Abstract

بسم الله الرحمن الرحيم

Palestine Polytechnic University

College of Engineering and Technology Electrical & Mechanical Engineering Department

Solar Elevator

Project Team

ABED EL RUHMAN K. SHAKHTOUR

ATIA M. JAFRAH

YOUSEF A. SAYAR'A

Project Supervisor

Dr. Sameer H. Khader

&

Dr. Abdul-Karim Daoud

Hebron - Palestine

Jan. 2010

Abstract

This project aims to design electrical elevator done by solar energy, this is a new idea for using subsistent energy in electromechanically system, by conversion the solar energy into electrical energy and then to motion to provide mechanical objective.

Space elevator consider as one model for movement car consist from solar boards and motor found in above of elevator, used to motion the car above and below through mechanical transport (rallers) ,the motor is feed to the engine power from the solar cells installed on a vehicle lift.

The project consists of following:

- Transmission system.
- System converts solar energy to electricity.
- Control system help to ensure the quality of movement.

Table of contains

DEDICATION	
ACKNOWLEDGMENTS	I
PERSONAL FAMILIES	
THE COLUMN THE PROPERTY OF THE	
TOOL OF PROOKE	Y
7 7 100 1 100 100 100 100 100 100 100 10	
INTRODUCTION	
1.1 PROJECT AIM:	·
1.2 LITERATURE VIEW:	1
DICA & DICKAM:	
THE PROPERTY OF STATE OF THE PROPERTY OF THE P	
THE STATE OF THE PARTY OF THE P	
The Common and the Co	-
TER TWO	
ELECTRICAL ELEMENTS	
2.1 PHOTOVOLTAIC PANELS.	
THE PROPERTY OF PROPERTY AND PROPERTY OF THE P	
2.1.2 PV CELLS, MODULES, AND ARRAYS, DESCRIPTION	7
2.1.2.1 PV Description	
2.1.2.2 PV Cells, Modules, and Arrays	
2.1.3 EQUIVALENT CIRCUIT OF A SOLAR CELL.	8
2.1.4 THE ELECTRICAL CHARACTERISTICS OF SOLAR CELLS	8
2.1.4.1 Introduction	9
2.1.4.2 Voltage \ Current Characteristics	9
2.1.4.3 Voltage - Power and Current Characteristics:	10
2 1 4 4 Effect of Sunlight intensit	10
2.1.4.4 Effect of Sunlight intensity:	11
2.1.4.5 Temperature Effect on Current-Voltage Characteristic:	12
2.1.4.6 Sun Angle:	12
2 BATTERY	
WIKODOCIRAN:	
E-SALIER (SEE	
CHARGING PROCESS OF BATTERIES	
	15
2.2.3.2 Battery Indicator	15
3 BLECTRICAL MOTORS:	W. W

2.3.1 INTRODUCTION:	16
2.3.2 DC MOTORS:	
2.3.2.1 DC Motors Construction:	17
2.3.2.2 De Motor Operation:	19
2.3.2.3 Advantages and Disadvantages of DC Motors:	19
CHAPTER THREE	
DESIGN AND ANALYSIS	21
3.1 General structure:	22
3.2 ELEVATOR CART	
3.3 PULLEYS	
3.4 WHEELS	
3.5 WHEELS PATH	
3.6 Gearboxes [2]	
3.7 CALCULATIONS AND ANALYSIS .[2]	
3.7.1 Motor calculation [3]	
3.7.2 Sizing PV System:	
3.7.3 Battery sizing	34
CHAPTER FOUR	
CONTROL SYSTEM OF ELEVATOR	35
4.1 Introduction	36
4.2 MECHATRONICS PART	36
4.3 BLOCK DIAGRAM	37
4.4 MICROCONTROLLER	38
4.5 INTRODUCTION TO MICROCONTROLLER	38
4.6 CHOOSING A CHIP	39
4.7 PROGRAMMING MICROCONTROLLERS	
4.8 Pulse Width Modul atton (PWM)	
4.9 THE REGULATOR	
4.10 LCD (LIQUID CRYSTAL DISPLAY)	
4.11 PUSH BUTTON SWITCHES	49
4.12 Photo-coupler	
4.13 CONTROL SYSTEM IMPLEMENTATION	51
CHAPTER FIVE	
ANALYSIS AND MATHEMATICAL MODEL AND SIMULATION	53
5.1 INTRODUCTION	54
5.2 THE MOVEMENT OF ELEVATOR CAR	
5.3 MATHEMATICAL MODEL	
5.4 Trapezoidal velocity profile:	58
5.5 WIRE ROPE & SHEAVE DESIGN	50

5.6 Transfer function (G(s))	62
5.7 MECHANICAL ANALYSIS AND MODELLING	
5.8 SIMULATION	
CHAPTER SIX	
CONCLUSIONS & RECOMMENDATIONS	70
6.1 Conclusions	70
6.2 ORSTACLES	70
6.3 RECOMMENDATIONS	
REFERENCES	

Table of figure:

FIG.1.1: BLOCK DIAGRAM OF PROJECT	3
Fig.2. 1- THE FOURVALENT CIRCUIT OF A SOLAR CELL	9
FIG. 2.2: VOLTAGE CURRENT RELATION SHIP CURVE FOR SOLAR CELL	10
Fig. 2.3: EXPLAIN THE VOLTAGE-POWER RELATIONSHIP CURVE FOR THE SOLAR CELL.	11
FIG. 2.4: DESCRIBES THE EFFECT OF THE SUNLIGHT INTENSITY ON THE SOLAR CITE. VO	DUTAGE-CURRENT CELL
DET & TRANSPORT OF THE PROPERTY OF THE PROPERT	
FIG. 2.5: DESCRIBE THE EFFECT OF THE CELL TEMPERATURE ON CURRENT-VOLTAGE I	RELATIONSHIP CURVE
FOR SOLAR CELL	12
Fig. 2.6: EFFECT SUN ANGLE.	13
Fig. 2.7: CHARGING CIRCUIT EQUIVALENT.	15
Fig. 2.8: CHARGING CIRCUIT MODULE.	16
FIG 2.9: ELECTRICAL MOTORS.	17
FIG. 2.10: GENERAL ARRANGEMENT OF A DC MOTORS	18
Fig. 2.11: THE STATOR OF A DC MOTORS	18
FIG. 2.12: THE ROTOR OF A DC MOTORS	19
Fig 3.1: THE GENERAL STRUCTURE.	22
Fig. 3.2- ELEVATOR CAR.	23
Fig. 3.3: The pulley form	24
FIG. 3.4: LIFT SAMPLE WEIGHT	24
Fig 3.5:THE WHEIL FORM.	25
FIG3.6:WBFEL PATH.	26
FIG. 3.7: GEAR BOX	26
FIG. 3.8. FOURVALENT CIRCUIT OF FLECTRIC DRIVE.	28
Fig. 3.9: STEADY STATE EQUIVALENT CIRCUIT OF ARMATURE	30
FIG. 4.10: PERFORMANCES OF DC MOTORS	32
FIG 4.2 PLOCK DIAGRAM OF CONTROL SYSTEM	
Fig.4.3 PIC18F4550	40
FIG 4 4 PICDEMEN FS-USB EVALUATION KIT FOR PIC18F4550	41
FIG 4 5 PWM SHAPE	42
FIG 4 6 PWM AND DUTY CYCLE	42
Fix: 4.7 H-BRIDGE SIMPLE DIAGRAM	43
FIG 4 8 MOTOR ROTATION WITH II-BRIDGE	44
EV: 4 9 MIXTUR OPPOSITE ROTATION WITH H-BRIDGE	44
Fu: 4 101.298 DUAL FULL H-BRIDGE	45
FIG 4.11 INTERNAL CURCUIT DIAGRAM OF H-BRIDGE	45
FIG. 4.12 TRUTH TARLE OF DIPUT PORTS OF H-BRIDGE	46
Fig. 4.13 Cieneral fan Sliape	47
Fig4 14 GENERAL SINK SHAPE	47
Fig. 4.15 Rigatiator	48
Fig 4.16 LCD PINS	49

Chapter 1

Introduction.

Industrial Automation Engineering & Mechatronics is the most improved sector in the field of electrical & mechanical engineering due to wide spread application of the most systems in the world industry.

There are three fields covered in this project:

- > Electrical.
- > Mechanical.
- > control.

1.1 Project aim:

This project aim to:

- 1- Use the solar energy in our industrial application.
 - 2- Employment solar energy to give power to elevator without use electric.
 - 3- Use the new control technology (PIC) to control the elevator.
 - 4- To learn to use modern technology and to develop it.

1.2 Literature view:

It is only a question of time when steam and hydraulic elevators will be a thing of the past, for the reason that it is desirable to have but one kind of power in a building, and that electricity. All that is necessary for the passing of the other types of elevators, it is to produce an electric elevator as safe, as speedy, as reliable, as efficient, and as economical as the best type of hydraulic elevator.

A space elevator is a proposed structure designed to transport material from a celestial body's surface into space. Many variants have been proposed, all of which involve traveling along a fixed structure instead of using rocket powered space launch. The concept most often refers to a structure that reaches from the surface of the Earth on or near the Equator to geostationary orbit (GSO) and a counter-mass beyond.

The concept of a space elevator dates back to 1895 when Konstantin Tsiolkovsky proposed a free-standing "Tsiolkovsky "tower reaching from the surface of Earth to geostationary orbit .Most recent discussions focus on tensile structures (specifically, tethers) reaching from geostationary orbit to the ground .This structure would be held in tension between Earth and the counterweight in space like a guitar string held taut . Space elevators have also sometimes been referred to as beanstalks, space bridges, space lifts, space ladders, skyhooks, orbital towers, or orbital elevators.

Current technology is not capable of manufacturing practical engineering materials that are sufficiently strong and light to build an Earth-based space elevator. The primary issue is that the total mass of conventional materials needed to construct such a structure would be far too great to be economic.

1.3 Block Diagram:

The fig (1.1) is the block diagram of the elevator which consists of:

- · PV panel: this unit use to convert solar power to electrical power
- Charger: This unit is used to convert the variable voltage to constant voltage and control the battery charge.
- Battery: Used to store energy and be a secondary source of power.
- · DC motor: Used to run the elevator.
- · Controller: Used to control the mechanism of the elevator.
- · Elevator: this unit use to lift up or down the Stuff

Fig1.1: block diagram of project

1.4 Project Cost / (Visible Study):

Table 1.1: Project cost

Equipment's	Cost (S)
Motors	100
PV Panels	600
Charger Battery	100
Microcontroller	150
Sensors	150
Elevator body	400
Drivers	200
Total cost	1700

1.5 Schedule time:

Table 1.2 :Schedule time

week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Choosing project	78118															
Collection data					in.											
Data analysis				Г		1										
Electrical design								Г								
mechanical design			T							10						
Writing project text																

Wed	12	18	19	20	31	22	23	24	38	2.5	27	28	29	30	31	82
Mechanical parts design	in.															
hardwing program		Π		T			Į į	110								
Sectoral circuit								T						Т		T
PIC program										T	П	T	1			T
Calibration& Timing																-

L6 Suggestions:

The suggestions are:

- Make the regenerative when the elevator goes down.
- Using the project in practical application.
- Build a control system to control the direction of PV panels to take maximum solar energy.

Chapter Two

Electrical Elements

Introduction:

In this chapter we illustrate and explain the main electrical parts that should be used in the project.

The content parts are:

- · Photovoltaic Panels.
- battery
- · Charger battery.
- · Electrical motor.

2.1 Photovoltaic Panels.

2.1.1 History of Photovoltaic:

The first conventional photovoltaic cells were produced in the late of 1950s, and throughout the 1960s were principally used to provide electrical power for earth-orbiting satellites. In the 1970s, improvements in manufacturing, performance and quality of PV modules helped on reduce costs and opened up a number of opportunities for powering remote terrestrial applications, including battery charging for navigational aids, signals, telecommunications equipment and other critical, low power needs.

In the 1980s, photovoltaic become a popular source for consumer electronic devices, including calculators, watches, radios, lanterns and other small battery charging applications. Following the energy crises of the 1970s, significant efforts also began to develop PV power systems for residential and commercial uses both for stand-alone, remote power as well as for utility-connected applications. During the same period, international applications for PV systems to power rural health clinics, refrigeration, water pumping, telecommunications, and off-grid households increased dramatically, and remain a major portion of the present world market for PV products. Today, the industry's production of PV modules is growing at approximately 25 percent annually, and major programs in the U.S. Japan and Europe are rapidly accelerating the implementation of PV systems on buildings and interconnection to utility networks.

2.1.2 PV Cells, Modules, and Arrays, Description

2.1.2.1 PV Description

Photovoltaic (PV) means solar electricity from sunlight. Photovoltaic systems use sunlight to power ordinary electrical equipment, for example, household appliances, computers and lighting. The photovoltaic (PV) process converts free solar energy-the most abundant energy source on the planet-directly into electricity. Note that this is not the familiar "passive" or solar thermal technology used for space heating and hot water production.

A PV cells consists of two or more thin layers of semi-conducting material, most commonly silicon. When the silicon is exposed to light, electrical charges are generated and this can be conducted away by metal contacts as direct current (DC). The electrical output from a signal cell is small, so multiple cells are connected together and encapsulated (usually behind glass) to form a module (sometimes refers to as a "panel"). The PV module is the principle building block of a PV system and any number of modules can be connected together to give the desired electrical output.

PV equipment has no moving parts and as a result requires minimal maintenance. It generates electricity without producing emissions of greenhouse or any other gases, and its operation is virtually silent.

2.1.2.2 PV Cells, Modules, and Arrays

Photovoltaic cells are connected electrically in series and/or parallel circuits to produce higher voltages, currents and power levels. Photovoltaic modules consist of PV cell circuits scaled in an environmentally protective laminate, and are the fundamental building block of PV systems. Photovoltaic panels include one or more PV modules assembled as a pre-wired, field installable unit. A photovoltaic array is the complete power-generating unit, consisting of any number of PV modules and panels.

The performance of PV modules and arrays are generally rated according to their maximum DC power output (watts) under Standard Test Conditions (STC). Standard Test Conditions are defined by a module (cell) operating temperature of 25 degrees C (77 degrees F), and incident solar irradiance level of 1000 W/m2 and under Air Mass 1.5 spectral distribution. Since these conditions are not always typical of how PV modules and arrays operate in the field, actual performance is usually 85 to 90 percent of the STC rating.

Today's photovoltaic modules are extremely safe and reliable products, with minimal failure rates and projected service lifetimes of 20 to 30 years. Most major manufactures offer warranties of twenty or more years for maintaining a high percentage of initial rated power output. When selecting PV modules, look for the product listing (UL), qualification testing and warranty information in the module manufacture's specifications.

2.1.3 Equivalent Circuit of a solar cell.

During darkness, the solar cell is not an active device; it works as a diode, i.e. a p-n junction. It produces neither a current nor a voltage. However, if it is connected to an external supply (large voltage) it generates a current ID, called di-

ode current or dark current.

A solar cell is usually represented by an electrical equivalent one-diode model (Lorenzo, 1994), as shown in Figure 2.1.

Fig 2.1: The Equivalent Circuit of a solar cell

2.1.4 The Electrical Characteristics of Solar Cells

2.1.4.1 Introduction

As we know that the network supply voltage for one phase that feeding the home is approximately 220V the frequency equal to 50Hz on other hand the solar cells generator depends on many factors can be summarized as follow:

- The size and the number of the used solar cells, so the increase in solar cells number will cause an increase in the generated energy.
- The light intensity where the current intensity that generated from the solar cells will increase proportionally with the sun light intensity.
- The temperature of the solar cells when the temperature of the solar cell
 increases the operating point will be decrease and so the generated power
 will decrease too.
- The electrical loads that are used where the electrical loads that used must be in relation with the magnitude of the generated electrical power.

2.1.4.2 Voltage \ Current Characteristics

The Fig 2.2will explain the voltage-current relationship curve for the solar cells.

Fig. 2.2: Voltage-Current Relation Ship Curve for Solar Cell.

This graph shows the characteristics of a PV cell. It is called an I-V curve, This I-V curve is for the type of a PV cell used in the solar modules. So that comparisons can be made of the electrical characteristics of different PV cells these measurements are made at standard test conditions (STC) defined as alight intensity of 1000 W/m2 and a temperature of 25 °C. The graph also shows the maximum power point of the PV cell.

2.1.4.3 Voltage - Power and Current Characteristics:

The Fig 2.3 will explain the voltage-power and relationship curve for the solar cell we can note from the Fig 2.1 that the electrical power the be resulted from the solar cell increase when the output voltage of the cell increase where the electrical power can be reach to its maximum value at specific output voltage then the electrical power resulted from the solar cell will be decrease strongly until reaching zero.

Fig. 2.3: explain the voltage-power relationship curve for the solar cell.

