Palestine Polytechnic University College of Engineering

Minimization the Power Losses in Wad Shaheen Substation Network of JDECo

Project Team

Omar Alkhatib

Bilal ALhassis

Supervisor

Dr. Fouad Zaro

Submitted to the College of Engineering

in partial fulfillment of the requirements of the degree of Bachelor degree in Power Technology Engineering

Hebron, June 2021

الاهداء

الحمد لله اللذي بنعمته تتم الصالحات نهدي تخرجنا الى معلم البشريه محجد الى امهاتنا اللواتي تحت اقدامهن الجنه الى كل الاصدقاء وزملائنا في الدراسه الى اساتذتنا اللذين لا تكفي لوصفهم الكلمات مقدمين ثمره سنواتنا الدراسيه سائلين المولى عز وجل التوفيق بكل خطوه

شكر وتقدير

بعد شكرنا لله عز وجل ان اعاننا على انجاز هذا البحث المتواضع نقدم بجزيل الشكر والامتنان للدكتور الفاضل فؤاد الزرو على تفضله بقبول الاشراف على بحثنا، وعل كل النصائح والتوجيهات اللتي كانت بمثابه نبراس منير في كل خطوه.

وكذلك نود شكر كل من ساعدنا على اتمام هذا البحث وقدم لنا العون والمساعده بتزويدنا بالمعلومات اللازمه لاتمام هذا البحث ونخص بالذكر المهندس امجد كمال مدير قسم السكادا في شركه كهرباء القدس اللذي لم يبخل علينا باعطائنا المعلومات اللازمه لاتمام البحث.

Abstract

This project studies the distribution network of the Wad Shaheen substation by using Electrical Transient Analyzer Program (ETAP) and it aims to make the critical developments and improvements on the network to minimize the power losses.

The network of the Wad Shaheen substation has high losses, during the average load, the power loss is 6.33% of demanded power this loss cost 4 ,299,408 NIS/Year.

There are several techniques to reduce power losses in the distribution network, We chose two techniques to test their effectiveness on the network, as follows: -

- 1. Network reconfiguration.
- 2. Network reconductoring.

After tested these techniques on the network, We found total power losses could be reduced from (1.636) MW to (1.382, 0.941 or 1.105)MW, depending on the soluition.

الملخص

يدرس هذا المشروع شبكه توزيع محطه واد شاهين باستخدام برنامج تحليل انظمه القوى(ETAP) ، ويهدف لاجراء التطويرات ذات الاهميه الكبرى على الشبكه من اجل تقليل خسائر الطاقه.

تعاني شبكه واد شاهين من خسائر عاليه تصل الى 6.33% خلال الحمل المتوسط من الطاقه المطلوبه وتبلغ تكاليف هذه الخسائر حوالي 4,299,408 شيكل/سنه.

هنالك العديد من الحلول اللتي يمكن استخدامها لتقليل الخسائر ،وقمنا باختيار افضل حلين من ناحيه تاثير هما على الشبكه:-

إعادة تشكيل الشبكة.

2 إعادة توصيل الشبكة.

بعد اختبار هذين الحلين وجدنا انه يمكن تقليل فقد الطاقه من (ميجا واط1.636) الى(1.382,0.941 او1.105)ميجا واط وذلك بالاعتماد على الحل المناسب.

List of Contents

الاهداء	I
شكر وتقدير	II
Abstract	III
الملخص	IV
List of Contents	v
List of Tables	IX
List of figures	X
List of abbreviations	XII
Chapter 1: Introduction	1
1.10verview	2
1.2 Motivation	2
1.3Objectives	2
1.4 Methodology	3
1.5 Literature Review	3
1.6 Time Plane	5
Chapter 2:Case Study Wad Shaheen Substation for JDECo	7
2.1 Introduction	8
2.2 The Existing System	11
2.2.1 Substations	11
2.2.2 Distribution Transformers	11
2.2.3 Overhead Lines	
2.2.4 Isolation	
2.3 Wad Shaheen power losses	15
2.4 Maximum and Minimum Power	17

CHAPTER 3:POWER LOSSES	21
3.1 Introduction	22
3.2Types of Power Losses	23
3.2.1 Technical losses	23
3.2.1.1 Fixed Technical losses	24
3.2.1.2 Variable Technical losses	25
3.2.1.3 Technical Losses in Transformers	25
3 .2.1.3.1 Iron Losses	26
3.2.1.3.1.1 Hysteresis Loss	27
3.2.1.3.1.2 Eddy Current Losses	27
3.2.1.3.2 copper losses	28
3.2.1.3.3 Stray losses	29
3.2.1.3.4 Dielectric Losses	29
3.2.2 Non- Technical losses	
3.2.2.1. Energy theft	
3.2.2.2. Errors in Unmetered Supplies	31
3.2.2.3. Conveyance errors	31
3.3 Drawbacks of Losses	32
3.4 Advantages of Minimizing Losses	32
3.5 Power flow Analysis	32
3.6 Efficient Electrical Energy Transmission and Distribution	34
CHAPTER 4:Power loss minimization methods	36
4.1 Introduction	37
4.2 Network reconfiguration	37

4.3 Network reconductoring	
4.4 Distribution transformer locating and sizing	38
4.5 High voltage distribution system	39
4.6 Flexible Alternating Current Transmission System (FACTS)	
4.6.1 FACTS definition, necessity and types	
4.6.1.1. Shunt connected controllers	40
4.6.1.2. Series connected controllers	40
4.6.1.3. Combined series-series controllers	41
4.6.1.4. Combined shunt-series controllers	41
4.6.2 FACTS benefits	41
4.7 Adding a New Sub-Station	42
Chapter 5: Simulation analysis	43
5.1 Case study	44
5.2 Case 1 results	44
5.2.1 Sub-Stations Results	45
5.2.2 Transmission Line and Transformer	47
5.2.3 Cost of the technical power loss	49
5.3 Case 2 results	50
5.3.1 Sub-Stations Results	50
5.3.2 Transmission Line and Transformer	52
5.3.3 Cost of the technical power loss	55
5.4 Comparison between two case	56
5.5 Conclusion	58
Chapter 6: The solution to minimizing power losses	59
6.1 Introduction	60
6.2 First solution network reconductring	60

6.2.1 Introduction60
6.2.2 Cost of technical losses after Network reconductring
6.2.3 comparison before and after network reconductring
6.3 Second solution network reconfiguration65
6.3.1 First Case65
6.3.1.1 Introduction65
6.3.1.2 Cost of technical losses after First Case
6.3.1.3 comparison before and after First Case
6.3.2 Secend Case69
6.3.2.1 Introduction69
6.3.2.2 Cost of technical losses after Secend Case
6.3.2.3 comparison before and after Secend Case
6.4 Conclusion72
Chapter 7: Recommendation and conclusion73
7.1 Conclusions74
7.2 Recommendations74
References75
Appendix76
Appendix A76
Appendix B84
Appendix C 100

List of Tables

Table 1.1: Time Plan for introduction
Table 1.2: Time Plan for Second semester
Table 2.1 : Main substations transformers11
Table 2.2 : DistributionTransformers
Table 2.3 :Conductor Data14
Table 5.1 : Loading on each sub-station45
Table 5.2 : loading and power losses on sub-stations transformers
Table 5.3:losses in distribution & substation Tr-r with transmission lines
Table5.4:The busses less Than 95% of the nominal Voltage at 33KV
Table5.5: The bus that is less Than 92% of the nominal Voltage at 0.4KV busses
Table 5.6 : Loading on each sub-station
Table 5.7:-loading and power losses on sub-station transformer
Table 5.8:-losses in distribution transformer, and cables with transmission lines
Table 5.9: The buses that are less than 97 % of the nominal voltage at 33 kV
Table 5.10:- The buses that are less than 90 % of the nominal voltage at 0.4 KV
Table5.11:- Comparison between two case
Table 6.1:cable cross-section area before and after network reconductring61
Table 6.2:- the losses in cable before and after network reconductring
Table 6.3:-comparison before and after network reconductring
Table 6.4 comparison before and after First Case67
Table 6.5 comparison before and after second case71

List of figures

Figure 2.1 : Electrical Distribution System
Figure 2.2 : Single Line Diagram of Wad Shaheen Substation9
Figure 2.3 : Distribution substation for Wad Shaheen9
Figure 2.4 : Transformer12
Figure 2.5 : Distribution Transformers
Figure 2.6 : Isolator15
Figure2.7:Contribution of Grid Elements in P-Losses15
Figure2.8:Contribution of Grid Elements in Q-Losses16
Figure 2.9: Power losses percentage /year16
Figure 2.10 : The Minimum and Maximum Load for the Wad Shaheen substation in 201817
Figure 2.11 : The Minimum and Maximum power for the Wad Shaheen substation in 201817
Figure 2.12 : The Minimum and Maximum Load for the Wad Shaheen substation in 201918
Figure 2.13 : The Minimum and Maximum power for the Wad Shaheen substation in 201918
Figure 2.14 : The Minimum and Maximum Load for the Wad Shaheen substation in 202019
Figure 2.15 : The Minimum and Maximum power for the Wad Shaheen substation in 202019
Figure 2.16 : Power Consumption 2019
Figure 3.1: Losses type in distribution network
Figure 3.2: Type of power Losses
Figure 3.3: Types of Technical Losses in Transformers
Figure 3.4: Load Flow
Figure 5.1: the loading percentage on sub-station46
Figure 5.2:-losses in distribution & Substation Tr-r with transmission line47
Figure 5.3:-The terminal voltage percentage on 11KV busses
Figure 5.4: The terminal voltage percentage on 0.4 KV busses

Figure5.5:-the loading percentage on sub-station	51
Figure 5.6:- losses in distribution transformer, and cables with transmission lines	53
Figure5.7:- The Terminal voltage percentage on33kv busses	53
Figure5.8:- Terminal Voltage at LV Bus	54
Figure5.9:- The percentage of the power losses in case1	
Figure5.10:-The percentage of the power losses in case2	57
Figure 6.1:- The overload before change the cable	62
Figure 6.2:- The overload decreasing after change the cable	62
Figure 6.3 :- Power losses percentage before and after network reconductoring	64
Figure 6.4 :- Difference of Cost before and after of Network Reconductring	64
Figure 6.5 :- location of new cable	66
Figure 6.6 : - Power losses percentage before and after case 1	68
Figure 6.7 :- Difference of Cost before and after of First case	68
Figure 6.8 :- The overload decreasing after adding new power grid	69
Figure 6.9 :- GARADA station	70
Figure 6.10 : Power losses percentage before and after case 2	71
Figure 6.11:- Difference of Cost before and after of second case	

List of abbreviations

ETAP: Electrical Transient Analyzer Program LVDS: Low Voltage Distribution System HVDS: High Voltage Distribution System ACCC: Aluminum Conductor Composite Core IEC: Israeli Electric Company MV: Medium Voltage kV: kilo Volt kVA: Kilovolt Voltampere MVA: Megavolt- Ampere km: kilometer kWh: kilowatt-hour kW: kilo Watt PF: Power Factor FACT:Flexible Alternating Current Transmission System

JDECo: The Jerusalem District Electricity Company

- IEEE: Institute of Electrical and Electronics Engineers

Chapter 1

Introduction

1.10verview

1.2 Motivation

1.3 Objectives

1.4 Methodology

1.5 Literature Review

1.6 Time Plane

1.10verview

This project studies sub distribution network of Jerusalem District Electric Co (JDECo), this network for Wad Shaheen substation, determine the power losses in the distribution networks components such as losses in the cables and transformers and do the simulation for the distribution of Wad Shaheen substation network by using ETAP to estimate the real power losses and propose scenarios to reduce it.

1.2 Motivation

The motivation behind this study is to get the best economical solution which helps in reducing the money lost that can be used to improve the distribution network of Wad Shaheen substation or in another benefit for the company which also may give the customer some advantages, estimate the power losses in the distribution network for Wad Shaheen substation network by using ETAP, and start the essential steps to minimize the power losses.

1.3 Objectives

- 1. Analysing the power flow using ETAP to obtain useful and detailed readings and information about the power losses in the distribution network.
- 2. Proposing sensible scenarios for power loss minimization.

1.4 Methodology

The procedures followed to accomplish this project are summarized as follow:

- Data collection: the collected data involves the single line diagram (SLD) of the Wad Shaheen substation electrical network of the electrical MV network, the electrical specifications of the wires, cables, and transformers used by JDECo and the transformers loading measurements for both summer and winter seasons.
- 2. Load flow analysis: the single-line diagram of the Wad Shaheen substation is provided to ETAP software. The electrical specifications of the lines and transformers were entered into customized libraries in ETAP. Then, A simulation process will be performed to evaluate the status of the distribution networks completely.

1.5 Literature Review

Nassim A. Iqteit", Aysen Basa Arsoy" and "Bekir Cakir" illustrated a simple approximated formulas which explain the way to estimate the active and reactive power losses in the distribution networks, taking load profiles into account. Also, a detailed simulation and discussion were presented with an applied example, the idea of the formulas is easy to apply and has a small error when using an appropriate number of time intervals [1].

Another paper discusses the types of the losses in the DC and AC generator, the effect of these losses and how may reduce these losses to the minimum magnitude. In addition, he discussed the major electrical transmission line losses and the best solutions to minimize it, this article was made for a specific part of Jordan, the author used ETAP for simulation and presented a detailed comparison before and after each case [2].

The authors in focused on developing and improving the medium voltage electrical network and they presented the modelling approach used to restructure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructure electrical network was aimed to analyze and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP[2].

This paper presents the estimation of Technical loss in a distribution system which plays an important role in planning and hence economics of any distribution utility. In a system there are two types of losses: fixed i.e.no load losses and variable i.e. load losses which are a function of load. This paper focuses on how load curve parameters like load factor, loss factor, coefficient of variation and loss coefficient can be useful for the loss estimation process. A simple approach is proposed to estimate technical loss in HT feeder and Distribution Transformer with nonfunctional energy meters with average demand using data available with local distribution company. Also, the paper discusses the use of average demand and loss coefficient in making economic cable choices and energy losses analysis [7].

1.5 Time Plan

Week	1	2	3	Δ	5	-	7	8		10	11			14		
Work			5	-	5	6	/	0	9	10	11	12	13	14	15	16
Selection Project																
Data Collection																
Data Analyses																
Preparing the final report																
Prepare the Presentation																

Table 1.1: Time Plan for First semester

 Table 1.2: Time Plan for Second semester

Week																
Work	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Collecting																
data																
Analysis																
in Etap																
Select the																
solution																
Preparing the final																
report																
Prepare the																
presentation																

Chapter 2

Case Study Wad Shaheen Substation for JDECo

2.1 Introduction

- 2.2 The Existing System
- 2.3 Wad Shaheen power losses
- 2.4 Maximum and Minimum Power

2.1 Introduction

The municipality Wad Shaheen is located in the center of Bethlehem, 2 km from the city center, and has an estimated population of 10 thousand people, Its area 2 km^2 , and height is 750m From the sea.

Jerusalem District Electricity company (JDECO) is the biggest electricity distribution company in the Jerusalem & the West Bank serving more than "300,000" customers through a huge medium voltage grid. The peak load for the grid reaches about "550 MW" in winter time where almost all the feeding points loading at that period exceeds the "98 %" limit.

