
Palestine Polytechnic University

College of Engineering & Technology
Electrical and Computer Department

Graduation Project

Monitoring Home By Cellular Technology

Project Team

Manar Ikhlayile Sabha Abu Sabha Yasmin Al-Shamesti

Project Supervisor
Eng. Ayman Wazwaz

Hebron – Palestine
Dec, 2010

ii

Palestine Polytechnic University

College of Engineering & Technology
Electrical and Computer Department

Graduation Project

Monitoring Home By Cellular Technology

Project Team

Manar Ikhlayile Sabha Abu Sabha Yasmin Al-Shamesti

Project Supervisor
Eng. Ayman Wazwaz

Hebron – Palestine
Dec, 2010

iii

Monitoring Home By Cellular Technology

Project Team

Manar Ikhlayile Sabha Abu Sabha Yasmin Al-Shamesti

Project Supervisor
Ayman Wazwaz

This Under-Graduate Project Report submitted to Computer and Electrical
engineering “Department in College of Engineering and Technology

Palestine Polytechnic University

For accomplishment the requirements of the bachelor degree in Engineering
field at Computer System Engineering

Palestine Polytechnic University
Hebron – Palestine

June, 2010

iv

جامعة بولیتكنك فلسطین

فلسطین–الخلیل

كلیة الھندسة و التكنولوجیا

دائرة الھندسة الكھربائیة والحاسوب

اسم المشروع

Monitoring Home By Cellular Technology

أسماء الطلبة

صبحة عیسى أبو صبحة منار حسین اخلیل یاسمین یوسف الشمسطي

تمالمباشر على المشروع وموافقة أعضاء اللجنة الممتحنةعلى نظام كلیة الھندسة والتكنولوجیا و إشراف المشرف ء بنا

بمتطلبات درجة البكالوریوس في الھندسة الحاسوب و ذلك للوفاءإلى دائرة الھندسة الكھربائیة والمشروعا ھذتقدیم

.تخصص ھندسة أنظمة الحاسوب

توقیع المشرف

.....................................

الممتحنةتوقیع اللجنة

....................................

توقیع رئیس الدائرة

.................................

v

Dedication

To our fathers ……… to our mothers

To our sisters and our brothers

To all our teachers

To Palestine Polytechnic University

To our supervisor who always
encouraged and supported us

Eng .Ayman Wazwaz

To all our families and to all our friends

To Palestine the sanctify land

vi

ACKNOWLEDGMENT

We acknowledge Palestine Polytechnic University for giving us the possibility to
show some of what we have learned from it.

And we acknowledge all the instructors in the electrical and computer department
for their great impact in our education, especially the supervisor of this project
eng. Ayman wazwaz ,eng. Sami Salamin, and everybody who effected our
education.

Finally we can’t forget to acknowledge our great parents who scarified
themselves for educating us and facilate our life, and for all their coffee and
tolerance.

Manar Ikhlayile
Sabha Abu Sabha

Yasmin Al-Shamesti

vii

Abstract

Mobile phone can serve as powerful tool for world-wide communication. A system will be

developed to remotely monitor process through sending messages using mobile.

This system is based on GSM network technology for transmission of messages (Multimedia

Messaging Service MMS, Short Message Service SMS) between system and owner.

The system maintains the security alert which is achieved in a way that on the detection of

any abnormal events, the system allows automatic generation of messages thus alerting the user

against security risk.

Sensors will detect any abnormal events happens inside the home, such that gas leaking, fire,

and outer threats, send signal to microcontroller , after that PIC make some processing of

received signal, then transmit to it to PC where makes some local analysis in order to turn

event's room cameras on . The camera will captures a stream of images and videos ,transmit to

PC. PC then store captured images and videos in a file for later owner usage, PC then send an

image to peer mobile in addition to useful information about system state.

Peer mobile sends MMS message containing event image, plus a text message containing

house state information, then send to Terminal Mobile carried by owner. This Message will tell

the owner what happened in his home by using specific control word written in the text part

also it's provide the owner an image which express to him event nature occur inside his home.

viii

Table Of Content

Number Subject Pages

- Dedication v

- Acknowledgements vi

- Abstract vii

- Table of Content viii

- List of Tables xi

- List of Figure xiv

- References xv

- Appendix xvi

Chapter one

1.1 Overview 2

1.2 Problem Statement 2

1.3 Project Objective 3

1.4 Project Benefits 3

1.5 Literature Review 3

1.6 Estimated Cost 4

1.7 Time Planning 5

1.8 Report Content 7

Chapter two

2.1 Introduction 9

2.2 Sensing Unit 0

2.2.1 Sensors 10

2.2.2 Sensor type 11

2.3 Monitoring System 28

2.4 Mobile Phone 29

2.4.1 GSM Technology 30

2.4.2 SMS 32

ix

2.4.4 Bluetooth 35

2.4.5 Mobile Programming 36

Chapter three

3.1 Introduction 41

3.2 Project Functions 41

3.3 System Components 42

3.4 Sensing Unit 43

3.5 Monitoring unit 45

3.6 Mobile Unit 48

3.7 How system works 52

3.8 System Flow chart 54

Chapter Four

4.1 Introduction 56

4.2 Sensing unit 57

4.3 Monitor unit 59

4.4 Mobile unit 71

Chapter Five

5.1 Introduction 76

5.2 Software Requirements Specification 76

5.2.1 Software Description of sensor Interface 76

5.2.2 Software Description of cameras 83

Chapter Six

6.1 Introduction 92

6.2 Sensing unit 92

6.3 Monitoring unit 96

6.4 Mobile Unit 99

x

6.5 Sign Midlet 110

Chapter Seven

7.1 Introduction 113

7.2 System Achievements 113

7.3 Real Learning Outcomes 113

7.4 Recommendation 114

xi

List of Figure

Number Figure Pages

1.1 Remote Monitoring Home 2

2.1 Functional elements of measurement 10

2.2 Pins Out of PIC 18F4550 17

2.3 Block Diagram Of The A/D Module 19

2.4 Pins Out Of The RS232 Connector 23

2.5 Working Of RS232 level Converter 24

2.6 Simplified Transmission block diagram 25

2.7 Simplified reception block diagram 25

2.8 GSM Network 31

3.1 System Module Structure 42

3.2 Distributed Home sensors 44

3.3 Sensors to microcontrollers to PC block diagram 45

3.4 TEAC Webcam 46

3.5 Cameras to PC Block diagram 47

3.6 Mobile Block Diagram 49

3.7 Mobile PC interface 50

3.8 Sending An SMS message 51

3.9 Sending An MMS message 51

3.10 System Flow Chart 54

4.1 General System Interfacing Block Diagram 56

xii

4.2 Minimum Requirements for PIC to Run 57

4.3 Crystal Operation 59

4.4 Type Of Sensors 61

4.5 Block Diagram Of LM35 62

4.6 interface LM35 sensor to PIC18F4550 65

4.7 Interface LM35, Motion to PIC 18F4550 66

4.8 Interface Smoke to PIC 67

4.9 All System Interface 69

4.10 State Diagram For Monitoring Unit 71

4. 11 State Diagram For Mobile Unit 72

4.12 MIDlet Main Class Methods 73

4.13 Nokia 2690 74

5.1 MPLAB Environment 78

5.2 Memory Usage Gauge 78

5.3 Step A/D Conversions 80

5.4 USART Library 81

5.5 Flow Chart Sensing Unit 82

5.6 USB Webcam 83

5.7 Video format dialog 85

5.8 Video source dialogs 86

5.9 Monitoring Flow Chart 87

5.10 Mobile Flow Chart
91

6.1 Interface Magnet To PIC 93

xiii

6.2 Interface To MAX232 94

6.3 Connection Name 95

6.4 Configuration Of Port 95

6.5 Status On Terminal 96

6.6 Interface To Serial Port 96

6.7 Camera Device 97

6.8 Video Source Dialog 98

6.9 Camera Form Program 98

6.10 Mobile Paired Device 99

6.11 SMS On Simulator 100

6.12 Image on Simulator 101

6.13 Mobile Testing Result 102

6.14 Mobile Root Problem 104

6.15 PC root 105

6.16 Mobile Roots 105

6.17 Application On Mobile Screen 106

6.18 Write Authentication Problem 107

6.19 Read Authentication Problem 107

6.20 Send MMS Authentication Problem 108

6.21 Not Trusted Application Problem 108

6.22 Phone Application Access 109

6.23 Application Data Access 109

6.24 Data Access Options 110

xiv

6.25 Data Access Option 1 110

6.26 Data Access Option 2 111

xv

List Of Tables

Number Table Pages

1.1 Hardware costs 5

1.2 Software Cost 5

1.3 Schedule Table (1'st Semester) 6

1.4 Schedule Table (2'st Semester) 6

2.1 RS232 voltage value 22

2.2 RS232 cable length 22

1

Chapter One

Introduction

1.1 Overview

1.2 Problem Statement

1.3 Project Objective

1.4 Project Benefits

1.5 Literature Review

1.6 Estimated Cost

1.7 Time Planning

1.8 Report Content

2

2

Chapter Two

Theoretical Background

2.1 Introduction

2.2 Sensing Units

2.3 Monitor unit

2.4 Mobile Unit

3

3

Chapter Three

Design Concept

3.1 Introduction

3.2 Project Functions

3.3 System Components

3.4 How System Work

3.5 System Flow Chart

4

4

Chapter Four

Hardware System Design

4.1 Introduction

4.2 Sensing Unit

4.3 Monitor Unit

4.4 Mobile Unit

5

6

5

Chapter Five

Software System Design

5.1 Introduction

5.2 software Requirement specification

7

6

Chapter Six

Testing and Problems

6.1 Introductions

6.2 Sensing unit

6.3 Monitoring unit

6.4 Mobile unit

6.5 Interface part testing.

8

9

7

Chapter Seven

Conclusion and Recommendation

7.1. Introduction
7.2. System Achievements
7.3 Real Learning Outcomes
7.4. Recommendation

2

1.1 Overview

Nowadays, one may stay far away from a home for a long time, and because of

this and in order to keep home secure, we need a system using technology tools such

as mobile which can be used to achieve home protection 24 hours a day, the ability to

remotely monitor household devices using a mobile system has a great advantages

for the home-owners. This system provide the owners a sufficient information about

any abnormal events happen inside the home.

1.2 Problem Statement

Persons living in an environment affected and influenced by, resulting from their

interactions in this world several natural needs and most important one is to know

what is happening in the house during their absence .For example, someone may

want to keep his home away from fire, gas leaking, or prevent any person tempering

with the contents of home.

So how we can keep our homes safe and under monitoring at all time? We want to

use mobile technology and to take advantage of mobile services (Multimedia

Messaging Service MMS ,Short Message Service SMS , …) in order to try find a

possible solution of these difficulties, figure 1.1 illustrate this process.

Figure 1.1 Remote Monitoring Home

3

As we see in Figure 1.1, we have two peer mobile phones communicate directly

with each other using GSM technology to contact home continuously, also we have

hardware controlling system (microcontroller) which communicates with sensor in

home , and a cameras to take picture of events immediately when it occurs and send

this picture to a computer connected to these cameras , then send images via (MMS)

in addition of proper text message to the owner mobile phone. These components

are linked to each other with the appropriate communication channels.

1.3 Project Objective

This project mainly aims to safety and monitor the house 24 hours a day using a

mobile, depends on the data sent to the owner of the house when an event occurs.