2.1.4.4 Effect of Sunlight intensity:

The Fig 2.4 describes the effect of the sunlight intensity on the solar cell voltagecurrent cell relationship curve. We can note from the increasing of the resulted current intensity from the cell when the sunlight increase for every 1 Sq meter and we can note also the change of operating point for the cell following the change in magnitude of the sunlight power.

Fig. 2.4: describes the effect of the sunlight intensity on the solar cell voltage-current cell relationship curve.

2.1.4.5 Temperature Effect on Current-Voltage Characteristic:

The Fig2.5 describe the effect of the cell temperature on current-voltage relationship curve for the solar cell, as we can note from the curve that when the cell temperature increase the operating point will be move in direction to ward low voltage so the value of loads that used will be decrease in cell circuit.

Fig. 2.5: describe the effect of the cell temperature on current-voltage relationship Curve for solar cell.

2.1.4.6 Sun Angle:

It has been seen that the PV panel's output current is proportional to the solar radiation that strikes it. It is important to understand that this radiation level is reduced if the panel is not pointing directly at the sun. Like other parts of this problem, the amount that it is reduced can be calculated. The cell's output must be multiplied by the cosine of the angle of incidence of the incoming light. When designing a Solar Sprint car, a possible design feature would be the ability to adjust the angle of the PV cell, show the fig2.6.

Note that small variations in angle do not reduce output very much. Even a 60 degree angle of incidence only makes the output decline by one half.

2.2 Battery

2.2.1 Introduction:

A battery charger is a device used to put energy into a cell or (rechargeable) battery by forcing an electric current through it. Lead-acid battery chargers typically have two tasks to accomplish. The first is to restore capacity, often as quickly as practical. The second is to maintain capacity by compensating for self discharge. In both instances optimum operation requires accurate sensing of battery voltage.

When a typical lead-acid cell is charged, lead sulphate is converted to lead on the battery's negative plate and lead dioxide on the positive plate. Over-charge reactions begin when the majority of lead sulphate has been converted, typically resulting in the generation of hydrogen and oxygen gas. At moderate charge rates, most of the hydrogen and oxygen will recombine in sealed batteries. In unsealed batteries however, dehydration will occur.

2.2.2 Battery size

The size of the battery bank required depends on the storage capacity required, the maximum discharge rate, the maximum charge rate, and the minimum temperature at which the batteries will be used. When designing a power system, all of these factors are looked at, and the one requiring the largest capacity will dictate battery size. Our system sizing work forms take many of these factors into account.

When calculate solar battery bank sizing the first decision you have to make is how much storage you would like your battery bank to provide. Often this is expressed as days of autonomy because it is based on the number of days you expect your system to provide power without receiving an input charge from the solar panels. In addition to the days of autonomy, you should also consider your usage pattern and the critical nature of your application.

Alternatively, if you are adding a solar panel array as a supplement to a generator based system, your battery bank can be slightly undersized since the generator can be operated in needed for recharging. Once you have determined your storage capacity

2.2.3 Charging process of batteries

Charging a lead acid battery is a matter of replenishing the depleted supply of energy that the battery had lost during use. This replenishing process can be accomplished with several different charger implementations: constant voltage charger, constant current charger or a multistage constant voltage/current charger. Each of these approaches has its advantages and disadvantages that need to be compared and weighed to see which one would be the most practical and realistic to fit with our requirements.

Solar cells are one of our main portable power sources. Inherently, they provide a constant current which is dependent on light intensity and other uncontrollable variability in the environment. This characteristic fits well with a constant voltage charge design, which does not depend on the current provided by the input source, which in turn eliminates the dependence of the charger on external variations like the time of day, weather conditions or temperature. The effects of the changing voltage are also minimized since the voltage is being regulated.

2.2.3.1 Charging Circuit:

The full charger feedback control circuit can be seen in Fig2.18. This circuit implements a three stage charger algorithm: constant current state, constant voltage full charge state, and constant voltage float charges state.

The comparator is used to provide feedback of the current that the battery is believing from the circuit: as the battery charges, the current drawn decreases. The current sensing resistor is used to convert that current into voltage, which can be used to compare to a reference within the circuit.

Fig. 2.7: Charging Circuit Equivalent.

2.2.3.2 Battery Indicator

We came up with a very simple design for a voltage monitor. Fig2.19 depicts a quad-voltage comparator (LM324) that used to control a simple bar graph meter to indicate the charge condition of the 12-volt lead acid battery. A 5.4-volt reference voltage (D1) is connected to each of the non-inverting inputs of the four comparators and the inverting inputs are connected to successive points along a voltage divider.

The LED illuminate as the voltage at the inverting terminals exceeds the reference voltage. LED I turns on at 11 volts, LED 2 turns on at 13 volts, LED 3 turns on

at 14 volts, and LED 4 turns on at 14.3 volts.

Fig. 2.8: Charging Circuit Module.

2.3 Electrical Motors:

2.3.1 Introduction:

Electrical Motors are used to efficiently convert electrical energy into mechanical energy. Magnetism is the basis of their principles of operation. They use permanent magnets, electromagnets, and exploit the magnetic properties of materials in order to create these amazing machines.

There are several types of electric motors available today. The following outline gives an overview of several popular ones. There are two main classes of motors: AC and DC. AC motors require an alternating current or voltage source to make them work. DC motors require a direct current or voltage source to make them

work. Universal motors can work on either type of power. Not only is the construction of the motors different, but the means used to control the speed and torque created by each of these motors also varies, although the principles of power conversion are common to both.

Fig. 2.9: Electrical Motors.

2.3.2 DC Motors:

DC Motors are fairly simple to understand. They are also simple to make and only require a battery or de supply to make them run.

2.3.2.1 DC Motors Construction:

Fig. 2.10: General Arrangement of a DC Motors.

 The stator of the dc motor has poles, which are excited by dc current to produce magnetic fields.

Fig. 2.11: The stator of a DC Motors.

- In the neutral zone, in the middle between the poles, commutating poles are placed to reduce sparking of the commentator.
- The commutating poles are supplied by dc current.
- Compensating windings are mounted on the main poles. These short-circuited windings damp rotor oscillations.
- The poles are mounted on an iron core that provides a closed magnetic circuit.
- The motor housing supports the iron core, the brushes and the bearings.
- The rotor has a ring-shaped laminated iron core with slots.

Fig. 2.12: The rotor of a DC Motors.

- Coils with several turns are placed in the slots. The distance between the two legs of the coil is about 180 electric degrees.
- The coils are connected in series through the commentator segments.

- The ends of each coil are connected to a commentator segment.
- The commentator consists of insulated copper segments mounted on an insulated tube.
- Two brushes are pressed to the commentator to permit current flow.
- The brushes are placed in the neutral zone, where the magnetic field is close to zero, to reduce arcing.
- The commentator switches the current from one rotor coil to the adjacent coil.
- The switching requires the interruption of the coil current.
- The sudden interruption of an inductive current generates high voltages.
- The high voltage produces flashover and arcing between the commentator segment and the brush.

2.3.2.2 Dc Motor Operation:

There are five different methods for supplying the dc current to the motor:

- 1- Separate excitation.
- 2- Shunt connection.
- 3- Series connection.
- 4- Compound.
- 5- Permanent magnet (Wiper Motor).

2.3.2.3 Advantages and Disadvantages of DC Motors:

Advantages of dc motors:

- Easy to understand design.
- Easy to control speed.
- Simple, cheap drive design.

Disadvantages of dc motors:

Expensive to produce.

- Physically larger.
- High maintenance.

Chapter Three

Design and Analysis

Introduction:

This chapter contains the mechanical component of the system and equation needed to build the system..

The content part is:

- · General structure.
- · Elevator cart.
- · Pulley.
- · Wheels.
- · Wheels path.
- · Gearboxes.
- · System calculation.
 - Motor calculation.
 - Sizing PV System.
 - Battery sizing .
 - Mat lap Simulink

3.1 General structure:

When talking about mechanical design an important thing must be mentioned first is the stress and strain calculations, but in this project these calculations not assumed since the project is simply doesn't have high loads and no high stress or high strain at this one.

Another important thing should be talked about is movements correspond to each part, friction, and normal forces on that part. In the following section all parts going to be described.

Fig 3.1: The General structure

The third important thing is shaping of the project, that means the construction of the project must by good looking, but in the contrary, the shaping and the construction of the project must keep the parts to move, rotate, and translate freely without any obstacles, so the best shape design has chosen and it appear in the three dimensions (3D) views of all the parts in fig 3.1.

3.2 Elevator cart

The elevator car is the cage that is left up and down on the secondary of the motor, and goes in and out the persons. The fig (3.3) has shown the elevator car.

Fig. 3.2: Elevator car

This car has a length 40cm, width 40cm, height 40cm, and the structure consists of aluminum to be lighter weight..

The elevator car is to be controlled its position, the displacement, and the velocity. It is have an air gap that difference of the permanent magnet and a coil that makes the magnetic field. In this project will install solar cells with a car elevator to move with the car.

3.3 pulleys

Pulleys are used to change direction of movement or to link parts of a mechanism together. The amount of increase in the force depends on how many times the rope wraps round the pulleys. By wrapping the rope several times around the pulleys it is easily possible to lift your own weight off the ground.

Fig. 3.3: The pulley form

In this project uses simple pulley .As the rope is pulled down the weight moves up by the same distance.

Fig. 3.4: lift sample weight

3.4 Wheels

A wheel is a circular device that is capable of rotating on an axle through its centre, facilitating movement or transportation while supporting a load (mass), or performing labour in machines. Common examples are found in transport applications. A wheel, together with an axle overcomes friction by facilitating motion by rolling. In order for wheels to rotate, a movement needs to be applied to the wheel about its axis, either by way of gravity, or by application of another external force.

Fig 3.5:the wheel form.

In this project use four wheels fastened to the elevator car as . Fig 3.5 represents a form of wheel, the radius of the wheel equal 1.25 cm, and the width equal 2

3.5 Wheels path

Wheels path is the path that the wheels are moving it vertically up and down, fig 3.6 represents a form of wheel path.

Fig3.6:wheel path.

3.6 Gearboxes [2]

Gear head motors begins simply with a standard DC motor. The next major component is the spur gearbox. This consists of a series of small gears that mesh with larger gears, and placed in a rigid frame. The gears are greased to minimize friction and then secured in a gearbox cover to avoid debris from entering and disrupting the gears. Finally, a pair of screws fastens the gearbox on top of the DC Motor.

Fig. 3.7: gcar box.

In this project gear use to convert the speed by limit ratio, that is

$$a = \frac{N_1}{N_2}$$
....(3.1)

Where:

N₁: the number tooth of first pulley.

N2: the number tooth of second pulley.

The mass of first pulley is X gm.

The mass of second pulley is Y kg.

The moment of inertia of the first pulley is:

$$JP_1 = 0.2X \times 10^{-3} \, kg.m^2 \dots (3.2)$$

The moment of inertia of the second pulley:

$$JP_2 = 0.2Y \times kg.m^2$$
.....(3.3)

The gear ratio is 1:75

$$a = \frac{N_1}{N_2} = \frac{1}{75} = 0.013$$

3.7 calculations and analysis .[2]

By mechanical equation we calculate the speed, torque and power of the motor, to choose the appropriate motor to move the elevator.

Fig. 3.8: Equivalent circuit of electric drive.

Speed of elevator equal 0.2m/s and the radius of the pulley is 0.05m.

• a = 0.013

•
$$v = \omega \times r$$
 (3.4)

•
$$\omega = \frac{v}{r} = \frac{0.251}{0.05} = 5.024r^{-1}$$
.....(3.5)

•
$$n = \frac{60\omega}{2\pi} = \frac{60(5.02)}{2(3.14)} = 48rpm$$
(3.6)

•
$$\omega_m = \frac{\omega}{a} = \frac{5.02}{0.013} = 376.87 s^{-1}$$
(3.7)

•
$$n_m = \frac{n}{a} = \frac{48}{0.013} = 3600 rpm$$
(3.8)

Where:

a: gear ratio.

v: Speed of elevator.

r: Radius pulley.

ω: angular velocity.

n, : Motor speed.

To calculate equivalent moment of inertia of the drive referred to motor shaft:

$$J_{\infty} = J_m + J_g + J_w a^2 + mr^2 a^2 \dots (3.9)$$

 $J_{m} = 0.001 + 0.001 + 0.5(0.013)^{2} + 5(0.05)^{2}(0.013)^{2} = 0.002kg m^{2}$

Where:

J. : Equivalent moment of inertia.

J_: Motor inertia.

J. : Gear inertia.

m: Weight to be lifted.

To calculate the equivalent motor torque:

$$T_{\infty} = T_{lm} + T_{\pi} \frac{a}{\eta_{g}} + \left(F \frac{r}{\eta_{g}}\right) \frac{a}{\eta_{g}} \dots (3.10)$$

$$T_{m} = 1.Nm + 5Nm \frac{0.013}{0.8} + (5)(9.81) \left(\frac{0.05}{0.8}\right) \left(\frac{0.013}{0.8}\right) = 1.2.Nm$$

Where:

T_: Motor torque.

T_: Friction torque at motor shall.

I,: Friction torque at pulley shaft.

a. Gear efficiency.

F: Force resulting from the weight.

Output power of the motor:

$$p_{\infty} = \omega_m T_m \dots (3.11)$$

$$P_{watt} = (5.025)(3.08) = 15.47 watt$$

input power of the motor:

$$P_{\alpha} = \frac{P_{\text{tot}}}{\eta} \dots (3.12)$$

$$P_{\rm int} = \frac{15.477}{0.8*0.8} = 24.18 watt$$

Where: n Efficiency of motor.

3.7.1 Motor calculation [3]

Basic equations applicable to all de motor are:

Fig. 3.9: Steady State Equivalent Circuit of Armature

Series equations [4].

$$E = C \phi \times \omega \qquad (3.13)$$

$$Va = E + (Ra + Rse) \times Ia \qquad (3.14)$$

$$T = C.\phi \times Ia \qquad (3.15)$$

Where: \phi: Flux per pole.

1, : Armature Current, Ampere.

Ve: Armature Voltage, volt.

 R_a : Resistance of the armature circuit, Ω .

Rse: Resistance of the field circuit, Ω

ω_m: Speed of armature, Rad/sec.

T: torque developed by motor, N.m.

C. # : Motor constant.

From Equation (4.13 - 4.15) the mechanical angular frequency could be represented as:

 $p_{m} = 24.18 watt$

 $V_s = 24volt$

$$I_a = \frac{24.18}{24} = 1.007A$$

By equation 3.15 we can calculate $C\Phi$

$$C\Phi - T/I_a = \frac{1.2}{1.007} = 1.19$$

By equation 3.13 we can calculate E_g

$$E_{g} = C\phi\omega_{m} = (1.19)(5.025) = 5.98volt$$

The speed-torque and torque-current characteristics of a PM dc motor for rated terminal voltage are shown in Figure (4.11). The speed-torque curve is a straight line. Speed decreases as torque increases and speed regulation depends on the armature circuit resistance.

The used drop in speed from no load to full load, in case a medium size motor is of the order of 5%. Depending on the Motor calculation we select the motor has a standard specification following:

Fig. 4.10: Performances of dc motors.

3.7.2 Sizing PV System:

To calculate the number of solar cells needed to operate the load follow the following steps

E = P_{ln} × T → (1) Where: E: Energy (Watt)

Pin: input Power of Motor (Watt)

T: Time (Hour)

 $P_{in} = 24.18$ Watt, and T = 6 Hours/days.

E = 24.18*6 = 145.08 wh/days.

Divide the energy by the efficiency of chopper and battery:

 $\eta_c = 0.8$, where ηc : efficiency of chopper and battery.

E₁=145.08/0.8=181.35wh/days

- DC input voltage, usually 12, 24, or48 voltage.
 select v = 24 volt
- Average amp hour = E₁/v
 Average amp hour 181.35/24= 7.56amp.h/day.
- Multiply Total average amp hours per day by 1.2 to compensate for loss from battery charge/discharge.

Average amp hour - 7.56*1.2=9.07 amp.h/day

- Average sun hours per day in Palestine is 10 hour.
- Total solar array amps required = (average amp hour/ Average sun hours per day in Palestine).

Total solar array amps required = 9.07/10-0.907 amp.

Module specification:

Maximum power = 40 w.

Maximum power voltage = 17.4 v.

Maximum power current = 2,29 amp.

Open circuit voltage = 21.7 v.

Short circuit current = 3.31 amp.

Total number of solar modules in parallel required;

module - (Total solar array amps required/ Maximum power current)

module = $(0.907/2.29) = 0.4 \cong 1$ module.

