

College Of Engineering & Technology

Mechanical Engineering Department

Refrigeration & Air Conditioning Engineering

Graduation Project

Mechanical Systems Design for a Green Tower

Project Team:

Al-mutaz Bellah Fayq Altalahma

Shadi Mohammad Masharqa

Zaid Hamza Sanad

Supervisor:

Eng. Kazem Osaily

Submitted to the college of engineering partial fulfillment of the requirement for the degree of bachelor degree in Refrigeration & air Conditioning engineering.

Hebron - Palestine

December, 2015

29340

Abstract

المشروع هو عبارة عن برح تجاري بيني يتضمن العديد من الأنشطة التجارية والادارية والفندقية بالإضافة إلى عنصر النرفيه. حيث يتكون العرج من 19 طابق بمساحة إجمائية تبلغ 20000 م2. ويعتمد تصميمه وتشغيله على الطاقة البديلة والمتجددة لتوفير استهلاك الطاقة.

ويقوم المشروع على عمل الخدمات الميكانيكية وشبكات المياه والصرف الصمحي ونظام تكبيف الهواء. ويشمل أيضها على تصميم نظام إخماد الحريق, والري بو اسطة المياه الرمادية بعد فصلها ومعالجتها.

The project is an Environmental commercial tower includes many of the commercial, administrative and hotel activities in addition to the entertainment element. The tower consists of 19 floors with a total area of 20000m², and depends on its design and run on alternative and renewable energy to provide energy consumption. Includes work in the design of mechanical services of water and sewage networks and air conditioning system provider of energy and the project includes design of fire fighting system, and irrigation system by gray water after separated and processed.

Table of contents

	Page
Dedication	1
Acknowledgment	П
Abstract	Ш
List of Tables	VI
List of figures	VIII
Chapter one:	
INTRODUCTION	1
1.1 Project outline	2
1.2 Scope of project.	
1.3 Project objectives	
1.4 Project benefits	
1.5 Tower description	
1.6 Time table	
Chapter two:	
GREEN BUILDING DESIGN STANDARDS	6
2.1 Introduction	7
2.2 Goals of green building	8
2.3 Energy efficiency	9
2.4 Water efficiency	10
2.5 Regulation and operation	10

Chapter three:

SOLAR ENERGY	14
3.1 Introduction	15
3.2 Solar energy use	
Chapter four:	
AIR CONDITIONING SYSTEM	21
4.1 introduction	22
4.2 Heating and cooling load	22
4.3 Cooling load sources	22
4.4 Heat and human comfort	28
4.5 Cooling load calculations	29
4.6 Heating load calculations	37
4.7 Variable refrigerant volume system (VRV)	38
Chapter five:	
PLUMBING SYSTEM	40
5.1 Plumping system	41
5.2 Water supply distribution	
5,3 Domestic hot water	46
5.4 Plumbing calculation	48
5.5 Manhole calculation	51

5.6 Flood water drainage system52
5.7 Gray water system53
5.8 Gray water calculation
Chapter six:
IRRIGATION SYSTEM DESIGN59
6.1 introduction
6.2 type of irrigation60
6.3 water resources
6.4 irrigation using sprinkler system61
6.5 system design and selection
Chapter seven:
FIREFIGHTING SYSTEM66
7.1 The fire triangle67
7.2 classification of fires
7.3 Types of Firefighting Systems69
Chapter eight :
BUILDING MANAGEMENT SYSTEM73
8.1: Summary
8.2 introduction
8 3 RMS data

8.4 Integration of BMS with other tools	76
8.5 mechanical services	
8.6 hydraulies in MBS	78
8.7 building maintenance BMS green clean	79
8.8 aspects that have been applied from BMS in green tower	80
REFRANCES	84
APPENDEX	85

List of Tables:

Table number	Description	Page number					
Table(1.1)	Time table	4					
Table(4.1)	Thermal resistance & thickness (Ax) for the outside walls	29					
Table(4.2)	inside walls						
Table(4.3) Thermal resistance & thickness (Ax) for the ceiling between two floors							
Table(4,4)	Cooling load for floor No. 12	32					
Table(4.5)	The value of (CLTD)corrected	33					
Table(4.6)	Transmitted heat gains	33					
Table(4.7)	Total cooling load calculation for the tower	36					
Table(4.8)	Heating load for floor No. 12	37					
Table number	Description	Page number					
Table(4.9)	Sample calculation for floor 12	39					
Table(5.1)	Estimating demand fixture unit	47					
Table(5.2)	pipe sizing for black and gray water	49					
Table(5.3)	Gray water manholes table	50					
Table(5.4)	Black water manholes table	51					
Table(6.1)	Spray head, 15' series at 30 PSI, number of heads on each feed line	62					

Table(6.2)	Nozzle, 15' series with 27° trajectory (black)	62
Table(7.1)	Fire hose calculation	70
Table(8.1)	Allocation table of plc process for gray water system	79
Table(8.1)	Allocation table of plc process for irrigation system	80

List of figures:

Table number	Description	Page number				
Figure (2.1)	Benefits of green building	8				
Figure (2.2)	Sun path throughout the year	11				
Figure (2.3)						
Figure (2.4)	Shadow rang	12				
Figure (2.5)	Monthly solar radiation	13				
Figure (2.6)	13					
Figure (3.1)						
Figure (3.2)	The southern façade of the tower	17				
Table number	Description	Page number				
Figure (3.3)	The part of system	19				
Figure (4.1)	Construction of outside wall	29				
Figure (4.2)	Construction of inside wall	30				
Figure (4.3)	Construction of ceiling between two floors	31				
Figure (4.3)	Construction of ceiling between two floors	31				

Figure (5.1)	Channel drain	52
Figure (5.2)	Major gray water sources	54
Figure (5.3)	Sand filter process	56
Figure (6.1)	Rain sensor	61
Figure (6.2)	Control system of irrigation	63
Figure (6,3)	Pump control for irrigation system	64
Figure (7.1)	The fire triangle	66
Figure (7.2)	Fire classification	67
Figure (8.1)	BMS data	74
Figure (8.2)	Integration of BMS	75

CHAPTER ONE: INTRODUCTION

1.1 Project outline:

Chapter one:

Includes an overview about project, project benefits and objectives.

Chapter two:

Includes an overview about green building design standard.

Chapter three:

Includes an overview about solar energy.

Chapter four:

Includes an overview about the cooling and heating systems, and how to calculate cooling load from all sources, and variable refrigerant volume system (VRV).

Chapter five:

Includes an overview about plumping systems, water distribution system (cold and hot water), separation and treatment of gray water.

Chapter six:

Includes overview about irrigation system.

Chapter seven:

Includes overview about firefighting system.

Chapter eight:

Includes overview about building management system.

1.2 Scope of project:

The scope of the project is the design of mechanical systems and environmental design for a green tower located at Bethlehem city including these main topics:

- 1. Overview about the natural energy using.
- 2. Solar energy, design and overview.
- 3. Design of air conditioning system.
- 4. Design and overview about plumping system.

- 5. Design and overview about gray water system.
- 6. Design irrigation system.
- 7. Programming the Irrigation system, and gray water treatment plant by programmable logic controller (PLC).

1.3 Project objectives:

The main objective of the project is to develop mechanical services design in green tower, and the aim objectives are:

- 1. Design the solar energy.
- 2. Design the air conditioning system for all floors.
- 3. Design the domestic water system and design grid of pipes to sewage and drainage system.
- 4. Design the gray water system.
- 5. Design the fire fighting system for tower.
- 6. Programming the irrigation system and gray water plant by programmable logic controller (PLC).
- 7. Design irrigation system.

1.4 Project benefits:

- 1- The main benefit is to fulfill the graduation requirements of Palestine Polytechnic University, and be familiar with all mechanical design of system installed in tower to be ready in working in this field after graduation.
- 2- To be familiar with all mechanical calculation and design of system installed in residential building.
- 3- To be familiar with the different mechanical drawings.
- 4- To be familiar with solar cells design.

1.5 Tower description:

The tower consists of nineteen stories, and the total area of the tower is 20,000 m², it consists of the following departments:

- 1. Barking.
- 2. Games hall for children.
- 3. Bowling and billiard hall.
- 4. Restaurant and offices.
- 5. Learning halls and theaters.

1.6 Time table:

Table (1-1) Time table for the first semester,

								Wee	ck#							
Objective	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Estimate goals of project																
Planning, setting project concepts and goals						1 1 2										
Establishing scientific background and visit engineers																
Studying mechanical services books																
Analyzing data																
HVAC calculations																h
Studying solar cells concept																
Writing report																716
Presentation																

Table (1-2) Time table for second semester.

								Wee	ek#							
Objective	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Set and review goals of project																
Design plumbing system																
Design gray water system																
Design irrigation system																
Design fire fighting system																
Design HVAC system																
Design solar cells system																
Writing documentation																
Printing documentation out																

CHAPTER TWO
Green building design standards

2.1: Introduction:

Green building refers to both a structure and the using of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from sitting to design, construction, operation, maintenance, renovation, and demolition. In other words, green building design involves finding the balance between homebuilding and the sustainable environment. This requires close cooperation of the design team ,the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort.

Leadership in Energy and Environmental Design (LEED) is a set of rating systems for the design, construction, operation, and maintenance of green buildings which was Developed by the U.S. Green Building Council. Currently world green building council is doing research on how green buildings affect health and productivity of their users.

Although new technologies are constantly being developed to complement current practices in creating greener structures, the common objective is that green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by:

- · Efficiently using energy, water, and other resources
- · Protecting occupant health and improving employee productivity
- · Reducing waste, pollution and environmental degradation

A similar concept is natural building, which is usually on a smaller scale and tends to focus on the use of natural materials that are available locally. Other related topics include sustainable design and green architecture. Sustainability may be defined as meeting the needs of present generations without compromising the ability of future generations to meet their needs. Although some green building programs don't address the issue of the retrofitting existing homes, others do, especially through public schemes for energy efficient refurbishment. Green construction principles can easily be applied to retrofit work as well as new construction.

A 2009 report by the U.S. General Services Administration found 12 sustainably designed buildings cost less to operate and have excellent energy performance. In addition, occupants were more satisfied with the overall building than those in typical commercial buildings. These are eco friendly buildings.

2.2: Goals of green building:

Figure (2.1)Benefits of green building.

Green building brings together a vast array of practices, techniques, and skills to reduce and ultimately eliminate the impacts of buildings on the environment and human health. It often emphasizes taking advantage of renewable resources, e.g., using sunlight through passive solar, active solar, and photovoltaic equipment, and using plants and trees through green roofs, rain gardens, and reduction of rainwater run-off. Many other techniques are used, such as using low-impact building materials or using packed gravel or permeable concrete instead of conventional concrete or asphalt to enhance replenishment of ground water.

While the practices or technologies employed in green building are constantly evolving and may differ from region to region, fundamental principles persist from which the method is derived:

- 1- Sitting.
- 2- Structure design efficiency.
- 3- Energy efficiency.
- 4- Water efficiency.
- 5- Materials efficiency.

- 6- Indoor environmental quality enhancement.
- 7- Operations and maintenance optimization.
- 8- Waste and toxics reduction.

The essence of green building is an optimization of one or more of these principles. Also, with the proper synergistic design, individual green building technologies may work together to produce a greater cumulative effect.

On the aesthetic side of green architecture or sustainable design is the philosophy of designing a building that is in harmony with the natural features and resources surrounding the site. There are several key steps in designing sustainable buildings: specify 'green' building materials from local sources, reduce loads, optimize systems, and generate on-site renewable energy.

2.3: Energy efficiency:

Green buildings often include measures for:

- 1- Reduce energy consumption
- 2- Reduce the embodied energy required to extract ,process, transport
- 3- Make less install building materials and operating energy to provide services such as heating and power for equipment.

As high-performance buildings use less operating energy, embodied energy has assumed much greater importance and may make up as much as 30% of the overall life cycle energy consumption.

To reduce operating energy use, designers use details that reduce air leakage through the building envelope (the barrier between conditioned and unconditioned space). They also specify high-performance windows and extra insulation in walls, coilings, and floors. Another strategy, passive solar building design, is often implemented in low energy homes. Designers orient windows and walls and place awnings, porches, and trees to shade windows and roofs during the summer while maximizing solar gain in the winter. In addition, effective window placement, day lighting, can provide more natural light and lessen the need for electric lighting during the day. Solar water heating further reduces energy costs.

Onsite generation of renewable energy through solar power, wind power, hydro power, or biomass can significantly reduce the environmental impact of the building.

2.4: Water efficiency:

Reducing water consumption and protecting water quality are key objectives in green building. One critical issue of water consumption is that in many areas, the demands on the supplying aquifer exceed its ability to replenish itself. To the maximum extent feasible, facilities should increase their dependence on water that is collected, used, purified, and reused on-site. The protection and conservation of water throughout the life of a building may be accomplished by designing for dual plumbing that recycles water in toilet flushing or by using water for washing of the cars (Gray water reuse specification and details in chapter 5). Waste-water may be minimized by utilizing water conserving fixtures such as ultra-low flush toilets and low-flow shower heads. Bidets help eliminate the use of toilet paper, reducing sewer traffic and increasing possibilities of re-using water on-site. Point of use water treatment and heating improves both water quality and energy efficiency while reducing the amount of water in circulation. The use of non-sewage and gray water for on-site use such as site-irrigation will minimize demands on the local aquifer. Large commercial buildings with water and energy efficiency can qualify for an LEED certification.

2.5: Regulation and operation:

As a result of the increased interest in green building concepts and practices, a number of organizations have developed standards, codes and rating systems that let government regulators, building professionals and consumers embrace green building with confidence. In some cases, codes are written so local governments can adopt them as bylaws to reduce the local environmental impact of buildings.

Green huilding rating systems:

- 1- LEED, United States and Canada.
- 2- BREEAM, United Kingdom.
- 3- DGNB, Germany.
- 4- CASBEE, Japan.
- 5- VERDE, Spain.

That rating systems help consumers determine a structure's level of environmental performance. They award credits for optional building features that support green design in categories such as location and maintenance of building site, conservation of water, energy, and building materials, and occupant comfort and health.

Green building codes and standards, such as the International Code Council's draft International Green Construction Code (IGCC), are sets of rules created by standards development organizations that establish minimum requirements for elements of green building such as materials or heating and cooling.

Using simulation software's, and 3D programs to put the project under controlling and to be sure the calculations. Autodesk Ecotect 2011 is program used to put the building under true and actual conditions refer to weather data for the location of building, we get some information to be sure about the contents of the walls and ceiling and ventilation quantities and another data.

Very important thing in green buildings is the direction of this building, especially building which based on electricity generate using cells that generate electricity from sun.

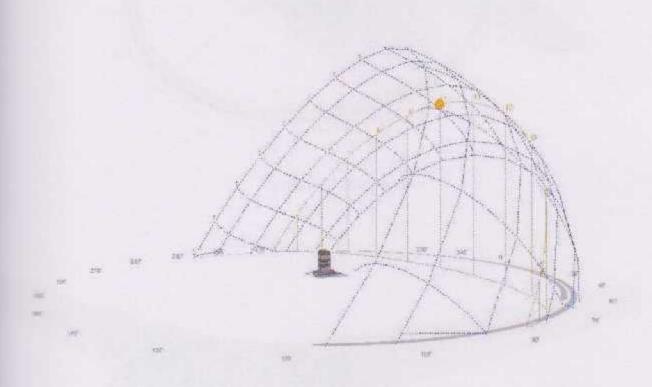


Figure (2.2): Sun path throughout the year

Another tool in Ecotect software is the lighting time and shadow of buildings that used in the project to be useful for loads calculation and for electrical engineers to put them calculations as best as to be power saver, as shown in figure below the shadow range over all the year

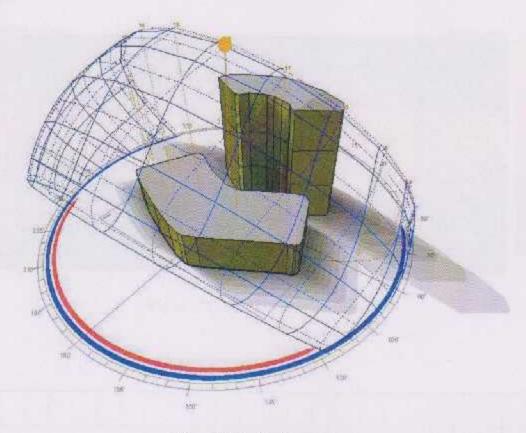


Figure (2.3): Shadow range

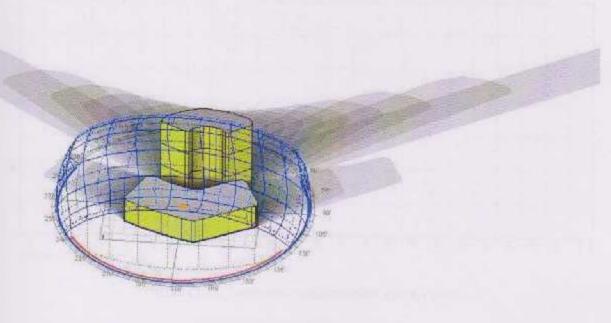


Figure (2.4): Shadow range

Heat transfer from outside walls and due to solar radiation that used in heating and cooling loads calculation is very important, figure exported from Ecotect software represent total monthly solar radiation

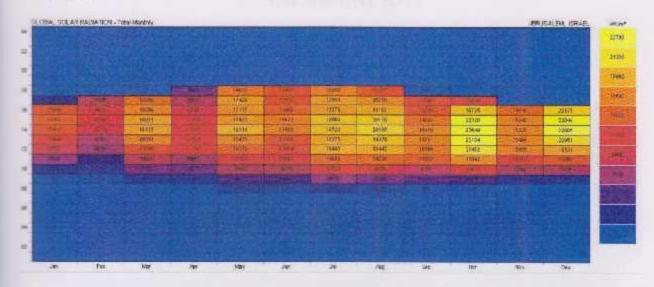


Figure (25): Monthly solar radiation

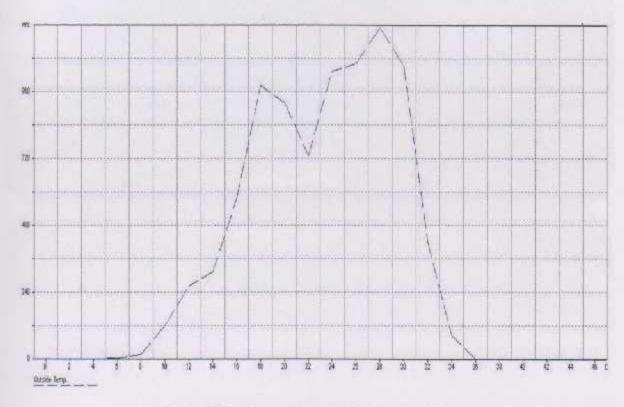


Figure (2.6): Temperature distribution overall year

CHAPTER THREE: SOLAR ENERGY

3.1 Introduction:

Solar energy is one of the largest sources of light and heat on the face of the earth. This energy is distributed on the ground parts by its proximity to the equator, and this line is the area that has the largest share of that energy, Thermal energy generated by the sun's rays utilized by turning them into (electrical energy) by using photovoltaic panels.

3.2 Solar energy use:

- I- Electricity generation.
- 2- Thermal uses (Heating water).

3.2.1 Electricity generation.

There are two ways to generate electricity by solar energy:

- PV cells.
- Thermal conversion of solar radiation.

Note: In the project the way chose is the method of electricity generation via PV cells was adopted.

3.2.1.1 Parts of PV cells system:

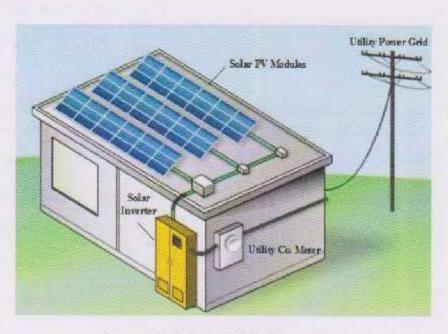


Figure (3.1) Parts of PV cells system.

1-Solar panels:

The solar panels (photovoltaic or PV modules) convert daylight to electricity. A number of modules are connected together to increase the electrical power that can be generated.

PV cells have important advantages:

- 1-Solar cells are characterized as one piece with no moving parts.
- 2- Don't consume any energy.
- 3- Don't pollute the air.
- 4- It has a long life.
- 5- Little maintenance.

Selected PVcells for the system:

HSL 60 POLY (Hanwha Solar). Appendix B- C 46, 47, 48-

2- Solar inverter:

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV)solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off electrical network.

Selected inverter: SUNNY BOY 1600TL.

Appendix B- C49-

3-DC Isolator:

The DC isolator provides a safe means of disconnecting the solar array from the inverter, for example for periodic maintenance. Some inverters have integrated DC isolators.

Selected DC Isolator:

Telergon DC Isolators for Photovoltaic applications, from IPD industrial product.

Model # S518004PS0.

Appendix B- C43,42-

4-Generation meter:

The generation meter accurately counts the number of units of electricity created by the PV system. This is important for the measurement of the Feed-In Tariff revenue.

Selected generation meter: DIN rail mounted electricity meters.

Appendix B- C44-

3.2.1.2 Calculations of the system:

The Rate effective sun hours in Palestine = 5.4 h.

The proposed area of the cells on the southern facade of the tower = $514m^2$

Figure (3.2) The southern facade of the tower.

- Every 1 kWp gives 1600 kWh.
- -kWp: kilowatt-peak, a measure of the peak output of photovoltaic system.
- -Every 1 kWp needs $10m^2$ (this area includes the spaces between the cells).
- -The production of electricity in the system per year = 51.4 kWp = 82240 kWh.
- -The price of electricity produced every year = 50988.8 NIS = 14568.2S.

The cost of the system:

Every 1 kWp equivalent to 1450\$

The total cost of the system in the project = 74530\$

The time required to recover costs- total cost / price of electricity every year

= 5.1 years

3.2.2 Thermal uses (Heating water).

Solar water heating systems use free heat from the sun to warm domestic hot water.

3.2.2.1 Benefits of solar water heating

- Hot water throughout the year. The system works all year round, though it is necessary to heat the water further with a boiler or immersion heater during the winter months.
- Reduced energy bills. Sunlight is free, so once you've paid for the initial installation your hot water costs will be reduced.
- Lower carbon footprint, Solar hot water is a green, renewable heating system and can reduce your carbon dioxide emissions.

3.2.2.2 How does solar water heating systems works?

Solar water heating systems use solar panels, called collectors, fitted to your roof. These collect heat from the sun and use it to heat up water which is stored in a hot water cylinder. A boiler or immersion heater can be used as a back-up to heat the water further to reach the desired temperature. There are two types of solar water heating panels:

- 1- Evacuated tubes.
- 2- Flat plate collectors, which can be fixed on the roof tiles or integrated into the roof.

3.2.2.3 The solar water heating system in the tower:

Solary system: is a forced-circulation, closed-loop system, designed primarily for climates that experience annual and persistent hard-freeze conditions.

The parts of system:

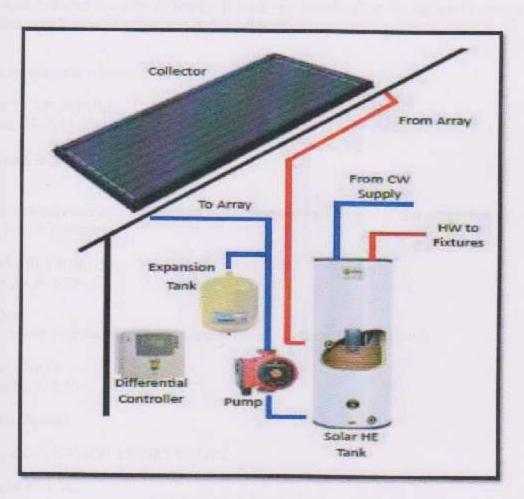


Figure (3.3) The parts of system:

- 1-Solar heater tank: Two tanks where selected:
- Model# SU80-1.
- Capacity 80 GAL.
- Hight 58.750 in.
- Diameter 24,500 in.