Figure 2.1 : Electrical Distribution System

The Wad Shaheen substation is supplied from Israel Electric Corporation (IEC) with 33 kV and two transformer converts it to 11 kV however, most loads are connected by distribution transformers 33/0.4 kV. as shown in figure (2.2) [3]:

Figure 2.2 : Single Line Diagram of Wad Shaheen Substation

Figure 2.3 : Distribution substation for Wad Shaheen

2.2 The Existing System

2.2.1 Substations

It is found in the WAD Shaheen three substation network These transformers are distributed to the stations through the table (2.1) [3]:

Substation	No.Of transformers	Capacity(MW)
TAKOO	25	9.3
BREADHAA	20	9.18
ABIAT	18	9.95
total	63	28.43

Table 2.1 : Main substations transformers

2.2.2 Distribution Transformers

Wad Shaheen grid contain 63 transformer ,these transformer have a wide range of (KVA) from (100-1600)KVA represented in following table (2.2) and figure (2.4) show the percentage range of the distribution transformer in MW network[3]:

Figure 2.4 : Transformer

Table 2.2 : Distribution Transformers.

Transformer Rating(KVA)	Number of Transformer	%	MVA
100	3	4.761904762	0.3
160	8	12.69844127	1.28
250	23	36.50793651	5.75
400	12	19.04761905	4.8
630	10	15.87301587	6.3
1000	2	3.174603175	2
1600	5	7.936507937	8
Total	63	100	28.43

Figure 2.5 : Distribution Transformers in (KVA)

2.2.3 Overhead Lines

Overhead lines of Wad Shaheen substation medium voltage network is 33 kV network JDECo , The network contains overhead lines as shown in table (2.2):

Table 2.3 : Conductor Data

Conductor Type	Quantity(Km)
Overhead 33KV TSLE 3X1X240 CU	0.859
Overhead 33KV FEAL 1X95	21.968
Overhead 33KV 3X1X150 CU	13.126
Overhead 33KV TSLE 3X1X240 AL	5.09
Overhead 33KV EX 1X3X150	0.136
Overhead 33KV DKBA 1X3X120 CU	0.061
Over head 33KV FEAL 1X50	3.242
Total	44.482

2.2.4 Isolation :

What is isolation?

Galvanic isolation is a circuit design technique that allows two circuits to communicate and eliminates any unwanted direct current that flows between them.

Isolation is used most commonly to:

- Protect human operators and low-voltage circuitry from high voltages.
- Prevent ground potential differences between communicating subsystems.
- Improve noise immunity.

Figure 2.6 : Isolator

2.3 Wad Shaheen power losses

- The following figure(2.7) show the real power in transformer and cable in wad shaheen substation.

Figure 2.7: Contribution of Grid Elements in P-Losses

- The following figure(2.8) show the real reactive power in transformer and cable in wad shaheen substation.

Figure 2.8:Contribution of Grid Elements in Q-Losses

- The following figure(2.9) show the Power losses percentage in 2017 and 2018 and 2019.

Figure 2.9: Power losses percentage / year

2.5 Maximum and Minimum Power

-In 2018 The Peak Load for network Wad Shaheeh substation was (246.3707) KVA As shown in figure (2.10) (2.11).

Figure 2.10 : The Minimum and Maximum Load for the Wad Shaheen substation in 2018

Figure 2.11 : The Minimum and Maximum power for the Wad Shaheen substation in 2018

-In 2019 The Peak Power for network Wad Saleh substation was (298.52) KVA As shown in figure (2.12) (2.13).

Figure 2.12 : The Minimum and Maximum Load for the Wad Shaheen substation in 2019

Figure 2.13 : The Minimum and Maximum power for the Wad Shaheen substation in 2019

-In 2020 The Peak Power for network Wad Saleh substation was (291.5173) KVA As shown in figure (2.14) (2.15).

Figure 2.14 : The Minimum and Maximum Load for the Wad Shaheen substation in 2020

Figure 2.15 : The Minimum and Maximum power for the Wad Shaheen substation in 2020

The network of Wad Shaheen substation supplies an average of 10590.20183 KWh in the year 2019. as shown in figure (2.4) [3]

Figure 2.16 : Power Consumption 2019

CHAPTER 3

POWER LOSSES

3.1 Introduction

3.2 Types of Power Losses

3.3 Drawbacks of Losses

3.4 Advantages of Minimizing Losses

3.5 Power flow Analysis

3.6 Efficient Electrical Energy Transmission and Distribution

3.1 Introduction

Electric power transmission and distribution losses include losses in transmission between sources of supply and points of distribution and in the distribution to consumers, including pilferage[3].

In simple terms, Network Losses refer to the difference between the energy entering our electricity distribution network and the energy leaving it. Electricity enters our network in one of two ways; either from the Transmission System or from generators connected directly to our Distribution Network[3].

Figure 3.1: Losses type in distribution network[4]

3.2 Types of Power Losses

Figure 3.2: Type of power Losses[4]

3.2.1 Technical losses

The technical losses are due to energy dissipated in the conductors, equipment used for transmission line, transformer, sub transmission line and distribution line and magnetic losses in transformers[4].

Technical losses are normally 22.5%, and directly depend on the network characteristics and the mode of operation[4].

The major amount of losses in a power system is in primary and secondary distribution lines. While transmission and sub-transmission lines account for only about 30% of the total losses. Therefore the primary and secondary distribution systems must be properly planned to ensure within limits[4].

• The unexpected load increase was reflected in the increase of technical losses above the normal level[4].
• Losses are inherent to the distribution of electricity and cannot be eliminated[4].

There are two Type of Technical Losses :

- 1. Fixed Technical losses.
- 2. Variable Technical losses.

3.2.1.1 Fixed Technical losses:

Fixed losses do not vary according to current. These losses take the form of heat and noise and occur as long as a transformer is energized[4].

- Between 1/4 and 1/3 of technical losses on distribution networks are fixed losses. Fixed losses on a network can be influenced in the ways set out below[4].
- Corona Losses.
- Leakage Current Losses.
- Dielectric Losses.
- Open-circuit Losses.
- Losses caused by continuous load of measuring elements.
- Losses caused by continuous load of control elements.

3.2.1.2 Variable Technical losses:

Variable losses vary with the amount of electricity distributed and are, more precisely, proportional to the square of the current. Consequently, a 1% increase in current leads to an increase in losses of more than 1%[4].

- Between 2/3 and 3/4 of technical (or physical) losses on distribution networks are variable Losses[4].
- By increasing the cross sectional area of lines and cables for a given load, losses will fall. This leads to a direct trade-off between cost of losses and cost of capital expenditure. It has been suggested that optimal average utilization rate on a distribution network that considers the cost of losses in its design could be as low as 30 per cent.
- Joule losses in lines in each voltage level
- Impedance losses

3.2.1.3 Technical Losses in Transformers

Transformers are thought of the main component in the distribution grid, and therefore it counts for a significant part of the total losses in the network , in this section it will be stated in detail what are these losses and how they are calculated[5].

Figure 3.3: Types of Technical Losses in Transformers[5]

3.2.1.3.1 Iron Losses:-

Iron losses are caused by the alternating flux in the core of the transformer as this loss occurs in the core it is also known as Core loss. Iron loss is further divided into hysteresis and eddy current loss[5].

3.2.1.3.1.1 Hysteresis Loss:-

that stands for the power dissipated in the form of heat as a result of alternating magnetizing force the is implied on the core, and it is given by the equation(3.1)[5]:

$$P_{h} = K \eta B_{max}^{1.6} fv \qquad 3.1$$

Where:-

P_h: Hysteresis Loss (watts)

Kŋ: proportionality constant which depends upon the volume and quality of the material of the core used in the transformer.

 B_{max} : the maximum or peak value of the flux density in (wb/m²)

f: supply frequency

3.2.1.3.1.2 Eddy Current Losses:

The results from the flux that links with a closed circuit, where an emf is induced in the circuit and the current flows, the value of the current depends upon the amount of emf around the circuit and the resistance of the circuit. The eddy current losses are given by the equation(3.2)[5]:

$$P_e = K_e B_m^2 t^2 f^2 V \qquad 3.2$$

Pe: Eddy Current Loss (watts)

Ke: co-efficient of eddy current. Its value depends upon the nature of magnetic material like volume and resistivity of core material, thickness of laminations

Bm: maximum value of flux density in (wb/m2)

f: supply frequency (Hz)

t: thickness of lamination (m)

V: volume of magnetic material (m3)

3.2.1.3.2 copper losses:-

These losses occur due to ohmic resistance of the transformer windings and are related directly to the resistance of the primary and secondary winding of the transformer and the current flowing in each of them. It is given by the equation(3.3) [5]:

$$P_C = I_1^2 R_1 + I_2^2 R_2$$
3.3Where:Pc: Copper Losses (watts) I_1 : current in the primary winding L_2 : resistance of the primary winding L_2 : current in the secondary winding

R₂: resistance of the secondary winding

R₂:

I₂:

3.2.1.3.3 Stray losses:-

They occur due to the presence of leakage field. The percentage of these losses are very small as compared to the iron and copper losses, so they can be neglected[5].

3.2.1.3.4 Dielectric Losses:-

it occurs in the insulating material of the transformer (oil or solid insulations) and are related to the quality of the insulation[5].

3.2.2 Non- Technical losses

Are caused by actions external to the power system are caused by loads and conditions that the technical losses computation failed to take into account. Non- technical losses are more difficult to measure because these losses are often unaccounted for by the system operators and thus have no recorded information. 'Non-technical losses, on the other hand, occur as a result of theft, metering inaccuracies, and unmetered energy. It is related mainly to power theft in one form or another. Theft of power is energy delivered to customers that are not measured by the energy meter for the customer. This can happen as a result of meter tampering or bypassing the meter. Losses due to metering inaccuracies are defined as the difference between the amount of energy delivered through the meters and the amount registered by the meters[6].

main types of non-technical losses are[7]:

- 1. Energy theft.
- 2. Errors in Unmetered Supplies
- 3. Conveyance errors

3.2.2.1 Energy theft:-

it is the energy that has been illegally taken from the network through tampering with meters or other network assets. This is taken without the knowledge of an energy company and leads to differences between estimated

and actual electricity consumption. Energy theft increases everybody's energy bills and creates serious electrical hazards for both those stealing the power and those working on the network [7].

3.2.2.2 Errors in Unmetered Supplies:-

An unmetered supply is a supply of electricity to a particular item of equipment that is connected to the Distribution Network without a meter, e.g. street lights, traffic signals, pedestrian crossings[7].

3.2.2.3 Conveyance errors:-

These are losses that a rise when electricity is consumed but not correctly recorded. Situations a rise where energy is legally consumed but is not properly recorded in the national electricity settlement system. This can occur due to inaccuracies in meter readings, unregistered meter points, errors in registration, or faulty meters. These errors result in a discrepancy between actual and measured consumption, meaning energy is lost in the system[7].

3.3 Drawbacks of Losses:-

- 1. Poor quality of service offered to customers.
- 2. The high cost of Network operation.

3.4 Advantages of Minimizing Losses:-

- 1. Good voltage profile and Improve reliability.
- 2. Solve some power quality problems.
- 4. Financial benefits.

3.5 Power flow Analysis:-

Load flow (power flow) analysis is a basic analysis of the study of power systems. It is used for normal, steady-state operation. It provides you with info on what is happening in a system. Load flow analysis is an important requirement for whatever you do in power systems, whether you do fault studies, stability studies, economic operation[8].

The objective of load flow calculations is to determine the steady-state operating characteristics of the power system for a given load and generator real power and voltage conditions[8].

Once I have this information, I can calculate easily real and reactive power flow in all branches together with power losses[8].

The principles of a power flow analysis are direct, and accurate study relating to a power system can be passed out only with the digital computer.

Two of the frequently used mathematical methods are the Gauss-Seidel method and the Newton Raphson method, in addition to the Fast-decoupled method[8].

3.6 Efficient Electrical Energy Transmission and Distribution:-

Growing populations and industrializing countries create huge needs for electrical energy. Unfortunately, electricity is not always used in the same place that it is produced, meaning long-distance transmission lines and distribution systems are necessary. But transmitting electricity over distance and via networks involves energy loss[9].

So, with growing demand comes the need to minimize this loss to achieve two main goals: reduce resource consumption while delivering more power to users. Reducing consumption can be done in at least two ways: deliver electrical energy more efficiently and change consumer habits[9].

Transmission and distribution of electrical energy require cables and power transformers, which create three types of energy loss [9].

- The Joule effect, where energy is lost as heat in the conductor (a copper wire, for example).
- 2. Magnetic losses, where energy dissipates into a magnetic field.
- 3. The dielectric effect, where energy is absorbed in the insulating material.

The Joule effect in transmission cables accounts for losses of about 2.5 % while the losses in transformers range between 1 % and 2 % (depending on the type and ratings of the transformer). So, saving just 1 % on the electrical energy produced by a power plant of 1000 megawatts means transmitting 10 MW more to consumers, which is far from negligible, with the same energy we can supply 1000 - 2000 more homes[9].

We can estimate the power losses on the conductors by applying the following equation[9]:

$$\boldsymbol{P}_{Losses} = \boldsymbol{I}^2 \times \boldsymbol{R}$$
 3.4

multiplying the result by the length of the conductor

Considering the main parts of a typical Transmission & Distribution network, here are the average values of power losses at the different steps [9]:

- 1-2% Step-up transformer from generator to Transmission line .
- **2-4%** Transmission line.
- 1-2% Step-down transformer from Transmission line to Distribution network.
- 4-6% Distribution network transformers and cables .

The overall losses between the power plant and consumers is then in the range between 8 and 15%.

CHAPTER 4

Power loss minimization methods

4.1 Introduction

- 4.2 Network reconfiguration.
- 4.3 Network reconductoring
- 4.4 Distribution transformer locating and sizing
- 4.5 High voltage distribution system.
- 4.6 Flexible Alternating Current Transmission System (FACTS).
- 4.7 Adding a New Sub-Station

4.1 Introduction

In general, there are many ways to reduce the power losses in the distribution network. In this chapter we introduce the effective methods and techniques to minimize the power losses that will be used and applied in the graduation project.

the methods of reducing power losses can be minimize as follow:

- 1. Network reconfiguration.
- 2. Network reconductoring.
- 3. Distribution transformer locating and sizing.
- 4. High voltage distribution system.
- 5. Flexible Alternating Current Transmission System (FACTS).
- 6. Adding a New Sub-Station.

4.2 Network reconfiguration

Distribution network reconfiguration is an important means to optimize the operation of distribution network. The reconfiguration of distribution network can change the opening and closing state of segmentation switch and tie switch in the distribution network without increasing investment. It can achieve the purpose of reducing network loss, balancing load to eliminate overload and light load, improving power supply reliability and improving power supply voltage quality. Therefore, it has important practical significance to accelerate the problem of distribution network reconfiguration[10].

4.3 Network reconductoring

Network reconductoring is the technique in which replaces the existing conductor on the feeder by a conductor of optimal size for optimal length of the feeder. This technique is used when the existing conductor is no more optimal because of rapid growth of load. This technique is good for the developing countries, where annual growth rates are high and the conductor are chosen to minimize the initial capital investment [6].

This method is very successful for minimizing the losses and developing the voltage profile. But it leads to an extra investment that increases the original investment of the feeders.