1.4 Project Benefits

There are several benefits from this project:

1. Maintain the integrity of the house from the outside threats (security system).

2. Utilizing modern technology.

3. This project can be used in developing smart houses.

1.5 Literature review

Many projects have been developed in systems monitoring home, but few had used

MMS technology. An example is the project entitled by "Home Security Using

Mobile Phone"[1], which used GSM Control Panel System adopts the newest GSM

4

network and Digital Signal Processing technology, and is widely used in security

field With SMS data transmission.

Another similar project title “Home security“[2], was developed at Alnajah

university, control system allows the owner of the house in which confidence about

the state of his house any time he wants through his account on the Web site of that

system gives every homeowner an account inside it can access to his page (for his

home) and see the house directly by camera system distributor within home.

We provide several differences from previous projects, in case of reach more

usable system which alert the user directly at any time (real time).

Our systems discriminate by sending an image to the user in shape of MMS

messages represent the nature of the events.

Also differ in form that this system stays far away from traditional audio system

which may has defects, then try not to alarm thief about system existence.

1.6 Estimated Cost

The following table shows the component used in project ; which estimated

hardware and software costs are presented.

1.6.1 Hardware Cost

The following table shows estimated hardware costs.

5

Table 1.1 hardware costs.

1 Microcontroller 18F4550 $10 * 1

2 Smoke Sensor $40 * 1

3 Motion Sensor $30 * 1

4 Magnet Sensor $10 * 1

5 Temperature Sensor $5 * 1

6 Camera $30 * 2

7 Mobile $150 * 1

8 Peripherals $ 50

9 Documentation $50

6 Total $400

1.6.2 Software Cost

The following table shows estimated software costs.

Table 1.2 Software Cost.

1 Java supported ID (Net Beans) $10

2 Microchip MPLAB $80

Total $90

1.7 Time Schedule

The following table explains the expected timing plan.

First semester

6

Table 1.3 Schedule Table.

Weeks

Tasks

11 2 3 444 555 62m
nfdnf265

77 85 99 1010 1111 1212 1313 1414 1515 1616

System Definition

Requirement

Analysis

System Design

Documentation

Second semester

Table 1.4 Schedule Table.

Weeks

Tasks

11 2 3 444 555 62m
nfdnf265

77 85 99 1010 1111 1212 1313 1414 1515 1616

System Design

Development Phase

Test Phase

Documentation

7

1.8 Report Content

The report is divide into seven chapters ; First chapter is the introduction , which

describes the general review of the system , project requirement (Hardware and

Software), system cost , scheduling time , and report contents.

Chapter two discusses the theoretical background that shows the theoretical

subjects related to the main ideas of the project information about mobile unit

,control unit , sensing unit and other special component that are built to distinguish

the system.

Chapter three talk about design concepts; the main objectives and a general block

diagram that shows how the system works.

Chapter four discusses hardware design that describes system. Chapter five

discusses software design that describes system ,chapter six discusses testing for

system and some problem and challenges meet in our project.

Finally chapter seven discusses Conclusion and recommendation .

9

2.1 Introduction

Embedded systems have grown tremendously in recent years not only in their

popularity but also in their complexity. Gadgets are increasingly becoming intelligent

and autonomous. Refrigerators, air-conditioners, automobiles, mobile phones etc are

some of the common examples of devices with built-in intelligence. These devices

function based on operating and environmental parameters.

This project is divided mainly into three parts:

 Sensing Unit:

To detect any risk using sensors, and notified other component to start working.

 Monitor Unit :

To transmit nature of an event to PC through microcontroller on one hand, and

inform camera to capture images and video on other hand.

 Mobile Unit :

How to connect mobile with PC, and how to take an image from PC to send it

in form MMS image through mobile using GSM technology.

2.2 Sensing Unit

Sensors are used to gather information to provide data to give an understanding of

the current status of the system parameters. In a control system, the signal from the

sensor is input to a controller . The controller then provides an output to govern the

measured parameters as shown in the figure 2.1.

10

Figure 2.1 Functional elements of measurement

In this System there's a need for sensors to sense different variables or thing and

then return information or data to the user. This part explains what is sensor and

some type of sensor and how they work to complete their functions.

2.2.1 Sensors:

A sensor is a device that converts a physical phenomenon into an electrical signal.

In recent years, enormous capability for information processing has been developed

within the electronics industry. The most significant example of this capability is the

personal computer. In addition, the availability of inexpensive microcontroller is

having a tremendous impact on the design of embedded computing products ranging

from automobiles to microwave ovens to toys. In recent years, versions of these

products that use microcontroller for control of functionality are becoming widely

available. In automobiles, such capability is necessary to achieve compliance with

pollution restrictions. In other cases, such capability simply offers an inexpensive

performance advantage[3].

All of these microcontrollers need electrical input voltages in order to receive

instructions and information. So, along with the availability of inexpensive

microcontroller has grown an opportunity for the use of sensors in a wide variety of

products. In addition, since the output of the sensor is an electrical signal, sensors

11

tend to be characterized in the same way as electronic devices. The data sheets for

many sensors are formatted just like electronic product data sheets.

However, there are many formats in existence, and there is nothing close to an

international standard for sensor specifications. The system designer will encounter a

variety of interpretations of sensor performance parameters, and it can be confusing.

It is important to realize that this confusion is not due to an inability to explain the

meaning of the terms—rather it is a result of the fact that different parts of the sensor

community have grown comfortable using these terms differently.

2.2.2 Sensor Type:

1- Temperature sensor

Temperature sensors detect a change in a physical parameter such as resistance or

output voltage that corresponds to a temperature change.

 LM35 Precision Centigrade Temperature Sensors :

In this project use LM35 to indication about fire occur in the home.

General Description:

The LM35 series are precision integrated-circuit temperature sensors, whose output

voltage is linearly proportional to the Celsius (Centigrade) temperature. The system

needs this sensor to achieve one of its main targets to sense if fire occurs by measure

the temperature.

12

Features

a) Calibrated directly in ° Celsius (Centigrade)

b) Linear + 10.0 mV/°C scale factor

c) 0.5°C accuracy guarantee able (at +25°C)

d) Rated for full −55° to +150°C range

e) Suitable for remote applications

f) Operates from 4 to 30 volts

g) Less than 60 μA current drain

h) Low self-heating, 0.08°C in still air

i) Nonlinearity only ±1⁄4°C typical

j) Low impedance output, 0.1 W for 1 mA load

2- Motion detector (PARADOX PRO 476+)

A motion detector is a device that contains a physical mechanism or electronic

sensor that quantifies motion that can be either integrated with or connected to other

devices that alert the user of the presence of a moving object within the field of view.

They form a vital component of comprehensive security systems, for both homes and

businesses.

Motion detector contains a motion sensor that transforms the detection of motion

into an electric signal. This can be achieved by measuring optical or acoustical

changes in the field of view. Most motion detectors can detect up to50-80 feet. A

motion detector may be connected to a burglar alarm that is used to alert the home

owner or security service after it detects motion. Such a detector may also trigger a

red light camera.

13

3- Smoke detector :

A smoke detector is a device that detects smoke, typically as an indicator of fire.

Commercial, industrial, and mass residential devices issue a signal to a fire alarm

system, while household detectors, known as smoke alarms, generally issue a local

audible and/or visual alarm from the detector itself.

Smoke detectors are typically housed in a disk-shaped plastic enclosure about

150 millimeters (6 in) in diameter and 25 millimeters (1 in) thick, but the shape can

vary by manufacturer or product line. Most smoke detectors work either by optical

detection (photoelectric) or by physical process (ionization), while others use both

detection methods to increase sensitivity to smoke. Sensitive alarms can be used to

detect, and thus deter, smoking in areas where it is banned such as toilets and

schools. Smoke detectors in large commercial, industrial, and residential buildings

are usually powered by a central fire alarm system, which is powered by the building

power with a battery backup. However, in many single family detached and smaller

multiple family housings, a smoke alarm is often powered only by a single

disposable battery.

4- Door And Windows Sensors

Some home security system door sensors are wired to an electric circuit within the

house, and other home security systems today are wireless. However, whether they

are wired or wireless, a home security system consists of motion detectors and

sensors that are placed on the doorway and often the windows. Magnetic sensors are

installed to secure the most susceptible exterior doorway and window openings.

When an intruder enters your home by opening a door or window , the monitoring

station is instantly alerted.

14

Magnets Switches :

The magnet on the sensor keeps voltage flowing through the circuit area whenever

the doors and windows are closed. However, when the system is activated and a door

or window is opened, there is a break in the flow of the voltage to the circuit, and this

causes the activation of the alarm. The security monitoring agency and police are

quickly notified once this occurs. Modern-day security systems are actually capable

of alerting the monitoring station of which door or window in particular has been

breached.

2.2.2 Microcontroller

A microcontroller is “a small computer on a single integrated circuit consisting of a

relatively simple CPU combined with support functions such as a crystal oscillator,

timers, serial and analog I/O etc.The name PIC was originally an acronym for

"Programmable Intelligent Computer".

Microcontrollers have long been a convenient interface for embedded systems;

they represent the core of the control system for electronic devices in dedicated

applications. Thus, in contrast the microprocessors that are used in general purpose

applications like personal computers that need high-performance, and multitasking.

Microcontrollers contain data and program memory, serial and parallel I/O, timers,

external and internal interrupts, and peripherals. These make them a strong choice

when implementing control systems.

The PIC chips (or PICmicro chips) are as stated above, programmable chips,

programmed to perform a special operations for dedicated applications in embedded

15

systems, they provide strong interfacing abilities with many peripherals and other

microcontrollers in other embedded systems.

Programming PIC microcontrollers is a simple three steps process, write the code,

compile the code, and upload the code into a microcontroller. Writing the code can

be developed in many Integrated Development Environments (IDE’s) for example,

MPLAP IDE, which is software developed for the Microchip appliances like the PIC

microcontrollers. Compiling the code can be done by the compiler of the MPLAP

IDE. There are different compilers associated to work with PIC chips, C compiler, or

assembler for assembly language codes, and many more. The decision of which

compiler to use, is a developer choice, depending on the application which the PIC is

a part of. The final step of programming the PIC chip is uploading the code into the

microcontroller.

The PIC microcontroller architecture makes interfacing most peripherals with the

PIC a far from hard task, the I/O’s are organized as ports, PORTA, PORTB, etc. each

port can be treated as a unit or as single I/O pins, 8-bit, 6-bit or other organization.

Each port was initially configured to do a specific operation, serial data operations,

Analog-to-Digital conversion, and many more, but it’s not always necessary to stick

with the initial configuration, each port or single I/O pin can be configured to do

different operation from what initially configured

In this project the PIC18F4550 will be used. This is due to its availability, cheap

cost. The PIC18F4550 has all what is needed for the implementation of this project,

enough I/O Ports, ADC, timers and counters, and operating frequency of 20MHz.[4]

16

PIC18F4550 peripherals :

The PIC18F4550 have 5 port A,B,C,D, and E and it described as follows :

 Each port have three register associated for the his operation and these register is

PORTX ,LATX, and TRISX.

 The port data itself appear in the PORTX.

 The data direction (input or output) is determined by the bit values set in the

(control register) TRISX.

 The LATX is used to read the output data back (not input read) .

1- PORTA

 The port can be used for general purpose bi directional digital data. It is also

shared with the analog function .

 The Timer 0 input is shared with bit 4 of the port.

 The three register associated with port A – PORTA,TRISA, and LATA.

2- PORTB

 Three primary register PORTB,TRISB, and LATB.

 That bits 5-7 share with the in-circuit debug function of PGC ,PGD and PGM.