Appendix B- C40-

- 2-ExpansionTank: Its used to absorb the increased volume of heated fluids and keeps the system pressure below setting on relief valves.
 - Model # SET-16.
 - -Capacity 4.8-9.2 gpm.

Appendix B- C30-

- 3-Pumps: Are used in a solar system to circulate heat transfer fluid throughout the system allowing solar heat to be transferred and/or collected.
- Two pumps were selected:
- CIRCULATOR PUMP.
- Model # UPS15-58FCLC.

Appendix B- C30-

- 4- Differential controller: Includes an LCD that provides a variety of real time information about system operations.
- -Model # SETR0301U.

Appendix B- C29-

5- Valves:

Have various uses that complete the operations and design of a solar system.

- -Model #50613.
- Appendix B- C30-
- 6- Solar Panels:
- -Select 8 COLLECTOR EMPIRE SERIES.
- -Model # PS/BS21.

Appendix B- C41-

CHAPTER FOUR AIR CONDITIONING SYSTEM

4.1 Introduction:

The main objective of air conditioning is to maintain the environment in enclosed spaces at conditions that induce the feeling of comfort to all occupants of the spaces. This feeling of comfort is influenced by a number of air related parameter which are the temperature inside the conditioned space, humidity, air motion and its speed and the air purity.

The purity of air and its quality include the absence of odors, toxic, and suspended particles, such as dust and dirt.

In selecting a suitable air conditioning system for a particular application, consideration should also be known as following:

- · System constraints: cooling load, zoning requirements, heating and ventilation.
- Architectural constraints: size and appearance of terminal devices, acceptable noise level, space available to house equipment and its location relative to the conditioned space, acceptability of components obtruding into the conditioned space.
- · Financial constraints: capital cost, operating cost, maintenance cost,

4.2 Heating and cooling load:

Heating load: it is in winter and it is the rate at which heat must be added to the space in order to maintain the desired conditions in the space.

Cooling load: it is in summer and it is the rate at which heat must be removed from space in order to maintain the desired conditions in the space.

4.3 Cooling load sources:

The cooling loads for a given space consist of the following heat gains:

- 1- Heat gains that transmitted through building structures such as walls, floors and ceiling that are adjacent to unconditioned spaces. The heat transmitted is caused by temperature difference that exists on both sides of structures.
- 2- Heat gain due to solar effect which includes:
 - Solar radiation transmitted through the glass and absorbed by inside surfaces and furniture.
 - b- Solar radiation absorbed by walls, glass windows, glass doors and roofs that are exposed to solar radiation.
- 3- Sensible and latent heat gains brought in to the space.

4- Sensible heat produced in space by lights, appliances, motor and other miscellaneous heat gains.

5-latent heat produced from cooking, hot baths.

6- Sensible and latent heat produced by occupants.

The heating load sources that affect the air conditioning system design can be made-up of many components, including the follow:

- Heat loss through the exposed areas which consist of the walls, the roofs, windows, doors, and walls between the space and unheated spaces.
- Heat required to warm air infiltrated through cracks of windows and doors, and by opening and closing of doors and windows or to warm mechanical ventilation air to the temperature of the space.
- 3) Domestic hot water load.
- 4) Miscellaneous heat load such as emergency heating loads and safety factor heating load

4.3.1 Solar radiation:

Solar radiation received at the earth's surface on a plane perpendicular to the sun rays may reach at hourly value 900 W/m²

On a clear day. This value of solar radiation intensity occurs when the sun is directly over head. Solar radiation intensity decreases as the suns angle of altitude decreases. The altitude angle is the angle that the sun rays make with horizontal line in a vertical plane.

Time of day and altitude of the location are also factors that affect the direct radiation.

4.3.2 Heat gain through sunlit walls and roofs:

Direct and diffused solar radiation that is absorbed by walls and roofs resulting in raising the temperature of these surfaces. Amount of radiation absorbed by walls and roofs depend upon the time of the day, building orientation, type of wall construction and presence of shading.

The calculation of this type of heat gain can be obtained by using the following relation for the heat transmission through the walls.

$$U = \frac{1}{\sum Rth} \dots (4.1)$$

 \rightarrow Where \mathbf{R}_{th} are the thermal resistances of the various materials $(m^2, {}^{\circ}C/W)$.

The transmitted heating load can be calculated from the relation:

$$Q = U*A*\Delta T (4.2)$$

→ Where:

Q: Heat flow through the walls, ceiling, floor, by conduction (W).

U: Over all heat transfer coefficient $(W/m^2, K)$.

A: is the effective area that heat transmitted through it (m^2) .

 ΔT : The total equivalent temperature difference which take in consideration the increase of wall temperature due to absorption of solar radiation.

The value of CLTD extracted from table A-1 (appendix) needs to be corrected, so that the actual value is found for different cases, and hence it will be called corrected CLTD and can be calculated from the following equation:

(CLTD)corr = (CLTD+LM)K +
$$(25.5-T_i)$$
 + $(T_{0,m} - 29.4)f$ (3.3) Where:

- LM: latitude correction factor which can obtain from table A-2 (appendix) from reference for horizontal and vertical surfaces.
- K: Color adjustment factor such that K=1.0 for dark colored roof, and K=0.5 for permanently light colored roofs.
- (25.5-Ti): a correction factor for indoor design temperature where Ti is the room design temperature °C.
- (T_{o,m} −29.4): A correction factor for outdoor mean temperature.

It is related to the outdoor design temperature to, according to the relation

- DR: The daily temperature range which equal to the difference between the average maximum
 and average minimum temperature for the hottest month of the summer season.
- F: Roof fan factor such that f=1.0 if there is no attic or roof fan & f=1 if there is not an attic or roof fan.

Over all heat transfer coefficient depends on the layers which the building is consist of and the indoor and outdoor convection heat transfer coefficient.

So over all heat transfer coefficient can be calculated by the following equation:

$$U = \frac{1}{\frac{1}{h_{fin}} + \sum \frac{\Delta x}{k_m} + \frac{1}{h_{fout}}} \dots (4.4)$$

→ Where:

U: over all heat transfer coefficient (W/m2 K).

K: conduction heat transfer coefficient (W/m, K).

X: layer thickness (m).Δ

: Indoor convection heat transfer coefficient (W/m2 K).hf in

: Outdoor convection heat transfer coefficient (W/m2, K).hfout

4.3.2 Heat transfer through glass:

Solar radiation which falls on glass has three components which are:

1- Transmitted component:

It represents the largest component, which is transmitted directly into the interior of the building or the space. This component represents about 42 to 87% of incident solar radiation, depending on the glass transmissibility value.

2-Absorbed component:

This component is absorbed by the glass itself and raises its temperature. About 5 to 50% of solar radiation is absorbed by the glass depending on the absorptive value of glass.

3-Reflected component:

This component is reflected by glass to the outside of the building. About 8% of the solar energy is reflected back by the glass.

The amount of solar radiation that can be transmitted through glass depends upon the following factor:

- 1-Type of glass. (Single, double or insulation glass).
- Availability of shading (such as drapes, venetian blinds, construction overhang, wing wall, etc).
- 3-Time of the day.
- 4-Orientation of glass area (north, northeast, east orientation, etc).
- 5-Solar radiation intensity and incident angle.

6-Latitude angle of the location.

4.3.2.1 Transmission heat gain:

The transmitted cooling load can be calculated from the relation:

$$Qtr = A(SHG)(SC)(CLF) \dots (4.5)$$

→Where is:

a) Solar heat factor(SHG):

Is a factor represents the amount of solar energy from table A-3 (appendix).

b) Shading coefficient(SC):

This factor accounts for different shading effects of the glass wall or widow and can be extracted from special tables for single and double glass without inside shading or for single and double glass as well as for insulating glass with internal shading form table A-4-2 (appendix).

c)Cooling load factor (CLF):

Represent effect of the internal walls, floor, and furniture on the instantaneous cooling load, we find it from table A-5-1(appendix) for glass, and from table (Λ -6-1), (Λ -6-2) (appendix) for lights and occupants respectively.

4.3.2.1 Convection heat gain:

The value of the convection heat gain by the glass can be calculated from the equation:

→Where: CLTD is the temperature difference for the glass and can be extracted from table A-7 (appendix) Its designed for inside room temperature of 25.5°C and outside mean temperature of 29.4°C. If Ti and To,m are different from 25.5°C and 29.4°C, then a correction must be added to the value of CLTD.

4.3.3 Heating gain due to equipment:

Sensible and latent heat loads arising from various equipment and appliances that are installed in a conditioned space. The indicated heat dissipation rates from such equipments and appliances should be inclined when the cooling load is estimated. Care must be taken when considering such dissipation rates all sensible or latent or partly sensible and partly latent.

4.3.4 Heating gain due to lights:

Heat gains due to lights are sensible loads. Such loads must be carefully analyzed specially for supermarkets, department stores and other commercial applications that are usually brightly illuminated. The peak lighting heat gains for some applications such as hospitals, restaurants and office will not occur simultaneously with the peak heat gain from other source. This fact should be considered when calculating the peak load for certain application.

The heat gain due to fluorescent lamps is obtained by multiplying the rated voltage of lamp by 1.2 while that for ordinary lamp is obtained from its rated voltage directly.

Lighting intensity differs from one application to another, it ranges from 10 to 30 W/m^2 of floor area for apartments, hospitals, hotels etc. and from 30 to $60 W/m^2$ for class rooms, offices, barbershop and similar application.

These lighting intensities can be used to estimate the heat gain from lights if the exact lighting power is not known.

The heat gain from lights it is not an instantaneous load on the air conditioning equipment. The radiant energy from lights is first observed by walls, floor and furniture of the space causing there temperature to increase with time. As time passes, heat is converted from these surfaces.

This result in a time delay between turning the light on and the energy from the light to have an effect on the cooling load. To accommodate for this fact, the following equation can be used to calculate the heat gain due to the lights.

$$Q_{Lt} = P_{Lt} *A*(F_u*F_b) (CLF)_{Lt}(4.7)$$

→ Where:

PLi: The lamp rated power in watts per m2(60W/m2).

A: Area of zone.

Fu: The fraction of lamps that are in use (Fu=1).

 F_b : The ballast factor that equals to 1.2 for fluorescent lamps and equals to 1.0 for ordinary lamps, $(F_b=1.2)$.

(CLF)_{Lt}: The light cooling load factor from table A-6-1(appendix) 10 hours turned on and 10 hours of operation, CLF=0.85.

4.4 Heat and human comfort

The indoor design requirement are chosen to meet human body needs, so human body feeling with relax under known condition of temperature and relative humidity, in order to know these conditions of comfort it is very essential to understand the principle of heat transfer and body temperature.

The normal body temperature is 37.2°C which is mostly higher than ambient temperature thus heat is transferred from the human body to ambient air by the difference in temperature. For reaching equilibrium the human body must generate heat equal to the heat loss by the body, the following equation describes the heat balance:

$$M-P = E+R+C+S \dots (4.8)$$

Where:

M: metabolic rate.

P: mechanical work done by the body.

E: rate of total evaporation loss.

R: is the rate of heat dissipated by radiation from the body.

C: is the rate of heat dissipated by convection from the body.

S: rate of heat storage of human body.

The amount of heat generated by the body depends on the type of personals activity, this heat is produced by metabolizing the food we cat, the process is known as metabolism, 1 met = seated quiet person (100 W if body surface area is 1.7m^2).

4.5 Cooling load calculations:

4.5.1 Over all heat transfer coefficient for various sections in the tower:

1) Calculation of overall heat transfer coefficient for outside walls:

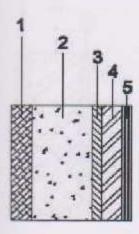


Figure (4.1) Construction of outside wall.

Table (4.1) The thermal resistance & thickness (Δx) for the outside walls.

Layer#	material	ΔX(m)	Rth(m2.°C/W)
	Inside air film		0.12
1	Stone	0.07	0.041
2	Concrete	0.2	0.141
3	Polypropylene	0.03	0.75
4	Cement brick	0.07	0.078
5	plaster	0.03	0.025
	outside air film		0.06
	U=0.402V	V/m ² . C	

$$U = \frac{1}{\frac{1}{h_{f in}} + \sum \frac{\Delta x}{k_{m}} + \frac{1}{h_{f out}}} = \frac{1}{0.12 + 0.041 + 1.41 + 0.75 + 0.078 + 0.025 + 0.06} = 0.402 \text{W/m}^{2}.\text{C}$$

2) Calculation of overall heat transfer coefficient for inside walls:

Figure (4.2) Construction of inside wall.

Table (4.2) The thermal resistance & thickness (Δx) for the inside walls.

Layer#	material	ΔX(m)	Rth(m ² .°C/W)
	Inside air film		0.12
1	plaster	0.03	0.025
2	block	0.1	0.192
3	plaster	0.03	0.025
	inside air film		0.12
	U=2.07W	7/m². C	

3) Calculation of overall heat transfer coefficient for ceiling between two floors:

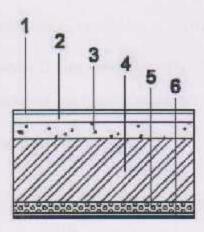


Figure (4.3) Construction of ceiling between two floors.

Table (4.3) The thermal resistance & thickness (Ax) for the ceiling between two floors.

Layer#	material	ΔX(m)	Rth(m2.°C/W)
	Inside air film		0.12
1	tiles	0.01	0.0083
2	sand	0.1	0.33
3	concert	0.25	0.029
4	block	0.2	0.21
5	polypropylene	0.03	0.75
6	plaster	0.03	0.025
	outside air film		0.12
	U-0.63W	//m². C	

4.5.2. Sample calculation for Floor No. 12:

Inside Design Condition: $T_1 = 20$ °C $\phi = 50\%$

Outside Design Condition: $T_0 = 30^{\circ}\text{C}$, $\phi = 53\%$

Table A-9 and figure 1 (appendix).

Cooling load:

Table (4.4) Cooling load for floor No.12.

	Area (m ²)	U (W/m ² ,C)	(Ti - To) C	Q Loss (kW
Walls			(-, -, -, -, -, -, -, -, -, -, -, -, -, -	V Loss (R VI
S-Wall	102.6	0.402	10	0.485
E-Wall	46.5	0.402	10	0.187
W-Wall	46.5	0.402	10	0.187
N-Wall	39.2	0.402	10	0.157
	11.6	0.402	12	0,056
	175.6	0.402	6.667	0.422
	27.6	0.402	8	0.089
	63.6	0.402	2	0.051
Ceiling				30,000.0
Ceiling	494.5	0.63	0	0
Floor				
O-Floor	153,7	0.63	10	0.968
I-Floor	340.8	0.63	0	0
Windows				
S	20.34	3.2	10	0.651
E	27.9	3.2	10	0.893
W	27.9	3.2	10	0.893
N	8.4	3.2	12	0.323
	16	3.2	10	0.512
Doors				
North	4	3	2	0.024
	8	1.468	10	0.117
	3,6	1.468	6.667	0.035
			Q total =	3.05

4.5.2.1 Calculation of the value of (CLTD) corrected:

Table (4.5) the value of (CLTD) corrected.

Surface	U (W/m².°C).	Area (m²)	CLTD (C)	LM	CLTD corr.	Q (kW)
E-wall	0.402	74.4	18	0	18.25	0.546
W-wall	0.402	74.4	23	0	23,25	0.695
N-wall	0.402	59.87	11	0.5	11.75	0.283
S-wall	0.402	114.75	16	-1.6	14.65	0.676
E-Glass	3.2	27.9	2	0	2.25	0.201
W-Glass	3.2	27.9	2	0	2.25	0.201
N-Glass	3.2	10.98	2	0.5	2.75	0.097
S-Glass	3.2	17.64	2	-1.6	0.65	0.037
					Total =	2.73

4.5.2.2 Calculation of transmitted heat gains:

Table (4.6) transmitted heat gains.

Surface	Area (m²)	SHG	SC	CLF	Q Loss (kW)
N-Glass	16	126	0.57	0.18	0.207
S-Glass	15.84	227	0.57	0.57	1.168
E-Glass	27.9	678	0.57	0.24	2.588
W-Glass	27.9	678	0.57	0.1	1.078

4.5.2.3 Cooling load from occupancy:

There is latent heat & sensible heat from people:

For each person:

From table (A-8), (appendix)

 Q_s per person = 70 W/person.

Q₁, per person = 44 W/person

Sensible heat gain:

Qs = No. of person * Qs per person * CI.Focc [W] (3.9)

CLF_{occ}: Cooling factor for occupants from Table A-6-2(appendix).

Latent heat gain:

QL = No. of person * QL per person (4.10)

total heat gain from people (latent heat & sensible heat):

$$Qt = Q_S + Q_L....(4.11)$$

=7795.2 + 4400 = 12195.2 W

4.5.2.4 Cooling load from ventilation:

$$Q = \frac{N \times V \times \Delta h}{3600 \times v_0} \dots (4.12)$$

· 100 persons in the floor

N: number of room air change per hour.

V: volume of room.

vu: Specific volume for outside air.

$$\phi_1 = 50\%$$

Table A-10 and Figure1 (appendix).

From psychometric chart:

 $h_{in} = 39 \text{ kJ/kg dry air.}$

h out = 67.7 kJ/kg dry air.

= $0.84 \text{ m}^3/\text{kg}$ dry airv_{in}

= $0.878 \text{ m}^3/\text{kg} \text{ dry air} v_o$

$$Q = \frac{1.5 \times 2.75 \times 494.5 \times (67.7 - 39)}{3600 \times 0.878} \times 1000 = 18.52 \text{ kW}$$

4.5.2.5 Cooling load from infiltration:

The air is leaking because of passing air through walls and around the doors and it has sensible heat, in large buildings that use central air-conditioning system usually use the amount of air required for ventilation instead of leak air in infiltration as treated in this project.

About infiltration calculations is given by [just equations explain]:

$$Q = m * \Delta H$$

$$\dot{m} = \frac{v}{v}$$
.

V = (number of air change/hour)*volume

$$h=h_i-h_o\Delta$$

Where:

m, : Is the mass flow rate of air due to ventilation.

 \hat{V}_{v} : Is the volumetric flow rate of air due to ventilation.

 v_n : Is the specific volume at outside condition.

4.5.2.5 Total cooling load calculation for the tower:

Table (4.7) Total cooling load calculation for the tower.

# Floor	Cooling Load in [kW]
-2	0
-1	0
GF	255.75
THE PAR	260.27
2	77.33
3	54.94
4	54,94
5	54.94
6	37.83
7	37.83
8	54,94
9	54.27
10	37,94
LI.	37.86
12	54.94
13	54,94
14	54.94
15	41.35
16	31.75
17	0
QTotal	1256.76

4.6 Heating load calculations:

Inside Design Condition: T_i =20⁴C ,φ =50%

Outside Design Condition: To =4.7°C, o =71.1 %

Table (A-9), (A-10) and figure1 (appendix).

Table (4.8) heating load for floor No.12.

	Area (m²)	U (W/m ² .C)	(Ti - To) C	Q Loss (kW)
Walls	11-17-18-1			
S-Wall	102.6	0.402	15.3	0.631
E-Wall	46.5	0.402	15.3	0.286
W-Wall	46.5	0.402	15.3	0.286
N-Wall	39.2	0.402	15.3	0.241
	11.6	0.402	12	0.065
	175.6	0.402	6.667	0,471
	27.6	0,402	8	0.089
	63.6	0.402	2	0.051
Ceiling				
Ceiling	494.5	0.63	0	0
Floor				
O-Floor	153.7	0.63	15.3	1.482
I-Floor	340.8	0.63	0	0
Windows				
S	20.34	3.2	15.3	0.996
E	27.9	3.2	15.3	1,366
W	27.9	3.2	15.3	1.366
N	8.4	3.2	15.3	0.411
	16	3.2	15.3	0.783
Doors				1
Door	4	3	2	0.024
North	8	1.468	15.3	0.180
	3.6	1.468	6,667	0.035
Ventilation		-	-	18.52
			Q total =	27.274

4.7 Variable refrigerant volume system (VRV).

4.7.1 Introduction about VRV:

VRV is variable control of capacity by inverter, refrigerant volume can be controlled or modulating by electronic expansion valve, VRV system can control each zone alone with regard to other spaces, a variation of this system, often referred to as a multi split, includes multiple indoor units connected to a single condensing unit.

This system also ductless which means heat is transferred to or from the space directly by circulating refrigerant to evaporators located near or within the conditioned space. In contrast, conventional systems transfer heat from the space to the refrigerant by circulating air (in ducted systems) or water (in chillers) throughout the building.

4.7.2 VRV benefits

VRV systems have several key benefits, including:

Installation advantages. Chillers often require cranes for installation, but VRF systems
are light weight and modular. Each module can be transported easily and fits into a
standard clevator. Multiples of these modules can be used to achieve cooling capacities
of hundreds of tons. Each module (or set of two) is an independent refrigerant loop, but
they are controlled by a common control system.

An additional installation advantage is that the piping connections between outdoor and indoor unit have total length of (1000 m), which is make the system applicable in large and higher buildings, and the number of indoor unit that connected to one outdoor unit reaches to (64).

Maintenance and commissioning

VRV system with their standardized configurations and sophisticated electronic controls are aiming toward near plug-and-play commissioning.

Because they are DX systems, maintenance costs for a VRV should be lower than for water-cooled, chillers, so water treatment issues are avoided. Normal maintenance for a VRV, similar to that of any DX system, consists mainly of changing filters and cleaning coils.

Comfort. Many zones are possible, each with individual set point control. Because VRF systems use variable speed compressors with wide capacity modulations capability, they can maintain precise temperature control, generally within ± 1 °F (± 0.06 °C), according to manufactures' literature.

Energy efficiency, the energy efficiency of VRV systems derives from several factors. The VRV essentially eliminates duct losses, which are often estimated to be between 10% to 20% of total airflow on a ducted system. VRV systems typically include two to

three compressors, one of each is variable speed, in each condensing unit, enabling wide capacity modulation. This approach yields high part-load efficiency, which translates into high seasonal energy efficiency, because, because HVAC systems typically spend most of their operating hours in the range of 40% to 80% of maximum capacity, so through using inverter technology and control of each zone separately the operating cost be lower with using modulating valve that control the amount of flowing refrigerant with changing load.

4.7.3 Applications

VRV systems are generally best suited to buildings with diverse, multiple zones requiring individual control, such as office building, hospitals, or hotels a VRV system does not compete well with roof top systems in a large low-rise building such as a big box retail store. Although VRF heat pumps operate at ambient temperatures as low as 0 °F (-18 °C), as in all heat pumps, their efficiency drops off considerably at low temperatures, so they are less cost effective compared to gas heating in very cold climates.

4.7.4 Sample calculation:

For floor 12, cooling capacity 54.93 kW.

Table(4.9) Sample calculation for floor 12.

Unit type	No. of model	No. of units	Cooling capacity (kW)	Total cooling capacity (kW)
Wall mounted unit	FXAQ25P	2	2.8	5.6
Wall mounted unit	FXAQ20P	8	2.2	17.6
Wall mounted unit	FXAQ50P	1	5.6	5.6
Round flow cassette	FXFQ63A	2	7.1	14.2
Round flow cassette	FXFQ32A	3	3.6	10.8

- Appendix B C.14, C.19
- Refnet header (branch kit), model number KHRP26M33H, appendix B-C.17
- Refnet joint (branch kit), model number KHRP25M33T, appendix B-C.18
- MAX-Fan, fan model 10" MAX, flow 920 cfm, length 8 1/2". appendix B C.7, C.6
- grill 15×22.5 cm. appendix B-C.12, C.13
- Fixable duct appendix B-C.11

CHAPTER FIVE PLUMBING SYSTEM

5.1 Plumbing system:

Plumbing: is the art of installing in buildings the pipes, fixtures and other apparatus for bringing in the water supply and removing liquid and water-carried wastes.

Plumbing fixture: are receptacles intended to receive and discharge water, liquid or water carried wastes into a drainage system with which they are connected.