4.4 Distribution transformer locating and sizing

Generally, distribution transformers are not located centrally with respect to customers. The farthest customers take an extremely low voltage even though a reasonably good voltage level is maintained at the secondary of transformer. This leads to more losses in distribution system. In this technique, distribution transformers should be located close to the load center as possible and replace large transformers by the transformers of small rating so that it serves small number of customers so that optimum voltage level is maintained [6].

This technique calls for less investment than reconductoring the network. It helps in reducing the peak load and electrical losses in the distribution system. In addition, it improves the voltage that customers take. Moreover, it avoids overloading on conductors and transformers.

4.5 High voltage distribution system

in high voltage distribution system (HVDS), the electricity is distributed to the consumers at higher voltage level (11kV) instead of low voltage (415V). Adoption of HVDS by converting existing low voltage distribution system (LVDS) to HVDS reduces the technical losses appreciably.

Advantage of HVDS:-

- 1-Reduction of electrical losses.
- 2-Increaze in transition efficiency.
- 3-Improvement of voltage Regulation.
- 4- Reduction in conductor material.
- 5-Flexibility for future system growth.
- 6- Increase in transition capacity.

4.6 Flexible Alternating Current Transmission System (FACTS)

4.6.1 FACTS definition, necessity and types

A flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the AC transmission of electrical energy. It is meant to enhance controllability and increase the power transfer capability of the network. It is generally a power electronics-based system[11].

FACTS is defined by the IEEE as "a power electronic based system and other static equipment that provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability[12]."

According to Siemens "FACTS Increase the reliability of AC grids and reduce power delivery costs. They improve transmission quality and the efficiency of power transmission by supplying inductive or reactive power to the grid.

FACTS controllers can be categorized as follow:

- 1. Shunt connected controllers.
- 2. Series connected controllers.
- 3. Combined series-series controllers.
- 4. Combined shunt-series controllers.

4.6.1.1 Shunt connected controllers:

Shunt controllers consist of variable impedance devices like capacitors or reactors which introduce current in series with the line. Their major task is to reduce the capacitivity of the transmission line. The injected current is in phase with the line voltage[11].

4.6.1.2 Series connected controllers:

Series Controllers consists of capacitors or reactors which introduce voltage in series with the line. They are basically variable impedance devices. Their major task is to reduce the inductivity of the transmission line. They supply or consume variable reactive power [11].

4.6.1.3 Combined series-series controllers:

These controllers consist of a combination of series controllers with each controller providing series compensation and also the transfer real power along the line.

4.6.1.4 Combined shunt-series controllers:

These controllers introduce current in series using the series controllers and voltage in shunt using the shunt controllers [14].

4.6.2 FACTS benefits:

- 1. Facts is economical technology.
- 2. All the FACTS controllers can be uses with an existing AC transmission system.
- 3. Facts technology allows greater throughput over existing routes.

4. Facts can be uses on an existing transmission routes without construction of new transmission lines.

5. Reducing power loss and increasing power transfer capability.

- 6. Increase the security by raising transient stability limit.
- 7. Limit short circuit current and overloads.
- 8. Provide secure tie line connections to neighboring utilities.
- 9. Voltage regulating speed is fast.

10. Reduce reactive power flow with increasing active power flow.

4.7 Adding a new sub-station

Adding a new sub-station to the medium voltage network is highly effective way to decrease the power losses and improving the voltage drop, if the distance between the sub-station and the load was far away, the power losses will be increased through the cables in addition to the distribution transformers. As a result, when the sub-station feeders are close enough or at least not far away from the loads, the power losses will be less compared to a far sub-station or a feeder.

CHAPTER 5

Simulation analysis

5.1 Case study

5.2 Case 1 results

5.3 Case 2 results

5.4 Comparison between two case

5.5 Conclusion

5.1 Case study

In order to run the simulation in the MV network, we assumed that the Power Factor (PF) equal 92 % according to wad shaheen, and two cases were applied:

- In the first case, we assumed the transformers loading to be 80% of the rated kVA for each transformer in order to reach the total peak value for wad shaheen network which is 25.779MWh.
- 2. In the second case, we set the input data for loading distribution transformers depending on the instantaneous readings in different days and times for each transformer in the network from the company.

5.2 Case 1 results

ETAP has many different solution methods, Newton- Raphson (NR) has been chosen to run the load flow, because it is most reliable and powerful technique for solving load flow problems at very accurate solution, fast in convergence, independent size of system and not effected by choosing of slack bus.

The data used in this analysis is obtained from JDECo, the simulation was made taking into consideration the transformers, cables and overhead transmission lines values as mentioned and explained in chapter two, after that we assumed the transformers to be loaded with 80% of its capacities. All results details are attached in Appendix.

5.2.1 Sub-Stations Results

Substation	Rated kV	KW	Α	PF%
Takoo	33	9300	176.86	92.5
BREADHAA	33	9180	174.5	91.1
ABIAT	33	9950	189.21	90.7
Total		28430		

Table 5.1 : Loading on each sub-station.

Number of loads = 67

Number of buses = 154 bus

Power imported from Power Grid = 25.799 MW

Total power losses = 1.632 MW = 6.325%

PTotal = PDemand + PLosses

PTotal = 25.799 + 6.325 = 32.124

The following figure (5.1) represents the contribution of each sub – station in loading

Figure 5.1: the loading percentage on sub-station

Table (5.2) shows the result of every transformer in the sub-stations, results contain the loading power on transformers and power losses on each one of them:- \langle

ID	Rating kVA	kW Flow	Α	%Loading	kW Losses	%Losses	
T1 ZATARAA	1600	1196	38	92.02	14.8	1.241	
T2 ZATARAA	1600	1172	32	90.79	14.6	1.248	
T3 RSHAYDEH	1600	809	36	96	13.1	1.617	
T4 BREADHAA	1500	1097	20	94	13.7	1.249	
Total		4274			56.2		

Table (5.2) : loading and power losses on sub-stations transformers

5.2.2 Transmission Line and Transformers

The transmission lines and cables gathered with the step down transformers (33-0.4) kV resulted in 508.431 kW of the total power losses contributed as shown in figure (5.2):

The follwing table (5.3) show the value & percentage of the total losses in distribution & substation transformer, and cables with transmission line

Table5.3:losses in distribution & substation Tr-r with transmission lines

Туре	kW Losses	%losses
LV Tr-r losses	508.431	31.53
Cable % line losses	1127.569	68.57
Total	1636	100

Figure 5.2:-losses in distribution & Substation Tr-r with transmission line

The following figure(5.3) show the terminal voltage percentage on 33 kV buses and the buses that are less than 95 % of the nominal voltage at 33 kV.

Figure 5.3:-The terminal voltage percentage on 11KV busses

No	Bus ID	Nominal kV	% Voltage
1	Bus6	33	94.1
2	Bus8	33	93.5
3	Bus15	33	92.6
4	Bus22	33	94.6
5	Bus25	33	94.7
6	Bus32	33	93.4
7	Bus35	33	91.2
8	BusC5	33	92.3
9	BusC10	33	93.3
10	BusC18	33	93.6
11	BusC22	33	93.4
12	BusC46	33	94.2
13	BusC50	33	91.1
14	BusC56	33	92.2
15	BusC62	33	92.8
16	BusC64	33	92.6

Table5.4: The busses less Than 95% of the nominal Voltage at 33KV

The following figure(5.4) show the percentage terminal voltage in 0.4 KV buses and the buses that less than 92 % of the nominal voltage at 0.4 KV in table (5.4)

Figure 5.4: The terminal voltage percentage on 0.4 KV busses

No	Bus ID	Nominal kV	% Voltage
1	BusT16	0.4	90.88
2	BusT21	0.4	91.43
3	BusT61	0.4	91.71
4	BusT66	0.4	91.24

Table5.5: The bus that is less Than 92% of the nominal Voltage at 0.4KV busses

5.2.3 Cost of the technical power losses

Total technical of losses in MW=1.636MW

Cost for losses during 1 hour= =1636*0.3=490.8NIS / h

Annual cost for losses = $1636 \text{ kW} \times 0.3 \times 8760 \text{ h} = 4,299,408 \text{ NIS /Y}$

5.3 Case 2 results

In this case, we set the input data for transformers depending on the instantaneous readings for each transformer in the network from the company, noticing that the values of transformers loading were taken in a different times, the transformers loading information is attahed in appendix. All results details are attached in Appendix.

5.3.1 Sub – Stations Result

In the following table, the results of the power demand in (MW), the power percentage of each sub-station, and the power factor are explained as follow:-

substation	Rated kV	KW	Α	PF%
Takoo	33	3880	59.134	93.5
BREADHAA	33	1490	26.068	94.2
ABIAT	33	5459	95.5	92.6
Total		10829		

Table 5.6 : Loading on each sub-station

Number of loads =67 load.

Number of buses =154bus.

Power imported from Power Grid =10.829 MW.

Total power losses = 0.269MW = 2.48%.

PTotal = PDemand + Plosses

PTotal = 10.829MW + 0.269MW

=11.098MW.

The following figure (5.5) represents the contribution of each sub-station in loading:-

Figure 5.5:-the loading percentage on sub-station

Table(5.7) shows the result of every transformer in the sub-stations, results contains the loading power on transformers and power losses on each one of them:-

ID	Rating kVA	kW Flow	A	%PF	kW Losses
T1 Zataraa	1600	720	12.5	97.6	2.5
T2 Zatraa	1600	665	11.6	92.7	3.1
T3 Rshaydeh	1600	405	7.08	94.5	2.1
T4 Breadhaa	1500	680	11.89	94.3	2.4
Total		2470			10.1

Table 5.7:-loading and power losses on sub-station transformer

5.3.2 Transmission Lines and Transformers

The transmission lines and cables gathered with the step down transformers (33-0.4) kV resulted in 296 kW of the total power losses contributed as shown in figure (5.6).

The following table (5.8) show the value & percentage of the total losses in distribution transformer, and cables with transmission line.

Туре	kW Losses	%Losses
LV Tr-r losses	108	36.49
Cable line losses	188	63.51
Total	296	100

table (5.8):-losses in distribution transformer, and cables with transmission lines

Figure 5.6:- losses in distribution transformer, and cables with transmission lines

The following figure (5.7) show the terminal voltage percentage on 33 kV buses and the buses that are less than 97 % of the nominal voltage at 33 kV.

NO	Bus ID	Nominal kV	%Voltage
1	Bus4	33	95.4
2	Bus19	33	96.1
3	Bus31	33	94.8
4	Bus54	33	95.7
5	Bus59	33	96.5

Table 5.9: The buses that are less than 97 % of the nominal voltage at 33 kV.

The following figure (5.8) show the terminal voltage percentage on 0.4 kV buses and the buses that are less than 90 % of the nominal voltage at 0.4 kV.

Figure 5.8:-Terminal Voltage at LV Bus

NO	Bus ID	Nominal kV	%Voltage
1	Bus20	0.4	87.5
2	Bus56	0.4	88.4
3	Bus84	0.4	89.4

Table 5.10:- The buses that are less than 90 % of the nominal voltage at 0.4 KV

5.3.3 Cost of the technical power losses

Total technical of losses in MW=0.269MW

Cost for losses during 1 hour= =0.269*0.3=80.7NIS / h

Annual cost for losses = 296 kW*0.3 * 8760 h = 706932 NIS / Y

5.4 Comparison between two case

Table (5.11) represents the Comparison between two case, and the difference between the values of the total power losses and the losses in both cables and transformers in three substation (Takoo ,Abiat ,Breaada).

case1	Loading(KW)	9300	9180	9950
	Cable and line losses (KW)	1127.569		
	Distrubition transformer losses(KW)	508.431	508.431	508.431
	Total losses(KW)	1636		
case2	Loading (KW)	3880	1490	5459
	Cable and line losses (KW)	188		
	Distrubition transformer losses(KW)	108		
	Total losses(KW)	296		

Table5.11: Comparison between two case

The following figure (5.9) and figure (5.10) represent the values of power losses in two case:-

Figure 5.9:- The percentage of the power losses in case1

Figure 5.10:-The percentage of the power losses in case2

5.5 Conclusion

In this chapter we applied load flow test in wad shaheen network with balance load, then, we recorded the result of our two simulation by ETP, and the percentage of the power losses in each case.

And after discussing the result with JIDCO, we decided to study the effect of Network Reconfiguration and Network Reconductring to Wad shaheen substation.

Chapter 6

The solution to minimizing power losses

6.1 Introduction

6.2 First solution network reconductring

6.3 Second solution network reconfiguration

6.4 Conclusion
6.1 Introduction

In this chapter, we present the solutions that applied to minimize the power losses in the First scenario "Peak load", and show the effect of the solution on the losses.

6.2 First solution network reconductring

6.2.1 Introduction

After analyzing the Wad Shaheen Network, we concluded that the bulk of the losses were actually in cables and to solve this problem, we changed the cable trains that contained the greatest losses in the network to suit the load in the network, which in turn effectively contributes to reducing electrical losses in the network.

Table (6.1) represent cable cross-section area before and after network reconductring.

ID	cable cross-section area before network reconductoring(mm2)	cable cross-section area after network reconductoring(mm2)
C24	95	150
C36	95	150
C38	95	150
C42	95	150
C46	95	150
C48	95	150
C49	95	150
C50	95	150
C51	95	120

 Table (6.1) :cable cross-section area before and after network reconductring

Table (6.2) represent the losses in cable before and after network reconductring.

table (6.2):- the loss	es in cable befor	e and after netwo	rk reconductring
(0.2) the 1055	es in cable beloi	e anu arter netwo	rkreconductring

ID	Losses in cable befor network reconductoring(KW)	Losses in cable after network reconductoring(KW)
C24	35.3	23.2
C36	45.7	30.3
C38	38	25.1
C42	97.9	66.1
C46	125.6	84
C48	123.6	84.6
C49	101	68.3
C50	190.44	127
C51	121.4	99.7

The following figure (6.1) shows the result before network reconductoring

Figure(6.1): The overload before change the cable.

The following figure (6.2) shows the result after network reconductoring

Figure(6.2): The overload decreasing after change the cable

6.2.2 Cost of technical losses after Network reconductring

Total technical of losses in MW=1.382MW

Cost for losses during 1 hour= 1.382*0.3=414.6NIS / h

Annual cost for losses = $1.382 \text{ kW} \times 0.3 \times 8760 \text{ h} = 3,631,896 \text{ NIS /Y}$

6.2.3 comparison before and after network reconductring

Table (6.3) represent the result of the analysis of the existing network done in the first case in chapter 5, and it also compare these result with result after network reconductring .

 Table (6.3):-comparison before and after network reconductring

	Before	After
Power Demand MW	26.31	26.648
Total Power Losses MW	1.636	1.382
distribution transformer losses kW	508.431	426
Line & cable losses kW	1127.569	956
Percentage of Losses(%)	6.33	5.18
Cost of losses NIS /Y	4,299,408	3,631,896

Figure(6.3): Power losses percentage before and after network reconductoring

Figure(6.4): Difference of Cost before and after of Network Reconductring

6.3 Second solution network reconfiguration

6.3.1 First Case

6.3.1.1 Introduction

The second solution we applied to the network is network reconfiguration, to apply these solutions we added a new line "RL its length 3km and cable cross-section area 150 mm2" between power grid(Takoo) and Bus C7 and delete line "RL its length 0.5km and cable cross-section area 50 mm2" line between Bus C34 and C36.

This method help to reduce losses in the region ,especially because is an industrial area, thus it leads to balance the load in the network and thus to reduce losses .

