

A Robotic Soil Excavator for Truck Loading

By

Ehab M. Iqnaibi

Abdullah Abu Shokor

Laith Alsayed Ahmad

Supervisor

Prof. Dr. Karim Tahboub

Submitted to the College of Engineering

In partial fulfillment of the requirements for the

Bachelor degree in Mechatronics Engineering

Palestine Polytechnic University

August 2, 2021

i

Abstract

Hydraulic soil excavators are commonly used in construction sectors and soil removal which are

distinguished by high power capabilities and good performance. In this graduation project and for

the purpose of automating soil excavation, a robotic soil excavator prototype is developed. It

consists of four degree of freedom (4 DoF) with four rigid links connected by four revolute joints.

The soil removal requires an expert operator to perform such tasks and consumes time and human

power. Consequently, the prototype is conceptualized to achieve a semi-autonomous motion

control to dig soil from a given excavation point, carry soil, and finally throw it to a truck loading

within a given time duration. Furthermore, it can be operated by an operator remotely.

Developing this robotic excavator system involves the machining of mechanical frames, selection

of proper electromechanical components, integration of all the parts together. Kinematics and

dynamics models are derived for the obtained design to analyze and plan motions, find necessary

driving torques and accompanying reaction forces, and to serve as the core of several model-based

motion control algorithms. These algorithms are developed and tested using MATLAB and

Simulink software packages.

The robotic excavator prototype is built following procedures of material selection, design of

mechanical structure, and analysis using SOLIDWORKS program. Following that, mechanical

components are assembled and tested to satisfy desired functions and given specifications. Each

robot joint is equipped with a position sensor and a DC-motor that is controlled via a driver

operated in torque mode.

The developed robotic soil excavator is considered as an embedded system as it has its own

information processing and control unit on board. For this, Raspberry Pi microcomputer is

employed to implement a centralized control algorithm that is developed and coded in Python.

Experiments show that a trajectory can be generated either through direct or inverse kinematics

and can be tracked within acceptable accuracy. Specifically, PD control with gravity compensation

is tested in depth.

ROS ideas and concepts are examined and implemented. It turned out as discussed in this report

that, given the microcontroller chosen with its imposed limitations, relying fully on ROS is not

straightforward and requires developing efforts and time beyond the scope of this project.

ii

Dedication

We dedicate this project to Allah Almighty. It is with genuine gratitude and warm regard that we

dedicate this research project to our family and friends. A special feeling of gratitude to our loving

parents, whose words of encouragement and push for tenacity ring in my ears.

iii

Acknowledgment

We wish to express our sincere gratitude to our supervisor Prof. Dr. Karim Tahboub for providing

us all support and guidance, whose insightful leadership and knowledge benefited us to complete

this project successfully. We are respectful of your continuous support and presence whenever

needed.

We would like to express our deep appreciation and indebtedness to our teachers and supervisors

for their endless support, and kindness.

Last but not the least, we would like to thank everyone who is involved in the project and helped

us with their suggestions to make the project better.

iv

Contents

Abstract ... i

Dedication .. ii

Acknowledgment .. iii

Chapter One: Introduction .. 1

1.1 Introduction ... 1

1.2 Recognition of the need... 1

1.3 Literature review and existing solutions ... 2

1.3.1 A Robotic Excavator for Autonomous Truck Loading .. 2

1.3.2 Learning Task-Based Instructional Policy for Excavator-Like Robots.......................... 3

1.3.3 Dynamic modeling of the front structure of an excavator .. 3

1.3.4 Design, Implementation and Digital Control of a Robotic Arm 4

Chapter Two: Conceptual Design and Functional Specifications .. 5

2.1 Introduction ... 5

2.2 Conceptual design schematic .. 6

2.3 Components and functional specifications .. 7

Chapter Three: Kinematics and Dynamics Analysis of The Robotic Manipulator................ 9

3.1 Introduction ... 9

3.2 Kinematics model .. 9

3.2.1 Robot forward kinematics .. 9

3.2.2 Robot inverse kinematics .. 11

3.2.3 Workspace .. 14

3.2.4 Robot differential kinematics ... 14

3.3 Dynamic model ... 17

Chapter Four: Design of Structure and Mechanical Components .. 26

4.1 Introduction ... 26

4.2 Material selection and analysis ... 26

4.2.1 Introduction .. 26

4.2.2 Material selection and analysis ... 27

4.3 Mechanical components of structure... 32

4.4 Structure and load analysis through SOLIDWORKS ... 36

v

Chapter Five: Selection of Electrical Parts and Components .. 39

5.1 Introduction ... 39

5.2 Comparison and selection of system actuators ... 39

5.2.1 Comparison between actuators ... 39

5.2.2 Selection of actuators .. 42

5.3 Electrical Parts... 44

5.3.1 Robot motors .. 44

5.3.2 Motor drivers .. 45

5.3.3 Sensors .. 45

5.3.4 Human machine interface ... 46

5.3.5 Power source... 47

5.4 Components selection ... 47

5.4.1 Motors selection ... 47

5.4.2 Driver selection ... 50

5.4.3 Sensor selection .. 52

5.4.4 Human machine interface ... 55

5.4.5 Power source... 56

Chapter Six: Information Processing.. 58

6.1 Introduction ... 58

6.2 Software and information processing .. 58

6.3 Processing unit .. 60

6.4 Hardware connections and interfacing between components ... 61

6.4.1 Interfacing protocols ... 61

6.4.2 Hardware connection (GPIO pins connection) ... 64

Chapter Seven: Robot Motion Control ... 66

7.1 Introduction ... 66

7.2 Motion planning .. 66

7.2.1 Introduction .. 66

7.2.2 Operational space trajectory ... 67

7.2.3 Trajectory translating to joint space ... 69

7.3 Motion control in joint space .. 72

7.3.1 Introduction .. 72

vi

7.3.2 Decentralized control .. 73

7.3.3 Position and velocity feedback control (PID controller) .. 74

7.3.4 I-PD control (State-feedback with integral control) ... 79

7.3.5 Centralized control ... 84

7.3.6 Inverse dynamics .. 84

7.3.7 PD with Gravity Compensation .. 89

7.4 Motion control in operational space .. 92

7.4.1 Introduction .. 92

7.4.2 PD control with gravity compensation ... 92

7.5 Conclusion ... 96

Chapter Eight: Prototype Building, Experiments and Results .. 97

8.1 Introduction ... 97

8.2 Prototype structure and system components ... 97

8.2.1 Build robotic soil excavator prototype ... 97

8.2.2 Electrical components... 101

8.3 Information processing techniques and software capabilities ... 104

8.3.1 MATLAB and Simulink software .. 104

8.3.2 Robot Operating System - ROS.. 105

8.3.3 Programming control algorithms using stand-alone code .. 113

8.4 Motion control experiments and results .. 113

8.4.1 Introduction .. 113

8.4.2 PD with gravity compensator ... 114

8.5 Conclusion ... 119

Chapter nine: Conclusion and Future Work ... 120

9.1 Conclusion ... 120

9.2 Future work ... 121

Appendices ... 122

A. MATLAB and SIMULINK ... 122

A.1 Forward kinematics derivation - verification using robotics toolbox: 122

A.2 Example: verification for forward kinematics with inverse kinematics: 123

A.3 Using MATLAB with per-hand derived code for verification of inverse kinematics: . 124

A.4 Verification of the jacobian analytically: ... 125

vii

A.5 Using MATLAB robotics toolbox (verification numerically): 127

A.6 Jacobian's determinate and singularities analysis: .. 129

References .. 131

List of figures

Figure 1. 1: Typical dig for truck loading. .. 2

Figure 1. 2: Truck is loaded after six passes. .. 2

Figure 1. 3: The robot’s description .. 3

Figure 1. 4: The generalized forces of the front structure. .. 4

Figure 1. 5: The Robotic arm. ... 4

Figure 2. 1: An intelligent Excavator working in real workspace. ... 5

Figure2. 2: Conceptual Design Schematic .. 6

Figure 3. 1: Coordinate diagram of the manipulator in side view. ... 9

Figure 3. 2: The reachable end-effector poses .. 14

Figure 3. 3: Coordinates diagram of the manipulator in side view. .. 18

Figure 4. 1: Schematic diagram of an excavator. .. 27

Figure 4. 2: Equivalent robot beam. .. 28

Figure 4. 3: Stresses on the desired section are superposition of shear stress due to V and normal

stress due to M ... 29

Figure 4. 4: Hollow square cross-section. ... 31

Figure 4. 5: HITACHI model EX21. .. 32

Figure 4. 6: Fixed Base ... 33

Figure 4. 7: base .. 33

Figure 4. 8: Boom part .. 34

Figure 4. 9: Arm part .. 34

Figure 4. 10: Bucket part .. 35

Figure 4. 11: Shafts of motors: (a) for motor-1, (b) for motor- 2, (c) for motor-3, and (d) for

motor-4 .. 35

Figure 4. 12: Excavator prototype (Part assembly) .. 36

Figure 4. 13: Result using SOLIDWORKS for 1060 Alloy (a) deflection, (b) Factor of Safety

(FOS) and (c) Von-mess stress. ... 38

Figure 5. 1: Hydraulic linear actuators. .. 40

Figure 5. 2: Many types of electrical actuators. .. 41

Figure 5. 3: Forces acting on the manipulator .. 44

Figure 5. 4: The selected DC brush motor for joints 1 and 2 .. 47

Figure 5. 5: The selected DC brush motor for joint 3 ... 48

viii

Figure 5. 6: The selected DC servo-motor for joint 4 ... 49

Figure 5. 7: SOLO UNO Driver with described ports .. 50

Figure 5. 8: Open-loop control through PWM signal to S/T terminal .. 51

Figure 5. 9: l293D H-bridge with terminal names. ... 52

Figure 5. 10: The used rotary encoders: 400-pulse resolution (left), 2048-pulse resolution (right)

 ... 53

Figure 5. 11: 32-bit encoder reader ... 54

Figure 5. 12: limit Switch. .. 54

Figure 5. 13: Raspberry Pi screen. .. 55

Figure 5. 14: Power supply ... 56

Figure 6. 1: Raspberry Pi 4 microcomputer .. 59

Figure 6. 2: Mechatronics system integration [12] ... 60

Figure 6. 3: GPIO pins for Raspberry Pi 4 – model B .. 61

Figure 6. 4: RPi-SPI port connected to many devices with multiple select lines (CS) [13] 62

Figure 6. 5 : RPi-UART port connected to a device [13] ... 63

Figure 6. 6: Hardware connectio ... 65

Figure 7. 1: The desired end-effector trajectory; Px(t), Py(t), Pz(t). .. 69

Figure 7. 2: corresponding Joint timing laws; q1(t), q2(t), q3(t). ... 70

Figure 7. 3: Velocity and acceleration curves for the joint motions. .. 71

Figure 7. 4: straight line motion in workspace graphically. ... 71

Figure 7. 5: General scheme of joint space control. ... 72

Figure 7. 6: Block scheme of the system of manipulator with the drive 73

Figure 7. 7: Block scheme of general independent joint control. ... 75

Figure 7. 8: equivalent control scheme of PID type. .. 75

Figure 7. 9: SIMULINK block diagram for PID control system with feedforward compensation.

 ... 76

Figure 7. 10:(a), (b) and (c): q(t) vs.qd(t)- PID ... 77

Figure 7. 11: The error between q(t) and qd(t) - PID.. 78

Figure 7. 12: Torque required at each joint- PID .. 78

Figure 7. 13: state-feedback control with integral control (I-PD). ... 79

Figure 7. 14: Block scheme of I-PD controller ... 81

Figure 7. 15:(a), (b) and(c) q(t) vs. qd(t), I-PD. .. 82

Figure 7. 16: The error between q(t) and qd(t), I-PD.. 83

Figure 7. 17: Torque at each joint, I-PD. .. 84

Figure 7. 18: Block scheme of joint space inverse dynamics control. .. 85

Figure 7. 19: Block scheme of inverse dynamics control. .. 86

Figure 7. 20: q(t) vs. qd(t), Inverse dynamics. .. 87

Figure 7. 21: The error between q(t) and qd(t), inverse dynamics. .. 88

Figure 7. 22: Torque required at each joint- Inverse Dynamics. .. 88

Figure 7. 23: scheme of joint space PD control with gravity compensation. 89

Figure 7. 24: PD with gravity compensation using MATLAB SIMULINK 89

ix

Figure 7. 25: q(t) vs. qd(t), PD with Gravity .. 90

Figure 7. 26: Resulting error for motion tracking – PD with Gravity .. 91

Figure 7. 27: Joint efforts – PD with Gravity ... 91

Figure 7. 28: Block scheme of Jacobian transpose control. .. 92

Figure 7. 29: Block scheme of operational space PD control with gravity compensation. 93

Figure 7. 30: Block diagram of PD with Gravity in operational space ... 93

Figure 7. 31:(a),(b) and (c) xd(t) vs. xe(t), PDGC. ... 95

Figure 7. 32: Error between xd and xe. ... 95

Figure 7. 33: Torques of joints. ... 95

Figure 8. 1: The base of Excavator manipulator. .. 98

Figure 8. 2: Boom Link-2 of manipulator. .. 98

Figure 8. 3: Arm Link-3 of manipulator. .. 98

Figure 8. 4: Bucket end-effector and shaft printed of the manipulator. .. 99

Figure 8. 5: The shafts of motors. ... 99

Figure 8. 6 Prototype of Excavator manipulator. ... 100

Figure 8. 7: An arm with a suspended mass ... 101

Figure 8. 8: Backlash of motor gearbox.. 104

Figure 8. 9: Topic Message Communication. [16] ... 105

Figure 8. 10: The developed ROS package using Topics ... 106

Figure 8. 11: Service Message Communication. [15] ... 107

Figure 8. 12: The developed ROS package using Services .. 107

Figure 8. 13: URDF graph .. 110

Figure 8. 14: Communication scheme with move_group node. [15] ... 110

Figure 8. 15: Planning a specific motion in MoveIt ... 111

Figure 8. 16: Nodes and topics of Movelt.. 111

Figure 8. 17: Planning the manipulator by moveIt with RViz .. 112

Figure 8. 18: Flow chart of control algorithm ... 114

Figure 8. 19: generated joint trajectories via inverse kinematics .. 115

Figure 8. 20: Joint states of PD with Gravity motion control ... 115

Figure 8. 21: Error evolution for the end-effector position .. 116

Figure 8. 22: Resulted control efforts of PD with Gravity control ... 116

Figure 8. 23: Generated joint trajectories in joint space for multi-tasks 117

Figure 8. 24: Responses for executing many tasks in joint space, PD with Gravity control 117

 Figure 8. 25: Error evolution for each joint position .. 118

Figure 8. 26: Required torques for executing many motions .. 118

Figure A. 1: MATLAB live script of the homogenous transformation matrix for each joint. ... 122

Figure A. 2: MATLAB live script of the forward kinematics. ... 123

Figure A. 3: Forward kinematics for the given joint variables. .. 123

Figure A. 4: Forward kinematics verification using MATLAB toolbox 124

Figure A. 5: Re-fined the forward kinematics for Frame (3) wrt Frame (1) 124

Figure A. 6: The verified inverse kinematics.. 125

x

Figure A. 7: Forward kinematics using MATLAB ... 125

Figure A. 8: Jacobian using MATLAB... 126

Figure A. 9: Substituting numbers instead of variables .. 127

Figure A. 10: Finding Jacobian numerically using Robotics toolbox for the specified variables

 ... 128

Figure A. 11: Finding Jacobian 1 using MATLAB .. 129

Figure A. 12: Finding Jacobian 2 using MATLAB .. 130

List of Table

Table 3. 1: The D-H Coordinates Parametric ... 10

Table 4. 1: mechanical properties for steel and aluminum alloy. ... 28

Table 4. 2: Find maximum deflection between two materials. ... 31

Table 5. 1: comparison between some types of DC motors. .. 43

Table 5. 2: It contains the parameters of the chosen DC motor for joints 1 and 2. 48

Table 5. 3: It contains the parameters of the chosen DC motor for joint 3. 48

Table 5. 4: It contains the parameters of the chosen DC servo-motor for joint 4. 49

Table 5. 5: It contains the specifications of the selected H-bridge. .. 52

Table 5. 6: It shows the specifications of the 400-pulse encoders. ... 53

Table 5. 7: It shows the specifications of the 2048-pulse encoder. .. 53

Table 5. 8: Shows the specifications of the 32-bit encoder counter. .. 54

Table 5. 9: limit switch sensor specifications. .. 54

Table 5. 10: RPI screen specifications. ... 55

Table 5. 11: System electrical components with current consumption .. 56

Table 5. 12: Shows the selected power supply specifications. ... 57

Table 8. 1: Specifications of the manipulator mechanical parts. .. 100

1

Chapter One: Introduction

1.1 Introduction

The robotic soil excavator is a manipulator that consists of a series of four links (base, boom, arm, and

bucket) connected by means of revolute joints which are actuated by electrical motors. The kinematic

chain starts with a stationary base while its end consists of the bucket. The robotic excavator should

excavate soil from a given point and transmit it to a truckload destination, and it can be controlled by

manual operation or semi-autonomously.

In this project, we propose to develop an excavator prototype. Field of study involves the mechatronics

design, includes; structure design, selection of electrical components, the appropriate microprocessor and

software, robotic modeling and control dealing with robot’s kinematics and dynamic model. After that a

teleoperation technique will be utilized as a remotely control strategy.

The MATLAB and SIMULINK software packages are used for development, analysis and simulation of

the robotic excavator dynamic model and the implementation of nonlinear control methods. Raspberry Pi

microcomputer is the main system controller that forms an embedded system with purpose of developing,

implementing the control algorithms and interfacing with hardware components.

1.2 Recognition of the need

In this section, we define the need of the robotic soil excavator design and the requirements to be met.

The following categories encompass the types of user requirements for excavator design enable to load

the soil into truck for haulage storage areas.

1. Able to be loaded with 0.5𝐾𝑔 and capacity of the bucket is 0.35L

2. Structure that achieves the light weight with high strength (payload ratio 4:1).

3. Average speed of 20s to complete one task.

4. The robot software includes fault diagnosis and monitoring to be displayed on HMI.

5. Avoid the risk of robot self-collisions or obstacles within the environment.

6. Resolution of ± 3mm, and powerful tracking performance for trajectory motion.

7. Upgradability in design and software (addition of vision and mobility).

8. The robot is friendly to use for the operator, with existence of (HMI, Remote control, etc.).

9. The total cost must be acceptable (<2000$).

2

1.3 Literature review and existing solutions

This section is a compilation of literature review performed for this project. Literature review includes the

previous studies about the topic with alternative solutions. Here some literatures that taken into

consideration.

1.3.1 A Robotic Excavator for Autonomous Truck Loading

ANTHONY STENTZ in [1], present a system that completely automates the truck-loading task the

excavator’s software decides where to dig in the soil, where to dump in the truck, and how to quickly

move between these points while detecting and stopping for obstacles. And the results of this paper that

were able to the typical loading times are 15 to 20 seconds per pass, with six passes needed to load the

truck as shown Figure 1. 1, Figure 1. 2. The loading times are close to our requirement of 20s time for

one task.

Figure 1. 1: Typical dig for truck loading.

Figure 1. 2: Truck is loaded after six passes.

3

1.3.2 Learning Task-Based Instructional Policy for Excavator-Like Robots

Harshal Maske et.al. in [2] present a learning instructional policy model to develop robots that learn from

expert operators, and generate instructions to assist and guide novice operators, to perform complex

construction task. were performed on a 1/14th scaled 345D Wedico excavator model, a 4 DOF hydraulic

robotic arm manipulator, controlled by a radio transmitter, see Figure 1. 3. Exhaustive experiments on

using instructional policy to guide novice operators demonstrate that the operators guided by the robot

were able to perform a complex task more efficiently in comparison to those learning by observing the

experts.

Figure 1. 3: The robot’s description

1.3.3 Dynamic modeling of the front structure of an excavator

In [3], the authors present a new mathematical model of 4 DOF describing the dynamic behavior of the

front structure of the excavator. The forces of coupling effect are involved. They followed the kinematics

analysis of the manipulator. Control simulation is adopted that gives results verify the effects of the

addition of the coupling forces that should be taken into consideration for accurate dynamics analysis. The

coupling effects shows varying in power consumption that when considering it in control systems, the

system becomes more efficient and less power is consumed. This work is useful to verify our dynamic

model derivation and motion analysis, see Figure 1. 4.

4

Figure 1. 4: The generalized forces of the front structure.

1.3.4 Design, Implementation and Digital Control of a Robotic Arm

In [4], they build 4DOF robot arm see Figure 1. 5 with low cost, a MATLAB with DAQ card is used to

design and test the PID controller of the joint positions. Also, they used a digital camera and MATLAB

image processing toolbox. Based on the visual feedback information, control signals are calculated and

sent to the arm. The robotic Arm can identify different objects located in its workspace according to their

shape and color and places the objects in a certain location. This thesis is very useful for our work that it

introduces the most of the topics that we cover.

Figure 1. 5: The Robotic arm.

5

Chapter Two: Conceptual Design and Functional Specifications

2.1 Introduction

This section shows the conceptual design of the robotic soil excavator, consisting of the subsystems and

components, functions, relation between elements and functional specifications. A robotic excavator is an

Anthropomorphic Manipulator Arm that have four joint Actuators of synchronized motion. The

manipulator design resembling the excavator's arm. Its structure consists of structurally rigid links coupled

by revolute joints.

The manipulator cooperation with other electromechanical parts for automated or semi-automated

equipment to achieve tasks, the robot is designed, built, and controlled via the Raspberry Pi that deployed

with a program or algorithm. The robot consists of feedback sensing elements, such as encoders and limit

switches. A teleoperation technique will be implemented with Remote control technique for manual

control, and the excavator controller should perform many predefined motion tasks. Figure 2. 1 shows an

Industrial Soil-Hydraulic Excavator that excavates a soil pile and moving it to a truck.

Figure 2. 1: An intelligent Excavator working in real workspace.

6

2.2 Conceptual design schematic

Figure2. 2 describes the system conceptual design.

Figure2. 2: Conceptual Design Schematic

7

2.3 Components and functional specifications

Robotic manipulator:

The manipulator excavates, carries and throws the soil from an excavation point to a truck

loading. The mechanical structure consists of the following components:

1. Four links: base, boom, arm and bucket. The base lifts the manipulator and rotates

the other three links about the vertical axis. Boom connects the base to the arm. The

arm lifts the bucket. The bucket is the end-effector that digs and carries the soil.

The motion of the last three links is in a vertical plane. The four links form an open

chain manipulator.

2. Four joints: the joints connect the links with each other and they are all revolute.

3. Coupling parts: shaft for each joint.

System controller:

The system controller will be used mainly in controlling and interfacing the other

subsystems. Raspberry Pi (RPi) microcomputer is chosen which is powerful in processing

and data analysis, and suitable for intelligent systems with huge computational capacity.

Most of RPi GPIO pins are connected to the other subsystems as feedback, motion, manual-

mode and HMI subsystems. The RPi requires power of 5.1V and 3A that is supplied by a

special power converter.

RPi has all the required functional specifications such as, 4 PWM ports for driving motors,

3 SPI ports for encoder counters, powerful performance, 4 USB and 2 HDMI ports.

Control development:

MATLAB software with PC is used as control development interface at the first levels. For

further work, the RPi is considered as the stand-alone system controller. This controller is

connected with PC via Ethernet that allows data transmission through SSH protocol, it

provides access to the Linux Terminal in RPi for programming and development.

Feedback subsystem:

The excavator robot has three encoders to read the position and direction of each joint, each

encoder has an independent counter to count its pulses, and the reading will be transferred

to RPi through SPI protocol. The first three joints have one limit switch for each to indicate

the lower limit of joint movement (Protection and homing). The system components as the

following:

8

1. Three Encoders: each one has 4 terminals, are: channel A, B, 5Vcc and GND.

2. Three limit switches: each one has two terminals, are 5Vcc and OUTPUT (signal to

RPi).