Minimum plumbing facilities:

All code state the minimum plumbing facilities that are required in each building types.

Hydraulics: hydraulics is study of the physical principals that govern behavior of liquid at rest and motion there are two separate and distinct types of liquid flows with which were concerned:

- -Flow in closed pressurized system: a system that is now here open to the atmosphere and operates above atmospheric pressure. This is the type of flow that occurs in domestic water systems:
- I- Cold water system.
- 2- Hot water system.
- -Flow occurs in all drainage systems (gravity flow)
- 1- Sanitary drainage system.
- 2- Storm drainage system.

This type of flow (gravity flow) is caused simply by the slope of pipe containing the liquid These systems are open to the atmospheric the pipes containing the liquid in gravity flow almost always run only partially full (as compared to completely full in pressurized systems).

Static pressure:

Static pressure is caused by the weight of water above any point the system.

P=F/A=W/A.

W: weight.

A: area.

5.1.1 Plumbing materials:

The knowledge of plumbing materials is necessary for the proper design of efficient safe, reliable and economical plumbing systems.

All materials used in plumbing systems should meet the requirements of at least one of the standard related to this topic.

Piping materials and standard fittings:

- 1- Ferrous metal pipe (iron steel).
- 2- Nonferrous metallic pipe (copper, brass).
- 3- Plastic pipe:

ABS (acrylonitrile butadiene system)

PE (poly ethylene)

PVC (polyvinyl chloride)

CPVC (chlorinated polyvinyl chloride)

4- Nonmetallic pipe other than plastic.

Vitrified clay (term cotta)

Asbestos cement

Concrete pipe

5- Joints between dissimilar.

Thermal expansion:

For hot water and stream piping, the problem of thermal expansion is important especially in high rise building or in structures with long horizontal runs due to temperature difference, the length of pipe expands depends on the pipe type, expansion joints and loops are installed every soft depending on pipe size lusts the expansion coefficients and typical expansions for common piping materials.

5.2 Water supply, distribution:

There are two basic types of water distribution systems for building:

- Up feed distribution system.
- 2- Down feed distribution system.
 - Up feed distribution system:

There are two methods commonly used for up feed distribution system:

- 1- The supply of water for the building is received from a public street main (usually 35 psi for residential structures, and about 50 psi for other buildings)
- Private water supply enters into a pneumatic tank (pressurized tank) and is pressurized from approximately 35 to 60 psi.

- Hydro-Pneumatic tank sizing and selection:

Sizing:

Step 1:

1- Pump delivery rate: 130.13 gpm

2- Desired minimum pump run time: 2 minutes

3- Number of gallons = $130.13 \times 2 = 260.26$ gallon

Step 2:

1- Maximum drawdown required - 260.26

Minimum system pressure (pump cut in) = 57.85 psi

Maximum system pressure (pump cut out) = 65.1 psi

Air pre-charge pressure = 59 psi

2- From table # in appendix drawdown factor = 0.01

3- The minimum total volume required:

V = 260.26/0.01 = 2602.6 gallon

Selection:

ASME bladder type hydro-pneumatic tank

Model number JOPR-22-024

Tank volume - 2640 gallon

Diameter = 72 in

Over head = 164 in

System connection = 2 1/2"

Weight = 2211 kg

Appendix B-C.49,

Down feed distribution system:

The water from the gravity tank on the roof serves the floors below by down feed distribution (gravity) system.

Minimum press required on the top floor is usually is 15 psi (for flues valve), and max press on the lowest floor should not exceed 50 psi, otherwise pressure-reading values are used to reduce the pressure.

Zoning multistory building:

In a multistory building it is logical and economical to limit the height of the water zone to 15 stories each, for example a 45 story building can be divided into three zones.

Flow pressure: the pressure available at the fixtures when the outlet is wide open it must be equal or exceed the minimum fixture pressure.

In adequate pressure: the pressure is the said to be inadequate when the city main pressure is insufficient to provide the required minimum flow pressure. In this case a pressurized (pneumatic) tank or and over roof tank (gravity tank) is to used.

For the flow condition

Main pressure = static head + friction head + flow pressure.

5.2.1 Water service sizing:

Wsfu: water supply fixture unit (wsfu) it is used to calculate the probable maximum water demand (max requirement of water for building).

This wsfu technique is used and becomes more accurate as the number of fixture increase because the system is based on diversity between fixture in use.

water supply fixture unit: technique should never be applied installations with only a few fixture, because in such installations, the additional use of single fixture can drastically change the total usage pattern.

In this case, i.e. for small installation such as residences and small stores use the unite of bathroom groups and converted to gpm plus individual fixture flow rates (in gpm).

5.2.2 Water pipe sizing:

- 1- By friction head loss.
- 2- By velocity limitation.

Water pipe sizing by friction head loss:

The procedure is as follows:

-Step 1: draw rise (plumbing section). On this riser show:

- Floor to floor heights.
- Run out distance to farthest fixture on each floor.
- Lengths of piping from service point to the floor take off points.
- -Step 2: show the wsfu for each fixture and fixture unit total on each pipe run out. Use separate fixture units for hot and cold water where applicable.
- -Step 3: total fixture units in each branch of the system, show both hot and cold water fixture units. (It is understood that hot water pipe sizing will require a separate diagram and calculation), add the continuous water loads.
- -Step 4: show source pressure (minimum) and the minimum flow pressure requires of the most remote outlets.
- -Step 5: determine the pressure available for friction head loss from the service point to the final outlet.
- -Step 6: determine the required pipe size in each section using the friction head loss data calculated in step 5 and friction head charts. Section is normally based on uniform friction head loss per foot throughout and maximum water velocity usually 8fps, except that branches feeding quick closing devices such as flush values should be limited about 4 fps to avoid water hammer.

5.2.3 Water pipe sizing by velocity limitation:

As said before the water velocity in the piping system in building is not preferred to exceed 8 fps. Outside building it may exceed 8 fps.

Velocity of water for sudden open (flush values, etc...)<4 fps for building where available water pressure is more than adequate to supply all the fixture, where exists a simplified pipe sizing method based on water velocity considerations.

This method is normally applicable to all private residences, multiple residences and commercial and industrial building up to three stories in height,

To determine the method applicability, a rapid pressure calculation is made. If this calculation shows that pressure is adequate, use the following procedure:

-Step 1: prepare a building riser diagram show all fixture loads in wsfu and gpm in each pipe section include all continuous loads in gpm figures.

- -Step 2: identify all branch piping that feeds quick-closing devices such as flush values, solenoid values (as in clothes washers) and self-closing faucets, the velocity in these branch pipes must be limited to 4 fps to avoid water hammer.
- -Step 3: size all individual fixture branches according to the code minimum requirements.
- -Step 4: size all other parts of the piping system in accordance with water velocity limitation for the type of piping selected.

5.3 Domestic hot water:

Almost all plumbing fixture except flush-type unit (closet bowls and urinals) require hot water as well as cold.

The usual point of use temperatures are:

Lavatories, showers and tubes: (35-40 °C)

Residential dishwashing and laundry: (50-60 °C).

Commercial and institutional kitchens: (60 °C).

Commercial and institutional laundries: (80 °C).

Sanitizing use

Note:

That these are fixture water temperatures depending on the design and length of the supply piping from the hot water heater, the water heater outlet temperature will be 5 to 20 F higher than fixture temperature to compensate for temperature loss in the supply piping.

Note:

Water heating system is designed to provide hot water at the minimum required temperature because:

- 1- Lower the heat loss in piping.
- 2- Slower scale formation in piping.
- 3- Avoidance,

5.3.1 Types of hot water heaters:

- 1- Instantaneous water heater:
 - a. Atmore
 - b. Gas boiler

2- Tank type water heater

3-

Instantaneous water heater:

When hot water faucet opens or other fixture demands hot water they are referred to as tank less heaters because they do not use any sort of storage tank, should be large enough to provide maximum hot water demand immediately at required temperature.

Tank type water heaters: are the most common used units, their advantages are they makes or provide large quantity of heated water available up on demand.

Circulating system are usually provided when the piping run is about 100 ft long.

- 1- Thermos phone circulation system (the taller the building the better the thermo siphon).
- 2- Forced circulation system (low and long building).

3-

5.3.2 Sizing of hot water boiler:

Sample calculation for boiler capacity (3rd floor):

Number of person = 50 person.

Daly consumption = number of persons * hot water per person

Storage capacity-daily consumption * storage capacity portion of daily use

5.4 Plumbing calculation:

Table (5.1) Estimating demand fixture unit:

From table (P-2), estimate fixture unit quantity for each fixture

Tlans	Tituta and	F	U	
Floor	Fixtures	CW	HW	
-2	0	0	17.	
-1	6 WC	60		
-1	6 LAV	21		
	10 WC	100		
GF	10 LAV	20	-	
	1 KS	4		
1	4 WC	40	1000	
4	9 LAV	18		E
	4 WC	40		ste
2	9 LAV	18	-	8
	2 KS	8		sec
3	4 WC	40		Up feed system
Ž.	9 LAV	18	- 5	0
4	4 WC	40		
**	9 LAV	18	(A.E.)	
5	4 WC	40		
3	9 LAV	18		
	2 WC	40		
6	6 LAV	12	25	
	4 SH	16		
	2 WC	40		
7	6 LAV	12		
	4 SH	16		
8	4 WC	40	0	
В	9 LAV	13.5	13.5	7
9	4 WC	40	0	own fee
2	9 LAV	13.5	13.5	5 t
	4 WC	40	0	Down feed
10	8 LAV	12	12	
	2 KS	6	6	

Floor	Fixtures	FL	J -
1001	Fixtures	CW	HW
11	4 WC	40	0
11	9 LAV	13.5	13.5
	4 WC	40	- 0
12	9 LAV	13.5	13.5
	1 KS	3	3
	4 WC	40	0
13	9 LAV	13.5	13.5
	1 KS	4	3
	4 WC	40	0
14	9 LAV	13.5	13.5
	1 KS	3	3
	4 WC	40	0
15	9 LAV	13.5	13.5
	1 KS	3	3
	2 WC	40	0
16	4 LAV	6	6
	2 KS	6	6
17	0	0	0
	Total	1186.25	372

-The maximum instantaneous cold water demand is = 1186.25 FU, from table (P-1) by interpolation: 1186.25 = 234.39 gpm.

-The maximum instantaneous hot water demand is = 372 FU, from table (P-1) by interpolation: 372 = 120.8 gpm.

Where:

WC: water closet

LAV: lavatory

KS: kitchen sink

Table (5.2) Pipe sizing for black and gray water.

From table (P-3), estimate pipes sizes for horizontal pipes and vertical pipes (stacks)

		Black water			Gray water	
Floor No.	FU	Horizontal pipe diameter	Vertical pipe diameter	FU	Horizontal pipe diameter	Vertical pipe diameter
16	20	4"	4"	20	4"	4"
15	40	4"	4"	31	4"	4"
14	40	4"	4"	31	4"	4"
13	40	4"	4"	31	4"	4"
12	40	4"	4"	27	4"	4"
11	40	4"	4"	32	4"	4"
10	40	4"	4"	27	4"	4"
9	40	4"	4"	27	4"	4"
8	40	4"	4"	39	4"	4"
7	40	4"	4"	39	4"	4"
6	40	4"	4"	27	4"	4"
5	40	4"	4"	27	4"	4"
4	40	4"	4"	27	4"	4"
3	40	4"	4"	27	4"	4"
2	40	4"	6"	27	4"	4"
1	40	4"	6"	27	4"	4"
GF	120	4"	6"	96	4"	4"
			6"			6"

5.5 Manhole calculation:

Sample calculation - gray water manholes calculations:

-type of cover manhole: cast iron, 8 ton.

The depth of the first manhole (60 cm) and the calculation of the second manhole according to it and so on.

For manhole 1:

Top level = 0.0 m

Depth = 0.6m

Outlet level = top level - depth = 0.0 - 0.6 = -0.6m

For manhole 2:

The distance between manhole 1 and manhole 2 is 5.5m, depth of manhole 2 is:

Depth = (distance*slope) + depth of manhole + 5 cm

Depth = 73 cm

Outlet of manhole 2 = top level - depth of manhole 2 = 0.0 - 73 = -73 cm

Invert level of manhole 2 = outlet of manhole 2 + 5 cm - -6 cm

Table (5.3) Gray water manholes table:

Manhole NO.	Top level (m)	Invert level (m)	Outlet level (m)	Depth (m)	Diameter (m)
1	0.0	-0.55	-0.6	0.60	0.60
2	0.0	-0.60	-0.75	0.75	0.60
3	0.0	-0.90	-0.95	0.95	0.60
4	0.0	-0.55	-0.6	0.60	0.60
5	0.0	-1,10	-1.15	1.15	0.80
6	-2	-3.45	-3.5	1.30	0.80

Table (5.4) Black water manholes table:

Manhole NO.	Top level (m)	Invert level (m)	Outlet level (m)	Depth (m)	Diameter (m)	
1	0.0	-0.55	-0.60	0.60	0.60	
2	0.0	-0.75 -0.95	-0.80	0.80	0.60	
3	0.0			1.00		
4	0.0	-1.15	-1,20	1.20	0.80	
5	0.0	-1.35	-1.40	1.30	0.80	
6	0.0	-1.55	-1.60	1.40	0.80	
7	0.0	-1.75	-1.80	1.60	1.00	
8	0.0	-1.95	-2.00	1.80	1.00	
9	0.0	-2.15	-2.20	2.00	1.00	

5.6 Flood water drainage system:

System consists of drainage network on the floors below the zero level, System works on water drainage, especially the Floodwaters.

5.6.1 Parts of the system:

Figure 5.1 Channel drain.

1- Channel drain:

Type: 12" Pro Series Channel™ Drains, appendix B-c20-

2-Pumps:

A-Two submersible pumps.

-Type: WILO.

-Model: FA15.52-260E.

appendix B-c21-

B-Two submersible pumps.

-Type: WILO.

-Model: MTS40E26.15/15.

appendix B-c21-

3- Pipes:

-U.P.V.C (4", 6")

5.7 Gray water:

Grey water is all wastewater that is discharged from a house, excluding black water (toilet water). This includes water from showers, bathtubs, sinks, kitchen, dishwashers, laundry tubs, and washing machines (Figure 1). It commonly contains soap, shampoo, toothpaste, food scraps, cooking oils, detergents and hair. Grey water makes up the largest proportion of the total wastewater flow from households in terms of volume. Typically, 50-80% of the household wastewater is grey water. If a composting toilet is also used, then 100% of the household wastewater is grey water.

Not all grey water is equally "grey". Kitchen sink water laden with food solids and laundry water that has been used to wash diapers are more heavily contaminated than grey water from showers and bathroom sinks. Therefore, different grey water flows may require different treatment methods that would render the water suitable for reuse.

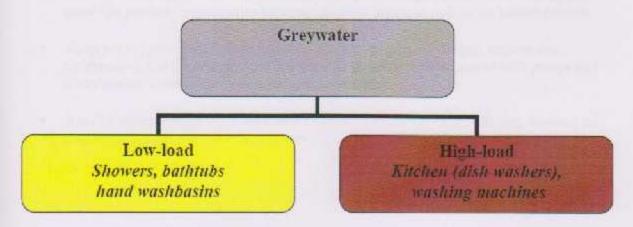


Figure (5.2)Major gray water sources.

5.7.1 Benefits of Gray water:

Reusing gray water is an important component of sustainable water practices. There are many benefits of using gray water instead of potable water for irrigation.

- Decrease potable water use by 16 to 40 percent, depending on the site.
- · Decrease water and wastewater utility bills.
- Diversify the City's water portfolio and provide an alternate source of Irrigation water, reserving treated potable water for high-quality water Needs.
- Reduce the energy (approximately 2 watt-hours per gallon of water) and Chemicals needed to treat wastewater.

Another benefit of using gray water is that it connects us to our water supply, helping us understand where our water comes from and where it goes. Becoming conscious of our water supply encourages healthier product choices and engagement with our landscape. By reusing household gray water, we preserve water resources for other living things. In concert with waterwise landscaping, rainwater harvesting, and conservation, using gray water as a resource helps reduce dependency on imported water and protects watersheds.

5.7.2 Gray water Basics:

Gray water is a unique source of water and must be used differently from potable water and rainwater. These are some basic guidelines for residential gray water systems:

- Do not store gray water more than 24 hours. If you store gray water, the nutrients in it start to break down and create bad odors.
- Minimize contact with gray water. Gray water can contain pathogens. All systems must be designed so that water soaks into the ground and is not accessible to contact by people or animals.
- Infiltrate gray water into the ground; do not allow it to pool or run off. You'll need to
 know how fast water soaks into your soil to properly design your system. Pooling gray
 water can provide opportunities for mosquitoes to breed, as well as for human contact.
- Keep your system as simple as possible. Simple systems last longer, require less
 maintenance, use less energy, and cost less. Keep in mind that systems with pumps and
 filters require more commitment and regular maintenance.
- Install a diverter valve at a convenient location to allow for easy switching between the gray water system and the sewer system.

5.7.3 Pumped Systems:

In pumped systems, gray water is directed to a holding tank for temporary storage before being pumped to the landscape. If the system is to be used for drip irrigation, the gray water must be filtered before it reaches the drip emitters.

5.7.3.1 Pumps used in the system:

- 1- Pumps used in the case of treatment:
- Selected pump A: VersaFlo® TP100.appendix B-c26-
- Selected pump D : (CR, CRN64). appendix B-c27-
- 2- Pump used in the black flush system:
- Selected pump B: VersaFlo® TP100, appendix B-c26-
- 3- Pump used to drain gray water to manholes:
- Selected pump C :(CR, CRN64), appendix B-c27-
- 4-Water distributions pump on irrigation networks:
- Selected pump C :(CR, CRN64). appendix B-c27-

5.7.4 Sand Filter:

5.7.4.1Basic of operation filters:

- 1-Normal working conditions are obtained when headloss is less than 0.3 bar (5 psi) with clean filter.
- 2-If headloss exceeds 0.3 bar (5 psi) filter is either partially clogged or operating under an excessive flow rate.
- 3-Backflush the filter at the beginning and at the end of irrigation. Chlorinate before end of irrigation, as necessary.
- 4- Backflush filter when headloss increases by 0.3 0.5 bar (4.5 7.5 psi) above headloss of clean filter, or every 3 hours, whichever comes first.

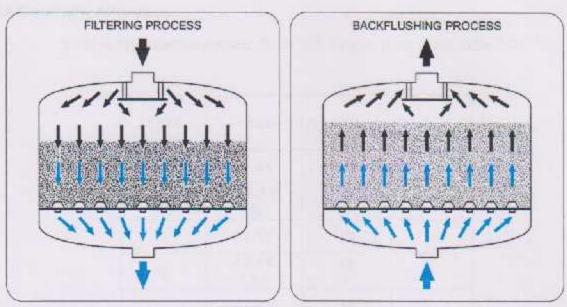


Figure (5.3) sand filter process.

Selection of sand filters from ODIS (Irrigation equipment LTD) company:

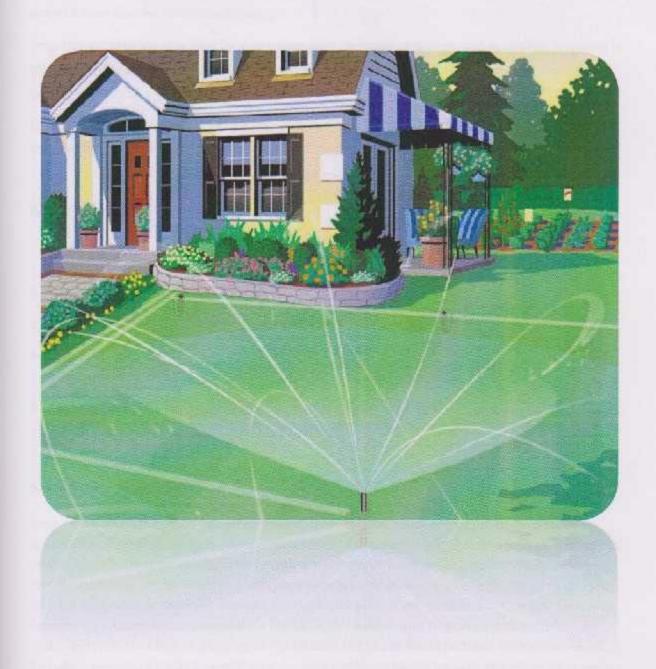
- -Sand filter number 1 with type model 4363, appendix B-c24,25-
- -Sand filter number 2 with type model4303, appendix B-c26,25-

5.8 Gray water calculation.

Table (4.3) Estimating demand fixture unit for gray water (From table P-2):

Floor	Fixtures	FU		
L1001	Fixities	CW 12 20 4 18 18 18 18 18 18 18 11 18 11 18 11 18 11 11	HW	
-[6 LAV	12	1 2	
GF	10 LAV 1 KS			
1	9 LAV	18	*	
2	9 LAV 2 KS		4	
3	9 LAV	18	-	
4	9 LAV	18	-	
5	9 LAV	18	9	
6	6 LAV 4 SH			
7	6 LAV 4 SH		-	
8	9 LAV	13.5	13.5	
9	9 LAV	13.5	13.5	
10	9 LAV 1 KS	CW 12 20 4 18 18 18 18 18 18 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 18	13.5	
11	9 LAV 1 KS	CW 12 20 4 18 18 18 18 18 18 18 18 18	18	
12	9 LAV 1 KS	13.5	13.5	
13	9 LAV 1 KS	13.5	13.5	
14	9 LAV 1 KS	13.5	13.5	
15	9 LAV 1 KS	13.5	13.5	
16	4 LAV 2 KS	13.5	13.5	
	Total			

From table (P-1), by interpolation 516 FU = 142.2 gpm


Where:

LAV: bath faucet.

KS: kitchen sink.

SH: shower head.

CHAPTER SIX Irrigation System Design

6.1: Introduction:

Irrigation is the artificial application of water to the land or soil. It is used to assist in the growing of agricultural crops, maintenance of landscapes, and revegetation of disturbed soils in dry areas and during periods of inadequate rainfall. Additionally, irrigation also has a few other uses in crop production, which include protecting plants against frost, suppressing weed growth in grain fields and preventing soil consolidation. In contrast, agriculture that relies only on direct rainfall is referred to as rain-fed or dryland farming.

Irrigation systems are also used for dust suppression, disposal of sewage, and in mining. Irrigation is often studied together with drainage, which is the natural or artificial removal of surface and subsurface water from a given area.

Irrigation has been a central feature of agriculture for over 5,000 years and is the product of many cultures.

6.2: Types of irrigation:

- 1- Surface irrigation.
- 2- Localized irrigation.
- 3- Subsurface textile irrigation.
- 4- Drip irrigation.
- 5- Irrigation using sprinkler systems, which we used in the project.
- 6- Irrigation using Center pivot.
- 7- Irrigation by Lateral move.

6.3: Water resources

Irrigation water can come from groundwater, from surface water or from nonconventional sources like treated wastewater, desalinated water or drainage water. Around 90% of wastewater produced globally remains untreated, causing widespread water pollution, especially in low-income countries. Increasingly, agriculture uses untreated wastewater as a source of irrigation water. Cities provide lucrative markets for fresh produce, so are attractive to farmers. However, because agriculture has to compete for increasingly scarce water resources with industry and municipal, there is often no alternative for farmers but to use water polluted with urban waste, including sewage, directly to water their crops. Significant health hazards can result from using water loaded with pathogens in this way, especially if people cat raw vegetables that have been irrigated with the polluted water, so that gray water treatment is very important in this field.

6.4: Irrigation using sprinkler systems.

Irrigation sprinklers are sprinklers providing irrigation to vegetation, or for recreation, as a cooling system, or for the control of airborne dust. The sprinkler system irrigates the field and thus it is widely used in areas as it checks the wastage of water through seepage and evaporation.

Sprinkler irrigation is a method of applying irrigation water which is similar to natural rainfall. Water is distributed through a system of pipes usually by pumping. It is then sprayed into the air through sprinklers so that it breaks up into small water drops which fall to the ground.