Figure (6.5) present the cable location in the network:-

Figure (6.5):- location of new cable

6.3.1.2 Cost of technical losses after First Case

Total technical of losses in MW= 0.941MW

Cost for losses during 1 hour= 0.941*0.3=414.6NIS / h

Annual cost for losses = 0.941 kW*0.3 * 8760 h = 2,472,948 NIS /Y

6.3.1.3 comparison before and after First Case

Table (6.4) represent the result of the analysis of the existing network done in the first case in chapter 5, and it also compare these result with result after network reconfiguration (First case):-

Power Demand (MW)	26.31	26.861
Total Power Losses(MW)	1.636	0.941
Load Demand (KW)	24.9	25.1
Distribution transformer losses (KW)	508.431	260
Line & cable losses (kW)	1127.569	681
Percentage of losses(%)	6.33	3.5
Cost for losses NIS /Y	4,299,408 NIS /Y	2,472,948 NIS /Y

Figure(6.6): Power losses percentage before and after case 1

Figure(6.7): Difference of Cost before and after of First case

6.3.2 Second Case

6.3.2.1 Introduction

In this case, we separated the network in two parts in order to reduce the load on the loss network (ABIAT) which contain a large part of the losses and the other part network TAKOO and BREADHAA so we took a new link point on the ABIAT network from the GARADA station for a few losses.

Figure(6.8) present result after adding new power grid:-

Figure(6.8) :- The overload decreasing after adding new power grid

Figure(6.9) present the location of GARADA station:-

Figure(6.9) :- GARADA station

6.3.2.2 Cost of technical losses after Second Case:-

Total technical of losses in MW= 1.105MW

Cost for losses during 1 hour= 1.105*0.3=331.5NIS / h

Annual cost for losses = $0.941 \text{ kW} \times 0.3 \times 8760 \text{ h} = 2,903,940 / \text{Y}$

6.3.2.3 comparison before and after Second Case:-

Table (6.5) represent the result of the analysis of the existing network done in the first case in chapter 5, and it also compare these result with result after network reconfiguration (second t case):-

	Before	After
Power Demand MW	26.31	26.8
Total Power Losses MW	1.636	1.105
Load Demand MW	24.9	26.803
Distribution transformer losses KW	508.431	406
Line & cable losses kW	1127.569	699
percentage of losses (%)	6.33	4.12
cost of Losses NIS/Y	4,299,408	2,903,940

Table (6.5) comparison before and after second case

Figure(6.10): Power losses percentage before and after case 2

Figure(6.11): Difference of Cost before and after of second case

6.4 Conclusion

After studying the maximum load on the Wade Shaheen Network Section 5 we studied losses on the net and after observing that the bulk of the losses in cables we studied in this section several ways to reduce these losses in the first way we changed the countries of cables where the largest part of the cables and this method contributed to reducing the loss rate by 1.15%.

In the second way we applied two solutions and the first solution is to add a new cable between the power adapter in the area of TAKOO and the area where the value of high losses in area ABIAT as described earlier and this method contributed to reducing losses by 2.83%.

the second solution lies in pulling a cable from a nearby link point on the network which is GARADA station and this method contributed to reducing losses by 2.21% and the material return was calculated in each way as described earlier.

Chapter 7

Recommendation and conclusion

7.1 Conclusions

7.2 Recommendations

7.1 Conclusions

1. Technical losses are directly related to elements or components in the grid.

2. Conductors with a small cross-section and high resistance will have a bad effect on the grid

from the loss aspect side, especially if the loads are relatively high.

3. A proper structural rework of the network can effectively reduce network losses.

7.2 Recommendations

1. We recommend that Jerusalem Al Electricity Company should use the A-program to analyze their networks and their ability to keep up with the network realistically.

2. We recommend that the Jerusalem Electricity Network reconsider and examine the cable trains in certain parts of the Wad Shaheen network as it is disproportionate to the existing load.

3. We recommend Jerusalem electricity company to add smart meters to certain sections of the network

References

[1] N. A. Iqteit, A. B. Arsoy, and B. Çakir, "A simple method to estimate power losses in distribution networks." pp. 135-140.

[2] https://datacatalog.worldbank.org/electric-power-transmission-and-distribution-lossesoutput-1

[3] The Jerusalem District Electricity Company, SCADA department.

[4] K. Alzyoud, "Losses minimization in electrical power system for one part of national grid of Jordan," 2016, pp. 122-132.

[5] https://electrical-engineering-portal.com/total-losses-in-power-distribution-and-transmission-lines-1

[6] https://circuitglobe.com/types-of-losses-in-transformer.html

[7] J. Navani, N. Sharma, and S. Sapra, "Technical and non-technical losses in power system and its economic consequence in Indian economy," International Journal of Electronics and Computer Science Engineering, vol. 1, no. 2, pp. 757-761, 2012.

[8] SBEnergyNetworkhttps://www.spenergynetworks.co.uk/pages/non_technical_losses.aspx.

[9] H. Saadat, Power system analysis, 1999.

[10] Efficient electrical energy transmission and distribution, 2007

[11] Xiaomeng Wu1,2, Xinqiao Li1, Chong Li1, Jian Dang1School of Electric Engineering,Xi'an Shiyou University.

[12] K. Padiyar, FACTS controllers in power transmission and distribution: New Age International,2007.

[13] proposed terms and definitions for flexible AC transmission system (FACTS),"IEEE Transaction son Power Delivery, vol. 12, no. 4, pp. 1848-1853, 1.997.

Appendix

Appendix A

Summary of Power Flow for Each Case of Scenarios and Solutions

Project: minim	izing the power losses in		ETAP	Page:1
Location:	wad Shaheen substation			
Contract:	peak load		SN:	4359168
Engineer:	Revision:omar&bilal		Base	
		Study Case: LF		
Filename:	wad Shaheen		Config.:	Normal

Peak Load

SUMMARY OF TOTAL GENERATION, LOADING & DEMAND

	MW	Mvar	MVA	% PF
Source (Swing Buses):	26.564	11.099	28.790	92.27 Lagging
Source (Non-Swing Buses):	0.000	0.000	0.000	
Total Demand:	26.564	11.099	28.790	92.27 Lagging
Total Motor Load:	6.386	2.720	6.941	92.00 Lagging
Total Static Load:	18.508	7.884	20.117	92.00 Lagging
Total Constant I Load:	0.000	0.000	0.000	
Total Generic Load:	0.000	0.000	0.000	
Apparent Losses:	1.671	0.494		
System Mismatch:	0.000	0.000		

Project: minimi Location:	zing the power losses in wad Shaheen substation	ETAP	ЕТАР	Page:2
Contract:	40%		SN:	4359168
Engineer:	Revision:omar&bilal		Base	
Filename:	wad Shaheen	Study Case: LF	Config.:	Normal

Minimum Load

	MW	Mvar	MVA	% PF
Source (Swing Buses):	10.829	3.637	11.424	94.80 Lagging
Source (Non-Swing Buses):	0.000	0.000	0.000	
Total Demand:	10.829	3.637	11.424	94.80 Lagging
Total Motor Load:	2.528	1.077	2.748	92.00 Lagging
Total Static Load:	8.032	3.422	8.730	92.00 Lagging
Total Constant I Load:	0.000	0.000	0.000	
Total Generic Load:	0.000	0.000	0.000	
Apparent Losses:	0.269	-0.862		
System Mismatch:	0.000	0.000		

Project: minimizing the power losses in	ETAP	Page: 3	
Location: wad Shaheen substation			
Contract: First Scenario Case Analysis		SN:	4359168
Engineer: omar&bilal		Revision:	Base
Study Case: LF			
Filename: wad Shaheen		Config.:	Normal

Network Reconductoring

	MW	Mvar	MVA	% PF
Source (Swing Buses):	26.648	11.250	28.926	92.13 Lagging
Source (Non-Swing Buses):	0.000	0.000	0.000	
Total Demand:	26.648	11.250	28.926	92.13 Lagging
Total Motor Load:	6.386	2.720	6.941	92.00 Lagging
Total Static Load:	18.881	8.043	20.523	92.00 Lagging
Total Constant I Load:	0.000	0.000	0.000	
Total Generic Load:	0.000	0.000	0.000	
Apparent Losses:	1.382	0.486		
System Mismatch:	0.000	0.000		

Project:	minimizing the power losses in	ETAP	Page :4	
Location:	wad Shaheen substation			
Contract:	second Scenario Case Analysis 1		SN:	4359168
Engineer:	omar&bilal		Revision:	Base
Study Case	: LF			
Filename:	wad Shaheen		Config.:	Normal

Network Reconfiguration Case 1

	MW	Mvar	MVA	% PF
Source (Swing Buses):	26.861	11.144	29.081	92.37 Lagging
Source (Non-Swing Buses):	0.000	0.000	0.000	
Total Demand:	26.861	11.144	29.081	92.37 Lagging
Total Motor Load:	6.386	2.720	6.941	92.00 Lagging
Total Static Load:	19.534	8.322	21.233	92.00 Lagging
Total Constant I Load:	0.000	0.000	0.000	
Total Generic Load:	0.000	0.000	0.000	
Apparent Losses:	0.941	0.103		
System Mismatch:	0.000	0.000		

Project: mi	nimizing the power losses in	ETAP	Page :5	
Location:	wad Shaheen substation			
Contract:	Third Scenario Case Analysis 1		SN:	4359168
Engineer:	omar&bilal		Revision:	Base
Study Case:	LF			
Filename:	wad Shaheen		Config.:	Normal
Filename:	wad Shaheen		Config.:	Normal

Network Reconfiguration Case 2

	MW	Mvar	MVA	% PF
Source (Swing Buses):	26.803	11.214	29.054	92.25 Lagging
Source (Non-Swing Buses):	0.000	0.000	0.000	
Total Demand:	26.803	11.214	29.054	92.25 Lagging
Total Motor Load:	6.386	2.720	6.941	92.00 Lagging
Total Static Load:	19.312	8.227	20.992	92.00 Lagging
Total Constant I Load:	0.000	0.000	0.000	
Total Caparia Load	0.000	0.000	0.000	
Annarent Losses	1 105	0.267		
System Mismatch	0.000	0.000		
	0.000			

Number of Iterations: 3

Appendix B

Summary of Power Losses for Each Case of Scenarios and Solutions

Losses Summary for Cables and Distribution Transformers in peak Load

	From-To	Bus Flow	To-From I	Bus Flow	Los	ses	96 Bus V	Voltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cablel	-0.591	-0.267	0.591	0.267	0.1	0.0	93.9	93.9	0.0
Т1	0.510	0.231	-0.497	-0.212	12.5	18.8	93.9	90.7	3.1
T2	0.081	0.037	-0.079	-0.034	2.0	3.0	93.9	90.7	3.1
Cable2	-0.324	-0.117	0.324	0.117	0.0	0.0	93.9	93.9	0.0
Cable70	0.324	0.117	-0.324	-0.146	0.0	-29.2	93.9	93.9	0.0
Cable3	-0.915	-0.385	0.915	0.385	0.0	0.0	93.9	93.9	0.0
Cable4	-1.044	-0.443	1.045	0.443	0.6	0.2	93.9	93.9	0.0
T4	0.130	0.059	-0.126	-0.054	3.2	4.8	93.9	90.7	3.1
Cable5	-1.007	-0.464	1.007	0.446	0.1	-18.0	93.9	93.9	0.0
Cableó	0.804	0.372	-0.804	-0.380	0.0	-8.2	93.9	93.9	0.0
T6	0.203	0.092	-0.198	-0.084	5.0	7.5	93.9	90.8	3.1
Τ7	0.804	0.380	-0.792	-0.337	12.3	43.1	93.9	90.9	3.0
Cable7	-2.254	-0.981	2.255	0.981	1.5	0.5	93.9	94.0	0.0
T5	0.203	0.092	-0.198	-0.084	5.0	7.5	93.9	90.8	3.1
CableS	-0.811	-0.269	0.811	0.269	0.2	0.1	94.0	94.0	0.0
Cable9	0.203	0.024	-0.203	-0.092	0.0	-67.6	94.0	94.0	0.0
Cable10	0.405	0.153	-0.405	-0.153	0.0	0.0	94.0	94.0	0.0
Т9	0.203	0.092	-0.198	-0.084	5.0	7.5	94.0	90.8	3.1
T10	0.203	0.092	-0.198	-0.084	5.0	7.5	94.0	90.8	3.1
Cablell	0.203	0.061	-0.203	-0.092	0.0	-30.3	94.0	94.0	0.0
T11	0.203	0.092	-0.198	-0.084	5.0	7.5	94.0	90.8	3.1
T12	0.203	0.092	-0.198	-0.084	5.0	7.5	94.0	90.8	3.1
Cable12	-3.577	-1.481	3.578	1.450	0.7	-31.6	94.0	94.0	0.0
T8	0.511	0.231	-0.498	-0.212	12.5	18.8	94.0	90.8	3.1
Cable13	-1.482	-0.709	1.482	0.710	0.4	0.1	94.1	94.1	0.0
Cable72	1.279	0.618	-1.279	-0.627	0.0	-9.1	94.1	94.1	0.0
T13	0.203	0.092	-0.198	-0.084	5.0	7.5	94.1	90.9	3.1
Cable15	1.726	0.819	-1.726	-0.819	0.0	0.0	94.1	94.1	0.0
Cable18	-6.788	-2.979	6.796	2.982	7.8	2.7	94.1	94.2	0.1
Cable71	3.580	1.450	-3.578	-1.450	2.3	0.8	94.1	94.0	0.0
Cableló	1.523	0.727	-1.523	-0.727	0.2	0.1	94.1	94.1	0.0
т15	0.203	0.092	-0.198	-0.084	5.0	7.5	94.1	90.9	3.1
Cable17	1.198	0.587	-1.197	-0.587	1.0	0.3	94.0	94.0	0.0
Cable74	-1.522	-0.734	1.523	0.734	0.7	0.2	94.0	94.1	0.0
T16	0.324	0.147	-0.317	-0.135	8.0	11.9	94.0	90.8	3.1