Encoders should satisfy the functional specification of 3𝑚𝑚 resolution of the end-effector.

Motion Subsystem:

The motion subsystem contains the following components:

1. Three DC-motors: for the first three joints, each motor receives control signal

(current) from its driver to actuate its joint with the required torque.

2. One Servo-motor: for the fourth joint, it receives PWM signal directly from RPi for

position control.

3. Three motor drivers: each driver receives PWM (torque) signal from RPi output

pins.

Motor selection should provide the maximum needed torque on each joint, and gearbox

has to satisfy the 3𝑚𝑚 resolution with a minimum backlash angle.

Human Machine Interface:

This subsystem allows the interaction between the operator and the system controller. It

consists of RPi touch screen and keyboard. These components have the following

functions:

1. RPi touch screen: has a main role of control development and resources management.

It is used to show responses, such as joint positions, torques, errors and allows user to

command and monitor. It is connected by HDMI cable to the RPi.

2. Bluetooth keyboard: it is used for teleoperation mode to command and rotate each joint

independently to achieve a specific motion or any command. It is connected to RPi via

Bluetooth connectivity with USB adapter.

Power supply

A suitable PC power source is selected to satisfy the required power consumption. It

transforms input of 220VAC/50HZ to 12VDC/18A and 5VDC/2.5A. The power supply

can feed all the subsystems with the required power.

All specifications and information processing of these components are listed in chapter 5

and 6 respectively.

9

Chapter Three: Kinematics and Dynamics Analysis of The

Robotic Manipulator

3.1 Introduction

In this chapter, kinematics and dynamics of the excavator robot is derived and described.

Kinematics analysis studies the motion in order to manipulate an object in space without

implementing the acting forces, and analysis of manipulator’s structure, so here the goal is

to define the end-effector pose and its velocity as functions of the joint-variables and the

angular velocities of the manipulator's revolute joints respectively. Finally, the chapter

ends with description of the relationship between the joint actuator torques and the motion

of the structure with derivation of the dynamic model.

Book [5] has been followed for most derivations in this chapter.

3.2 Kinematics model

3.2.1 Robot forward kinematics

For the 4-DOF excavator manipulator, the forward kinematics is derived. It describes the

end-effector pose of frame O4 in terms of chosen joint angles with respect to the base frame

O0, as shown in Figure 3. 1.

Figure 3. 1: Coordinate diagram of the manipulator in side view.

10

The D-H Coordinates Parametric table can be defined as shown:

Table 3. 1: The D-H Coordinates Parametric

Link No. 𝜃𝑖 𝑑𝑖 𝛼𝑖 𝑎𝑖

1 𝜃1 0 𝜋/2 𝑎1

2 𝜃2 0 0 𝑎2

3 𝜃3 0 0 𝑎3

4 𝜃4 0 0 𝑎4

Note:

𝑠𝑖: refers to sin⁡(𝜃𝑖), 𝑐𝑖: refers to cos⁡(𝜃𝑖)

𝑠𝑖𝑗𝑘 = sin⁡(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘), 𝑐𝑖𝑗𝑘 = cos⁡(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘)

Finding the Homogenous Transformation matrix for each joint, using equation (3.1) [5],

Ai
i−1(qi) = Ai′

i−1Ai
i′ = [

cϑi
−sϑi

cαi
sϑi

sαi
aicϑi

sϑi
cϑi

cαi
−cϑi

sαi
aisϑi

0 sαi
cαi

di

0 0 0 1

] (3.1)

The first joint is revolute in z0-axis, the homogenous matrix (1) becomes:

𝐴1
0 =⁡ [

𝑐1 0 𝑠1 𝑐1𝑎1

𝑠1 0 −𝑐1 𝑠1𝑎1

0 𝟏 0 0
0 0 0 1

] (3.2)

Equation (3.2) shows that the projection of 𝒚𝟏-axis in frame 𝑂0 as follows:

Projection in x0, y0 is 0 and in z0 is 1.

Since the other three joints (O1, O2 and O3) are revolute in the same plane in 𝑧𝑖+1 axis, the

homogeneous transformation matrix defined in (3.1) has the same structure for each joint,

yields

 ⁡𝐴𝑖
𝑖−1 =⁡ [

𝑐𝑖 −𝑠𝑖 0 ⁡𝑎𝑖𝑐𝑖

𝑠𝑖 𝑐𝑖 0 𝑎𝑖𝑠𝑖

0 0 1 0
0 0 0 1

], 𝑖 = 2, 3, 4. (3.3)

11

By multiplying the matrix (3.2) with the other three matrices in (3.3), resulting the

homogenous transformation matrix (3.4) that describes the end-effector position and

orientation with respect to the reference frame,

𝑇4
0 = 𝐴1

0 ∗ 𝐴2
1 ∗ 𝐴3

2 ∗ 𝐴4
3

= [

𝑐1 0 𝑠1 𝑐1𝑎1

𝑠1 0 −𝑐1 𝑠1𝑎1

0 1 0 0
0 0 0 1

] [

𝑐2 −𝑠2 0 𝑐2𝑎2

𝑠2 𝑐2 0 𝑠2𝑎2

0 0 1 0
0 0 0 1

] [

𝑐3 −𝑠3 0 𝑐3𝑎3

𝑠3 𝑐3 0 𝑠3𝑎3

0 0 1 0
0 0 0 1

] [

𝑐4 −𝑠 0 𝑐4𝑎4

𝑠4 𝑐4 0 𝑠4𝑎4

0 0 1 0
0 0 0 1

]

𝑇4
0 =⁡ [

𝑐1𝑐234 −𝑐1𝑠234 𝑠1 𝑐1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234⁡)
𝑠1𝑐234 −𝑠1𝑠234 −𝑐1 𝑠1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234)
𝑠234 𝑐234 0 𝑎2𝑠2 + 𝑎3𝑠23 + 𝑎4𝑠234

0 0 0 1

] (3.4)

The results have been verified using MATLAB (Robotics Toolbox), see Appendix (A.1).

3.2.2 Robot inverse kinematics

For inverse kinematics, end-effector pose is given (𝑥, 𝑦, 𝑧, ∅), and joint-variables have to

be determined. Algebraic solution technique is used for this problem:

Algebraic method:

The end-effector (desired pose) is required to be at the end of the bucket for the excavation

purpose, so when the driver of the excavator commands joint 4 to obtain the desired pose,

his goal to put the end of the bucket at the soil surface with specified angle ∅ for the end-

effector orientation, so only we have to find 𝜃1, 𝜃2, 𝜃3⁡and 𝜃4. Now, the driver can

excavate the soil by changing 𝜃4 (rotating the bucket down) then ∅ will be constant for the

coming tasks. For inverse kinematic analysis, bucket will not be included for this algebraic

solution.

Consider the Error! Reference source not found.:

Let: 𝑃4𝑥⁡is the position vector from O1 to O4 refers to x1-axis.

 𝑃4𝑦⁡is the position vector from O1 to O4 refers to y1-axis.

 𝑃3𝑥⁡is the position vector from O1 to O3 refers to x1-axis.

 𝑃3𝑦⁡is the position vector from O1 to O3 refers to y1-axis.

12

We assume that P4x and P4y are given as inputs.

 ∅ =⁡𝜃2 +⁡𝜃3 +⁡𝜃4 is the end-effector orientation angle.

Using the equations (3.3), finding P4 by 𝑇4
1:

𝑃4 = [
𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234⁡

𝑎2𝑠2 + 𝑎3𝑠23 + 𝑎4𝑠234⁡

0
]

then 𝑃3 becomes,

 𝑃3𝑥 =⁡𝑃4𝑥 − 𝑎4𝑐234 = 𝑎2𝑐2 + 𝑎3𝑐23⁡⁡⁡ (3.5)

 𝑃3𝑦 =⁡𝑃4𝑦 − 𝑎4𝑠234 = 𝑎2𝑠2 + 𝑎3𝑠23⁡⁡⁡ (3.6)

Which describe position of Frame (3) that depends on 𝜃2⁡and 𝜃3. Squaring and summing

equations (3.5) and (3.6) yields:

𝑃3𝑥
2 + 𝑃3𝑦

2 = 𝑎2
2 + 𝑎3

2 + 2𝑎2𝑎3𝑐3

𝑐3 = (𝑃3𝑥
2 + 𝑃3𝑦

2 − 𝑎2
2 − 𝑎3

2)/2𝑎2𝑎3 (3.7)

−1 ≤ 𝑐3 ≤ 1, for 𝜃3 to be inside the reachable space.

𝑠3 =⁡±⁡√1 − 𝑐3
2⁡ (3.8)

angle 𝜃3 can be computed as

𝜃3 = tan−1 𝑠3

𝑐3
 (3.9)

Find 𝜃2⁡by solving equations (3.5) and (3.6):

𝑠2 =
(𝑎2+𝑎3𝑐3)𝑃3𝑦−𝑎3𝑠3𝑃3𝑥

𝑃3𝑥
2 +𝑃3𝑦

2 ⁡ , 𝑐2 =
(𝑎2+𝑎3𝑐3)𝑃3𝑥−𝑎3𝑠3𝑃3𝑦

𝑃3𝑥
2 +𝑃3𝑦

2 ⁡ (3.10)

𝜃2 =⁡ tan−1 𝑠2

𝑐2
⁡ (3.11)

If 𝜃3, 𝜃4 = ⁡0⁡𝑜𝑟⁡𝜋 there will be a Kinematic singularity.

𝜃4 = ⁡∅ − 𝜃2 − 𝜃3 (3.12)

13

Finally, 𝜃1 = tan−1 𝑃4𝑦
0

𝑃4𝑥
0 = tan−1 𝑦

𝑥
 . (3.13)

Refer to Appendix (A.2 and A.3) describing the MATLAB verification of both forward

and inverse kinematics with numerical example.

In the same way, the same approach of analytical inverse kinematics solution can be

developed for the complete homogenous transformation matrix (Frame 4 or 3 with respect

to Frame 0).

This solution will take time analytically (algebraic), but as shown in MATLAB code it is

easier and shorter (only solve the position equations to obtain the joints angles or use the

closed-form solution above with some additions).

Probability of multiple solutions

For equations (3.8, 3.9), angle 𝜃3 can do multiple solution if 𝑠3 has two solutions; the

positive sign is relative to the elbow-down posture (solution 1) and the negative sign to the

elbow-up posture (solution 2), but for the chosen range of angles below, 𝜃3 only has one

solution which is elbow-up posture.

For equation (3.12), if ∅ is not specified, then the arm is redundant and there exist infinite

solutions to the inverse kinematics problem, but here ∅⁡is known. In terms of the assigned

joint limits, the multiple solutions are avoided, and always we have one solution for the

inverse kinematics problem.

The desired joint limits considering avoiding multiple solutions:

𝜃1 = ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0𝑜⁡⁡𝑡𝑜⁡⁡⁡⁡⁡180𝑜

𝜃2 = ⁡⁡⁡⁡⁡−60𝑜⁡⁡𝑡𝑜⁡⁡⁡⁡⁡60𝑜

 𝜃3 ⁡= −100𝑜⁡⁡𝑡𝑜⁡⁡ − 30𝑜

𝜃4 ⁡= −150𝑜⁡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡30𝑜

Note: For the given angle range of 𝜃3 , it will not do kinematic singularity because it will

never reach 0⁡𝑜𝑟⁡𝜋, but if 𝜃4 = 0, it will do a kinematic singularity, then 1DOF will be

lost (i.e., ∅).

14

3.2.3 Workspace

The workspace (Operational space) is shown in Figure 3. 2, It is drawn with respect to

limits of joint variables:

Figure 3. 2: The reachable end-effector poses

Consider the length of each link in table 3.1 as follows:

𝑎1⁡ = 8⁡𝑐𝑚, ⁡⁡⁡𝑎2 = 20𝑐𝑚, ⁡⁡⁡𝑎3 = 15𝑐𝑚, ⁡⁡⁡𝑎4 = 10⁡𝑐𝑚

The end-effector can reach the following maximum positions:

- 50⁡𝑐𝑚 in +𝑥

- 50⁡𝑐𝑚 in ±𝑦

- 15⁡𝑐𝑚 in +𝑧, −25⁡𝑐𝑚 in −𝑧

3.2.4 Robot differential kinematics

Derivation of Jacobean for the manipulator:

Differential kinematics gives the relationship between the joint velocities and the

corresponding end-effector linear and angular velocity. This mapping is described by a

matrix, termed geometric Jacobian. Fig 3.1 shows the manipulator configuration of the

excavator arm.

15

Consider equation (3.4),

𝑇4
0 =⁡ [

𝑐1𝑐234 −𝑐1𝑠234 𝑠1 𝑐1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234⁡)
𝑠1𝑐234 −𝑠1𝑠234 −𝑐1 𝑠1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234)
𝑠234 𝑐234 0 𝑎2𝑠2 + 𝑎3𝑠23 + 𝑎4𝑠234

0 0 0 1

] (3.14)

Using equation (3.30) in [5]:

[
𝐽𝑃𝑖

𝐽𝑂𝑖

] = {
⁡[
𝑧𝑖−1

0
] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑎⁡𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐⁡𝑗𝑜𝑖𝑛𝑡

[
𝑧𝑖−1 × (𝑃𝑒 − 𝑃𝑖−1⁡)

𝑧𝑖−1⁡
] 𝑓𝑜𝑟⁡𝑎⁡𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑒⁡𝑗𝑜𝑖𝑛𝑡

⁡⁡ (3.15)

For this manipulator we have four revolute joints, using equation (3.15), the Jacobian is

𝐽(𝜃) = ⁡ [⁡⁡⁡⁡
𝑧0 × (𝑃4 − 𝑃0) 𝑧1 × (𝑃4 − 𝑃1) 𝑧2 × (𝑃4 − 𝑃2)

𝑧0 𝑧1 𝑧2
⁡⁡⁡⁡

𝑧3 × (𝑃4 − 𝑃3)
𝑧3

] (3.16)

Computation of the position vectors of the various links gives

𝑃0 = [
0
0
0
],⁡⁡⁡⁡⁡⁡⁡𝑃1 = [

𝑎1𝑐1

𝑎1𝑠1

0
],⁡⁡⁡⁡ ⁡𝑃2 = [

𝑐1(𝑎1 + 𝑎2𝑐2)
𝑠1(𝑎1 + 𝑎2𝑐2)

𝑎2𝑠2

], ⁡⁡⁡⁡⁡𝑃3 = [

𝑐1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23)

𝑠1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23)
𝑎2𝑠2 + 𝑎3𝑠23

]

𝑃4 = [
𝑐1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234)
𝑠1(𝑎1 + 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234)

𝑎2𝑠2 + 𝑎3𝑠23 + 𝑎4𝑠234

]

Now, compute the unit vectors of revolute joint axes

⁡𝑧0 = [
0
0
1
],⁡⁡⁡⁡𝑧1 = 𝑧2 = 𝑧3 = [

𝑠1

−𝑐1

0
]

Substitute these in equation (3.16), we obtain the following geometric Jacobian

16

𝐽(𝜃)

=

[

−𝑠1(𝑎1 + ⁡𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234) −𝑐1(𝑎2⁡𝑠2 +⁡𝑎3𝑠23 + 𝑎4𝑠234) −𝑐1(𝑎3𝑠23 + 𝑎4𝑠234)

𝑐1(𝑎1 + ⁡𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234) −𝑠1(𝑎2⁡𝑠2 +⁡𝑎3𝑠23 + 𝑎4𝑠234) −𝑠1(𝑎3𝑠23 + 𝑎4𝑠234)
0 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234 𝑎3𝑐23 + 𝑎4𝑐234

⁡⁡

−𝑐1(𝑎4𝑠234)

−𝑠1(𝑎4𝑠234)
𝑎4𝑐234

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0
0
1
⁡⁡

𝑠1

−𝑐1

0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑠1

−𝑐1

0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑠1

−𝑐1

0]

(3.17)

Only three of the six rows of the Jacobian in equation (3.17) are linearly independent.

Having 3 DOFs of independent rows, so only consider the upper (3 × 3) block of the

Jacobian. Since, 𝜔𝑥 = 𝑠1(𝜃̇2 + 𝜃3̇ + 𝜃4̇), ⁡⁡𝜔𝑦 = −𝑐1(𝜃̇2 + 𝜃3̇ + 𝜃4̇), ⁡⁡𝜔𝑧 = 𝜃̇1, means

that 𝜔𝑥⁡and ⁡𝜔𝑦 are not linearly independent;
𝜔𝑥

𝜔𝑦
= −tan⁡(𝜃1).

For the end-effector velocity, we are interested in its linear velocity 𝑥̇, 𝑦̇⁡𝑎𝑛𝑑⁡𝑧̇, and the

angular velocity 𝜙̇, so it is worth to take it into consideration for the Jacobian as the fourth

DOF. The four DOFs allow specification of at most four end-effector variables (υx, υy, υz,

𝜙̇) that forming the analytical Jacobian.

There are three scenarios for the desired tasks:

• 1st scenario:

This Jacobian relates 𝑥̇, 𝑦̇⁡𝑎𝑛𝑑⁡𝑧̇ of the end-effector motion in terms of the joint velocities

𝜃̇1, 𝜃2̇⁡𝑎𝑛𝑑⁡𝜃3̇.

𝐽1(𝑞)

= [

−𝑠1(𝑎1 + ⁡𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234) −𝑐1(𝑎2⁡𝑠2 +⁡𝑎3𝑠23 + 𝑎4𝑠234) −𝑐1(𝑎3𝑠23 + 𝑎4𝑠234)

𝑐1(𝑎1 + ⁡𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234) −𝑠1(𝑎2⁡𝑠2 +⁡𝑎3𝑠23 + 𝑎4𝑠234) −𝑠1(𝑎3𝑠23 + 𝑎4𝑠234)

0 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234 𝑎3𝑐23 + 𝑎4𝑐234

⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.18)

• 2nd scenario:

For the end-effector motion, we are interested in its linear velocity 𝑥̇, 𝑦̇, 𝑧̇⁡, and the angular

velocity 𝜙̇ in terms of the joint velocities 𝜃̇1, 𝜃2̇, 𝜃̇3⁡𝑎𝑛𝑑⁡𝜃4̇, so it is worth to take into

consideration 𝜙⁡̇ =⁡(𝜃̇2 + 𝜃3̇ + 𝜃4̇) as the 4th row, Jacobian becomes:

17

𝐽2(𝑞) =

[

−𝑠1(𝑎1 + ⁡𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234) −𝑐1(𝑎2⁡𝑠2 +⁡𝑎3𝑠23 + 𝑎4𝑠234) −𝑐1(𝑎3𝑠23 + 𝑎4𝑠234)

𝑐1(𝑎1 + ⁡𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234) −𝑠1(𝑎2⁡𝑠2 +⁡𝑎3𝑠23 + 𝑎4𝑠234) −𝑠1(𝑎3𝑠23 + 𝑎4𝑠234)
0 𝑎2𝑐2 + 𝑎3𝑐23 + 𝑎4𝑐234 𝑎3𝑐23 + 𝑎4𝑐234

⁡⁡
−𝑐1(𝑎4𝑠234)

−𝑠1(𝑎4𝑠234)
𝑎4𝑐234⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡ 1⁡⁡1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1]

⁡⁡(4.19)

• 3rd scenario, rotational motion of the whole manipulator (transmission of the soil):

Extracting the last row of equation (3.17),

𝜔𝑧 =⁡ 𝜃̇1 (3.20)

this relation will describe the angular velocity (𝜔𝑧) in terms of the joint velocity 𝜃̇1,

where 𝜔𝑧 is the angular velocity of the end-effector about z0.

See Jacobian verification using MATLAB Appendices (A.4 and A.5). The Jacobian

singularities are described for each scenario in Appendix (A.6)

1st scenario: det(𝐽1) = 0 when 𝜃3 = 𝜃4 = 0

2nd scenario: det(𝐽2) = 0 when 𝜃3 = 0.

3.3 Dynamic model

Derivation of the dynamic model by Lagrange formulation:

Derivation of the dynamic model of a manipulator arm is essential for simulation of motion

and control design which provides a description of the relationship between the joint

actuator torques and the motion of the structure. The analysis of the dynamic model can be

useful for mechanical design, prototyping, control and simulation of a robotic arms. There

are two main methods for derivation of motion equations. The first one is based on

Lagrange formulation which is simple and systematic, and the second method is based on

Newton-Euler formulation which derives the system in recursive form.

Now, we are concerned with the Lagrange formulation. The derivation of the equations of

motion can be achieved independently of the base frame. Initially we assume that link 4 of

18

the excavator manipulator is not included, see Error! Reference source not found.. We h

ave a set of chosen generalized coordinates of 𝑞𝑖 = [⁡𝜃1⁡𝜃2⁡𝜃3]
𝑇 which describe the link

positions of the 3-DOF excavator manipulator. The sequence of derivation will be

described shortly.

The book [5] will be followed in solving this problem. The equation of motion is

𝐵(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑣𝑞̇ + 𝑔(𝑞) = 𝜏 (3.21)

Where,

𝐵(𝑞) : the inertia matrix.

𝐶(𝑞, 𝑞̇) : the Coriolis and centrifugal forces matrix.

𝐹𝑣: the matrix of viscous friction coefficients.

𝑔(𝑞): the gravitational force vector.

Consider the 3-DOF manipulator in Figure 3. 3, shows the manipulator coordinates

diagram. Let the distances of the centers of mass of the three links from the respective joint

axes are 𝑙1, 𝑙2⁡𝑎𝑛𝑑⁡𝑙3. Also, let 𝑚1, 𝑚2, 𝑚3⁡be the masses of the three links, and

𝐼1, 𝐼2⁡𝑎𝑛𝑑⁡𝐼3 the moments of inertia relative to the centers of mass of each link, respectively.

Figure 3. 3: Coordinates diagram of the manipulator in side view.

Finding the geometric Jacobian of each link to be applied to the center of mass of the link

instead of the end-effector. Firstly, find the required forward kinematics of each link from

the current frame to its the center of mass, i.e., substitute 𝑙𝑖 instead of 𝑎𝑖 in equations (3.2,

19

3.3) for 𝑖 = 1, 2⁡𝑎𝑛𝑑⁡3, then find the homogeneous transformation matrices 𝐴1
0, 𝐴2

0⁡𝑎𝑛𝑑⁡𝐴3
0.