The pump supply system, sprinklers and operating conditions must be designed to enable a uniform application of water.

The main advantages of sprinkler irrigation - reasons for choosing the system:

- 1- Expansive land leveling is not required.
- 2- Water saving irrigation intensity can be changed in accordance with the infiltration capacity of soil.
- 3- High efficiency due to uniform water distribution.
- 4- No special skills trained personal can operate the system reasonably well.
- 5- Ease and uniform application of fertilizers and pesticides through irrigation system.
- 6- Possibility of applying minute quantity of water for germination and other irrigation systems.
- 7- Frequent and light irrigation possible giving better response from the crops.
- 8- Increase in yield and quality, early ripening, water conservation and alternative value of specific period saving of labor, machinery, fertilizer and pesticides.
- 9- Soil moisture is maintained at optimum level by sprinkler irrigation and 20 higher yields are obtained of crops and the quality of other crops is also good.
- 10- Providing irrigation to vegetation as a cooling system.
- 11- Using for the control of airborne dust.

Sprinkler irrigation system components:

- 1 Pumping Unit (Pumps)
- 2 The main pipes (Main lines)
- 3 Sub-pipe (lateral lines)
- 4 Sprayers (Nozzles)

Types of Sprays:

- 1 Which operates low pressure (0.7 to 2 Kg / 2 cm), "low pressure sprinklers" a few coverage area and has high rate of spray.
- 2 Average operating pressure (2-5 Kg / 2 cm), "sprinklers medium pressure" consistency desirable good efficiency, little impact on soil.
- 3 -High operating pressure (5-10 Kg / 2 cm), "high-pressure sprinklers" large size of water drops, large droplets fall rate

Also in the system should install a rain sensor, which saves water by shutting the irrigation system temporarily when it rains without erasing the program.

Figure (6.1): rain sensor

- Irrigation sketches from M304 to plan M311, plot to scale.
- Details on plots.

6.5: System design and selection:

6.5.1: Sprinkler system:

Selection:

Model number 570TM series

Table (6.1) Spray head, 15' series at 30 PSI, number of heads on each feed line:

570 [™] series sprayheads (@ 30 P	SD	(iallons per	minute (GP	M)
		5 GPM	8 GPM	12 GPM	15 GPM
15' quarter circle (90°)	4	5	9	14	17
15' half circle (90°)		3.	4	7	9
15' full circle (90°)		1	2	3	4

Table (6.2): Nozzle, 15' series with 27° trajectory (black):

Pattern	Pressure [PSI]	Flow [GPM]	Radius [Feet]
90°	30	0.85	15'
180°	30	1.65	15'
360°	30	3.6	15'
0-360°	30	3.82	13'

6.5.2: Control system:

- 6.5.2.1: System controlled using PLC programming and timers, which connected with BMS System,
- 1- Siemens PLC controller
- 2- Valve wire connections
- 3- Grease cap/ wire connectors
- 4- Anti-Siphon valve
- 5- Sprinkler

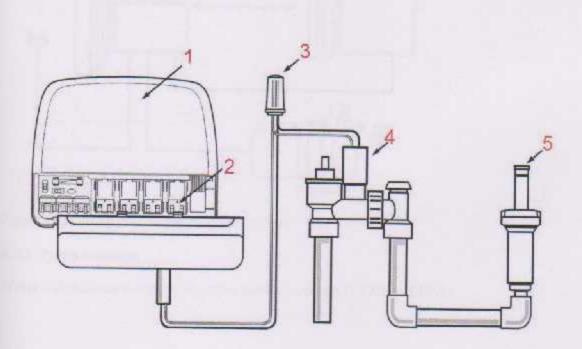


Figure (6.2) Control system for irrigation.

APINDEX B-C51to55-

6.5.2.1: Pump control and protection:

- 1- Power supply
- 2- Pump start relay
- 3- Minimum spacing 5'
- 4- Siemens PLC controller
- 5- Pump

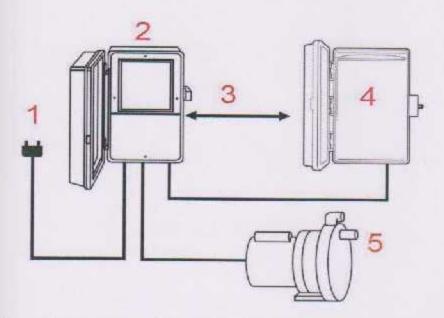


Figure (6.3) Pump control for irrigation system.

6.5.3: Pump selection

Water distributions pump on irrigation networks, pump C :(CR, CRN64).

CHAPTER SEVEN

FIRE FIGHTING SYSTEM

7.1 The Fire Triangle:

There are three components required for combustion to occur:

Fuel - to vaporize and burn

Oxygen - to combine with fuel vapor

Heat - to raise the temperature of the fuel vapor to its ignition temperature

The following is the typical "fire triangle", which illustrates the relationship between these three components:

Fighter (7.1): The Fire Triangle.

7.2 Classifications of Fire:

Fires are classified into five groups as follows:

Class A: Class A fires involve common combustibles such as wood, paper, cloth, rubber, trash and plastics. They are common in typical commercial and home settings, but can occur anywhere these types of materials are found.

Class B: Class B fires involve flammable liquids' gases, solvents, oil, gasoline, paint, lacquers,

tars and other synthetic or oil-based products. Class B fires often spread rapidly and, unless properly secured, can reflash after the flames are extinguished.

Class C: Class C fires involve energized electrical equipment, such as wiring, controls, motors, data processing panels or appliances. They can be caused by a spark, power surge or short circuit and typically occur in locations that are difficult to reach and see.

Class D: Class D fires involve combustible metals such as magnesium and sodium. Combustible metal fires are unique industrial hazards which require special dry powder agents.

Class K: Class K fires involve combustible cooking media such as oils and grease commonly found in commercial kitchens. The new cooking media formulations used form commercial food preparation require a special wet chemical extinguishing agent that is especially suited for extinguishing and suppressing these extremely hot fires that have the ability to reflash.

Figure (7. 2) fire clasification.

Fire Signatures:

fire signatures any fire effect (smoke, heat, light, etc.) that can be sensed by fire detector The amount of heat released by fire varies in accordance with the type of combustible, arrangement of the combustible availability of oxygen, and numerous other factors.

7.3 Types of Firefighting Systems:

Fire systems are classified as follows:

Portable fire extinguishers can contain a wide variety of extinguishing agents; the portable fire extinguishers enable an individual with minimal training to extinguish an incipient fire. A portable fire extinguisher should not be considered as the sole solution to fire protection analysis of a building but, rather only one of many components of a total fire protection plan.

7.3.1 Firefighting Extinguishers:

Types of Portable Firefighting Extinguishers:

1-Foam: fire extinguishers extinguish the fire by taking away the heat element of the fire triangle. Foam agents also separate the oxygen element from the other elements, and we use it in the tower.

Water extinguishers are for Class A fires only - they should not be used on Class B or C fires. The discharge stream could spread the flammable liquid in a Class B fire or could create a shock hazard on a class C fire.

Foam extinguishers can be used on Class A & B fires only. They are not for use on Class C fires due to the shock hazard.

- 2-Carbon Dioxide: Carbon dioxide fire extinguishers extinguish the fire by taking away the oxygen element of the fire triangle and also by removing the heat with a very cold discharge. Carbon dioxide can be used on Class B & C fires. They are usually ineffective on Class A fires.
- 3-Clean agent extinguishers: Halogenated or Clean Agent extinguishers include the halon agents as well as the newer and less ozone depleting halocarbon agents. They extinguish the fire by interrupting the chemical reaction of the fire triangle.
- 4-Dry chemical extinguishers hand and wheeled: fire extinguishers extinguish the fire primarily by interrupting the chemical reaction of the fire triangle

5-Wet chemical extinguishers: Wet Chemical is a new agent that extinguishes the fire by removing the heat of the fire triangle and prevents reigniting by creating a barrier between the oxygen and fuel elements and use in kitchen.

6-Dry Powder: extinguishers are similar to dry chemical except that they extinguish the fire by separating the fuel from the oxygen element or by removing the heat element of the fire triangle.

7.3.2 Fire hose cabinet.

A fire hose is a high-pressure hose that carries water or other fire retardant (such as foam to a fire to extinguish it. Outdoors, it attaches either to a fire engine or a fire hydrant.

Indoors, it can permanently attach to building's standpipe or plumbing system. Hero invented it and based it on double action piston pump.

Consist of tow type:

- Hose reel a pipe which consists of rubber rolled on pulley having an arm witch use by regular people.
- Hose rack: a pipe which consists of Cloth-reinforced which usually use by Civil Defense Company.

7.3.2.1 Fire hose calculation:

Table (8.1) Fire hose calculation

Zone	Floor	Main riser	Branch	Branch to the
1	-2,-1,0	6"	4"	2"
2	1to 6	6"	4"	2"
3	7 to 17	6"	4"	2"

Sample calculation for zone 1:

P.pump = Pr. + P.fr. + P.e 1.

Pr: the pressure at the hose cabinet.

P fr: pressure lose due to friction pipes.

Pele. : pressure lose due to elevation(head).

Number of cabinets = 28 unit.

Flow for eabinets, $Q = 28 \times 6 = 168 \text{ L/s}$.

Q = 2217.3gpm.

Pr 4.5 bar.

Pel. = 6.8 m = 0.66 bar.

Pfr. = Leq. \times F.L

 $Leq = 96.8 \times 1.5 = 104.7 \text{ m}$

Leq = 515 ft

 $Pfr = Leq \times F.L$

 $=104.7 \times 0.01 = 1.57$ bar

P.pump = Pr. + P.fr. + P.el.

P pump = 4.5 + 1.57 + 0.66 = 6.73 bar

Pipe friction = pump P - pressure head - minimum flow pressure

$$=97.6-9.5-65.2$$

Main riser pipe size selection = 6"

Branch =4"

Branch to hose cabinet= 2"

Pumps selected:

One electrical main pump, one diesel main motor pump, one jockey pump

For riser 1:

Code: 700.444

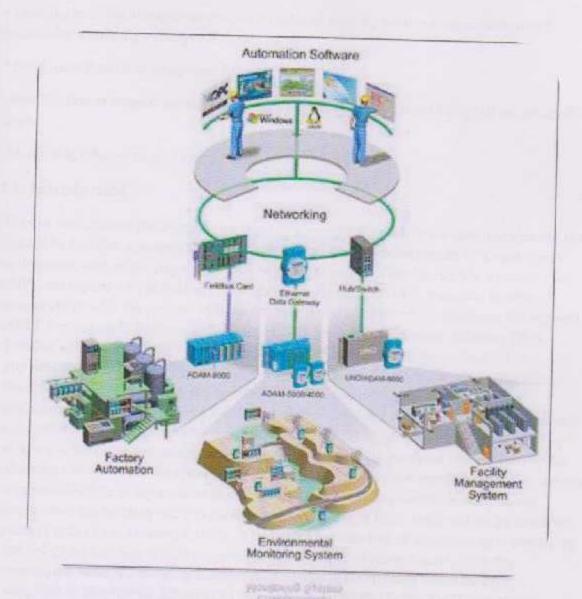
Model: EDP-C80-250/255-89.8

For riser 2:

Code: 700.441

Model: EDP-C80-200/205-65.3

For riser 3:


Code: 700,447

Model: EDP-S80-315R/302-177.5

Appendix B -c2,4-

CHAPTER EIGHT

Building Management System

8.1: Summary

A well designed and managed Building Management System (BMS) provides great opportunities for improvements in energy efficiency by:

- Enabling building managers to provide an optimal working environment consistent with maintaining a building's energy efficiency rating..
- · Early identification of equipment failure.
- Identification of unusual patterns of energy usage, such as equipment being left on out of office hours.
- · Monitoring effectiveness of Energy Management Plans.

8.2: Introduction

Effective well utilized Building Management Systems (BMS) provide the core management tool required by building managers to ensure compliance with, and achievement of, Green Lease requirements, such as the target NABERS rating, monitoring of the Energy Management Plan (EMP), and reports for the Building Management Committee (BMC). It enables building managers to provide the optimal working environment consistent with maintaining the required NABERS rating while minimizing the costs to both landlords and tenants. Effective BMS utilization allows for optimal building performance by extending the operational life of equipment and systems through reducing loads and operating hours. Maintenance and capital costs are therefore reduced and less embedded energy is consumed through equipment replacement and upgrades. When a building has been completed the impact of its structure on its energy consumption performance is normally fixed until refurbishment occurs. Base building and tenant light and power energy consumption can however be increased or decreased by the performance of both building systems and tenants. A BMS will show increases in energy use due to equipment failure or adjustments to operating parameters. For example, heating valves opening when the building requires cooling or whole floors of lights being left on for extended periods of time due to cleaning activity. A BMS also indicate that air conditioning is starting up hours before the building is fully occupied due to activities of security staff. With this information in hand, the building manager may be able to rectify such issues through consultation or engineering solutions. In the absence of a BMS, the impact of such events can be disguised by seasonal variations, changes in occupancy levels or technology upgrades. A correctly configured BMS with an adequate number of correctly located monitoring points is the only way a building manager can be quickly alerted to problems which could otherwise remain undetected until annual inspections or external audits are undertaken. A BMS is also a primary tool for identifying energy intensity improvement opportunities, for example refining the size and number of lighting time blocks, providing meaningful reports to the Building Management Committee on issues and opportunities, and enabling identification of faults, maintenance planning, and energy saving upgrades.

8.3: BMS data.

For a BMS to function effectively it needs to reside on a computer that has adequate capacity and speed to support BMS function. BMS related data storage of one year is required for all active control points. Computers and data storage hardware will normally require replacement at least once during an average tenancy. The BMS data collection network should have capacity to provide data to the BMS at required frequency, via an industry open protocol such as a fully compliant BACNET.

Figure(8.1) BMS data.

8.4: Integration of BMS with other tools.

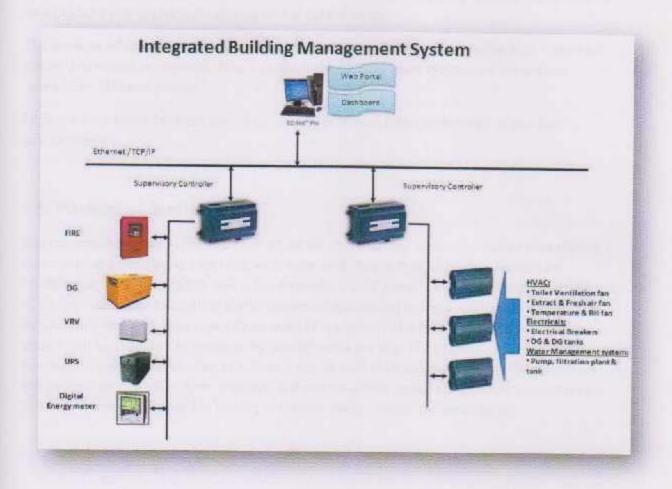


Figure (8.2) Integration of BMS.

Integration between a BMS and a business management system such as SAP requires a detailed configuration study. A high level interface between such systems can be implemented if care is given to the following.

Control of data consistency in a BMS is a live system continuously updating second by second. Business management systems typically batch by day, week, month or year.

Business management systems require data to be presented in very specific formats. Interfaces between two such systems often fall over when one or the other is upgraded.

From a business perspective the BMS is often collating the data required to allocate costs to tenant business units, or to charge sub tenants for services. It makes sound economic sense, and reduces the probability of error for data to be migrated from one system to another, provided the costs of maintaining the interface are commensurate with the benefits.

A satisfactory alternative to a high level interface given the normal batching needs of business systems is for the BMS to download its readings of hours run, energy used etc, into a spreadsheet format at agreed times. The business system can normally be easily programmed to populate its data fields by interrogating the spreadsheet at agreed times.

The manager of each system is then responsible when modifying or upgrading their system to ensure data moves as required. This is particularly relevant when systems are owned and operated by different parties.

High level interfaces between systems will seldom be cost effective in small or medium environments.

8.5: Mechanical Services.

It is recommended that software be optimized for start and stop schedules. Rather than starting to pre-condition a building at a set time, each zone starts just in time to reach minimum set condition as occupants start to arrive. For example, a cold winter's night may need an extra hour of air flow compared to a milder night. Tenant complaints led to fixed settings for earlier starts than actually required. This typically means that energy requirements for heating and cooling greater will be extended, on average, by several hours per day. For example, many buildings provide full heating and cooling to 5.30 or 6 pm. In well built and insulated buildings, chillers and boilers can turn off at 4pm or earlier, and remain within agreed temperature parameters for two hours or more utilizing the heating or cooling energy within the water loops.

Other mechanical service considerations include:

- Automated seasonal temperature adjustment, lowering set point temperature at low temperatures and gradually raising through the seasons, giving immediate savings.
- Scheduling calendar to be highly sophisticated so as to be able to check and adjust for daylight saving, Easter and other events which can be adjusted without programming skills. For example, shutting down unoccupied zones or temporarily varying working hours.
- High turndown capability utilizing VSD's for reduced airflow in low occupancy periods. This
 generally should go to 20 per cent or less of full flow.
- Use of CO2 sensors in car parks and return air ducts to sense when air requirements are reduced. For example, in many car parks it may be sufficient for fans to run for one to two hours per day rather than 12 or 24 hours.
- Occupancy sensors, many areas have minimal occupancy at any time or highly variable loads such as conference rooms. In such cases it may be appropriate to provide minimal conditioned

air during normal hours, and ramp up only when space is fully occupied. Ramp up can sometimes be most effectively provided by standalone units to avoid over sizing the central plant to respond to low frequency situation.

- Utilize enthalpy control in low humidity environments. This can improve air quality and lower energy consumption as air cools when moisture is added.
- * Economy cycle to fully utilize free cooling. In many environments the outside air temperature is lower than return air temperature when cooling is required. Even when this is the case, the energy intensity of many buildings is such that during spring and autumn they may need cool air to maintain required conditions. If the fresh air intakes can provide more than minimum fresh air requirements then "free" 12 cooling is available from the atmosphere.
- Night Purge. In many hot climatic zones several hours of low overnight temperatures occur. If fans are run in this period this cold air can pre cool the internal structure reducing the day time cooling load at minimal cost during off peak tariff periods.
- Calibrate sensors. While many modern sensors do not suffer accuracy drift over time, a base line error of up to one degree can occur. It is essential that offset to correct occurs at the zone or at the BMS so that control strategies utilize a true reading at all times.
- Calling after hours air conditioning. The ability to call must be limited to genuine operational needs in small areas, and turn off after a limited period or as soon as no occupation is detected. Many systems lack the turn down capacity to service small areas, so entire floors or wings are turned on for the comfort of one or two people. Consider providing airflow only and activate heating or cooling when two-four out of hours calls are made.
- Ideally no or minimal heating should be called by the system in summer, and similarly in winter minimum or no cooling should be required.

8.6: Hydraulies in BMS:

- Meters to report to BMS (number must enable excess consumption to system or zone).
 Temperature optimization control of boilers, by control strategy.
- · Flow meters to alarm on abnormal consumption.
- Boiler temperature reset optimization, to match actual and predicted loads.
- Automated shut down valves in critical areas to avoid waste and damage from major failure, with BMS over ride function.

8.7: Building maintenance services BMS - green clean.

"Specified for green buildings"

BMS Green Clean is a commercial cleaning program that is designed to increase the health and indoor air quality of our buildings for the benefit of our employees, tenants and the environment.

BMS is committed to developing and maintaining an environment that enhances human health and fosters a transition toward sustainability. The BMS Green Clean program is a commercial cleaning program that is designed to increase the health and quality of our buildings for the benefit of our employees, tenants and the environment. BMS is committed to continuous improvement in:

- Demonstrating institutional practices that promote sustainability, including measures to increase efficiency and use of renewable resources, and to decrease production of waste and hazardous materials, both in BMS's own operations and in those of its suppliers.
- Promoting health, productivity and safety of the BMS community through design and maintenance of the built environment.
- Enhancing the health of our building's ecosystems.
- Developing planning tools to enable comparative analysis of sustainability implications and to support long-term economic, environmental and socially responsible decision-making.
- Encouraging environmental inquiry and institutional learning throughout the company.
- Establishing indicators for sustainability that will enable monitoring reporting and continuous improvement.

Green Scal org and BMS have worked closely through the standards development committee to create a uniform set of guidelines and approved products for cleaning service providers. For more detailed information on products and standards that are used BMS should go to the principles and policies for the program.

8.8 Aspects that have been applied from BMS in green tower [for this project]:

8.8.1 Design automatic system for recycling station.

There are three cases of the system:

- -Filtration process.
- -Backflush process.
- -Overflow process.
- -Drainage process.

We are design a control system to control of all parts in the system (pumps, valves, level sensor, and pressure sensor).

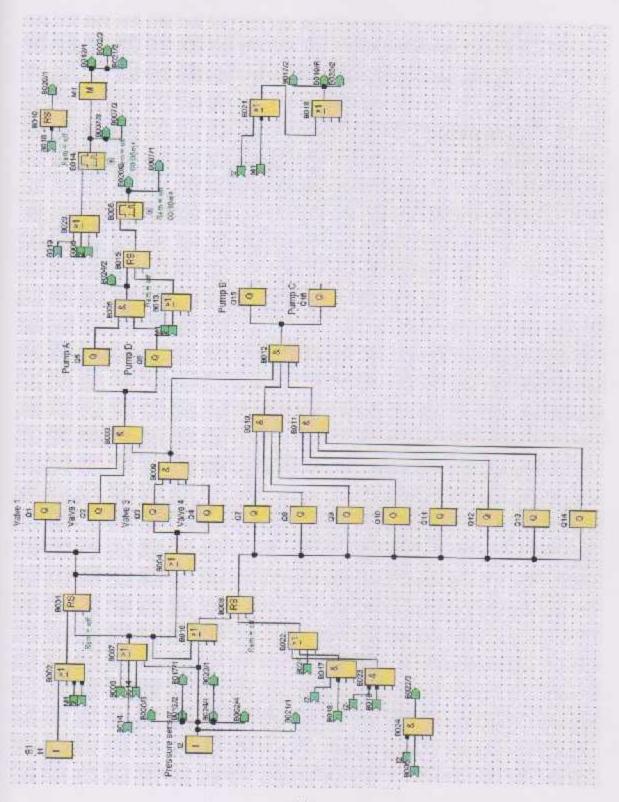

And by using the PLC program we are design the control system.

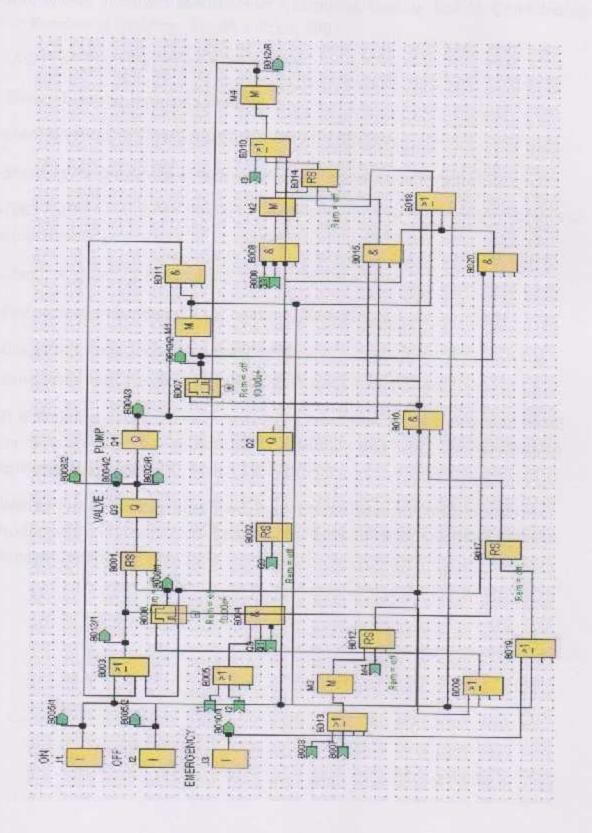
Table (8.1) Allocation table of plc process for gray water system.

