground pins from the sensors connect with the VCC and Ground

pins from the Arduino.

The USB Camera connects with any USB port of the raspberry pi. We've enabled the camera

from the Interfacing Options of Raspberry PI.

Figure 4.3 shows the final look of the robot after connecting its parts.

4.3 Software Implementation

This section describes the implementation details of the various software components of the

system. It also explains the choice of different parameters and the features and functions of each

software component in the system.

28

4.3.1 Packages installation

A crucial step of this system is to install a few software components such as OpenCV,

TensorFlow, and Mediapipe. We used the pip package manager to install all the packages we

used on different platforms. We faced multiple compatibility issues during installation, but we

were able to overcome them.

4.3.2 Detection module

The detection module is responsible for detecting the gestures received from the front camera,

there are multiple functionalities within the model, such as extracting the key points and the logic

for the final detection.

This module will receive the real-time video stream of the user gestures, each frame is proceeded

via the Mediapipe Hands model and ended up as a set of 42 key points values (21 left-hand

landmarks and 21 right-hand landmarks) and each one of those key points is in a 3D space

containing the dimensions of x, y, and z. If there is no left or right hand detected, the

non-detected hand will be represented as a zero NumPy array for the key points. Concatenating

left-hand keypoints with right-hand key points will be then the final key points array, then apply

each 30 frames of the feed to the LSTM model in order to predict the intended gestures out of the

main five gestures that the system is trained with.

The detected gesture will be then sent to the car module to perform the intended action. We used

Firebase real-time in order to send the key points array from the laptop where we performed the

key points extractor function that uses Mediapipe, to Raspberry Pi 4 where the LSTM trained

model will do the gesture detection, the detected gesture will then be sent to Arduino in order to

be interpreted in terms of motor movement.

Training the LSTM Neural Network Model

We gathered nearly 1150 video clips, 230 clips for each gesture, we were able to gather such

clips with the help of our colleagues from the college. The data set may seem relatively small,

since our model only contains 203,525 parameters as seen in Figure 4.4.

29

Figure 4.4 LSTM Neural Network Model Summary

Our training process was limited to 35 epochs given the small number of parameters we have in

the model, and we noticed that beyond 35 epochs the model will over train providing a higher

loss. Figure 4.5 presents the accuracy metric data throughout the training process, also Figure 4.6

shows the loss metric data throughout the training process.

Figure 4.5 Epoch Categorical Accuracy

30

Figure 4.6 Epoch Loss

4.3.3 Arduino Implementation

We have used the Arduino to control the low-level hardware components, which are responsible

for moving or stopping the car depending on the hand gestures or the ultrasonic sensors.

The following steps explain how we have implemented the robot components:

1. Every movement is referred to as a single character, as follows:

a. Stop referred to as s.

b. Forward referred to as f.

c. Backward referred to as b.

d. Right referred to as r.

e. Left referred to as l.

2. The robot will be standing when the program is running.

3. The Arduino will read the distance between the robot and the objects in front and back of

it. There are two scenarios for that as follows:

31

a. If the movement is one of forwarding or right or left and the distance between the

robot and any object in front of it is less than 30cm, the robot will stop

immediately.

b. If the movement is backward and the distance between the robot and any object

behind it is less than 30cm, the robot will stop immediately.

4. As we mentioned in section 4.2, the Arduino connects with the Raspberry Pi with a serial

communication cable to allow us to transfer the data from the Raspberry Pi to Arduino.

The data is a single character that refers to the movement. The robot will move depending

on this data as follows:

a. If the character is f and there is no object in front of the robot, the robot moves to

forward.

b. If the character is r and there is no object in front of the robot, the robot moves to

the right.

c. If the character is l and there is no object in front of the robot, the robot moves to

the left.

d. If the character is b and there is no object behind the robot, the robot moves

backward.

e. If the character is s, the robot stops.

32

Chapter 5: Validation and Results

5.1 Overview

This chapter illustrates the testing process of the overall system, its components, and software.

We test all the parts to ensure that all the functions work as expected and without errors.

5.2 Hardware Testing

This section discusses the testing process for the hardware components.