 The external interrupt can be made through PORTB pins .

3- PORTC

 Its Three primary register PORTC,TRISC, and LATC.

 This port share with serial,… .

17

4- PORTD

 Parallel slave itself , with 3 bits of port E for handshake .

Some peripheral such as USART , analog to digital converter , watch dog timer ,

and low voltage detect will explain later ,and other peripheral not need such as

timers (our PIC have 5 programmable timers), capture/compare/pulse width modules.

for other information for any part can see the data sheet in appendix .

In figure 2.2 we show the pins of PIC 18F4550 , and in chapter 4 we learn more

about these pins and used it in our project.

Figure2.2 Pins out of PIC18F4550.

18

Analog-to-Digital converter :

This converter built inside PIC . the PIC has 10-Bit ADC (A/D) Module , 13 pin

(PIC 18F4550) for analog input with multiplexer . This module allows conversion of

an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

• A/D Result High Register (ADRESH)

• A/D Result Low Register (ADRESL)

• A/D Control Register 0 (ADCON0)

• A/D Control Register 1 (ADCON1)

• A/D Control Register 2 (ADCON2)

The analog reference voltage is software selectable to either the device’s positive

and negative supply voltage (VDD and VSS) or the voltage level on the

A3/AN3/VREF+ and RA2/AN2/VREF-/CVREF pins.

Each port pin associated with the A/D converter can be configured as an analog

input or as a digital I/O. The ADRESH and ADRESL registers contain the result of

the A/D conversion. When the A/D conversion is complete, the result is loaded into

the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is

cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D

module is shown in Figure 2.3 .

19

Figure 2.3 Block diagram of the A/D module

After the A/D module has been configured as desired, the selected channel must be

acquired before the conversion is started. The analog input channels must have their

corresponding TRIS bits selected as an input. After this acquisition time has elapsed,

the A/D conversion can be started. An acquisition time can be programmed to occur

between setting the GO/DONE bit and the actual start of the conversion. In chapter

four we show how embedded this module on our work.

Acquisition Time

When an specific channel (AN0 for example) is selected the voltage from that

input channel is stored in an internal holding capacitor. It takes some time for the

capacitor to get fully charged and become equal to the applied voltage. This time is

called acquisition time. The PIC18F4550's ADC provides a programmable

20

acquisition time, so you can setup the acquisition time. Once acquisition time is over

the input channel is disconnected from the source and the conversion begin. The

acquisition times depends on several factor like the source impedance, Vdd of the

system and temperature. Can refer to the datasheet for details on its calculation. A

safe value is 2.45uS, so acquisition time must be set to any value more than this.

ADC Clock

ADC Requires a clock source to do its conversion, this is called ADC Clock. The

time period of the ADC Clock is called TAD. It is also the time required to generate 1

bit of conversion. The ADC requires 11 TAD to do a 10 bit conversion. It can be

derived from the CPU clock (called TOSC) by dividing it by a suitable division factor.

There are Seven possible option.

2 x TOSC

4 x TOSC

8 x TOSC

16 x TOSC

32 x TOSC

64 x TOSC

Internal RC

For Correct A/D Conversion, the A/D conversion clock (TAD) must be as short as

possible but greater than the minimum TAD .refer to datasheet it is 0.7uS for

PIC18FXXXX device.

Serial Port :

In order to make two devices communicate, whether they are desktop computers,

microcontrollers, or any other form of integrated circuit, we need a method of

21

communication and an agreed-upon language. The most common form of

communication between electronic devices is serial communication. Communicating

serially involves sending a series of digital pulses back and forth between devices at

a mutually agreed-upon rate. The sender sends pulses representing the data to be sent

at the agreed-upon data rate, and the receiver listens for pulses at that same rate.

Communication as defined in the RS232 standard is an asynchronous serial

communication method. The word serial means, that the information is sent one bit

at a time. Asynchronous tells us that the information is not sent in predefined time

slots. Data transfer can start at any given time and it is the task of the receiver to

detect when a message starts and ends

RS232 physical properties

The RS232 standard describes a communication method capable of communicating

in different environments. This has had its impact on the maximum allowable

voltages etc. on the pins. In the original definition, the technical possibilities of that

time were taken into account. The maximum baud rate defined for example is

20 kbps. With current devices like the 16550A UART, maximum speeds of 1.5 Mbps

are allowed.

Voltages

The signal level of the RS232 pins can have two states. A high bit, or mark state is

identified by a negative voltage and a low bit or space state uses a positive value.

This might be a bit confusing, because in normal circumstances, high logical values

are defined by high voltages also. Table 2.1 show the voltage limits.

22

Table 2.1 RS232 voltage value

RS232 voltage values

Level Transmitter

capable (V)

Receiver

capable (V)

Space state (0) +5 ... +15 +3 ... +25

Mark state (1) -5 ... -15 -3 ... -25

Undefined - -3 ... +3

Maximum cable lengths

Cable length is one of the most discussed items in RS232 world. The standard has a

clear answer, the maximum cable length is 50 feet, or the cable length equal to a

capacitance of 2500 pF. The latter rule is often forgotten. This means that using a

cable with low capacitance allows you to span longer distances without going

beyond the limitations of the standard. If for example UTP CAT-5 cable is used with

a typical capacitance of 17 pF/ft, the maximum allowed cable length is 147 feet. In

the following table 2.2 show RS232 cable length[5] .

Table 2.2 RS232 cable length

Baud rate Maximum cable length (ft)

19200 50

9600 500

4800 1000

2400 3000

In the following, figure 2.4 show the pin out of the RS232 connector.

23

Figure 2.4 pin out of the RS232 connector

MAX232 Level Converter:

In the last pages we saw that how RS232 level signals differs from normal logic

signals. So to interface RS232 level signals to our MCUs we need a "Level

converter". Can use Max232 .

What a level converter will do ? as show in figure 2.5 max232 convert RS232 level

signals (HIGH=-12V LOW=+12V) from PC to TTL level signal (HIGH=+5V

LOW=0V) to be fed to MCU and also the opposite.

24

Fig 2.5 Working of RS232 level converter

The USART:

USART stands for Universal Synchronous Asynchronous Receiver Transmitter. It

is sometimes called the Serial Communications Interface or SCI.

Synchronous operation uses a clock and data line while there is no separate clock

accompanying the data for Asynchronous transmission. Since there is no clock signal

in asynchronous operation, one pin can be used for transmission and another pin can

be used for reception. Both transmission and reception can occur at the same time

this is known as full duplex operation.

Transmission and reception can be independently enabled. However, when the

serial port is enabled, the USART will control both pins and one cannot be used for

general purpose I/O when the other is being used for transmission or reception. The

USART is most commonly used in the asynchronous mode. In this presentation we

will deal exclusively with asynchronous operation. The most common use of the

USART in asynchronous mode is to communicate to a PC serial port using the RS-

232 protocol. The USART can both transmit and receive.

25

Figure 2.6 Simplified transmission block diagram

As shown in figure 2.6 , the USART can be configured to transmit eight or nine

data bits by the TX9 bit in the TXSTA register. If nine bits are to be transmitted, the

ninth data bit must be placed in the TX9D bit of the TXSTA register before writing

the other eight bits to the TXREG register. Once data has been written to TXREG,

the eight or nine bits are moved into the transmit shift register. From there they are

clocked out onto the TX pin preceded by a start bit and followed by a stop bit.

The use of a separate transmit shift register allows new data to be written to the

TXREG register while the previous data is still being transmitted. This allows the

maximum throughput to be achieved.

Figure 2.7 Simplified reception block diagram

26

As shown in figure 2.7, the USART can be configured to receive eight or nine bits

by the RX9 bit in the RCSTA register. After the detection of a start bit, eight or nine

bits of serial data are shifted from the RX pin into the receive shift register one bit at

a time. After the last bit has been shifted in, the stop bit is checked and the data is

moved into the buffer which passes the data through to the RCREG register if it is

empty. The buffer and RCREG register therefore form a two element FIFO. If nine

bit reception is enabled, the ninth bit is passed into the RX9D bit in the RCSTA

register in the same way as the other eight bits of data are passed into the RCREG

register.

The use of a separate receive shift register and a FIFO buffer allows time for the

software running on the PICmicro MCU to read out the received data before an

overrun error occurs. It is possible to have received two bytes and be busy receiving

a third byte before the data in the RCREG register is read.

The USART outputs and inputs logic level signals on the TX and RX pins of the

PICmicro MCU. The signal is high when no transmission or reception is in progress

and goes low when the transmission starts. This low going transition is used by the

receiver to synchronize to the incoming data. The signal stays low for the duration of

the start bit and is followed by the data bits, least significant bit first. In the case of

an eight-bit transfer, there are eight data bits and the last data bit is followed by the

stop bit which is high. The transmission therefore ends with the pin high. After the

stop bit has completed, the start bit of the next transmission can occur as shown by

the dotted lines. There are several things to note about this waveform, which

represents the signal on the TX or RX pins of the microcontroller. The start bit is a

zero and the stop bit is a one. The data is sent least significant bit first so the bit

pattern looks backwards in comparison to the way it appears when written as a

binary number. The data is not inverted even though RS-232 uses negative voltages

to represent a logic one. Generally, when using the USART for RS-232

27

communications, the signals must be inverted and level shifted through a transceiver

chip of some sort.

The signals on the USART pins of the microcontroller use logic levels. This means

that for a five volt supply, the signals will be close to five volts when they are high

and close to ground when they are low. When communicating with other logic

devices, these signals can be used directly. In many applications, particularly with

asynchronous communications, transmission standards such as RS-232 and RS-485

require different voltage levels to be used. For example, RS-232 uses a voltage below

minus five volts to represent a logic one and a voltage above five volts to represent a

logic zero. For RS-232, an interface chip such as Microchip’s max232 device is

recommended to convert the signals to the required levels.

There are several registers used to control the USART .The SPBRG register allows

the baud rate to be set. The TXSTA and RCSTA registers are used to control

transmission and reception but there are some overlapping functions and both

registers are always used. The TXREG and RCREG registers are used write data to

be transmitted and to read the received data.

The rate at which data is transmitted or received must be always be set using the

baud rate generator unless the USART is being used in synchronous slave mode. The

baud rate is set by writing to the SPBRG register. The SYNC bit selects between

synchronous and asynchronous modes, and these modes have different baud rates

for a particular value in the SPBRG register. For asynchronous mode, the SYNC bit

must be cleared and the BRGH bit is used to select between high and low speed

options for greater flexibility in setting the baud rate.

Formulas for baud rate

Baud rate = Fosc/(16(SPBRG+1)), BRGH=1 ………….… 2.1

Baud rate = Fosc/(64(SPBRG+1)), BRGH=0 ……………. 2.2

28

Formulas for SPBRG

SPBRG = (Fosc/(16 x Baud rate)) - 1, BRGH=1 ………….. 2.3

SPBRG = (Fosc/(64 x Baud rate)) - 1, BRGH=0 ………...... 2.4

The top two formulas show how the baud rate is set by the value in the SPBRG

register and the BRGH bit. More important for the user, however, is to be able to

calculate the value to place in the SPBRG register to achieve a desired baud rate. The

bottom two formulas can be used to do this. The SPBRG register can have a value of

zero to 255 and must always be an integer value. When these formulas yield a value

for SPBRG that is not an integer, there will be a difference between the desired baud

rate and the rate that can actually be achieved. By calculating the actual baud rate

using the nearest integer value of SPBRG, the error can be determined. Whether this

error is acceptable usually depends on the application.