Process	Part on (open)	Part off (close)
Filtration process	Pump(A,C) Valves(1,2,3,4,5,10,11)	Pump(B,D) Valves(6,7,8,9,12,13,14,15) Level sensor
Back flush process	Pump(B,C) Valves(6,7,8,3.4,9,12,13)	Pump(A,D) Valves(1,2,5,10,11,14,15) Level sensor
Over flow process	Pump C Valves(12,13,14) Level sensor	Pump(A,B,D) Valves(6,7,8,9,12,13, 14,15)
Drain process	Pump C Valves(12,13,14,15)	Pump(A,B,D) Valves(6,7,8,9,12,13, 14,15)

Filtering control circuit (using LOGO software):

-Full program simulation attached in CD.

8.8.2 Automatic system design of the irrigation system


A control system to control of all parts in the irrigation system (pumps, valves, level sensor).

And by using the PLC program we design the following control system:

Table (8.2) allocation table of plc process for irrigation system .

Process	Part on (open)	Part off (close)
Irrigation time process	Pump (E) or (F) Valve (16) Level sensor LS2	
Stop time process		Pump (E) or (F) Valve (16)

Irrigation control circuit (using LOGO software); Full program simulation attached in CD.

Refrances:

- -Mohammad A.Alsaad, and mohmud A.Hammad, Heating And Air Conditioning For Residential Building . Fourth Edition, 2007.
- ASHRAE.1999.HVAC application.USA.
- -Energy Efficient Building Cod,2004.
- -SMACNA HVAC SYSTEMS DUJCT DESIGN , 4TH EDITION
- -Standard for the design of high performance green buildings (LEED)
- -2003 ASHREA handbook $\underline{\ }$ heating , ventilating , and air conditioning system and equipment
- -Standard plumbing engineering design , second edition .
- -Fire protection handbook , 20th edition , 2008 (NFPA).
- -Doug Pratt, Real Goods Technical Editor
- -Zane Satterfield, P.E., National Drinking Water Clearinghouse
- -D.M Roodman and N. Lenssen, A Building Revolution: How Ecology and Health Concerns are Transforming Construction, Worldwatch Paper 124, Worldwatch Institute, Washington, DC, March 1995, p. 5.
- -William Fisk and Arthur Rosenfeld, Potential Nationwide Improvements in Productivity and Health From Better Indoor Environments, Lawrence Berkeley National Laboratory, May 1998

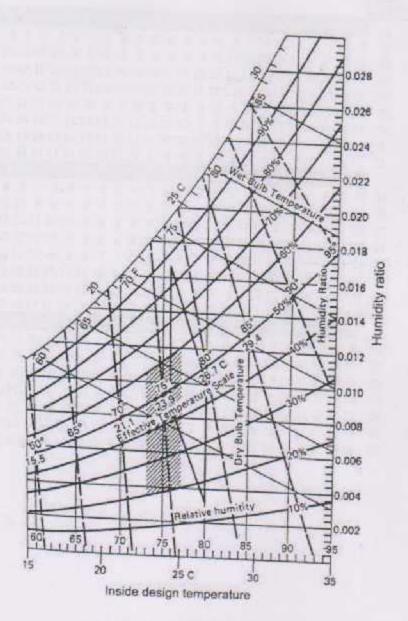


Figure-1: AHSREA Comfort chart

Nort Latitu Wal Facin	ide 1	1	2	3	4	5	6	7	8	mo	0 :	11	12		14	15	16	17	18	19	20	21	22	23 2	Max	Mir	n. Max.	Differenc
N	- 6	8	8	8	7	7	7	7						ÚV			30		Ä.		#							
NE		11	00	0 1	8	10	9	0		6	0	6	6	6	6	6	6	6	6	7	7	7	7	8 1	2	6	8	2
E	_	-		_	_			, ,		8	8	8	9	9	9	9	10	10	10	11	11	11	11	11 11	22	8	11	3
SE	1	3 1	31	31	21	12	11 1	1 1	11	0 1	9 1	0.1	1 1	1	12	12	13	13	13	14	14	14	14	14 14	22	10	14	4
S	1	1 1	11	11	1 1	0	10.	0 1	0 1	0 11	1	0 1	0.1	0	П	11	12	12	1.3	13	13	13	13	14 14	22	10	13	3
SW	14	4 1	4 1	4 1	4 1	7	3 1	21	7 1	7 11	5.00	8 7	8	8	8	8	8	9	9	10	10	11	11	13 13 11 11	23	8	11	3
W	15	5 1	5 1	5 1	4 1	4 1	41	31	3 11	3 17	11	11	0 1	0	9	9	10	10	10	11	12	13	13	11 11	24	9	14	5
NW	12	1	21	11	1 1	1 1	11	0 1	0.14	2 12		3	1 3	0 1	0 1	0	0							14 14 14 15	1	10	15	5
			题		商						300	and the	8	8	8	8	8	8	8	9	9	0	11	11 11	1	8	12	4
N	8	1	3 8	3	,	7	6	4 /	5 5									at ann	W.		100	20	Me	(5) in (5)				
NE	111	10	10) 5				7	2	7	8			5						7	8	8	8	8 8	24	3	8	3
E	1000			11	10		-		8	and.					91	0.1	01	11	1 1	11	21	2	12 1	11 11	21	7	12	5
SE				11				Sale	80.00	500	8	10	1 14	2 1	11	3 1	41	41	5 1	5 1	5 1	51	5 1	4 14	20	8	15	7
S				10				2611		590 <u>5</u> 0			11	1.1	1 1.									4 14	21	8	14	6
w							2 11							5			9 1	0 I	11	11	21	2 1	21	2 12	23	6	12	6
w							12			9	9				3		9 1	01	1 1,	3 1	4 1.	5 1	5 1	6 16	24	7	16	9
w							9			7	10	15	50.5											6 17	24	8	17	9
					8	響		TEST TO SERVICE STATE OF THE PERSON SERVICE STATE STATE OF THE PERSON SERVICE STATE STATE OF THE PERSON SERVICE STATE ST	500	-	-	7		6		200	1	3 1	3 5	91	12	2 1	3 1	3 13	24	6	13	7
N	9	8	7	7	6	- 5	5	4	4	4	4	- 12	_	ell	-					THE STATE OF	W.	Ø.	华	NK.				
E	10	10	9	8	7	6	5	6	6	7	25.	4		5						9 5	9	1(0 5	9 9	22	4	10	6
E	13				q	8	100	2	8	91	8	10	10	11	12	12	12	13	13	13	13	12	2 12	2 11	20	6	13	7
	13 1				0	8	100	6	7	7 1	0	10	14	15	16	16	17	17	16	16	16	15	14	13	18	7	17	10
	12 1				8	7	6	6	5	5	9	.0	12		15	16	16	16	16	16	16	15	14	13	19	6	16	10
	16 1					10	9	8	7	7	5	5	6	8										12	20	5	14	9
	171					3500	-	9	8	2	6.	6	6	7										17	22	6	18	12
	Desc	200	CT.	1000			LV	7	0.	4	6	1	7	7	8	9	11	13	16	18	19	20	19	18	22	7	20	13

Continued Table (A-1)

North													Tit		-										Hour			
Wall Facing	1	2	3	4	5	6	7.	7 8	5	10	11	12	113	14	15	16	17	18	19	20	21	22	23	24			Max.	Differen
NW	14	13	12	11	10	9	1	3 7	t	. 6	5	1	6	É	6	7	9	10	112	14	15	15	15	15	22	5	15	10
			jh.								Ge	ыр	ρí	Vali		9		0	Sign	Sil		18	NI.	W	1			
N	8		7	27				3	3	1	4	4	1 5	6	6	7	8	9	10	11	11	10	10	9	21	3	H	8.
NE	9			6	5	5	1.3		. 6	8	10	11	12	13	13	13	14	14	14	13	13	12	12	10	19	4	14	10
E	11	10	8	7	6	- 5	-	5	7	10	13	13	17	18	18	18	18	18	17	1.7	16	15	13	12	16	5	18	13
SE	11	10	9	7	6	5	1	5	5	7	10	12	14	16	17	18	18	18	17	17	16	15	14	12	17	5	18	13
5	150	10	933	7	6	5	4	4	3	3	4	3	7	9	11	13	15	16	16	16	15	14	13	12	19	3	16	13
SW	15	14	12	10	9	8	6	5	5	4	4	5	5	7	9	12	15	18	20	21	21	20	19	17	21	4	21	17
W	1995		13	12	10	9	13	6	5	5	5	5	6	6	8	10	13	17	20	22	23	22	21	19	21	5	23	18
NW	14	12	11	9	8	7	Ċ	5	- 4	4	4	- 4	5	6	7	8	10	12	15	17	18	17	16	15	22	4	18	14
				ne		N)	20	nie!	ks	W	Gu	шр	ĒV	hitte	77		W.		ĒW	ALL I		MH						
N	7	6	5	4	3	2	2	2	3	3	4	5	6	7	8	10	10	11	12	12	11	10	9	8	20	2	12	10
NE	7	6	5	4	3	2	3	5	8	11	13	14	14	14	14	14	15	14	14	13	12	11	9	8	16	2	15	13
E	8	2	6	5	4	3	3	6	10	15	18	20	21	21	20	19	18	18	17	15	14	12	11	9	13	3	21	18
SE	8	7	6	5	4	3	3	4	7	10	14	17	19	20	20	20	19	18	17	1ö	14	13	11	10	15	3	20	17
S	8	7	6	5	4	3	2	2	2	3	5	7	10	14	16	18	19	18	17	16	14	13	11	10	17	2	19	17
5W	12	10	8	7	6	4	4	3	3	3	4	5	7	10	14	18	21	24	25	24	22	19	17	14	19	3	25	22
W	14	12	10	8	6	5	4	3	3	4	4	3	6	8	11	15	20	24	27	27	25	22	19	16	20	3	27	24
NW	н	9	8	6	5	4	3	3	3	3	4	5	6	7	9	11	14	18	21	21	20	18	15	13	20	3	21	18
	9	4	ø		WE.	5		9	m		Gre	ougi	E W	i B	100					di.	뵁	0	T)					
N	5	4	3	2	1	1	1	2	3	4	5	6	8	9	11	12	12	13	13	13	11	9	7	6	19	1	13	12
NE	5	4	3	2	1	1	3	8	13	16	17	16	16	15	15	15	15	14	13	12	10	9	7	6	11	1	17	16
E	5	4	3	2	2	1	4	9	16	21	24	25	24	22	20	19	18	17	15	13	11	10	8	7	12	1	25	24
SE	5	4	3	2	2	1	2	6	10	15	20	23	24	23	22	20	19	17	16	14	12	10	8	7	13	1	24	23
S	5	4	3	2	2	1	1	1	2	4	7	11	15	19	21	22	21	19	17	15	12	10	8	7	16	1	22	21
SW	8	6	5	4	3	2	1	1	2	3	4												11	10	18	1	30	20
W	9	7	5	4	3	2	2	2	2	3	4	6											15		19	2	33	31
NW	8	6	4	3	2	2	1	1	2	3	4	6											12		19	1	26	25
		M	100		H		HS.	10	œ.	G	rou	10 (G A										100		55/1		1000	Aug.
N	2	1	0	0	0	1	4	5	5	7	_	•	-	-	_	14	14	15	12	8	6	5	4	3	18	0	15	15
NE	2	1	1	0	0	5	15	20	22	20										8	6	5	4	3	9	0	22	22
E	2	1	1	0	0			26												8	7	5	4	3	10	0	31	31
SE	2	1	1	0	0			18							CON.	HPGGG	55 E2	YES91	250	8	2	6	4	3	11	0	28	28
S	2	1	1	0	0	0	1	3							92 y TO	21	950	,030	om m	8	7	5	4	3	14	0	26	
sw	3	2	2	1	0	0	1	3	4	6						35				- 83	10	7	6	4	16	0	35	26
w	4	3	2	1	1	1	+	3	-33				ΠE	70	900	37		700			77.	8	6	5	17	1	40	35
NW	3	2	100	1	0		1	3														7	5	4	18	0	100	39
	-	_	-	-	-	-	,	41	-	42	0	236	**	46	61/	40	47.B	164	917	479	6 1.5	1	2	19	10	U	31	31

Lat.	Month	N	NNE		ENE	E	ESE	SE	SSE		Horizonta
16	December	-2.2	-3.3	NW -4.4	WNW	W	WSW	SW	SSW	S	Roofs
10	Jan./Nov.	-2.2	-3.3		-4.4	-2.2	-0.5	2.2	5.0		-5.0
	Feb./Oct.	-1.6	-2.7	-3.8 -2.7	-3.8 -2.2	-2.2	-0.5	2.2	4.4		-3.8
	Mar/Sept.	-1.6	-1.6	-1.1	-1.1	-1.1 -0.5	0.0	1.1	2.7		-2.2
	Apr./Aug.		0.0	-0.5	-0.5	-0.5	-0.5	0.0	0.0		-0.5
	May/July	2.2	1.6	1.6	0.0	-0.5	-1.6			-3.3	0.0
	June	3.3	2.2	2.2	0.5	-0.5	-2.2			-3.8 -3.8	0.0
24	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	0.4
	Jan./Nov.	-2.2	-3.3	-4.4	-5.0	-3.3	-1.6		5.0	7,2	-9.4
	Feb./Oct.	-2.2	-2.7	-3.3	-3.3	-1.6	-0.5	1.6	3.8	5.5	-6.1 -3.8
	Mar/Sept.	-1.6	-2.2	-1.6	-1.6	-0.5	-0.5		1.1	2.2	-1.6
	Apr./Aug.	-1.1	-0.5	0.0	-0.5	-0.5	-1.1		-1.1	-1.6	0.0
	May/July	0.5	1.1	1.1	0.0	0.0	-1.6		-2.7	-3.3	0.5
	June.	1.6	1.6	1.6	. 0.5	0.0	-1.6			-3.3	0.5
32	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	L1	5.0	6.6	-9.4
	Jan./Nov.	-2.7	-3.8	-5.0	-6.1	-4.4	-2.2	1.1	5.0	6.6	-8.3
	Feb./Oct.	-2.2	-3.3	-3.8	-4.4	-2.2	-1.1	2.2	4.4	6.1	-5.5
	Mar/Sept.	-1.6	-2.2	-2.2	-2.2	-1.1	-0.5	1.6	2.7	3.8	-2.7
	Apr./Aug.	-1.1	-1.1	-0.5	-1.1	0.0		0.0	5.0	0.5	-0.5
	May/July	0.5	0.5	0.5	0.0	0.0	-0.5 -		-1.6	-1.6	0.5
	June	0.5	1,1	1.1	0.5	0.0	-1.1 -	-1.1	-2.2		1.1
40	December	-3.3	-4,4	-5.5	-7.2	-5.5	-3.8	0.0	3.8	5.5	-11.6
	Jan./Nov.	-2.7	-3.8	-5.5	-6.6	-5.0	-3.3	0.5	4.4	6.1	-10.5
	Feb./Oct.	-2.7	-3.8	-4.4	-5.0	-3.3	-1.6	1.6	4.4	6.6	-7.7
	Mar/Sept.	-2.2	-2.7	-2.7	-3.3	-1.6	0.5	2.2	3.8	5.5	-4.4
	Apr./Aug.	-1.1	-1.6	-1.6	-1.1	0.0		1.1	1.6	2.2	1.6
	May/July	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.5	0.5
¥	June	0.5	0.5	0.5	0.5	0.0	0.5	0.0	0.0	-0.5	1.1
	December	-3.3	-4.4	-6.1	-7.7	-7.2	-5.5 -		1.1	3.3	-13.8
- 61	Jan./Nov.	-3.3	-4.4	-6.1	-7.2	-6.1	-4.4 -	0.5	2.7	4.4	-13.3
- 4	Feb./Oct.	-2.7	-3.8	-5.5	-6.1	-4.4		0.5	4.4	6.1	-10.0
	Mar/Sept.	-2.2	-3.3	-3.3	-3.8	-2.2		2.2	4.4	6.1	-6.1
	Apr./Aug.	-1.6	-1.6	-1.6	-1.6	-0.5		2.2	3.3	3.8	-2.7
	May/July	0.0	-0.5	0.0	0.0	0,5		1.6	1.6	2.2	0.0
_	June	0.5	0.5	1.1	0.5	1.1	0.5	1.1	1.1	1.6	1.1

Table (A-3) Solar heat gain factor (SHG) for sunlit glass, W/m², for a latitude angle of 32 °N.

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
N	76	85	101			139	126	117	104	88	76	69
NNE/NNW	76	85	117	252	350	385	350	249	110	88	76	69
NE/NW	91	205	338	461	536	555	527	445	325	199	91	69
ENE/WNW	331	470	577	631	656	656	643	615	546	451	325	265
E/W	552	647	716	716	694	675	678	691	678	615	546	511
ESE/WSW	722	764	748	691	628	596	612	663	716	738	710	688
SE/SW	786	782	716	590	489	439	473	571	688	754	773	776
SSE/SSW	789	732	615	445	213	262	303	429	596	710	776	795
S	776	697	555	363	233	189	227	350	540	678	767	795
Horizontal	555	685	795	855	874	871	861	836	770	672	552	498

Table (A-4-1)	Shading coefficient (SC	for glass v	vindows without interio	r shading.1
	Nominal	Solar	Shading Coefficie	mt, W/m²-K
Type of Glass	Thickness, mm	Trans.	$h_a = 22.7$	$h_e = 17.0$
Become and the second	Sin	gle Glass	F 472 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Clear	3	0.84	1.00	1.00
	6	0.78	0.94	0.95
	10	0.72	0.90	0.92
	12	0.67	0.87	0.88
Heat absorbing	3	0.64	0.83	0.85
	6	0.46	0.69	0.73
	10	0.33	0.60	0.64
	12	0.42	0.53	0.58
	Dou	ble Glass	Visite State of the state of th	
Regular	3	-	0.90	
Plate	6		0.83	_
Reflective	6	-	0.20-0.40	_
到 你就是你的生活	Insula	ting Gla	SI CONTRACTOR	
Clear	3	0.71	0.88	0.88
	6	0.61	0.81	0.82
Heat absorbing	6	0.36	0.55	0.58

Table (A-d-2) Shading and	CANAL CONTRACT		
Table (A-4-2) Shading coefficient	(C) for glass win	dows with interior shading	ĺ

	Shaoing caethol		Two	ne of the	o seasong,	
	Nominal		tian Blind	e or inte	rior Shading	
	Thickness		THE DINE		Roller S	-
Type of Glass	mm	Mediu	m Light		Opaque	Translucen
distribution of	S-0 18 4-18		gle Glass	Dari	White	Light
Clear, regular	2.5-6.0		gir Glass		NO THE COL	A CONTRACTOR OF THE PARTY OF TH
Clear, plate	6.0-12.0	-			777	200
Clear Pattern	3.0-12.0	0.64	0.55	0.50	-	-
Heat Absorbing	3	1	11/20	0.59	0.25	0.39
Pattern or Tinted(gray sheet)	5.0-5.5	-	-	-	-	=
Heat Absorbing, plate	5.0-6.0	0.57	0.53	0.45	0.30	0.36
Pattern or Tinted, gray sheet	3.0-5.5	-	-	-	-	- A-
Heat Absorbing Plate or Pattern Heat Absorbing	10	0.54	0.52	0,40	0.82	0.32
Heat Absorbing or Pattern	-	0.42	0.40	0.36	0.28	0.31
Reflective Coated Glass	-	0.30	0.25	0.23	-	
	- 1	0.40	0.33	0.29	- 1	
	-	0.50	0.42	0.38	-	-
	-	0.60	0.50	0.44	-	-
Regular		Double		Mark Market	AND DESCRIPTION OF	_
Plate	3	0.57	0.51	0.60	0.25	DO BANK
Reflective	6	0.57	0.51	0.60	0.25	
STATE OF THE STATE	6	0.20-	=	200000	11.24	-
A STATE OF THE STA	NAME OF TAXABLE PARTY.	0.40				-
Clear	2.5-6.0	Insulmin 0.57	Chass Q		100	NEWS
Heat Absorbing	200 Billion 1	0.39	0.51	0.60	0.25	0.37
Reflective Coated		0.20	0.36	0.40	0.22	0.30
	3 1	0.30	0.27	0.26		
	- 1		0.34	0.33		=