	From-To 1	Bus Flow	w To-From Bus Flow		Los	ses	96 Bus 7	Voltage	Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag	
Cable19	-7.000	-3.074	7.019	3.081	19.4	6.7	94.2	94.4	0.25	
T17	0.203	0.092	-0.198	-0.084	5.0	7.5	94.2	91.0	3.19	
Cable20	0.515	0.233	-0.515	-0.233	0.0	0.0	94.4	94.4	0.00	
Cable21	-7.534	-3.313	7.546	3.318	12.7	4.4	94.4	94.6	0.15	
T18	0.515	0.233	-0.502	-0.214	12.6	18.9	94.4	91.2	3.20	
Cable22	0.287	0.130	-0.287	-0.130	0.0	0.0	94.6	94.6	0.00	
Cable24	-8.038	-3.540	8.073	3.552	35.5	12.2	94.6	95.0	0.40	
T19	0.205	0.093	-0.200	-0.085	5.0	7.5	94.6	91.4	3.20	
Cable23	0.082	0.037	-0.082	-0.037	0.0	0.0	94.6	94.6	0.00	
T20	0.205	0.093	-0.200	-0.085	5.0	7.5	94.6	91.4	3.20	
T21	0.082	0.037	-0.080	-0.034	2.0	3.0	94.6	91.4	3.20	
Cable25	-8.223	-3.623	8.233	3.629	9.3	5.9	95.2	95.3	0.12	
Cable75	8.091	3.564	-8.073	-3.552	18.0	11.4	95.2	95.0	0.23	
T22	0.132	0.060	-0.129	-0.055	3.2	4.8	95.2	92.0	3.21	
Cable26	0.207	0.075	-0.207	-0.094	0.0	-19.1	95.3	95.3	0.00	
Cable27	1.637	0.751	-1.637	-0.786	0.3	-35.1	95.3	95.3	0.02	
Cable29	6.761	2.833	-6.752	-2.896	9.3	-63.2	95.3	95.2	0.15	
Cable34	-16.838	-7.287	16.877	7.312	38.6	24.4	95.3	95.6	0.23	
T23	0.207	0.094	-0.202	-0.086	5.0	7.6	95.3	92.1	3.22	
Cable28	1.306	0.636	-1.306	-0.639	0.0	-3.6	95.3	95.3	0.00	
Cable76	-1.637	-0.786	1.637	0.786	0.1	0.1	95.3	95.3	0.01	
T24	0.331	0.150	-0.323	-0.138	8.1	12.1	95.3	92.1	3.21	
T25	1.306	0.639	-1.291	-0.550	14.9	89.6	95.3	92.0	3.34	
Cable82	6.669	2.859	-6.657	-2.855	11.8	4.1	95.2	95.0	0.16	
T26	0.083	0.037	-0.081	-0.034	2.0	3.0	95.2	92.0	3.21	
Cable32	-1.635	-0.765	1.635	0.747	0.2	-18.5	94.9	94.9	0.01	
Cable33	0.817	0.378	-0.817	-0.387	0.0	-8.0	94.9	94.9	0.00	
T28	0.817	0.387	-0.805	-0.343	12.5	43.6	94.9	91.9	3.07	
Т3	-0.316	-0.135	0.324	0.146	7.9	11.9	90.7	93.9	3.19	
T14	-1.264	-0.539	1.279	0.627	14.7	88.3	90.7	94.1	3.31	
Cable47	-0.852	-0.402	0.852	0.370	0.1	-32.7	97.5	97.5	0.01	
T38	0.852	0.402	-0.839	-0.358	12.8	44.9	97.5	94.4	3.12	
Cable73	1.523	0.727	-1.523	-0.734	0.0	-6.7	94.1	94.1	0.00	
Cable30	-4.354	-1.879	4.358	1.812	3.9	-67.0	94.9	95.0	0.10	
Cable31	0.519	0.200	-0.519	-0.235	0.0	-35.0	94.9	94.9	0.01	
Cable77	0.535	0.203	-0.535	-0.211	0.0	-8.4	94.9	94.9	0.00	
Cable79	1.665	0.730	-1.665	-0.751	0.2	-20.8	94.9	94.9	0.01	

	From-To Bus Flow To-From Bus Flow Losses			From-To Bus Flow To-From Bus Flow Losses		% Bus	Vd % Drop		
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cable78	0.206	0.062	-0.206	-0.093	0.0	-31.0	94.9	94.9	0.00
T55	0.329	0.149	-0.321	-0.137	8.0	12.1	94.9	91.7	3.21
T56	0.206	0.093	-0.201	-0.086	5.0	7.5	94.9	91.7	3.21
Cable80	1.147	0.516	-1.147	-0.526	0.0	-9.7	94.9	94.9	0.00
T57	0.519	0.235	-0.506	-0.216	12.7	19.0	94.9	91.7	3.21
Cable81	0.817	0.377	-0.817	-0.386	0.0	-9.7	94.9	94.9	0.00
T58	0.329	0.149	-0.321	-0.137	8.0	12.1	94.9	91.7	3.21
T59	0.817	0.386	-0.805	-0.343	12.5	43.6	94.9	91.8	3.07
Cable83	2.299	1.043	-2.297	-1.042	1.7	0.6	95.0	95.0	0.07
Cable84	2.166	0.983	-2.163	-0.982	2.2	0.8	95.0	94.9	0.09
T60	0.132	0.060	-0.129	-0.055	3.2	4.8	95.0	91.8	3.21
Cable85	1.958	0.889	-1.958	-0.889	0.2	0.1	94.9	94.9	0.01
T61	0.206	0.093	-0.201	-0.085	5.0	7.5	94.9	91.7	3.21
Cable86	1.958	0.889	-1.957	-0.889	0.7	0.3	94.9	94.8	0.03
Cable87	1.825	0.829	-1.825	-0.829	0.7	0.2	94.8	94.8	0.03
T62	0.132	0.059	-0.128	-0.055	3.2	4.8	94.8	91.6	3.21
Cable88	1.459	0.663	-1.459	-0.663	0.2	0.1	94.8	94.8	0.01
T63	0.366	0.166	-0.356	-0.152	10.0	14.9	94.8	91.2	3.57
Cable89	0.941	0.429	-0.941	-0.429	0.1	0.0	94.8	94.8	0.01
T64	0.517	0.234	-0.505	-0.215	12.6	19.0	94.8	91.6	3.20
Cable90	0.576	0.262	-0.576	-0.262	0.0	0.0	94.8	94.8	0.00
T65	0.366	0.166	-0.356	-0.151	10.0	14.9	94.8	91.2	3.57
T66	0.576	0.262	-0.560	-0.239	15.7	23.5	94.8	91.2	3.57
Cable53	22.470	9.731	-22.450	-9.724	20.9	7.2	100.0	99.9	0.09
Cable54	4.094	1.367	-4.093	-1.367	0.6	0.2	100.0	100.0	0.01
c77	1.855	0.579	-1.853	-0.798	1.8	-219.0	99.6	99.5	0.11
Cable66	-1.855	-0.579	1.856	0.579	1.3	0.5	99.6	99.7	0.07
T6 7	1.197	0.587	-1.183	-0.504	13.8	82.7	94.0	90.6	3.31
Cable45	-0.409	-0.187	0.410	0.187	0.1	0.0	97.5	97.5	0.01
T 37	0.409	0.187	-0.398	-0.169	11.8	17.8	97.5	93.6	3.90
T27	-0.506	-0.216	0.519	0.235	12.7	19.0	91.7	94.9	3.21
Cable56	4.093	1.367	-4.093	-1.367	0.0	-0.1	100.0	100.0	0.00
T29	0.817	0.387	-0.805	-0.343	12.5	43.6	94.9	91.8	3.07
Cable35	0.133	0.060	-0.133	-0.060	0.0	0.0	95.6	95.6	0.00
Cable36	-17.010	-7.372	17.056	7.388	46.4	16.0	95.6	95.8	0.25
T30	0.133	0.060	-0.130	-0.055	3.2	4.9	95.6	92.4	3.22
Cable37	0.334	0.151	-0.334	-0.151	0.0	0.0	95.8	95.8	0.01

	From-To	Bus Flow	To-From 1	Bus Flow	Los	ses	96 Bus V	Voltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cable38	-17.391	-7.539	17.429	7.552	38.6	13.3	95.8	96.0	0.21
T31	0.334	0.151	-0.326	-0.139	8.1	12.2	95.8	92.6	3.22
Cable39	-17.589	-7.626	17.620	7.636	30.8	10.8	96.0	96.2	0.16
T32	0.160	0.073	-0.155	-0.066	4.7	7.0	96.0	92.2	3.86
Cable40	0.802	0.367	-0.802	-0.367	0.2	0.1	96.2	96.2	0.03
Cable42	-18.673	-8.118	18.774	8.153	101.5	35.0	96.2	96.7	0.51
T33	0.251	0.115	-0.243	-0.104	7.3	10.9	96.2	92.3	3.87
Cable41	0.401	0.183	-0.401	-0.183	0.1	0.0	96.2	96.1	0.02
T34	0.401	0.183	-0.389	-0.166	11.7	17.5	96.2	92.3	3.87
T35	0.401	0.183	-0.389	-0.166	11.7	17.5	96.1	92.3	3.87
Cable43	-19.308	-8.394	19.341	8.405	32.6	11.2	96.7	96.9	0.16
T54	0.534	0.241	-0.521	-0.222	12.9	19.4	96.7	93.5	3.24
Cable44	0.162	0.074	-0.162	-0.074	0.0	0.0	96.9	96.9	0.01
Cable46	-19.503	-8.479	19.633	8.524	130.4	44.9	96.9	97.5	0.63
T36	0.162	0.074	-0.157	-0.067	4.7	7.1	96.9	93.0	3.88
Cable48	-21.110	-9.178	21.237	9.222	127.3	43.9	97.5	98.1	0.57
T39	0.215	0.097	-0.209	-0.089	5.2	7.8	97.5	94.2	3.26
Cable49	-21.583	-9.379	21.688	9.415	105.0	36.2	98.1	98.5	0.46
T40	0.346	0.157	-0.338	-0.144	8.3	12.5	98.1	94.8	3.27
Cable50	-21.907	-9.513	22.103	9.581	196.6	67.8	98.5	99.4	0.86
T41	0.218	0.099	-0.213	-0.091	5.2	7.9	98.5	95.2	3.27
Cable51	-22.324	-9.681	22.450	9.724	125.3	43.2	99.4	99.9	0.54
T42	0.221	0.100	-0.216	-0.092	5.3	7.9	99.4	96.1	3.29
Cable58	0.357	0.106	-0.357	-0.161	0.0	-55.5	100.0	100.0	0.01
Cable59	3.513	1.161	-3.511	-1.160	1.7	1.0	100.0	99.9	0.05
T43	0.223	0.101	-0.218	-0.093	5.3	8.0	100.0	96.7	3.30
T44	0.357	0.161	-0.349	-0.149	8.5	12.8	100.0	96.7	3.30
Cable60	3.154	0.998	-3.154	-0.998	0.4	0.3	99.9	99.9	0.01
T45	0.357	0.161	-0.349	-0.148	8.5	12.8	99.9	96.6	3.30
Cable61	2.931	0.897	-2.929	-0.897	1.3	0.5	99.9	99.9	0.05
T46	0.223	0.101	-0.218	-0.093	5.3	8.0	99.9	96.6	3.30
Cable62	2.787	0.832	-2.786	-0.890	1.0	-57.5	99.9	99.8	0.04
T4 7	0.143	0.064	-0.139	-0.059	3.4	5.1	99.9	96.6	3.30
Cable63	0.704	0.209	-0.704	-0.231	0.0	-22.0	99.8	99.8	0.00
Cable65	2.082	0.681	-2.078	-0.680	3.2	1.1	99.8	99.7	0.16
Cable64	0.561	0.167	-0.561	-0.253	0.1	-86.7	99.8	99.8	0.01
T48	0.143	0.064	-0.139	-0.059	3.4	5.1	99.8	96.5	3.30

	From-To l	Bus Flow	To-From I	Bus Flow	Los	ses	% Bus V	Voltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	To	in Vmag
T49	0.561	0.253	-0.548	-0.233	13.4	20.1	99.8	96.5	3.30
T50	0.222	0.100	-0.217	-0.092	5.3	8.0	99.7	96.4	3.30
Cable67	1.410	0.670	-1.410	-0.671	0.0	-1.4	99.5	99.5	0.00
Cable68	0.222	0.028	-0.222	-0.100	0.0	-72.2	99.5	99.5	0.00
T52	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29
T51	1.410	0.671	-1.397	-0.595	12.7	75.9	99.5	96.8	2.72
T53	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29

1670.8 494.3

Losses Summary Report for Cables and Distribution Transformers in Network reconductoring

	From-To	Bus Flow	To-From 1	To-From Bus Flow		ses	96 Bus 7	Voltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cablel	-0.603	-0.273	0.603	0.273	0.1	0.0	95.2	95.2	0.01
Tl	0.521	0.235	-0.508	-0.216	12.7	19.0	95.2	92.0	3.21
T2	0.083	0.037	-0.081	-0.034	2.0	3.0	95.2	92.0	3.21
Cable2	-0.331	-0.120	0.331	0.120	0.0	0.0	95.2	95.2	0.00
Cable70	0.331	0.120	-0.331	-0.150	0.0	-30.0	95.2	95.2	0.00
Cable3	-0.934	-0.392	0.934	0.392	0.0	0.0	95.2	95.2	0.00
Cable4	-1.066	-0.452	1.067	0.452	0.6	0.2	95.2	95.2	0.05
T4	0.132	0.060	-0.129	-0.055	3.2	4.8	95.2	92.0	3.21
Cable5	-1.028	-0.473	1.028	0.455	0.1	-18.5	95.2	95.2	0.01
Cable6	0.821	0.380	-0.821	-0.388	0.0	-8.5	95.2	95.2	0.00
Тб	0.207	0.094	-0.202	-0.086	5.0	7.6	95.2	92.0	3.21
T 7	0.821	0.388	-0.809	-0.345	12.5	43.8	95.2	92.1	3.08
Cable7	-2.302	-1.001	2.304	1.001	1.5	0.5	95.2	95.3	0.06
Т5	0.207	0.094	-0.202	-0.086	5.0	7.6	95.2	92.0	3.21
Cable8	-0.828	-0.274	0.828	0.274	0.2	0.1	95.3	95.3	0.02
Cable9	0.207	0.024	-0.207	-0.094	0.0	-69.5	95.3	95.3	0.00
Cable10	0.414	0.156	-0.414	-0.156	0.0	0.0	95.3	95.3	0.01
Т9	0.207	0.094	-0.202	-0.086	5.0	7.6	95.3	92.1	3.21
T10	0.207	0.094	-0.202	-0.086	5.0	7.6	95.3	92.1	3.21
Cablell	0.207	0.062	-0.207	-0.094	0.0	-31.1	95.3	95.3	0.00
Т11	0.207	0.094	-0.202	-0.086	5.0	7.6	95.3	92.0	3.21
T12	0.207	0.094	-0.202	-0.086	5.0	7.6	95.3	92.0	3.21
Cable12	-3.653	-1.511	3.654	1.479	0.7	-32.5	95.3	95.3	0.02
T8	0.522	0.236	-0.509	-0.217	12.7	19.1	95.3	92.1	3.21
Cable13	-1.514	-0.724	1.514	0.724	0.4	0.1	95.3	95.4	0.02
Cable72	1.306	0.630	-1.306	-0.640	0.0	-9.4	95.3	95.3	0.00
Т13	0.207	0.094	-0.202	-0.086	5.0	7.6	95.3	92.1	3.22
Cable15	1.763	0.836	-1.763	-0.836	0.0	0.0	95.4	95.4	0.00
Cable18	-6.933	-3.040	6.941	3.043	7.9	2.7	95.4	95.5	0.11
Cable71	3.656	1.480	-3.654	-1.479	2.3	0.8	95.4	95.3	0.06
Cableló	1.556	0.742	-1.556	-0.742	0.2	0.1	95.4	95.4	0.01
T15	0.207	0.094	-0.202	-0.086	5.1	7.6	95.4	92.2	3.22
Cable17	1.223	0.599	-1.223	-0.599	1.0	0.3	95.3	95.2	0.07
Cable74	-1.555	-0.749	1.556	0.749	0.7	0.2	95.3	95.4	0.04