3.7.3 Battery sizing

To calculate the number battery needed to operate the load when cut the source follow the following steps:

- Average amp hour = 9.07 amp.h/day.
- Maximum number of continuous cloudy days expected in Palestine is (3)
- Amount of Amp hour storage needed = (Average amp hour * cloudy days)
 Amount of Amp hour storage needed = 9.07 * 3 = 27.21 amp.h.
- Discharge limit for the batteries is (0.8)
- Divide Amount of Amp hour storage needed by Discharge limit for the batteries
 Amount of Amp hour storage needed = 27.21/.8 = 34.01 amp.h
- The Amp hour rating for your batteries is 24 amp.h
- Number of batteries wired in parallel needed = (Amount of Amp hour storage needed/ Amp hour rating for your batteries)
 # batteries = (34.01/24) = 1.42 \u2222

So we needed tow batteries each one has the following specification: 24 V DC, 24 Amp. Hour, 0.8 deep cycle, sun rise model.

Chapter Four

Control system of elevator

- · Introduction.
- Mechatronics part.
- Block diagram.
- · Microcontroller.
- Introduction to Microcontroller.
- Choosing a chip.
- Programming microcontroller.
- Pulse Width Modulation (PWM).
- The Regulator.
- LCD (Liquid Crystal Display).
- Push Button Switches.
- · Photo coupler.
- Control System Implementation.

4.1 Introduction

In this project, we need to build a prototype so that we need to use modern technology to control the elevator and to make something different form the general control whew published in this day in industrial manufacture called programmable logic control (PLC) so we need to use microcontroller (PIC) as a major controller to control the elevator.

4.2 Mechatronics part

The controlling of a elevator speed, vibration, voltage, position, acceleration using a elevator system represents the integration of four basic subsystems, which are, the mechanical, electrical, control and computer, which are the four basic disciplines that make up mechatronics, as shown in figure (4.1).

Fig 4.1 Mechatronics basic disciplines

Block diagram

Fig 4.2 block diagram of control system

- Microcontroller: it's the brain in the control system and all the loops control, commands build inside the microcontroller.
- Driver: the microcontroller can't supply the motor with required voltage and current so that the driver amplifies the required values.
- > Actuator : dc motor
- > Sensor: encoder

4.4 Microcontroller

Microcontroller assumed the brain of this system, since the Controller meanmed in it, also the rest of the electrical and digital components are connected it, and so it will be described in detail.

4.5 Introduction to Microcontroller

A microcontroller is a computer-on-a-chip, or a single-chip computer. Micro seests that the device is small, and controller tells you that the device might be used to objects, processes, or events. Microcontrollers can be found in all kinds of things the days. Any device that measures, stores, controls, calculates, or displays microcontrollers is a candidate for putting a microcontroller inside. The largest single use for the microcontrollers is in automobiles; just about every car manufactured today includes at one microcontroller for engine control, and often more to control additional stems in the car. In desktop computers, you can find microcontrollers inside to boards, modems, printers, and other peripherals. In test equipment, microcontrollers make it easy to add features such as the ability to store measurements, to create and store routines, and to display messages and waveforms. Consumer products that use microcontrollers include cameras, video recorders, compact-disk players, and ovens [1].

Microcontrollers have long been a convenient interface for the embedded statems; they represent the core of the control system for the electronic devices in actual applications. Thus, in contrast the microprocessors that are used in general surpose applications like personal computers that need high-performance.

Microcontrollers contain data and program memory, serial and parallel I/O, timers, and

and internal interrupts [2], and many more peripherals, made them a strong when implementing control systems.

Choosing a chip

All microcontrollers contain a CPU, within each device family, usually a section of family members are found, each with different combinations of options. For the 8052-BASIC is a member of the 8051 family of microcontrollers, which seeds chips with program memory in ROM or EPROM, and with varying amounts of and other features. The version that best suits the system's requirements must be discontrollers are also characterized by how many bits of data they process with a higher number of bits generally indicating a faster or more powerful chip. The bit chips are popular for simpler designs, but 4-bit, 16-bit, and 32-bit architectures available. The PIC 18F4550 is an 8-bit chip. [1]

Power consumption is another consideration, especially for battery-powered Chips manufactured with CMOS processes usually have lower power manufactured with NMOS processes. Many CMOS devices special standby or "sleep" modes that limit current consumption to as low as a few modes when the circuits are inactive. Using these modes, a data logger can list power consumption between samples, and power up only when it's time to take data.

The PIC microcontroller (PIC 18F4550) from Microchip has chosen in this project since its found easily, has a lot of ports (port A, B, C, D and E), can be programmed simply and it give all characteristics that the project needs. A PIC18F4550 port is shown in figure (4.3).

Fig 4.3 PIC18F4550

4.7 Programming microcontrollers

Programming PIC microcontrollers is a simple three steps process, write the code, compile the code, and upload the code into a microcontroller. [3] Writing the code can be developed in many Integrated Development Environments (IDE's) for example, MPLAP IDE, which is software, developed for the Microchip appliances like the PIC microcontrollers. Compiling the code can be done by the compiler of the MPLAP IDE. There are different compilers associated to work with PIC chips, C compiler, or assembler for assembly language codes, and many more, the decision of which compiler to use, is a developer choice, depending on the application which the PIC is a part of. The final step of programming the PIC chip is uploading the code into the microcontroller. This can be done also in MPLAP IDE or in different programs that are connected to the PIC kit (figure 4.4). The uploading process can be done through a USB cable or other connecting technique depending on the kit that contains the PIC chip.

Fig 4.4 PICDEM™ FS-USB Evaluation Kit for PIC18F4550

The PIC microcontroller architecture makes interfacing most peripherals with the PIC a far from hard task, the I/O's are organized as ports, PORTA, PORTB, etc. each seen that can be treated as a unit or as single I/O pins, 8-bit, 5-bit or other organization. Each was initially configured to do a specific operation, serial data operations, Analog-to-bestal conversion, and many more, but it's not always necessary to stick with the initial configuration, each port or single I/O pin can be configured to do different operation what initially configured.

4.3 Pulse Width Modulation (PWM)

Is a very efficient way of providing intermediate amounts of electrical power severe fully on and fully off. A simple power switch with a typical power source movides full power only, when switched on. PWM is a comparatively-recent technique, made practical by modern electronic power switches.

PWM is an important property in the microcontroller which used her to control the voltage that drives the motor; the PWM mode produces a PWM output at 8 bit

resolution. A PWM output is basically a square waveform with a specified period and duty cycle as shown in figure (4.5).

Fig 4.5 PWM Shape.

PIC has the feature of generating pulse with different duty cycles using the PWM Pulse Width Modulation) pins built in one of its I/O ports, as shown in fig (4.6) the duty cycle of a pulse can be modulated to be within (0 to 100 %), if for example it is 20 % then the pulse is on or logic one for a time forms 20 percent of the total period or pulse the idea then is that the average output is the same as duty cycle, more about PWM PIC is shown in appendix (E).

Fig 4.6 PWM and duty cycle

Talking about the PWM without taking about H-bridge circuit is useless, the Hmidge is the circuit needed to translate this modulated pulse into analog signal the
midget understand.

The H Bridge is a logic circuit that is used to control the direction of a motor as the motor in fig (4.7).

Fig 4.7 H-Bridge simple diagram

The motion needs to close and open switches in order for the motor to rotate in other direction, as shown in fig (4.8) to rotate the motor clockwise, S1 and S4 must be directly while S2 and S3 must be kept open.

Fig 4.8 motor rotation with II-bridge

While the opposite is applied to turn the motor to counter clock wise as shown in lig (4.9).

Fig 4.9 motor opposite rotation with H-bridge

L298 shown in fig (4.10) is a high current up to 4 Ampere, high voltage up to 46 VDC dual full-bridge driver designed to accept TTL (square wave of logic 1 (5VDC)) logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors, more details are described in appendix (F).

Fig 4.10 L298 dual full H-bridge

Fig (4.11) shows the internal block diagram of L298, as shown it has 4 outputs 1,2) and (pins 3,4) each pair is connected to a motor, in addition each output pair is connected by three logic pins In 1, In 2 and En A for the first motor (the first pair of another) and pins In 3,In 4 and En B for the second motor, so for any motor if the En cont is enabled and one of the (In)s is on and the other is off the motor will rotate in a fraction while if the (In)s logic is inverted it will rotate in the opposite direction.

Fig 4.11 internal circuit diagram of H-bridge

The complete truth table for any motor pins is shown in fig (4.12), where the finder are used to protect the motor from any short circuit could occur.

Fig 4.12 truth table of input ports of H-bridge

Using H-bridge is not only important to receive PWM output from the PIC, but because it is fit to the motion process required for the system, PIC has only two pins each can be modulated internally, controlling two motors each for two frection and each direction with different duty cycle (analog output and so voltage needs some kind of logic circuit that is capable of controlling which motor to use, which direction to turn and what level of voltage needed each time, here PWM pins will connected to both inputs logic in the H-bridge and the control of which motor to turn at a time is done by enabling the En port using the software written inside the PIC.

Else we used fan or sink because H-bridge when working the temperature merease so that we use coolers.

Fig 4.13 General fan shape

Fig4.14 General sink shape

4.9 The Regulator

Sometimes a regulator is important when converting the voltage level or when a specified voltage must be entered to a device or an IC in exact level, here the regulator used to convert the voltage level from 12V to 9V to be used for the motor, another regulator used to enter an exact voltage of 5V to the microcontroller input voltage, the regulator input could be any voltage but the output is specified as fig (4.15) shows.

Fig 4.15 Regulator

And we used the regulator because we need to supply all the system from the starty so that we need to regulate the output voltage from the battery because the secontroller working at low voltage and all enable pins working at low voltage.

LCD (Liquid Crystal Display)

LCD is used here to monitor the system's parameters; LCD technology is based the properties of polarized light. Two thin, polarized panels sandwich a thin liquidarystal gel that is divided into individual pixels. An X/Y grid of wires allows each pixel the array to be activated individually. The pixel darkens in proportion to the voltage applied to it for a bright detail, a low voltage is applied to the pixel; for a dark shadow area, a higher voltage is applied [5]. Pins of the LCD which used here are shown in fig 4.16) & (4.17).

Fig 4.16 LCD pins

Fig4.17 LCD display

4.11 Push Button Switches

We show in the fig 4.18 the push button switches are used:

Fig 4.18 push button switches

When we push the switch to specify any level the Microcontroller talk the signal and hold it until the elevator reach to required level else all switches with lamp work at 6V dc the lamp work when the signal hold by the Microcontroller and turn off after the elevator reach to required level.

Note: we used Photo-coupler between the microcontroller and switches because the lamps light need current higher then microcontroller so that we used Photocoupler to protection the microcontroller from over load.

4.12 Photo-coupler

Fig 4.19 Photo-coupler

Fig 4.20 Internal circuit of Photo-coupler

413 Control System Implementation

Fig 4.21 control system connection

We show the fig(4.21) display the connection of LCD with microcontroller to be an another of level where the elevator reach and we see three push button switch's this switch's we can demand the elevator else we see the regulator to convert the coming from battery to law voltage to supply the microcontroller and other apponents.

Fig 4.22 control system connection

While fig (4.22) shows the internal implementation of the control system, where be PIC is connected to the H-bridge after which the motors to be controlled is connected and connect the motor in the output of H-bridge.

Chapter Five

Analysis and Mathematical model and Simulation

- Introduction
- The Movement of Elevator Car
- Mathematical model
- Trapezoidal velocity profile
- Wire Rope & Sheave Design
- Transfer Function
- Mechanical Analysis and Modelling
- Simulation

31 Introduction

Theory and equations are an important section of the project, since the project is based on principles and assumptions that generalized to mathematical model; this mathematical model has the core of the project which the practical work depends on. The mathematical model of the project contains inputs, outputs, block diagram which melate inputs to output as a transfer function.

5.2 The Movement of Elevator Car

The elevator car is moving up and down in vertical line, thus there is a motion essult from it, a speed and acceleration are result from it. The equation of motion is given by the following equation

$$ma = F - mg + F_i$$

where m: mass of the cage [kg], g: acceleration of gravity $[m/s^2]$, Fr: resistance force to the wheels [N] and that upper direction of the guide way is positive of axis x.

The sign indicates that a plus sign is for falling and a minus sign is for rising.

The defection of moving is determined by the magnitude of thrust;

F > mg + Fr;

Downward F<mg-Fr

mg-Fr < F < mg + Fr;

The motion of the elevator is divided into three stages:

- Le Constant acceleration: at the beginning of the motion from one floor to another.
- Constant velocity: after specific period the inertia force overcame and the elevator begins to move with constant velocity.
- 3. Constant deceleration: when the elevator approach its destination.

bere:

$$a = \begin{bmatrix} a & 0 < t < t_1 \\ 0 & t_1 \le t \le t_f - t_c \\ -a & t_f - t_c \le t \le t_f \end{bmatrix}$$

Which means that the acceleration response must be make fine acceleration then will be constant and finally make fine deceleration. This can be obviously note the
tend but in real life the jerk can be ignored because of the constant acceleration so the
stem description can be as in figure 5.1.

Fig 5. 1 Elevator position, velocity, and acceleration

5.3 Mathematical model

The loading of the elevator is rated between four extreme cases:

- L Raising a full car.
- 2 Lowering a full car.
- 3. Raising an empty car.
- 4. Lowering an empty car.

1. Raising a full Load:

During acceleration:

$$(m_L + m_c) a = F - (m_L + m_c) g - 4F_r$$

$$F-4F_r = (m_L + m_c) a + (m_L + m_c) g$$

$$F - 4F_r = (m_L + m_c) (a + g)$$

Where:

mL: mass of the load on the cage in Kg.

me: mass of the cage in Kg.

During constant velocity:

$$0 = F - (m_L + m_c) g - 4F_r$$

$$F - 4Fr = (m_L + m_c) g$$

· During deceleration:

$$-(m_L + m_c) a = F - (m_L + m_c) g - 4F_r$$

$$F - 4F_r = -(m_L + m_c) a + (m_L + m_c) g$$

$$F - 4F_r = (m_L + m_c) (g - a)$$

2. Lowering empty car:

During acceleration:

$$m_e a = F - m_e g + 4F_r$$

$$F + 4F_r = m_c a + m_c g$$

$$F + 4F_r = m_c (a + g)$$

During constant velocity:

$$0 = F - m_c g + 4F_r$$

$$F + 4F_r = m_e g$$

During deceleration:

$$-m_c a = F - m_c g + 4F_r$$

$$F + 4F_r = m_c a + m_c g$$

$$F + 4F_r = m_c (g - a)$$

During acceleration:

$$m_c\,a=F-m_c\,g-4F_r$$

$$F-4F_r=m_e a+m_e g$$

$$F - 4F_r = m_c (a + g)$$

During constant velocity:

$$0 = F - m_c g - 4F_r$$

$$F-4Fr=m_0 g$$

During deceleration:

$$-\,m_e\,a=F-m_e\,g-4F_r$$

$$F - 4F_r = -m_c a + m_c g$$

$$F-4F_r-m_c(g-a)$$

Lowering a full car:

During acceleration:

$$m_L + m_c$$
) $a = F - (m_L + m_c) g + 4F_r$

$$F + 4F_c = (m_L + m_c) a + (m_L + m_c) g$$

$$F + 4F_t = (m_L + m_c) (a + g)$$

During constant velocity:

$$I = F - (m_L + m_c) g + 4F_J$$

$$= -4F_t = (m_L + m_c) g$$

During deceleration:

$$(m_L + m_c) a = F - (m_L + m_c) g + 4F_r$$

$$F + 4 F_t = (m_L + m_c) a + (m_L + m_c) g$$

$$F + 4F_1 = (m_L + m_c) (a + g)$$

** Trapezoidal velocity profile:

specifying the q_b q_b t_b , and the admissible velocity q_c for elevator car. Where:

q. The initial car position.

qf. The final car position.

1/2 The final time for elevator car to reach the desired position.

$$q_c = (q_i + q_f) / 2 - q_c / (t_f - t_c)$$

Also:

$$q_e = q_i + q_i t_e + 0.5 \ q_e^2 t_e^2$$

$$q_c = q_i' + q_i''t_c$$

$$q_c = q_i^{\ n} t_c$$

$$q_i$$
" = q_o/t_e

$$q_c = q_i + 0.5 q t_c$$

$$t_c = (q_i - q_f + q_i t_c) / q_c'$$

Constant speed in selecting the maximum speed q we know that $0 \le tc \le tf/2$

$$q_e \le 2(q_i - q_f) / t_f$$

$$(q_i - q_f) / t_f \le q_c \le 2(q_i - q_f) / t_f$$

$$q(t) = \begin{cases} q_1 + \frac{1}{2} \frac{q_c}{t_c} t^2 & , & 0 \le t \le t_c \\ q_i + q_c \left(t - \frac{t_c}{2} \right) & , & t_c \le t \le t_f - t_c \end{cases}$$

$$q(t) = \begin{cases} q_i + \frac{1}{2} \frac{q_c}{t_c} \left(t_f - t \right)^2 & , & t_f - t_c \le t \le t_f \end{cases}$$

The elevator is designed to travel at $q_i = 0$, $q_f = 1.5m$ in 15 second at each floor with a consisting of velocity q = 0.1m/s, the number of floors is 3, then to calculate the car position and acceleration.