2.3 Monitoring System

2.3.1 Camera

Camera is the primary monitoring element, it is responsible for viewing and send

stream of video to the computer. To choose a specific camera we should take in

consideration some features including zoom and mega pixels.

Another important element for choosing camera is the connection type, where the

camera can be connected via USB or other computer port. Choosing the cameras

depends on the system critical needs and the available resources to buy this camera.

In our system we choose a PC web cam to get continues stream which will framed

in the system and deal with to extract needing information.

29

2.3.2 Light Source

To get enough light for monitoring system you can provide two ways:

- Using Special type of cameras which takes night-capturing.

- Using additional electrical light source than the regular room-light.

You can get the best performance by using both techniques. But it is expensive to

buy a night-capturing camera. So we apply the second one only. Physically, we will

need different light sources to be placed in the corners or in the room.

2.3.4 Cameras locations

Must take into account the distribution of places cameras to capture an appropriate

image which contain all features required.

2.3.5 Camera and Connection

In the narrow-scale monitoring system we use two or three camera to capture

images, send it using wires to USB.

2.4 Mobile Phone

Mobile phone is one of the project basic elements, it will be used to communicate

with PC and with another such mobile, in order to receive data. Cell phone also

called hand phone is an electronic device used for mobile telecommunications over a

cellular network of specialized base stations known as cell sites. Most current cell

phones connect to a cellular network consisting of switching points and base stations

30

(cell sites) owned by a mobile network operator. A cell phone is a full-duplex

device.

Channels: A typical cell phone can communicate on 1,664 channels or more.

Range: The phone have a low –power transceiver that transmits voice and data to

the nearest cell sites ,usually 5 to 8 miles(about 8 to 13 kilometers)away; Because

cell phones operate within cells, when the cellular phones is turned on, it registers

with the mobile telephone exchange ,or switch ,with its unique identifiers , and they

can switch cells as they move around. Cells give cell phones incredible range.

Someone using a cell phone can drive hundreds of miles and maintain a conversation

the entire time because of the cellular approach[6] .

Our mobile will be choose to fit the project objectives such as serial/ parallel

communication, wireless/ Bluetooth technologies and must support the AT

commands for the short message service (SMS) and multimedia messaging service.

such mobile will be used in our project to communicate either with microcontroller

or pc and also to communicate with another such mobile.

2.4.1 GSM Technology

(Global System for Mobile Communications) is the most popular standard for

mobile telephony systems in the world. GSM differs from its predecessor

technologies in that both signaling and speech channels are digital, and thus GSM is

considered a second generation (2G) mobile phone system. The existence of GSM

everywhere, has been advantage to customer because they can travelling and

roaming without needed to change mobile as shown in figure 2.8.

31

GSM also leaded in low-cost implementation of the short message service (SMS),

GSM networks operate in a number of different carrier frequency ranges (separated

into GSM frequency ranges for 2G and UMTS frequency bands for 3G), most 2G

GSM networks operating in the 900 MHz or 1800 MHz bands, in some country such

as United state and Canada the 850 MHz and 1900 MHz bands were used instead and

most 3G GSM networks in Europe operate in the 2100 MHz frequency band. In rare

cases the 400 and 450 MHz frequency bands are assigned in some countries because

they were previously used for first-generation systems.

Regardless of the frequency selected by an operator, it is divided into timeslots for

individual phones to use. This allows eight full-rate or sixteen half-rate speech

channels per radio frequency which are grouped into a TDMA frame. The channel

data rate for all 8 channels is 270.833 Kbit/s, and the frame duration is 4.615 ms. The

transmission power in the handset is limited to a maximum of 2 watts in

GSM850/900 and 1 watt in GSM1800/1900[7] .

Figure 2.8 GSM Network

31

GSM also leaded in low-cost implementation of the short message service (SMS),

GSM networks operate in a number of different carrier frequency ranges (separated

into GSM frequency ranges for 2G and UMTS frequency bands for 3G), most 2G

GSM networks operating in the 900 MHz or 1800 MHz bands, in some country such

as United state and Canada the 850 MHz and 1900 MHz bands were used instead and

most 3G GSM networks in Europe operate in the 2100 MHz frequency band. In rare

cases the 400 and 450 MHz frequency bands are assigned in some countries because

they were previously used for first-generation systems.

Regardless of the frequency selected by an operator, it is divided into timeslots for

individual phones to use. This allows eight full-rate or sixteen half-rate speech

channels per radio frequency which are grouped into a TDMA frame. The channel

data rate for all 8 channels is 270.833 Kbit/s, and the frame duration is 4.615 ms. The

transmission power in the handset is limited to a maximum of 2 watts in

GSM850/900 and 1 watt in GSM1800/1900[7] .

Figure 2.8 GSM Network

31

GSM also leaded in low-cost implementation of the short message service (SMS),

GSM networks operate in a number of different carrier frequency ranges (separated

into GSM frequency ranges for 2G and UMTS frequency bands for 3G), most 2G

GSM networks operating in the 900 MHz or 1800 MHz bands, in some country such

as United state and Canada the 850 MHz and 1900 MHz bands were used instead and

most 3G GSM networks in Europe operate in the 2100 MHz frequency band. In rare

cases the 400 and 450 MHz frequency bands are assigned in some countries because

they were previously used for first-generation systems.

Regardless of the frequency selected by an operator, it is divided into timeslots for

individual phones to use. This allows eight full-rate or sixteen half-rate speech

channels per radio frequency which are grouped into a TDMA frame. The channel

data rate for all 8 channels is 270.833 Kbit/s, and the frame duration is 4.615 ms. The

transmission power in the handset is limited to a maximum of 2 watts in

GSM850/900 and 1 watt in GSM1800/1900[7] .

Figure 2.8 GSM Network

32

2.4.2 SMS

SMS is a method by which messages can be sent to a cell phone via another cell

phone, a computer connected to the Internet.

2.4.2.1 SMS In Details

As a communication service component of the GSM mobile communication

system; SMS messages may be sent either from one point to another point, or may be

sent to all devices within a specific geographical region. The former, known as SMS-

PP, is used primarily between individuals communicating within two devices while

the latter, known as SMS-CB, may be used to broadcast public announcements.

Messages are sent to a Short Message Service Center (SMSC) which provides a

"store and forward" mechanism. . It attempts to send messages to the SMSC's

recipients. If a recipient is not reachable, the SMSC queues the message for later

retry.

Some SMSCs also provide a "forward and forget" option where transmission is

tried only once. Both Mobile Terminated (MT, for messages sent to a mobile

handset) and Mobile Originating (MO, for those sent from the mobile handset)

operations are supported. Message delivery is "best effort", so there are no

guarantees that a message will actually be delivered to its recipient, and delay but

complete loss of a message is uncommon.[8]

2.4.2.2 Message Size

Messages are sent with the MAP (Mobile Application Part) whose payload length

is limited by the constraints of the signaling protocol to precisely 140 byte "octets"

33

(140 octets = 140 * 8 bits = 1120 bits). In practice this translated to either sizes of

160 7-bit characters, 140 8-bit characters, or 70 16-bit characters (including spaces)

.Characters in languages such as Arabic, Chinese, Korean, Japanese or Cyrillic

alphabet languages must be encoded using the 16-bit character encoding Routing

data and other metadata is additional to the payload size. Larger content

(Concatenated SMS, multipart or segmented SMS, or "Long SMS") can be sent

using multiple messages, in which case each message will start with a user data

header (UDH) containing segmentation information.

Since UDH is part of the payload, the number of available characters per segment

is lower: 153 for 7-bit encoding, 133 for 8-bit encoding and 67 for 16-bit encoding.

The receiving handset is then responsible for reassembling the message and

presenting it to the user as one long message. While the standard theoretically

permits up to 255 segments,6 to 8 segment messages are the practical maximum, and

long messages are often billed as equivalent to multiple SMS messages [9] .

2.4.3 MMS

MMS is a standard way to send messages that include multimedia content to and

from mobile phones. It extends the core SMS (Short Message Service) capability.

2.4.3.1 MMS In Details

MMS messages are delivered in a completely different way than SMS. The first

step is for the sending device to encode the multimedia content. The message is then

forwarded to the carrier's MMS store and forward server, known as the MMSC. If

the receiver is on another carrier, the relay forwards the message to the recipient's

carrier using the Internet. Once the MMSC has received a message, it first

34

determines if the receiver's supports the standards for receiving MMS. If so, the

content is extracted and sent to a temporary storage server with an HTTP front-end.

An SMS "control message" containing the URL of the content is then sent to the

recipient's handset to trigger the receiver's WAP browser to open and receive the

content from the embedded URL. Several other messages are exchanged to indicate

status of the delivery.

Before delivering content, some MMSCs also include a conversion service that will

attempt to modify the multimedia content into a format suitable for the receiver. This

is known as "content adaptation". If the receiver's handset is not MMS capable, the

message is usually delivered to a web based service from where the content can be

viewed from a normal internet browser. The URL for the content is usually sent to

the receiver's phone in a normal text message.

This behavior is usually known as the 'legacy experience' since content can still be

received by a phone number, even if the phone itself does not support MMS. A

database is usually maintained by the operator, and in it each mobile phone number

is marked as being associated with a legacy handset or not. It can be a bit hit and

miss since customers can change their handset at will and this database is not usually

updated dynamically[10] .

2.4.3.2 Message Size

Although the standard does not specify a maximum size for a message, 300 kB is

the current recommended size used by networks due to some limitations on the WAP

gateway side. Some interesting challenges with MMS that do not exist with SMS:

Content adaptation: Multimedia content created by one brand of MMS phone may

not be entirely compatible with the capabilities of the recipients' MMS phone.

35

In the MMS architecture, the recipient MMSC is responsible for providing for

content adaptation (e.g., image resizing, audio codec ,etc.), if this feature is enabled

by the mobile network operator.

Distribution lists: Current MMS specifications do not include distribution lists nor

methods by which large numbers of recipients can be conveniently addressed.

Bulk messaging: The flow of peer-to-peer MMS messaging involves several over-

the-air transactions that become inefficient when MMS is used to send messages to

large numbers of subscribers .

Handset Configuration: Unlike SMS, MMS requires a number of handset

parameters to be set. Poor handset configuration is often blamed as the first point of

failure for many users[11] .

2.4.4 Bluetooth

Bluetooth is a wireless personal area network technology (WPAN for short), a

low-range wireless network technology used for linking devices to one another

without a hard-wired connection Bluetooth devices do not need a direct line of sight

to communicate, which makes them more flexible in use and allows room-to-room

communication in small spaces.

The aim of Bluetooth is to transmit voice or data between devices with low-cost

radio circuits, over a range of about ten to just under a hundred meters, using very

little power.

Bluetooth technology is designed mainly for linking devices (such as printers,

mobile phones, home appliances, wireless headsets, mouses, keyboards, etc.),

computers, or PDAs to one another, without using a wired connection. Bluetooth is

36

also becoming more and more commonly used in mobile phones, allowing them to

communicate with computers or PDAs, and is especially widespread in hands-free

accessories like Bluetooth headsets. Bluetooth headsets act as advanced earpieces

which include remote control features.

Bluetooth is one of today's most exciting technologies. It is a short-range radio

wave wireless technology operating in the 2.4 GHz frequency spectrum. With an

operating range of 30 feet (10 meters) and a maximum transmission rate of 1Mbps,

Bluetooth is widely touted as the "cable replacement" solution.[11]

2.4.5 Mobile Programming

2.4.5.1 Symbian OS

Symbian OS is an operating system designed for mobile devices and smart phones,

with associated libraries, user interface and reference implementations of common

tools .