Marie .	Belldles								Sola	r Tin	se, h							
lass	Building Construction	1	2	3	4	5	6	7	8	9							16	
7770168	L	0.17	0.14	0.11	0.09	0.08	0.33	0.24	0.48	0.56	0.61	0.71	0.76	0.80	0.82	0.82	0.79	0.75
N	M	0.00	0.20	0.18	0.16	0.14	0.34	0.14	0.46	0.53	0.59	0.65	0.70	0.73	0.75	0.76	0.74	0.75
haded	H	0.25	0.23	0.21	0.20	0.19	0.38	0.45	0.49	0.55	0.60	0.65	0.69	0.72	0.72	0.72	0.70	0.70
ALL INVENE	166																	
	L	0.06	0.05	0.04	0.03	0.03	0.26	0.43	0.47	0.44	0.41	0.40	0.39	0.39	0.38	0.36	0.33	0.30
NNE	M	n ne	0.00	0.07	0.06	0.06	0.24	0.38	0.42	0.39	0.37	0.37	0.36	0.36	0.36	U,34	0.33	0.30
	H	0.11	0.10	0.09	0.09	0.08	0.36	0.39	0.42	0.39	0.36	0.35	0.34	0.34	0.33	0.3	10.00	0.28
		200	0.00	0.03	n n2	0.00	0.23	0.41	0.51	0.51	0.45	0.39	0.36	0.33	0.31	0.2	8 0.26	0.23
Lesson .	L	0.00		0.00	0.05	0.00	10.71	0.36	5 0.44	4 0 45	0.40	0.30	D:33	0.51	0.36	2 12-24	0.000	2 17.54
NE	M	0.07	0.00	0.08	0.07	0.0	7 0.23	0.3	7 0.4	4 0.4	0.39	0.34	0.31	0.29	0.23	0.2	6 0.24	0.22
	H	1																
	L	0.04	0.03	0.03	0.02	0.0	2 0.2	0.4	0 0.5	2 0.5	7 0.5	3 0.45	5 0.39	0.34	4 0.3	1 0.2	8 0.2	0.22
PEATE	M	0.00		0.04	0.04	t n n	4 (3.2)	0.03	504	5 0.4	9.0.4	7.0.4	0.36	10.5	3 33:31	U. U. 4	0.0.0	A 12-4-5
ENE	н	0.05	0.09	0.08	0.0	0.0	7 0.2	2 0.3	6 0.4	6 0.4	9 0.4	5 0.30	8 0.3	0.3	0.0.2	7.0.2	5 0.2	3 0.21
	L	0.0	1 0.00	3 0.0	3 0.0	2 0.0	2 0.1	9 0.3	7 0.5	1 0.5	7 0.5	1 0.5	6 0.4	003	503	100	002	5 0.22
E	M	0.0	7 0.0	6 0.0	5.0.0	5 0.0	5 0.1	8 0.3	3 0.4	4 0.5	0 0.5	0.4	2 0 2	003	302	9.00	602	6 0.23
	H	0.0	9.0.0	9 0.0	8 0.0	8 0.0	7 0.2	0.0.3	4.0.4	15.0.4	9.0.9	OF 12.40	5.0.5	N 040	di Made			4 0.22
				V 100 m		200	201	203	4 11 4	10 0 5	8 D 6	1 0.5	704	8 0.4	1 0.3	6 0.3	32 0.2	8 0.2
	L	0.0	5 0.0	4 0.0	3 0.0	5 0.0	12 U.1	4 0.3	ST 0 4	13.04	1 0 5	4 0.5	1 0.4	4 0 3	9 0.3	5 0.	32 0.2	9 0.2
ESE	M	0.0	8.0.0	7.0.0	0.0.0	0 00	10 0.1	00.	17 0	43 0.5	0 0 2	52 0.4	9 0.4	1 0.3	6 0.3	32 0.	29 0.3	6 0.2
	H																	
	L	0.0	5 0.0	4 0.0	4 0.0	3 0.0	33 0.1	3 0.3	28 0	43 0.5	55 0.0	52 0.6	3 0.5	7 0.4	18 0.4	42 0.	37 D.	33 0.2
SE	м	1000		10 A T	10.01	M D	25 13	14 0	26 0.	38 0	48.0°	54 U.:	50: 17.3	0.0	22 0	40 0.	20 0	Sec. Com
O.A.	н	0.1	1 0.1	0 0.1	0.0	99 0.1	08 0.	17 0.	28 0.	40.0	49 0.	53 0.5	53 0.4	18 C.	41 0.	36 0	33.0.	30 0.2
		1000																
	L	0.0	0.0	05 0.0	34 0.6	34 0.	03.0.	06 0	15 0.	29 D.	43 0.	22 U	03 0,1	E7 0	EA O	48.0	43 0	40 0.3
SSE	M	0.1	11 0.	09 0.0	08 D.	07 0.	06 0.	05 0.	16 0	26 0.	38 0.	38 U.	EA A	ee a	51 D	44 0	39 0	39.0.3
	H	0.1	12 0.	11 0.	11 0.	10 0.	09.0.	12 0	19 0	29 0	40 0.	49 0.	34 0.	22 0.	31. U.	44.0	.0.2.4	35 0.3
			00.0	no 0	0.50	04.0	ns a	06.0	09 0	14 0	22 0	34 0.	48 0	59 0.	65 0.	65 0	59 0	50 0.
	L	1		4122		25.67 PS	10 m 10	000 13	11.0	14.0	21 0	-33 II	42 0	32 11	21 0	20.1	(200 M	April 1995
S	M	0.	12 0.	12.0	12 0	11 0	10.0	11 D	14 0	17 0	24 0	33 0	43 0	51 0	.56 0	.55 (.50 0	.43 0.
	Н																	
		0	10.0	ns n	07.0	06.0	.05 0	.06 0	.09 0	.11 0	15 0	.19 0	27 0	39 0	.52 0	62 (67 0	.65 D
-	L	100	State of	40.00		00 0	OD B	100 0	11.6	0.13.0	15.0	$1.18 \cdot 0$	25 0	33 U	40 U	155	1150	1012.00
SSV	y M H	0	150	14.0	13 0	12 0	11 0	.12.0	1.14 0	1.16 0	1.18 0	1.21 0	27 0	37.0	.46 0	1.53	0.57 (0.55 0
	н	100																
	L	0	12.0	10 0	08 0	.06 0	0.05 0	0.06	0.08 (0.10 (1.12 (0,14 0	Lie C	24 6	1.36 (1.491	0.60	0.66 0
SV	er 200	800	118E30L	-		20.0	VAC /	5 7563 7	1.111.6	1127	1 13 (1.15 €	1.17 t	1.234	1331	1.44	Trans.	THE OWN
31	н	0	15 0	.14 0	13 0	12 (0.11	1.12	0.13 (0.14).16	9.17 (1.19 (1.25 (0.34	0.44	0.02	0.56 0
	1075	112																
	L	0	12.0	1.10 0	1.08	1.07 (0.05	0.06	0.07	0.09	0.10	0.12 (0.13	1.17	0.24	n 25	0.06	0.62 0
WS	w M	0	1.15	1.13 ().12 (2.10	0.09	0.09	0.10	0.11	0.12	0.13	0.14	0.10	0.04	0.36	0.46	0.54 (
055	Н	0	1.15 (1.14 (1.13 (1.12	0.11	0.11	0,12	0.13	0.14	0.15	0.10	0.19	Market !	Maril V	N. Carlo	0.53 (
						al debit		e de la constante de la consta	0.02	o pe	0.10	0.11	0.12	0.14	0.70	0.32	0.45	0.57 (
	L	1	0.12 (0.10 (0,08	0.06	0.05	0.00	0.07	11.00	W.LU	41.6.5			MODES (DISCO DE		

Continued Table (A-5-1)

Glass	Building								Sola	r Tir	me, h							
Facing	Construction	1	2	3.	4	5	6	7	8	9	10	11	12	13	14	15	16	17
w	M	0.15	0.13	0.11	0.10	0.09	0.09	0.09	0.10	0.11	0.12	0.12	n ta	0.10	0.20	0.40	2.50	0.50
	н	0.14	0.13	0.12	0.11	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.21	0.30	0.40	0.49	0.54
	L	0.12	0.10	0.08	0.06	0.05	0.06	0.07	0.09	0.10	0.12	0.13	0.15	0.17	0.26	0.40	0.53	0.63
WNW	M	0.15	0.13	0.11	0.10	0.09	0.09	0.10	0.11	0.12	0.11	0.14	0.15	0.17	0:24	0.35	0.47	0.55
	н	0.14	0.13	0.12	0.11	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.25	0.36	0.46	0.53
	L	0.11	0.09	0.08	0.06	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.17	0.19	0.23	0.33	0.47	0.40
NW	M	0.14	0.12	0.11	0.09	0.08	0.09	0.10	0.11	0.13	0.14	0.16	0.17	0.18	0.21	0.30	0.42	0.51
	н	0.14	0.12	0.11	0,10	0.10	0.10	0.12	0.13	0.15	0.16	0.18	0.18	0.19	0.22	0.30	0:41	0.50
	L	0.12	0.09	0.08	0.06	0.05	0.07	0.11	0.14	0.18	0.22	0.25	0.27	0.29	0.30	0.33	0.44	0.57
NNW	M	0.15	0.13	0.11	0.10	0.09	0.10	0.12	0.15	0.18	0.21	0.23	0.26	0.27	0.75	0.31	0.30	0.51
	H	0.14	0.13	0.12	0.11	0.10	0.12	0.15	0.17	0,20	0.23	0.25	0.26	0.28	0.28	0.31	0.38	0.49
	L	0.11 (0.09	0.07	0.06	0.05	0.07	0.14	0.24	0.16	0.48	0.58	0.66	0.72	0.74	0.73	0.67	0.59
HORIZ.					0.11													
	H	0.17 (0.16	0.15	0.14	0.13	0.15	0.20	0.28	0.16	0.45	0.52	0.59	0.62	0.64	0.62	0.58	0.51

Fenestration								Sol	ar Tin	ne, h							
Facing	1	2	3	4	5	6	7	. 8	9	10	11	12	13	14	15	16	17
N	0.08	0.07	0.06	0.06	0.07	0.73	0.66	0.65	0.73	0.80	0.86	0.89	0.89	0.86	0.82	0.75	0.78
NNE										0.37							
NE	0.03	0.02	0.02	0.02	0.02	0.56	0.76	0.74	0.58	0.37	0.29	0.27	0.26	0.24	0.22	0.20	0.16
ENE	0.03	0.02	0.02	0.02	0.02	0.52	0.76	0.80	0.71	0.52	0.31	0.26	0.24	0.22	0.20	0.18	0.15
E	ED-SCHOOL									0.62							
ESE										0.72							
SE										0.79							
SSE										0.81							
S										0.58							
SSW										0.27							
sw										0.19							
wsw	0.05	0.05	0.04	0.04	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0,23	0.44	0.64	0.78	0.84	0.78
w										0.15							
WNW										0.16							
NW	0.05	0.04	0.04	0.03	0.03	0.07	0.11	0.14	0.17	0.19	0.20	0.21	0.22	0.30	0.52	0.73	0.87
AND REAL PROPERTY.										0.30							
IN MYSSESSOCIAL WITH										0.72						0.58	

Table (A-6-1) Cooling load factor (CLF)_{cr}, for lights ³

Number of hours after lights are		operation		operation
turned On	10	16	10	16
0	0.08	0.19	0.01	0.05
1	0.62	0.72	0.76	0.79
2	0.66	0.75	0.81	0.83
3	0.69	0.77	0.84	0.87
4	0.73	0.80	0.88	0.89
4 5	0.75	0.82	0.90	0.91
6	0.78	0.84	0.92	0.93
.7	0.80	0.85	0.93	0.94
8	0.82	0.87	0.95	0.95
9	0.84	0.88	0.96	0.96
10	0.85	0.89	0.97	0.97
11	0.32	0.90	0.22	0.98
12	0.29	0.91	0.18	0.98
13	0.26	0.92	0.14	0.98
14	0.23	0.93	0.12	0.99
15	0.21	0.94	0.09	0.99
16	0.19	0.94	0.08	0.99
17	0.17	0.40	0.06	0.24
18	0.15	0.36	0.05	0.20

Adapted from Stoecker and Jones, 1982, "Refrigeration and Air Conditioning", 2nd ed., MacGraw Hill. (Fixture X = not vented recessed lights and Fixture Y = vented or free-hanging light.)

Hours after				Fotal ho	urs in spi	ace		
each entry into space	2	4	6	8	10	12	14	16
1	0.49	0.49	0.50	0.51	0.53	0.55	0.58	
2	0.58	0.59	0.60	0.61	0.62	0.64	0.66	0.62
3	0.17	0.66	0.67	0.67	0.69	0.70	0.72	0.70
4	0.13	0.71	0.72	0.72	0.74	0.75	0.72	0.75
4 5 6 7 8	0.10	0.27	0.76	0.76	0.77	0.79	0.80	0.79
6	0.08	0.21	0.79	0.80	0.80	0.81	0.83	0.82
7	0.07	0.16	0.34	0.82	0.83	0.84	0.85	0.85
8	0.06	0.14	0.26	0.84	0.85	0.86	0.87	0.87
. 702	0.05	0.11	0.21	0.38	0.87	0.88	0.89	0.88
10	0.04	0.10	0.18	0.30	0.89	0.89	7.7.7.7.7	0.90
11	0.04	0.08	0.15	0.25	0.42	0.91	0.9	0.91
12	0.03	0.07	0.13	0.21	0.34	0.92	0.91	0.92
13	0.03	0.06	0.11	0.18	0.28	0.45	0.92	0.93
14	0.02	0.06	0.10	0.15	0.23	0.36	0.93	0.94
15	0.02	0.05	0.08	0.13	0.20	0.30	0.94	0.95
16	0.02	0.04	0.07	0.12	0.17		0.47	0.95
17	0.02	0.04	0.06	0.10	0.15	0.25	0.38	0.96
18	0.01	0.03	0.06	0.09	0.13	0.21	0.31	0.49

⁴ Adapted from Jones, 1979 "Air Conditioning applications and Design", Edward Arnold.

Table (A	(-7)	Co	oling	g loa	id te	mpe	eratu	ire (iffe	reno	es (CLT	D) f	or c	onv	ectio	n h	eatg	gain	for	glas	s w	ndo	ws.
Solar Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
CLTD °C	1	0	-1	-1	-1	-1	-1	0	1	2	4	5	7	7	8	8	7	7	6	4	3	2	2	1

Type of Activity	Typical Application	Total Heat Dissipation Adult Male	Total Adjusted ^{ist} Heat Dissipation	Sensible Heat, W	Latent Heat, W
Seated at rest	Theater:				-
	Matinee	111.5	94.0	64.0	30.0
	Evening	111.5	100.0	70.0	30.0
Seated, very light work	Offices, hotels, apartments, restaurants	128.5	114.0	70.0	44.0
Moderately active office work	Offices, hotels, apartments	135.5	128.5	71.5	57.0
Standing, light work, walking	Department store, retail store, supermarkets	157.0	143.0	71.5	71.5
Walking, seated	Drug store	157.0	143.0	71.5	71.5
Standing, walking slowly	Bank	157.0 168.5	143.0 157.0	71.5 78.5	71.5 78.5
Sedentary work	Restaurant	100.3	, BULLAN	7.00.00	1.475
Light bench work	Factory	238.0	214.0	78.0	136.0
Moderate work	Small-Parts assembly	257.0	243.0	87.0	156.0
Moderate dancing	Dance halls	257.0	243.0	87.0	156.0
Walking at 1.5 m/s	Factory	286.0	285.0	107.0	178.0
Bowling (participant)	Bowling alley	428.5	414.0	166.0	248.0
Heavy work	Factory	428.5	414.0	166.0	2483

Table (A-9)

درجات حرارة النطقة الرابعة (س°)

الشهر	1	2	3	4	5	6	7	8	9	10	11	12
المتوسط الشهري	8.3	8.2	9.5	17.4	19.9	21.7	23.6	24	22.3	20.1	16	10.8
المتوسط الشهري للدرجة القصوى	11.2	11.8	13.6	20.8	25.3	27.5	29.3	30	27.4	21.2	19.3	13.7
اغتوسط الشهري للدرجة الدنها	5.3	4.7	5.4	13.9	14.5	15.8	17.9	18	17	15.9	12.6	7.9
الذى	5.9	7.2	8.3	6.9	10.8	11.7	11.4	12	10.4	8.3	6.7	5.8
الدرجة القصوى	14.3	19.7	19.7	34.1	33.2	33.2	35.8	36.1	36.1	32.9	28.6	25.3
الدرجة الدنيا	-2	1.2	-1.3	4.4	7	10.9	13.8	13.7	14.7	14	11.9	6.6

درجة الحرارة التصمية للمنطقة الرابعة.

صيفاً: 30 س®

شتاء: 4.7 س°

Table (A-10) قيم الرطربة النسبية التصميمية (بالمائة)

	ص	يفا	ش	تاءً
	ادنی	اقصىي	ادنى	اقصى
المنطقة الاولى	44	49	65.7	69.3
المنطقة الثانية	44	49	65.7	69.3
المنطقة الثالثة	55.5	61.9	68	69.7
المنطقة الرابعة	49.7	53.7	68	71.7
المنطقة الخامسة	61.5	65.2	65.9	73.7
المنطقة السادسة - غزة	75	77	62	69
المنطقة السابعة- غزة	55.5	61.9	68	69.7

Table (P-1): Table for Estimating Demand

Table (P-2): Water supply fixture units and fixture branch sizes

· Pietrosa*	Use	Type of Supply Control	Fixture Units*	Min. Size of Fixture Branch* in.
Bethroom group* Bethroom group* Bethroom group* Bethrub Clothes washer Clothes washer Combination fixture Dishwasher* Drinking fountain Kitchen sink Laundry trays (1—3) Lavatory Lavatory Separate shower Service sink Shower head	Private Private Private Private General Private General Private Offices, etc. Private General Private General Private General Private General Private General Private General	Flushometer Flush tank for closet Faucet Faucet Faucet Faucet Faucet Automatic Faucet Mixing valve Mixing valve Mixing valve	Units* 8 6 2 4 3 1 0.25 2 4 3 1 2 2 4 3 1 2 4 3 1 4 3 1 4 3 4 3 1 4 4 3 4 4 4 4 4 4	
Shower head Urinal Urinal Water closet	General General Private Private Private General General General	Flushometer Flushometer Flushometer/tank Flushometer/tank Flushometer Flushometer/tank Flushometer/tank	5 3 6 3 10 5 5	1/4 4/2 1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1

Water supply outlets not listed above shall be computed at their maximum demand, but in no case less than the following values:

Table (P-3) Horizontal Fixture Branches and Stacks

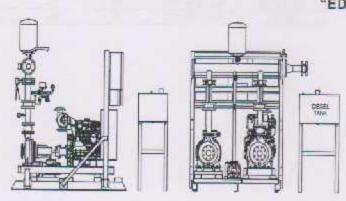
	Maximu	m Number of Fexture Un	its That May Be Co	nneciea la
7/		One Stack of		ith More Than Three anch Intervals
Diameter of Pipe, bs.	Assy Harizontal Fixture Branch,* Afa	Three Branch Intervals or Less, dfu	Total for Stack, dfu	Total at One Branch Interval, dfu
1 % 2 2 // 3 4	3 6 12 20 ⁶ 160	. 4 10 20 48* 245	8 24 42 72 ⁵ 500	2 6 9 20* 90
5 6 8 10 12 15	360 620 1400 2500 3900 - 7000	540 960 2200 3800 4000	1190 1990 3600 5600 8400	290 350 600 1000 ,

*Does not include broughes of the building drain.

*Not more than two water closets or bathroom groups within each branch interval nor more than six water closets or

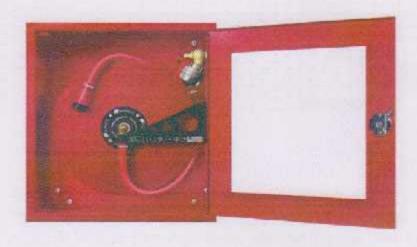
bathroom groups on the stack.

Note: Stacks shall be sized according to the total accumulated connected load at each story or branch interval and may be reduced in size as this load decreases to a minimum diameter of half of the largest Source. Reprinted with permission of The National Standard Plumbing Code, published by The National Association of Plumbing Heating Cooling Contractors.


Appendix B:

C.1: Water tank

Fire fighting units with horizontal pumps back pull-out type, made according to standard EN 12845


1 Electric main pump + 1 Diesel main motorpump + 1 lockey pump
"EDP" Series

C.2:

Model 52 is a recessed installation type cabinet with a separate compartment for the accommodation of portable extinguisher or similar equipments. Reel has been fastened on a 180° hanged support and installed on the right side of the cabinet. This model complies with DIN 14461 standard.

Designed and manufacture in accordance with EN 671-1

MODEL	HE	3E	SIZE (mm)	ORDER CODE		
MUULL	Diameter Immi	Length (m)	WxHxD	OHDER CODE		
52	26	20	740 × 840 × 250	\$2 - 20		
.82	25	20	740 ± 840 ± 200	82 - 20 - 20		
52	25	30	740 ± 840 ± 250	82 - 30		

C.4: Fire Fighting pump selection:

			1				- 5	- CAPRO	MY OF E	ADIME	MCE PUR	(E)				
	12.70	Destric	9400	88	n	56	108	120	136	109	210	340	370	565	300	360
Code	Model	Female	50w 17	Lide:	1790	1500	1800	2000	2009	3000	3500	4068	4900	9800	2000	9092
		(8490)				-		_	iz Setul N	And (m.c.)	1.		-		_	
700,433	EE/P-L85-290/187-24	39/13	(4)	-8	0	ar .	50	34							-	
293,423	30-CBF9030C-638-939	204.1	-81	-38	40.	47	10	40.	R	181						-
T91,471	830° 4.82.2000'00 47	18.045.T	112	.57	81	42.	42	5								
790.425	EDP4.55/M/210-35	22vt.t	.09	59	28	:Att	(65)	(MI)		- Cur						-
790.436	EDP-RES-MONUTS-62.6	1092.2	10	-54	-06	ATT	Arr	88	-65-	52						-
780.437	PDP185330001434	2017.7	je-	28	71	.09	ME	(29)							-	-
700 429	E0F1,60-230030000	STATE:	90	67	15	733	78*	-00				-			-	-
766 429	FOR 485-2568/222-42-6	3043.2	79	19	79	61.	100		-15							
700.430	EDP 865-209KGX343.5	40492	85	故	120	-73	- 技術	30	700						-	
700 431	EDF-HS-0500/253-05-3	45/02	12	80-	(0)	11	38	10	29.	20						
170,432	EDP-068-2600/358-453	5549.0	75	91	Δt.	85	32	801	210	1.84				-	_	_
200 433	EDP 849-3188/973-49.8	3542.8	101	100	100	06	807	20	34							
700.434	EUP-943-7139/788-418 B	75r3	112	816	110	190	1000	1770	Ht.	-27						-
7041.405	EDITH 38-280/168-36	32+1.1	- 45				46	92	Nr.	無						
700 400	50F L86 28600T-42.5	2011.5	98.				125	M	821	112	H= 40					_
790.435	EOP-L 80-216/325-58	27/22	(39)				GT.	00	500	44						1
290.KSE	E074.85-350/258-88.3	45-22	100				75	90	70	在						
200,630	FOP-130-250-256-86.8	29:03	182				01	00.	34.	39	nt					
700.849	EDP LECK-259/279-173.4	2542	112				1125	109	101	04	10					
700,641	EDF-C88-200203-63.3	4515.5	19					100	B	82	100	-92				
700,440	£181-C00-200214-58.5	55+1.5	24					202	00	III HE	27	48				
TOTAL 640	FEW CR0 259235-65.3	55+1.2F	.55					70	100	581	18	14	- 50			
705.448	EEF-090-258355-4916	2542.9	36.					in	34	M	70"	90	36	75		
106,485	EDP-C00-750/964-ED-4	75+2.2	100					90	m	11	10"	1.46	-	11.42		1
700.445	EDP-100-285/285 177.2	11043.2	102					107	318	.06	26	92"	1.43	移	= (0)	7
700.447	ECP-845-91576/00-177.5	WEG.	140					m	110	2.185	100	300	10			

Spray Foam fire extinguishers provide a fast, powerful means of tackling 'A' and 'B' class fires. Highly effective against petrol and volatile liquids, forming a flame smothering seal over the surface and preventing re-ignition. Ideal for multi-risk usage. Fire ratings provide a means of measuring the effectiveness of a fire extinguisher in terms of the maximum size of fire that can be extinguished

Certified to BS-EN3

C.5:

C.6:

FAN MODEL	RPM	MAX WATTS	OVER COURSE	0"	.125*	,25"	.375"	.5**	.75**	1.0"	1.25		MAX in wg	
8" MAX 657 CPM	3250	179	1.5	667	650	630	610	585	520	420	150	100	1.84	8"
12" MAX 1908.0FM		489	4.1	1708	1680	1655	1630	1595	1530	1460	1380	1300	3.34	12"

C.7:

Max-Fan™ PRO SERIES PERFORMANCE AT PRESSURE

						Free A	ir		Fan At	ttached	to Fil	ter			
FAN MODEL	SPEED	RPM	VOLTS	MAX WATTS	MAX AMPS	0"	.125"	.25"	.375"	.5"	.75"	1.0"	1.25	MAX in.wg	DUCT DIA.
6" PRO SERIES	High Med./High Medium	3322 3077 2637	120 120 120	69 60 52	0.62 0.54 0.49	420 379 291	405 356 253	386 332 220	364 306 194	338 275 165	273 177 65	96 65 N/A	922,1220	1.377 1.225 0.911	6
8" PRO SERIES	High Med /High Medium	3288 2836 2276	120 120 120	186 165 127	1.58 1.42 1.15	863 726 530	838 680 468	812 630 407	785 580 368	755 538 333	604 470 193	532 388 58	335 220 N/A	2.052 1.69 1.128	8
14" PRO SERIES	High Med/High Medium	1715 1644 1571	120 120 120	378 330 314	3.17 2.77 2.72	2270 2171 2083	2200 2080 1970	2120 2000 1860	2040 1905 1735	1960 1805 1600	1755 1570 1350	1480 1260 600	500 445 140	1,594 1,506 1,421	14
16" PRO SERIES	CONTRACTOR OF THE PARTY OF THE	1712 1629 1547	120 120 120	350 319 321	2.91 2.74 2.91	2343 2250 2149	2275 2150 2040	2205 2045 1905	2120 1950 1745	1850	1835 1590 1280	1540 1265 595	485 365 230	1.586 1.486 1.401	16

C.8:

TDI Performance Data:

								Static	Pressun	e in Inch	es WG	CFM		
Model	Motor	Fain	Max			0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000
Number	HP	RPM	BHP	LwA	dBA	CFM	CFM	CFM	CFM	CFM	CFM	CFM	CFM	CEM
24-0E24	7.74	860	0.29	78	67	5439	4712	3741						
24-0335	1/4	860	0.29	77	86	5682	4376							
24-0630	1/3	360	0.39	71	65	6215	5391	4313						
24-0609	1/4	1140	0.27	83	72	4337	3930	3430	2679					
24-0412	1/4	1140	0.25	91	70	5058	4452		Toronto Contraction					
24-0612	1/3	1140	0.35	83	72	5104	4865	4156	3480	-		-		4
24-0417	1/3	1140	0.34	B2	71	5768	5085	4304	3333					
24-0425	1/2	1140	0.58	85	74	7123	8441	5598	4481	1				-
24-0621	1/2	1740	0.59	85	74	6734	6250	5670	4983	4116				
24-0435	1/2	1140	0.87	87	76	8181	7391			HOROTT			-	
24-0630	3/4	1140	0.90	68	77	8239	7654	6981	6188	5261				
24-0635	1	1140	1.15	69	78	9028	8398	7667	6762		-			
24-0504	1/2	1725	0.60	94	83	4902	4829	4358	4054	3697	3276			
24-0407	1/2	1725	0.56	93	82	5760	5391	4977	4531	3971	3262			-
24-0800	11	1725	0.93	07	86	6563	6309	6033	5736	5407	5001	4521	3958	
24-0315	1	1725	0.91	93	92	7960	7484	6945	6375	5758	5026			
24-0612	1.5	1725	1.22	95	94	7724	7444	7147	6834	6510	5147	5740	5170	2 1000
24-0417	1	1725	1.20	95	84	9638	8255	7830	7349	6833	6281	5657	47.76	
24-0321	1.5	1725	1.23	95	84	9059	8585	8035	7464	6832	6093	5130		
24-0518	1.5	1725	1.70	97	86	6237	8960	8869	8344	7981	7578	7152	6670	
24-0423	1.5	1725	1.65	97	88	9994	9561	9103	8592	8050	7469	6806	5065	
24-0328	1.5	1725	1.70	96	85	10293	9805	9263	8828	7858	7041			

C.9: NC

NECK VELOCITY(FPM)	SOUND LEVEL- NC
300-600	Less than 20
700-600	Less than 30
900-700	Less than 35
1100-900	Less than 40
1600-1100	Less than 40

C.10: Grill

	1-Way		2	-Way	1 3	-Way	-	Minn
Neck Size (in.)	NC- Level	CFM Range	NC- Level	CFM Range	NC- Level	CFM Range	NC-	CFM
6 x 6	25-35	45-140	25-35	45-140	25-35	50-160	Lovel	Range
9 x 9	25-35	95-275	25-35	95-275	-		25-35	50-160
12 x 12	25-35	175-480	25-35		25-35	110-315	25-35	110-315
15 x 15	25-35			175-480	25-35	200-560	25-35	200-560
	_	275-680	25-35	275-775	25-35	310-875	25-35	310-875
18 x 18	25-35	390-1090	25-35	390-1090	25-35	450-1260	25-35	
21 x 21	25-35	540-1515	25-35	540-1515	25-35			450-1260
24 x 24	25-35	705-1690				615-1725	25-35	615-1725
	10000	100-1090	25-35	705-1690	25-35	800-1925	25-35	800-1925

C.11:

Listed size	CFM range
6" dia.	60-315
8" dia.	105-560
10" dia.	165-870
12" dia.	225-1255
14" dia.	320-1710
16" dia.	420-2240
18" dia,	530-2830
20" dia.	660-3500
24" dia.	940-4950

C.12:

4-way TYPE 4

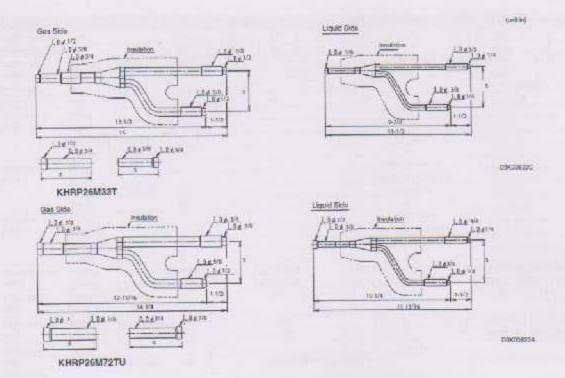
				1			V _N O	atlet Veloc	lty, FPM				
Liste			500	660	700	800	900	1000	1206	1400	1600	1800	2000
Outle	t Ar	ea					Py Total	Pressure,	Inches II	10			1 2000
5			.02	.02	.63	.04	.05	.06	.09	.12	.16	.20	25
		CFM	50	60	70	80	90	100	120	140	160	160	300
6 x 6	1	×	2-5	23	2-4	24	3.5	3.5	4.6	4.8	5.6	5.0	6-11
Ar. 10		Y	2-3	2-3	24	2.4	3-5	3.5	4.6	4.8	3.3	5.9	6-11
		NC	25	26	26	25	26	30	30	30	36	40	46
	15	TM	110	135	165	160	205	225	270	316	300	410	450
9 x 9	T	X	2-4	2-4	3.5	3.5	4.8	5-8	5.9	3-11	8-12	7-13	8-14
Ay. 22		Y	2.4	24	3.5	3-5	4-6	5-8	5-9	5-11	5-12	7-13	6-14
		NC:	25	25	35	25	26	30	30	35	40	40	40
	C	FM	200	240	260	320	380	400	480	BAD	648	725	000
12 x 12	+	Х	3-5	4.8	4-0	8-8	5-9	G-1.1	8-12	7.15	8-15	9-17	10-10
Ax.40		Y	3.5	4-5	4-8	5-6	5.9	0.11	5-12	7.13	8-15	9-17	10-19
		ic i	25	25	25	25	25	30	38	35	40	40	40
100000000000000000000000000000000000000	C	ГM	310	375	440	500	505	825	750	875	1000	1125	1250
15 x 15	T	×	4-6	4.6:	5.9	6.11	5-11	6-12	8-15	10.15	10-19	12-21	12-23
Arc. 82		Y	4-E	4-8	5.6	6-11	6-11	8-12	8-15	10-15	10-19	12-71	13-23
	. 1	IC.	25	26	25	25	25	30	300	35	40	40	48
Mark Park	C	FM	450	540	f(30)	720	810	900	1093	1260	1440	1620	1800
18 x 18	7	х	4-6	5-9	5-11	8-12	7-13	8-15	10-17	11-20	13-23	15-27	16.30
Ag .90		Y	4-8	5.9	5-11	8-12	7-13	8+15	10-17	11-20	13-23	15-27	1
	71	c	25	25	25	25.	25	20	30	35	40	40	16-30

C.13:

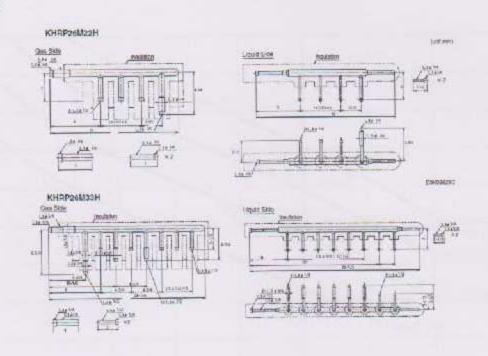
Li	sted		-	000000000000000000000000000000000000000		V _K Ot	rtiet Velor	city, FPM	E SILE		- Interior	THE REAL PROPERTY.
	ilze	500	600	700	800	900	1000	1200	1400	1600	1800	2000
	utlet rea		jig -	-		Py Total	Pressure	Inches H		1000	1600	2000
	6.6	.02	.02	.03	04	.05	.06	.09	.12	1 40	1	1
9 x 6	CEM	65	80	95	105	120	130	160		.16	.20	.25
	TX		6-9	7-11	8-12	9-13	10-15	12-18	185 15-21	210	240	260
Arr.13	Y Y		-	7		-	1013	12-10	19-21	16-24	19-29	21-32
	NC.	20	20	20	20	20	30	30	30	35	-	-
12 x 6	CFM	90	105	120	140	160	175	210	245		40	40
0.000	TX	5-8	6-9	B-13	9-14	10-15	12-18	14-20	17-25	280	315	350
Ax.17	Y	-		1			-		11.20	10-61	20-30	23-35
ANDRA	NC	20	20	20	20	20	30	30	35	40	40	+
15 x 5	CFM	110	130	155	175	200	220	265	310	350		40
	TX	5-8	7-10	9-13	10-15	12-18	14-20	16-24	18-27	21-31	395	440
Ar. 22	Y		19	540	-	-		10-24	10.71	23-31	24-36	28-41
	NC	20	20	20	20	30	30	38	25	10.00	7	1
12 x 9	CFM	130	155	180	210	235	260	310	35 365	40	40	40
3.00.00.00	TX	7-10	B-12	10-14	11-17	12-18	14-20	17-25		415	470	520
A _K .26	Y	-					17.20	11.20	19-29	22-23	25-37	3245
-	NC	20	20	20	20	30	30	30	35	40	-	-
15 x 9	CFM	165	195	230	260	295	325	390	450	-	40	40
	TX	9-13	10-14	11-17	12-18	15-23	17-25	20-30	22-33	525 25-37	590	650
Ac. 32	NC Y	*			-	16			55.03	6301	29-42	35-48
	_	20	20	20	20	38	30	30	35	40	40	40
18 x 9	CEM	195	235	275	310	350	390	470	545	625	700	780
	TX	9-13	10-15	12-18	14-20	16-24	15-26	20-30	25-37	27-40	31-44	39-54
Ax .39	NC	20	- 20	-	-			-	+	27.40	31-44	33404
	CEM	The same of the sa	20	20	20	30	30	30	35	40	40	40
15 x 12	The second second	10-14	260	305	350	390	435	525	610	700	785	870
	TA	10-14	11-17	13-19	15-23	18-26	19-29	22-32	26-39	30-43	35-48	42-54
Ax.43	NC	20	20	7.0	26			- 5	-		-	-
	140	20	20	20	20	30	30	30	35	45	40	40

C.14:

Indoor unit				FXAQ15P	FXAQ26P	FXAQ25P	FXAQ32P	EVADAM	PMA WOOD	The same of the sa
Cooling rapacity			kW	1.7	2.2	2.6	Action of the last	FXAQ40P	FXAQSOP	FXAQ63P
Heating capacity	Non.		kW:	1.0	2.5		3.6	4.5	5.5	7,1
Powerinput	Cooling	Nom.	KW.	0.017	71000	3.2	4.0	5.0	6.3	6.8
-50Hz	Heating	Mom.	KW	0.025	0.019	0.028	0.030	0.020	0.033	0.050
Casing Colour		118,311		1/0/25	0.029	0.034	0.035	0.020	0.039	0.060
Dimensions	Unit	HxWxD	min			White 3.0	Y8.5/0.5) White (3	.0YE.5/0.5)		
Weicht	Unit	316/8/6/20			290x75	95x238			296x1,050x23	R
Fan Air flow rate	Cooling	10-11	kg	100000000000000000000000000000000000000	1	1			14	
-50Hz	Chaing	High/Low	m²/min	7.0/4.5	7.5/4.5	8/5	8.5/5.5	12/9	15/12	19/14
Sound power	Cooling	Nom.	ABb							100.00
fevel							11			
Sound pressure	Cooling	High/Low	dBA	34.0/29.0	35.0/29.0	To a feet of	-			
(MA)				1	33/0/23/0	36.0/29.0	37.5/29.0	39,0/34.0	42.0/35.0	47.0/39.0
Wingerant	Туре									I I I I I I I I I I I I I I I I I I I
ping		Gas/OD/Drain	70/Th				R-410A			
connections		San Corana	2000			0.35/12.7				957/15.9/\P1
ower supply	Dhasa/Fran	uency/Voltage	Hz/V			II.D. 1370	UD. 14)			(I.D. 13/0.D. 18
		ise amps (MFA)	1000				1-/50/220-240			
STORE STORE	TOWNSHIP TO STATE OF THE PARTY	coe amps (wex)	A				16			


C.15:

Outdoor Units				RYYQ44T			RYYQ46T	2 TO = 21	DE TRO	RVYU48T	
	-m-variety production		RYMQ12T	RYMQ16T	RYMOTET	RYMQ14T	RYMQ16T	RYMOTET	RYMOTET	Tatomya	SYMO167
Capacity	Nominal Cooling	W.	-	124.00	APPROPRIESTAL SE	THE PERSON NAMED IN	130,00	Diffusion.	THE PERSON NAMED IN		SYMUTA
	Nominal Heating	ŁW.		138,06			145.00			135.00	
EEH .		100		154			3.51			150.00	
ESEER				5.02"		-	5.6"			1.96	
COP				3.55						63*	
Dimensions	Height	mes	1685	1685	1585	1683	3.34		-	2.91	
	Width	mm	990	1349	1243		1685	1885	1685	1681	1665
	Depth	TIM	765	765		1240	1240	1240	1240	1240	1240
Weight		lig.	155	309	765	765	765	765	785	765	2165
Ale flow Rate		mVsec			309	309	3(9)	309	300	309	309
Expernal Static Pressure	High	\$1 ₃	8.DM	4.33	4.53	3,72	4.33	433.	433	4.23	433
Jectrical Details	Power Supply	Phase/Hg/V	.00	78	78	78	78	75	78	78	78
	Running Current		700	17 2000			50Hz/380-4	115V			
	Starting Current	ampy	127	16.0	18:0	15/4	19.0	18.0	18.0	18.0	160
	Force Rating	angs	1122	databaak			dinabook			gatabook	-121
lefrigerant Cocurt		Artigis .	32	40	40	37	40	40	43	40	40
ceditain Asimi	Refrigorant Type	20			1000		R/110a				
	Refrigerant Charge	kģ	1.3	10.4	10.4	103	10.4	10.4	10.4	104	10.4
CONTRACTOR OF THE PARTY OF THE	Additional Charge	lig					data book		- 100	100	160.7
ound Pressure		dEA	61	64	54	51	64	64	64	64	64
ound Power		dBA	81	86	56	81	88	260	36	95	
loing Limits	Maximum Length	m	7				165	-	-90	100	85
	Maximum Vertical Rise	m					databook				
tring Connections	Liquid	inches		3/4	1		3/4			400	
The post of the same of the sa	Gas	inches		15/8			15/8	-		3/4/	
apacity Index Limit		120/121	550-1430			The street of th			159		
tasimum thumber of Cor	onacted Indoor Units			64			5/1-1495		600-1000		
				9.9			54		64		


C.16:

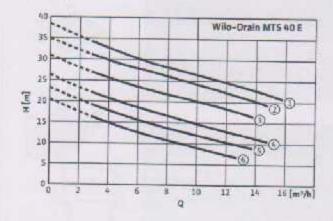
Outdoor Units				Encoyes		Ultimore	RYYOSZT			-	
			HYMQ167	RYMQ16T	RYMOTET	RYMOTET	TETCIMYR	FYMCIAT	RYMOSET	THEORYT	- Aller Street
Capacity	Hominal Cooling	NW.		14000		LIEUZOURI POR	145.00	P. SHEEL AUG. I	-HEMOTEST-	HYMQ187	RYMIQUIT
	Nominal Heating	XW.		156.00			16200			150:00	
EER				3.44			3.42	_		165.00	
15668				6.46*	_		8.426			J.40	
COP				3.90			3.89			5.36"	
Dimensions.	Height	mm.	1685	1685	1685	1685	1685	2000	7007077	2.39	-
	With	mm	1240	1240	1240	1240	1348	1685	1685	1665	1685
	Dispth	mm	765	260	765	165		1240	1340	1240	1240
Weight		kp	300	300	310		765	765	765	765	765
Air Flow liane		m ³ /sec	433	4.33	4.10	309	310	319	818	319	319
Estamat Static Pressure	High)	Ply	78	79	78.	4.53	4.18	4.19	4.18	4.10	-528
Bectrical Details	Fower Supply	Phase	100	- "	- 10		78	78	78:	78	78
	Running Cumon	amps	180	38.0	20.8		50HL/880-0				
	Starting Current	amen	100	tatabook	20.00	18.0	18.8	20.8	20.8	26.6	20.9
	FineRating	amps	40	40		-	databous			databook	
Refrigment Circuit	Refrigerant Type:			40	40	40	40	-50	40	40	40
	Refrigerant Charge	lig	10.4	10.4	11.2	10.4	7410a	15.00			
	Additional Charge	kg	1000	10.4	31.2	2004	152	11.7	11.7	11.2	31.2
Sound Parsyaw	-	ADA	61	64	100	22	data book				
Journal Powers		dflA	86	56	-55	61	-63	65	65	65	- 65
Aping Units	Maximum Length	79	an I	55	66	86	85	86	96	56	85
	Maximum Vernical Rise	m	_				165				
Piping Connections	Liquid	Inches		277			databook				
STATE OF THE PARTY	Gás	Inches		34			3/4			3/4	
agacity Index Unit	***	- Addings	1 5/E			7.5/8			15/9		
Luximum Number of Cor	anacted fedore their			625-1625		950~1600			675~1755		
Action of the second	MINNESS PRODUCT SCHOOL			64			64		64		

C.17:

C.18:

C.19:

Indoor unit				FXFQ208	FXFQ254	ASEDAXA	EXFQ40A	FKFQ50A	FXFQ63A	FXFQEOA	FXFQ100A	EXFO125A
Cooling capacity	Norn.		kW	7.2	2.8	3.6	4.5	5.5	7.1	9.0	11.2	14.0
Heating capacity	Norn.		kW.	2.5	3.2	4.0	5.0	6.3	8.0	10.0	12.5	16.0
Power input	Cooling	Nors.	kw.		0.0	38		0.053	0.061	0.092	0.115	0.186
-50Hz	Heating	Nom.	kw		0.0	38		0.053	0.061	0:092	0.115	0.166
Dimensions	Unit	HXWXD	miny			204x8	40x340			246x8	40x840	288x840x840
Weight	Unit		kg		19		20	2	1		14	26
Decoration	Model							NCQ140D7W	1			
panel	Colour						Pure	White (RAL)	20100			
	Climentions	HxWxD	mm					60x930x950				
	Weight		kg					5.4				
Decoration	Model						81	CQ140D7W1	W			
panel 2	Colour						Pure	White GAL 9	2010)			
	Dimensions	HxWxD	mm					50×950x950				
	Weight		kg					5.4				
Decoration	Model						81	CO14007GV	V1			
panel 3	Colour						Pure	White (RALS	0108			
	Dimensions	HxWxD	mm					145×950×950				
	Weight		kg					10.3				
Fan-Air flow rate	Cooling	High/Nem./Low	m'/min		12.5/10.6/8.8		13/9/11/6/95	15/0/12/8/10/5	165/135/105	228/176/124	265/193/124	13-0/26/5/19:5
-50Hz	Heating	High/Nom/Low	m²/min		12.5/10.6/8.8						265/193/124	
Sound power level	Cooling	High/Nom.	dRA		49/-		51		535	55/-	60/+	61/-
Sound pressure	Cooling	High/Non-/Low	dBA		31/29/28		33/3	1/29	35/33/30	38/34/30	43/37/90	45/41/36
level	Heating	High/Nom/Low	dBA		31/29/28		33/3	1/29	35/33/30	38/34/30	43/37/30	45/41/36
Refrigerant.	Туре							R-410A	CHARLES AND ADDRESS OF THE PARTY OF THE PART			
Plping connections	Liquid/00/G	as/OO/Drain	mm:		635/12.7/	VP25 (O.D. 3	2/1D.251		9.5	2/15.9NP25	(O.D. 32/1D	25)
Power supply	Pluse/Frequ	ency/Voltage	Hz/V				1+75	0/60/220-240	/220			
Current - 50Hz	Maximum tu	se amps (MFA)	A					16				


C.20:

C.21:

Win-Drain MTS 40 E

3-pole, 50 Hz

1 = MTS 40 E 39,36/25 2 = MTS 40 E 35,35/23

3 = MT5 40 E 31.14/21

4 - MTS 90 E 26 15/15

5 - MY5 40 F 27 14/12 6 = MTS 40 F 20.13/11

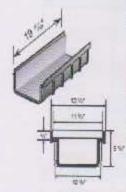
All shown pump curves are valid for a dentity of $\rho=1\log/\alpha n^2$

Wilo-Drain	Caralina	The second name of the second	1						
WOO-Drain	Connection	Cobis type			Clamp connections				
			u	V	100	29	TIAWSK	T7/W58	
MTS 46/1-	1-230 V	3 x 1.5 mm - 11	Inti	200	-	green/vettow		110,110	
MTS 46/_ 3~	3~100V	5 x 1.0 mm ³	1	2	8	green/vellow		-	
MTS 40 E 3-	3-400 V	7 x 1.5 mm = 21	41	1		green/vallew	1.4	- 5	

1) Connection of mains cable with shock-groot plug to raparitor box 2) Strand 7 not used.

C.22:

12" Pro Series Channel™ Drains

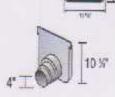


Part No.	Description	Colu	Plug. Oty.	WL En. (Bs.)	Product Class	Specifications
BM7	12" r 20" Light Traffic Channel Smile"	Gray	1	464	2539	12" wide UV-protected
-	"France and Some of first Plat (LF _ 'm') on any 77					high-impact PVC Light Traffic Chansel Grafe, Open ourface area 48,77 source Inches/ foot 149 19 GPM per foot.

Part No.	Description	Color	Pkg. Oty.	WLEA.	Product Class	Specifications
ME	12" s 20" Cast Iron Honey Traffic Charmes Brate	Sack	1	23.06	25N	12" Wide Cast Iros Fewy Traffic Channel Gotts
	XI COLIN					Open surface area 46 No square lockes per foot. 142.85 IFM per foot.



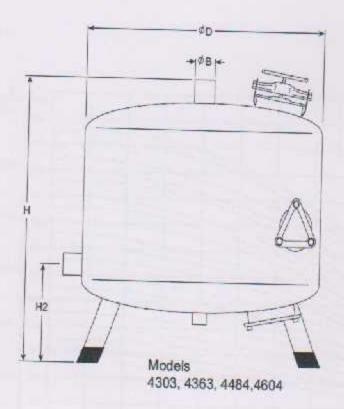
Part No.	Description	Color	Pkg. Qts.	Wit Ea.	Product Class	Specifications
849	Grate Security Clip*	Stray	510	0.40	25W	
	For mill with \$45 unit \$47 gather and \$ Mounts arming chapters driven and secure					
	Protest and remaind for the co	SRE Mey				


Fart No.	Description	Color	Pkg. Gy	WE Ea. (fbs.)	Product Class	Specifications
840	12" x 70" Shallow Profile Channel Orain	Light Groy		4.00	25N	12" wide Studiow Proble
	State growth to present 10° below fruit 1000 State death to research full is traffic applicate	it non-luffe applic	idolid)			W-protected high-impact PVC Crannel Crain with prochanical interlocking joints.

Part No.	Description	Color	Pkg. Qty.	WLFs. (Ds.)	Product Class	Specifications
841	12' Shallow Profile End Capy's' A 4" SAIL SPT Moockant End Outliet	Light Gray	*	1,00	25%	12" atde Shakwa Profile high-Impact PVC Bid Cop/9" 8 4" Somigated S&O Pipe.

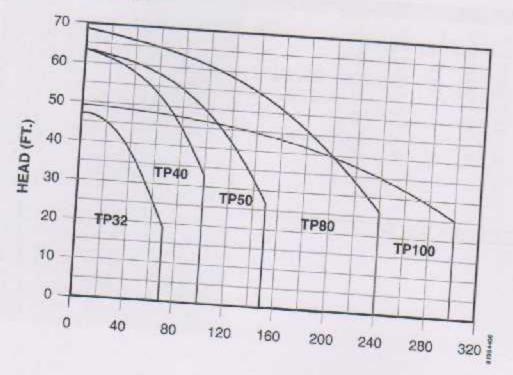
Of Rasin Re-Filts Distance Trade					
A WARREST PRINCES	Profile Channel Disalit* Light Gray		1.00	2SW	12" wide Deep Profile
		ilon.			UN-protected high- impact PVC Channel Date with mechanical
	addity received "4" in terffic applicati	addle received 10° below to de profe in ear-buille apole: addle received 14° is extlic applications. Histolic Science is Timot Plat S.R.LBuly		stiffle receipt IV is enforceptionism.	state record 14 is only updeators.