Branch Losses Summary Report

-0.323

-0.138

8.1

12.1

95.3

92.1

3.21

0.331

0.150

T16

	From-To l	Bus Flow	To-From 1	Bus Flow	Los	ses	% Bus V	foltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cable19	-7.149	-3.137	7.169	3.143	19.7	6.8	95.5	95.7	0.25
T17	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
Cable20	0.526	0.238	-0.525	-0.238	0.0	0.0	95.7	95.7	0.00
Cable21	-7.694	-3.381	7.707	3.385	12.9	4.4	95.7	95.9	0.15
T18	0.525	0.238	-0.513	-0.218	12.8	19.2	95.7	92.5	3.22
Cable22	0.293	0.132	-0.293	-0.132	0.0	0.0	95.9	95.9	0.00
Cable24	-8.209	-3.612	8.232	3.624	23.2	12.0	95.9	96.2	0.28
T19	0.209	0.095	-0.204	-0.087	5.1	7.6	95.9	92.7	3.23
Cable23	0.084	0.038	-0.084	-0.038	0.0	0.0	95.9	95.9	0.00
T20	0.209	0.095	-0.204	-0.087	5.1	7.6	95.9	92.7	3.23
T21	0.084	0.038	-0.082	-0.035	2.0	3.0	95.9	92.7	3.23
Cable25	-8.385	-3.697	8.395	3.703	9.4	6.0	96.4	96.5	0.12
Cable75	8.250	3.636	-8.232	-3.624	18.3	11.5	96.4	96.2	0.23
T22	0.135	0.061	-0.132	-0.056	3.3	4.9	96.4	93.2	3.23
Cable26	0.211	0.076	-0.211	-0.095	0.0	-19.6	96.5	96.5	0.00
Cable27	1.669	0.764	-1.669	-0.800	0.3	-35.9	96.5	96.5	0.02
Cable29	6.871	2.875	-6.861	-2.940	9.4	-64.9	96.5	96.4	0.15
Cable34	-17.146	-7.418	17.185	7.442	39.1	24.7	96.5	96.7	0.24
T23	0.211	0.095	-0.206	-0.088	5.1	7.7	96.5	93.3	3.24
Cable28	1.331	0.648	-1.331	-0.651	0.0	-3.7	96.5	96.5	0.00
Cable76	-1.669	-0.800	1.669	0.800	0.2	0.1	96.5	96.5	0.01
T24	0.338	0.153	-0.330	-0.140	8.2	12.3	96.5	93.2	3.24
T25	1.331	0.651	-1.316	-0.560	15.1	90.9	96.5	93.1	3.36
Cable82	6.777	2.901	-6.765	-2.897	11.9	4.1	96.4	96.2	0.16
T26	0.084	0.038	-0.082	-0.035	2.0	3.1	96.4	93.1	3.23
Cable32	-1.666	-0.779	1.666	0.760	0.2	-18.9	96.1	96.1	0.01
Cable33	0.833	0.386	-0.833	-0.394	0.0	-8.2	96.1	96.1	0.00
T28	0.833	0.394	-0.821	-0.350	12.6	44.2	96.1	93.0	3.09
Т3	-0.323	-0.137	0.331	0.150	8.1	12.1	92.0	95.2	3.21
T14	-1.291	-0.550	1.306	0.640	14.9	89.7	92.0	95.3	3.34
Cable47	-0.862	-0.407	0.862	0.374	0.1	-33.1	98.2	98.2	0.01
T38	0.862	0.407	-0.849	-0.362	12.9	45.3	98.2	95.0	3.13
Cable73	1.556	0.742	-1.556	-0.749	0.1	-6.8	95.4	95.4	0.00
Cable30	-4.438	-1.913	4.442	1.844	4.0	-68.7	96.1	96.2	0.10
Cable31	0.529	0.203	-0.529	-0.239	0.0	-35.8	96.1	96.1	0.01
Cable77	0.545	0.206	-0.545	-0.215	0.0	-8.6	96.1	96.1	0.00
Cable79	1.697	0.743	-1.697	-0.765	0.2	-21.3	96.1	96.1	0.01

	From-To 1	Bus Flow	To-From I	Bus Flow	Los	ses	96 Bus V	Voltage	Vd % Drop
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	To	in Vmag
Cable78	0.210	0.063	-0.210	-0.095	0.0	-31.7	96.1	96.1	0.00
T55	0.336	0.152	-0.328	-0.140	8.2	12.2	96.1	92.9	3.23
T56	0.210	0.095	-0.205	-0.087	5.1	7.6	96.1	92.9	3.23
Cable80	1.169	0.526	-1.169	-0.535	0.0	-9.9	96.1	96.1	0.00
T57	0.529	0.239	-0.516	-0.220	12.8	19.3	96.1	92.9	3.23
Cable 81	0.833	0.384	-0.833	-0.394	0.0	-9.9	96.1	96.1	0.00
T58	0.336	0.152	-0.327	-0.139	8.1	12.2	96.1	92.9	3.23
T59	0.833	0.394	-0.820	-0.350	12.6	44.2	96.1	93.0	3.09
Cable83	2.323	1.053	-2.322	-1.052	1.7	0.6	96.2	96.1	0.07
Cable84	2.187	0.992	-2.185	-0.991	2.2	0.8	96.1	96.0	0.09
T60	0.134	0.061	-0.131	-0.056	3.3	4.9	96.1	92.9	3.23
Cable85	1.975	0.896	-1.975	-0.896	0.2	0.1	96.0	96.0	0.01
T61	0.210	0.095	-0.204	-0.087	5.1	7.6	96.0	92.8	3.23
Cable86	1.975	0.896	-1.975	-0.896	0.7	0.3	96.0	96.0	0.03
Cable87	1.841	0.835	-1.840	-0.835	0.7	0.2	96.0	96.0	0.03
T62	0.134	0.061	-0.131	-0.056	3.3	4.9	96.0	92.8	3.23
Cable88	1.473	0.668	-1.473	-0.668	0.2	0.1	96.0	95.9	0.01
T63	0.367	0.167	-0.357	-0.152	9.8	14.7	96.0	92.4	3.54
Cable89	0.945	0.430	-0.945	-0.430	0.1	0.0	95.9	95.9	0.01
T64	0.527	0.238	-0.515	-0.219	12.8	19.2	95.9	92.7	3.23
Cable90	0.578	0.263	-0.578	-0.263	0.0	0.0	95.9	95.9	0.00
T65	0.367	0.167	-0.357	-0.152	9.8	14.7	95.9	92.4	3.54
T66	0.578	0.263	-0.563	-0.240	15.4	23.1	95.9	92.4	3.54
Cable53	22.554	9.882	-22.533	-9.875	21.2	7.3	100.0	99.9	0.09
Cable54	4.094	1.367	-4.093	-1.367	0.6	0.2	100.0	100.0	0.01
c77	1.855	0.579	-1.853	-0.798	1.8	-219.0	99.6	99.5	0.11
Cable66	-1.855	-0.579	1.856	0.579	1.3	0.5	99.6	99.7	0.07
T6 7	1.223	0.599	-1.209	-0.515	14.0	84.0	95.2	91.9	3.34
Cable45	-0.414	-0.189	0.414	0.189	0.1	0.0	98.2	98.2	0.01
T37	0.414	0.189	-0.402	-0.171	11.9	17.9	98.2	94.2	3.91
T27	-0.516	-0.220	0.529	0.239	12.8	19.3	92.9	96.1	3.23
Cable56	4.093	1.367	-4.093	-1.367	0.0	-0.1	100.0	100.0	0.00
T29	0.833	0.394	-0.821	-0.350	12.6	44.2	96.1	93.0	3.09
Cable35	0.136	0.061	-0.136	-0.061	0.0	0.0	96.7	96.7	0.00
Cable36	-17.321	-7.504	17.351	7.519	30.3	15.6	96.7	96.9	0.17
T30	0.136	0.061	-0.132	-0.056	3.3	4.9	96.7	93.5	3.24
Cable37	0.340	0.154	-0.340	-0.154	0.0	0.0	96.9	96.9	0.01

	From-To I	From-To Bus Flow		To-From Bus Flow		ses	% Bus V	Vd % Dron	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	To	in Vmag
Cable38	-17.691	-7.673	17.716	7.686	25.1	12.9	96.9	97.1	0.14
T31	0.340	0.154	-0.332	-0.141	8.2	12.3	96.9	93.7	3.24
Cable39	-17.879	-7.760	17.910	7.771	31.2	10.9	97.1	97.2	0.16
T32	0.163	0.074	-0.158	-0.067	4.7	7.1	97.1	93.2	3.89
Cable40	0.816	0.373	-0.815	-0.373	0.3	0.1	97.2	97.2	0.03
Cable42	-18.980	-8.260	19.047	8.295	66.2	34.1	97.2	97.6	0.35
Т33	0.255	0.117	-0.248	-0.105	7.4	11.1	97.2	93.3	3.89
Cable41	0.408	0.186	-0.408	-0.186	0.1	0.0	97.2	97.2	0.02
T34	0.408	0.186	-0.396	-0.169	11.8	17.7	97.2	93.3	3.89
Т35	0.408	0.186	-0.396	-0.169	11.8	17.7	97.2	93.3	3.89
Cable43	-19.588	-8.539	19.621	8.551	32.9	11.4	97.6	97.7	0.16
T54	0.541	0.245	-0.528	-0.225	13.1	19.6	97.6	94.3	3.26
Cable44	0.164	0.075	-0.164	-0.075	0.0	0.0	97.7	97.7	0.01
Cable46	-19.786	-8.626	19.871	8.670	85.0	43.8	97.7	98.2	0.43
T36	0.164	0.075	-0.160	-0.068	4.7	7.1	97.7	93.8	3.90
Cable48	-21.363	-9.331	21.446	9.373	83.0	42.7	98.2	98.6	0.39
Т39	0.217	0.098	-0.212	-0.090	5.2	7.8	98.2	94.9	3.27
Cable49	-21.796	-9.531	21.864	9.566	68.5	35.3	98.6	98.9	0.32
T40	0.349	0.158	-0.341	-0.145	8.4	12.6	98.6	95.3	3.28
Cable50	-22.083	-9.665	22.212	9.731	128.2	66.0	98.9	99.5	0.59
T41	0.219	0.099	-0.214	-0.091	5.3	7.9	98.9	95.6	3.28
Cable51	-22.433	-9.831	22.533	9.875	100.2	43.3	99.5	99.9	0.44
T42	0.221	0.100	-0.216	-0.092	5.3	7.9	99.5	96.2	3.29
Cable58	0.357	0.106	-0.357	-0.161	0.0	-55.5	100.0	100.0	0.01
Cable59	3.513	1.161	-3.511	-1.160	1.7	1.0	100.0	99.9	0.05
T43	0.223	0.101	-0.218	-0.093	5.3	8.0	100.0	96.7	3.30
T44	0.357	0.161	-0.349	-0.149	8.5	12.8	100.0	96 .7	3.30
Cable60	3.154	0.998	-3.154	-0.998	0.4	0.3	99.9	99.9	0.01
T45	0.357	0.161	-0.349	-0.148	8.5	12.8	99.9	96.6	3.30
Cable61	2.931	0.897	-2.929	-0.897	1.3	0.5	99.9	99.9	0.05
T46	0.223	0.101	-0.218	-0.093	5.3	8.0	99.9	96.6	3.30
Cable62	2.787	0.832	-2.786	-0.890	1.0	-57.5	99.9	99.8	0.04
T47	0.143	0.064	-0.139	-0.059	3.4	5.1	99.9	96.6	3.30
Cable63	0.704	0.209	-0.704	-0.231	0.0	-22.0	99.8	99.8	0.00
Cable65	2.082	0.681	-2.078	-0.680	3.2	1.1	99.8	99.7	0.16
Cable64	0.561	0.167	-0.561	-0.253	0.1	-86.7	99.8	99.8	0.01
T48	0.143	0.064	-0.139	-0.059	3.4	5.1	99.8	96.5	3.30

	From-To 1	From-To Bus Flow		To-From Bus Flow		Losses		% Bus Voltage	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	To	in Vmag
T49	0.561	0.253	-0.548	-0.233	13.4	20.1	99.8	96.5	3.30
T50	0.222	0.100	-0.217	-0.092	5.3	8.0	99.7	96.4	3.30
Cable67	1.410	0.670	-1.410	-0.671	0.0	-1.4	99.5	99.5	0.00
Cable68	0.222	0.028	-0.222	-0.100	0.0	-72.2	99.5	99.5	0.00
T52	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29
T51	1.410	0.671	-1.397	-0.595	12.7	75.9	99.5	96.8	2.72
T53	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29
					1381.6	485.9			

Losses Summary Report for Cables and Distribution Transformers in Network reconfiguration case 1

	From-To l	Bus Flow	To-From l	Bus Flow	Los	ses	% Bus V	Voltage	Vd % Dron
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cablel	-0.619	-0.280	0.619	0.280	0.1	0.0	96.7	96.8	0.01
Tl	0.534	0.241	-0.521	-0.222	12.9	19.4	96.7	93.5	3.24
T2	0.085	0.038	-0.083	-0.035	2.1	3.1	96.7	93.5	3.24
Cable2	-0.339	-0.122	0.339	0.122	0.0	0.0	96.8	96.8	0.00
Cable70	0.339	0.122	-0.339	-0.153	0.0	-31.0	96.8	96.8	0.00
Cable3	-0.958	-0.402	0.958	0.402	0.0	0.0	96.8	96.8	0.00
Cable4	-1.094	-0.464	1.095	0.464	0.6	0.2	96.8	96.8	0.05
T4	0.136	0.061	-0.132	-0.056	3.3	4.9	96.8	93.5	3.24
Cable5	-1.055	-0.485	1.055	0.466	0.1	-19.1	96.8	96.8	0.01
Cableó	0.843	0.389	-0.843	-0.398	0.0	-8.7	96.8	96.8	0.00
Τó	0.212	0.096	-0.207	-0.088	5.1	7.7	96.8	93.6	3.24
T7	0.843	0.398	-0.830	-0.354	12.7	44.6	96.8	93.7	3.10
Cable7	-2.362	-1.026	2.364	1.026	1.5	0.5	96.8	96.9	0.06
T5	0.212	0.096	-0.207	-0.088	5.1	7.7	96.8	93.6	3.24
Cable8	-0.849	-0.280	0.850	0.280	0.2	0.1	96.8	96.9	0.02
Cable9	0.212	0.024	-0.212	-0.096	0.0	-71.8	96.8	96.8	0.00
Cable10	0.425	0.160	-0.425	-0.160	0.0	0.0	96.8	96.8	0.01
Т9	0.212	0.096	-0.207	-0.088	5.1	7.7	96.8	93.6	3.24
T10	0.212	0.096	-0.207	-0.088	5.1	7.7	96.8	93.6	3.24
Cable11	0.212	0.064	-0.212	-0.096	0.0	-32.2	96.8	96.8	0.00
T11	0.212	0.096	-0.207	-0.088	5.1	7.7	96.8	93.6	3.24
T12	0.212	0.096	-0.207	-0.088	5.1	7.7	96.8	93.6	3.24
Cable12	-3.748	-1.548	3.749	1.515	0.7	-33.6	96.9	96.9	0.02
TS	0.535	0.242	-0.522	-0.223	13.0	19.4	96.9	93.6	3.24
Cable13	-1.553	-0.742	1.553	0.742	0.4	0.1	96.9	96.9	0.02
Cable72	1.340	0.646	-1.340	-0.656	0.0	-9.7	96.9	96.9	0.00
T13	0.213	0.096	-0.207	-0.088	5.1	7.7	96.9	93.7	3.24
Cable15	1.809	0.857	-1.809	-0.857	0.0	0.0	96.9	96.9	0.00
Cable18	-7.114	-3.115	7.122	3.118	8.1	2.8	96.9	97.1	0.11
Cable71	3.751	1.516	-3.749	-1.515	2.3	0.8	96.9	96.9	0.06
Cable16	1.596	0.761	-1.596	-0.761	0.2	0.1	96.9	96.9	0.01
T15	0.213	0.096	-0.208	-0.088	5.1	7.7	96.9	93.7	3.25
Cable17	1.255	0.614	-1.254	-0.614	1.0	0.3	96.9	96.8	0.07
Cable74	-1.595	-0.768	1.596	0.768	0.7	0.3	96.9	96.9	0.04
T16	0.340	0.154	-0.332	-0.141	8.2	12.3	96.9	93.6	3.24