2.4.5.1.1 Symbian Design

Symbian features pre-emptive multitasking and memory protection, like other

operating systems. Symbian OS was created with three systems design principles in

mind:

1. the integrity and security of user data is valuable,

2. user time must not be wasted, and

3. all resources are scarce.

To best follow these principles, Symbian uses a microkernel as we will see later.

37

The OS is optimized for low-power battery-based devices. The Symbian kernel

(EKA2) supports sufficiently-fast real-time response to build a single-core phone

around it—that is, a phone in which a single processor core executes both the user

applications ; This has allowed Symbian EKA2 phones to become smaller, cheaper

and more power efficient than their predecessors .

2.4.5.1.2 Symbian structure

Simbian and as any operating system contains of many layers some of:

 UI Framework layer

 Application Services Layer (Java ME)

 OS Services Layer

 Base Services Layer

 Kernel Services & Hardware Interface Layer.

The Base Services Layer is the lowest level reachable by user-side operations ; in

addition of many features contained inside such as File Server and User Library.

Symbian has a microkernel architecture(EKA1, EKA2), which means that the

minimum necessary is within the kernel to maximize availability and responsiveness.

The EKA2 real-time kernel, which has been termed a nanokernel, contains only the

most basic primitives and requires an extended kernel to implement any other

abstractions. User interface(UI) code is included in symbian with a large volume, the

actual user interfaces which were maintained by third parties.

2.4.5.1.3 Some of devices that use Symbian OS

There are many devices which used symbian OS such as: The Ericsson R380 ,

Sony Ericsson P800, P900, W950 , Nokia 7650. The Nokia N-Gage and Nokia,

38

Siemens SX1 and Samsung SGH-Z600, the N series (except Nokia N8xx and N9xx),

Nokia 9210, 9300 and 9500 .

2.4.5.1.4 Developing on Symbian OS

The native language of Symbian is C++, although it is not a standard

implementation. However, Symbian devices can also be programmed using Python,

Java ME, Flash Lite, Ruby, .NET, Web Runtime (WRT) Widgets and Standard

C/C++. There were multiple platforms based upon Symbian OS that provided

SDKs(which are often contained in individual phone) for application developers

wishing to target Symbian OS devices. SDKS have the header files and libraries files

which needed to get Symbian OS based software.

Once ,Symbian application development finish, everything is needed is to find out

an mobile phone to install our application after being packaged in SIS files. As we

mentioned, Java ME can be used, Java ME application are developed using some

tools such as SUN Java Wireless Toolkit. Super waba is another tools which can also

be use to create Symbian programs using Java.

2.4.5.2 Java ME

Java Platform, Micro Edition, j2me, or Java ME, is a Java platform designed for

mobile devices and embedded systems with limited memory, display and power

capacity. Target devices range from industrial controls to mobile phones .

Java ME was designed by Sun Microsystems; the platform replaced a similar

technology, Personal Java. Originally developed under the Java Community Process .

Sun provides a reference implementation of the specification, but has tended not to

39

provide free binary implementations of its Java ME runtime environment for mobile

devices, rather relying on third parties to provide their own. Java ME devices

implement a profile. The most common of these are the Mobile Information Device

Profile aimed at mobile devices, such as cell phones, and the Personal Profile aimed

at consumer products and embedded devices . Profiles are subsets of configurations,

of which there are currently two: the Connected Limited Device Configuration

(CLDC) using to fit small mobile devices and the Connected Device Configuration

(CDC) using with more capable mobile devices like smart-phones, both CLDC and

CDC application can be created with Net Beans. Designed for mobile phones, the

Mobile Information Device Profile includes a GUI, and a data storage API, and

MIDP 2.0 includes a basic 2D gaming API. Applications written for this profile are

called MIDlets. Almost all new cell phones come with a MIDP implementation, and

it is now the de facto standard for downloadable cell phone games. However, many

cell phones can run only those MIDlets that have been approved by the carrier,

especially in North America.

41

3.1 Introduction

Nowadays, the Mobile phones became one of the most important devices which are

used by everyone, so the designers must take this point when designing remote

control systems. We will try to build a system to achieve the efficiency and

usefulness to be a step in the progress of human lives using available technologies.

Our system will use mobile phones to receive data from sensors and cameras. This

mobile which directly attached the system will send MMS to another mobile

(Terminal mobile) carried by the owner.

3.2 Project Functions

This project aims at achieving the following objectives:

1. Home monitoring 24 hours a day.

2. Home safety and keeping it secured.

3. We will use sensors and cameras to monitor what happens in our house while

we are out of home and take actions.

4. Get reports from mobile as remote control and monitor device.

5. There are several ways to use mobile as remote control, like GPRS, SMS,

Bluetooth. In this project we will use MMS technologies in order to connect the

two mobile phones to each other and take necessary information.

6. Take several images of the home room where the event happen and save them

locally on PC then send to mobile via MMS message.

7. Provide high level of security in such part of home where valuable objects exist.

42

3.3 System Components

In this system the owner must be able to control his home through specified control

hardware using two peer mobile phones connecting to each other by GSM network.

As we see in Figure 3.1, the system used a group of components which are

connected to each other with an appropriate communication channels, these

components can be categorized as following:

Figure 3.1 System Block diagram

A. Terminal Mobile phone.

B. The peer Mobile phone fixed in the home.

C. GSM communication between the peer Mobile phones (SMS & MMS).

D. The hardware controlling system (microcontroller).

E. The Computer device (PC).

F. Sensors and cameras .

43

In the following paragraphs we will clarify system components usage and we will

express how it works together in order to achieve system goals, and in the next

chapter a more explanation will be presented.

Our system consists of many modules connected to each other. System can be

divided into three main parts:

3.4 Sensing Unit

Sensors play an important role in satisfying our objectives to know about our

surroundings. The initial measurements were just comparative and did not have a

scale. Sensors have a long way from that point and we now have highly accurate

measuring devices.

To form a complete application, however, use of these stand-alone sensors is not

enough. Sensors must be interfaced to a microcontroller to form a complete system.

Interfacing sensors with microcontrollers has revolutionized different applications

and is continuing to do so. Many fields like medical, industrial, and automotive are

benefiting from the latest innovations in sensor technology.

The use of sensors detects the conditions of the home (motion, smoke, fire, and

door or window opening , etc) and the data is collected and transferred using a

microcontroller. Man/Women need to visit his/her home frequently to examine it

condition, or put person to monitor home for guarded purposes. Using the proposed

system, data can be sent to personal mobile, allowing continuous monitoring of the

home. For the purpose of this project, temperature, motion, smoke, and door,

window sensors are addressed as shown in figure 3.2 Sensor that addressed used to

interface with a microcontroller. These sensors can monitor the condition of the

44

home and, based on the thresholds chosen, record useful data and/or trigger alarms

that activate other part in system to start their work

Figure 3.2 Distributed Home sensors

Sensor connected to PIC18F4550 to send signal if event occur to PC , in next

section how to interface between sensor and PIC in part, and microcontroller to PC in

other part.

3.4.1 Sensor to Microcontroller to PC.

The microcontroller receives information from the sensors connected to it by wires

then transmit it to PC . In our project we will use serial port to allow communication

between microcontroller and PC as shown in figure 3.3.

The microcontroller makes some analysis on the signals taken by sensor and passes

them to computer, which may turn camera on.

Sensor

Smoke

Motion

LM35

Magnet

45

Figure 3.3 Sensors to microcontrollers to PC block diagram

3.5 Monitoring unit

3.5.2.1 Camera

Camera is the primary monitoring element; it is responsible for sending stream of

video to the computer. To choose a specific camera we should take in Consideration

some features including zoom, mega pixels.

Another important element for choosing camera is the connection type, where the

camera can be connected via USB or other computer port.

In our system we choose a PC web cam (TEAC Web Camera) , as shown in

Figure 3.4, to get continues stream which will framed in the system.

TEAC Webcam specifications

 Definition: 5.0 megapixels (2560x2048)

 CMOS chip type: Color CMOS Image Sensor

 High resolution: 2560*2048

Sensor

Wires

Serial Cable

45

Figure 3.3 Sensors to microcontrollers to PC block diagram

3.5 Monitoring unit

3.5.2.1 Camera

Camera is the primary monitoring element; it is responsible for sending stream of

video to the computer. To choose a specific camera we should take in Consideration

some features including zoom, mega pixels.

Another important element for choosing camera is the connection type, where the

camera can be connected via USB or other computer port.

In our system we choose a PC web cam (TEAC Web Camera) , as shown in

Figure 3.4, to get continues stream which will framed in the system.

TEAC Webcam specifications

 Definition: 5.0 megapixels (2560x2048)

 CMOS chip type: Color CMOS Image Sensor

 High resolution: 2560*2048

PIC
Microcontoller

Personal
Computer

Wires

Serial Cable

45

Figure 3.3 Sensors to microcontrollers to PC block diagram

3.5 Monitoring unit

3.5.2.1 Camera

Camera is the primary monitoring element; it is responsible for sending stream of

video to the computer. To choose a specific camera we should take in Consideration

some features including zoom, mega pixels.

Another important element for choosing camera is the connection type, where the

camera can be connected via USB or other computer port.

In our system we choose a PC web cam (TEAC Web Camera) , as shown in

Figure 3.4, to get continues stream which will framed in the system.

TEAC Webcam specifications

 Definition: 5.0 megapixels (2560x2048)

 CMOS chip type: Color CMOS Image Sensor

 High resolution: 2560*2048

Wires

Serial Cable

46

 Resolution: 2560*2048, 1600*1200, 1280*1024, 640*480, 320*240, 160*120.

 Video format: 24-bit RGB

 Interface: USB1.1/2.0

 Frame rate: 320x240 up to 30 frames/second

 1600*1200 up to 15 frames/second

 Sensor size: 1/6 inch

 S/N ratio: < 48 dB

 Built-in image compression

 Automatic white balance

 Automatic color compensation

Figure 3.4 TEAC Webcam

Camera Interface:

We have in our system two camera devices which are connected directly to USB

port as shown in the following block Diagram.

46

 Resolution: 2560*2048, 1600*1200, 1280*1024, 640*480, 320*240, 160*120.

 Video format: 24-bit RGB

 Interface: USB1.1/2.0

 Frame rate: 320x240 up to 30 frames/second

 1600*1200 up to 15 frames/second

 Sensor size: 1/6 inch

 S/N ratio: < 48 dB

 Built-in image compression

 Automatic white balance

 Automatic color compensation

Figure 3.4 TEAC Webcam

Camera Interface:

We have in our system two camera devices which are connected directly to USB

port as shown in the following block Diagram.

46

 Resolution: 2560*2048, 1600*1200, 1280*1024, 640*480, 320*240, 160*120.

 Video format: 24-bit RGB

 Interface: USB1.1/2.0

 Frame rate: 320x240 up to 30 frames/second

 1600*1200 up to 15 frames/second

 Sensor size: 1/6 inch

 S/N ratio: < 48 dB

 Built-in image compression

 Automatic white balance

 Automatic color compensation

Figure 3.4 TEAC Webcam

Camera Interface:

We have in our system two camera devices which are connected directly to USB

port as shown in the following block Diagram.

47

Figure 3.5 cameras to PC Block diagram

How we programmed the camera?