The homogenous transformation matrices become,

𝐴1
0 = [

𝑐1 0 𝑠1 𝑐1𝑙1
𝑠1 0 −𝑐1 𝑠1𝑙1
0 1 0 0
0 0 0 1

] (3.22)

𝐴2
0 = [

𝑐1 0 𝑠1 𝑐1𝑎1

𝑠1 0 −𝑐1 𝑠1𝑎1

0 1 0 𝑑1

0 0 0 1

] [

𝑐2 0 𝑠2 𝑐2𝑙2
𝑠2 0 −𝑐2 𝑠2𝑙2
0 1 0 0
0 0 0 1

]

⁡⁡⁡⁡⁡= ⁡ [

𝑐2𝑐1 −𝑠2𝑐1 𝑠1 𝑐1𝑐2𝑙2 + 𝑐1𝑎1

𝑐2𝑠1 −𝑠2𝑠1 −𝑐1 𝑐2𝑠1𝑙2 + 𝑠1𝑎1

0 𝑐2 0 𝑠2𝑙2
0 0 0 1

] (3.23)

𝐴3
0 = [

𝑐2𝑐1 −𝑠2𝑐1 𝑠1 𝑐1𝑐2𝑙2 + 𝑐1𝑎1

𝑐2𝑠1 −𝑠2𝑠1 −𝑐1 𝑐2𝑠1𝑙2 + 𝑠1𝑎1

0 𝑐2 0 𝑠2𝑙2
0 0 0 1

] [

𝑐3 −𝑠3 0 𝑐3𝑙3
𝑠3 𝑐3 0 𝑠3𝑙3
0 0 1 0
0 0 0 1

]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= [

𝑐1𝑐23 −𝑐1𝑠23 𝑠1 𝑐1(𝑎1 + 𝑎2𝑐2 + 𝑙3𝑐23)
𝑠1𝑐23 −𝑠1𝑠23 −𝑐1 𝑠1(𝑎1 + 𝑎2𝑐2 + 𝑙3𝑐23)
𝑠23 𝑐23 0 𝑎2𝑠2 + 𝑙3𝑠23

0 0 0 1

] (3.24)

Consider the following set of equations [5] where 𝑝𝑗−1 is the position vector of the origin

of Frame𝑗 − 1, and 𝑧𝑗−1 is the unit vector of axis 𝑧 of Frame𝑗 − 1:

With the chosen coordinate frames in Fig. 3.3, computation of the Jacobians using the

above equations with (3.22, 3.23 and 3.24) and all joint are revolute, yields,

20

𝐽𝑝
(𝑙1)

= [
−𝑙1𝑠1 0 0
𝑙1𝑐1 0 0
0 0 0

] (3.25)

𝐽𝑝
(𝑙2)

= [

−(𝑎1𝑠1 + 𝑙2𝑠1𝑐2) −𝑙2𝑐1𝑠2 0
𝑎1𝑐1 + 𝑙2𝑐1𝑐2 −𝑙2𝑠1𝑠2 0

0 𝑙2𝑐2 0
] (3.26)

𝐽𝑝
(𝑙3)

= [

−(𝑎1𝑠1 + 𝑎2𝑠1𝑐2 + 𝑙3𝑠1𝑐23) −𝑎2𝑐1𝑠2 − 𝑙3𝑐1𝑠23 −𝑙3𝑐1𝑠23

𝑎1𝑐1 + 𝑎2𝑐1𝑐2 + 𝑙3𝑐1𝑐23 −𝑎2𝑠1𝑠2 − 𝑙3𝑠1𝑠23 −𝑙3𝑐1𝑠23

0 𝑎2𝑐2 + 𝑙3𝑐23 𝑙3𝑐23

] (3.27)

𝐽𝑜
(𝑙1)

= [
0 0 0
0 0 0
1 0 0

] (3.28)

𝐽𝑜
(𝑙2)

= [
0 𝑠1 0
0 −𝑐1 0
1 0 0

] (3.29)

𝐽𝑜
(𝑙3)

= [
0 𝑠1 𝑠1

0 −𝑐1 −𝑐1

1 0 0
] (3.30)

The inertia matrix 𝐵(𝑞) for the links and motors [5], select the first term considering only

the inertia for the links, 𝑖 = 1,2,3

For the three links, the inertia matrix size is 3x3 with the following elements:

𝑏11 = 𝑚1𝑙1
2 + 𝐼1𝑧𝑧 + 𝐼2𝑧𝑧 + 𝑚3(𝑙2𝑐2 + 𝑎2)

2

+ 𝑚3(𝑎1
2 + 2𝑎1𝑎2𝑐2 + 𝑎2

2𝑐2
2 + 2𝑎1𝑙3𝑐23 + 2𝑎2𝑙3𝑐2𝑐23 + 𝑙3

2𝑐23
2) + 𝐼3𝑧𝑧

𝑏12 = −𝐼2𝑧𝑥𝑠1 + 𝐼2𝑧𝑦𝑐1 − 𝐼3𝑧𝑥𝑠1 + 𝐼3𝑧𝑦𝑐1

𝑏13 = 𝐼3𝑧𝑦𝑐1 − 𝐼3𝑧𝑥𝑠1

𝑏21 = 𝐼2𝑦𝑧𝑐1 − 𝐼2𝑥𝑧𝑠1 + 𝐼3𝑦𝑧𝑐1 − 𝐼3𝑥𝑧𝑠1

𝑏22 = 𝐼2𝑥𝑥𝑠1
2 + 𝐼2𝑦𝑦𝑐1

2 + 2𝐼2𝑦𝑥𝑠1𝑐1 + 𝑚2𝑙2
2𝑠2

2 + 𝑚3(𝑎2
2 + 𝑙3

2 + 2𝑎2𝑙3𝑐3) + 𝐼3𝑥𝑥𝑠1
2 +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐼3𝑦𝑦𝑐1
2

21

𝑏23 = 𝑚3 ∗ (𝑙3
2 + 𝑙3 ∗ 𝑎2 ∗ 𝑐3) + 𝐼3𝑥𝑥 ∗ 𝑠1

2 + 𝐼3𝑦𝑦 ∗ 𝑐1
2

𝑏31 = −𝑏13

𝑏32 = 𝑏23

𝑏33 = 𝑚3 ∗ 𝑙3
2 + 𝐼3𝑥𝑥 ∗ 𝑠1

2 + 𝐼3𝑦𝑦 ∗ 𝑐1
2

Forming the inertia matrix, yields

𝐵(𝑞) = [

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

] (3.31)

Notice that the inertia matrix is configuration-dependent.

The matrix 𝐶(𝑞, 𝑞̇), with elements 𝐶𝑖𝑗,⁡where 𝑖 = 𝑗 = 1,2,3. Using the Christoffel symbols

𝐶𝑖𝑗𝑘 [5] to reduce the errors in derivation, using the following equation:

𝐶𝑖𝑗𝑘 =
1

2
(
𝜕𝑏𝑖𝑗

𝜕𝑞𝑘
+

𝜕𝑏𝑖𝑘

𝜕𝑞𝑗
−

𝜕𝑏𝑗𝑘

𝜕𝑞𝑖
)

with 𝑖 = 𝑗 = 𝑘 = 1,2,3, yields

𝐶112 = 𝐶121 = 𝑙2𝑚2𝑠2(𝑙2𝑐2 + 𝑎2) + 𝑚3(𝑎1𝑎2𝑠2 + 𝑎2
2𝑐2𝑠2 + 𝑎1𝑙3𝑠23 + 𝑙3

2𝑐23𝑠23 +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙3𝑎2 ∗ 𝑠(2𝜃2 + 𝜃3))

𝐶113 = 𝐶131 = −𝑚3(𝑎1𝑙3𝑠23 + 𝑎2𝑙3𝑐2𝑠23 + 𝑙3
2𝑐23𝑠23)

𝐶122 = 𝑐1𝑠1(𝐼2𝑦𝑦 − 𝐼2𝑥𝑥 + 𝐼3𝑦𝑦) + 𝐼2𝑦𝑥(𝑠1
2 − 𝑐1

2)

𝐶123 = 𝐶132 =
1

2
𝑚3𝑙3𝑎2𝑠3

𝐶133 = −𝑠1𝑐1(𝐼3𝑥𝑥 − 𝐼3𝑦𝑦)

𝐶211 = −(𝑐1 ∗ (𝐼2𝑥𝑧 + 𝐼3𝑥𝑧) + 𝑠1 ∗ (𝐼2𝑧𝑦 + 𝐼3𝑧𝑦)) − 𝐶112

𝐶212 = 𝐶221 = −𝑐122

𝐶213 = 𝐶231 ⁡= 𝑠1𝑐1 ∗ (𝐼3𝑥𝑥 − 𝐼3𝑦𝑦)

22

𝐶223 = 𝐶232 = −𝑚3𝑙3𝑎2𝑠3

𝐶233 = −𝑚3𝑙3𝑎2𝑠3

𝐶311 = −(𝐼3𝑦𝑧 ∗ 𝑠1 + 𝐼3𝑥𝑧 ∗ 𝑐1) − 𝐶113

𝐶312 = 𝐶321 = (𝐼3𝑥𝑥 − 𝐼3𝑦𝑦) ∗ 𝑠1𝑐1

𝐶313 = 𝐶331 = (𝐼3𝑥𝑥 − 𝐼3𝑦𝑦) ∗ 𝑠1𝑐1

𝐶322 = −𝐶223

𝐶323 = 𝐶332 = −
1

2
∗ 𝑚3𝑙3𝑎2𝑠3 + 𝐶123

For simplification, let

ℎ1 = 𝐶112 = 𝐶121 =
1

2

𝜕𝑏11

𝜕𝜃2

ℎ2 = 𝐶113 = 𝐶131 =
1

2

𝜕𝑏11

𝜕𝜃3

ℎ3 = 𝐶122 = −
1

2

𝜕𝑏22

𝜕𝜃1

ℎ4 = 𝐶123 = 𝐶132 = −
1

2

𝜕𝑏23

𝜕𝜃3

ℎ5 = 𝐶133 = −
1

2

𝜕𝑏33

𝜕𝜃1

ℎ6 = 𝐶211 =
𝜕𝑏21

𝜕𝜃1
− ℎ1

ℎ7 = 𝐶213 = 𝐶131 =
1

2

𝜕𝑏23

𝜕𝜃1

ℎ8 = 𝐶223 = 𝐶232 =
1

2

𝜕𝑏22

𝜕𝜃3

ℎ9 = 𝐶233 =
1

2

𝜕𝑏23

𝜕𝜃3

ℎ10 = 𝐶311 =
𝜕𝑏31

𝜕𝜃1
− ℎ2

ℎ11 = 𝐶312 = 𝐶321 =
1

2

𝜕𝑏32

𝜕𝜃1

23

ℎ12 = 𝐶313 = 𝐶331 =
1

2

𝜕𝑏33

𝜕𝜃1

ℎ13 = 𝐶323 = 𝐶332 =
1

2

𝜕𝑏32

𝜕𝜃3
+ ℎ4

As a consequence, the generic elements of 𝑪 [5] are

𝐶𝑖𝑗 = ∑ 𝐶𝑖𝑗𝑘𝑞𝑘̇

𝑛

𝑘=1

For 𝑘 = 1,2,3, the 𝐶 matrix elements are:

𝐶11 = ℎ1𝜃2̇ + ℎ2𝜃3̇

𝐶12 = ℎ1𝜃1̇ + ℎ3𝜃2̇ + ℎ4𝜃3̇

𝐶13 = ℎ2𝜃1̇ + ℎ4𝜃2̇ + ℎ5𝜃3̇

𝐶21 = ℎ6𝜃1̇ − ℎ3𝜃2̇ + ℎ7𝜃3̇

𝐶22 = −ℎ3𝜃1̇ + ℎ8𝜃3̇

𝐶23 = ℎ7𝜃1̇ + ℎ8𝜃2̇ + ℎ9𝜃3̇

𝐶31 = ℎ10𝜃1̇ + ℎ11𝜃2̇ + ℎ12𝜃3̇

𝐶32 = ℎ11𝜃1̇ − ℎ8𝜃2̇ + ℎ13𝜃3̇

𝐶33 = ℎ12𝜃1̇ + ℎ13𝜃2̇

Leading to the matrix,

𝐶(𝑞, 𝑞̇) = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] (3.32)

As for gravitational force terms, with 𝑔0 = [0⁡⁡⁡0⁡⁡ − 𝑔]𝑇 that gravitational acceleration in

direction of the negative 𝑧0 axis. Using the potential energy approach with the equation

[5],

24

For each link 𝑖=1,2,3 substituting 𝑗 = 1,2,3, yields

𝑔1 = 0

𝑔2 = 𝑔(𝑚2𝑙2𝑐2 + 𝑚3(𝑎2𝑐2 + 𝑙3𝑐23))

𝑔3 = 𝑔(𝑚3𝑙3𝑐23)

The gravity vector becomes,

𝑔 = [𝑔1⁡⁡⁡⁡𝑔2⁡⁡⁡⁡𝑔3]
𝑇 (3.33)

Using equation (3.21) with the absence of the friction and tip contact forces (𝐹𝑣 = 0), the

resulting equations of motion are

[𝑏11 𝑏12 𝑏13] [

⁡⁡𝜃1
̈

𝜃2̈

⁡⁡𝜃3
̈

] + [𝐶11 𝐶12 𝐶13] [

𝜃1̇

𝜃2̇

𝜃3̇

] + 𝑔1 = 𝜏1 (3.34)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑚1𝑙1
2 + 𝐼1𝑧𝑧 + 𝐼2𝑧𝑧 + 𝑚2(𝑙2𝑐2 + 𝑎2)

2

+ 𝑚3(𝑎1
2 + 2𝑎1𝑎2𝑐2 + 𝑎2

2𝑐2
2 + 2𝑎1𝑙3𝑐23 + 2𝑎2𝑙3𝑐2𝑐23 + 𝑙3

2𝑐23
2) + 𝐼3𝑧𝑧)𝜃1̈

+ (−𝐼2𝑧𝑥𝑠1 + 𝐼2𝑧𝑦𝑐1 − 𝐼3𝑧𝑥𝑠1 + 𝐼3𝑧𝑦𝑐1)𝜃2̈ + (𝐼3𝑧𝑦𝑐1 − 𝐼3𝑧𝑥𝑠1)𝜃3̈

+ 2(−𝑙2𝑚2𝑠2(𝑙2𝑐2 + 𝑎2)

− 𝑚3(𝑎1𝑎2𝑠2 + 𝑎2
2𝑐2𝑠2 + 𝑎1𝑙3𝑠23𝑙3𝑐23𝑠23 + 𝑙3𝑎2𝑠(2𝜃2 + 𝜃3))) 𝜃1̇𝜃2̇

+ 2(−𝑚3(𝑎1𝑙3𝑠23 + 𝑎2𝑙3𝑐2𝑠23 + 𝑙3
2𝑐23𝑠23))𝜃1̇𝜃3̇

+ (𝑐1𝑠1(𝐼2𝑦𝑦 − 𝐼2𝑥𝑥 − 𝐼3𝑦𝑥 + 𝐼3𝑦𝑦) + 𝐼2𝑦𝑥(𝑠1
2 − 𝑐1

2)) 𝜃̇2
2

+ (𝑚3𝑙3𝑎2𝑠3)𝜃2̇𝜃3̇ + (−𝑠1𝑐1(𝐼3𝑥𝑥 − 𝐼3𝑦𝑦)) 𝜃3
2̇ = 𝜏1

[𝑏21 𝑏22 𝑏23] [

⁡⁡𝜃1
̈

𝜃2̈

⁡⁡𝜃3
̈

] + [𝐶21 𝐶22 𝐶23] [

𝜃1̇

𝜃2̇

𝜃3̇

] + 𝑔2 = 𝜏2 (3.35)

25

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐼2𝑥𝑥𝑠1
2 + 𝐼2𝑦𝑦𝑐1

2 + 2𝐼2𝑦𝑥𝑠1𝑐1 + 𝑚2𝑙2
2𝑠2

2 + 𝑚3(𝑎2
2 + 𝑙3

2 + 𝑠𝑎2𝑙3𝑐3)

+ 𝐼3𝑥𝑥𝑠1
2𝐼3𝑦𝑦𝑐1

2)𝜃1̈ + (𝐼2𝑥𝑥𝑠1
2 + 𝐼2𝑦𝑦𝑐1

2 + 2𝐼2𝑦𝑥𝑠1𝑐1 + 𝑚2𝑙2
2𝑠2

2

+ 𝑚3(𝑎2
2 + 𝑙3

2 + 𝑠𝑎2𝑙3𝑐3) + 𝐼3𝑥𝑥𝑠1
2 + 𝐼3𝑦𝑦𝑐1

2)𝜃2̈ + (𝑚3

∗ (𝑙3
2 + 𝑙3 ∗ 𝑎2 ∗ 𝑐3) + 𝐼3𝑥𝑥 ∗ 𝑠1

2 + 𝐼3𝑦𝑦 ∗ 𝑐1
2)𝜃3̈

+ ((−𝑐1(𝐼2𝑥𝑧 + 𝐼3𝑥𝑧) + 𝑠1(𝐼2𝑧𝑦 + 𝐼3𝑧𝑦)) + (𝑙2𝑚2𝑠2(𝑙2𝑐2 + 𝑎2)

+ 𝑚3(𝑎1𝑎2𝑠2 + 𝑎2
2𝑐2𝑠2 + 𝑎1𝑙3𝑠23𝑙3

2𝑐23𝑠23 + 𝑙3𝑎2𝑠(2𝜃2 + 𝜃_3)))𝜃1
2̇

− 2(𝑐1𝑠1(𝐼2𝑦𝑦 − 𝐼2𝑥𝑥 − 𝐼3𝑦𝑥 + 𝐼3𝑦𝑦) + 𝐼2𝑦𝑥(𝑠1
2 − 𝑐1

2))𝜃1̇𝜃2̇

+ 2(−𝑚3𝑙3𝑎2𝑠3)𝜃2̇𝜃3̇ + 2(𝑠1𝑐1(𝐼3𝑥𝑥 − 𝐼3𝑦𝑦))𝜃1̇𝜃3̇ + (−𝑚3𝑙3𝑎2𝑠3)𝜃3
2̇

+ 𝑔(𝑚2𝑙2𝑐2 + 𝑚3(𝑎2𝑐2 + 𝑙3𝑐23)) = 𝜏2

[𝑏31 𝑏32 𝑏33] [

⁡⁡𝜃1
̈

𝜃2̈

⁡⁡𝜃3
̈

] + [𝐶31 𝐶23 𝐶33] [

𝜃1̇

𝜃2̇

𝜃3̇

] + 𝑔3 = 𝜏3 (3.36)

 (𝐼3𝑧𝑦𝑐1 − 𝐼3𝑧𝑥𝑠1)𝜃1̈ + (𝑚3 ∗ (𝑙3
2 + 𝑙3 ∗ 𝑎2 ∗ 𝑐3) + 𝐼3𝑥𝑥 ∗ 𝑠1

2 + 𝐼3𝑦𝑦 ∗ 𝑐1
2)𝜃2̈

+(𝑚3 ∗ 𝑙3
2 + 𝐼3𝑥𝑥 ∗ 𝑠1

2 + 𝐼3𝑦𝑦 ∗ 𝑐1
2)𝜃3̈ + (−(𝐼3𝑦𝑧𝑠1 + 𝐼3𝑥𝑧𝑐1)

+𝑚3(𝑎1𝑙3𝑠23 + 𝑎2𝑙3𝑐2𝑠23 + 𝑙3
2𝑐23𝑠23))𝜃1

2̇ + (𝑚3𝑙3𝑎2𝑠3)𝜃2
2̇

+2((𝐼3𝑥𝑥 − 𝐼3𝑦𝑦)𝑠1𝑐1) 𝜃2̇𝜃1̇ + 2((𝐼3𝑥𝑥 − 𝐼3𝑦𝑦)𝑠1𝑐1) 𝜃3̇𝜃1̇

+𝑚3𝑙3𝑔𝑐23 = 𝜏3

 Where 𝜏1, 𝜏2 and 𝜏3 denotes the torques applied to the joints

26

Chapter Four: Design of Structure and Mechanical

Components

4.1 Introduction

This chapter discuss the mechanical design and material selection of the manipulator

prototype that will be scaled from a real excavator. The design requirements are set, such

as the maximum deflection, maximum stress, lightest weight and minimum cost. We

challenged to convert and realize the derived kinematic model to a physical structure by

means of material selection, mechanical parts (e.g., rigid links, shafts), selecting suitable

actuators in terms to dimensioning, supporting and fastening of the various components.

4.2 Material selection and analysis

4.2.1 Introduction

The mechanical structure of an excavator robot provides the means needed to dig and load

the soil into trucks for haulage storage areas for a given job. The choice of materials has a

direct impact on performance, precision, repeatability, and mechanical noise transfer into

the parts.

The mechanical subsystem is comprised of the drive system, and the frame structure,

assembly of rigid bodies linked by four joints, three planar implements connected through

revolute joints known as the boom, arm, and bucket, and one vertical revolute joint on base

as shown in Figure 4. 1 [6], so the link can rotate with one degree of freedom around a

designated axis of rotation. The motion of each part is achieved using a servo drive with

its own control system, according to a prescribed motion.

27

Figure 4. 1: Schematic diagram of an excavator.

The design process is one of the most extensive and essential processes that need to be

carried out in order to meet the needs, and the first step in the design is to define the design

requirements.

- The maximum deflection for beam less than 3mm.

- The minimum Factor of Safety (FOS) greater than three.

- The mechanical properties (in particular the yield stress).

- The costs.

4.2.2 Material selection and analysis

Selection of material is very important procedure before detail design of product, a suitable

material is selected for excavator in terms of the desired mechanical properties. The

material considered for manufacturing of structure is Aluminum or Steel, among these

chosen materials, one should be selected to increase performance, the selected material for

excavator structure must give high strength, low density, economic, good machinability

and mechanical properties.

The aim of this study is to choose between steel alloy and aluminum alloy for a lighter

weight and order to maintain the value of the safety factor and deformability.

A lighter weight material will ultimately translate to greater payload capacity, productivity

and decreased energy consumption. Luigi Solazzi [7] proposed a substitute the steel alloy

for an aluminum alloy for classical excavator machine, (Replacing steel alloys with

aluminum alloys for lighter weight and increase the load capacity of the bucket).

As the results, the final geometry of the component presents a reduction in weight of about

50%, and increase the capacity of the bucket, while the increased in the cost.

Table 4.1 below shows the mechanical properties for steel and aluminum alloy.

28

Table 4. 1: mechanical properties for steel and aluminum alloy.

Materials 𝜎𝑦𝑖𝑒𝑙𝑑

(𝑀𝑃𝑠)

E

(G𝑃𝑠)

𝜌

(𝐾𝑔/𝑚3)

Aluminum 195 67 2.7

Steel 355 210 7.8

As shown in the Table 4. 1, the ratio between Aluminum and Steel in terms of density is

(2.89: 1 respectively), and with respect to the modulus of elasticity (3.13: 1 respectively).

School of Engineering Grand Valley State University, Brad Peirson [8] presented report

Comparing of Specific Properties of Engineering Materials, by calculation its specific

strength (the strength-to-weight ratio of the material), this means that the material has a

lightweight, but it also has a high strength. Where the density of a material can be a crucial

factor in determining the material that is best suited for an application.

Where the specific modulus between steel alloy and aluminum alloy (C1018 and AA6061)

similar, the specific yield strength for the steel alloy is twice the value of the aluminum

alloy, in addition, the cost per unit yield strength of the steel alloy is half the cost of the

aluminum.

Consideration of the various requirements and factors affecting the design and dimensions

of the structure and results in the choice of one or perhaps several alternative types of

structure and materials, which offer the best general solution. The primary consideration is

the function of the structure. Secondary considerations such as aesthetics, economics, and

the environment may also be taken into account.

Now, we want to find the dimensions of the cross section of the beams shown in the Figure

4. 2[9], when selection materials the equivalent of the excavator robot is one beam and

equivalent force applied (static force) at the end of beam.

Figure 4. 2: Equivalent robot beam.

29

Determine the minimum cross-section for the beam to provide a minimum factor of safety

of 3 based on the Distortion energy (DE) theory, while beam AB has a length L=1m and

square cross-sectional area, the bar is subjected as shown to a load P=50 N,

The beam AB experiences maximum bending moment (M) at the wall on which distance

is larger. Bending stress will be a maximum on the outer surface. The critical stress element

will be at the wall, at either the top (tension) or the bottom (compression) on the y-axis see

Figure 4. 3[9].