Part No.	Description	Color	Pings. Qfp.	Wt.Ea. (bs.)	Product Class	Specifications
844	12" Drep Profile End Cap/3" & 4" 5&D SPT Nunction! End Outlet"	Light Smy	1	150	25IN	17" wide Deep Profile Migh- Impact PVC Cred Cap S" & F"
No.	Produced programmed SAL (Tax)					Computed SAD Plos

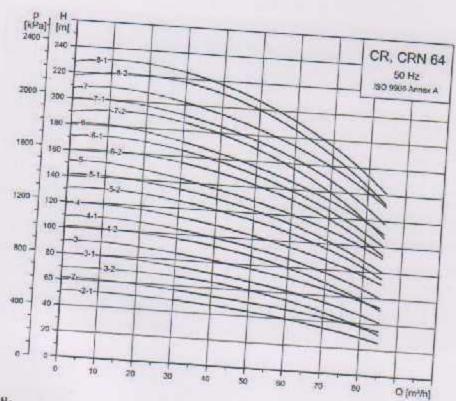

C.24: Gray water

Dimensions & Weight

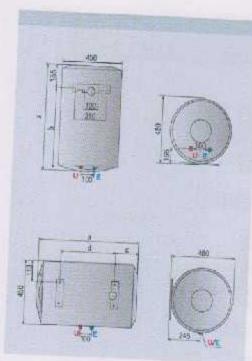
Metric Units


Model		В	D	н	H1	H2	Melala
THE COLUMN	mm	inch	inch	mm	mm		Weight
4121	25	1-	12"	1150	775	mm 120	kg
4162 *	40	2"	16"	1250	870	180	42
4202	50	2"	20"	1250	870	180	50
4203	80	3"	20"	1400	1040	180	70
4242	50	2"	24"	1350	950	260	75
4243	80	3"	24"	1350	950	260	90
4303	80	3"	30"	1080	-	270	
4363	80	3"	36"	1100	1200	270	135 185
4484	100	4"	48"	1100		270	The state of the s
4604	100	4"	60*	1330	Fa. S	400	310 430
4363U	80	3"	36"	1325	-	390	200
4484U	100	4"	48*	1435		455	Sayon
4604L)	100	4"	60°	1890		650	330 460

C.25: * Available with 1'h" Inlet Outlet (Model 41615).



C.26:


Performance range, TP

C.27:

C.28:

Copnery		FRO P	PRO P	PRIO R	PRO P	PRO P	PRO R
Episony Epison Epison Epison Epison Power Hasting time (EF-45°C) Hast dependent of 65°C Max werking being ordere Whight Case OVERALL DEMENSIONS	isso V V voite WWholes to bar T Reg	50 V Snguise 1,5 230 150/ 0,96 6 75 M.S. PNS	80 V Fequie: 15 230 256 122 8 75 22 PS3	100 V Regular 15 230 340 439 6 75 250 6783	No. 14 Regular 12 230 2,0° 102 8 75 15,5 1003	80 H Request 1,5 236 256 1,48 8 75 23 870	100 H Wegutar 15 230 E 40* 165 E 25,5 Eho
CODE	Mich Bust tress Tress	350 203	758 502	30 786	550 85 60	750 174 135	913 177 457

C.29:

MODEL #	SETROSOLU	SETROSO2U	
DISPLAY	Animated LCD		SETROSOSMOU
OPERATING VOLTAGE		Animated LCD	Animated LCD
no some	120 way 60 mz	120 vxc/60 nz optional 240 vac /60 nz	120 wo/60 Hz optional 240 vsc /60 Hz
TAIC COBD	7 , 18 Ave seted at 221 %	77, 18 awg rared at 221 %	7°, 18 awg rated at 221 %
AMBIENT TEMP DPERATING RANGE	32 *r - 113 % 0 *s - 45 %	32 % - 113 % 0 % - 45 %	32 % - 113 % D-50 - 45 %
NPUTS	3 for Temp Sonsors, Variator Protected Protections	4 Temp Recording. 1 Temp Recording Pulse, 1 Direct Sensor (TEMPRICH NAVE)	5 Ismp Recording. 1 Temp Recording Pulse. 1 Direct Sensor
UIPUTS	1 for Circulating Pump, Fusa Protected MAKLOND 8 FM POD V., ENTERVISE 215 904 1 for Circulating Pump, FUSE MODULES	1 Fleiay Switched Output MOVEOROGY PRODES 1 Triac Output SASSICORPEX MOVEORD SERVICES	1 Relay Swinched Output MAKLONDESPTICE V. 2 Trac Output INSECTION/INCL MAKLOND LESSTERS V.

C.40:

		THE RESERVE OF THE PARTY OF THE				
MODEL#	SU80-1	SUS0TC-1	SUBORE-1	\$11120-1	S8129TG-1	SU120HE
GALLON CAPACITY	80,000 GAL	80.000 au	30.000 sa	119.900 64	119,900 pa	119 900 eu
CONNECTION	206	TOP	206	\$10E	704	10E
FLEMENT WATERGE LIPPER	4500 m	4500 w	4500 w	4500 w	4500 e	4500 w
HEIGHT	58.750 ar	58.750 w	58.750 N	62.000 w	62.000 m	62,000 M
DIAMETER	24.500 a	24,500 N	24.500 n	28.250 M	28.250 N	28.250 is
APPROX SHIP WIT	198,000 uss	192,000 (35	227,000 LBS	338.000 Lan	336,000 Ltd	
APPROX HARACTOR	H-17,3	R-17.3	R-17,3	R-16,T	R-16.7	380 000 Lets R-17,3

C.41:

MODEL#	PS/BS21	P8/B824	PS/BS32	P8/8940	PS/BS40-15
G90S0 AREA	19.700 FF	24.610 FIF	32.790 AF	40.810 ===	40.810 FP
DRY WEIGHT	18.000 use	20,000 (28	36.000 im	33.000 (BS	36.000 Les
FLUID CAPACITY	0.780 au.	0.780 pm	1,000 GAL	1.200 au	1.610 cu
DESIGN FLOW RATE	0.540 srw	0.620 ow	0.830 ane	1.040 ceu	1.040 gew
PRESSURE DROP AT UR	0.045 #60	0.017 pag	0.018 min	0.020 psag	0.020 ARIO
MAX FLOW RATE	12.000 anu	12.000 aw	12.000 gpm	12.000 aw	12,000 gru
MAX OFERATING PRESS	160,000 msa	160.000 rso	160,000 /90	160.000 pera	160,000 mad
STD. HEADER WIDTH	43.875 N	39.750 in	51.375 W	51.375 N	51 275 N
EADER, CARRATTO CANTER	71.500 W	93.625 W	115,93,625 W	115.625 W	116.625 N

C.42:

\$503154PR0	315A	315A	315A	280A	200A	J50A		
SSando4PCC D. B. D.	800A	200A	700A	630A	550A	SHIM		
SS12504PCH (B. (F. D.)	1250A	1250A	1250A	1000A	870A	850A	(5)	
0. U.U.U.U.	1800A	1800A	1800A	1500A	1350A	1250A	lq.	

C.43:

Standards. IEC 60947-1&3

Electrical data (according to IEC 60947-3)

Thermal corrent Ith (40 *C)	18804
Naturi resistor rollage	UW	1000
Rated mouths articand	Violate Dimp (VV)	12
DC #sted operational o	surrent is (A)	
YnKeps (DC)	Cologory of operation	6
400 V	00216	/1896
10017	00210	1500
860 V	DC316	1500
905 V 900 V	DC21E DC21E	1350 1250

Quality Telergon,	S.A.U.	
ISO 9001 & 14001	A	TÜVRheinland*

Testing as per IEC 60947-3

Arsenal Research	arsenal research
	Distinctions to Suite Receiving Comm

Connection capacity

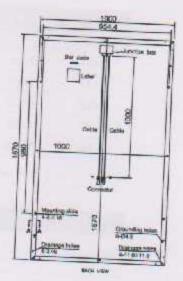
Short-circuit behaviour

278
_
-
55

Short-conditioning capacity year cover Le 1004A Short-time softened covered (1 sections) L_W 506A

C.44:

Number of phases			Three p	hases		Single phase			
Meter type	A43	B23	C13	A44	B24	A41	B21	C11	A42
Connection	Direct	Direct connected Transformer commented				Die	per connec	tes	Transformer connected
Nominal voltage	3 a 20	90/400 V A	va.	3 x 230/400 V AG			280 V A/C		230 VAC
Prequency	50	or 60 Hz		50 or 60 Hz		50 or 60 Hz			50 or 80 Hz
Voltage (V.AC) phase to reutral phase to phase	3 x 57,7 - 288 3 x 100 - 500	3 x 22 3 x 39	0 - 240 0 - 415	3 x 57,7 - 200 3 x 100 - 500	3 x 220 - 240 3 x 380 - 416	67,7-288	220-240	230	57,7-288
Accurcy class (active energy)	Class 1 (C)			Class 1 (5) Class 1 (5) or Class 0,6 S (C)			Class 1 (B)		Class 1 (5) or Class 0,5 S (0
Madmum current	80A	65 A	40 A	6	BA		65 A	40 A	GA
Reference current		5 A		1	А	5 A			1A
DIN modules	7	4	25	7	4	4	2	1	4
Meter type	A43	B28	C13	A44	B24	A41	B21	CIT	A42
Pulse output		38			11 8 1			100	
Alasm	Stref Sh-el			Sh	-		Steel		Stead


C.45:

Pulse ovegut				10 W				35.51	3375 -18
Atarm		Blod		3	-		Sted		Steel
Reactive swergy		100			1311	1000			
Four quadrant mesouraments	100			- 0	(P)	B)	(41) (41)		Biras
Repetiable register									
2 inputs and 2 outputs	There -		ET IS	90	***	9	Fort -		Sleet
Up to 4 teriffs - controlled by externs signal or countrium nation									-
Op 10 4 santts - controlled by internal about	940			Spine	No	GNI		No	700
Basic clock functions									
Advanced elect functions						100			NEIGH
Hammenica and THS	Pothan			Platnon		Piotoure		10	Planton
Configurable 90				15.53					
n-built communication N-Bus	Opti			Opt	or .	Op	tion		Option
n-bull communication RS-435 Modboo NTU or EO bass	Opti	Option		Clpt	in.	Δp	ton.		Option
ONX module vite IR port	Anbin	20141		Anlabe	20141	Avallable	20101		Ansistin
Vetar type	A43	B23	CB	A44	Ban.	PAZ1	B21	CH	M2

C.46:

System design	
Static lead wind/snow	4000 Pa/5400 Pa
Half safety impact velocity	
Operating and storage temperature	25 mm at 23 m/s
	-40° C to 05° C
Normal operating cell temperature (NOCT)	45=3°C
Maximum system voltage	1000 V (IEC)
Scries fuse rating	170,400
Maximum reverse current	13 A
	Series fuse rating multiplied by 1,35
The safety classification (EC 61750)	CDsc
Safety class	1
Carefula: Please read the installation dukée percos using the produ	N. Committee of the com

Mechanical characteristics/p Cultischiology	The state of the s
Cell configuration	4 bestvar polycrysta/line
Dimensions	60 calls (6 x 10), 156 mm x 156 mm (6 in x 6 in)
Weight	1670 mm x 1000 mm x 22 mm
Frame	18540.5 kg
	Aluminum-alloy, anodized
Pront	3 mm tempered anti-reflection glass
Backsheet	
Autotion box	Multi-layer composite sheet
Durput casis	Protection class IP 67; 3 sets of diodes
Connector	Sofar cable 4 mm ³ ; langth 1000 mm
	Amphenal H4
Packaging configuration	32 pieces per pallet, 832 pieces/container (40 ft. 140

C.47:

HSL 60 S POLY

Electrical characteristics at:					
Power class	250 W		power class)		
Maximum power (Pmax)		255 W	260.W	265 W	270 W
Open circuit voltage (V _{oc})	250 W	255 W	260 W	265 W	270 W
	37.6 V	37.8 V	38.1 V	38,3 V	
Short circuit current (I _{sc})	8.72 A	8.86 A	8.98 A		38.5 V
Voltage at maximum power (V _{mpp})	30.5 V	30.7 V		9.12 A	9.22 A
Current at maximum power (Impp)			30.9 V	31.1 V	31.2 V
Module efficiency (%)	8.20 A	8.31 A	8.42 A	8.53 A	8.55 A
mounte enropicy (%)	15.0%	15.3%	15.6%	15,9%	16,2%

STC: Irradiance at 1000 W/m² – Air mass 1.5 – Cell temperature at 25+2°C. Measurement tolerance P_{mp}: ±3%.

Positive power sorting of module power class: 0 to +5 W. Officiency at 200 W/m² in relation to 1000 W/m² is at least 97% of STC efficiency.

C.48:

258 W	THE REAL PROPERTY.	SOURCE STATE	re (NOCT)	
Zauvy	255 W	260W	265 W	270 W
183 W	187 W	191 W	106 11/	
35.1 V	35.4V		22 III ROYAL	199 W
7054		33.7 V	35,9 V	36.1 V
	7.76 A	7.26 A	7.37 A	7.45 A
28.0 V	28.2V	28,4 V	28.6 V	28.7 V
6.54 A	6.64 A			18/ A
	183 W 35.1 V 7.05 A 28.0 V	183 W 187 W 35.1 V 35.4 V 7.05 A 7.16 A 28.0 V 28.2 V	187 W 191 W 191 W 35.1 V 35.4 V 35.7 V 7.05 A 7.16 A 7.26 A 28.0 V 28.2 V 28.4 V	187 W 191 W 196 W 265 W 187 W 191 W 196 W 35.1 V 35.4 V 35.7 V 35.9 V 7.05 A 7.16 A 7.26 A 7.37 A 28.0 V 28.2 V 28.4 V 28.6 V

NOCT: Inadiance at 800 W/mi – Ambient temperature of 20° C – Wind speed at 1 m/s. Messurement tolerance $P_{max} = 3\%$.

-0.41%/° €
-0.31%/°C
+0.059%/°C

Static load wind/snow	
	4000 Pa/5400 Pa
Hall safety impact velocity	25 mm at 23 m/s
Operating and storage temperature	-40° C to 85° C
Normal operating cell temperature (NOCT)	45±3°C
Maximum system voltage	
Series fuse rating	1000 V (IEC)
Maximum reverse current	15 A
	Series fuse rating multiplied by 1,35
Fire safety classification (IEC 61730)	Class C
Safety class	1

C.49:

Technical Data	Survey Boy 1300TL	Sunny Boy 1A00TL	Sunny Boy 2100TL
Input (DC)			
Max DC power (Goot q = 1)	1400 W	1700 W	2700 W
Max input values	500 V	600 V	#00 V
MPP vollage range	115 V - 480 V	155 V to 480 V	200 V to 490 V
Roted Input virilingo	400 V	400 V	400 V
Min. myst vollage / inmat input vollage	100 V* / 120 V	125 V / 150 V	125 V / 150 V
Mox. Input current / mox. input current per string	12 A' / 12 A'	12 A / 12 A 1	12 A / 12 A
Mex. DC also reciprate custem	18 A	A S	10 A
Number of Independent MPP Insults / Jakings per MPP Input	17.1	1/1	1/2
Output (AC)			
Rated power (at 230 V, 50 Hz)	1300 W	1600 W	1950 W
Max. oppored AC power	1200 VA	1600 VA	2100 VA
Numinal AC voltage	228 V / 230 V / 240 V	220 V / 230 V / 240 V	220 V / 230 V / 240 V
Nominel AC veltage lange	180 V to 260 V	180 V to 260 V	180 V to 260 V
AC power frequency / marge	50 Hz, 60 Hz' / -6 Hz _ +5 Hz	50 Hz, 60 Hz' / -6 Hz +5 Hz	50 Hz, 60 Hz1 / 6 Hz _ 45 Hz
Rated power frequency / rated grid voltage	50 Hz / 230 V	50 Hz / 200 V	50 Hz / 230 Y
Max. outpet current	7.2 A	E O A	HÁ
Priver lacter at raise power	1		1
Feed in phones / connection phoses	1/1	1/1	1/1
Efficiency			
Mex. efficiency / Function weighted efficiency	960%/94,3%	95.0%/95.0%	95.0%/953%
Projective Devices			
Input side disconnection point	0	D D	.0
Ground foult wonlibring / and montering	*/*	0/0	*/*
DC reverse polarity protection / AC sharpcircus current capability / galvertically isolated	*/*/-	*/*/-	*/*/-
All-gals versitive residual-current monitoring unit			
Protection class (according to IEC 62103) / over-solling collegacy (according to IEC 60664-1)	3500	1VIII	13.10

MODEL NUMBER	MAW	P		TANK		DIAMETER	8 01	/ERHEAI	DS.	SYS	T	LEG	5	HIPPIN
	PSIG	3 0	AL.	L	10	MM	I IN	T		INCH	0	LEARANCE		WEIGHT
JOPR-22-080	125		80	300	20	Mile Harris	-		M	(NPT)	IN	MM	LBS	K
JOPR-22-105	125	1	05	400	24	500	625	6 15	97	2	14	356	230	
JOPR-22-009	125	3	20	450	- 11	VID	55	74	22	2	14	356	325	
JOPR-22-135	125		35	500	24	410	96	16	76	2	14	356	335	-
JOPR-22-011	125		18	600	24	V.10	7116	181	6	2	14	356	340	15
JOPR-22-012	125	21	200	800	30	762	58	147	3	2	7.4	356	425	15
JOPR-22-013	125	26		1000	33	762	75	193	0	2	14	356	515	19
JOPR-22-014	125	37		1200	36	914	67	170.	2	2	14	356	-	234
JOPR-22-615	125	37		1400	38	914	7814	1994		2	14	356	715	324
JOPR-22-016	125	42	-	1600	35	914	91	2311		2	14	356	935	370
JOPR 22-017	125	521	-	CONTRACT OF THE PARTY OF THE PA	40	1219	63%	1613	100	2	74	356		424
JOPR-22-018	125	550		2000	4.8	1219	77%	1965		2:	74	356	1075	488
JOPR-22-019	125	793	-	2500	48	1219	94	2388		2	14	356	1235	560
JOPR-22-020	125	1056	-	3000	48	1219	1225	3121		2	14	356	1435	651
JOPR-22-021	125	1320		4000	54	1372	132	3429		214	14	356	1900	862
JOPR-22-022	125	1500	-	5000	54	1372	151	3835	1 8	255	34	356	2400	1089
JOPR-22-023	125	2000	-	6050	72	1829	107	2718		216	14	356	2700	1225
JOPR-22-024	125	2640	-	7600	72	1829	130	3382	12	256	14	356	3425	1554
IOFR-22-028	125	2800	1	0000	72	1929	154	4166	2	15	14	356	4600	1874
IOPR-22-030	125	3000	-	G606	72	1829	174	4420	1 8		14	356	4875	2211
IOPR-22-039	125			1400	72	1829	186	4724	1 5		14	356	5300	2404
		3963	1 6	5000	72	1829	230	5842	13		4	356	7100	2595

C.50:

MAXIMUM OPERATING			MINIMU	M OPERA	TING PRE	SSUREAT	TANKIO	CATION	/DOLON		715
PRESSURE PSIG	5	10	12	15	20	30	40			-17-11-	
27	0.527	0.408	0.360	0.288	0.100	in the	570	50	60	70	8
30	0.560	0.447	0.403	0.336	0.168			#			
35	0.604	0.503	0.463	0.453	0.224						-
40	0.540	0.548	0.512		0.302	0.101		1			-
45	0.670	0.588	0.553	0.457	0.386	0.183				1	
50	0.696	0.618	0.587	0.503	0.419	0.251	0.084			1	
55	0.717	0.646	0.817	0.541	0.484	0.309	0.155			-	1000
60	0.736	0.689	0.643	0.574	0.502	0.359	0.215	0.072		-	-
65	0.753	0.690		0.602	0.538	0.402	0.268	0.134			
70	0.767	0.708	0.665	0.627	0.585	0.439	0.314	0.188	0.062		-
75	0.780	0.725	0.685	0.849	0.590	0.472	0.354	0.238	0.118		
80	0.792	0.739	0.702	0.669	0.613	0.502	0.390	0.279	0.118	-	-
90	0.812		0.718	0.686	0.634	0.528	0.422	0.317	-	0.056	-
100	0.828	0.764	0.745	0.716	0.689	0.573	0.478	0.382	0.211	0.106	
110	0.842	0.785	0.767	0.741	0.698	0.610	0.523	0.438	0.287	0.191	0.095
	0.042	0.802	0.786	0.782	0.723	0.642	0.561	0.481	0.342	0.261	0.174

C.51: irrigation

	Maximum A	vailable GPM (Max	imum Safe GPN	1)	
Pipe Size	Steel Pipe	Copper Pipe	PVC Pipe	PE (poly) Tube	PEX (CTS) Tube
1/2"	6 GPM(7 ft/sec)	6 GPM(7 ft/sec)	6 GPM(7 ft/sec)	6 GPM(7 ft/sec)	3 GPM(7 ft/sec*)
3/4"	11 GPM(7 ft/sec)	11 GPM(7 ft/sec)	11 GPM(7 ft/sec)	11 GPM(7 ft/sec)	7 GPM(7 ft/sec*)
	18 GPM(7 ft/sec)	18 GPM(7 ft/sec)	18 GPM(7 ft/sec)	18 GPM(7 ft/sec)	12 GPM(7 ft/sec*)
1/4"	23 GPM(5 ft/sec)	23 GPM(5 ft/sec)	23 GPM(5 ft/sec)	23 GPM(5 ft/sec)	_
1/2"	32 GPM(5 ft/sec)	32 GPM(5 ft/sec)	32 GPM(5 ft/sec)	32 GPM(5 ft/sec)	
	52 GPM(5 ft/sec)	52 GPM(5 ft/sec)	52 GPM(5 ft/sec)	52 GPM(5 ft/sec)	_

C.52:

570™ SERIES FIXED-SPRAY SPRINKLERS

Radius: 5'-17'

Toro 570TM Series fixed-spray sprinklers produce a precise, uniform fan of water that's ideal for small lawn, shrub and ground cover areas. Pop-up models disappear when not in use. Shrub sprays mount above foliage to water ground cover and shrubs. True matched precipitation rates and color coding by radius are just two of the valuable features of 570TM sprinklers and nozzles. Toro has more than 35 different interchangeable nozzles to choose from to give you maximum flexibility and precision.

Perfect for smaller lawn and garden areas.

C.53:

15' SERIES WITH 27° TRAJECTORY (BLACK)

	_			
PATTERN		PSI	GPM	RADIUS
90°	4	30	0.85	15'
180°		30	1.65	15'
360°		30	3.60	15'
0-360°	<u> </u>	30	3.82	13'

C.54:

570™ Series Nozzles

5' SERIES WITH 0° TRAJECTORY (RED)

PATTERN		ATTERN PSI GPM		RADIUS
90°	4	30	0.09	5'
180°	-	30	0.19	5'
360°	0	30	0.38	5'

C.55:

For the exact flow by sprinkler type, refer to the Sprinkler Performance Chart on the right.

HOW MANY	Gallons Per Minute (GPM)						
570.0	5 GPM	8 GPM	12 GPM	15 CPM			
570 Series Sprayheads (@	30 PSI)	TO SELECT		15 CIFIV			
15' Quarter Circle (90°)	5	9	14	17			
15' Half Circle (180°)	3	4	7				
15' Full Circle (360°)	1	2	-	9			
Single Stream & SimpleSe	t Rotors	@ 45 DC	3	4			
30 to 120 (1.3 Nozzle)	3	5		VIII TO			
121° to 240° (3.0 Nozzle)	1		8	10			
241° to 360° (6.0 Nozzle)	0	2	4	5			
MultiStream Rotors (@ 35	DSI	1	2	2			
90°							
35°	3	5	8	10			
80°	2	3	5	6			
70°	1	2	3	4			
60°	1	1	2	3			
	0	1	1	2			
Iniversal Impact Rotors (@	30 PSI)	CO STATE	THE PERSON				
0° (Orange Nozzie)	3	5	8	10			
20° (Red Nozzle)	2	4	6	7			
80° (Black Nozzle)	1	2	4	-			
70° (Blue Nozzle)	1	2	3	5			
50° (Green Nozzle)	0	1	2	3			

^{*} pressures are based on working pressure at the head * all measurements based on Class 200 PVC for all lateral pipes