5.5 Wire Rope & Sheave Design

Main specification for elevator:

- Car weight = 4kg
- Passenger weight = 2kg
- Length of wire rope (L) = 1.5m
- No. of ropes=1
- Speed of clevator = 0.2m/s

Design equation:

* mpe + w car + w passenger + Equivalent being load + Inertia load -

$$\frac{11}{4} d^{3} rope * \frac{Su}{f.o.s} = A*sigma=f=w$$

= rope = 0.036 d²rope * (length of wire rope)

= 1.19 d2rope N

= car + w passenger = (4+2)*9.8 = 58.8 N

$$=$$
 ropes $=\frac{58.8}{1} = 58.8 \text{ N}$

Equivalent bending load = E.B.L.

$$= \frac{3}{8} \operatorname{Er} \frac{0.063 \operatorname{drope}}{D_{\text{shows}}} * A$$

Modulus of elasticity = 80 GPA

A = Area of wire rope

= EB.L =
$$\frac{3}{8}$$
*80*10³ * $\frac{0.063 \text{ drope}}{45 \text{ drope}}$ * $\pi/4$ d²rope
= 33 d² rope N

LL = mass * acceleration

$$II = \frac{w \operatorname{rope} + w \operatorname{car} + w \operatorname{passenger}}{9.8} * A$$

$$w = v \frac{dv}{dy}$$

$$\int_{0}^{\infty} dv = a \int_{0}^{1} dy$$

$$\frac{\sqrt{2}}{2} = a[y]_0^1$$

$$(0.2)^2 = 2a*1$$

$$A = 0.02 \text{ m/s}^2$$

$$\perp LL = \frac{1.19 \, d^2 \, rope + 58.8}{9.8} * 0.02$$

$$= 0.00243 d^2 rope + 0$$

Assume material steel

$$= \mathbb{F}_1 = 1.19 \text{ d}^2 \text{ rope} + 58.8 + 33 \text{ d}^2 \text{ rope} + 0.00243 \text{ d}^2 \text{ rope} + 0.12$$

$$= \frac{730}{8} * \frac{\pi}{4} d^2 rope$$

$$= 34.2 \text{ d}^2 \text{ rope} + 58.92 = 71.66 \text{ d}^2 \text{ rope}$$

5.6 Transfer function (G(s))

The analysis of the internal de motor where its model in s-domain is shown in Se (5.2)

Fig 5.2 motor block diagram

Where T is the torque at motor shaft, K_m is the motor torque constant and I_α is the armature current.

The Laplace transform of this equation is:

Fig 5.3 electrical analysis of motor

From the electrical circuit shown in fig (5.3)

$$V_a = I_a * R_a + I_a * L_a + E_g$$
 5.3

Where V_a is the armature voltage, R_a is the armature resistance, L_a is the armature inductance and E_g is the induced voltage.

The Laplace transform of this equation is:

$$V_a(s) = I_a(s)(R_a + sL_a) + E_g(s)$$
 5.4

The induced voltage in motor is related to its angular velocity as follows

$$E_g = K_t * w 5.5$$

Where w is the angular velocity of the motor and K_t is the back electromotive force constant.

The Laplace transform of this equation is:

$$E_g(s) = K_t * s\theta(s)$$
 5.6

From eq (5.4) and eq (5.6) it can be shown that:

$$l_a(s) = \frac{V_a(s)}{R_a + sL_a} - \frac{K_t * s\theta(s)}{R_a + sL_a}$$
5.7

If it is assumed that the armature inductance L_a is small compared to R_a , then eq 5.7 becomes

$$l_a(s) = \frac{V_a(s)}{R_a} - \frac{K_t * s\theta(s)}{R_a}$$

To find K_t the induced voltage must be found, for the previous motor speed the armature voltage $V_a=24$ V, the motor internal resistance $R_a=6.1\,\Omega$ and the armature current $I_a=0.3$ Λ , for these values

$$E_g = V_a - I_a R_a$$
 5.8
 $E_g = 24 - 0.3 * 6.1$
 $E_g = 22.17 V$

Then the electromagnetic constant of the actuator K_t is calculated according to eq5.5

$$E_g = K_t * \omega$$

$$K_t = \frac{E_g}{\omega}$$

$$K_t = \frac{22.17}{5.026} = 4.41 \text{ V. s/rad}$$

In order to find torque/current constant the torque produced for the serious armature voltage was found where the efficiency of the actuator is η

$$P_{in} = \frac{P_{out}}{\eta}$$
 5.9

Substituting for Pin and Pout yields

$$V_a I_a = \frac{T\omega}{\eta}$$

$$12 * 0.15 = \frac{T * 5.026}{0.85}$$

$$T = 1.21767 N. m$$

Back to eq 5.1 the electromechanical constant K_m is calculated through the following

$$K_m = \frac{T}{I_a}$$

$$K_m = \frac{1.217672}{0.3} = 4.06 \text{ N. m/A}$$

Mechanical Analysis and Modelling

The mechanical analysis of the basic structure

Fig 5.4 block diagram of mechanical structure

Where we need to find Jeq is the equivalent mass moment of inertia at motor shaft to find the transfer function.

We can found Kinematic energy reflected at motor shaft from the fig 5.4:

$$KE = \frac{1}{2} J_m \dot{\theta}^2_m + \frac{1}{2} J_1 \dot{\theta}^2_m + \frac{1}{2} J_2 \dot{\theta}^2_p + \frac{1}{2} J_p \dot{\theta}^2_p + \frac{1}{2} m \dot{y}^2$$

$$\theta_p = \frac{N_1}{N_2} \theta_m \quad , \quad n = \frac{N_1}{N_2}$$
5.10

By sub. All equations in 5.10 we found KE
$$KE = \frac{1}{2} J_m \dot{\theta}^2_m + \frac{1}{2} J_1 \dot{\theta}^2_m + \frac{1}{2} J_2 n^2 \dot{\theta}^2_m + \frac{1}{2} J_p n^2 \dot{\theta}^2_m + \frac{1}{2} m r_p^2 n^2 \dot{\theta}^2_m \qquad 5.14$$

$$KE = \frac{1}{2} \left[J_m + J_1 + J_2 n^2 + J_p n^2 + m r_p^2 n^2 \right] \dot{\theta}^2_m \qquad 5.16$$

Know we can found the equivalent inertia from equ. 5.16:

$$J_{eq} = [J_m + J_1 + n^2(J_2 + J_p + m r_p^2)]$$
 5.17
= 0.002 from the previous calculations

Now the block diagram of motor can be found then, this block diagram will be extended to include the motion that convert the motor rotation into translation motion.

The block diagram of the first motor is shown in fig (5.5)

Fig 5.5 motor block diagram

After reduction and simplification this diagram can be as shown in fig (5.6)

Fig 5.6 motor reduced block diagram

53 Simulation

From the previous analysis we can show the simulate response to achieve the equired response & we use Matlah program to show the input signal and output signal.

Output signal of speed
Output signal of position

Chapter6

Conclusions & Recommendations

El Conclusions

The implementation of the project has finished successfully, the elevator has the ability to work as an embedded system such that, the microcontroller controls the devator cart motion, up and down.

However the operation of the system is not perfect, it has encountered some mobilems, due to some errors in applying mechanical model on real ground.

While the performance of the system does need more work, the performance of the solar system is much better. The solar panel is able to charge the battery controlled the overcharge controller, the battery can handle the motion of the system with approximately no losses of its capacity.

12 Obstacles

As any first time project many problem and obstacles were encounter, technical, economical and un controlled barriers made it very hard, but not impossible mission to faish the project goal.

A major problem that opposed the project progress is the delay of the financial apport which in return retards the working on the project because of lack of the tools and parts required.

Because the speed the elevator few, we have faced difficulty in finding the states with gearbox Appropriate.

The most difficult problems we have encountered is in the mechanical design of the elevator model in terms of design and accuracy in work.

13 Recommendations

- Renewable energy researches must be supported and financed for its importance next years. Palestine has very promising future in the area of solar energy systems and it does have a huge amount of unused source of power.
- Build generative system to store the energy in the battery when the elevator moves downward.
- Add observer system to get full control system.
- Solar energy suppliers and companies have to take place in the economical field of Palestine, they will gain benefits by time, and by time installing solar systems would be cheaper, faster, easier and more popular.
- More researches must be applied in the economical feasibility of using solar energy and building solar stations in Palestine.
- Some courses that deal with energy types and its calculations must be taught at the university to help students in their energy related researches, especially in the field of the renewable energy studies as it gains a larger global attention by time.

- Also courses that are related to microcontroller specially the PIC microcontroller should be worked with and taught, they are very important for embedded systems and industrial applications.
- The most important recommendation is that the university must prepare a large lab for graduation projects to help students to work in, since the graduation lab that is running now is not sufficient to all students, and other labs are not always opened to students to work in, as a result you might lose your day if the lab teacher is out of his work or in vacation.
- More financial support and administration's attention and care must be paid for the graduation projects; they are the completions of its student and the apparent part of its academic skills and efforts.
- Renewable energy and scientific research department in the university must increase its support for the graduation project in this field; it must embrace such concepts and turn them into beneficial and economical plans in future.
- The university must Strengthen it's relation with scientific institutions and colleges outside Hebron, it should market the students' graduation projects, be proud of them and let others know about, an annual journal includes such thoughts and information would be great idea that could help improve the university picture and reputation and might give it's student more opportunities to compete with other universities and improve their experience.

References

- [1] Power Electronics and Drives (Version 2): Dr. Zainal Salam.
- [2] Gopal K. Dubey, Fundamentals of Electrical drives, 2nd edition, 1995, narosa publishing house.
- [3]Stephen J. Chapmen, Electric machinery fundamental, 3rd edition.
- Norman S.Nise, Control system engendering, Forth Edition
- [4] Jan Axelson, the Microcontroller Idea Book, Circuits, Programs, & Applications Featuring the 8052-BASIC Microcontroller, 1994, by Jan Axelson,
- [5] Dogan Ibrahim, Advanced PIC Microcontroller Projects in C, Elsevier Publishing, March 2008.
- [6] John Iovine, A Beginner's Guide to Robotics Projects Using the PICmicro, McGraw-Hill Publishing, 2004.
- http://www.netrino.com/Embedded-Systems/How-To/PWM-Pulse-Width-Modulation
- http://www.dtvcity.com/ledtv/ledtvresources.htm
- http://www.scolar.org.uk/html/pdf/stu-pdf/ks4-sis-2c.PDF
- http://www_faqs.org/patents/app/20090003021#ixzz0Zvi07vTG
- http://www.medenec.com/en/TOPIC/Strategies%20and%20Laws/Khader_sustai nable%20energy%20in%20Palestine.pdf
- http://inventors.about.com/library/inventors/blelevator.htm
- http://www.brighthub.com/engineering/electrical/articles/66777.

Appendix

Appendix (A): Solar panel KC40T

Appendix (B): Sol sum 6.6 Charging Controller

Appendix (C): Battery CP12240 24Ah

Appendix (D): DME44 Motor

Appendix (E): General Purpose Type Photo coupler

Appendix (F): DUAL FULL-BRIDGE DRIVER L298

Appendix (G): Semiconductor technical data

Appendix (H): LCD GDM1602K

Appendix (I): PIC18F4550 Microcontroller

Appendix (J): Control PIC Code Developed In C Programming

Language

Appendix (A)

Solar panel KC40T

C40T-1

MODULI FOTOVOLTAICI POLICRISTALLINI AD ALTE PRESTAZIONI

TECNOLOGIA AVANZATA

cazie a un intenso lavoro di ricerca, una continua evoluzione del processo produttivo e ad una produzione di amente automatizzata, i moduli solari policristallini socera raggiungono uno standard qualitativo e un rendimento notevolmente elevato. Le calule solari ad alto rendimento Kyocera incassate, con edimensioni base 15 x 15,5 cm raggiungono un endimento del 16% e garantiscono una resa energetica estremamente elevata dell'impianto fotovoltaico.

la protezione contro le condizioni climatiche più streme, le celle sono incorporate tra una copertura in tempralo e una pellicola EVA e sigillate statenormente con una pellicola PET. Il faminato è socializzo in un solido telaio di alluminio facile da fissare.

ESEMPI APPLICATIVI

- · Impianti collegati alla rele
- Soluzioni isolate (p. es. elettrificazione di case isolate, case per vacanze, orti, ecc.)
- Alimentazione elettrica di paesi e ambulatori isolati in regioni rurali e aeree in via di sviluppo
- Alimentazione d'emergenza di energia elettrica, protezione civile
- Sistemi di pompaggio (p. es. approvvigionamento di acqua potabile e irrigazione)
- Telecomunicazione (p. es. reti di telefonia mobile, stazioni ripetitrici, ecc)
- Olio e gas (per esempio protezione contro la corrosione, comando e controllo, ecc.)
- · Centrali a energia solare

spocera produce tutti i componenti in sedi di moduzione proprie - senza acquisti supplementari di milavorati - per una qualità costantemente elevata dei modotti.

BATI ELETTRICI

Temperatura cella 35 °C

Tensauru (V)

Curva della sensione

Curva della tensione elemina del modulo MC403-1 nelle diverse temperature delle celle.

Kyocera è un'impresa certificata e registrata secondo le ISO9001 e ISO14001.

TÜVdotCOM Service: piattaforma Internet per qualità e sicurezza collaudate.

TUVdotCOM-ID: 0000007146.

SPECIFICAZIONI

DATI ELETTRICI

go di modulo fotovoltaico		KC40T-1
menua nominale P sotto STC	[W]	43
erenza max. da P	[96]	415/-5
misone max, del sistema	[V]	750
mome in caso di potenza nom.	[V]	17,4
mente in caso di potenza nom.	[A]	2,48
emilione a vuoto	[V]	21,7
mente di cortocircuito	[A]	2,65
Coefficiente termica		
sela tensione a vuoto	[V/°C]	-8,21 x 101
Coefficiente termico		
corrente di cortocircuito	[A/*C]	1,06 x 101
HOCT	[°C]	47
1301		47

niettrici valgono in condizioni di prova standard (STC):

aria AM 1,5 e temperatura codo di 25 ℃.

and modifiche serva prouvviso delle specificazioni

lieti di inviarvi altre informazioni,

NEW VALUE FRONTIER

COCERA FINECERAMICS GMBH

Mueller-Str. 107

Esslingen/Germany

-49-711-93934-17

-49-711-93934-50

solar@kyocera.de

hyocerasolar.de

DIMENSIONI

Lunghezza	[mm]	526
Larghezza	[mm]	652
Altezza/		
scatola di giunzione incl.	[mm]	36 / 54
Peso	[kg]	4,5
Tipo die collegamento		morsetti a vite

DATI GENERALI

Garanzia prestazionale	12 anni* / 25 anni**
Garanzia	2 anni

CELLE

Quantità per modulo		36
Tecnologia celle		policristallino
Forma celle		rettangolare
Dimensioni celle	[mm]	150 x 155
Contatto celle		3 bus bar

*12 anni sui 90 % del rendimento minimo P specificato in condizioni di prova standard (STC).

**25 enni sull'85 % del rendimento minimo P specificato in condizioni di prova standaro (STC).

Vostro rivenditore locale Kyocera:

SOLARENET s.r.l. Via del Brolo, 32 Brescia (BS) TEL: +39-030,2003420 FAX: +39-030,2054378 http://www.solarenet.it email: energia@solarenet.it

a di modifiche senza unavviso del contenuto di questo

Appendix (B)

Sol sum 6.6 Charging Controller

sca Solsum 6.6C Charge Controller

Sleca's bestsellers are the photovoltaic controllers Solsum C series which are used in small solar home with a 5 to 10 Amp solar charging and load current (up to 240 Wp). The Solsum C series was launched as a redesign of the Solsum X series. The C series sees are large connection terminals, fully covered a easy to understand display. The electronic board and an investment of the second of the secon mance.

TELES.