Figure 4. 3: Stresses on the desired section are superposition of shear stress due to V and normal stress due to M

The moment 𝑀 produced tensile stress

𝑀 = 𝑟 × 𝑃

Substitute 𝑟 = 𝐿 = ⁡1𝑖̂,

𝑀 = −𝑃⁡𝑘̂⁡⁡[𝑁.𝑚]

The general formula for bending or normal stress on the section is given by:

𝜎 =
𝑀 ∗ 𝐶

𝐼𝑥

Found the moment of inertia about the neutral axis to be

𝐼𝑥 =
𝑎4

12
⁡𝑚4

Clearly the top of the section is further with a distance c = a/2 from the neutral axis

𝜎𝑥 =
1 ∗ 𝑃 ∗ 12

2 ∗ 𝑎3

𝜎𝑥 =
−6 ∗ 𝑃

𝑎3

30

𝑎 = √
6 ∗ 𝑃

𝜎𝑥

3

The three principal stresses at B are

𝜎𝐴,𝐵 =
−6

𝑎3
∓

−6

2 ∗ 𝑎3

𝜎𝐴 =
−6

𝑎3

𝜎𝐵 = 0⁡, 𝜎𝐶 = 0

Therefore, 𝜎1 = 0.0⁡, 𝜎3 =
−6

𝑎3 ⁡⁡ , 𝜎2 = 0.0

The maximum normal stress at point B is

𝜎𝑚𝑎𝑥 =
−6

𝑎3

The maximum shear stress at point B is

𝜏𝑚𝑎𝑥 =
𝜎1 − 𝜎3

2
= ⁡

3

𝑎3

For plane stress, the von Mises stress can be represented by the principal stresses

𝜎′ = 𝜎3

Distortion Energy (DE) Failure theory:

𝑛 =
𝑆𝑦

𝜎′
, at 𝑛 = 3

𝜎′ =
𝑆𝑦

3

31

The beam has reached a maximum deflection value 𝛿𝑚 at point A. In Table 4. 2 below,

show the mechanical properties and computed value for maximum deflection and von-

mises stress of square cross-section.

Table 4. 2: Find maximum deflection between two materials.

Materials
𝐸

(𝑀𝑃𝑎)

𝑆𝑦

(𝑀𝑃𝑠)

𝜎′

(𝑀𝑃𝑎)

𝑎

(𝑚𝑚)

𝛿𝑚𝑎𝑥

(𝑚𝑚)

Aluminum 75 105 35 20.11 -13.9

Steel 200 220 73 15.7 -15.6

The results obtained showed that deflection is unacceptable, so we will choose another

cross-section for the beam, so we need to increase the value by using the two plates. which

reduces the deflection, increases the coefficient of safety, reduces stress, and weight of the

structure.

In Figure 4. 4, see hollow square cross-section parameters.

Figure 4. 4: Hollow square cross-section.

From what we found out, the use of steel is convenient in designing excavator frame, there

are structural and constructional requirements and limitations, which may affect the type

of structure to be designed. In selecting materials for a given project one should consider

all requirements simultaneously and taking into account the available components such as

motors that provide the torque required for the design. For the convenience of the

procedure, it is beneficial to combine some of them.

With the materials and the related properties, one can go through the procedure as

mentioned above to reach the final selection of material. Aluminum is selected to be the

32

metal for the plates for the construction of manipulator links because it has a lightweight

and high stiffness, and the dimensions of the manipulator and the load required on the end-

effector were re-selected, so that the total length of the manipulator became 60cm while

reducing the capacity of the bucket with a maximum load of 500g, and to fit the design,

the materials were combined in the design of the manipulator.

A steel material was chosen to form the base of the manipulator and shafts of the motors,

and Aluminum was used to form the link plates for each arm, boom and, bucket. Delrin1

was used to make columns to connect the link plates.

4.3 Mechanical components of structure

The mechanical design will be illustrated in terms of the parts, coupling among them and

building the manipulator structure. HITACHI model EX21 of the excavator is selected and

scaled to build the initial design, see Figure 4. 5. The dimensions are 1/10th scaled to obtain

suitable prototype with same structure.

Figure 4. 5: HITACHI model EX21.

The excavator is a robot manipulator, the links of a manipulator are connected by a revolute

joint. The design shows the links, joints and dimensions.

For the selected materials, the structure is designed in two steps. Firstly, a rough estimation

of weights, motors, and gears is taken to allow the selection of motors (see section 5.4.1).

Finally, a full design will be introduced for the whole structure to satisfy the design

requirements.

The structure consists of four serial links base, Boom, Arm, Bucket, and motor shafts, all

are designed using SOLIDWORKS software as following,

1 Delrin is a crystalline plastic that offers an excellent balance of properties that bridge the gap between
metals and plastics. Delrin possesses high tensile strength, creep resistance, and toughness. It also
exhibits low moisture absorption. [10]

33

a. Base: The first link consists of two parts: the fixed base is fixed with the ground

see Error! Reference source not found., and the moving part with the shaft of t

he motor and rotates about the vertical axis see Figure 4. 7, and it lifts the structure.

The offset between its joint and the second link joint is 𝑎1 = 8⁡𝑐𝑚.

Figure 4. 6: Fixed Base

Figure 4. 7: base

b. Boom: the second link, its length is 𝑎2 = 20cm, illustrate in Figure 4. 8

34

Figure 4. 8: Boom part

c. Arm: the third link associated with boom and bucket, has length of 𝑎3 = 15 cm,

illustrate in Figure 4. 9

Figure 4. 9: Arm part

d. Bucket: the last link of the manipulator that is the end-effector, capacity of the

bucket with a maximum load of 500g, and length of 𝑎4 = 10cm. illustrates in

Figure 4. 10

35

Figure 4. 10: Bucket part

e. Shaft of motors: A shaft is a rotating machine element, circular cross-section,

which is used to transmit power from motors to links, see Figure 4. 11. used key

to connect a rotating machine element to the shaft. A key prevents a relative

rotation between the two parts and may enable torque transmission to occur.

Figure 4. 11: Shafts of motors: (a) for motor-1, (b) for motor- 2, (c) for motor-3, and (d) for motor-4

36

Figure 4. 12 shows the manipulator graphically with all its assembled parts as a simple

design. The dimensions and joints are illustrated.

Figure 4. 12: Excavator prototype (Part assembly)

4.4 Structure and load analysis through SOLIDWORKS

In this section, the structure involves establishing the loading, which must be supported by

the structure and therefore must be considered in its design. Structural analysis is the

determination of the effects of loads on physical structures and finds the maximum stress

and maximum deflection, which act when the maximum possible load placed on the end-

effector of the manipulator, the maximum load on the end-effector is 0.5⁡𝐾𝑔 which equals

approximately 5⁡𝑁.𝑚.

Undertaking virtual prototyping instead of testing a physical model provides huge time and

cost savings, the stress analysis will be performed using SOLIDWORKS by applying

5⁡𝑁.𝑚 vertically downwards at the end of the 2-plates beam.

SOLIDWORKS® Simulation of structural analysis tools that use Finite Element Analysis

(FEA) to predict a product’s real-world physical behavior by virtually testing CAD models.

The portfolio provides linear, non-linear static and dynamic analysis capabilities. [11]

37

Simulation is integrated directly within SOLIDWORKS which makes going from design

to Simulation. Load condition has been implemented in SOLIDWORKS in order to obtain

the force (inclusive of inertia effect). The stress and deflection analysis are as follow,

Figure 4. 13, shows the result obtained using SOLIDWORKS for Aluminum (1060 Alloy)

deflection, Factor of Safety (FOS) and Von-mess stress. The maximum value of deflection

is less than 3 mm and the minimum factor of safety 10.74.

Figure 4.13 (a): Deflection

Figure 4.13(b): FOS

38

Figure 4.13(c): Von-Mises stress

Figure 4. 13: Result using SOLIDWORKS for 1060 Alloy (a) deflection, (b) Factor of Safety (FOS) and (c) Von-mess
stress.

The basic objective in structural analysis and design is to produce a structure capable of

resisting all applied loads without failure during its intended life. The primary purpose of

a structure is to transmit or support loads. If the structure is improperly designed or

fabricated, or if the actual applied loads exceed the design specifications, the device will

fail to perform its intended function. The criteria used to judge whether particular

proportions will result in the desired behavior.

Through the calculation of torque, motor power, transmission ratio, strength (bending,

yield, tensile), and safety factor, the design of the robot arm such as what material and

machine elements should be used to build the robot arm is achieved.

39

Chapter Five: Selection of Electrical Parts and Components

5.1 Introduction

This chapter introduces the comparison, design and selection of the system actuators,

drivers and sensors, and explaining the motors design, electric drives, encoders, sensors

and controller. Different challenges must be considered when selecting the electrical parts,

such as delivery time by online markets, experiments of used parts from local market to

identify their capabilities.

5.2 Comparison and selection of system actuators

In order to actuate each joint, many actuators can be used, such as electrical motors,

hydraulic actuators and even pneumatics ones. The pneumatic actuators will be skipped

because pressure losses and air’s compressibility make pneumatics less efficient than other

actuators, also precise control of speed isn’t possible.

5.2.1 Comparison between actuators

This section introduces shortly the specifications of each the electrical and hydraulic

actuators, then it compares between them in order to meet motion and control

requirements, as speed, force, accuracy, repeatability and efficiency.

Hydraulic actuators:

Hydaulic linear actuators consist of a piston inside a hollow cylinder. Pressure from an

external pump through an incompressible liquid (as oil) moves the piston inside the

cylinder. As pressure increases, the cylinder moves along the axis of the piston, creating a

linear force. The piston returns to its original position by either a spring-back force or fluid

being supplied to the other side of the piston, see Figure 5. 1,

40

Figure 5. 1: Hydraulic linear actuators.

Hydraluics actuators has many advantages and disadvantegs, they will be discussed shortly.

Advantages:

1. Hydraulic actuators are rugged and suited for high-force applications. They can

produce forces 25 times greater than pneumatic cylinders of equal size. They also

operate in pressures of up to 4,000 psi.

2. Hydraulic motors have high horsepower-to-weight ratio by 1 to 2 hp/lb. greater than a

pneumatic motor.

3. A hydraulic actuator can hold force and torque constant without the pump supplying

more fluid or pressure due to the incompressibility of fluids.

4. Hydraulic actuators can have their pumps and motors located a considerable distance

away with minimal loss of power.

Disadvantages:

1. Hydraulics will leak fluid, and loss of fluid leads to less efficiency. However, leakage

leads to change in control performance that designed before, cleanliness problems and

potential damage to surrounding components and parts.

2. Hydraulic actuators require many companion parts, including a fluid reservoir, motors,

pumps, release valves, and heat exchangers, along with noise-reduction equipment.

This makes for linear motions systems that are large and difficult to accommodate.

Electrical Actuators:

An electric actuator is a electromechanical device used to convert electricity into kinetic

energy. The input electrical power of voltage multiplied by current is converted to output

mehanical power of speed multiplied by torque on the motor’s shaft. The two possiple

types of motions are rotary and linear, where linear actuators convert the power into straight

line motion, and rotary actuators alter energy to provide rotary motion. We are considered

with the rotary electrical motors, see Figure 5. 2.

41

Figure 5. 2: Many types of electrical actuators.

Advantages

1. Electrical actuators offer the highest precision-control positioning. An example of the

range of accuracy is ± 0.000315 in. and a repeatability of less than 0.0000394 in. Their

setups are scalable for any purpose or force requirement, and are quiet, smooth, and

repeatable performance.

2. Electric actuators can be networked and reprogrammed quickly. They offer immediate

feedback for diagnostics and maintenance.

3. They provide complete control of motion profiles and can include encoders to control

velocity, position, torque, and applied force.

4. The output torque can be increased easily with high gear reduction ratios that give high

torques with less speeds, and these gears are available with many sizes and ratios.

5. In terms of noise, they are quieter than hydraulic actuators

6. Because there are no fluids leaks, environmental hazards are eliminated.

Disadvantages:

1. The initial unit cost of an electrical actuator is higher than that of pneumatic and

hydraulic actuators. According to the example from Bimba Manufacturing, an

electrical actuator can range from $150 to greater than $2,000 depending on its design

and the required electronics.

2. A continuously running motor will overheat, increasing wear and tear on the reduction

gear. The motor can also be large and create installation problems.

3. The motor chosen locks in the actuator’s force, thrust, and speed limits to a fixed

setting. If a different set of values for force, thrust, and speed are desired, the motor

must be changed.

42

5.2.2 Selection of actuators

The hydraulic actuators are not available in the appropriate size and weight in the local

market for our Intelligent Excavator Prototype, and the hydraulic actuators require many

companion parts. Hydraulics present certain advantages over electrical, but in our

prototype, we don’t need high-force applications as the real soil excavators.

Electric actuators can provide superior performance over hydraulic actuators, in our

application; for the excavator prototype, we look at the actuator of the higher accuracy and

repeatability, suitable size with upgradability (utilizing of gear ratios), programmable

control of motion parameters and better data collection with reporting capabilities and

availability in market. All these interests are existed for many types of electrical actuators.

As a consequence, the electrical actuator is selected because it achieves our requirements.

It is worth to compare between the various types of the electrical actuators in terms to many

aspects, this allows to choose the appropriate motor/s for our application. Table 5.1

compares between some of DC motors, such as: Servo, Stepper and Brushless motors:

43

Table 5. 1: comparison between some types of DC motors.

Characteristics Servo Motors Stepper Motors Brush Motors

Positioning Precise motion control Very Precise positioning With special driver, we can

maintain a precise position

Speed &

Torque
High Torque at high Speeds

(>2000rpm)

- Precise speed control.

- Excellent torque

characteristics at low

speeds: achieve

maximum torque at low

speeds (< 2000 rpm)

High speeds. Same speed-

torque characteristics as the

typical DC Motors.

Controlling Easy to control, provided

with feedback position

Control (PI), Smart (Contain

Rotary encoder)

Easy to control, through a

driver by sending pulses

doing fixed angle

increments/small steps

Using encoder sensors to

directly measure the position of

the motor shaft.

Range of

Motion
Two types:

- Positional rotation servos;

180 deg. (Position Control).

- Continuous rotation servos;

CW/CCW (Position &

Speed Control)

Continuous Rotation. Continuous Rotation.

Braking It is not needed; braking is

done by the Control itself

It is needed, some drivers

give this option.

It is not needed; braking is done

by the driver.

Limitations Limited range of motion for

Positional rotation servos

(180 deg.)

- have less torque at high

speeds than at low

speeds.

- they might skip steps at

high loads.

Controller: requires a

specialized regulator/driver for

position, speed or torque

modes.

Efficiency High Low to Moderate, due to

high current

consumption, so it tends

to become hot.

High, as they are able to

continuously achieve maximum

rotational force/torque and

acceptable speeds.
Power

Consuming
Low to Moderate power-hungry device,

draws maximum current

Low to Moderate, according to

the required speed and torque.

Temperature

in Operation
low High, especially for long

time operation

Moderate.

Cost Cheap at all, especially for

small sized (>20$)

Moderate to High,

according to size and load

characteristics (>35$)

Moderate to High, according to

size and load characteristics

(>30$)
Pros Precise & Smooth

movement

Excellent torque to

maintain position;

Suitable for applications

with high holding torque.

- Quiet less electrical noise.

- less electrical connections.

Cons - Large scall and Continuous

rotation servos increase cost.

- Generate some noise

during operation.

- more expensive and complex

- less durability as there are

brushes to be replaced.

44

5.3 Electrical Parts

The excavator electrical parts consisting of sensors, motors, interfacing and driving

circuits that allow connection between these parts and the system control unit. They are

described as follows:

5.3.1 Robot motors

Selecting a suitable motor to actuate a joint has many considerations. when selecting the

motor, we have to take into our consideration the three specifications: power, torque and

speed. For the mechanical and electrical specifications as the power, current and voltage,

the electrical power should be greater than the mechanical (i.e., the torque for the selected

motor should be larger than the calculated required torque at the joint). Figure 5. 3, shows

the forces acting on the manipulator.

For motor selection, the second motor is the critical one because it required to move the

whole manipulator (i.e., The largest torque is applied on it). The others motors will have

less torque. Torque at each joint will be calculated as below,

Figure 5. 3: Forces acting on the manipulator

Finally, after reselecting the links material to be the Aluminum, the soil weight is changed

instead of the previous 5Kg to be 0.5Kg which is suitable for the material strength with

reasonable deflections (see Chapter 4). Equation (5.1-5.3) represent the maximum torques

for each joint,

𝜏4 = (𝐵 + 𝐿) ∗
𝐿4

2
 = (0.5 + 0.215) ∗

0.1

2
∗ 9.81 = 0.35⁡𝑁.𝑚 (5.1)

45

𝜏3 = 𝑤3 ∗
𝐿3

2
+ (𝐽4 + 𝐿 + 𝐵) ∗ 𝐿3

= 0.253 ∗
0.15

2
∗ 9.81 + (0.072 + 0.5 ∗ 0.215) ∗ 0.15 ∗ 9.81 = 1.344⁡𝑁.𝑚 (5.2)

𝜏2 = 𝑤2 ∗
𝐿2

2
+ (𝐽3 + 𝑒3) ∗ 𝐿2 + 𝑊3 ∗ (𝐿2 +

𝐿3

2
) + (𝑀4 + 𝐿4 ∗ 𝐵) ∗ (𝐿2 + 𝐿3) + 𝑀2 ∗

𝐿2

2

= 0.358 ∗
0.2

2
∗ 9.81 + (0.31 + 0.118) ∗ 0.2 ∗ 9.81 + 0.253 ∗ (0.2 +

0.15

2
) ∗ 9.81 +⁡⁡

0.787 ∗ (0.2 + 0.15) ∗ 9.81 = 4.3⁡𝑁.𝑚 (5.3)

Where,

𝑊2 and 𝑊3 are the weights of each link, the effecting point of those weights are at the

center of each link.

𝐽2 and 𝐽3 are the weights of each joint (motor with shaft).

𝑀3 and 𝑀4⁡ are the weights of motors.

𝐸3 is the weight of encoder 3.

𝜏1, 𝜏2⁡and⁡𝜏3 are the maximum torques on each joint.

𝐵 is the weight of the End-Effector (Bucket).

𝐿 is the weight of the Load that the arm will lift

5.3.2 Motor drivers

The motor driver is a device allows interfacing between the motors, power and system

microcontroller. The control signal from the microcontroller has low power while the

motor needs high power to be driven properly, so the driver amplifies the input control

signal with new characteristics to the motor to provide the required power of actuating. The

driver has many other functions, as position, speed and torque control modes. Also, driver

protects the microcontroller from reverse current that comes from the motor.

5.3.3 Sensors

This application requires many types of sensors to satisfy the required tasks, such as:

46

1. Position sensor

Define position through the generation of a signal that provides positional feedback to

achieve the required trajectory planning. It is used to sense the links orientation and

direction of rotation, such as encoder sensor that can provide precise information for the

position, direction and speed of a piece of mechanical equipment which is used to know a

system state at that moment.

2. Limit switch sensor (mechanical sensor)

Defines the limit or endpoint over which an object could travel before being stopped. At a

desired point the switch will be engaged to give a signal that used to control the stroke of

the movement. Two limit switches are needed for each joint to indicate the start or end of

the joint angular movement (see section 3.2.2 about joint limits), so it is needed at least 8

limit switches for that purpose. Another function of these sensors is the homing process to

initial positions of the robot links at each operation.

5.3.4 Human machine interface

Touch screen

It is an input and output interaction device that used for an information processing system,

allows to interact with and command other functions. It can be useful to show diagnostics

and system status with monitoring. The screen can be used as output to display joint

positions and limits, torques, consumed power, faults and errors, and used as input to

command the manipulator to perform a predetermined (recorded) motions or trajectories

to the joint actuators.

Joystick

It is an input device consisting of a stick that pivots on a base and reports its angle or

direction than can be sent to the microcontroller, it has at least 4 motions that can be

reported with many buttons. The Joystick is essential in controlling the manipulator

motion, two Joysticks are needed for the whole manipulator. The joysticks are used in

manual-mode operation when the user wants to control the excavator manually, each joint

position can be controlled in CW/CCW direction independently, the bucket excavation and

throwing motions and other features.

47

5.3.5 Power source

Choosing the appropriate power supply demands on how much rated power is needed for

the electrical system components to work well. The overall required power should be

calculated carefully to allow the power source selection in terms to satisfy and perform the

manipulator tasks correctly, such as motion trajectories that performed by actuators,

feedback data from sensors and the required microcontroller power, etc.

5.4 Components selection

5.4.1 Motors selection

First and second joints:

Excavator robot requires four motors with gearboxes, Figure 5. 4, shows the selected

motors for the first and second joints according to the maximum torque at each joint. The

DC brushed motor is selected because it achieves maximum torques with acceptable and

moderate speeds, a gear reduction ratio is used for torque amplification.

Figure 5. 4: The selected DC brush motor for joints 1 and 2

48

Table 5. 2: It contains the parameters of the chosen DC motor for joints 1 and 2.

Model name SMSB6206B

Input Voltage 12 – 24 VDC

No load speed 40 RPM

No load current 1.0 A

Maximum load current about 5A

Gear ratio 70:1

Rated torque 7 N.m

Mass 500 g

specifications Dual shaft (for encoder/ gearbox), motor shaft: 8mm diameter

Third joint:

This joint requires less torque, and a less motor weight because it is hanged and its weight

efforts a torque on the previous joint. See Figure 5.6, and table 5.3 lists its specifications.

Figure 5. 5: The selected DC brush motor for joint 3

Table 5. 3: It contains the parameters of the chosen DC motor for joint 3.

Model name GM8224S023

Input Voltage 12 – 24 VDC

No load speed 75 RPM

No load current 0.5 A

Maximum load current about 4A

Gear ratio 60.5:1

Rated torque 3 N.m

Mass 250 g

specifications Dual shaft (for encoder/ gearbox), motor shaft: 4mm diameter

49

Gearbox needs

The available gear ratios are 70:1 for joints 1 and 2, and 60.5:1 for joint 3, the gear

reduction ratio allows to increase torque and reduce speed. When higher gear reduction

ratios are used, it reduces the nonlinearities and the coupling effects of the system

dynamics.

These motors are selected to provide the maximum required torques, in local market these

motors are the best and most suitable for our application. The design, dimensions and

materials are changed according to these motors. It is motivating that these motors provides

more than the required torques for the new design which give robust and strong torque

control to pay a load and transfer it.

Fourth joint:

The last joint has a small torque values and a limited task of excavation to open/close the

bucket, so a Servo-motor is chosen to perform that task. The servo gives a precise position

with a suitable handle torque to resist the load on its shaft, a gear transmission is added to

this motor model which gives higher torques. The Figure 5.7 shows the selected servo-

motor, with a listed features in table 5.4.

Figure 5. 6: The selected DC servo-motor for joint 4

Table 5. 4: It contains the parameters of the chosen DC servo-motor for joint 4.

Model name MG996R

Input Voltage 4.8 - 7.2 VDC

Stall torque 9.4 kgf·cm (4.8 V), 11 kgf·cm (6 V)

Operating speed 0.17 s/60º (4.8 V), 0.14 s/60º (6 V)

Running Current 0.5A – 0.9A, stall: 2.5A (6V)

Mass 55 g

50

5.4.2 Driver selection

Each motor requires a special driver for the desired purpose, the first 3 motors will be

controlled in close-loop fashion, while the last motor has its own controller. Three motor

drivers called SOLO UNO are selected to control each of the first three motors, and an H-

bridge driver will be used for the servo-motor for amplifying the control signal.

First three joints:

SOLO UNO is able to drive a brush and brushless DC motor, and it provides position,

velocity and torque control modes in closed/open loop fashions, see Figure 5. 7, and it is

compatible with Raspberry Pi microcomputer with especial library and numerous

functions. Each board supports control of 1-motor with reading 1-encoder.

Figure 5. 7: SOLO UNO Driver with described ports

The driver has many features, the most usable are the following:

- Wide input voltage supply range (from 8V to 58V)

- The continuous output current of 32A, Max Current of 100A

- Consumes 0.5A at no load on motor, and same power for motor.

- Capable of controlling DC and BLDC motors.

- Dual Core with parallel processing architecture

- Selectable output PWM switching frequency (from 8kHz to 80kHz)

- Open-loop or Closed-loop Control modes

51

- Speed, Torque or Position control

- PWM and Analogue voltage input for Controlling Speed and Torque

- Many methods to design and execute the controllers in Hardware or Software

fields

- USB, UART, and CAN Bus (ISO 11898) Communication enabled

- Encoder and Hall Sensor Input with +5V supply

- Weight of only 99 g.

- Can be accessed via Python or C++ libraires.