Webcam Capture is a simple library for capturing images and video from a

Webcam. It works using the Video for Windows API. It allows for both showing a

video preview and simply taking pictures

Avicap32.dll is an Audio-Video Interleaved (AVI) Video Capture dynamic

link library registered under Microsoft Corporation. It is developed by

Microsoft to be part of its Windows operating system.

You can easily incorporate video capture capabilities into your application by using

the AVI capture window class. AVICap provides applications with a simple,

message-based interface to access video and waveform-audio acquisition hardware

and to control the process of streaming video capture to disk. AVICap supports

streaming video capture and single-frame capture in real-time.

A very common function of the avicap32.dll module is to enable Windows to

capture movies and video images from cameras like digital cameras, web cameras,

video cards and other video hardware. Furthermore, the avicap32.dll application

stores the resulting video as AVI format. Once you have the DLL loaded you can

create a capture window. A capture window you create by using the AVICap

window class can perform the following tasks :

48

o Capture audio and video streams to an audio-video interleaved (AVI) file.

o Connect and disconnect video and audio input devices dynamically.

o View a live incoming video signal.

o Specify a file to use when capturing and copy the contents of the capture file

to another file

o Set the capture rate

o Display dialog boxes that control the video source and format

The AVI format is the most common format defined by Windows for audio and

video data on a computer. Basically, when a user records a video or is using a

webcam for video conferencing, the video capturing process takes place.

The file avicap32.dll, described as AVI Capture Windows Class DLL, can be

exploited further so that on-demand screen captures can be integrated into the .NET

Windows application. In this enhanced use of the avicap32.dll module, you will be

able to preview video input within the Windows application from your webcam. You

can also record streaming video and capture images using the same video capture

device.

In order to achieve this, the software Visual Studio .NET of Microsoft can be used.

In this software, the module avicap32.dll constants are being declared in the video

capture application.

3.6 Mobile Unit

In figure 3.6 show main component in mobile part .

49

Figure 3.6 Mobile Block Diagram

3.6.1 Terminal Mobile

The terminal mobile is carried by the owner and used to monitor and remotely

control the system through GSM network.

Terminal mobile receives MMS message from Peer mobile, this MMS will tell the

owner what happened in his home by using specific control word written as text

inside message also it will receive an image to provide the owner with additional

information about the events happened inside the home. as shown in Figure 3.6

3.6.2 Peer mobile

Mobile in the home will connect to a PC, when event happen PC will send

information to this mobile which reshape this data as text and receive image captured

by camera and send it plus text as MMS message to the terminal mobile carried by

house owner.

50

3.6.3 Interface pc to peer mobile

Figure 3.7 Mobile to PC interface

As shown in figure 3.7 , we use Bluetooth to send image from PC to peer mobile.

Firstly, we create a connection channel to peer mobile then send image and text that

describe events occurs.

3.6.4 How to deal with MMS

MMS is a big new world, and it’s all too easy to get lost out there. We decide to

use MMS in our system in addition of text in order to give user a clear vision about

the event. Now we would like to provide a good understanding of the basics of

MMS.

MMS message is like SMS message ,most people are familiar with at least the

basics of sending an SMS message. Figure 3.8 show how an SMS message is

delivered. There are several bits missing, but the basic concept is:

- The message originator(Peer Mobile) addresses the short message to the

receiver.

- The phone contain information about SMSC (SMS Center) ,and the message

is sent there .

- SMSC is attempt to forward the message to the receiver.

51

Figure 3.8 Sending an SMS message

The basic concept of sending an MMS message is exactly the same as shown in

figure 3.9:

- The message originator (Peer Mobile) addresses the multimedia message to

the receiver.

- The phone contain information about MMSC (MMS Center) ,and the

message is sent there .

- SMSC is attempt to forward the message to the receiver.

If for some reason the receiver is unreachable, MMSC stores the message for a

time, and if possible, delivers the message later. If the message cannot be delivered

within a certain time frame, it is eventually discarded.

Figure 3.9 Sending an MMS message

52

Is it really that simple? No, in fact it is more complicated, figure 3.8 is missing

much more, and here is the more detailed version of MMS sending:

The message originator addresses it to the receiver, the phone contain information

about MMSC and initiates a WAP connection and send the message , MMSC accepts

the message and responds to the originator over the same WAP connection and the

originator phone indicates " Message Sent ".

Then MMSC attempts to send an indication message to the receiver , the receiver

phone must set to accept the MMS so it initiates a WAP connection and retrieve the

MMS from the MMSC and the receiver phone indicates " Message Received ". The

receiver phone acknowledges receipt ,still over the same connection. MMSC

indicates the originator that the message was delivered , the originator phone

indicates " Message Delivered ".

3.7 How system works

Now, we will explain how system components work together in order to achieve

project goals.

Owner has the capability of turn the system On/Off whenever he wants. while the

system is running, if any abnormal events happened such that fire , motion ;

sensors will detects it and send signal to microcontroller.

After that, PIC makes some processing of received signal, convert it to digital

signal, and then transmit it to PC serially.

53

PC, after receiving signal serially makes some local analysis in order to turn event's

room cameras on .Then camera will captures a stream of images and videos that will

be transmit to PC serially using USB cable. PC then store captured images and

videos in a file for later owner usage.

After that an image will send to peer mobile through Bluetooth in addition to text

useful information about system state.

Peer mobile prepare MMS message containing event image ,also containing a text

about house state information, then send to Terminal Mobile after establish GSM

communication.

Terminal mobile which always carried by the owner, it receives MMS message

from Peer mobile; which means owner alarming.

This MMS will tell the owner what happened in his home by using specific control

word written in the MMS in addition to an image provide the owner with event

nature occur inside the home.

Here the following step describes that:

 Initially, our system is in ready state and waiting for event occurrence.

 Sensing unit detect any abnormal events occur (motion, smoke, temperature

and window/door event).

 Sensing unit send predefined word to PC that defined natures of event occur.

 PC triggers cameras for capture images and record video.

 PC builds Bluetooth Connection with peer mobile.

 PC send an image and text files to peer mobile.

 Peer mobile will receive image and text form PC.

 Peer mobile build MMS message and send it to terminal mobile.

54

3.8 System Flow chart

Figure 3.10, shows the system flow chart, it helps to understand and analyze the steps

and the problems might appear and needs to be solved, in order to make the system

as flawless as possible:

Figure 3.10 System Flow Chart

56

4.1 Introduction

As we shown in previous chapter, our system has mainly three parts, sensing unit,

monitoring unit and mobile unit part. A division must be made between these parts in

order to build the system.

This chapter describes designing the whole system; section 4.2 describes sensing

unit design; section 4.3 describes monitoring unit and section 4.4 describes mobile

unit design.

In figure 4.1, a general system interfacing block diagram is shown, it represents the

interfacing of the whole system. In the coming sections, detailed interfacing

techniques and requirements will be discussed.

Figure 4.1 General System Interfacing Block Diagram.

We will be explain component of figure 4.1 in the next sections

56

4.1 Introduction

As we shown in previous chapter, our system has mainly three parts, sensing unit,

monitoring unit and mobile unit part. A division must be made between these parts in

order to build the system.

This chapter describes designing the whole system; section 4.2 describes sensing

unit design; section 4.3 describes monitoring unit and section 4.4 describes mobile

unit design.

In figure 4.1, a general system interfacing block diagram is shown, it represents the

interfacing of the whole system. In the coming sections, detailed interfacing

techniques and requirements will be discussed.

Figure 4.1 General System Interfacing Block Diagram.

We will be explain component of figure 4.1 in the next sections

56

4.1 Introduction

As we shown in previous chapter, our system has mainly three parts, sensing unit,

monitoring unit and mobile unit part. A division must be made between these parts in

order to build the system.

This chapter describes designing the whole system; section 4.2 describes sensing

unit design; section 4.3 describes monitoring unit and section 4.4 describes mobile

unit design.

In figure 4.1, a general system interfacing block diagram is shown, it represents the

interfacing of the whole system. In the coming sections, detailed interfacing

techniques and requirements will be discussed.

Figure 4.1 General System Interfacing Block Diagram.

We will be explain component of figure 4.1 in the next sections

57

4.2 Sensing Unit

Sensing unit in chapter four describe how we can connected in detail between

sensor and PIC microcontroller ,and some important thing should be considered

before make interfaces between sensor as will explained in next paragraph

4.2.1 Requirement must find in microcontroller :

First to interface sensor with PIC 18F4550 ,we should need to know about the

minimum requirement for PIC to run .

Figure 4.2 Minimum Requirements for PIC to Run

Three main thing in PIC should be connected as shown in previous figure :

1- Vref- (0V) – Vref+ (5V) .

2- Crystal at pin 13,14 consequently .

3- MCLR .

One is explained itself ,2 and 3 will be explain next:

57

4.2 Sensing Unit

Sensing unit in chapter four describe how we can connected in detail between

sensor and PIC microcontroller ,and some important thing should be considered

before make interfaces between sensor as will explained in next paragraph

4.2.1 Requirement must find in microcontroller :

First to interface sensor with PIC 18F4550 ,we should need to know about the

minimum requirement for PIC to run .

Figure 4.2 Minimum Requirements for PIC to Run

Three main thing in PIC should be connected as shown in previous figure :

1- Vref- (0V) – Vref+ (5V) .

2- Crystal at pin 13,14 consequently .

3- MCLR .

One is explained itself ,2 and 3 will be explain next:

57

4.2 Sensing Unit

Sensing unit in chapter four describe how we can connected in detail between

sensor and PIC microcontroller ,and some important thing should be considered

before make interfaces between sensor as will explained in next paragraph

4.2.1 Requirement must find in microcontroller :

First to interface sensor with PIC 18F4550 ,we should need to know about the

minimum requirement for PIC to run .

Figure 4.2 Minimum Requirements for PIC to Run

Three main thing in PIC should be connected as shown in previous figure :

1- Vref- (0V) – Vref+ (5V) .

2- Crystal at pin 13,14 consequently .

3- MCLR .

One is explained itself ,2 and 3 will be explain next:

58

Master Clear Reset (MCLR)

The MCLR pin provides a method for triggering an external Reset of the device. A

Reset is generated by holding the pin low. These devices have a noise filter in the

MCLR Reset path which detects and ignores small pulses. The MCLR pin is not

driven low by any internal Resets, including the WDT. In PIC18F4550 devices ,the

MCLR input can be connected to resistor then to 5 volts.

Important peripheral should be explain that used in project :

1- Oscillator frequency .

2- Watch dog timer.

3- Low voltage detect.

4- Analog to digital converter .

5- Serial port ,USART.

Oscillator frequency

The operation of the oscillator in PIC18F4550 devices is controlled registers.

Configuration registers, select the oscillator mode. As Configuration bits, these are

set when the device is programmed and left in that configuration until the device is

reprogrammed. The OSCCON register selects the Active Clock mode; it is primarily

used in controlling clock switching in power-managed modes.

Oscillator Types

PIC18F4550 devices can be operated in twelve distinct oscillator modes. From

these mode we use external oscillator (HS) that have 4MHz value.

In HS Oscillator mode, a crystal is connected to the OSC1 and OSC2 pins to

establish oscillation. Following figure shows the pin connections.

59

Figure 4.3 Crystal Operation .

The watchdog timer

It is a free running down counter which , ,if enabled and allowed to time out ,will

cause the microcontroller to reset ,so in our project should make it OFF .

Low voltage detect

The ability to detect a failing power supply is very valuable in an embedded

system . In a battery –powered product this can be used to detect a failing battery . It

can also be used to detect power being switched off . In either case , the

microcontroller may wish to activate a warning signal or exercises an orderly

shutdown , perhaps saving key operating variable to EEPROM . In the case of power

loss. also this peripherals should make it OFF in our project.