5.2.1 DC motors and L293D driver

After we've connected the car's components, we tested it by connecting it to the laptop. We've

used the Arduino software and Serial Monitor to send data to the robot. The process was

successful, and the robot moved into all sides without problems.

5.2.2 Ultrasonic sensors

The car will stop when we put an object in the front of it when it's moving forward or right or

left, and the same thing when it moves backward.

5.2.3 Test the Camera with Raspberry Pi

We captured some videos through the camera while the car was moving, as it was clear, fast, and

suitable for outdoor photography.

5.2.4 Test the communication between Raspberry Pi and Arduino.

We tried to send data from Raspberry Pi to Arduino using the Python library called serial. The

process was fast and successful.

5.3 Software Testing

This section discusses the testing for our functions in the software

5.3.1 Test Arduino Software

We've used the serial monitor to test the software on the Arduino. We've entered a character

inside the monitor, and we got the following results:

33

1. If the character is f, then the car moves forward.

2. If the character is b, then the car moves backward.

3. If the character is r, then the car moves to the right.

4. If the character is l, then the car moves to the left.

5. If the character is s, then the car stops.

5.3.2 Test Gesture detection Model
Our initial plan was to implement the entire Module on the Raspberry pi 4. As we capture the

live video stream of the user hand gesture we will send this stream to the Module that is

deployed in the Raspberry pi 4 and process it frame by frame in real-time.

The detection process includes extracting the 42 key point values of both hands from the

Mediapipe hand library, then passing those key points into our LSTM Neural Network, and

finally, sending the predicted gesture to the Arduino.

Both Mediapipe and Tensorflow were installed successfully without any major problems to the

Raspberry pi. Considering performance, this approach did not work very well, since we faced a

huge noticeable delay to capture the Mediapipe key points from the user's hands.

That delay led us to try another approach to deal with the main cause of the delay, and run the

Mediapipe key points extractor on a laptop, while the LSTM neural network will run on the

Raspberry pi 4 using Tensorflow. We used firebase real-time to connect both devices together

and send the key points vector from the laptop to the Raspberry pi for the gesture to be detected.

34

We ended up using the last approach since it was more reliable when it comes to the prediction

time, and the user real-time experience. We calculated the time it takes for the user to see the

changes of the provided gestures be implemented to the robot.

We tested out two approaches regarding running the gesture detection module. The first is to

extract the key points from the user gesture and to run the LSTM neural network model in the

laptop and send the detected gesture to the Raspberry pi via firebase real-time, Figure 5.2 (a)

shows that the time needed to detect the gesture when the model is running on the laptop will be

3 milliseconds, and the time to send the detected gesture to the Raspberry pi will be nearly 8

milliseconds as shown on Figure 5.2 (b)

Figure 5.2 (a)

Figure 5.2 (b)

For the second approach we did only extract the key points in the laptop and send the key points
array via firebase real-time, and as shown in Figure 5.3 (a) and (b) it took nearly 2 seconds

Figure 5.3 (a)

Figure 5.3 (b)

35

 Gesture detection Model in-action

(a) (b) (c)

(d) (e)

Figure 5.4 Dynamic Gesture Detection Module results

When it comes to the LSTM Neural Network model overall accuracy for a 30% testing set size

out of 1150 gesture clips as our main data set, we were able to achieve 91.30%, but when it

comes to the categorical accuracy our model achieved 96.14%. Figure 5.4 shows our results for

all five gestures we are using in this project.

36

Chapter 6: Conclusions and Future Work

6.1 Conclusion

In this project we created an embedded system using deep learning and computer vision

algorithms for real-time hand gestures detection and control of a robotic system with those

detected gestures

A camera was installed to capture human gestures. Then the real-time captured stream of frames

sent to our detection module in order to detect the intended gestures, the intended signal then be

sent to the robot in order to control its movement.

The most fundamental part of the software system, the gesture detection module, was

implemented utilizing deep learning with an LSTM Neural Networks.

6.2 Future Work

The general purpose of this project is to minimize the distance between the digital world and the

physical world by building an application that controls a robot system using the hand gesture

from a remote place. We can enhancement the current model in different aspects:

1. Use an illumination invariant hands key points extractor other than Mediapipe even if

that required us to install some hardware on the user's hands if that was needed depending

on the application.