Figure 5. 8: Open-loop control through PWM signal to S/T terminal

In practice, driver has open/closed loop torque control modes, see Figure 5. 8 for open-

loop control by sending PWM control signal to S/T terminal. Initially, each motor is tested

with the open-loop control, through commanding the stall torque to each driver to actuate

its coupled motor with the maximum load, and observing the current consumption via

UART connection, the results were verified that drivers are capable of providing the

desired power to each motor.

Fourth joint:

The servo-motor is controlled through the PWM signal to obtain the desired position. It is

convenient to use an amplifier or H-bridge to provide the desired power, the l293D H-

bridge is suitable for that action, see Figure 5.9 shows the H-bridge with its terminals, and

Table 5.5 lists its specifications.

52

Figure 5. 9: l293D H-bridge with terminal names.

Table 5. 5: It contains the specifications of the selected H-bridge.

Model name L293D

Supply and output Voltage Max of 36 VDC

Maximum continuous current 1.0 A

Controlled channels 2 isolated channels with two directions for each

5.4.3 Sensor selection

1. Position sensor

Encoder sensors are a type of mechanical motion sensors that create a digital signal by

detecting a motion. There are different categories of encoders, one of them is the optical

encoder which is a type of rotary encoder, it is an electro-mechanical device that provides

users (commonly those in a motion control capacity) with information on position, velocity

and direction. Three encoders are selected for the first three joints.

For the first and third joints, two incremental encoders of 400-pulse resolution are used to

measure the angular motion of these two joints (coupled with the motor gear shaft. Another

encoder of 2048-pulse is adopted for the second joint, the reason of choosing this encoder

with more pulses is to give a better resolution for joint 2 measurement; because the second

motor gear has about 3𝑜 of backlash and the joint dynamics are fast and of high interest,

for other details see Figures 5.10 with table 5.6, and 5.7,

53

Figure 5. 10: The used rotary encoders: 400-pulse resolution (left), 2048-pulse resolution (right)

Table 5. 6: It shows the specifications of the 400-pulse encoders.

Model LPD3806-400BM-G5-24C

Supply voltage DC5-24V

Draw Current 30mA

channels A, B, and Z index

Performance 400 pulses / rev

Accuracy 0.9 degree/pulse

Maximum mechanical speed 5000 rev / min

Table 5. 7: It shows the specifications of the 2048-pulse encoder.

Model E40S6-2048-6-L-5

Supply voltage DC5-24V ±5%

Draw Current 80mA

channels A, B, and Z index

Performance 2048 pulses / rev

Accuracy 0.18 degree/pulse

Maximum mechanical speed 6000 rev / min

Encoder readers

Each encoder has an independent hardware counter, reading will be counted using the chip

LS7366R 32bit counter which counts the pulse of channel A and B by its own hardware,

the encoder reading (pulses count) is transferred through the SPI protocol to the Raspberry

Pi, this encoder reader with the interfacing protocol provides a high reading and

transferring rates of above 1MHz. see Figure 5.11, and table 5.8 for details.

54

Figure 5. 11: 32-bit encoder reader

Table 5. 8: Shows the specifications of the 32-bit encoder counter.

Model MIKROE-1917

Supply voltage 3.3V or 5V DC

Draw Current 15mA

Ports SPI Port, A, B, and Z encoder ports

Hardware chip LS7366R counter

Resolution 32-bit

Supported software Python libraries

2. Limit switch

Each joint of the first 3 joints will have at least 1 limit switch to detect the lower limit or

homing position. The selected limit switch is shown in Figure 5. 12

Figure 5. 12: limit Switch.

Table 5. 9: limit switch sensor specifications.

Brand Twidec

Current rating 0.3A

Weight 45g

Switch Type Limit Switch

55

5.4.4 Human machine interface

Raspberry Pi screen

The touch RPI screen is a display device that allows the operator to interact and command.

It registers the event and sends it to the system controller for processing, it is used for

control development and testing and connected through HDMI cable. The advantage is

to have one touch screen instead of several buttons, and many outputs can be seen, one

can input the references to the control algorithm and see the response data as the error,

current position, effort and time, see Figure 5. 13.

Figure 5. 13: Raspberry Pi screen.

Table 5. 10: RPI screen specifications.

Model name 7-inch HDMI display

compatible with Raspberry Pi 4 3B+ 3B 2B+, DIRECTLY plugged.

Power 5V/ 2A

Resolution 1024×600

specifications I/Os for touch function and power supply (USB), HDMI

interface for displaying.

Joystick/ Bluetooth keyboard

The joystick is an input device that can be used to control the excavator movements in

manual mode operation. One of the noticeable advantages of the joystick is its ability to

56

provide fast interactions which is better in quality compared to that provided by other input

devices. It has a simple design and is easy to learn and use, and often inexpensive.

In practice, the Bluetooth keyboard is used instead of the Joysticks. Keyboard provides

direct and easiest interfacing with Raspberry Pi through USB-Bluetooth adapter, but the

available Joysticks needs many analog ports to interact with, where RPi has no analog

inputs, since there is no need to make this topic more complex in wiring and coding,

keyboard is a suitable and flexible choice for many purposes.

5.4.5 Power source

Supplies electric power to an electrical device (load) by deliver output current and voltage

requirement. The current consumption of the whole system electrical components is listed

in Table 5.8:

Table 5. 11: System electrical components with current consumption

Current for the 4 motors (A) 2 ∗ 5𝐴 + 4𝐴 + 2.5𝐴 = 16.5𝐴

3 Encoders with their readers 2*0.03A + 0.08A + 3*0.015A = 1.005A

3 Drivers (at no load on motors) 3 * 0.5A = 1.5A

3 limit switches 3 ∗ 0.3𝐴 = 0.9𝐴

H-bridge 1.2A

Display 2A

Summation 23A

A PC power source is selected that provide too many channels of different Voltage and

Current combinations. The power source, see Figure 5. 14 , gives max current of 30A, the

mainly used terminals are 12V/17A, 5V/25A, 5V/2.5A each one is used according to the

previous power requirements.

Figure 5. 14: Power supply

57

Table 5. 12: Shows the selected power supply specifications.

Brand Xunba

Output voltage 12V

Output current 30 A

Input voltage AC 85-220 V

power 360 Watts

Frequency 50/60 Hz

58

Chapter Six: Information Processing

6.1 Introduction

This chapter introduces information processing requirements, such as software, interfacing,

microcomputer, performance, processing speed and selection of suitable components and

hardware connections.

6.2 Software and information processing

After discussing many hardware components, it is essential to consider the software in

terms to many aspects that related to the needed processes and tasks to performed

efficiently. This robot is vision based, and robot is supposed to have the ability to learn

how to perform many tasks and interact with the surrounding environment by machine

learning algorithms, however this will be performed in future work. A programmable

manipulator has to be designed to move the structure, and to have specialized devices to

execute various of programmed motions. A software may be adopted to coordinate,

manage and execute such processes and control algorithms which is the Robot Operating

System (ROS), this software needs a Linux operating system, such as Raspbian or Ubuntu.

As a consequence, basically MATLAB software with PC will be used for the first levels in

prototyping, and in control system development, since PC has powerful computational

performance. We aspire to develop an embedded system which contains its independent

controller. The embedded system controller must specify the processing capability in

presence of information processing, control architecture and supports operating systems as

Raspbian, therefore the suitable choice is Raspberry Pi (RPi) microcomputer which is

widely used in such application due to its powerful processing performance and

specifications, see Figure 6. 1.

Human-excavator interaction that satisfied by human machine interface which shows

system status and allows the operator to command through the screen or Joysticks. the

commands are translated to desired tasks that are analyzed and broken down into a

sequence of actions by the system processing unit (CPU) and stored. The choice of actions

is performed on the basis of knowledge models that stored in the system memory.

All these processes form many specifications of the information processing components

(PC, RPi) that must be taken into consideration. The following features are suitable for our

embedded system being capable of performing variety of tasks,

59

1. A fast CPU, at least 4 cores with frequency of 1500Hz.

2. Large amounts of RAM. For best processing capacity, RPi supports versions of 4

or 8GB RAM.

3. Can support programming languages and software, especially MATLAB and

SIMULINK for simulations (PC), and Python or C++ for RPi with practical work.

4. Human machine interface as RPi screen, see section 5.3.4.

5. Capable of interfacing with many hardware components, such as motor drivers,

feedback devices and sensors for the RPi.

6. Many input/output peripherals, such as digital and PWM channels, and other data

exchanging protocols as SPI and UART.

Other specifications that may be necessary for future work:

- Graphics card for image processing and vision.

- Storage needed for ROS.

Figure 6. 1: Raspberry Pi 4 microcomputer

Figure 6. 2 shows the mechatronics design levels of Hardware and software integration.

The hardware level (integration of components) consists of RPi microcomputer, four

electrical actuators, the manipulator (process) and sensors (3 encoders, 3 limit switches).

The RPi transmits control signals to motor drivers and feedback data from sensors. Drivers

outputs the actuating signals to the motors which actuate the joints (process).

Software level (PC) contains the development, design and simulation of control algorithms

with the derived mathematical model as a knowledge base. These functions will be tested

and redesigned to be performed in real applications on the RPi as a stand-alone code. It

contains control process includes the calculation of the control efforts (joint torques) that

are required to actuate the joints to track desired trajectories.

60

The supervision diagnosis improves the system performance through observing the system

states, error detection capability and gathering information about system faults, such as

computational errors of inverse kinematics, wrong reference inputs of joint trajectories out

the joint limits, etc. Such diagnosis shows error on HMI, recovers the correct operation

functions and determines the root(s) of the output of control status. Process fault diagnosis

involves interpreting the current status of the plant given sensor readings and process

knowledge.

Figure 6. 2: Mechatronics system integration [12]

6.3 Processing unit

Processing unit must be selected to satisfy many considerations, as processing power

(CPU, RAM, Storage, etc.), general purpose I/O ports, compatibility with other devices

(PC, motor drivers, HMI) and a convenient software environment. In this work, the

prototyping is based on the Raspberry Pi platform, where RPi 4 model B microcomputer

with 4GB RAM version (see Figure 6. 1) is selected for further work with embedded system

developments, the analysis and computation resources, since it covers all the above-

mentioned requirements.

Levels of information processing

There are two levels for information processing using RPi. Firstly, the high level consists

mainly of RPi computer that will be utilized as the information processing unit, it will be

operated and accessed through an Ethernet protocol interfaces it with PC, or even

connecting it with HDMI touch screen for further developments and interaction. RPi treats

with the low-level components through its GPIO peripherals, the low level contains the

electrical components as sensors, motors and drivers and mechanical parts as mechanical

61

structure and process. Finally, RPi forms a complete stand-alone system that controls,

process, sends and receives data from/to the electrical components with a Human-machine

interface.

6.4 Hardware connections and interfacing between components

An interface is a shared boundary across which separate components of a system exchange

information. The exchange can be between software, computer hardware, peripheral

devices, humans, and combinations of these. RPi has various and useful interfacing

protocols, like SPI and UART, and many I/O ports of digital and PWM functionalities. It

is worth to mention that the selected motor drivers, encoder readers and the display (HMI)

are all compatible with RPI in terms to hardware and software. This option allows more

easier programming, control and interfacing.

Raspberry Pi 4 has 40 GPIO pins, see Figure 6.3

Figure 6. 3: GPIO pins for Raspberry Pi 4 – model B

6.4.1 Interfacing protocols

SPI - Serial Peripheral Interface

The Serial Peripheral Interface or SPI bus is a synchronous serial data link that operates in

full duplex mode. In other words, data can be sent and received at the same time. Devices

communicate in master/slave mode, where the master device (RPi) initiates the data

exchange with one or more slaves. Multiple slave devices are allowed with individual slave

select lines.

62

The encoders reading (pulses count) are transferred through the SPI buses to the Raspberry

Pi. The main advantage in SPI that it exchanges the data with rates above 1MHz. Using

this method will reduce the computations on the Raspberry Pi; because the reading of

pulses is done by the board itself, and the counter library only receives the number of pulses

and the rotation direction.

The SPI bus specifies four logic signals:

- SCLK: Serial Clock (a clock signal that is sent from the master).

- MOSI: Master Output, Slave Input (data sent from the master to the slave).

- MISO: Master Input, Slave Output (data sent from the slave to the master).

- CS: Chip select (sent from the master, active on low signal). Often paired with the

slave Select (SS) line on an integrated circuit that supports SPI.

Figure 6.4 shows the conceptual connection for one SPI with many devices,

Figure 6. 4: RPi-SPI port connected to many devices with multiple select lines (CS) [13]

Three SPI ports have been used with the three encoder readers, all SPI connections are

described in table 6.1,

Table 6.1: Encoder counters (1,2,3) pins to RPi SPI (0,1,3) connections:

Encoder counters pins Raspberry Pi (Port No., GPIO pin)

SDI: (1/2/3) MOSI: (0, 10)/ (1, 20)/ (3, 2)

SDO: (1/2/3) MISO (0, 9)/ (1, 19)/ (3, 28)

CLK: (1/2/3) SCLK (0, 23)/ (1, 21)/ (3, 3)

SS: (1/2/3) CS (0, 8)/ (1, 12)/ (3, 0)

CS0 is used for each SPI port (one device at each SPI), it means that multiple SPI ports can

be operated independently, this has an advantage for the control system that reads many

feedback signals at the same time which provides fast knowledge with the system states.

Note: SPI2 is not exist in RPi 4.

63

UART - Universal Asynchronous Receiver/Transmitter

UART, or universal asynchronous receiver-transmitter, is one of the most used device-to-

device communication protocols. In UART communication, two UARTs communicate

directly with each other. The transmitting UART converts parallel data from a controlling

device, transmits it in serial to the receiving UART, which then converts the serial data

back into parallel data for the receiving device.

Only two wires are needed to transmit data between two UARTs, see Figure 6.5. Data

flows from the Tx pin of the transmitting UART to the Rx pin of the receiving UART.

Figure 6. 5 : RPi-UART port connected to a device [13]

UART in RPi has many ports, UART0 is located on the following GPIO pins:

- Transmit (TXD): GPIO 14.

- Receive (RXD): GPIO 15.

These two pins can be connected to any driver with its UART port on pins 1, 3 sequentially.

Feedback communication protocols – capabilities and selection

To read the encoders is exist which is the SOLO driver itself. SOLO UNO has the ability

to read one encoder for each. However, the reading must be transferred via UART protocol

which has a speed of maximum 150KHz that is slower than the speed of SPI protocol

(>1MHz), this may affect negatively on the control performance. This assumption is

verified practically since the position reading through SPI gives smooth tracking and more

stable performance. In contrast, using UART for controlling one joint makes the system

more oscillatory.

Another crucial consideration, it was intended to use 3 UART ports with the Raspberry Pi

to read the encoders with the SOLO drivers, it needs multiplexers with digital coding, many

digital I/O pins and code complexity, this choice has been avoided for feedback devices

after many tests on its usability and the control performance.

UARTs transmit data asynchronously, which means there is no clock signal to synchronize

the output of bits from the transmitting UART to the sampling of bits by the receiving

UART. In Raspberry Pi’s, UART has limited data sizes and baud rates (max. speed up to

150KHz) compared to the SPI and I2C capabilities. As a consequence, when fast

transferring rates are needed, the UART may suffer a traffic in data exchanging which leads

64

to many drawbacks in control systems. Finally, 3 SPI’s have been used for feedback

communication instead of UART’s.

PWM – Pulse Width Modulation

The PWM is a technique widely used to regulate the speed of rotation of a DC motor, in

this case, the duty cycle of the PWM is used to provide the torque necessary to the joints

of the robot in order to look for a linear relationship but using the right frequency of the

characterized DC motor.

The RPi 4 has two Hardware PWM pins located on GPIO 12 and 13, and many Software

PWM pins. RPi pins give a voltage level of 3.3V while the SOLO driver treats with a logic

level of 5V, therefore the amplifier (L293D) is used to amplify the RPi signal to 5V. The

connection of PWM pins to SOLO drivers and servo motor is listed in table 6.2,

Table 6.2: RPi-PWM pins connected to drivers and servo motor: [14]

RPi PWM GPIO pins Driver

Software PWM: 17 (Speed/torque reference): S/T1

Hardware PWM: 12 (Speed/torque reference): S/T2

Hardware PWM: 13 (Speed/torque reference): S/T3

Software PWM: 27 Servo motor PWM pin

Hardware PWM gives continuous and stable signal compared to the software; because

Software PWM can be interrupted by any other process while Hardware PWM operates

behind the CPU with its own module. The joints 2 and 3 have fast dynamics compared to

other joints, it is favorable to use Hardware PWMs for these joints giving smooth and

robust tracking.

6.4.2 Hardware connection (GPIO pins connection)

The Figure 6.6 shows the hardware connection between RPi and the actuation, feedback

and other devices.

See next page for hardware connection.

65

Figure 6. 6: Hardware connectio

66

Chapter Seven: Robot Motion Control

7.1 Introduction

To perform a specific task of the excavator manipulator, motion planning algorithms are

used. The trajectory planning technique which allows the generation of the reference inputs

to the motion control system.

Derivation of the manipulator dynamic model provides a description of the relationship

between the joint actuators torques, analysis of manipulator structure and design of control

algorithms. Lagrange formulation was followed in driving the equations of motion for the

manipulator in a systematic way, with chosen coordinate frames according to Denavit-

Hartenberg convention.

We applied several techniques for controlling excavator manipulator, these techniques

determine the torques to be developed by the joint actuators for the manipulator to achieve

the desired trajectory planning.

7.2 Motion planning

7.2.1 Introduction

For a desired end-effector motion with a specified initial and final pose, velocity and

acceleration conditions in operational space, the trajectory polynomial of such motion must

be determined. The goal of motion planning is to generate the reference inputs to motion

control system which ensure the manipulator executes the planned trajectories. Planning is

to generate time sequence of values attained by interpolating polynomial or any other

function suites the desired trajectory; this trajectory polynomial should be smooth,

continuous and allows the actuators to exert generalized forces on joints within the

saturation limits with suitable frequencies far away from the resonant ones of the structure.

As pointed before, a trajectory is a path with a specified timing law of variables that

describe the end-effector position and orientation over time with respect to the given initial

and final conditions. It is known that control actions of the manipulator are performed in

joint space, so it is worth to translate the desired end-effector motion through the inverse

kinematics that reconstruct the corresponding time sequence of the joint variables in terms

to that in task space.

67

In the following sections, a desired path of the end-effector motion is given in terms of

many constraints over time. The trajectory polynomial will be derived in operational space,

then it will be transformed to the joint space using inverse kinematics, the obtained timing

laws will be used later as reference inputs to many control schemes.

7.2.2 Operational space trajectory

The desired end-effector motion is 0.5m straight line in 2s that combining vertical and

horizontal displacements, with the constraints; zero initial and final velocities and

accelerations, then the initial and final position is to be selected.

These constraints require fifth polynomial, since there are 6 constraints have to be satisfied,

so the motion timing law for the end-effector motion is given by,

𝑝(𝑡) = ⁡𝑎5𝑡
5 ⁡+ ⁡𝑎4𝑡

4 ⁡+ ⁡𝑎3𝑡
3 ⁡+ ⁡𝑎2𝑡

2 ⁡+ ⁡𝑎1𝑡⁡ + ⁡𝑎0⁡⁡⁡⁡ (7.1)

The coefficients can be determined by solving the following system of linear equations:

𝑝𝑖 = 𝑎0

𝑝̇𝑖 = 𝑎1

𝑝̈𝑖 = 2𝑎2

𝑝𝑓 = 𝑎5𝑡𝑓
5 + 𝑎4𝑡𝑓

4 + 𝑎3𝑡𝑓
3 + 𝑎2𝑡𝑓

2 + 𝑎1𝑡𝑓 + 𝑎0

𝑝̇𝑓 = 5𝑎5𝑡𝑓
4 + 4𝑎4𝑡𝑓

3 + 3𝑎3𝑡𝑓
2 + 2𝑎2𝑡𝑓 + 𝑎1

𝑝̈𝑓 = 20𝑎5𝑡𝑓
3 + 12𝑎4𝑡𝑓

2 + 6𝑎3𝑡𝑓 + 2𝑎2

𝑝𝑖, 𝑝𝑓 are selected to satisfy the straight motion with distance between them = 0.5m as

required, and the most important thing is to ensure that this path will be in the limits of the

working space and taking into consideration the joint limits in the joint space and avoiding

the singularities, joints limits are:

𝜃1 =⁡⁡⁡⁡⁡ 0𝑜⁡⁡⁡⁡𝑡𝑜⁡⁡180𝑜

𝜃2 =⁡−60⁡⁡⁡𝑡𝑜⁡⁡⁡60𝑜

𝜃3 =⁡−100𝑜⁡𝑡𝑜⁡ − 30𝑜

The selected initial and final positions are:

𝑝𝑖 = [⁡0.2511⁡⁡⁡⁡ − 0.2037⁡⁡⁡0.1661⁡]𝑇m

𝑝𝑓 = [0.1⁡⁡⁡⁡0.2704⁡⁡⁡0.2696]𝑇m

Where, 𝑝 = [𝑝𝑥⁡⁡⁡⁡⁡𝑝𝑦⁡⁡⁡⁡⁡𝑝𝑧]
𝑇
.

68

With 𝑝̇𝑖 = 𝑝̇𝑓 =⁡ 𝑝̈𝑖 = 𝑝̈𝑓 = 0

Solving for the polynomial’s coefficients, we obtain

𝑎0 = [0.2511⁡⁡⁡⁡ − 0.2037⁡⁡⁡0.1661]𝑇

𝑎3 = [−0.1888⁡⁡⁡0.63428⁡⁡⁡0.5446]𝑇

𝑎4 = [0.14165⁡⁡⁡ − 0.4756⁡⁡ − 0.40846]𝑇

𝑎5 = [−0.02833⁡⁡⁡0.095137⁡⁡⁡⁡0.08169]𝑇

Substitute these coefficients in equation (7.1), yields

𝑃𝑥(𝑡) = ⁡−⁡0.02833𝑡5 ⁡+ ⁡0.14165𝑡4 ⁡− ⁡0.1888𝑡3 ⁡+ ⁡0.2511⁡

𝑃𝑦⁡(𝑡) = ⁡0.095137𝑡5 ⁡− ⁡0.4756𝑡4 ⁡+ ⁡0.63428𝑡3 − 0.2037

𝑃𝑧(𝑡) = 0.08169𝑡5 ⁡− ⁡0.40846𝑡4 ⁡+ ⁡0.5446𝑡3 + 0.1661

reconstructing them in compact form, obtaining:

𝑃(𝑡) = ⁡ [𝑃𝑥(𝑡)⁡⁡⁡⁡⁡𝑃𝑦(𝑡)⁡⁡⁡⁡⁡𝑃𝑧(𝑡)]
𝑇
⁡⁡⁡⁡⁡⁡ (7.2)

Which is the motion trajectory for end-effector in the operational space. Figure 7. 1,

shows the operational space trajectory,

69

Figure 7. 1: The desired end-effector trajectory; Px(t), Py(t), Pz(t).

7.2.3 Trajectory translating to joint space

As described before, the control actions are carried out in joint space, once the values of

the operational space variables are determined, it will be utilized in real time to obtain the

corresponding time sequence of values for joint variables 𝑞(𝑡). This can be obtained

through computing the inverse kinematics for the end-effector trajectory.

Translating methodology

Through the previously derived inverse kinematics, and computing 𝑞(𝑡) in real time, taking

the admissible solutions with no jumping cases, and pointing here that is no solution will

occur outside the joint limits. Because the initial and final positions of end-effector have

been selected carefully to avoid singularity and to generate the joint motions within their

limits.

A method is followed for selecting 𝑝𝑖 and 𝑝𝑓. Firstly, the initial position 𝑝𝑖 is chosen in the

workspace and transferred via inverse kinematics to the joint space ensuring that the

configuration of the initial joint positions 𝑞𝑖⁡are within the set limits, and inspecting that

there is a convenient range of motion for the end-effector to move more than 0.5m in its

workspace, and verifying that this range has no singularities. Finally, 𝑝𝑓 is selected with

same procedure and converted to its 𝑞𝑓 and tested as previous. A set of intermediate points

is tested in the two spaces to validate this solution.