Branch Losses Summary Report

	From-To	From-To Bus Flow		To-From Bus Flow		ses	% Bus Voltage		Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag	
Cable19	-7.335	-3.214	7.355	3.221	20.1	6.9	97.1	97.3	0.26	
T17	0.213	0.096	-0.208	-0.089	5.2	7.7	97.1	93.8	3.25	
Cable20	0.539	0.244	-0.539	-0.244	0.0	0.0	97.3	97.3	0.00	
Cable21	-7.894	-3.465	7.907	3.469	13.1	4.5	97.3	97.5	0.16	
T18	0.539	0.244	-0.526	-0.224	13.0	19.5	97.3	94.1	3.25	
Cable22	0.300	0.136	-0.300	-0.136	0.0	0.0	97.5	97.5	0.00	
Cable24	-8.422	-3.702	8.459	3.715	36.7	12.7	97.5	97.9	0.41	
T19	0.214	0.097	-0.209	-0.089	5.2	7.8	97.5	94.2	3.25	
Cable23	0.086	0.039	-0.086	-0.039	0.0	0.0	97.5	97.5	0.00	
T20	0.214	0.097	-0.209	-0.089	5.2	7.8	97.5	94.2	3.25	
T21	0.086	0.039	-0.084	-0.036	2.1	3.1	97.5	94.2	3.25	
Cable25	-8.616	-3.789	8.626	3.795	9.6	6.1	98.1	98.2	0.12	
Cable75	8.478	3.727	-8.459	-3.715	18.6	11.7	98.1	97.9	0.23	
T22	0.139	0.063	-0.135	-0.058	3.3	5.0	98.1	94.8	3.27	
Cable26	0.217	0.078	-0.217	-0.098	0.0	-20.3	98.2	98.2	0.00	
Cable27	1.716	0.785	-1.716	-0.822	0.3	-37.2	98.2	98.2	0.02	
Cable29	-10.698	-4.721	10.720	4.663	22.2	-57.8	98.2	98.5	0.23	
Cable34	0.139	0.063	-0.139	-0.063	0.0	0.0	98.2	98.2	0.00	
T23	0.217	0.098	-0.212	-0.090	5.2	7.8	98.2	95.0	3.27	
Cable28	1.368	0.665	-1.368	-0.669	0.0	-3.8	98.2	98.2	0.00	
Cable76	-1.716	-0.822	1.716	0.822	0.2	0.1	98.2	98.2	0.01	
T24	0.347	0.157	-0.339	-0.144	8.4	12.5	98.2	94.9	3.27	
T25	1.368	0.669	-1.353	-0.576	15.4	92.7	98.2	94.8	3.39	
Cable82	-10.807	-4.702	10.836	4.712	29.1	10.0	98.5	98.7	0.26	
T26	0.087	0.039	-0.085	-0.036	2.1	3.1	98.5	95.2	3.27	
Cable32	-1.746	-0.815	1.746	0.795	0.2	-20.1	99.0	99.0	0.01	
Cable33	0.873	0.403	-0.873	-0.412	0.0	-8.7	99.0	99.0	0.00	
T28	0.873	0.412	-0.860	-0.366	13.1	45.7	99.0	95.8	3.14	
Т3	-0.331	-0.141	0.339	0.153	8.2	12.3	93.5	96.8	3.24	
T14	-1.325	-0.564	1.340	0.656	15.2	91.3	93.6	96.9	3.37	
Cable47	-0.880	-0.415	0.880	0.381	0.1	-34.0	99.5	99.5	0.01	
T38	0.880	0.415	-0.867	-0.369	13.1	46.0	99.5	96.3	3.15	
Cable73	1.596	0.761	-1.596	-0.768	0.1	-7.1	96.9	96.9	0.00	
Cable30	13.246	5.738	-13.213	-5.788	33.5	-49.8	99.0	98.7	0.28	
Cable31	0.554	0.212	-0.554	-0.250	0.0	-38.0	99.0	99.0	0.01	
Cable55	-17.897	-7.738	18.058	7.660	161.4	-78.5	99.0	100.0	1.01	
Cable77	0.572	0.215	-0.572	-0.225	0.0	-9.1	99.0	99.0	0.00	

	From-To]	From-To Bus Flow		To-From Bus Flow		ses	96 Bus V	Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cable79	1.779	0.777	-1.779	-0.800	0.2	-22.6	99.0	99.0	0.01
Cable78	0.220	0.066	-0.220	-0.099	0.0	-33.7	99.0	99.0	0.00
155	0.352	0.159	-0.343	-0.146	8.4	12.6	99.0	95.7	3.28
156	0.220	0.099	-0.215	-0.091	5.3	7.9	99.0	95.7	3.28
Cable80	1.225	0.550	-1.225	-0.560	0.0	-10.5	99.0	99.0	0.00
157	0.554	0.250	-0.541	-0.230	13.3	19.9	99.0	95.7	3.28
Cable81	0.873	0.402	-0.873	-0.412	0.0	-10.6	99.0	99.0	0.00
158	0.352	0.159	-0.343	-0.146	8.4	12.6	99.0	95.7	3.28
159	0.873	0.412	-0.860	-0.366	13.1	45.7	99.0	95.8	3.14
able83	2.376	1.075	-2.375	-1.075	1.7	0.6	98.7	98.6	0.07
able84	2.235	1.011	-2.233	-1.011	2.2	0.7	98.6	98.6	0.09
160	0.140	0.063	-0.137	-0.058	3.4	5.0	98.6	95.4	3.28
Jable85	2.014	0.912	-2.014	-0.912	0.2	0.1	98.6	98.5	0.01
161	0.218	0.099	-0.213	-0.091	5.2	7.9	98.6	95.3	3.28
Cable86	2.014	0.912	-2.014	-0.912	0.7	0.2	98.5	98.5	0.03
Cable87	1.874	0.849	-1.873	-0.848	0.7	0.2	98.5	98.5	0.03
162	0.140	0.063	-0.136	-0.058	3.4	5.0	98.5	95.2	3.27
able88	1.503	0.681	-1.503	-0.680	0.2	0.1	98.5	98.5	0.01
163	0.370	0.168	-0.361	-0.154	9.5	14.2	98.5	95.0	3.48
Cable89	0.953	0.432	-0.953	-0.432	0.1	0.0	98.5	98.5	0.01
[64	0.549	0.248	-0.536	-0.228	13.2	19.8	98.5	95.2	3.27
Cable90	0.583	0.264	-0.583	-0.264	0.0	0.0	98.5	98.5	0.00
165	0.370	0.168	-0.361	-0.154	9.5	14.2	98.5	95.0	3.48
166	0.583	0.264	-0.568	-0.242	14.9	22.3	98.5	95.0	3.48
able53	4.708	2.117	-4.707	-2.117	0.9	0.3	100.0	100.0	0.02
Cable54	4.094	1.367	-4.093	-1.367	0.6	0.2	100.0	100.0	0.01
.77	1.855	0.579	-1.853	-0.798	1.8	-219.0	99.6	99.5	0.11
Cable66	-1.855	-0.579	1.856	0.579	1.3	0.5	99.6	99.7	0.07
167	1.254	0.614	-1.240	-0.528	14.3	85.5	96.8	93.5	3.37
able45	-0.423	-0.193	0.423	0.193	0.1	0.0	99.5	99.5	0.01
137	0.423	0.193	-0.411	-0.175	12.1	18.2	99.5	95.5	3.94
127	-0.541	-0.230	0.554	0.250	13.3	19.9	95.7	99.0	3.28
able56	4.093	1.367	-4.093	-1.367	0.0	-0.1	100.0	100.0	0.00
129	0.873	0.412	-0.860	-0.366	13.1	45.7	99.0	95.8	3.14
able35	0.139	0.063	-0.139	-0.063	0.0	0.0	98.2	98.2	0.00
130	0.139	0.063	-0.136	-0.058	3.3	5.0	98.2	95.0	3.27
Cable37	0.354	0.160	-0.354	-0.160	0.0	0.0	99.4	99.3	0.01

	From-To Bus Flow		To-From	Bus Flow	ses	% Bus Voltage				
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag	
Cable38	-0.354	-0.160	0.354	0.160	0.0	0.0	99.4	99.4	0.00	
T31	0.354	0.160	-0.345	-0.147	8.5	12.7	99.3	96.1	3.29	
Cable39	-0.523	-0.237	0.523	0.237	0.0	0.0	99.4	99.4	0.00	
T32	0.169	0.077	-0.164	-0.070	4.8	7.3	99.4	95.4	3.94	
Cable40	0.844	0.386	-0.844	-0.385	0.3	0.1	99.4	99.3	0.03	
Cable42	-1.631	-0.743	1.631	0.743	0.7	0.3	99.4	99.4	0.04	
T33	0.264	0.121	-0.256	-0.109	7.6	11.3	99.4	95.4	3.94	
Cable41	0.422	0.193	-0.422	-0.193	0.1	0.0	99.3	99.3	0.02	
T34	0.422	0.193	-0.410	-0.175	12.1	18.1	99.3	95.4	3.94	
T35	0.422	0.193	-0.410	-0.175	12.1	18.1	99.3	95.4	3.94	
Cable43	-2.189	-0.995	2.189	0.995	0.4	0.1	99.4	99.4	0.02	
T54	0.558	0.252	-0.544	-0.232	13.3	20.0	99.4	96.1	3.29	
Cable44	0.169	0.077	-0.169	-0.077	0.0	0.0	99.4	99.4	0.01	
Cable46	-2.358	-1.072	2.360	1.073	1.8	0.6	99.4	99.5	0.07	
T36	0.169	0.077	-0.164	-0.070	4.8	7.3	99.4	95.5	3.94	
Cable48	-3.885	-1.748	3.889	1.749	4.2	1.4	99.5	99.6	0.10	
T39	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29	
Cable49	-4.244	-1.910	4.248	1.911	4.0	1.4	99.6	99.7	0.09	
T40	0.355	0.160	-0.347	-0.148	8.5	12.7	99.6	96.3	3.30	
Cable50	-4.471	-2.011	4.479	2.014	8.1	2.8	99.7	99.9	0.17	
T41	0.222	0.100	-0.217	-0.092	5.3	8.0	99.7	96.4	3.30	
Cable51	-4.702	-2.115	4.707	2.117	5.6	1.9	99.9	100.0	0.11	
T42	0.223	0.101	-0.218	-0.093	5.3	8.0	99.9	96.6	3.30	
Cable58	0.357	0.106	-0.357	-0.161	0.0	-55.5	100.0	100.0	0.01	
Cable59	3.513	1.161	-3.511	-1.160	1.7	1.0	100.0	99.9	0.05	
T43	0.223	0.101	-0.218	-0.093	5.3	8.0	100.0	96.7	3.30	
T44	0.357	0.161	-0.349	-0.149	8.5	12.8	100.0	96.7	3.30	
Cable60	3.154	0.998	-3.154	-0.998	0.4	0.3	99.9	99.9	0.01	
T45	0.357	0.161	-0.349	-0.148	8.5	12.8	99.9	96.6	3.30	
Cable61	2.931	0.897	-2.929	-0.897	1.3	0.5	99.9	99.9	0.05	
T46	0.223	0.101	-0.218	-0.093	5.3	8.0	99.9	96.6	3.30	
Cable62	2.787	0.832	-2.786	-0.890	1.0	-57.5	99.9	99.8	0.04	
T47	0.143	0.064	-0.139	-0.059	3.4	5.1	99.9	96.6	3.30	
Cable63	0.704	0.209	-0.704	-0.231	0.0	-22.0	99.8	99.8	0.00	
Cable65	2.082	0.681	-2.078	-0.680	3.2	1.1	99.8	99.7	0.16	
Cable64	0.561	0.167	-0.561	-0.253	0.1	-86.7	99.8	99.8	0.01	
T48	0.143	0.064	-0.139	-0.059	3.4	5.1	99.8	96.5	3.30	
	From-To Bus Flow		To-From Bus Flow		Losses		% Bus Voltage		Vd % Drop	
-----------	------------------	-------	------------------	--------	--------	-------	---------------	------	--------------	--
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	To	in Vmag	
T49	0.561	0.253	-0.548	-0.233	13.4	20.1	99.8	96.5	3.30	
T50	0.222	0.100	-0.217	-0.092	5.3	8.0	99.7	96.4	3.30	
Cable67	1.410	0.670	-1.410	-0.671	0.0	-1.4	99.5	99.5	0.00	
Cable68	0.222	0.028	-0.222	-0.100	0.0	-72.2	99.5	99.5	0.00	
T52	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29	
T51	1.410	0.671	-1.397	-0.595	12.7	75.9	99.5	96.8	2.72	
T53	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29	
					940.6	102.5				

Losses Summary Report for Cables and Distribution Transformers in Network reconfiguration case 2

	From-To Bus Flow		To-From Bus Flow		Los	ses	% Bus Voltage		Vd % Dron
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cablel	-0.606	-0.274	0.606	0.274	0.1	0.0	95.4	95.5	0.01
T1	0.523	0.236	-0.510	-0.217	12.7	19.1	95.4	92.2	3.22
T2	0.083	0.038	-0.081	-0.035	2.0	3.0	95.4	92.2	3.22
Cable2	-0.332	-0.120	0.332	0.120	0.0	0.0	95.5	95.5	0.00
Cable70	0.332	0.120	-0.332	-0.150	0.0	-30.2	95.5	95.4	0.00
Cable3	-0.938	-0.394	0.938	0.394	0.0	0.0	95.5	95.5	0.00
Cable4	-1.071	-0.454	1.072	0.454	0.6	0.2	95.5	95.5	0.05
T4	0.133	0.060	-0.130	-0.055	3.2	4.9	95.5	92.2	3.22
Cable5	-1.033	-0.476	1.033	0.457	0.1	-18.6	95.5	95.5	0.01
Cableó	0.825	0.382	-0.825	-0.390	0.0	-8.5	95.5	95.5	0.00
Τ6	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
T 7	0.825	0.390	-0.813	-0.346	12.5	43.9	95.5	92.4	3.08
Cable7	-2.312	-1.005	2.314	1.006	1.5	0.5	95.5	95.6	0.06
T5	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
Cable8	-0.832	-0.275	0.832	0.275	0.2	0.1	95.5	95.6	0.02
Cable9	0.208	0.024	-0.208	-0.094	0.0	-69.9	95.5	95.5	0.00
Cable10	0.416	0.157	-0.416	-0.157	0.0	0.0	95.5	95.5	0.01
Т9	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
T10	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
Cablell	0.208	0.063	-0.208	-0.094	0.0	-31.3	95.5	95.5	0.00
T11	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
T12	0.208	0.094	-0.203	-0.086	5.1	7.6	95.5	92.3	3.22
Cable12	-3.670	-1.518	3.671	1.485	0.7	-32.6	95.6	95.6	0.02
T8	0.524	0.237	-0.511	-0.218	12.8	19.1	95.6	92.3	3.22
Cable13	-1.520	-0.727	1.521	0.727	0.4	0.1	95.6	95.6	0.02
Cable72	1.312	0.633	-1.312	-0.643	0.0	-9.4	95.6	95.6	0.00
T13	0.208	0.094	-0.203	-0.087	5.1	7.6	95.6	92.4	3.22
Cable15	1.771	0.840	-1.771	-0.840	0.0	0.0	95.6	95.6	0.00
Cable18	-6.965	-3.053	6.973	3.056	7.9	2.7	95.6	95.8	0.11
Cable71	3.673	1.486	-3.671	-1.485	2.3	0.8	95.6	95.6	0.06
Cablel6	1.563	0.746	-1.563	-0.746	0.2	0.1	95.6	95.6	0.01
T15	0.208	0.094	-0.203	-0.087	5.1	7.6	95.6	92.4	3.22
Cable17	1.229	0.602	-1.228	-0.601	1.0	0.3	95.6	95.5	0.07
Cable74	-1.562	-0.752	1.563	0.752	0.7	0.2	95.6	95.6	0.04
T16	0.333	0.151	-0.325	-0.138	8.1	12.2	95.6	92.4	3.22