= regulation shunt battery charging

charging charging

atic load reconnection

erature compensation

grounding

regative grounding on one

Displays

two LEDs

(1) battery charging LED

- by solar module = green LED in "sun" symbol (2) battery voltage LED

- end of charge voltage = green LED

- battery voltage level = red & yellow & green LED

- load disconnect prewarning = fast flashing red LED

deep discharge protection = slowly flashing red LED

Protections

wiltage disconnect (HVD) catage disconnect (LVD), 5.0c & 8.0c

polarity of solar modules polarity of load & battery

circuit of solar modules arcuit of load

emperature

oltage

protection by varistor

■ ■actronic interference (EMC) circuit battery

se current at night

Specifications

Solar Charge Controller Model	Solsum
System Voltage	6.6c
Max. Module Input Short Circuit Cur.	12 V / (24 V)
Max. Load Output Current	6A
LVD	6 A
Max. Consumption	yes
End of Charge Voltage (Float)	4 mA
Boost Charge Voltage	13.7 V / (27.4 V)
Equalisation Charge	14.4 V / (28.8 V)
Reconnection Selpoint (LVR)	12.6 V / (25.2 V)
Deep Discharge Protection (LVD)	11,1 V / (22,2 V)
Ambient Temperature Allowed	-25 °C+50 °C
Terminal Size (Fine / Single Wire)	2.5 mm² / 4 mm²
Endosure Protection Class	IP 22
Weight	165 g
Dimensions L x W x H	130 x 88 x 39 mm

mas de Energias Alternativas de Portugal, Lda.

Industrial da Feiteirinha -

1 - Felteirinha - Rogil

Tel. 282 998745 Fax 282 998746 -440 Aljezur, Portugal mail@ffsolar.com www.ffsolar.com

Appendix (C)

Battery CP12240 24Ah

CP12240 12V 24Ah(20hr)

The rechargeable batteries are lead-lead dioxide systems. The dilute sulfuric acid electrolyte is absorbed by separators and plates and thus immobilized. Should the sattery be accidentally overcharged producing hydrogen and oxygen, special one-say valves allow the gases to escape thus avoiding excessive pressure build-up. Otherwise, the battery is completely sealed and is, therefore, maintenance free, eak proof and usable in any position.

Battery Construction

Component	Positivo ninte	Management	I AND DESCRIPTION	Francisco de la constanta de l				
Raw material	a course biate	Negative plate	Container	Cover	Safety valve	Terminal	Separator	Electrolyte
	Lead dioxide	Lead	ABS				a abacator	Lieuthyte
				ABS	Rubber	Copper	Fiberglass	Sulfuric acid

General Features

- Absorbent Glass Mat (AGM) technology for efficient gas recombination of up to 99% and freedom from electrolyte maintenance or water adding.
- Not restricted for air transport-complies with IATA/ICAO Special Provision A67
- UL-recognized component.
- Can be mounted in any orientation.
- Computer designed lead, calcium tin alloy grid for high power density.
- Long service life, float or cyclic applications.
- Maintenance-free operation.
- · Low self discharge,

mensions and Weight

angth(mm / inch)	166 / 6.54
(mm / inch)	175 / 6 89
=cht(mm / inch)	125 / 4 92
Height(mm / inch)	125/492
Weight(Kg / lbs)	86/18.96

Performance Characteristics

Marine Marine Committee Co	
Nominal Voltage · · · · · · · · · · · · · · · · · · ·	12V
Number of cell	
Design Life	10 years
Nominal Capacity 77°F(25°C)	io years
20 hour rate (1.2A, 10.5V)	OLAL
10 hour rate (2.37A, 10.5V)	24Ah
5 hour rate (4 1A, 10.5V)	23.7Ah
1 hour rate (16A 9 6V)	20.5Ah
1 hour rate (16A, 9.6V) Internal Resistance	10An
The state of the s	
Fully Charged battery 77°F(25°C) Self-Discharge	12mOhms
3% of capacity declined per month at 20	C(average)
Operating Temperature Range	team weathers
Discharge	-20-6000
Charge	10-8000
Storage	20-8000
Max, Discharge Current 77ºF(25°C)	200000
Short Circuit Current	(SC)AUDC
Short Circuit Current	
Charge Methods: Constant Voltage Charge	77°F(25°C)
Gycle use	14 5-14 9V
Maximum charging current	9 6A
Temperature compensation	-30mV/00
Standby use	13 6-13 8V
Temperature compensation	20mV/PC

Discharge Constant Current (Amperes at 77°F25°C)

End Point Volts/Cell	5min	10min	15min	30min	1h	3h	5h	10h	20h
1.60V	95.0	64.0	48.0	28.5	16.0	874	4 47	252	4.04
1.65V	90.1	60.9	45.9	27.4	15.4	6.53	4.36	2.47	1.24
1.70V	54.9	57.8	43.7	26.2	14.8	6.30	474	2.42	4.20
1.75V	18.1	54.5	41.1	24.9	14.2	6.05	4.10	2.37	1.20
1.80V	74.3	51.3	39.1	23,6	13.5	5.78	3.95	2.31	1 18

Discharge Constant Power (Watts at 77°F25°C)

	End Point Votts/Cell	5min	10min	15min	30min	45min	1h	2h	3h	5h
į	1.60V	185	121	90 0	55.0	40.0	31.7	196	134	0 5 4
	1.65V	173	114	85.1	52.3	38.2	30.3	19.0	134	0.04
	1.70V	161	107	80.2	49.4	36.3	28.9	123	13.1 15.E	0.38
	1.75V	151	99.7	75.2	46.5	34.3	27.5	178	12.0	9.22
[1.80V	139	92.7	70.3	43.7	32.3	26.0	16.0	11 4	7.83

(Note) The above characteristics data are average values obtained within three charge/discharge cycles not the minimum values.

Shenzhen Center PowerTech, Co., Ltd.

Center Power industrial Park, Tongful industrial District Depeng Town, 645120 Shenzhon, C'Irina Tol. (486-755) 8431 8088 Fax. (198-755) 84318038 E-mail: seles@vision-batt.com

www.vision-batt.com

Appendix(D)

DME44 Motor

OIMENSIONS Unit mm(inch) DME44SA, DME44SB

MODEL CODE VOLTAGE OUTPUT CURRENT SA SB 12V 9.2W 1.31A 24V 9.2W 0.65A BB 24V 14.8W 0.94A

DME448A, DME4488

● CURRENT, SPEED-TORQUE CURVE

CONNECTION

STANDARD SPECIFICATIONS

	Flated							load	- Course			
	Output	Voltage	Ton	que	Current	Speed	Current	Charles	Stall	larque	146	right
	W	V	mN-m	Torque Current Spe	t/min			mN-m	oz-in	***	Gir	
DME44SA	9.2	12	34	3.47	1.31		- 17	r/min		- C. H.	9	b
DME4488	3.2	24	24	3.47		3600	0.31	4300	150	22.22	300	0.66
DME44BB	14.8	24	39	100	0.65	3600	0.15	4300	150	22.22	300	0.86
BEVO				5.55	0.94	3600	0.16	4300	250	36.11	400	0.88

 REVOLUTION SENSOR MAGNET TYPE DME44SMA, DME44SMB

 CONNECTION OF REVOLUTION SENSOR DME448MA, DME448MB, DME448MB

DME44BMB

SPECIFICATION OF REVOLUTION SENSOR ARE SHOWN ON PAGE 4.

MODEL CODE VOLTAGE OUTPUT CURRENT SA 12V 9.2W 1.31A 24V 9.2W 0.65A BB 24V 14.8W 0.94A

EARBOX

DIMENSIONS Unit mm(inch)

506

(WEIGHT 400 g 0.000)

with 50G TYPE GEARBOX

Model	Gear	9	18	*27	*36	*54	*72	
77704000	Rated speed	r/min	400				66.6 50	
DME44850G_	Batad tomas	N·m	0.18	0.35	0.48	0.84	0.96	0.98
TO DESCRIPTION OF THE PARTY OF	nation torque	oz-in	25.00	48.99	68.05	90.27	136.09	138.87

 DIMENSIONS Unit mm(inch) DME44S6DG

(WEIGHT 100 a 1.00 b)

NOTE.

SDG goartowes are available for either 4.5mm character maunitry holes or Mrf x Birm temped holes.

4.5mm diamater mounting faules type gestbowes are available as stock components. When ordering, please write the motor model and greatopic model numbers expundable, as in the thinking example.

Pinion Shall Motor + Gestbox

DM14486HPB + 6DG

M4 x Crow targetor mounting hole type promises are shallook only an element, and see exception only an combined until with motors. When consisting, please write model number as a single unit, as in the tallowing example: DME4486H B

with 98G TYPE CEADOON

Model	Gear	retio	5	12.5	15	*25	*30	*50	*75	*100	450		
Wilder	Rated speed	r/min	720	288	240	-	-	1000	-	100	150	180	250
DME4488HP=	- men apoota	-	7.000	-	1	144	120	72	50.5	39.1	26.7	22.5	16.5
	Rated torque	Nm	0.1	ASSESSMENT OF THE PARTY OF THE	0.29	-		0.89			0.98	0.98	0.98
& 6DG	LEWIS MESSAGE	oz-in	13.89	34.72	41.66	62.49	74.99	126.37	138.87	138.87	138.87	138 87	130 01
Model	Gear	etio	300	450		*750	-	11800			1000	100.111	140,07
100000	Rated speed	r/min	13.8	9,3	8.4	5.6	4.7	23					
DME44S6HP	Rated torque	N-m	0.98	0.98	0.98	0.98	0.98						
å 6DG	The state of the s	oz-in	138.87	138.87	138.87	138.87	138.87						

NOTES

EARBOX

DIMENSIONS Unit mm(inch)

NOTE:

NOTE: data perchases are immissible for either 4-5mm disheritie mounting haves or Meix Grom begoed holes.

4.5mm disheritier mounting holes one prechases are avaitable as short contenting holes one prechases are avaitable as short contenting, above write his motor model and openhox motor numbers concentrally, as in the following assumption. History Shall Meter 4-Gescher.

Price Shall Meter 4-Gescher.

OMEARISHM 8-506 F

Mel X Simm support mounting role type gearticizes are avaitable only on decision, and are supplied only as compared only with motors. When proteining, pricess white model number as a single unit as in the holeswing axiomph. OMEARISH FB

DME4486DGF 110.00 (4.480) HAVE PLATE 4 A standard gave based (abort sequencially) has but holes of 4-form (0.17 his replacements what stand with knot holes of the a standard (date of 2.30 note)

DANESSHIT DURING 1.78 MG

● with 6DGF TYPE GEARBOX MOTOR MODEL DME4486HFP®, DME4486HFP8 G F

318727771	Com	and a				MILTER S	DIRECA	HOORIE	PH & G	EAHB	DX MC	DELE
Model	Gear ratio		5 125		*15 *25		*30	50	75	100	150	T
William I	Rated speed	t/min	720	288	240	144		7.5	-	100	100	180
DME44SSHEP		Nan			1	1727	120	72	48	36	24	20.6
& 50G F	Rated torque	FISURESCA.	0.1		0.27		0.53	0.80	1.2	1.6	2.4	24
a 900 F	THE SHOW IN	QZ-ITI	13.89	30.55	37.50	62.49	74.00	112 07	100 00	200.40	0.77	2.4
Dance and a common	Rated speed	nimin	720	288	man				100.65	222 19	333.29	347.18
DME4486HFPB	Rated torque	The state of the s	100000000	100000000000000000000000000000000000000	240	144	120	72	48	36.3	25.7	21 B
å 6DG F		N-m	0.16	0.35	0.43	0.72	0.85	1.3	1.9	24	24	100
		oz-in-	22.22	2 40 00	CO re	172.00	Jan oc	3,740	1.02	2.4	2.4	2.4
			22.22	40.00	29.1.1	101,38	120,82	180.53	283.86	347.18	347,18	347.16

806

 DIMENSIONS Unit mm(inch) DME44SBDG

NOTE

No. 7 E.; When explaining motions with 80-G gearbours, please well, the motion model and gearbour model ourneers as in the following example.

Molor + Searbox DME4485/FPS + 80G

GEAR RATK)	-		1	2		OLT I	WE	GHT
00 100	(time)	(inca)	(mm)	(inch)	(men)	(incha	lun.	10.
30-150	90.1	3.547	32	1.26	MEXICON	M5X1.969	- 774	10
250+1800	100.1	8,941	42					1.75
word to be a series		0.041	72	1,054	Maxeo	M5X2.360	0.9	1,98

NOTES 1: On models marked with assentates (iii), the direction of the gelaction shall master at an everyward the motor relation direction.

2: In rectallion model number: (iii the reduction calls demonstrator in the position marked with the base alon [] (iii) the solitage in the position marked with

Appendix (E):

General Purpose Type Photo coupler

LITEON

General Purpose Type Photocoupler

LTV-4N25 Series/LTV-4N26 Series LTV-4N27 Series/LTV-4N28 Series 4N25 Series/4N26 Series/4N27 Series/4N28 Series

Features

- Response Time
- TYP,3 μ s at Vc=10V, Ic-2mA, Rt=100 Ω)
- approved (No. E113898)
- TUV approved (No.R9653630)
- -CSA approved (No. CA91533-1)
- FMKO approved (No. 193422)
- NEMKO approved (No. P96103013)
- DEMKO approved (No. 303985)
- SEMKO approved (No. 9646047/01-30)
- IDE approved (No. 094722)
- Options available :
- anada with 0.4"(10.16mm)spacing (M Type)
- -Leads bends for surface mounting(\$ Type)
- Tape and Reel of Type I for SMD(Add"-TA"Suffix)
- Tape and Reel of Type II for SMD(Add"-TA1"Suffix)
- -VDE 0884 approvals (Add*-V*Suffix)

Package Dimensions

*oplications

- interfaces for computers.
- System appliances, measuring instruments.
- Signal transmission between circuits of different potentials and impedances.

Note:

- 1.Year date code.
- 2. 2 digit work week
- 3. Factory code shall be marked (Z: Taiwan, Y: Thalland).
- Model No.: LTV4N25; LTV4N26; LTV4N27; LTV4N28; 4N25; 4N20; 4N27; 4N28.
- 5. All dimensions are in millimeters (inches).
- Tolerance is ± 0.25mm (.010*) unless otherwise noted.
- Specifications are subject to change without notice.

Ordering Information

Part Number	Package	Safety Standard Approval	Application part
125 / 4N25 4N25M / 4N25M 1258 / 4N25S 4N25S-TA / 4N25S-TA 4N25S-TA1 / 4N25S-TA1	6-pin DIP 6-pin (leads with 0.4" spaning) 6-pin (lead bends for surface mount) 6-pin (tape and ned puckaging of type I) 6-pin (tape and real packaging of type II)		LTV 4N2S
-1926 / 4926 -19268 / 4926M -19268 / 49268 -19268 - TA / 49268 - TA -49268 - TA / 49268 - TA 1	6-pin DIP 6-pin (leads with 0.4" spacing) 6-pin (lead bends for surface mount) 6-pin (tape and reel packaging of type I) 6-pin (tape and reel packaging of type II)	SEMKO approved DEMKO approved	LTV 4N26
4N27 / 4N27 4N27M / 4N27M 4N27S / 4N27S 4N27S-TA / 4N27S-TA 4N27S-TA1 / 4N27S-TA1	6-pin DIP 6-pin (leads with 0.4" spacing) 6-pin (lead bends for surface mount) 6-pin (tape and reel packaging of type I) 6-pin (tape and reel packaging of type II)		LTV-4N27
4N28 / 4N28 4N28M / 4N28M 4N28S / 4N28S 4N28S TA / 4N28S-TA 4N28S-TA 1 4N28S-TA 1	6-pin DIP 6 pin (leads with 0.4" spacing) 6-pin (lead bends for surface mount) 6-pin (laps and reel packaging of type i) 6-pin (taps and reel packaging of type ii)		LTV -4N28
4N25-V / 4N25-V 4N25M-V / 4N25M V 4N258-V / 4N255-V 4N25STA-V / 4N25STA-V 4N25STA1-V / 4N25STA1-V	8 pin DIP 8-pin (leads with 0.4° specing) 8 pin (lead bende for surface mount) 8 pin (lead bende for surface mount)	VDE approved.	LTV 4N25
4N26-V / 4N26-V 4N26M-V / 4N26M-V 4N26S-V / 4N26S-V 4N26STA-V / 4N26STA-V 4N26STA1-V / 4N26STA-V	6-pin DIP 6-pin (leads with 0.4° spacing) 6-pin (lead bends for surface mount) 6-pin (tape and reel pockaging of type I) 6-pin (tape and reel packaging of type II)		L1V - 4N26
V4N27-V / 4N27-V - 4N27M-V / 4N27M-V - 4N27S-V 4N27S-V - 7V4N27STA-V 4N27STA-V - TV4N27STA1-V 4N27STA1-V	6-pin DIP 6-pin (leads with 0.4" spacing) 6-pin (lead bonds for surface mount) 6-pin (tape and reel packaging of type I) 6-pin (tape and reel packaging of type II)		LTV -4N27
TV4N28-V / 4N28-V TV4N28M-V / 4N28M-V TV4N28S-V / 4N26S-V TV4N26STA-V / 4N28STA-V TV4N28STA1-V / 4N28STA1-V	6 pin DIP 6-pin (leads with 0.4" spacing) 6 pin (lead bands for surface mount) 6-pin (lane and mel packaging of type II)		LTV - 4N28

Absolute Maximum Ratings

	Parameter				(Ta=:	
	Forward Current		Symbol	Rating	Unit	
Input	Reverse Voltage		+	80	mA	
	Power Dissipation		Vic	6	V	
	Collector-Emitter Voltage		Р	150	mW	
	Collector-Base Voltage		Volo	30	V	
Output		Emitrar Callector Voltage		70	V	
	Collector Current		VECO	7	V	
	Collector Power Dissipation		lo lo	100	mA	
Total Power Dise	otal Power Dissipation			150	mW	
	1 -	Antoni	Ptor	250	mW	
1. Isolation Volta	-	4N25		2,500	1000	
PROPERTY AND	ida	4N26	Van	1,500		
		4N27		1,500	Vess	
Operating Ten	Operating Temperature 4N28			500		
Storage Temporature			Tope	-55-+100	rc	
Soldering Turn			Tess	-55-+150	7	
	R.H. 40 60%		Total	260	2	

AC for 1 minute, R,H. 40 ~ 60% isolation voltage shall be measured using the following method.