The test initial and final joint positions are:

𝑞𝑖 = [−43.330𝑜⁡⁡⁡⁡−42.794𝑜⁡⁡⁡⁡−19.033𝑜]′ = [−0.7560⁡⁡ − 0.7469⁡⁡ − 0.3322]′rad

𝑞𝑓 = [⁡69.720𝑜⁡⁡⁡⁡52.391𝑜 ⁡⁡− 69.900𝑜]′ = [1.2170⁡⁡⁡⁡⁡⁡0.9144⁡⁡⁡⁡ − 1.2200]′𝑟𝑎𝑑

70

Joint trajectories generation

The operational space trajectory is translated through the inverse kinematics with on-line

computation. The angles generation is processed with sampling time of 0.01s in duration

of 2s, so 200 points (angles) are created which are forming the joint trajectories as reference

inputs.

Passing the end-effector position in equation (7.2) to the inverse kinematics algorithm in

off-line computation. The joint timing laws are obtained as followed,

𝑞1(𝑡) = 0.1145𝑡5 − 0.5725t4 + 0.7634t3

𝑞2(𝑡) = ⁡0.144𝑡5 − 0.7198t4 + 0.9597t3 − 0.13169

𝑞3(𝑡) = −0.255𝑡5 + 1.2752t4 − 1.7002t3 − 0.627⁡⁡

Figure 7. 2, the translated trajectory in joint space,

Figure 7. 2: corresponding Joint timing laws; q1(t), q2(t), q3(t).

71

Figure 7. 3, the velocities and accelerations for all the joint motions that they are

determined computationally in SIMULINK as follows,

𝑞̇(𝑡) = 𝐽−1(𝑞)⁡𝑃̇(𝑡)⁡, 𝑞̈(𝑡) = 𝐽−1(𝑞)𝑃̈(𝑡) − 𝐽−1(𝑞)⁡𝐽(̇𝑞, 𝑞̇)⁡𝑞̇(𝑡), [5]

Figure 7. 3: Velocity and acceleration curves for the joint motions.

Figure 7. 4, the end-effector straight motion graphically,

Figure 7. 4: straight line motion in workspace graphically.

Figures. 7.1, 7.2, 7.3 and 7.4 verify that the trajectory is smooth, continuous and achieves

the imposed constraints.

72

7.3 Motion control in joint space

7.3.1 Introduction

The joints control problem requires the manipulator inverse kinematics to be solved for the

desired end-effector trajectory 𝑥𝑑 from the operational space into the corresponding joint

space motion 𝑞𝑑, see Figure 7. 5 [5]. The control action should provide the three

components of generalized joint torques to allow the execution of the desired joint motions

𝑞𝑑(𝑡), the transient response and the steady-state error. The generalized toques must be as

less as possible, so a designer should compromise between the control performance and

the power consumed for the desired motion.

Figure 7. 5: General scheme of joint space control.

A joint space control scheme is designed that allows the actual joint motion 𝑞⁡to track a

reference input 𝑞𝑑, and pointing here that control in joint space is considered as an open

loop fashion scheme in terms of 𝑥𝑒. i.e., joint space control scheme does not influence the

operational space variables 𝑥𝑒 directly that is no feedback for the actual end-effector

trajectory 𝑥𝑒, and the whole motion is executed through the manipulator structure.

Two type of control schemes can be adopted, one is the decentralized control, this control

treats the drive as velocity-controlled generator, and when a single joint is controlled

independently of the others. The other type is the centralized control, so the drive is treated

as torque-controlled generator that the driving torque is computed for the reduced or

complete manipulator dynamics, i.e., the dynamic interaction effects and coupling are

taken in consideration.

It is worth to mention that for all the coming control schemes, all motor actuators are

assumed as direct-drive actuators for each joint, this means the transmission gear ratio 𝐾𝑟 =

𝐼3, in this case, using the relation⁡(𝜏𝑚 = 𝐾𝑟
−1𝜏); shows that the motor generated torque 𝜏𝑚

equals the generalized torques 𝜏 at each joint. If 𝐾𝑟 is considered much greater than unity,

this makes the tracking accuracy of the joint variables with respect to the desired trajectory

is improved, the system becomes more robust to parameter changes and tends to linearize

system dynamics.

73

7.3.2 Decentralized control

This control strategy regards this excavator manipulator as formed by 3-independent

subsystems which is the simplest control strategy that can be deigned. It controls each joint

as a single input/single output system (SISO), as a consequence the coupling effects

between joints are treated as disturbance inputs that result due to varying configurations

during motion.

It is known that task specification (end-effector motion and forces) is carried out in the

operational space, but control actions are performed in joint space for the desired end-

effector trajectory using the inverse kinematics to obtain the corresponding joint motions.

The disturbance of dynamic coupling effects is canceled by the integral control that allows

disturbance rejection due to increasing the type number of the closed-loop system. As

required, each joint controller must guarantee good performance in terms of high

disturbance rejection and enhanced trajectory tracking capabilities.

Therefore, the control system actuates each joint corresponding to SISO subsystem of the

decoupled and linear part of the following scheme in Figure 7. 6[5],

Figure 7. 6: Block scheme of the system of manipulator with the drive

Taking the diagonal constant elements of 𝐵(𝑞) that form the decoupled link inertias 𝐵̅ by

subtracting the nonlinear terms ∆𝐵(𝑞) from the inertia matrix 𝐵(𝑞) as follows,

𝐵̅ = 𝐵(𝑞) − ∆𝐵(𝑞)⁡⁡⁡ (7.3)

74

𝐵̅ is a diagonal matrix with constant elements of the resulting average inertia at each joint,

and observing the equations 7.4, 7.5 and 7.6 [5] which describe the disturbance 𝑑 of the

interactions between the joints that includes the coupling effects due to configuration

dependency, 𝜏𝑚 the motor torque. In Figure 7. 6, the subsystem at the bottom is linear and

decoupled, and the upper one is nonlinear and coupled which contains all nonlinear and

coupling terms of the manipulator joint dynamics, so each joint drive component 𝑖 is

affected by component 𝑖⁡of 𝑑, comparing this to the following equations, [5]:

𝐾𝑟
−1𝐵̅𝐾𝑟

−1𝑞̈𝑚 + 𝐹𝑚𝑞̇𝑚 + 𝑑 = 𝜏𝑚 (7.4)

𝐹𝑚 = 𝐾𝑟
−1𝐹𝑣𝐾𝑟

−1 (7.5)

𝑑 = 𝐾𝑟
−1∆𝐵(𝑞)𝐾𝑟

−1𝑞̈𝑚 + 𝐾𝑟
−1𝐶(𝑞, 𝑞̇)𝐾𝑟

−1𝑞̇𝑚 + 𝐾𝑟
−1𝑔(𝑞) (7.6)

So, here we have three independent control systems for the three joints, each one of SISO

system of the linear-decoupled part, and the interactions with the other joints is added as a

disturbance of component 𝑖 at each joint. Two control schemes will be introduced, PID and

I-PD controllers.

7.3.3 Position and velocity feedback control (PID controller)

Now we will design position and velocity feedback control scheme of PID with

decentralized feedforward compensation. PID controller consists of three terms; 𝑃

(Proportional), 𝐼 (Integral) and 𝐷 (Derivative), it feeds the error (proportional) plus the

integration and the differentiation of the error forward to the plant.

The 𝑃-element allows the stabilization of the system, and 𝐼-element reduces the steady-

state error (adds pole at origin, then increase the closed-loop system type number) while

the 𝐷-element improves the transient response (adds zero to the closed-loop system).

The design requirements have to be determined, let the desired %𝑂𝑆 = 0 → 𝜁 = 1

(critically damped) and 𝑇𝑠 = 0.1𝑠 → 𝜔𝑛 = 40𝑟𝑎𝑑/𝑠 for each joint control system, and

following the Root-locus technique to find the controller gains: 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 for the 3-

SISO independent system controllers, yields

𝐾𝑝 = [453.2⁡⁡⁡279.6⁡⁡⁡⁡36.8]𝑇

𝐾𝑖 = [34.34⁡⁡⁡⁡26.76⁡⁡⁡⁡⁡3.543]𝑇

𝐾𝑑 = [22.66⁡⁡⁡13.98⁡⁡⁡⁡1.84]𝑇

Figure 7. 7 [9], shows the general independent joint control scheme, where 𝐶𝑃(𝑠),⁡ 𝐶𝑉⁡(𝑠),

𝐶𝐴(𝑠) respectively represent position, velocity, acceleration controllers. 𝑘𝑇𝑃 , 𝑘𝑇𝑉 ⁡, 𝑘𝑇𝐴 are

the respective transducer constants. 𝜗𝑟 is the reference input, which is related to the desired

75

output 𝜗𝑚𝑑, and the disturbance torque 𝐷 has been suitably transformed into a voltage by

the factor 𝑅𝑎/⁡𝑘𝑡, (𝑘𝑡: torque constant, 𝑅𝑎: the armature resistance).

Figure 7. 7: Block scheme of general independent joint control.

Goal is to design Position, velocity feedback with decentralized feedforward

compensation, by Figure 7. 7; 𝐶𝑃(𝑠)⁡and 𝐶𝑉(𝑠)⁡are the designed position and velocity

controllers, where 𝐶𝐴(𝑠) = 1, 𝐾𝑇𝐴 = 0, and the feedback position and velocity gains

(𝑘𝑇𝑃, 𝑘𝑇𝑉) are assumed unity.

Figure 7. 8: equivalent control scheme of PID type.

Figure 7. 8 is the equivalent control scheme for PID with decentralized feedforward

compensation [5], where 𝑇𝑚, 𝑘𝑚 are motor parameters.

76

Many design iterations have been performed to improve the transient response and

reducing the steady-state error. The new design characteristics for all joints are selected as,

𝜁 = 1 and 𝜔𝑛 = 90𝑟𝑎𝑑/𝑠, and all the following simulation results for these specifications,

with control gains,

𝐾𝑝 = [2294⁡⁡⁡1415⁡⁡⁡⁡186]𝑇

𝐾𝑖 = [61.5⁡⁡⁡⁡33⁡⁡⁡⁡⁡5.34]𝑇

𝐾𝑑 = [60⁡⁡⁡31.5⁡⁡⁡⁡4.2]𝑇

Using MATLAB and SIMULINK for design and simulation of the control system. Figure

7. 9 shows the SIMULINK block diagram for this control system.

The following symbols are used in the control schemes:

qd: 𝑞𝑑(𝑡)⁡[𝑟𝑎𝑑], qd_dot:𝑞𝑑̇(𝑡)⁡[𝑟𝑎𝑑/𝑠]⁡, qd_Ddot: 𝑞̈𝑑(𝑡)[𝑟𝑎𝑑/𝑠2],

q: 𝑞(𝑡)⁡[𝑟𝑎𝑑], q_dot:𝑞̇(𝑡)⁡[𝑟𝑎𝑑/𝑠]

Figure 7. 9: SIMULINK block diagram for PID control system with feedforward compensation.

77

Figure 7.10(a): q1(t) vs. qd1(t) - PID

Figure 7.10(b): q2(t) vs. qd2(t) - PID

Figure 7.10(c): q3(t) vs. qd3(t) – PID

Figure 7. 10:(a), (b) and (c): q(t) vs.qd(t)- PID

78

Figure 7. 11: The error between q(t) and qd(t) - PID

Figure 7. 10, shows the simulation results for each joint, it is obvious that PID control

method provides acceptable tracking performance of the desired reference inputs 𝑞𝑑(𝑡),

but with slow dynamics of error reduction. In Figure 7. 11, 𝑒𝑠𝑠1 = 0%, ⁡𝑒𝑠𝑠2 = 0%, ⁡⁡𝑒𝑠𝑠3 =

0%.

Figure 7. 12; the joint (1) needs at least torque of 0.512 Nm, and joint (2) requires torque

of 3.52 Nm while joint (3) torque is 1.298 N.m. It is concluded that joint (2) has the highest

torque needed because it is affected by the other two joints to cancel their disturbances. In

other word, the performance is accepted in terms to the consumed torque, and the controller

can be redesigned to give better performance with some increase in joint torques.

Figure 7. 12: Torque required at each joint- PID

79

7.3.4 I-PD control (State-feedback with integral control)

Now for the same design requirements, I-PD controller is to be designed following the

state-feedback control technique. This control strategy has the same response

improvements of PID controller, but it is more efficient that it makes the system more

stable than PID because it does not add zeros to the closed-loop system.

State-feedback control allows to replace the closed-loop poles to the desired locations in

S-plane through feedback control gains 𝐾3𝑥1 and another gain 𝐾𝑒1𝑥1
 for the error reduction

dynamics. This technique is applicable for linear control systems, so with the decentralized

control method, the gains 𝐾 and 𝐾𝑒⁡will be determined for the decoupled and linear part of

the system dynamics.

Figure 7. 13: state-feedback control with integral control (I-PD).

Figure 7. 13 [15], shows the general block diagram for the I-PD controller. The integral

action for the error feedback is to achieve zero steady-state error, and 𝑥 are system state

variables, 𝐴⁡is the system matrix, 𝐵 is the input matrix, C is the output matrix. The input

references of the joints 𝑟, and joint motions output is 𝑦.

The decoupled and linear part (7.3) of the manipulator dynamics is the diagonal

𝐵̅3x3⁡matrix, for each element 𝑏𝑖𝑖 (𝑖 = 1,2,3), a state-space system (𝐴, 𝐵, 𝐶) with phase

variable form can be formed for each joint as SISO system, so we have 3 SISO controllers.

 (7.7)

80

 (7.8)

𝑢 = −𝐾⁡𝑥⁡ + 𝐾𝑖⁡𝑥𝑛, (7.9)

Where 𝑥 are the states of the system, and 𝑥𝑛 is the additional state for the integral control,

The system states and outputs (7.7), and the extended system in state space representation

(7.8), with the control law (7.9). Each joint will be represented as constant mass needed to

be actuated to execute the desired motion. Matrix 𝐵̅ is found as follows,

 𝐵̅ = [

𝑏̅11 0 0

0 𝑏̅22 0

0 0 𝑏̅33

] = [
1.004 0 0

0 0.522 0
0 0 0.31612

]𝐾𝑔.𝑚2, (7.10)

The new state-space representation for each mass (𝑖) is,

𝑥̇ = 𝐴𝑖𝑥 + 𝐵𝑖𝑢𝑖

𝑦𝑖 = 𝐶𝑖𝑥𝑖, (7.11)

Where,

𝑥1𝑖 = 𝑞𝑖 , 𝑥2𝑖 = 𝑞̇𝑖

 𝑥̇1𝑖 = 𝑥2𝑖,⁡⁡⁡𝑥̇2𝑖 =
1

𝑏̅𝑖𝑖
𝑢𝑖, (7.12)

𝐴𝑖 =⁡ [
0 1
0 0

] , 𝐵𝑖 = [
0
1

𝑏̅𝑖𝑖

] and⁡⁡𝐶𝑖 = [1 0], (7.13)

While the third state is 𝑥𝑁𝑖
= −𝐶𝑖𝑥𝑖 + 𝑟𝑖, and applying state-derivatives (7.12) and

matrices (7.13) in (7.8, 7.11) we obtain the extended system:

[
𝑥𝑖̇

𝑥̇𝑁𝑖

] = [
0 1 0
0 0 0

−1 0 0
] 𝑥 + [

0
1

𝑏̅𝑖𝑖

0

]𝑢 + [
0
0
1
] 𝑟𝑖

𝑦𝑖 = [1⁡⁡0⁡⁡0⁡] [
𝑥𝑖

𝑥𝑁𝑖
].

Using MATLAB (place function) to find the gains 𝐾 and 𝐾𝑖 for all masses,

81

𝐾𝑏11
= [𝐾1⁡⁡⁡⁡⁡𝐾2] = [9.8486𝑒4⁡⁡⁡⁡⁡0.0683𝑒4].

𝐾𝑖𝑏11
= ⁡4.0657𝑒6

𝐾𝑏22
= [𝐾1⁡⁡⁡⁡⁡𝐾2] = [5.1205𝑒4⁡⁡⁡⁡⁡0.0355𝑒4].

𝐾𝑖𝑏22
= ⁡2.1139𝑒6

𝐾𝑏33
= [𝐾1⁡⁡⁡⁡⁡𝐾2] = [3.1010𝑒4⁡⁡⁡⁡⁡0.0215𝑒4].

𝐾𝑖𝑏33
= ⁡1.28𝑒6

These three sets of gains (𝐾𝑏𝑖𝑖
, 𝐾𝑖𝑏𝑖𝑖

, 𝑖 = 1,2,3) for the 3-SISO independent controllers.

This controller has many outcomes, as disturbance rejection and makes the system robust

against changes in its parameters, and this will be tested in the following simulation.

Figure 7. 14, block scheme for I-PD Controller,

Figure 7. 14: Block scheme of I-PD controller

Simulation results in Figure 7. 15, show that I-PD controller provides accurate tracking

with fast transient response and error reduction dynamics. Figure 7. 16, verifies that this

controller has powerful effect on error reduction, as seen it gives approximately zero

steady-state error for all joints.

82

Figure 7.15(a): q1(t) vs. qd1(t), I-PD

Figure 7.15(b): q2(t) vs. qd2(t), I-PD

Figure 7.15(c): q3(t) vs. qd3(t), I-PD

Figure 7. 15:(a), (b) and(c) q(t) vs. qd(t), I-PD.

83

Figure 7. 16: The error between q(t) and qd(t), I-PD

The joint torques are shown in Figure 7. 17, at starting, the torques (2,3) jump highly to

time of 0.05s, then decreased to lower values about (5N.m, 2N.m), these high torques

appear because this controller gives fast dynamics of error reduction, and MATLAB solver

has no constraints about maximum torque, so for the given gains and performance, the

solver gives high torques. The absence of gear reduction ratios makes the torques at motor

side more highly. Torque (2) always larger than other torques, since this joint has to reject

two disturbances (coupling effects) from the other joint motions. Torque (1) is the less

torque because that gravitational force does not affect on the first joint.

84

Figure 7. 17: Torque at each joint, I-PD.

7.3.5 Centralized control

This methodology is adopted with control design that takes into account the manipulator

dynamic model, finding through it the nonlinear centralized control law. In this case, the

design of the control takes advantage of detailed knowledge of excavator manipulator

dynamic model, and to compensate the nonlinear coupling terms of the model. These

control methods are considered as Multi-Inputs/Multi-Outputs (MIMO) system.

Centralized control algorithms are needed for high manipulator dynamic performance,

since the driving joint torque with compensating actions are computed which provide a

model-based nonlinear term to enhance trajectory tracking performance.

The main two advantages of the centralized (nonlinear) control techniques. First is the

cancelation of the nonlinearities by generating compensating torques, i.e., such techniques

allow elimination of the causes, not reducing the effects induced by them. The other

positivity when the desired manipulator motion requires large joint speeds and/or

acceleration, or direct drive actuation is employed (gear ratio 𝐾𝑟⁡ = ⁡𝐼), the nonlinear

coupling terms will strongly influence system performance, so compensating nonlinear

terms are essential. The inverse dynamics control method will be presented.

7.3.6 Inverse dynamics

This approach depends on the idea of finding a compensating control low 𝑢, as a function

of the system dynamics and states. the dynamic model of the 3-joints excavator

manipulator is expressed by

 𝐵(𝑞)𝑞̈ + 𝑛(𝑞, 𝑞̇) = 𝜏 (7.14)

85

Where,

𝑛(𝑞, 𝑞̇) = 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑞̇ + 𝑔(𝑞)

This control method is essential to generate a linear input/output relationship through an

exact linearization of system dynamics with no approximations, this is performed by the

nonlinear state feedback of the dynamics system.

To generate a suitable compensating torque, this method suggests to set 𝑢 (7.14) as the

generalized joint torques 𝜏, so the control law becomes,

𝑢 = ⁡𝐵(𝑞)𝑞̈ + 𝑛(𝑞, 𝑞̇) (7.15)

The mass matrix is full rank and its invertible, then set 𝑞̈ = 𝑦 which is the inverse dynamics

control action and a stabilizing control law whose magnitude has to be found through the

control design. By observing the Figure 7. 18[5], it describes that function of the inner loop

is to obtain a linear and decoupled input/output relationship, and the outer loop is to

stabilize the overall system. As a consequence,⁡𝑦 is considered as a new input of linear and

decoupled system after compensating the nonlinearities, and 𝑢 is the input to the nonlinear-

coupled dynamic system as compensating torque.

Figure 7. 18: Block scheme of joint space inverse dynamics control.

Setting the new control law,

𝑦 = ⁡−𝐾𝑝𝑞 − 𝐾𝐷𝑞̇ + 𝑟 (7.16)

Where 𝑟3𝑥1 torques actuate the joints 𝑞𝑖 (𝑖 = 1,2,3) independently as decoupled subsystems

to insure tracking the reference inputs 𝑞𝑑(𝑡) by selecting,

𝑟 = 𝑞𝑑̈ + 𝐾𝐷𝑞𝑑̇ + 𝐾𝑝𝑞𝑑 (7.17)

86

This equation (7.17) leads the control law 𝑦3𝑥1 with respect to the control gains 𝐾𝑃3𝑥3
 and

𝐾𝐷3𝑥3
 which are positive definitive matrices, with diagonal elements that are designed by

the desired transient response characteristics of vectors 𝜁3𝑥1 and 𝜔3𝑥1,

𝐾𝑃 = [

𝜔𝑛1
2 ∗ 𝑏11 0 0

0 𝜔𝑛2
2 ∗ 𝑏22 0

0 0 𝜔𝑛3
2 ∗ 𝑏33

]

⁡⁡
⁡𝐾𝐷

= [

2𝜁1𝜔𝑛1 ∗ 𝑏11 0 0
0 2𝜁2𝜔𝑛2 ∗ 𝑏22 0
0 0 2𝜁3𝜔𝑛3 ∗ 𝑏33

], (7.18)

for the three decoupled systems with dynamics of error reduction (transient response) that

depend on these gains (7.18) to track a given trajectory.

After these advantages, it is worth to remark that inverse dynamics control needs accurate

knowledge of system dynamics and its parameters, to allow accurate compensating of the

nonlinear effects. This operation made in online calculations which requires high speed

and power in computation with less sampling rates.

Finding the gains 𝐾𝑃 and 𝐾𝐷⁡with the same design requirements 𝜁 = 1 and 𝜔𝑛 = 90⁡𝑟𝑎𝑑/𝑠

for all joints by (7.18),

𝐾𝑃 = 1𝑒3 ∗ 𝑑𝑖𝑎𝑔[⁡8.13424⁡⁡⁡⁡4.2282⁡⁡⁡⁡2.5606⁡]

⁡⁡𝐾𝐷 = 𝑑𝑖𝑎𝑔[⁡180⁡⁡⁡93.96⁡⁡⁡⁡56.9]

Design and simulate the control scheme in SIMULINK, see Figure 7. 19 showing the

block diagram, and Figure 7. 20 for the results.

Figure 7. 19: Block scheme of inverse dynamics control.

87

Figure 7.20(a): q1(t) vs. qd1(t), Inverse dynamics

Figure 7.20(b): q2(t) vs. qd2(t), Inverse dynamics.

Figure 7.20(c): q3(t) vs. qd3(t), Inverse dynamics.

Figure 7. 20: q(t) vs. qd(t), Inverse dynamics.

88

Tracking performance is more accurate because this control method compensates all the

nonlinearities of the dynamics model, and Figure 7. 21 reveals that error is about zero.

Figure 7. 21: The error between q(t) and qd(t), inverse dynamics.

The greatest advantage that this control method requires less torque, see Figure 7. 22,

because it has previous knowledge of the varying configuration effects and system

dynamics, this allows to cancel these nonlinear effects not to only compensate them. We

notice that this compensator continues to cancel the nonlinearities especially the gravity

component on each joint, hence the torques will be developed during the whole motion.