2. We can use DC motors with an encoder to prevent impact on the speed when one of the

motors is weaker than the other.

3. Extend the set of gestures for further controlling commands.

4. Optimize the workflow that involves pushing key points to Firebase to decrease the

response time.

37

References:

[1] BAY AREA NEWS GROUP, Map: 33 people killed in California wildfires, 2020 season.” The

mercury news., 2 October 2020,

https://www.mercurynews.com/2020/10/02/map-31-people-killed-in-california-wildfires-2020-sea

son/#:~:text=Thirty%2Dthree%20deaths%20have%20been,Berry%20Creek%20and%20Feathe

r%20Falls.

[2] Calma, Justine. “What you need to know about the Australia bushfires.” The Verge, 13 Feb

2020,

https://www.theverge.com/2020/1/3/21048891/australia-wildfires-koalas-climate-change-bushfir

es-deaths-animals-damage.

[3] IBM Cloud Education. “Machine Learning.” IBM, 15 July 2020,

https://www.ibm.com/cloud/learn/machine-learning.

[4] priyadharshini R. “Simple overview of machine learning.” slideshare, 5 aug 2017,

https://www.slideshare.net/priyadharshiniR8/simple-overview-of-machine-learning

[5] IBM Cloud Education. “Neural Networks.” IBM, 17 August 2020,

https://www.ibm.com/cloud/learn/neural-networks?mhsrc=ibmsearch_a&mhq=Neural%20Netwo

rks.

[6] IBM Cloud Education. “Deep Learning.” IBM, 1 may 2020,

https://www.ibm.com/cloud/learn/deep-learning.

[7] Bhavsar, Dushyant. “Dispelling Myths: Deep Learning vs. Machine Learning.” MERKLE, 6

may 2020,

https://www.merkleinc.com/blog/dispelling-myths-deep-learning-vs-machine-learning.

[8] Hochreiter & Schmidhuber. “Long Short-Term Memory.” Neural Computation, 9, 1997,

http://www.bioinf.jku.at/publications/older/2604.pdf

38

https://www.mercurynews.com/2020/10/02/map-31-people-killed-in-california-wildfires-2020-season/#:~:text=Thirty%2Dthree%20deaths%20have%20been,Berry%20Creek%20and%20Feather%20Falls
https://www.mercurynews.com/2020/10/02/map-31-people-killed-in-california-wildfires-2020-season/#:~:text=Thirty%2Dthree%20deaths%20have%20been,Berry%20Creek%20and%20Feather%20Falls
https://www.mercurynews.com/2020/10/02/map-31-people-killed-in-california-wildfires-2020-season/#:~:text=Thirty%2Dthree%20deaths%20have%20been,Berry%20Creek%20and%20Feather%20Falls
https://www.theverge.com/2020/1/3/21048891/australia-wildfires-koalas-climate-change-bushfires-deaths-animals-damage
https://www.theverge.com/2020/1/3/21048891/australia-wildfires-koalas-climate-change-bushfires-deaths-animals-damage
https://www.ibm.com/cloud/learn/machine-learning
https://www.slideshare.net/priyadharshiniR8/simple-overview-of-machine-learning
https://www.ibm.com/cloud/learn/neural-networks?mhsrc=ibmsearch_a&mhq=Neural%20Networks
https://www.ibm.com/cloud/learn/neural-networks?mhsrc=ibmsearch_a&mhq=Neural%20Networks
https://www.ibm.com/cloud/learn/deep-learning
https://www.merkleinc.com/blog/dispelling-myths-deep-learning-vs-machine-learning

[9] Alam, Abu Yousuf. “Designing and Implementation of a Wireless Gesture Controlled Robot

for Disabled and Elderly People” IEEE, 4 April 2019,

https://ieeexplore.ieee.org/abstract/document/8679290

[10] J. L. Raheja, R. Shyam, U. Kumar and P. B. Prasad, "Real-Time Robotic Hand Control

Using Hand Gestures," 2010 Second International Conference on Machine Learning and