(1)Short between anode and cathode on the primary safe and between collector, emitter and base on the secondary safe.

(2)The isolation voltage tester with zero cross circuit shall be used.

7. For 10 seconds.

Electrical/Optical Characteristics

	Parame	eter	Symbol	Min.	Ton	1000	1	(Ta=	
_	Forward Voltage		V=	10000	Тур.	Max.	Unit	Conditions	
photog	Roversa Current		-	-	1.2	1.5	V	l==10mA	
	Terminal Capaciano	0	IR O	-	-	10	#A	VendV	
	Collector	4N25/28/27	Ge	-	50	-	pF	V=0, f=1ld b	
	Dark Current	ATTERIT 4N28			-	50		NA CONTRACTOR	
	Collector-Emitter	4/428			-	100	nA	Vol=10V	
Output	Breakdown Voltage Emitter-Collector		BVcEo	30	-	-	V	b=0.1mA	
	Broakdown Voltage Collector-Base	Broakdown Voltage Collector-Base Broakdown Voltago		7	-	-	٧	ir 10 & A	
4	Breakdown Voltage			70	-	-	v	k=0.1mA	
1	Collector	4N25/26	lc -	2				I=10mA Vca=10V	
2	Current	4N27/28		1		-	mA		
	*1 Current	4N25/26		20	-		-		
BL.	Transfer Ratio	4N27/28	CIR	10	-		%	IF=10mA	
	Collector omitter			10	-	-	WW.	VCE=10V	
	Saturation Voltage		Votesab	-	0.1	0.5	v	li =50mA, ic=2mA	
	Isolation Resistance Floating Capacitonce Response Time (Rise)		R160	5 × 10 ¹⁰	1 × 10 ¹¹	-		THE PARTY OF THE P	
			C:		1.0		Ω	DG500V, 40-60% R.F	
			te .	237	3		pF	V=0, f=1MHz	
	Response Time (Fall)		tr		3		11.9	Vol=10V, Ros- on	
-	R= 10 × 100%		-		3	-	41.5	Rc=100 Ω, lo 2mA	

T CIR= 10 × 100%

PHOTOCOUPLER

Typical Electrical/Optical Characteristic Curves 25°C Ambient Temperature Unless Otherwise Noted)

Fig.1 Forward Current vs. Ambient Temperature

Fig.3 Forward Current vs. Forward Voltage

Fig. 5 Collector Current vs.
Collector-emitter Voltage

Fig.2 Collector Power Dissipation vs. Ambient Temperature

Fig.4 Current Transfer Ratio vs. Forward Current

Fig. 8 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.7 Collector-emitter Saturation Voltage vs.
Ambient Temperature

Fig.9 Response Time vs. Load Resistance

Fig. 11 Collector-emitter Saturation Voltage vs. Forward Current

Fig.8 Collector Dark Current vs. Ambient Temperature

Fig.10 Frequency Response

Test Circuit for Response Time

Test Circuit for Frequency Response

Appendix (F):

DUAL FULL-BRIDGE DRIVER L298

DUAL FULL-BRIDGE DRIVER

- OPERATING SUPPLY VOLTAGE UP TO 46 V
- TOTAL DC CURRENT UP TO 4 A
- LOW SATURATION VOLTAGE
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15aad Multiwatt and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver deagred to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stapping motors. Two enable inputs are provided to mable or disable the device independently of the inact signals. The emitters of the lower transistors of each bridge are connected together and the corremonding external terminal can be used for the con-

nection of an external sensing resistor. An additional supply input is provided so that the logic works at a lower voltage.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		
V ₃	Power Supply	Value	Uni
Vss	Logic Supply Voltage	50	V
V _I ,V _m	Input and Enable Voltage	7	V
lo	Peak Output Current (each Channel) - Non Repetitive (t = 100us)	-0.3 to 7	V
Vseos	-Repetitive (80% on -20% off; t _{on} = 10ms) -DC Operation Sensing Voltage	2.5	AAA
Plut	Total Power Dissipation (Total = 75°C)	-1 to 2.3	V
Тор	Junction Operating Temperature	25	W
Tatg. T	Storage and Junction Temperature	-25 to 130	10
-		-40 to 150	°C

PIN CONNECTIONS (top view)

Symbol	Parameter		0		
Rin Jease		744	Power8020	Multiwatt15	Unit
10.	The state of the s	Max.	-	3	°C/W
Min jamb	Thormal Resistance Junction-ambient	Max	13 (*)	35	°C/W

Mounted on aluminum aubstrate

PN FUNCTIONS (refer to the block diagram)

MW.15	PowerSO	Name	
1,15	2:19	Sonse A: Sense B	Function
22		Const A, Sense B	Between this pin and ground is connected the sense resistor to control the current of the load.
2,3	4;5	Out 1; Out 2	Outputs of the Bridge A; the current that flows through the load connected between these two pins is monitored at pin 1.
4	6	V ₃	TOUGHT VOITAGE for the Polyme Out of the
			A non-inductive 100nF capacitor must be connected between this pin and ground.
5:7	7;9	Input 1; Input 2	TTL Competible Inputs of the Bridge A.
6:11	8;14	Enable A; Enable B	The Overspeaking inputs of the Bridge A.
		- THAING B	TTL Competible Enable Input: the L state disables the bridge A (chable A) and/or the bridge B (enable B)
8	1,10 11,20	GND	Ground
9	12	VSS	Supply Voltage Ave II
10: 12		10/8/25	Supply Voitage for the Logic Blocks. A100nF capacitor must be connected between this pin and ground.
	13;15	Input 3: Input 4	TTL Compatible Inputs of the Bridge B.
3, 14	18;17	Out 3; Out 4	Outputs of the Date of the Dat
	0.40		Outputs of the Bridge B. The current that flows through the load connected between those two pins is monitored at pin 15.
_	3;18	N.C.	Not Connected

ELECTRICAL CHARACTERISTICS (Vs = 42V; Vss = 5V, Tj = 25°C; unless otherwise specified)

Symbo	Luigmeter	Test Condi			-	The state of the s	
Va	Supply Voltage (pin 4)	Operative Condition	RIOIIE	Min.	Тур.	Max.	Uni
Vss	Logic Supply Voltage (pin 9)	Chorona Coudinou	_	VH 125		46	V
ls.	Quiescent Supply Current (pin 4)	V _{en} = H, J _L = 0		4.5	5	7	V
			V; = L V; = H		13 50	22 70	mA mA
iss	Quiescent Current from Vss (pin 9)	V _{sr} , ≈ L	V = X			4	mA
	(bin 9)		Vi = L Vi = H		24	36 12	mA
Vi	7	Ven = L	V _i = X		-		mA
	Input Low Voltage (pins 5, 7, 10, 12)			-0.3		6 1.5	mA V
VH	Input High Voltage (pins 5, 7, 10, 12)			2.3		VSS	V
le.	Low Voltage Input Current (plns 5, 7, 10, 12)	V ₁ = L				-10	μΑ
les	High Voltage input Current (pins 5, 7, 10, 12)	VI = H ≤ V _{SS} –0.6V			30	100	μА
Ven = L	Enable Low Voltage (pins 6, 11)					-	mr.
$V_{\text{det}} = H$	Enable High Voltage (pins 6, 11)			-0.3	-	1.5	v
Im = L	Low Voltage Enable Current	Ven = L		2.3		Vss	V
	(pins 6, 11)	ver - L				-10	μA
len = H	High Voltage Enable Current (pins 6, 11)	$V_{ext} = H \le V_{SS} - 0.6V$			30	100	μА
CEsat (H)		L = 1A		0.95	1.35	1.7	V
CCsat(L)	Sink Saturation Voltage	= 2A = 1A (5)	-	0.85	2	2.7	٧
VCErel	Total Dec	L=2A (5)		2.00	1.2	1.6	V
		L = 1A (5) L = 2A (5)		1.80		3.2	V
Visens 3	Sensing Voltage (plns 1, 15)	1-1		4 (4)		4.9	V
			-	-1 (1)		2	V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	I			
Tr (Vi)	Source Current Turn-off Delay	PERMITTED AND ADDRESS OF THE PERMITTED ADDRESS OF THE PERMI	Min.	Тур.	Max.	Uni
T2 (V)	Source Current Fall Time			1.5		μs
To (Vi)	Source Current Turn-on Delay			0.2		μs
T4 (Vi)	Source Current Rise Time			2		μs
Ts (V)	Sink Current Turn-off Delay			0.7		115
Ts (V)	Sink Current Fall Time	0.5 V ₁ to 0.9 l _L (3); (4)		0.7		jis
T+ (V)	Sink Current Turn-on Delay	0.9 L to 0.1 L (3); (4)		0.25		μs
Ta (Vi)	Sink Current Rise Time	0.5 V ₁ to 0.9 I _L (3); (4)		1.6		из
fc (Vi)	Commutation Frequency	0.1 L to 0.9 L (3): (4)		0.2		us
T ₁ (Ven)		IL = 2A		25	40	KHz
T ₂ (Ven)	Source Current Turn-off Delay	0.5 Ven to 0.9 it (2); (4)		3		date.
Ta (Vec)	Source Current Fall Time	0.9 (_ to 0.1 (_ (2); (4)		1		дв
-	Source Current Turn-on Delay	0.5 Ven to 0.1 ft (2); (4)		0.3	-	he
I ₄ (V _{en})	Source Current Risc Time	0.1 /L to 0.9 /L (2): (4)		0.4		ms
THE RESERVE AND ADDRESS OF THE PARTY OF THE	Sink Current Turn-off Delay	0.5 Ven in 0.9 L (3): (4)			-	μs
	Sink Current Fall Time	0.8 ft to 0.1 ft (3): (4)		22	-	LLS
	Sink Current Turn-on Delay	0.5 V _{en} to 0.9 l _L (3); (4)		0.35		μs
a (Veg)	Sink Current Rise Time	0.1 lt to 0.9 lt (3); (4)	+	0.25		из
200	oltepe can be 1 V feet or 5	7.15.3.7		0.1		μs

^{1) 1)}Sensing voltage can be -1 V for t \le 50 μ sec, in sleady state V $_{ees}$ min ≥ -0.5 V. 3) See fig. 2. 3) See fig. 4. 4) The toed must be a pure resistor.

Figure 1: Typical Saturation Voltage vs. Output Current.

Figure 2: Switching Times Test Circuits.

Note: For INPUT Swittning, set EN = H For ENABLE Switching, set IN = H

Figure 3 : Source Current Delay Times vs. Input or Enable Switching.

Figure 6 : Bidirectional DC Motor Control.

Figure 7: For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4

LPPLICATION INFORMATION (Refer to the block diagram)

11. POWER OUTPUT STAGE

The L298 integrates two power output stages (A; B). the power output stage is a bridge configuration and its outputs can drive an inductive load in common or differenzial mode, depending on the state of the inputs. The current that flows through the load somes out from the bridge at the sense output; an external resistor (RsA; Rss.) allows to detect the inensity of this current.

12 INPUT STAGE

Each bridge is driven by means of four gates the input of which are In1; In2; EnA and In3; In4; EnB. The in inputs set the bridge state when The En input shigh; a low state of the En input inhibits the bridge. All the inputs are TTL competible.

2 SUGGESTIONS

A non inductive capacitor, usually of 100 nF, must be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. When the large capacitor of the power supply is too far from the IC, a second smaller one must be foreseen near the

The sense resistor, not of a wire wound type, must be grounded near the negative pole of Vs that must be near the GND pin of the I.C.

Each input must be connected to the source of the driving signals by means of a very short path.

Turn-On and Turn-Off: Before to Turn-ON the Supply Voltage and before to Turn it OFF, the Enable inbut must be driven to the Low state.

3. APPLICATIONS

Fig 6 shows a bidirectional DC motor control Schematic Diagram for which only one bridge is needed. The external bridge of dlodes D1 to D4 is made by four fast recovery elements (trr < 200 nsec) that must be chosen of a VF as low as possible at the worst case of the load current.

The sense output voltage can be used to control the current amplitude by chopping the inputs, or to provide overcurrent protection by switching low the en-

The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must

When the repetitive peak current needed from the load is higher than 2 Amps, a paralleled configuration can be chosen (See Fig.7).

An external bridge of diodes are required when inductive loads are driven and when the inputs of the IC are chopped; Shottky diodes would be preferred.

solution can drive until 3 Amps In DC operation and until 3.5 Amps of a repetitive peak current.

The Fig 8 it is shown the driving of a two phase bipolar sepper motor; the needed signals to drive the interest of the L298 are generated, in this example, the IC L297.

Fig 9 shows an example of P.C.B. designed for the application of Fig 8.

Figure 8 : Two Phase Bipolar Stepper Motor Circuit.

Fig 10 shows a second two phase bipolar stepper motor control circuit where the current is controlled by the I.C. L6506.

ircuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.

Figure 9 : Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).

Figure 10: Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.

CIM.		mm			Inch	
	MIN.	TYP.	MAX	MIN.	TYP.	MAX
A.			5			0.197
8			2.65			0.104
C			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
.G1	17.53	17.78	18.03	0.690	0.700	0.710
H	19.6			0.772		
112			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
11	21.7	22.1	22.5	0.854	0.870	0.886
12	17.65		18.1	0.695		0.713
1.3	17.25	17.5	17.75	0.679	0.689	0.699
14	10.3	10.7	10.9	0.406	0.421	0.429
17	2.65		2.9	0.104		0.114
M	4.25	4.55	4.85	0.167	0.179	0.191
M	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102
\$1	1.9		2.6	0.075		0.102
Dia1	3.85		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX	MIN.	TYP.	MAX
A			5			0.19
В			265			0.10
C			1.6			0.063
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.14	1.27	1.4	0.045	0.050	0.058
G1	17,57	17.78	17.91	0.692	0.700	0.705
H1	19.6			0.772		
H2			20.2			0.795
L		20.57			0.810	
L1		18.03			0.710	
12		2.54			0.100	
1.3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L5		5.28			0.208	
L6		2.38			0.094	
1.7	2.65		2,9	0.104		0.114
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

DIM.		mm			Inch	
Oim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX
A			3.6			0.142
a1	0.1		0.3	0.004		0.012
a2			3.3			0.130
a3	.0		0.1	0.000		0.004
b	0.4		0.53	0.018		0.021
	0.23		0.32	0.009		0.013
D(1)	15.8		16	0.622		0,630
D1	9.4		9.8	0.370		0.386
E	13.9		14.5	0.547		0.570
.0		1.27			0.050	
e3		11.43			0.450	
E1 (1)	10.9	-	11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
G	0		0.1	0.000		0.004
Н	15.5		15.9	0.610		0.626
h			1.1			0.043
L	0.8		1.1	0.031		0.043
N			10" (1	max.)		
S			8° (n	nas.)		
T		10			0.394	

OUTLINE AND MECHANICAL DATA

ternation furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No terms is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this particular are subject to change without notice. This publication supersedes and replaces ull information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written corroval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

\$2000 STMicroelectronics — Printed in Italy — All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysis - Melta - Morocco Singapore - Spain - Swedon - Switzerland - United Kingdom - U.S.A.

http://www.st.com

Appendix (G):

Semiconductor technical data

SEMICONDUCTOR TECHNICAL DATA

KIA7805AP/API~ KIA7824AP/API

BIPOLAR LINEAR INTEGRATED CIRCUIT

THREE TERMINAL POSITIVE VOLTAGE REGULATORS W. 6V. 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V.