Figure 7. 22: Torque required at each joint- Inverse Dynamics.

89

7.3.7 PD with Gravity Compensation

A proportional-derivative (PD) control with online gravity compensation is proposed for

regulation tasks of robot manipulators with rigid links. The control law is an extension of

a previous PD control with constant gravity compensation at the desired configuration. It

is based on a gravity-biased modification of the desired link deflection and requires

measuring only position and velocity on the joint side. Global asymptotic stability of the

control law at the desired robot configuration is proven via Lyapunov argument.

Figure 7. 23 [5] shows the block scheme of joint space PD control with gravity

compensation,

Figure 7. 23: scheme of joint space PD control with gravity compensation.

The law of control (7.19) depended in gravity matrix, error, and speed of all joints.

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢 = 𝑔(𝑞) + 𝐾𝑝𝑞~ − 𝐾𝐷𝑞̇⁡⁡⁡7.19

The gain 𝐾𝑝⁡𝑎𝑛𝑑⁡𝐾𝐷 we should diagonal matrix

𝐾𝑃 = 𝑑𝑖𝑎𝑔[𝜔𝑛
2⁡, 𝜔𝑛

2, 𝜔𝑛
2] = 𝑑𝑖𝑎𝑔(150, 25, 25)

𝐾𝐷 = 𝑑𝑖𝑎𝑔[2 ∗ 𝜁 ∗ 𝜔𝑛⁡,2 ∗ 𝜁 ∗ 𝜔𝑛, 2 ∗ 𝜁 ∗ 𝜔𝑛] = 𝑑𝑖𝑎𝑔(0.1, 0.1, 0.1)

Figure 7. 24: PD with gravity compensation using MATLAB SIMULINK

90

Design and simulate the control scheme in SIMULINK, see Figure 7. 24 showing the

block diagram.

Figure 7.25(a): q1(t) vs. qd1(t), PD with Gravity

 Figure 7.25(b): q2(t) vs. qd2(t), PD with Gravity

Figure 7.25(c): q3(t) vs. qd3(t), PD with Gravity

Figure 7. 25: q(t) vs. qd(t), PD with Gravity

91

The simulation results in Figure 7. 25 reveal that PDG compensator has an acceptable

tracking performance with a notable tracking error during the whole motion. This is

expected because that the nonlinear coupling terms affect on the tracking of the desired

configurations and there is no integral action for error reduction during the process. The

tracking error at the final instant is approximately zero, see Figure 7. 26.

Figure 7. 26: Resulting error for motion tracking – PD with Gravity

The torque is reasonable and it seems less than it in the inverse dynamics because there is

no compensating for nonlinear effects, see Figure 7. 27,

Figure 7. 27: Joint efforts – PD with Gravity

92

7.4 Motion control in operational space

7.4.1 Introduction

This approach considers that control is developed directly in the operational space when a

trajectory is assigned for the end-effector motion. If the motion is specified in the joint

space, then it can be translated to the task space through the direct kinematics. It is known

that control actions are performed in the joint space, but the error⁡∆𝑥 is specified in the

operational space.

To reduce the error ∆𝑥, it is treated first through a matrix gain which generates forces for

the end-effector that drive the joints to move along a direction reducing the position

deviation ∆𝑥, these forces have to be transformed to generated toques into the joint space.

Figure 7. 28: Block scheme of Jacobian transpose control.

Figure 7. 28[5] shows the general control scheme of the Jacobian transpose control, the

Jacobian transpose transforms the computed end-effector forces to joint torques. This

scheme is not guaranteed to be effective in terms of stability and trajectory tracking

accuracy. The PD control with gravity compensation is the equivalent mathematical

solution for the above scheme that will be introduced below.

7.4.2 PD control with gravity compensation

The control law is an extension of a PD control with constant gravity compensation

(PDGC) at the desired configuration, Figure 7. 29 [5]. Operational space trajectory

specified motion assigned in the operational space, if measurements of operational space

quantities are indirect, the controller has to compute the direct kinematics function.

Whenever it is desired that the end-effector motion follows a geometrically specified path

in operational space, with joint space stability analysis, given a constant end-effector 𝑥𝑑, it

is desired to find the operational space error,

93

𝑥̃ = 𝑥𝑑 − 𝑥𝑒

Figure 7. 29: Block scheme of operational space PD control with gravity compensation.

Global asymptotic stability of the control law at the desired robot configuration is proven

via Lyapunov argument Theorem.

Control law suggests,

𝑢 = 𝑔(𝑞) + 𝐽𝐴
𝑇𝐾𝑃𝑥̃ − 𝐽𝐴

𝑇𝐾𝐷𝐽𝐴𝑞̇

PD controller necessary to measure 𝑞 to update both 𝐽𝐴
𝑇⁡(𝑞) and nonlinear gravity

compensation term 𝑔(𝑞) are evaluated (on-line).

Figure 7. 30: Block diagram of PD with Gravity in operational space

94

Finding the gains 𝐾𝑃 and 𝐾𝐷⁡with the same design requirements 𝜁 = 1 and 𝜔𝑛 = 90⁡𝑟𝑎𝑑/𝑠

for all joints by (7.18),

𝐾𝑃 = 1𝑒3 ∗ 𝑑𝑖𝑎𝑔[⁡2.2946⁡⁡⁡⁡1.4159⁡⁡⁡⁡0.1863⁡]

⁡⁡𝐾𝐷 = 𝑑𝑖𝑎𝑔[⁡50.9904⁡⁡⁡⁡31.4640⁡⁡⁡⁡⁡4.14]

Design and simulate the control scheme. Figure 7. 30 shows the block diagram.

Used symbols in block diagram:

xd: 𝑃𝑑(𝑡) [m], xd_dot: 𝑃̇𝑑(𝑡) [m/s], xe: 𝑃(𝑡) [m], delta_x: 𝑥̃

By Figure 7. 31, the transient response and steady state error are acceptable in 𝑥 and

𝑦⁡motions, but the motion in 𝑧⁡has problems in performance, since it is affected by the

gravity force in (−𝑧) and the gravity compensation action, and does not reach the steady-

state. Figure 7. 32, errors in x and y are approximately zero while error in z is 𝑒𝑠𝑠3 = 34%.

state. Figure 7. 32, errors in x and y are approximately zero while error in z is 𝑒𝑠𝑠3 = 34%.

Figure 7.31(a): xd1(t) vs. xe1(t), PDGC

Figure 7.31(b): xd2(t) vs. xe2(t), PDGC

95

Figure 7.31(c): xd3(t) vs. xe3(t), PDGC

Figure 7. 31:(a),(b) and (c) xd(t) vs. xe(t), PDGC.

Figure 7. 32: Error between xd and xe.

Torques at joints seems a little bit larger than the others, Figure 7. 33. As seen, torque

curves are not quite smooth and did not give accepted performance as the previous

controllers.

Figure 7. 33: Torques of joints.

96

7.5 Conclusion

In terms of tracking of trajectory, required torques, disturbance rejection and robustness to

parameter changes. A comparison between the control schemes in terms of these aspects

according to our design and dynamic system will be introduced.

High tracking performance in I-PD and inverse dynamics control schemes while in PID

and PDG in joint space is accepted, with a little steady-state error, but PDG in operational

space has the worst performance especially in z direction.

The lower consumed torques for the desired specifications occurs in inverse dynamics and

PDG control in joint space. In contrast, in general PDG in operational space has the highest

joint torques, and I-PD consumes torques at the starting with short interval due to integral

action.

Disturbance rejection and Robustness to parameter changes are the highest for the inverse

dynamics method, and moderate in the others, except the PDG in operational space which

consumes more power to reject a disturbance, and has less robustness.

We conclude that centralized control in joint space (inverse dynamics and PDG schemes)

is the best in terms of all these aspects, especially for the direct drive actuators, the inverse

dynamics method gives the choice to select actuators without high gear ratios (less cost).

It is intended to implement centralized control schemes in real control applications.

Another problem occurs about the sampling time. If the sampling time is set to be larger

than
𝜋

𝜔𝐵
=

𝜋

90
= 0.038𝑠⁡of the closed loop system, then the response becomes oscillatory

and tends to change its desired shape. The higher sampling time, the less input samples

taken for the input trajectories and the worst performance occurs, so the system loses

information about the desired input references (signal distortion), this phenomenon called

“Aliasing”. For more enhanced performance, the sampling time 𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔⁡must be less or

equal to 0.1 ∗ 𝜋/𝜔𝑛. When 𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔⁡ > 0.038𝑠,

𝜔𝑠 > 2𝜔𝐵

Where,

𝜔𝐵: is the maximum bandwidth frequency of the closed loop system.

𝜔𝑠:⁡is the sampling frequency.

⁡
2𝜋

𝑇𝑠
> 2 ∗ 2 ∗ 𝜋 ∗ 𝑓𝐵 →

1

2∗𝑓𝐵
> 𝑇𝑠, for real time control systems, a reduction factor of 0.1

is multiplied by 𝑇𝑠:

𝜋∗0.1

𝜔𝐵
> 𝑇𝑠, is the favorable sampling time value for real-time discrete control systems.

97

Chapter Eight: Prototype Building, Experiments and Results

8.1 Introduction

The purpose of this section is to evaluate the overall practical work on the project. This

work addresses the design and construction issues of the excavator's arm robot. First of all,

the robotic arm performance analysis has been accomplished using MATLAB software.

The obtained knowledge has been utilized to develop suitable algorithms for analyzing

robotic arm kinematics and control that perform tasks that programmable stand-alone code

by a Raspberry Pi. On the other hand, the manipulator has four degrees of freedom. Three

degrees of freedom correspond to the robotic arm, and one of the end-effector. Moreover,

the necessary electronic modules in order to allow a successful communication with

Raspberry Pi microcomputer.

8.2 Prototype structure and system components

This section introduces the building of the prototype structure and interrelated system

components. Various challenges were revealed during the development, interfacing and

operating of the robot electro-mechanical components.

8.2.1 Build robotic soil excavator prototype

Analyzes a full range of structural design and a comprehensive selection of components. It

illustrates the details and key points of producing a type of robot from an idealization to

actual production, as well as whether the actual design parameters will meet the actual

needs (through SOLIDWORKS simulation), which will build-up to the excavator robot

arm with a completely new design.

Having the actuators, it is only required that the structure as the robot arm. For this, it is

essential that the pieces which form the union and support for all the excavator arm robot

system must be strong enough to support the weight and force of the actuators, but also

should be light and not waste power trying to move its own weight. So based on the

available motors, and calculating the maximum torque, the materials and final dimensions

of the prototype were selected.

98

Mechanical parts

- Links of the excavator:

The base area we designed consists of two parts. The first one is the fixed, which provides

fixed support to the remaining moving arms, The second parts are the rotating ones, where

the material chosen for the base is steel. They are together assembled as shown in the Figure

8. 1,

Figure 8. 1: The base of Excavator manipulator.

The boom is the second link the boom associated to the base with a joint 2, this link is

shown in the Figure 8. 2, The arm is a link connecting of the boom with bucket shown

below, we chose to design the boom and arm parts with aluminum. and the bucket is the

end-effector of excavator is shown in the Figure 8. 3,

Figure 8. 2: Boom Link-2 of manipulator.

Figure 8. 3: Arm Link-3 of manipulator.

99

To design a bucket part affordable 3D printing technology that’s favored for rapid and

low-cost prototyping, Figure 8. 4 shown the printed bucket with shaft,

Figure 8. 4: Bucket end-effector and shaft printed of the manipulator.

- Shafts of motors:

In the structure of the robot, the design of the drive shaft in the transmission process is

extremely important shown in the Figure 8. 5, and the shafts of manipulator torque moment

are under load. As a result, the chosen material for the shaft is steel.

The key is used to connect the links to the shafts for the manipulator. The key prevents

relative rotation between the two parts and enables torque transmission.

Figure 8. 5: The shafts of motors.

100

- Excavator manipulator prototype:

After the design of each individual part, the next step is that we need to assemble the parts

to form a complete excavator arm. The assembly has the base, boom, arm and end-effector

the bucket shown in the Figure 8. 6.

Figure 8. 6 Prototype of Excavator manipulator.

- Specifications of parts:

The critical specifications and parts weight sotted out in Table 8. 1, manipulator is mostly

built of common materials, Steel and aluminum are the most often used materials for the

arms and bases of robots. Aluminum is a softer material and therefore easy to work with

while steel is stronger.

Table 8. 1: Specifications of the manipulator mechanical parts.

Parts/

Specifications
Material

Weight

[grams]

Length [cm] Plate

Thickness [cm]

Link 1 steel 1010 20 0.5

Link 2 aluminum 360 20 0.6

Link 3 aluminum 255 15 0.6

Link 4
PLA carbon

fiber
110

10 0.3

Parts/

Specifications
Material

Weight

[grams]

Length [cm] Diameter [cm]

Shaft 1 steel 256 3.5 20

Shaft 2 steel 72 7.2 1.4

Shaft 3 steel 50 4.8 1.4

Shaft 4
PLA carbon

fiber
10

3.5 1.4

101

The total weight of the manipulator structurer on the first motor is 2.18 [kg].

The total time and number of iterations required for designing functional, assembling

multiple workpieces is a complicated task in design robots. Thus, verification of the design

in assembly operations helps to measure the performance of the robotic excavator.

8.2.2 Electrical components

Identification of motor parameters

As mentioned previously in Chapter 5, the motors are selected to provide a suitable torque

for our application for each robot joint. The selected motors were tested in terms to the stall

torques and currents, speeds and consumed power, since the tested motors are used before

and do not have datasheets. Each motor is tested by hanging a known and changeable mass

𝑚𝑡𝑒𝑠𝑡 at one end of an arm (of negligible mass) with known length 𝑙𝑡𝑒𝑠𝑡, see Figure 8. 7.

The motor was operated with its maximum voltage 𝑉𝑡𝑒𝑠𝑡⁡to give the stall torque 𝜏𝑠𝑡𝑎𝑙𝑙 with

measuring the stall current 𝐼𝑠𝑡𝑎𝑙𝑙. Motor speed were measured at no load 𝜔𝑛𝑜⁡𝑙𝑜𝑎𝑑⁡⁡using a

coupled encoder with gear shaft, and these data were concluded with the existence of the

gearbox (Torques and speeds are measured at gear side not motor side).

Figure 8. 7: An arm with a suspended mass

Another essential parameter is the gear reduction ratio, it was identified by rotating the gear

shaft one complete revolution, and observing the number of rotations 𝑛𝑚𝑜𝑡𝑜𝑟 at the side of

motor shaft with encoder sensor, giving a gear ratio of 𝑟 = 1: 𝑛𝑚𝑜𝑡𝑜𝑟 .⁡

- Motors at first and second joints:

The first two motors are same, their parameters were identified with an arm of length

𝑙𝑡𝑒𝑠𝑡 = 0.36⁡𝑚, with a suspended mass of 𝑚𝑡𝑒𝑠𝑡 = 2𝐾𝑔⁡at the arm end that makes the

motor to be stalled with torque 𝜏𝑠𝑡𝑎𝑙𝑙12 = 7⁡𝑁.𝑚, and current 𝐼𝑠𝑡𝑎𝑙𝑙12 = 5𝐴. The motor is

operated with voltage input of 𝑉𝑡𝑒𝑠𝑡 = 24𝑉. The resulting torque-current constant is 𝑇𝑐12 =
𝜏𝑠𝑡𝑎𝑙𝑙12

𝐼𝑠𝑡𝑎𝑙𝑙12
=

7

5
= 1.4⁡𝑁.𝑚/𝐴. The resulted 𝜔𝑙𝑜𝑎𝑑12⁡⁡is about 20⁡𝑅𝑃𝑀.

102

One revolution at gear side gives 70 revolutions at motor side with a gear ratio of 𝑟 =

1: 70.

- Motor at third joint:

The third motor were coupled with an arm of length 𝑙𝑡𝑒𝑠𝑡 = 0.15⁡𝑚, with a suspended mass

of 𝑚𝑡𝑒𝑠𝑡 = 2𝐾𝑔⁡at the arm end that makes the motor to be stalled with torque 𝜏𝑠𝑡𝑎𝑙𝑙3 =

3⁡𝑁.𝑚, and current 𝐼𝑠𝑡𝑎𝑙𝑙3 = 4𝐴. The motor is operated with voltage input of 𝑉𝑡𝑒𝑠𝑡 = 24𝑉.

The resulting torque-current constant is 𝑇𝑐3 =
𝜏𝑠𝑡𝑎𝑙𝑙3

𝐼𝑠𝑡𝑎𝑙𝑙3
=

3

4
= 0.75⁡𝑁.𝑚/𝐴. The resulted

𝜔𝑙𝑜𝑎𝑑3⁡⁡is about 35⁡𝑅𝑃𝑀.

One revolution at gear side gives 60.5 revolutions at motor side with a gear ratio of 𝑟 =
1: 60.5.

- Motor at fourth joint:

The last joint has a limited task of motion, the servo is selected to perform such motion.

The required torque is tested by rotating the bucket with a payload of 𝑚𝑡𝑒𝑠𝑡4 = 0.5⁡𝐾𝑔 and

arm length of 𝑙𝑡𝑒𝑠𝑡4 = 0.05𝑚, giving 𝜏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑4 = ⁡0.25⁡𝑁. 𝑚 which is smaller than the

rated servo torque of 𝜏𝑠𝑒𝑟𝑣𝑜 = 0.92⁡𝑁.𝑚, and the consumed maximum current for this task

equals 𝐼𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 0.6⁡𝐴. Maximum speed at 𝜏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑4 is about 𝜔4 = 60𝑜/𝑠⁡that is fast

enough for opening or closing the bucket with range of 0𝑜 − 180𝑜. As a result, the servo

selection is verified in terms to the robot payload, power and speed.

- Specifications of SOLO drivers:

Each SOLO driver is supposed to provide the required power to actuate the motors with

the desired torque and speed. For the first three motors, the maximum current needed at

the rated torque is 5𝐴 with speed of 35𝑅𝑃𝑀, while driver gives maximum continuous

output current up to 32A with maximum voltage of 58V. The driver’s power specifications

are theoretically suitable for our application. By the way, for future work if the structure is

modified with steel material to handle more payloads or interact with the environment, new

motor selection will be introduced to provide higher torques that require more power allows

system upgradability.

Accuracy of robot end-effector position

One of the main barriers in the excavator arm robot has been the reduction of error between

the tool frame at each joint and the goal frame of the end-effector. The sources of this error

are readily identified. Modeling differences between the controller and the robot account

103

for most of the errors between the base frame and the tool frame. Inaccurate fixturing and

manufacturing processes can account for the differences between the station and goal

frames.

One requirement is the end-effector position accuracy, it was set to be 3⁡𝑚𝑚. There are

many factors that influence the robot accuracy, such as encoders resolution, backlash of

gearboxes and the control quality.

- Encoder resolution:

Encoder resolution affects the goal frame accuracy. Each joint has a specific encoder

resolution, the first and third encoders have a resolution of 400 pulse/rev while the second

one has 2048 pulse/rev resolution. According to the base frame of the manipulator,

maximum distances between each joint frame and the goal frame along 𝑥 − 𝑎𝑥𝑖𝑠 are

0.43𝑚 for joint 1, 0.35𝑚 for joint 2 and third one is 0.15𝑚, see Figure 4.1.

Calculating the resultant end-effector position accuracy due to the measurement resolution.

Joint 1 gives 0.43 sin 0.9𝑜/𝑝𝑢𝑙𝑠𝑒 = 0.00675𝑚, joint 2 gives 0.35 sin 0.1758𝑜/𝑝𝑢𝑙𝑠𝑒𝑠 =

0.00107𝑚 and finally joint 3 gives 0.15⁡𝑠𝑖𝑛⁡0.9𝑜/𝑝𝑢𝑙𝑠𝑒 = 0.0023𝑚 are the accuracies

on the goal position. The total and maximum accuracy on the end-effector is equals

10⁡𝑚𝑚.

If the desire is to improve upon the resolution or accuracy of the robot, a precise metrology

system is needed to perform these measurements. However, for our application that does

not require high repeatability or positional accuracy in excavation and throwing tasks, a

10⁡𝑚𝑚 accuracy is initially accepted and we note that control algorithm could improve the

final accuracy.

- Backlash of motor gearbox:

Backlash refers to the angle that the output shaft of a gearhead can rotate without the input

shaft moving. It can be a serious issue in controlling endpoint motions, due to the limited

resolution of sensing the gearhead output shaft angle using an encoder attached to the motor

shaft, see Figure 8. 8.

By observation, each selected motor has a significant gearbox backlash angle that cannot

be ignored in control problems. The accurate method the backlash could be measured for

each gearbox, is to rotate the gearbox shaft a known angle that is measured by encoder,

then observing the input shaft to stay constant during this rotation, accordingly at the first

motion of the input shaft, the backlash angle is recoded. Another method is to measure the

angle directly by effecting the gear shaft with the limited motion of backlash itself.

104

Figure 8. 8: Backlash of motor gearbox

The measured angles of backlash are 5𝑜 for first two motor gearboxes and 1𝑜 for the third

one. These angles are large enough to affect negatively on the tracking performance and

the final end-effector position. In control problem, we observe that joint 2 has the best

tracking performance due to its high encoder resolution, and joint 3 has an acceptable

tracking error, but the first joint is affected negatively by the encoder resolutions and

backlash with about ±⁡2.5𝑜 tracking error.

The backlash problem cannot be avoided directly, however the gearbox drive has a notable

advantage that it reduces the nonlinear coupling effects on the motor side, means that to

rotate the input shaft it is needed a large and fast rotational motion on joint side, and for

intermediate speeds, the coupling effects and disturbances will be less on joint side,

accordingly they are approximately goes to zero on motor side.

Finally, all these factors propagate the positional errors for the robot end-effector while a

robust tracking control algorithm can reduce such effects. They will be discussed with the

tracking responses in motion control results.

8.3 Information processing techniques and software capabilities

8.3.1 MATLAB and Simulink software

MATLAB and Simulink are widely used in control systems at all stages of development

from plant modeling to designing and tuning control algorithms. Using these tools for

Model-Based Design, it allows to not only simulate our control algorithms but also the

physical hardware. By automatically generating code for the control software and the

simulated physical model, and reducing development time and implementing changes

quickly. We visualized simulation and test results for many control methods (Chapter 7),

which gave us confidence in the design that will finally implemented in real controller such

as Raspberry Pi 4.

Once we have designed our control system algorithms, we can refine them for

implementation in real control processors. It was intended to use MATLAB and Simulink

for hardware-in-the-loop (HIL) testing by executing the control algorithm on the RPi

105

embedded controller, and running the plant model in real time on a target computer

connected to this controller. In practice, we have tested MATLAB and SIMULINK toolbox

for interfacing them with RPi hardware, and it reveals that these tools are not fully matching

or accessing the RPi 4 hardware in terms to usability of transferring protocols as SPI and

UART or even controlling hardware PWM pins. Another consideration, the electrical

components as feedback and actuating devices are accessed by Python libraries.

8.3.2 Robot Operating System - ROS

ROS is referring to the Robot operating system, it is a software platform that provides

libraries and tools to help software developers create robotics applications. It provides

hardware abstraction, device drivers, libraries, visualizers, message-passing, package

management, and more. ROS is similar in some respects to ‘robot frameworks’. We

redirect the compass to another alternative of software which is the Robot Operating

System (ROS) for its common usability for robot systems.

- Why ROS has been used in this project?

The main purpose of implementing our control algorithms in ROS is the suitable code

organization. The advantage in subdividing the normal code to many software pieces

makes the programming more convenient and easier to modify for future goals. ROS

provides integration between the written software and hardware modules, many tasks can

be distributed in many ROS nodes, each node can communicate and exchange information

to others through registering it to the Master node. One way of nodes communication in

ROS is using a Publisher/Subscriber architecture like the Figure 8. 9.