Computing, Bangalore, India, 2010,

https://ieeexplore.ieee.org/abstract/document/5460699

[11] O. Köpüklü, A. Gunduz, N. Kose and G. Rigoll, "Real-time Hand Gesture Detection and

Classification Using Convolutional Neural Networks," 2019 14th IEEE International Conference

on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 2019,

https://ieeexplore.ieee.org/abstract/document/8756576

[12] Park, Kim, “HMM-Based Gesture Recognition for Robot Control” 2005 Iberian Conference

on Pattern Recognition and Image Analysis, Estoril, Portugal,

https://www.researchgate.net/publication/221258820_HMM-Based_Gesture_Recognition_for_R

obot_Control

[13] Singha, Laskar “Self co-articulation detection and trajectory guided recognition for dynamic

hand gestures” IET Computer Vision, March 2016,

https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2014.0432

[14] Zhi-hua Chen, Jung-Tae Kim, Jianning Liang, Jing Zhang, Yu-Bo Yuan, "Real-Time Hand

Gesture Recognition Using Finger Segmentation", The Scientific World Journal, vol. 2014,

https://doi.org/10.1155/2014/267872

[15] Logitech, https://download01.logitech.com/support/25173.1.0.pdf.

[16] “Raspberry Pi Camera Rev 1.3.” Raspberry Pi Camera Rev 1.3,

https://circuit.rocks/raspberry-pi-camera.html.

[17]: Raspberry Pi 4. “Raspberry Pi 4 Tech Specs.” raspberrypi,

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/.

39

https://ieeexplore.ieee.org/abstract/document/8679290
https://ieeexplore.ieee.org/abstract/document/5460699
https://ieeexplore.ieee.org/abstract/document/8756576
https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2014.0432
https://doi.org/10.1155/2014/267872
https://circuit.rocks/raspberry-pi-camera.html
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

[18] “NVIDIA® Jetson Nano™ Developer Kit.”

https://docs.rs-online.com/5d0f/A700000006773861.pdf

[19] Joseph, Tom. “Arduino Uno.” Arduino Uno Specification,

https://www.tomsonelectronics.com/blogs/news/arduino-uno-specification. Accessed 02 Aug

2018.

[20] “Ultrasonic Distance Sensor - HC-SR04.” Ultrasonic Distance Sensor - HC-SR04,

https://www.sparkfun.com/products/15569.

[21] Mediapipe documentation,

https://google.github.io/mediapipe/

[22] Zhang, Fan, et al. “MediaPipe Hands: On-device Real-time Hand Tracking.”,

https://arxiv.org/pdf/2006.10214.pdf.

[23] PyTorch tutorials,

https://pytorch.org/

[24] “tensorflow”,tensorflow.org/, 2020,

https://www.tensorflow.org/

[25] OpenCV online documentation,

https://docs.opencv.org/4.1.0/

[26] NumPy online documentation,

https://docs.scipy.org/doc/numpy/user/whatisnumpy.html

[27] Graves, Alex. “Understanding LSTM Networks -- colah's blog.” Colah's blog, August 2015,

https://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed 25 December 2021.

40

https://docs.rs-online.com/5d0f/A700000006773861.pdf
https://www.sparkfun.com/products/15569
https://google.github.io/mediapipe/
https://pytorch.org/
https://www.tensorflow.org/
https://docs.scipy.org/doc/numpy/user/whatisnumpy.html

[28] Davis J., Shah M. (1994) Recognizing hand gestures. In: Eklundh JO. (eds) Computer

Vision — ECCV '94. ECCV 1994. Lecture Notes in Computer Science, vol 800. Springer, Berlin,

Heidelberg.

https://doi.org/10.1007/3-540-57956-7_37

[29] WebRTC.org,

https://webrtc.org/.

[30] Akbari, Mohammadreza. “Raspberry Pi Serial Communication (UART) w/ Arduino & PC.”

Raspberry Pi Serial Communication (UART) w/ Arduino & PC,

https://electropeak.com/learn/raspberry-pi-serial-communication-uart-w-arduino-pc/.

41

https://doi.org/10.1007/3-540-57956-7_37
https://electropeak.com/learn/raspberry-pi-serial-communication-uart-w-arduino-pc/