EATURES

- Suitable for C-MOS, TTL. the Other
- Digital IC's Power Supply.
- Internal Thermal Overload Protection
- internal Short Circuit Current Limiting.
- Output Current in Excess of 1A.
- Satisfies IEC 65 Specification,
- international Electronical Commission),

AXIMUM RATINGS (Ta=25°C)

CHARA	CTE	RISTIC	SYMBOL	RATING	UNIT	
best Victoria	111111111111111111111111111111111111111	A7806AP/API~ A7815AP/API		35		
hput Votage		A7818AP/API~ A7824AP/API	Vin	40	X	
Power Dissipati	on (Te=25°C	Ph	20.8	W	
Without Heats		KIA780GAPI~ KIA7824API	P ₃	2,0	W	
Operating Junction Temperature		Ti	-30~(50	c		
Tage Temper	Terrage Temperature			-35~150	70	

TS317

3-Terminal Adjustable Output Positive Voltage Regulator TO-263 TO 262 SOT 223

TO-228

123

Pin assignment: Adjustable

2. Output

3. Input

(Heatsink surface connected to pin 2)

Output Voltage Range From 1.25V to 37V Output Current up to 1.5A

General Description

TS317 is adjustable 3-terminal positive voltage regulator capable of supplying in excess of 1.5A over an output sage range of 1.25 V to 37 V. This voltage regulator is exceptionally easy to use and require only two external resistors set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation.

TS317 is offered in 3-pin TO-220, TO-263, TO-252 and SOT-223 package.

eatures

- Output current up to 1.5A
 - * TO-220/TO-283 for 1.5A
- 1TO-252/SOT-223 for 500mA
- Output Adjustable between 1.25 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting Constant with
- Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Eliminates Stocking Many Fixed Voltages
- Output voltage offered in 4% tolerance

mering Information

Part No.	Operating Temp.	Package	
3317CZ		- 0	
5317CM		TO-220	
3317CP	-20 ~ +150°C	TO-283	
3317CW	20 - F100 C	TO-252	
		SOT-223	

Standard Application

Vout = 1.25 V * (1 + R2/R1) + ladj * R2

Since I_{Aq} is controlled to less than 100 µA, the error associated with this term is negligible in most applications. A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

- " = Cin is required if regulator is located an appreciable distance from power supply filter.
- = Co is not needed for stability; however, it does improve transient response.

Appendix (H):

LCD GDM1602K

GDM1602K

SPECIFICATIONS OF LCD MODULE

catures

5x8 dots with cursor

Bult-in controller (KS0066U or equivalent)

Easy interface with 4-bit or 8-bit MPU

+5V power supply (also available for =3.0V)

1/16 duty cycle

N.V. optional

BKI. to be driven by pin1, pin2, or pin15, pin16 or A, K

tline dimension

solute maximum ratings

Item	Symbol		Standard		Unit
oltage	VDD-Vss	0	-	7.0	Can
rage	VIN	VSS	-	VDD	V
ng temperature range	VOP	0		+50	
emperature range	VST	-20	-	+60	Ü

perature range is available

storage temperature as -20~+70/-30~+80°C

lick diagram

merface pin description

Symbol	External connection	Function
Vas		Signal ground for LCM (GND)
Vnn	Power supply	Power supply for logic (+5V) for LCM
Ve	The state of the s	Contrast adjust
RS	MPU	Register select signal
R/W		Read/write select signal
E	MPU	Operation (data read/write) enable signal
DB0-DB3	MPU	Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.
DB4-DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU
LED+	LED BKL power	Power supply for BKL "A" (+4.2V) Power supply for BKL "K" (GND)
	V _{SS} V _{DD} V ₀ RS R/W E DB0-DB3 DB4-DB7	Connection

atrast adjust

LCD Driving voltage

ptical characteristics

type display module (Ta=25°C, VDD=5.0V)

Item	Symbol	Condition	Miller	770	_	
angle	8		Min.	Тур.	Max.	Unsi
	-	Cc≥4	-25	-	-	
	Ф	Cig- 4	-30	12.0	20	deg
trast ratio	C,			-	.50	
conse time (rise)	T.		-	2		
ponse time (fall)	T	-	- 4	120	150	
(tat)	Ir.	-		120	150	ms

N type display module (Ta=25°C, VDD-5.0V)

Item	Symbol	Condition	Min.	70		
nutng angle	8			Тур.	Max.	Unit
	4	Ci>2	-60	-	35	
- 100 Car	Φ		-40		40	deg
trast ratio	C				40	
conse time (nse)	T		-	6	-	
ponse time (fall)	70	-	-	150	250	
True (state)	- Iz	-		150	250	ш

ectrical characteristics

C characteristics

Parameter	Symbol	Conditions	1 00	- CO.		
y voltage for LCD	VDD-Vo	Ta = 25°C	Min.	Тур.	Max.	Unit
voltage	Vop	18-230	-	4.6	-	V
by current	IDD	Ton-2533 11 5 5 5	4.7	- 5	5.5	4.
leakage current	Inco	Ta=25°C, Van=5.0V		1.5	2.5	mA
level input voltage	VIII		-		1.0	uA
ivel input voltage	Vit	Twice initial value or less	2.2	2	Von	
evel output voltage	Vos	LOH=-0.25mA	0		0.6	
evel output voltage	Vot	LOH=1.6mA	2.4	-	-	V
ight supply voltage	VF	TOTAL TORING	-	-	0.4	**
	-		+	4.2	4.6	

d cycle (Ta-25°C, VDD=5.0V)

Parameter	Symbol	Test pin	5.00	-		
e cycle time		LUSE PHIL	Min.	Тур.	Max.	Unit
pulse width	Tc .	E	500		-	- 100
rise/fall time	tw .		300	-		
/W setup time	tr, tr			*	25	
W address hold time	Tsu	RS; R/W	100	-	-	ns
lata output delay	ti.	RS; R/W	10			HS
lata hold time	Id	DB0-DB7	60		90	
satur nota tante	ton	DUN-DD/	20		70	

Title cycle (Ta=25°C, VDD-5.0V)

Parameter	Symbol	Test pin	7.0	785		
ble cycle time	Ť-	- was berr	Min.	Тур.	Max.	Unit
bic pulse width	+		500		-	
ble rise/fall time	Tw	E	300		-	
R/W setup time	b, tr		-	-	25	
R/W address hold time	tent	RS, R/W	100			
	thi	RS; R/W	10			ns
d data output delay	Bug.	Faria man	60		-	
d data hold time	th2	DB0-DB7		-	-	
1		3/9	10		-	

rite mode timing diagram

lead mode timing diagram

struction description

evercome the speed difference between the internal clock of KS0066U and the MPU clock, KS0066U performs emal operations by storing control in formations to IR or DR. The internal operation is determined according to the from MPU, composed of read/write and data bus (Refer to Table7). anictions can be divided largely into four groups:

4/9

- 1) KS0066U function set instructions (set display methods, set data length, etc.)
- Address set instructions to internal RAM 2)
- 3) Data transfer instructions with internal RAM

address of the internal RAM is automatically increased or decreased by 1.

during internal operation, busy flag (DB7) is read "High",

Busy flag check must be preceded by the next instruction.

struction Table

eruction	-	-	-		1	nstru	ction	code					1	
	RS	R	74	DB.	DE	33 1 1 1 1 Sept.	THE REAL PROPERTY.		R D	HE D	BD	В	Description	Execution time (fosc-
Tiey	0	()	0	0	0	0	0	0	(1	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	270 KHZ 1.53ms
me mode	0	0		0	0	0	0	0	0	1	-		Set DDRAM address to "90H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
play ON/	0	0		0	0	0	0	0	1	1/1	SF	I	Assign cursor moving direction And blinking of entire display	39us
control	0	0	1	0	0	0	0	1	D	C	В		Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
ber or bey shift	0	0	1		0	0	1	8/0	R/1	-		1	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
OGRAM	0	0	0		0	1	DL	N	F	-	-	1	Set interface data length (DL: 8- Bit/4-bit), numbers of display Line (N: =2-line/1-line) and	396s
Tess	0	.0.	0		1	AC5	AC4	AC3	AC2	ACI	ACC	11.5	Display font type (F: 5x11/5x8) Set CGRAM address in address Counter	20
DRAM less	0	0	1	A	.C6	AC5	AC4	AC3	AC2	ACI	AC0	1 5	set DDRAM address in address	39 _{us}
d busy and ess data to	0	1	BF	A	C6	AC5	AC4	AC3	AC2	ACI	AC0	V C B	Whether during internal Decration or not can be known by reading BF. The contents of decress counter can also be read.	39us Ous
ess data	1	0	D7	D	6	D5	D4	D3	D2	DI	Do	l W	rite data into internal RAM DDRAM/CGRAM).	43us
RAM	1	1	D7	D	6	D5	D4	D3	D2	DI	D0	R	ead data from internal RAM DDRAM/CGRAM).	43us

When an MPU program with checking the busy flag (DB7) is made, it must be necessary 1/2fosc is essary for executing the next instruction by the falling edge of the "E" signal after the busy flag (DB7) to "Low".

entents

1) Clear display

130	K/W	DB7	DB6	TAUS	Tara	The term			
0	R/W 0	0	1200	1703	DB4	DB3	DB2	DR1	Tano
	- 0	0	0	0	0	0	0	1701	DBO
					- 10	U	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM coss to "00H" into AC (address counter)

Return cursor to the original status, namely, bring the cursor to the left edge on the fist line of the

Make the entry mode increment (I/D="High").

2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	LADO

Return home is cursor return home instruction.

Set DDRAM address to "00H" into the address counter.

Return cursor to its original site and return display to its original status, if shifted.

Contents of DDRAM does not change.

3) Entry mode set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0
0	0	0	0	n	0	-		221	
-	-	U	U	U	0	0	0	I/D	SH

the moving direction of cursor and display.

I/D; increment / decrement of DDRAM address (cursor or blink)

1/D="high", cursor/blink moves to right and DDRAM address is increased by 1

"Low", cursor/blink moves to left and DDRAM address is increased by 1.

RAM operates the same way as DDRAM, when reading from or writing to CGRAM.

SII: shift of entire display

DDRAM read (CGRAM read/write) operation or SH-"Low", shifting of entire display is not somed. If SH ="High" and DDRAM write operation, shift of entire display is performed according to value (I/D-"high", shift left, I/D="Low". Shift right).

4) Display ON/OFF control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DRO
0	0	0	0	0	0	1	D	C	DDO
						1961	D		D

arol display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

Em D="High", entire display is turned on.

D="Low", display is turned off, but display data remains in DDRAM.

C: cursor ON/OFF control bit

en D="High", cursor is turned on.

in D-"Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor blink ON/OFF control bit

== B="High", cursor blink is on, which performs alternately between all the "High" data and display exters at the cursor position

B-"Low", blink is off.

5) Cursor or display shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0
0	0	0	0	0	1	S/C	D/I	DDI	DEG

thing of right/left cursor position or display without writing or reading of display data.

instruction is used to correct or search display data.

ling 2-line mode display, cursor moves to the 2nd line after the 40th digit of the 1st line.

that display shift is performed simultaneously in all the lines.

en display data is shifted repeatedly, each line is shifted individually.

en display shift is performed, the contents of the address counter are not changed.

inft patterns according to S/C and R/L bits

S/C	R/L	Operation
0	0	Shift cursor to the left, AC is decreased by 1
0	1	Shift cursor to the right, AC is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display
1		Shift all the display to the right, cursor moves according to the display

6) Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0
0	0	0	0	1	DL	N	F		2020

DL: Interface data length control bit

hen DL="High", it means 8-bit bus mode with MPU.

hen DL-"Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus

en 4-but bus mode, it needs to transfer 4-bit data twice.

N: Display line number control bit

en N="Low", I-line display mode is set.

hen N="High", 2-line display mode is set.

F: Display line number control bit

hen F="Low", 5x8 dots format display mode is set.

en F="High", 5x11 dots format display mode.

7) Set CGRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	ACO

CGRAM address to AC.

enstruction makes CGRAM data available from MPU.

3) Set DDRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

DDRAM address to AC.

instruction makes DDRAM data available form MPU.

an 1-line display mode (N=LOW), DDRAM address is form "00H" to "4FH". In 2-line display mode High), DDRAM address in the 1st line form "00H" to "27H", and DDRAM address in the 2nd line is

"40H" to "67H".

9) Read busy flag & address

De	DAM.	13.13.00	mn.	2000		_		-	
L/O	R/W	DB/	DB6	DB5	DB4	DB3	DB2	DBI	DR0
0	1	DT	1016	A 175.5	101	A 474		221	17170
9	- 1	DF	ACO	ACS	AC4	AC3	AC2	ACI	ACO

instruction shows whether KS0066U is in internal operation or not

the resultant BF is "High", internal operation is in progress and should wait BF is to be LOW, which by the nest instruction can be performed. In this instruction you can also read the value of the address unter.

10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DRI	DBO
1	0	D7	D6	T35	Dat	D2	D2	LAIN	DBU
		201	100	00	1.14	135	D2	DI	D0

the binary 8-bit data to DDRAM/CGRAM

selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction DRAM address set, CGRAM address set).

M set instruction can also determine the AC direction to RAM.

ther write operation. The address is automatically increased/decreased by 1, according to the entry

11) Read data from RAM

RS R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DBO
1 1	D7	D6	D5	D4	D3		DI	

in binary 8-bit data from DDRAM/CGRAM

The selection of RAM is set by the previous address set instruction. If the address set instruction of AM is not performed before this instruction, the data that has been read first is invalid, as the direction AC is not yet determined. If RAM data is read several times without RAM address instructions set fire, read operation, the correct RAM data can be obtained from the second. But the first data would be a treet, as there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address instruction, it also transfers RAM data to output data register.

After read operation, address counter is automatically increased/decreased by 1 according to the mode.

After CGRAM read operation, display shift may not be executed correctly.

OTE: In case of RAM write operation, AC is increased/decreased by 1 as in read operation.

At this time, AC indicates next address position, but only the previous data can be read by the read

isplay character address code:

Display position	1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	16
DDRAM address	00	0.1	(12	03	04	05	06	07	0.8	730	OA	/HE	OB	AFN	0.72	0.77
DDRAM address	40	41	42	43	44	45	46	47	48	49	4A	4B	40	4D	AE	4E

andard character pattern

Lerow Star # 186e	PARTY OF	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	mar	1110	
XXXX0000	CG RAM (1)			0	a	P	1	P				-	9	=	ot	p
xxxx0001	(8)		!	1	A	Q	a	9			0	P	7	4	ä	q
***********	(3)		11	2	B	R	Ь	r			Г	1	ıŋ	×	B	0
****0011	(4)		#	3	C	5	C	s			_	ゥ	亍	E	8	800
xxxx0100	(5)		\$	4	D	T	d	t				I	ŀ	t	μ	25
****0101	(6)		%	5	E	U	e	u				7	月	1	G	ü
XXXX0110	(2)		&	6	F	Ų	f	V			ラ	Ħ	-	3	p	Σ
****0111	(8)		7	7	G	W	9	w			7	#	Z	5	9	π
XXXX1000	(1)			8	H	X	h	×			1	2	末	ij	5	×
****1001	(2))	9	I	Y	i	9			0	7	1	ı,	-1	y
O101XXX	(3)		*	=	J	Z	j	z			I					Ŧ
xxx1011 ((4)		+	5	K		k	{			+	#	Eli		*	5
XXX1100	(5)		,			¥	1	I			-	7	יוכ	,	1	7
***1101 (8)	,	- :	=	M]	η	}			1	7	1	,	E.	-
***1110 (7)			>1	4	1	7	>		:	3 1	2:	t, '		ก	
***1111 (I	8)	-	11	? (1	7	6		-	9 5		7 0	1	5 1	

9/9

Appendix (I):

PIC18F4550 Microcontroller

PIC18F2455/2550/4455/4550

28/40/44-Pin, High-Performance, Enhanced Flash, USB Microcontrollers with nanoWatt Technology

Universal Serial Bus Features:

- · USB V2.0 Compliant
- Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- · Supports up to 32 Endpoints (16 bidirectional)
- · 1-Kbyte Dual Access RAM for USB
- On-Chip USB Transceiver with On-Chip Voltage Regulator
- · Interface for Off-Chip USB Transceiver
- Streaming Parattel Port (SPP) for USD streaming transfers (40/44-pin devices only)

Power-Managed Modes:

- Run: CPU on peripherals on
- Idle: CPU off, peripherals on
- · Sleep: CPU off, peripherals off
- Idle mode currents down to 5.8 µA typical
- · Sleep mode currents down to 0.1 µA typical
- · Timer1 Oscillator, 1.1 μA typical, 32 kHz, 2V
- · Watchdeg Timer, 2.1 µA typical
- · Iwo-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Four Crystal modes, Including High Precision PLL for USB
- · Two External Clock modes, up to 48 MHz
- · Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 & 32 kHz
- Dual Oscillator options allow microcontroller and USB module to run at different clock speeds
- Fail-Safe Clock Mondon
 - Allows for safe shutdown if any clock stops

Peripheral Highlights:

- High-Current Sink/Source: 25 mA/25 mA
- · Three External Interrupts
- Four Timer modules (Timer0 to Timer3)
- Up to 2 Capture/Compare/PWM (CCP) modules.
 - Capture is 16-bit, max, resolution 5.2 ns (Tcy/16)
 - Compare is 15-bit, max resolution 83.3 ns (Tcv)
 - PWM output: PWM resolution is 1 to 10-bit
- Enhanced Capture/Compare/PWM (ECCP) module.
- Multiple output modes
- Selectable polarity
- Programmable dead time
- Auto shutdown and auto-restart
- · Enhanced USART module:
- LIN bus support
- Master Synchronous Serial Port (MSSP) module supporting 3-wire SPI (all 4 modes) and PCTM Master and Stave modes
- 10-bit, up to 13-channel Analog-to-Digital Converter module (A/D) with Programmable Acquisition Time
- Dual Analog Comparators with Input Multiplexing

Special Microcontroller Features:

- C Compiler Optimized Architecture with optional Extended instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Molical
- Flash/Data EEPROM Retention: > 40 years
- Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Walchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Programmable Code Profestion
- Single-Supply 5V In-Circuit Serial
- Programming™ (ICSP™) via two pins
- In-Circuit Debug (ICD) via two pins
- Optional dedicated ICD/ICSP port (44-pin devices only)
- Wide Operating Voltage Range (2 0V to 5.5V)

	Prog	ram Memory	Data	Data Memory		Value -			M	ssp	R 7	in 8	
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	ю	IO A/D (ch)	(PWM)	SPP	SPI	Muster 1 ³ CTM	EAUSART	Compara	Timors 8/16-Bit
PIC18F2455	24K	12288	2048	256	24	10	2/0	No	Y	y	1	2	1/3
PIC18F2550	32K	18384	2048	258	24	10	2/0	No	Y	Y	1	2	1/3
PIC18F4455	24K	12288	2048	256	35	13	1/1	Yes	Y	Ÿ	1	2	1/3
PIC18F4550	32K	16384	2048	258	35	13	1/6	Yes	Y	Y	1	2	463

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS

Pin Name	PI	n Num	ber	Pin	Buffer	
777.758115	PDIP	QFN	TOFP	Туре	Type	Description
MCLR/VPP/RE3 MCLR VPP RE3	1	18	18	1 P	\$T ST	Master Clear (input) or programming voltage (input) Master Clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input Digital input.
OSC1/CLKI OSC1 CLKI OSC2/CLKO/RAS	13	32	30	1	Analog Analog	Oscillator crystal or external clock input Oscillator crystal input or external clock source input
OSC2 CLKO	14	33	31	0	- -	Oscillator crystal or clock output Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate. General purpose I/O pin.

Legend: TTI = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

= Input

O - Output

P

= Power Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	P	in Num	ber	Pin	Buffer	IPTIONS (CONTINUED)
	PDIP	QFN	TOFP	Туре	Туре	Description
RAO/ANO RAO ANO	2	19	19	No	T I L Analog	PORTA is a bidirectional I/O port Digital I/O, Analog input 0.
RAI/AN1 RA1 AN1	3	20	20	1/0	TTL	Digital I/O.
RAZ/ANZ/VREFL/ CVHEF	4	21	21	1	Analog	Analog input 1.
RA2 AN2 VREF CVREF				1	Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input.
RA3 AN3 VREF+	5	22	22	1/0	TTL Analog	Analog comparator reference output Digital I/O. Analog input 3
A4/T0CKI/C1OUT/ CV	6	23	23	1	Analog	A/D reference voltage (high) Input
RA4 TOCKI C1QUT RCV				10	ST ST TTL	Digital I/O. Timer© external clock input. Comparator 1 output.
A5/AN4/SS/ LVDIN/C20UT RA5	7	24	24			External USB transceiver RCV input.
AN4 SS HEVDIN C2OUT			11		TTL Analog TTL Analog	Digital I/O. Analog input 4. SPI slave select input High/Low-Voltage Detect input. Comparator 2 output.
egend: TIL = TTL c	-	=	-	-		See the OSC2/CLKO/RA8 pin.

ST = Schmitt Trigger input with CMOS levels | | = Input

O = Output

P = Power Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS IC

Pin Name		Pin I	lumb	er	Pin		RIPTIONS (CONTINUED)
	PD	IP C	FN	TQFP	Туре	100000000000000000000000000000000000000	701
RB0/AN12/INTO/ FLT0/SDI/SDA	33		9	8			PORTB is a bidirectional I/O port. PORTB can be softwar programmed for internal weak pull-ups on all inputs.
RB0 AN12			- 1		1/0	TTL	Digital I/O
FLTO SDI					1	Analog ST ST	External interrupt 0 Enhanced PWM Fault invertige on a
SDA		1			1/0	ST	SPI data in. I ² C ^m data I/O
RBI/ANTO/INTI/SCK/ SCL	34	10	3	9			√ wind ger
AN10 INT1 SCK			1		VO.	TTL SolenA ST	Digital I/O: Analog input 10. External interrupt 1
SCI	1	1	18		1/0	ST	Synchronous serial clock investor to a con-
RB2/AN8/INT2/VMO RB2	35	11		10	110		serial clock input/output for I*C mode
ANS INT2					10	Analog	Digital I/O. Analog Input 8.
VMO					6	ST	External internal 2
RB3/AN9/CCP2/VPO RB3	36	12	1	1			External USB transceiver VMO output.
AN9 CCP2(1) VPO			1		0 4	TTL Inelog	Digital I/O. Analog input 9, Capture 2 input/Capa
RB4/AN11/KBIO/CSSPP	37	14	14		0	-	Capture 2 input/Compare 2 output/PWM 2 output External USB transceiver VPO output
RB4 AN11						TTL	Digital I/O
KBIQ CSSPP	1		P			nalog TTL	Analog input 11, Interrupt-on-change pin.
B5/KBH/PGM	38	15	15	0	1	-	SPP chip select control culput.
RB5 KBH			1.15	1/0		m.	Digital I/O
PGM BB/KBI2/PGC				1/0		ST	Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB#	39	16	15	1/0		-	
KBI2 PGC				1	1	TL	Digital I/O Interrupt on-change pin.
R87	40	17	17	1/0		21	In-Circuit Debugger and ICSP programming clock pin
KBi3 PGD				1/0	1	TL I	Digital I/O. Interrupt on-change pin
gend: TTL = TTL con	nestilde.	later and	-	1/0	S	1	In-Circuit Debugger and ICSP programming data pm. S = CMOS compatible input or output

CMOS = CMOS competible input or output

ST = Schmitt Trigger input with CMOS levels I
O = Output

= Input

- Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPR1 is set and the DFBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (C

Pin Name	P	in Num	ber	Pin	Buffer	IPTIONS (CONTINUED)
	PDIP	QFN	TOFF	Туре		Description
RC0/T10SG/T13CKI	15					PORTC is a bidirectional I/O port.
RC0	15	34	32	Turn.	100	
T1080				10	81	Digital I/O.
TI3CKI				0	ST	Timer1 oscillator output.
RC1/T1OSI/CCP2/ UOE	16	35	35		21	Timer1/Timer3 external clock input
RC1				1/0	ST	Planter
TIOSI				1	CMOS	Digital I/O.
CCP2(2)				1/10	ST	Timer1 oscillator input.
UOE				0	-	Capture 2 Input/Compare 2 output/PWM 2 output External USB transceiver OE output
RC2/CCP1/P1A	17	38	36	1000		Existing GOD transcerver CAE output
RC2				1/0	ST	Digital I/O
CCPI			- 1	1/0	SI	Capture Lineart/Communication
PIA				0	TTL	Capture 1 input/Compare 1 output/PVVM 1 output Enhanced CCP1 PWM output, channel A.
RC4/D-/VM	23	42	42	1		Con 1 Parist Output, Channel A.
RC4 D-				1	TTL	Digital input.
VM		_ 1		1/0	-	USB differential minus line (input/output)
and the same of th				1	TTL	External USB transceiver VM input.
RC5/D+/VP RC5	24	43	43			The second second
D+	-			1	TIL	Digital input.
VP				1/0	-	USB differential plus line (upput/output)
C6/TX/CK	0.5			1	TIL	External USB transceiver VP input.
RC6	25	44	44			The state of the s
IX				HO	ST	Digital I/O.
CK			1	0	-	EUSART asynchronous transmit
C7/RX/DT/SDO	26		14	1/0	ST	EUSART synchronous clock (see RX/DT).
RC7	50	1	1	115	1222	
RX				110	ST	Digital I/O.
DT				10	ST P	EUSART asynchronous receive.
SDO				0	SI	EUSAR I synchronous data (spe Tx)(c)()
gend: TTL = TTL con	Secretary of the	25071937		Y.		SPI data out. DS = CMOS compatible input or output

P - Power Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (CONTINUE

Pin Name	Pi	n Num	ber	Pin	Buffer	
r ar realing	PDIP	QFN	TOFP	Туре	Type	Description
						PORTD is a bidirectional I/O port or a Streaming Parallel Port (SPP). Those pins have TTL input buffers when the SPP module is enabled.
RD0/SPP0 RD0 SPP0	19	38	38	1/0	SI	Digital I/O. Streaming Parallel Port data
RD1/SPP1 RD1 SPP1	20	39	39	1/0	ST	Digital I/O. Streaming Parallel Port data.
RD2/SPP2 RD2 SPP2	21	40	40	1/0	ST	Digital I/O. Streaming Parallel Port data.
RD3/SPP3 RD3 SPP3	22	41	41	1/0	SI TIL	Digital I/O. Streaming Parallel Port data:
RD4/SPP4 RD4 SPP4	27	2	2	1/0	ST	Digital I/O.
RD5/SPP5/P1B RD5 SPP5	28	3	3	1/0	ST	Streaming Parallel Port data. Uigital I/O. Streaming Parallel Port data.
P18 R06/SPP8/P1C R06	29	4	4	0	-	Enhanced CCP1 PWM output, channel B.
SPP6 P1C				100	ST TTL	Digital I/O: Streaming Parallel Port data Enhanced CCP1 PWM output, channel C.
RD7/SPP7/P1D RD7 SPP7 P1D	3/0	5	5	1/0	ST	Digital I/O. Streaming Parallel Port data. Enhanced CCP1 PWM output, channel D

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

O - Output

CMOS = CMOS compatible input or output = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4455/4550 PINOUT UO D

Pin Name		Pin Nun	nber	Pin	Buffe	RIPTIONS (CONTINUED)
rin Name.	PDI	QFN	TOFP	- 1	A STATE OF THE PARTY OF THE PAR	The state of the s
RED/ANS/CK1SPP REO ANS	8	25	25	1/0	ST Anaio	PORTE is a bidirectional I/O port. Digital I/O. Analog input 5.
CK1SPP RE1/ANG/CK2SPP RE1	9	26	26	0	=	SPP clock 1 output.
ANO CK2SPP RE2/AN7/OESPP RE2 AN7 OESPP	10	27	27	0 1/0 - 0	ST Analog ST Analog	SPP clock 2 output. Digital I/O. Analog input 7
RE3	_	=		-		SPP output enable output
V88	12, 31	6, 30,	6, 29	Р	-	See MCLR/VP/RF3 pin Ground reference for logic and I/O pins
/00	11, 32	7, 8, 28, 29	7, 28	P	7	Positive supply for logic and I/O pins.
/USB	16	37	37	0		Informal Lices of Park
IC/ICCK/ICPGC ^{D)} ICCK ICPGC	-		12	1/0	ST ST	Internal USB 3.3V voltage regulator output No Connect or dedicated ICD/ICSP™ purt clock, in-Circuit Debugger clock. ICSP programming clock.
ICACDT/ICPGD ⁽³⁾ ICD) ICPGD		-	13	1/0	ST ST	No Connect or dedicated ICE/ICSP port clock, tri-Circuit Debugger data. ICSP programming data.
C/ICRST/ICVep(3) ICRST ICVep	-	-	33	P	-	No Connect or dedicated ICD/ICSP port Reset. Muster Clear (Reset) invest.
C/ICPORTS(II) ICPORTS	-	-	34	Р	-	Programming voltage input. No Connect or 28-pm device emulation. Enable 28-pm device emulation when connected to Vss.
gend: TTL = 111 a	-	13	-	_	- 1	No Connect.

Legend: TTL = 1 TL compatible input

CMOS = CMOS compatible input or output

- power

ST - Schmitt Trigger input with CMOS levels 1 = Input
O = Output P - Power Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

These pins are No Connect unless the ICPR1 Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Note 1: RE3 is multiplesed with MCLR and is only available when the MCLR Resets are disabled.

OBCI/CLKI and OSC2/CLKO are only available in select oscillator modes and when these oins are not being used as digital I/O. Refer to Section 2.0 "Oscillator Combigurations" for additional information.

 These pins are only available on 44-pin TOPP packages under certain conditions. Refer to Section 25.9 "Special IUPCRT Features (Designated Packages Only)" for additional information.

4: RB3 is the attornate pin for CCP2 multiplexing.

28.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

Ambient temperature under bias	-40°C to +85°C
Storage temperature	
Voltage on any pin with respect to Vss (except Voo, MCLR and RA4)	-0.3V to (VDD + 0.3V)
Voltage on Voo with respect to Vas	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	300 mA
Maximum current into Voo pin	
Input clamp current, lik (Vi < 0 or Vi > Voo)	±20 mA
Output clamp current, lox (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports	200 mA

- Note 1: Power dissipation is calculated as follows: Pdis = $Vob \times \{Ion - \Sigma \mid IoH\} + \Sigma ((Vob - VoH) \times IoH) + \Sigma (Vol \times IoL)$
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, Inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Appendix (J):

Control PIC Code Developed In C Programming Language

```
#include<p18f4550.h>
  #include<delays.h>
  #include<adc.h>
  #include PWM.h>
  #include<timers.h>
  #include "gameled_v3.h"
  #pragma config FOSC = INTOSC_HS
  #pragma config WDT - OFF
  #pragma config PBADEN = OFF
  void main (void)
 unsigned char state=0;
 unsigned int x=0,a,y;
       TRISA=0B00010000;
       TRISC-0.
   PORTC=0;
 TRISB-0b00001111;
lcd_init();
OpenTimer0( TIMER_INT_OFF &
T0_16BIT &
T0_SOURCE_EXT &
T0_PS_1_1);
lcd_gotoyx(1,0);
lcd_putrs("Elevator ON");
```

OpenTimer2(TIMER_INT_OFF & T2_PS_1_4 & T2_POST_1_1 & T3_SOURCE_CCP);

// Use of CCP1 as PWM module

// Use of CCP2 as PWM module

```
OpenPWM1(99);
    OpenPWM2(99);
    SetDCPWM1(0),
    SeiDCPWM2(0);
   WriteTimer()(0),
  while(1)
  (
  switch(state)
 case 0:
 led_gotoyx(2,0);
 lcd_putrs(" floor one ");
 a=1;
 y=ReadTimer();
 WriteTimer0(0);
while(a)
x=ReadTimer0 ();
x=y-x;// counding downward
```

```
SetDCPWM1(0);
 SetDCPWM2(200); //revers
 if(x=0)
 {
SetDCPWM1(0),
SetDCPWM2(0): //brake
}
a=0;
)
WriteTimer0(0);
a=I;
while(a)
{
if(PORTBbits.RB2==0)
{
state=1;
a=0;
}
if(PORTBbits RB3=0)
(
state-2;
a-0;
}
break:
```

```
case 1:
   lcd_gotoyx(2,0);
   led putrs(" floor two ");
  y-ReadTimer0();
  if(y>=750)
  {
  WriteTimer0(0);
  a=1;
  while(a)
 x=ReadTimer()();
 x=y-x;// counding downward
 SetDCPWM1(0);
 SetDCPWM2(200), //revers
 if(x==750)
SetDCPWM1(0);
SetDCPWM2(0); //brake
a=();
if(y<750)
a-1;
```

```
while(a)
 x=ReadTimer();//upward counting
 SeiDCPWM1(200);
 SetDCPWM2(0); //forward
 if(x==750)
 {
 SetDCPWM1(0);
 SetDCPWM2(0); //brake
 }
a=0;
}
}
a-1;
while(a)
{
if(PORTBbits.RB1=0)
(
state=0;
a=0;
if(PORTBbits.RB3=0)
state=2;
```

a=0;

```
break;
   case 2;
  lcd_gotoyx(2,0),
  lcd putrs(" floor three "),
  y=ReadTimer0();
  if(y<1500)
  {
 a=1;
 while(a)
 x=ReadTimer() ();//upward counting
 SetDCPWM1(200);
 SetDCPWM2(0); //forward
if(x=1500)
SetDCPWM1(0),
SetDCPWM2(0); //brake
a=0;
a-1;
while(a)
```

```
if(PORTBbits RB1=0)
(
    state=0;
    a=0;
}
if(PORTBbits RB2=0)
{
    state=1;
    a=0;
}
break;
}
```