Figure 8. 9: Topic Message Communication. [16]

A ROS node is the equivalent of a function or a mini-program. Its role is to publish

information (feedback, position, efforts …) that we call messages, each message is

published on a specific topic. A Node that publishes information is called a Publisher.

Those who listen to and use this information are called Subscribers. Generally, a node is

106

both Subscriber and Publisher. Many nodes form a ROS package that can be run through

that package name.

Initially, we have developed an embedded control system on RPi using the ROS topics. It

implements many nodes, such as control process, joint trajectories, joint states and

actuating joints, see Figure 8. 10 describes the package that contains nodes, topics and

messages.

Figure 8. 10: The developed ROS package using Topics

Describing each node function as follows,

Node 1: It receives the desired end-effector initial and final poses, then computes the

trajectories in operational space, translates them to joint space through inverse kinematics,

and finally publishes the joint trajectories to the node (3) of the main control process though

the topic 𝑞𝑑𝑒𝑠𝑖𝑟𝑒𝑑.

Node 2: It contains the hardware interface with the Encoder readers through SPI protocol,

receives the joint states, then sends them to the control process through topic 𝑞𝑎𝑐𝑡𝑢𝑎𝑙.

Node 3: It subscribes to the two topics, computes the joints error and publishes the joint

torques to the actuating nodes (4, 5, 6 and 7) though topics (𝑢1, 𝑢2, 𝑢3 and 𝑢4).

Nodes 4-7: each one receives the required joint effort, translates the torque to a suitable

PWM signal and outputs it to the specific motor’s driver.

The same concept can be applied by using ROS Services instead of Topics, see Figure 8.

11 and Figure 8. 12

107

Figure 8. 11: Service Message Communication. [15]

Figure 8. 12: The developed ROS package using Services

Each method has an advantage and disadvantage over the other. Using ROS Topics is faster

in terms to publish/subscribe of messages, but there is no guarantee that all messages are

received. While the using of ROS Services guarantees that the message will arrive when it

requested, but this method is slower in exchanging messages (the client sends a request,

then server responds and sending the message).

The above two methods were tested for controlling one joint. Initially, the response was

accepted, however when the package was developed to control the whole robot, the

responses were oscillatory and the system tends to be unstable. There are many factors

affect negatively on the control process, after looking for many related researches, we

conclude the following challenges:

1. In general, ROS is not a hard real time architecture:

If the correct computations cannot be provided at the correct time, this called soft or not

real-time execution, so it’s about organizing processes not performance at all. Because that

108

the most of Linux and many operating systems that ROS support do not guarantee a real

time computing. It is known that Linux OS has no real-time capabilities in general, ROS

gives the ability to run nodes always while other nodes being running for a specific time,

this can be exploited carefully, we clam that if a node (or any program) is always executed

without any interrupting from the other processes with acceptable process speeds, then the

process is about to be a hard real-time with minimum latency. This clam has been verified

with this research [16] that provides the proof of how the programs/nodes are organized

and executed in real-time, the idea is to separate the execution of the wanted real-time

process (as closed-loop control process) with an independent CPU-core of multi-core

processor device (Micro-controller/ PC/ …), so the process will not be interrupted by any

other processes.

It is worth to mention that there are another OS gives the hard real time capabilities as

Xenomai OS, see [17].

A proposed solution is the using a Real-time OS such as Xenomai or Preempt patches with

RPi Raspbian OS. ROS consumes too much of system resources, we need a solution to

organize the system processes. This solution has been taken into account for a while, these

patches make the OS acting like a real-time OS. Our purpose is not to convert the system

to be a hard real-time, but is to exploit these solutions to make the system interrupts more

organized. RPi has many software and hardware interrupts that affect negatively on the

control process, such as peripherals interrupts (checking USB, Bluetooth, HDMI screen,

etc.,), CPU interrupts and many more. Using those patches make your selected process

with high executing priority between many other tasks, and this is urgent for the sampling

times and real-time control requirements.

The negative side of these patching on our running Raspbian OS, is that it disables many

essential hardware interrupts, such as SPI, UART and PWM’s. This violates our needs for

these peripherals. Since these patches are specially designed for Ubuntu OS, but this OS

does not provide the full ability to reach the hardware interfacing techniques with the

needed peripherals in RPi.

2. ROS versions and compatibility with Linux systems:

Most of ROS packages are designed and provided especially for Ubuntu Linux OS. While

Raspbian OS that we use with RPi is not tested with all ROS packages yet. Using ROS on

Raspberry Pi, it must to be connected to some hardware components to actuate the robot

and get feedback data. A not-so-good practice here would be to import ROS in all classes

and programs that directly deal with hardware. It means that we cannot really export any

hardware library for other non-ROS projects, and would have a hard time integrating

already existing libraries/plugins to your ROS application.

109

We success to develop the two previous packages for controlling robot using ROS

Messages, but in ROS there are more developed packages for ROS control and Real-time

applications. ROS_Control is a set of packages that includes controller interface, controller

manager, transmissions, hardware interfaces and control toolbox. All these packages

together allow to interact and control the joint actuators of the robot. The essential role for

ROS control packages is the controller manager that updates the control process and

organize the control actions in terms to read joint states, trajectories and producing joint

efforts at a fixed sampling time.

These packages are not tested to work with Raspbian OS. It requires more time to learn

work with ROS_control packages on RPi where it is not guaranteed to work efficiently,

and other consideration about hardware integration between ROS_control and RPi is that

Control packages use only C++ language, but our electrical components are developed to

communicate with by Python language. As a result, choice of ROS control packages has

been postponed to future work to allow testing the Robot motion control with a stand-alone

code.

Excavator robot simulation using ROS tools:

Visualizing the Excavator arm using the ROS and the ability to generate 3D visualization

of the arm, and you can see how a plan is provided by MoveIt and provide animation as a

way of showing you how the planned trajectory will look like when executed by the robot.

Mechanical Model of the Excavator Arm robot, this part of the application does the

following:

- Robot description - URDF

The URDF (Universal Robot Description Format) model created by SOLIDWORKS

describes the excavator arm robot's physical description to ROS. These files used by the

ROS to tell the computer what the robot actually looks like in real life. URDF files are

needed in order for ROS to understand and be able to simulate situations with the robot.

Figure 8. 13 Shows the URDF diagram for the excavator robot,

110

Figure 8. 13: URDF graph

The original file for performing simulation is the Universal Robot Description Format, or

URDF. This xml-like file type is used heavily in ROS for simulation and testing; it is a

supported file type for rviz and other ROS tools.

- Motion planning using MoveIt:

The basic task of the MoveIt! the system is to provide the necessary trajectories for the

excavator arm of a robot to put the end effector in a target place. The Figure 8. 14 shows

the communication with move_group node exchange commands with the user using ROS

actions and services.

Figure 8. 14: Communication scheme with move_group node. [15]

111

When we want to dig and load the soil into trucks with the excavator robot arm, we need

to move all the joints of the excavator's arm so that the final part of the arm, the one that

has the bucket (the end-effector), can be at the proper location.

Produce the sequence of values that every joint of the manipulator must follow (in

coordination with the other joints), so the end-effector moves from its current place to the

desired place. This task is called motion planning. The result of motion planning is the

sequence of movements that all the joints of the arm have to perform in order to move from

the current location to the desired one, see Figure 8. 15.

Figure 8. 15: Planning a specific motion in MoveIt

Figure 8. 16 describes how the MoveIt nodes and topics communicates to each other’s,

Figure 8. 16: Nodes and topics of Movelt

112

- RViz tool:

To show ROS messages in 3D RViz the 3D visualization tool of ROS provides a view of

your excavator arm robot model, and replay captured data. allowing us to visually verify

data. The following Figure 8. 17 describes how planning the manipulator for first three

joints,

Figure 8. 17: Planning the manipulator by moveIt with RViz

A manipulator simulation can be developed consists of setting up a virtual environment

and adding to this environment a virtual representation of the robot to be trained or tested

(control page, avoid obstacles, and collision avoidance, etc ...).

113

8.3.3 Programming control algorithms using stand-alone code

Stand-alone microprocessors can provide a high level of control over simple integrated

circuits, motors, and actuators. Once programmed, they can repeatedly perform the same

task with precision and accuracy, making them an integral part of mechatronic engineering

design. It is an alternative to the previous software platforms that introduce many

advantages, such as direct hardware accessibility via a set of Python or C++ codes,

management of RPi resources and running the desired task independently on a single or

multi-CPU cores provides more stable performance with approximately no system

interrupts occur.

It was a great experiment to learn more about running a Raspberry Pi "headless" (i.e.,

connecting just power and a LAN cable, then you can use SSH into your RPi without

needing a monitor), auto-launching python modules on bootup, file management, file

parsing, general GPIO control (as PWM), using the built-in SPI hardware on the Raspberry

Pi, and even some logic level conversion.

The main goal of implementing our control algorithm with a stand-alone code is to ensure

executing control and tracking tasks in real application. Python language is used to program

our controller, we get benefited of using Object-Oriented-Programming (OOP) as

functions, constructors and classes to make the code more usable, readable and well

organized. Despite the code complexity of organizing things, the process has been

succussed and control performance is accepted.

8.4 Motion control experiments and results

8.4.1 Introduction

In this section, we will discuss the actual results of PD with Gravity compensator applied

to the robot. The centralized controllers provide a detailed knowledge of manipulator

dynamic model, and cancellate the nonlinearities by generating compensating torques

which provide a model-based nonlinear term to enhance trajectory tracking performance.

Initially, PD with Gravity control is implemented through a stand-alone code using Python

language on RPi. A set of functions were programmed, such as inverse kinematics,

trajectory generation in both joint and operational spaces, hardware integration and

recording the joints response, computing torques and tracking errors. Figure 8. 18 shows a

flow chart implements the control algorithm in general.

Practically, the use of PD with Gravity compensator is suitable for our application. The

gravity compensation provides a previous knowledge of the gravity terms, while the

114

nonlinear coupling effects are reduced by default because of the existence of high motor’s

gear ratio at each joint.

Figure 8. 18: Flow chart of control algorithm

8.4.2 PD with gravity compensator

Design of the controller

The control process was run with the previous designed proportional and derivative gains:

𝑘𝑝 = 𝑑𝑖𝑎𝑔[150⁡25⁡25],⁡⁡⁡⁡𝑘𝑑 = 𝑑𝑖𝑎𝑔[⁡0.1⁡0.1⁡0.1]

Motion in operational space

User inputs two desired positions for the end-effector, then the motion trajectories will be

generated in operational space. Using Inverse kinematics function to translate the desired

115

motion to the joint space, see Figure 8. 19. Joint trajectories are supplied to the control

process as references, errors and efforts are calculated. The initial and final point are similar

to the used in Chapter 7,

𝑝𝑖 = [⁡0.2511⁡⁡⁡⁡ − 0.237⁡⁡⁡0.1661⁡]𝑇m

𝑝𝑓 = [0.1⁡⁡⁡⁡0.2704⁡⁡⁡0.2696]𝑇m

Figure 8. 19: generated joint trajectories via inverse kinematics

The motion is executed with 2000 sample of a 1⁡𝑚𝑠 sample time, resulting motion time

of 2𝑠.

- Real results:

Figure 8. 20: Joint states of PD with Gravity motion control

116

Figure 8. 20 reveal that each joint angle approximately reaches its final position with a

steady-state error of −2.57𝑜 for the first joint, −0.6𝑜 for the second one and −0.8𝑜 for the

third joint. These errors are expected due to each encoder resolution and the gearbox

backlash that has been discussed before (section 8.2.2). Figure 8. 21 shows end-effector

position error, it is about 6𝑚𝑚 in 𝑥 and 𝑦, 1.66𝑐𝑚 in 𝑧 axes which has the largest error

due to many mechanical effects such as, link deflection, gearbox backlash and encoder

resolutions for the second and third links.

Figure 8. 21: Error evolution for the end-effector position

Figure 8. 22: Resulted control efforts of PD with Gravity control

117

Figure 8. 22 shows that joint torques are smooth, and the maximum required torque is

7𝑁.𝑚⁡for joint 1 and 2, and 3𝑁.𝑚 for joint 3.

Executing multi-motions directly in joint space

User can assign many tasks in joint space, entering the desired initial and final joint

positions for each task. Trajectories in joint space are directly calculated and motion

executed. Same gains are used for the control process.

Figure 8. 23: Generated joint trajectories in joint space for multi-tasks

The motion is executed with 9000 sample of a 2⁡𝑚𝑠 sample time, resulting motion time

of 18𝑠.

- Real results:

Figure 8. 24: Responses for executing many tasks in joint space, PD with Gravity control

118

Figure 8. 25: Error evolution for each joint position

The response shows a powerful tracking performance for each joint with zero steady-state

error for joint 2, 0.9𝑜 for joint 3, and 2.055𝑜 for joint 1, see Error! Reference source not f

ound. and Figure 8. 25 which show the resulted joint positions error.

Figure 8. 26: Required torques for executing many motions

Joint torques are continuous and have maximum values of 7𝑁.𝑚 for joints 1 and 2,

2.52𝑁.𝑚 for the third one, see Figure 8. 26.

119

8.5 Conclusion

We conclude that method of PD with Gravity control has improved the tracking

performance and reduces the effects of gearbox backlash and inaccuracies of encoder

measurements. In contrast, the requirement of ±⁡3𝑚𝑚⁡end-effector resolution was not

achieved perfectly. The consumed torques are saturated with 7𝑁.𝑚⁡for the first and second

motors, and ⁡3𝑁.𝑚 for the third one; provides acceptable response for the desired

specifications. The controller provides good disturbance rejection (e.g., effects of external

forces with hand) and robustness to parameter changes (e.g., excavated soil).

The PD Control with gravity compensation has been implemented to show the robustness

of this control scheme in our robot application. The control algorithm is developed using

the low-cost Raspberry Pi board where the stand-alone code is deployed. The novelty of

this approach is the development of new functions with the stand-alone code to make the

PD control with gravity compensation in low-cost systems.

As a consequence, with the discussed results we conclude that PD with Gravity

compensator covers our application interests. It was firstly programmed in purpose of

testing robot motion and the system integration because of its easy programming and

turning, however this control method satisfies the basic robot motion of excavation,

travelling and dumping with smooth responses and reasonable time durations. Inverse

dynamics control laws can be implemented with the pre-programmed stand-alone code for

further development.

120

Chapter nine: Conclusion and Future Work

9.1 Conclusion

The Excavator robotic system has been prototyped. The mechanical structure (frames, and

connectors) is set up first and the actuation system (DC motors, servomotor) is then

attached to the mechanical structure, after that, other electromechanical components are

attached. With all the components integrated, the size of the excavator is 20cm (width) ×

65cm (length) × 10cm (height), and the total weight is 2.18 kg. The excavator has been

tested to work properly, and it achieves a complete excavation process with a traveling

speed of about 40⁡𝑅𝑃𝑀.

The prototyping of the excavator robotic system involves the machining of mechanical

frames, selection of proper electromechanical components, integration of all the parts

together, as well as testing and debugging of the implemented robotic system. To save time

and reduce the cost, most of the materials and components of the excavator are directly

bought from local or online stores.

During the implementation, some problems in the design phase have exposed. Therefore,

the design is dynamically adjusted based on the problems found in the prototyping process.

Some critical thinking and problem-solving skills are necessary for the prototyping of the

excavator.

 The mechanical frames of the excavator offer the platform for all the other

electromechanical components, the frames should be stable and maintain proper balance

during the excavation, they also should be lightweight considering the strict weight limit.

As a student project, the cost is also an important consideration in prototyping. The design

and implementation of the excavator with all the functional modules are discussed.

The driving system activates the actuation electromechanical components of the excavator

to perform the desired tasks. The success of the excavator robot not only depends on the

design but also the proper control of the excavator. In the prototyping of the excavator

robotic system, remote control can be used by the operator as a teleoperation technique.

Alternatively, a predefined motion can be assigned to the system controller to be executed

directly. Raspberry Pi 4 OS collects the information about the excavator states and the

surrounding environment and sends it back to the operator on the RPi screen, this is urgent

for the operator to make correct decisions and control the excavator to perform the required

motion.

Once the excavator travels to the proper spot in the excavation area, it switches between

traveling to excavating tasks, once the excavator collects soil in its dumpster in the

excavating task, it stops excavation and switches to the traveling task moving towards the

soil collector, the excavator then switches to the dumping mode to dump the excavated soil

121

into the collector. Finally, our semi-autonomous excavator can perform the tasks of

excavating soil, collecting it in the excavator’s dumpster, and depositing it into the assigned

collector box.

9.2 Future work

One important area of research in robotics is to enable the robot to autonomously its

working environment. The robot requires several capabilities to be autonomous and be able

to operate in an intelligent behavior. For a robot to be fully autonomous, it should have the

capability of gaining information through vision and to imitate tasks without human

assistance. These capabilities can be subdivided to many categories: Robot sensing,

thinking and imitating, motion planning and control.

The manipulator autonomously learns an instructional a mapping function that enables a

robot to select an action given its current state. Learning tasks by imitation means to learn

the robot doing a specific dynamic movement for a desired trajectory that will be generated

by itself through vision or given information about the surrounding environment, this

satisfies by imitate an expert operator for a set of previous tasks, then the robot will gain

experience to instruct novice operators or execute tasks autonomously.

122

Appendices

A. MATLAB and SIMULINK

A.1 Forward kinematics derivation - verification using robotics toolbox:

Figure A. 1: MATLAB live script of the homogenous transformation matrix for each joint.

123

Figure A. 2: MATLAB live script of the forward kinematics.

A.2 Example: verification for forward kinematics with inverse kinematics:

First, compute the Forward kinematics for the desired joint-variables using (Robotics

Toolbox), as Fig. A.3:

Let 𝜽𝟏 = 𝟑𝟎𝒐, 𝜽𝟐 = −𝟑𝟎𝒐, 𝜽𝟑⁡ = −𝟏𝟓𝒐⁡𝒂𝒏𝒅⁡𝜽𝟒 = 𝟑𝟎𝒐

Figure A. 3: Forward kinematics for the given joint variables.

124

Then, verify the angles by substitute 𝑇4
0 in the inverse kinematic function, Fig. A.4:

Figure A. 4: Forward kinematics verification using MATLAB toolbox

Figure (A.4) shows that forward kinematics is verified that we have obtained the same

joint variables

𝜽𝟏 = 𝟑𝟎, 𝜽𝟐 = −𝟑𝟎, 𝜽𝟑⁡ = −𝟏𝟓⁡𝒂𝒏𝒅⁡𝜽𝟒 = 𝟑𝟎

A.3 Using MATLAB with per-hand derived code for verification of inverse

kinematics:

This code is used to verify the Algebraic solution for ⁡𝜽𝟐⁡𝒂𝒏𝒅⁡𝜽𝟑.

Figure A. 5: Re-fined the forward kinematics for Frame (3) wrt Frame (1)

125

Write equations (4.5) and (4.6) in MATLAB, solving for 𝜃2⁡𝑎𝑛𝑑⁡𝜃3 and taking P3x =

63.7199 and P3y = -47.2487 by the forward kinematics shown in Fig. (A.5).

As shown in Fig. (A.6); 𝜽𝟐 =⁡−𝟑𝟎𝒐, 𝒂𝒏𝒅⁡𝜽𝟑 =⁡−𝟏𝟓𝒐 for the specified range of joint

variables in section (4.2.3), and they are same as the previous Toolbox solution.

Figure A. 6: The verified inverse kinematics

A.4 Verification of the jacobian analytically:

Using forward kinematics, as Fig. A.7

Figure A. 7: Forward kinematics using MATLAB

126

Finding the Jacobian same as the previous procedure in (4.16 and 4.17) using MATLAB,

as described in Fig. A.8;

Figure A. 8: Jacobian using MATLAB

127

A.5 Using MATLAB robotics toolbox (verification numerically):

1st solution, for the previous code, substitute the joint variables and lengths of the links

numerically, with 𝜃1 = 90𝑜 , 𝜃2 = 45𝑜 , 𝜃3 = −30𝑜 , 𝜃4 = −45𝑜 , 𝑎1 = 3, 𝑎2 = 45, 𝑎3 =
35⁡𝑎𝑛𝑑⁡𝑎4 = 15𝑐𝑚, see Fig. A.9;

Figure A. 9: Substituting numbers instead of variables

128

2nd solution, verification of the calculated Jacobian matrix (j) in Figure 1.4, using

Robotics Toolbox, as shown in Fig. A.10:

Figure A. 10: Finding Jacobian numerically using Robotics toolbox for the specified variables

For the same joint variables and lengths, the Jacobian is same for the two solutions.

129

A.6 Jacobian's determinate and singularities analysis:

By Finding determinant for each of the Jacobian matrices for equations (5) and (6), for

each scenario:

1st scenario, the determinant of 𝐽1 = 0 at 𝜃3 =⁡𝜃4 = 0, this shown by Fig. A.11,

Figure A. 11: Finding Jacobian 1 using MATLAB

130

2nd scenario, the determinant of 𝐽2 = 0 at 𝜃3 = 0⁡𝑜𝑟⁡𝜃3 =⁡𝜃4 = 0, this shown by Fig. A.12,

Figure A. 12: Finding Jacobian 2 using MATLAB

131

References

[1] A. Stentz, J. Bares, S. Singh and P. Rowe, "A robotic excavator for autonomous truck

loading," Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and

Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190),

Victoria, BC, Canada, 1998, pp. 1885-1893 vol.3, doi: 10.1109/IROS.1998.724871.

[2] Maske, Harshal, et al. "Learning task-based instructional policy for excavator-like

robots." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2018.

[3] Cao, Yuanguo, and Youbai Xie. "Dynamic modeling of the front structure of an

excavator." Nonlinear Dynamics 91.1 (2018): 233-247.

[4] Mahmoud Khaled, Design Implementation And Digital Control of a Robotics Arm.

MINIA UNIVERSITY, 2009.

[5] Siciliano, Bruno, et al. Robotics: modelling, planning and control. Springer Science &

Business Media, 2010.

[6] A. J. Koivo, M. Thoma, E. Kocaoglan, and J. AndradeCetto, "Modelling and control of

excavator dynamics during digging operation," J. Aerosp. Eng., vol. 9, no. 1, pp. 10-18,

1996.

[7] Solazzi, Luigi. "Design of aluminium boom and arm for an excavator." Journal of

Terramechanics 47.4 (2010): 201-207.

[8] Peirson, Brad. "Comparison of specific properties of engineering materials."

Laboratory Module 5 (2005).

[9] Budynas, Richard Gordon, and J. Keith Nisbett. Shigley's mechanical engineering

design. Vol. 8. New York: McGraw-Hill, 2008.

[10] Modern plastics, Delrin, https://modernplastics.com/products/delrin

[11] SOLIDWORKS, SOLIDWORKS Simulation,

https://www.solidworks.com/product/solidworks-simulation

[12] Shetty, D. and Kolk, R.A., 2010. Mechatronics system design. Cengage Learning.

 [13] MBTechworks, Raspberry Pi I2C /SPI /UART Communications,

https://www.mbtechworks.com/hardware/raspberry-pi-UART-SPI-I2C.html

[14] Solomotorcontrollers, DATASHEET – SOLO UNO,

https://www.solomotorcontrollers.com/datasheet-solo-uno/

[15] NORMAN S. NISE, Control System Engineering, sixth edition, Wiley, 2010.

https://modernplastics.com/products/delrin
https://www.solidworks.com/product/solidworks-simulation
https://www.mbtechworks.com/hardware/raspberry-pi-UART-SPI-I2C.html
https://www.solomotorcontrollers.com/datasheet-solo-uno/

132

[16] Pyo, Y., Cho, H., Jung, R. and Lim, T., 2017. ROS. Robot Programming, pp.1-308.

[17] Raimarius Delgado, Bum-Jae You, Byoung Wook Choi, Real-time control

architecture based on Xenomai using ROS packages for a service robot, Journal of Systems

and Software, Volume 151, 2019, Pages 8-19, ISSN 0164-1212