Analog to digital converter:

In chapter two take about ADC , which convert analog signal to digital that can be

read by computer .The following steps should be followed to perform an A/D

conversion:

60

1. Configure the A/D module:

• Configure analog pins, voltage reference and digital I/O (ADCON1)

• Select A/D input channel

• Select A/D acquisition time

• Select A/D conversion clock

• Turn on A/D module

2. Configure A/D interrupt (if desired)

3. Wait the required acquisition time (if required).

4. Start conversion:

5. Wait for A/D conversion to complete (interrupt ,polling).

6. Read A/D Result.

7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time

per bit is defined as TAD. A minimum wait of 3 TAD is required before the next

acquisition starts.

Serial ports

PIC 18F4550 has two major serial modules :the master synchronous serial port and

Universal Synchronous Asynchronous Receiver Transmitter (USART).

Calculation needed (Note : equation find in chapter two in USART part of serial

port section)

8MHz oscillator

9600 baud asynchronous

For BRGH = 1

SPBRG = 4000000/(16 x 9600) - 1 = 51.08

For BRGH = 0

SPBRG = 4000000/(64 x 9600) - 1 = 12.02

61

Best choice is BRGH = 0, SPBRG = 12.02

As of a baud rate calculation, the microcontroller operating at 8MHz and we use

9600 baud to communicate with a serial port on a PC. USART used in asynchronous

mode. We choice BRGH =0 , because less error than BRGH=1 .

Note that to get an accurate and stable baud rate, an accurate and stable oscillator is

required.

4.2.2 Sensor Circuit

In chapter two we take about main sensor that used to detect event on our home , in

this chapter we talk about sensor circuit , interfaces with PIC microcontroller ,and

needed programming for each sensor to read value of it.

Used sensor in our project divide in two part as show in figure 4.4 : analog sensor

and digital sensor . analog have special configuration to work , but digital one work

as digital switch.

1- LM35 temperature sensor that used to indicate fire occur in home.

2- Motion detector to sense any motion (persons only) .

Figure4.4 type of sensors

Smoke
detector

Motion
detector

61

Best choice is BRGH = 0, SPBRG = 12.02

As of a baud rate calculation, the microcontroller operating at 8MHz and we use

9600 baud to communicate with a serial port on a PC. USART used in asynchronous

mode. We choice BRGH =0 , because less error than BRGH=1 .

Note that to get an accurate and stable baud rate, an accurate and stable oscillator is

required.

4.2.2 Sensor Circuit

In chapter two we take about main sensor that used to detect event on our home , in

this chapter we talk about sensor circuit , interfaces with PIC microcontroller ,and

needed programming for each sensor to read value of it.

Used sensor in our project divide in two part as show in figure 4.4 : analog sensor

and digital sensor . analog have special configuration to work , but digital one work

as digital switch.

1- LM35 temperature sensor that used to indicate fire occur in home.

2- Motion detector to sense any motion (persons only) .

Figure4.4 type of sensors

Sensor

Digital

Motion
detector

Magnet
switch

Analog

LM35

Temprature sensor

61

Best choice is BRGH = 0, SPBRG = 12.02

As of a baud rate calculation, the microcontroller operating at 8MHz and we use

9600 baud to communicate with a serial port on a PC. USART used in asynchronous

mode. We choice BRGH =0 , because less error than BRGH=1 .

Note that to get an accurate and stable baud rate, an accurate and stable oscillator is

required.

4.2.2 Sensor Circuit

In chapter two we take about main sensor that used to detect event on our home , in

this chapter we talk about sensor circuit , interfaces with PIC microcontroller ,and

needed programming for each sensor to read value of it.

Used sensor in our project divide in two part as show in figure 4.4 : analog sensor

and digital sensor . analog have special configuration to work , but digital one work

as digital switch.

1- LM35 temperature sensor that used to indicate fire occur in home.

2- Motion detector to sense any motion (persons only) .

Figure4.4 type of sensors

Analog

LM35

Temprature sensor

62

3- Smoke detector to sense if any smoke in room.

4- To increase reliability of our system use Magnate switch for detecting door or

window opening .

LM35 (Precision Centigrade Temperature Sensors):

From one of the main objective on our system to monitoring temperature , usually

,a temperature sensor converts the temperature into an equivalent voltage output . IC

LM35 is a such sensor .

Figure 4.5 shows the functional block diagram of PIC18F4550 based temperature

monitoring system.

Figure 4.5 block diagram of LM35.

In block diagram show that the sensor measure temperature and because the sensor

value is analogue and the microcontroller read only digital value so we need analog

to digital converter , we use built in A/D converter.

Hardware description

LM35 have 3 pins ,connect pin1 to ground ,pin2 (output of sensor) to PORTA of

PIC , and pin3 to Vcc (5 volt). The output of the sensor is fed to the internal ADC

Temperatur

e sensor

LM35

Analog to

Digital

Converter

Calibration of

voltage to

temperature

PC

< PIC18F4550 >

Analog

o/p

event

63

of the microcontroller.(RA0/AN0 is channel-1 of the internal ADC) . The analogue

voltage output of the sensor is converted into its equivalent digital value by the ADC

and then its equivalent degree Celsius value is calculated by the software. the

calculated value act as determinant that event occur or not.

Before start talk about software description , we describe how to calculate the value

of the sensor .The output linearly varies with temperature. The output is 10MilliVolts

per degree centigrade. So if the output is 310 mV then temperature is 31 degree C.

The internal ADC of the microcontroller has 13 channel of analogue input and gives

10-bit digital output. In this project , the reference voltage to the ADC is the same as

the supply voltage to the microcontroller ,i.e,5V . The resolution of the ADC can be

calculated as follows :

as it a 10-bit ADC = 5/1023 = 4.887 . It mean that for 4.887 change in analogue

input ,the ADC output change by binary "1" with a reference voltage of the 5V.

So the voltage output (in volts) of the sensor is :

 The temperature in degree Celsius is :

1000 because sensor output in mV , and 10 because sensor represent for every 1

Celsius degree 10mV.

The last thing should explain is AD configuration:

We are running at 4MHz in our project so we set prescaler of 8 TOSC.

Our FOSC = 8MHz

Therefore our TOSC = 1/8MHz

= 125nS

Resolution = mV ……….. equation 4.1

64

16 TOSC = 16 x 125 nS

= 2000 nS

= 2 uS

2 uS is more than the minimum requirement.

now we have the TAD we can calculate the division factor for acquisition time.

Acquisition time can be specified in terms of TAD. It can be set to one of the

following values.

20 x TAD

16 x TAD

12 x TAD

8 x TAD

6 x TAD

4 x TAD

2 x TAD

0 x TAD

The safe acquisition time is 2.45uS, so we select 2 x TAD as acquisition time.

TACQ=2 x TAD

=2 x 2uS (Replacing TAD= 2 uS)

=4uS

4 uS is more than required 2.45uS so it's ok.

Figure 4.6 show connect sensor to our PIC as explained previously .

65

Figure 4.6 interface LM35 sensor to PIC18F4550

Temperature threshold :

We use temp = 35.0 and over to indicate a fire occur and high temperature in home.

Motion detector :

Device that indicate if dangerous movement in home or not. This sensor have

special way to connected it to our circuit , first we remove front cover of the detector

, to show these pins A ,B , and C as shown in this figure

65

Figure 4.6 interface LM35 sensor to PIC18F4550

Temperature threshold :

We use temp = 35.0 and over to indicate a fire occur and high temperature in home.

Motion detector :

Device that indicate if dangerous movement in home or not. This sensor have

special way to connected it to our circuit , first we remove front cover of the detector

, to show these pins A ,B , and C as shown in this figure

65

Figure 4.6 interface LM35 sensor to PIC18F4550

Temperature threshold :

We use temp = 35.0 and over to indicate a fire occur and high temperature in home.

Motion detector :

Device that indicate if dangerous movement in home or not. This sensor have

special way to connected it to our circuit , first we remove front cover of the detector

, to show these pins A ,B , and C as shown in this figure

66

A not connected because we don’t needed it , connect two wire to B (negative to

negative side , make the same as positive) , C pins connect to another two wire . In

data sheet of the detector table Technical specification , show that the detector work

at 12 V , and our PIC run only at 5V as maximum so we need transformer to give

suitable voltage. B connected to transformer , C connected to circuit as we connect

switch so when any foreign in home it go low to indicate dangers event following

figure show interface between LM35 and motion to PIC.

Figure 4.7 Interface LM35, Motion to PIC 18F4550

Location of motion detector :

Position the detector so that it faces the area you want to illuminate. To test the

range, walk in front of the sensor's detection area at the farthest point you want the

sensor to reach.

66

A not connected because we don’t needed it , connect two wire to B (negative to

negative side , make the same as positive) , C pins connect to another two wire . In

data sheet of the detector table Technical specification , show that the detector work

at 12 V , and our PIC run only at 5V as maximum so we need transformer to give

suitable voltage. B connected to transformer , C connected to circuit as we connect

switch so when any foreign in home it go low to indicate dangers event following

figure show interface between LM35 and motion to PIC.

Figure 4.7 Interface LM35, Motion to PIC 18F4550

Location of motion detector :

Position the detector so that it faces the area you want to illuminate. To test the

range, walk in front of the sensor's detection area at the farthest point you want the

sensor to reach.

66

A not connected because we don’t needed it , connect two wire to B (negative to

negative side , make the same as positive) , C pins connect to another two wire . In

data sheet of the detector table Technical specification , show that the detector work

at 12 V , and our PIC run only at 5V as maximum so we need transformer to give

suitable voltage. B connected to transformer , C connected to circuit as we connect

switch so when any foreign in home it go low to indicate dangers event following

figure show interface between LM35 and motion to PIC.

Figure 4.7 Interface LM35, Motion to PIC 18F4550

Location of motion detector :

Position the detector so that it faces the area you want to illuminate. To test the

range, walk in front of the sensor's detection area at the farthest point you want the

sensor to reach.

67

Smoke sensor :

Its nearly connected to circuit as motion detector as shown in the following figure .

Figure 4.8 Interface Smoke to PIC

How to Place a Smoke Detector ?

It is important to properly place the smoke detectors in the home. In most locations

throughout the U.S., smoke detectors are required in all new homes. The number

and location are listed below:

Number and Location Requirements

The minimum standard as stated in the National Fire Prevention Association's

National Fire Alarm Code (NFPA 72): There should be a smoke detector on every

level of the house, including the basement and outside every bedroom

New homes require hard-wired alarms to be interconnected so that if one alarm is

activated, all alarms will sound the alarm signal.

67

Smoke sensor :

Its nearly connected to circuit as motion detector as shown in the following figure .

Figure 4.8 Interface Smoke to PIC

How to Place a Smoke Detector ?

It is important to properly place the smoke detectors in the home. In most locations

throughout the U.S., smoke detectors are required in all new homes. The number

and location are listed below:

Number and Location Requirements

The minimum standard as stated in the National Fire Prevention Association's

National Fire Alarm Code (NFPA 72): There should be a smoke detector on every

level of the house, including the basement and outside every bedroom

New homes require hard-wired alarms to be interconnected so that if one alarm is

activated, all alarms will sound the alarm signal.

67

Smoke sensor :

Its nearly connected to circuit as motion detector as shown in the following figure .

Figure 4.8 Interface Smoke to PIC

How to Place a Smoke Detector ?