Branch Losses Summary Report

	From-To Bus Flow		To-From Bus Flow		Los	ses	% Bus	Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cable19	-7.181	-3.150	7.201	3.157	19.8	6.8	95.8	96.0	0.25
T17	0.209	0.094	-0.204	-0.087	5.1	7.6	95.8	92.5	3.22
Cable20	0.528	0.239	-0.528	-0.239	0.0	0.0	96.0	96.0	0.00
Cable21	-7.729	-3.395	7.742	3.400	12.9	4.4	96.0	96.2	0.15
T18	0.528	0.239	-0.515	-0.219	12.8	19.2	96.0	92.8	3.23
Cable22	0.294	0.133	-0.294	-0.133	0.0	0.0	96.2	96.2	0.00
Cable24	-8.246	-3.628	8.282	3.640	36.2	12.5	96.2	96.6	0.41
T19	0.210	0.095	-0.205	-0.087	5.1	7.6	96.2	92.9	3.23
Cable23	0.084	0.038	-0.084	-0.038	0.0	0.0	96.2	96.2	0.00
T20	0.210	0.095	-0.205	-0.087	5.1	7.6	96.2	92.9	3.23
T21	0.084	0.038	-0.082	-0.035	2.0	3.1	96.2	92.9	3.23
Cable25	-8.436	-3.713	8.445	3.719	9.5	6.0	96.8	96.9	0.12
Cable75	8.300	3.652	-8.282	-3.640	18.3	11.6	96.8	96.6	0.23
T22	0.136	0.061	-0.133	-0.056	3.3	4.9	96.8	93.6	3.24
Cable26	0.213	0.076	-0.213	-0.096	0.0	-19.7	96.9	96.9	0.00
Cable27	1.680	0.769	-1.680	-0.805	0.3	-36.2	96.9	96.9	0.02
Cable34	-10.338	-4.565	10.352	4.574	14.2	9.0	96.9	97.1	0.14
T23	0.213	0.096	-0.207	-0.088	5.1	7.7	96.9	93.7	3.24
Cable28	1.340	0.652	-1.339	-0.655	0.0	-3.7	96.9	96.9	0.00
Cable76	-1.679	-0.805	1.680	0.805	0.2	0.1	96.9	96.9	0.01
T24	0.340	0.154	-0.332	-0.141	8.2	12.3	96.9	93.6	3.24
T25	1.339	0.655	-1.324	-0.564	15.2	91.3	96.9	93.5	3.37
Cable82	-0.089	0.037	0.089	-0.037	0.0	0.0	99.9	99.9	0.00
Cable29	0.000	-0.078	0.000	0.000	0.0	-77.6	99.9	99.9	0.00
T26	0.089	0.040	-0.087	-0.037	2.1	3.2	99.9	96.6	3.30
Cable32	-1.775	-0.828	1.775	0.808	0.2	-20.5	100.0	100.0	0.01
Cable33	0.887	0.410	-0.887	-0.419	0.0	-8.9	100.0	100.0	0.00
T28	0.887	0.419	-0.874	-0.372	13.2	46.3	100.0	96.8	3.16
Т3	-0.324	-0.138	0.332	0.150	8.1	12.1	92.2	95.4	3.22
T14	-1.297	-0.553	1.312	0.643	15.0	90.0	92.3	95.6	3.34
Cable47	-0.863	-0.408	0.863	0.374	0.1	-33.2	98.3	98.3	0.01
T38	0.863	0.408	-0.850	-0.362	13.0	45.4	98.3	95.1	3.13
Cable73	1.563	0.746	-1.563	-0.752	0.1	-6.9	95.6	95.6	0.00
Cable30	2.494	0.972	-2.492	-1.049	1.1	-76.7	100.0	99.9	0.05
Cable31	0.563	0.215	-0.563	-0.254	0.0	-38.8	100.0	100.0	0.01
Cable77	0.581	0.219	-0.581	-0.228	0.0	-9.3	100.0	100.0	0.00
Cable79	1.808	0.790	-1.807	-0.813	0.2	-23.1	100.0	100.0	0.01

	From-To]	Bus Flow	To-From 1	Bus Flow	Los	ses	96 Bus	Voltage	Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag	
Cable78	0.223	0.067	-0.223	-0.101	0.0	-34.4	100.0	100.0	0.00	
T55	0.357	0.161	-0.349	-0.149	8.5	12.8	100.0	96.7	3.30	
T56	0.223	0.101	-0.218	-0.093	5.3	8.0	100.0	96.7	3.30	
Cable80	1.245	0.558	-1.245	-0.569	0.0	-10.8	100.0	100.0	0.00	
T57	0.563	0.254	-0.549	-0.234	13.4	20.2	100.0	96.7	3.30	
Cable 81	0.887	0.408	-0.887	-0.419	0.0	-10.8	100.0	100.0	0.00	
T58	0.357	0.161	-0.349	-0.149	8.5	12.8	100.0	96.7	3.30	
T59	0.887	0.419	-0.874	-0.372	13.2	46.3	100.0	96.8	3.16	
Cable83	2.403	1.086	-2.401	-1.086	1.7	0.6	99.9	99.9	0.07	
Cable84	2.259	1.021	-2.257	-1.021	2.2	0.7	99.9	99.8	0.09	
T60	0.143	0.064	-0.139	-0.059	3.4	5.1	99.9	96.6	3.30	
Cable85	2.034	0.920	-2.034	-0.920	0.2	0.1	99.8	99.8	0.01	
T61	0.223	0.101	-0.217	-0.093	5.3	8.0	99.8	96.5	3.30	
Cable86	2.034	0.920	-2.033	-0.920	0.7	0.2	99.8	99.7	0.03	
Cable87	1.891	0.855	-1.890	-0.855	0.6	0.2	99.7	99.7	0.03	
T62	0.142	0.064	-0.139	-0.059	3.4	5.1	99.7	96.5	3.30	
Cable88	1.518	0.687	-1.518	-0.687	0.2	0.1	99.7	99.7	0.01	
T63	0.372	0.168	-0.363	-0.154	9.3	13.9	99.7	96.3	3.45	
Cable89	0.958	0.434	-0.958	-0.434	0.1	0.0	99.7	99.7	0.01	
T64	0.560	0.253	-0.547	-0.233	13.4	20.1	99.7	96.4	3.30	
Cable90	0.586	0.265	-0.586	-0.265	0.0	0.0	99.7	99.7	0.00	
T65	0.372	0.168	-0.363	-0.154	9.3	14.0	99.7	96.2	3.45	
T66	0.586	0.265	-0.571	-0.243	14.6	22.0	99.7	96.2	3.45	
Cable53	15.489	6.843	-15.479	-6.839	10.0	3.4	100.0	99.9	0.06	
Cable54	4.094	1.367	-4.093	-1.367	0.6	0.2	100.0	100.0	0.01	
c77	1.855	0.579	-1.853	-0.798	1.8	-219.0	99.6	99.5	0.11	
Cable66	-1.855	-0.579	1.856	0.579	1.3	0.5	99.6	99.7	0.07	
T6 7	1.228	0.601	-1.214	-0.517	14.0	84.2	95.5	92.2	3.34	
Cable45	-0.415	-0.190	0.415	0.190	0.1	0.0	98.3	98.3	0.01	
T 37	0.415	0.190	-0.403	-0.172	11.9	17.9	98.3	94.3	3.91	
T27	-0.549	-0.234	0.563	0.254	13.4	20.2	96.7	100.0	3.30	
Cable56	4.093	1.367	-4.093	-1.367	0.0	-0.1	100.0	100.0	0.00	
T29	0.887	0.419	-0.874	-0.372	13.2	46.3	100.0	96.8	3.16	
Cable35	0.136	0.062	-0.136	-0.062	0.0	0.0	97.1	97.1	0.00	
Cable36	-10.489	-4.635	10.506	4.641	17.2	5.9	97.1	97.2	0.15	
T30	0.136	0.062	-0.133	-0.057	3.3	4.9	97.1	93.8	3.25	
Cable37	0.342	0.154	-0.342	-0.154	0.0	0.0	97.2	97.2	0.01	

	From-To Bus Flow To-From Bus Flow		Los	ses	% Bus Voltage		Vd % Drop		
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag
Cable38	-10.848	-4.796	10.862	4.801	14.7	5.1	97.2	97.3	0.13
T31	0.342	0.154	-0.333	-0.142	8.3	12.4	97.2	93.9	3.25
Cable39	-11.026	-4.875	11.037	4.880	11.9	4.1	97.3	97.4	0.10
T32	0.163	0.075	-0.159	-0.068	4.7	7.1	97.3	93.4	3.89
Cable40	0.818	0.374	-0.818	-0.374	0.3	0.1	97.4	97.4	0.03
Cable42	-12.112	-5.370	12.154	5.385	41.9	14.4	97.4	97.8	0.32
T33	0.256	0.117	-0.248	-0.106	7.4	11.1	97.4	93.5	3.90
Cable41	0.409	0.187	-0.409	-0.187	0.1	0.0	97.4	97.4	0.02
T34	0.409	0.187	-0.397	-0.169	11.8	17.7	97.4	93.5	3.90
T35	0.409	0.187	-0.397	-0.169	11.8	17.7	97.4	93.5	3.89
Cable43	-12.697	-5.630	12.710	5.635	13.9	4.8	97.8	97.9	0.10
T54	0.543	0.245	-0.530	-0.226	13.1	19.6	97.8	94.5	3.26
Cable44	0.165	0.075	-0.165	-0.075	0.0	0.0	97.9	97.9	0.01
Cable46	-12.875	-5.710	12.931	5.730	56.0	19.3	97.9	98.3	0.41
T36	0.165	0.075	-0.160	-0.068	4.8	7.1	97.9	94.0	3.91
Cable48	-14.427	-6.392	14.485	6.412	58.9	20.3	98.3	98.7	0.39
T39	0.217	0.098	-0.212	-0.090	5.2	7.8	98.3	95.0	3.27
Cable49	-14.835	-6.570	14.885	6.587	49.3	17.0	98.7	99.0	0.32
T40	0.350	0.158	-0.341	-0.145	8.4	12.6	98.7	95.4	3.28
Cable50	-15.104	-6.686	15.197	6.718	93.1	32.1	99.0	99.6	0.59
T41	0.220	0.099	-0.214	-0.091	5.3	7.9	99.0	95.7	3.28
Cable51	-15.419	-6.819	15.479	6.839	59.9	20.7	99.6	99.9	0.37
T42	0.222	0.100	-0.217	-0.092	5.3	8.0	99.6	96.3	3.29
Cable58	0.357	0.106	-0.357	-0.161	0.0	-55.5	100.0	100.0	0.01
Cable59	3.513	1.161	-3.511	-1.160	1.7	1.0	100.0	99.9	0.05
T43	0.223	0.101	-0.218	-0.093	5.3	8.0	100.0	96.7	3.30
T44	0.357	0.161	-0.349	-0.149	8.5	12.8	100.0	96.7	3.30
Cable60	3.154	0.998	-3.154	-0.998	0.4	0.3	99.9	99.9	0.01
T45	0.357	0.161	-0.349	-0.148	8.5	12.8	99.9	96.6	3.30
Cable61	2.931	0.897	-2.929	-0.897	1.3	0.5	99.9	99.9	0.05
T46	0.223	0.101	-0.218	-0.093	5.3	8.0	99.9	96.6	3.30
Cable62	2.787	0.832	-2.786	-0.890	1.0	-57.5	99.9	99.8	0.04
T47	0.143	0.064	-0.139	-0.059	3.4	5.1	99.9	96.6	3.30
Cable63	0.704	0.209	-0.704	-0.231	0.0	-22.0	99.8	99.8	0.00
Cable65	2.082	0.681	-2.078	-0.680	3.2	1.1	99.8	99.7	0.16
Cable64	0.561	0.167	-0.561	-0.253	0.1	-86.7	99.8	99.8	0.01
T48	0.143	0.064	-0.139	-0.059	3.4	5.1	99.8	96.5	3.30

	From-To Bus Flow		To-From Bus Flow		Losses		% Bus Voltage		Vd % Drop	
Branch ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	in Vmag	
T49	0.561	0.253	-0.548	-0.233	13.4	20.1	99.8	96.5	3.30	
Т50	0.222	0.100	-0.217	-0.092	5.3	8.0	99.7	96.4	3.30	
Cable67	1.410	0.670	-1.410	-0.671	0.0	-1.4	99.5	99.5	0.00	
Cable68	0.222	0.028	-0.222	-0.100	0.0	-72.2	99.5	99.5	0.00	
T52	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29	
T51	1.410	0.671	-1.397	-0.595	12.7	75.9	99.5	96.8	2.72	
T53	0.222	0.100	-0.216	-0.092	5.3	8.0	99.5	96.2	3.29	
					1104.8	266.9				

Appendix C

Substation Load Data

Jerusalem District Elecricity Company

SCADA Department	
High Voltage Lines Consumption	
From 1/1/2019 To 31/12/2019	

Line Name	Shufat (Bet)	Efrat	Taqoaa	Husan
1	9,277,571	6,165,960	1,256,160	8,995,440
2	7,796,404	4,919,640	1,102,560	8,412,720
3	8,170,755	3,407,880	1,577,760	7,451,760
4	6,220,618	5,863,200	1,074,480	6,781,920
5	6,430,917	5,286,360	1,165,200	6,788,400
6	6,257,752	4,512,360	1,154,160	7,173,840
7	7,694,497	6,166,320	1,129,440	6,495,360
8	6,353,688	6,144,600	930,240	8,326,560
9	7,626,812	5,025,840	1,036,560	6,083,280
10	7,070,904	5,329,440	1,057,200	6,954,960
11	6,436,967	4,620,840	1,090,800	7,170,240
12	8,624,839	5,415,720	1,097,760	9,038,160
Total	87,961,724	62,858,160	13,672,320	89,672,640