It is important to properly place the smoke detectors in the home. In most locations

throughout the U.S., smoke detectors are required in all new homes. The number

and location are listed below:

Number and Location Requirements

The minimum standard as stated in the National Fire Prevention Association's

National Fire Alarm Code (NFPA 72): There should be a smoke detector on every

level of the house, including the basement and outside every bedroom

New homes require hard-wired alarms to be interconnected so that if one alarm is

activated, all alarms will sound the alarm signal.

68

New homes require smoke detectors in every bedroom. On floors without bedrooms,

smoke alarms should be installed in or near living areas, such as family rooms and

living rooms.

Placement Requirements

As stated by the NFPA: "Since smoke and deadly gases rise, alarms should be

placed on the ceiling at least 4 inches from the nearest wall, or high on a wall, 4-12

inches from the ceiling. This 4-inch minimum is important to keep alarms out of

possible "dead air" spaces, because hot air is turbulent and may bounce so much it

misses spots near a surface. Installing alarms near a window, door or fireplace is not

recommended because drafts could detour smoke away from the unit. In rooms

where the ceiling has an extremely high point, such as in vaulted ceilings, mount the

alarm at or near the ceiling's highest point."

Magnet switch :

Its use in door and window to increase security of our home . To use magnet it

connect in the same method use in smoke and motion detector .

All schematic design :

As shown in figure 4.9 sensing unit contain pic18F4550 that connected to two type

of sensor ; analog sensor and digital sensor , analog sensor (LM35) connected to pin

1 of port A and other pins of LM35 connected to power and ground .Digital sensor

(smoke , magnet , motion) connected to port D , pin 1,2,3 respectively .

69

Figure 4.9 All system interface

4.3 Monitoring unit

4.3.1 Camera’s functions

Get an image

The Target of the monitoring system is to provide images representing the current

system state when events occur. So the main function is to capture an image and send

it to PC where is to be saved as image file.

Record video and save it in video file

When user needs to initiate video recording service for later using. It will be saved

into files, the same with other techniques and other types of cameras. We can also

customize specific type of file to store video which can decrease the output video

size especially when recording large blocks of data.

69

Figure 4.9 All system interface

4.3 Monitoring unit

4.3.1 Camera’s functions

Get an image

The Target of the monitoring system is to provide images representing the current

system state when events occur. So the main function is to capture an image and send

it to PC where is to be saved as image file.

Record video and save it in video file

When user needs to initiate video recording service for later using. It will be saved

into files, the same with other techniques and other types of cameras. We can also

customize specific type of file to store video which can decrease the output video

size especially when recording large blocks of data.

69

Figure 4.9 All system interface

4.3 Monitoring unit

4.3.1 Camera’s functions

Get an image

The Target of the monitoring system is to provide images representing the current

system state when events occur. So the main function is to capture an image and send

it to PC where is to be saved as image file.

Record video and save it in video file

When user needs to initiate video recording service for later using. It will be saved

into files, the same with other techniques and other types of cameras. We can also

customize specific type of file to store video which can decrease the output video

size especially when recording large blocks of data.

70

Function that are performed by home-owner:

1. Select camera to view.

2. Display camera views in a PC window.

3. Take picture and video from the camera.

4. Replay camera output.

4.3.2 camera’s technique

While our system in ready state and all camera on, the system continuously read

from serial port according to specific timer, after reading from serial port we have

two states:

- Waiting state which means no event occur.

- Event state.

If we have waiting state we must still read again from serial port every period timer

interval and we can get an image that show the state of home which save locally in

PC . If we have event state, then, our system capture groups of image describe event

nature from camera number one, and record video with specific period time (10

minute) from camera number two. All images and videos store locally in pc.

4.3.3 Interfacing between PC and peer mobile.

The first thing you should do is connect to the peer mobile. You can choose the

peer mobile using its MAC address. After the peer mobile has been selected, we

connect to it and initiate a new session, then we load image from specific location on

PC and send it to peer mobile.Here we have state diagram that describe the transition

between states.

71

Figure 4.10 State Diagram For Monitoring Unit

4.4 Mobile unit

Communication between the Peer mobile and Terminal mobile is done through

GSM technology. There is more than one option to communicate with the system

through mobiles:

SMS

Which can be used to alert the system user through send a text message containing

few words describe threat. Its good way but for us it is not enough so we used MMS.

MMS

Very important technology defined in many mobile phones we will used MMS in

order to provide user with an image to show him exactly what happen in his home, as

we all know it is more better to see something rather than hear about. Because of that

we use the two technologies in one message, include text and image.

71

Figure 4.10 State Diagram For Monitoring Unit

4.4 Mobile unit

Communication between the Peer mobile and Terminal mobile is done through

GSM technology. There is more than one option to communicate with the system

through mobiles:

SMS

Which can be used to alert the system user through send a text message containing

few words describe threat. Its good way but for us it is not enough so we used MMS.

MMS

Very important technology defined in many mobile phones we will used MMS in

order to provide user with an image to show him exactly what happen in his home, as

we all know it is more better to see something rather than hear about. Because of that

we use the two technologies in one message, include text and image.

71

Figure 4.10 State Diagram For Monitoring Unit

4.4 Mobile unit

Communication between the Peer mobile and Terminal mobile is done through

GSM technology. There is more than one option to communicate with the system

through mobiles:

SMS

Which can be used to alert the system user through send a text message containing

few words describe threat. Its good way but for us it is not enough so we used MMS.

MMS

Very important technology defined in many mobile phones we will used MMS in

order to provide user with an image to show him exactly what happen in his home, as

we all know it is more better to see something rather than hear about. Because of that

we use the two technologies in one message, include text and image.

72

4.4.1 Monitoring Using Mobile Messages

As we say previously we will use both of SMS and MMS technology in our

system. Multimedia Message Service is the ways that enable user to get his house

information in our system which will be send by the peer mobile , MMS message

consists of two parts , first is a text describe what had happen inside home ,this

information is delivers to peer mobile from the sensors spreads inside home ,this text

will be used instead of sending a separate SMS, the second part is an image of the

event which give user his clear vision, this image also delivered to peer mobile from

cameras inside home.

The Peer Mobile connected to PC directly and make continuous checking on its

memory card through its J2ME application which run all the time ,as soon as the

image file exist in memory this application will find it in approximately real time and

also go to read text file which must be together with image file. This text and image

will formed as our MMS message which send immediately to house owner mobile

,thus we have alerted the user. Here the following state diagram will explain how

this happen .

Figure 4. 11 State Diagram For Mobile Unit

73

4.4.2 J2ME Application

It is called MIDlet application, write once run anywhere. MIDP does not run in the

“ regular ” Java fashion using Main() , System.exit() methods. Instead, we use

MIDlet applications which are subclasses of: javax.microedition.midlet.MIDlet that

is defined by MIDP. The MIDlet class defines abstract methods that the main class

implements (for example: startApp(), destroyApp(), notifyDestroyed()) as shown in

the following figure .

Figure 4.12 MIDlet Main Class Mmethods

MIDlet Suite

One or more MIDlets are packaged together into a MIDlet suite, composed of:

JAR (Java archive) file - The JAR file contains Java classes for each MIDlet in the

suite and Java classes that are shared between MIDlets. The JAR file also contains

resource files used by the MIDlets and a manifest file.

JAD (Java Application Descriptor) file - This file contains a predefined set of

attributes that allows the device application management software to identify,

retrieve, and install the MIDlets .

73

4.4.2 J2ME Application

It is called MIDlet application, write once run anywhere. MIDP does not run in the

“ regular ” Java fashion using Main() , System.exit() methods. Instead, we use

MIDlet applications which are subclasses of: javax.microedition.midlet.MIDlet that

is defined by MIDP. The MIDlet class defines abstract methods that the main class

implements (for example: startApp(), destroyApp(), notifyDestroyed()) as shown in

the following figure .

Figure 4.12 MIDlet Main Class Mmethods

MIDlet Suite

One or more MIDlets are packaged together into a MIDlet suite, composed of:

JAR (Java archive) file - The JAR file contains Java classes for each MIDlet in the

suite and Java classes that are shared between MIDlets. The JAR file also contains

resource files used by the MIDlets and a manifest file.

JAD (Java Application Descriptor) file - This file contains a predefined set of

attributes that allows the device application management software to identify,

retrieve, and install the MIDlets .

73

4.4.2 J2ME Application

It is called MIDlet application, write once run anywhere. MIDP does not run in the

“ regular ” Java fashion using Main() , System.exit() methods. Instead, we use

MIDlet applications which are subclasses of: javax.microedition.midlet.MIDlet that

is defined by MIDP. The MIDlet class defines abstract methods that the main class

implements (for example: startApp(), destroyApp(), notifyDestroyed()) as shown in

the following figure .

Figure 4.12 MIDlet Main Class Mmethods

MIDlet Suite

One or more MIDlets are packaged together into a MIDlet suite, composed of:

JAR (Java archive) file - The JAR file contains Java classes for each MIDlet in the

suite and Java classes that are shared between MIDlets. The JAR file also contains

resource files used by the MIDlets and a manifest file.

JAD (Java Application Descriptor) file - This file contains a predefined set of

attributes that allows the device application management software to identify,

retrieve, and install the MIDlets .

74

4.4.3 Mobile Specification

We choose Nokia 2690 mobile figure 4.13 , as peer mobile, which support MMS

technology , and a SIM cards inside it to send messages, Also memory card inside

peer mobile. It is classified as MIDP 2.0 mobile.

Figure 4.13 :Nokia 2690

It supports :

1. MMS technology.

2. Capture picture resolution of 480 * 640 pixels.

3. pictures size until 1600 * 1200 pixels.

4. Java application specially J2me application.

5. Bluetooth technology .

76

5.1 Introduction

In this chapter, the detailed description for the project software, in previous

chapter we take about how can interface between sensor and microcontroller from

hardware description, in this chapter we will describe software used to give

hardware interfaces goal.

Then we will be explaining how we connect cameras to our system and the

method that used to program our video device in order to capture picture and record

video. And we will be offer how to send an image and text to peer mobile.

Also this chapter describes Mobile Programming in details, these is a very

interested side in our project and open to us a completely new window to

programming world, our mobile programmed using J2ME language in order to

create the JAR file which used to install on mobile to run the application on it.

5.2 Software Requirement Specification

5.2.1 Software description of sensor interfaces

The software code written in 'C' language and compiled using C18 cross compiler

in MPLAB IDE .Code handle event occur from analog sensor and digital sensor ,

then it handle send event serially to PC through USART (configure serial port).

For analog sensor

1- Initiate analog –to – digital conversion and obtain the result.

2- Calculate the temperature in degree Celsius from the voltage value.

3- Use this value to determine if the events occur or not.

For digital sensor

1- Test pins of port if it trigger or not.

2- Take decision depend on status of pins.

77

After that we inform the system that event occur by using predefined control word.

MPLAB:

MPLAB IDE is a software program that runs on your PC to provide a

development environment for your embedded microcontroller design.

The design cycle for developing an our project is

1) Determine design based on the associated hardware circuitry.

2) Knowing which peripherals and pins control hardware, write the software. We

use a compiler that allows a more natural language for creating programs. With

these Language Tools we can write and edit code that is more or less

understandable, with constructs that help organize our code.

3) Compile or assemble the software using a Language Tool to convert code into

machine code for the PICMicro device. This machine code will eventually become

firmware, the code programmed into the microcontroller.

4) Test code. Usually a complex program does not work exactly the way might have

imagined, and “bugs” need to be removed from design to get it to act properly.

5) “Burn” code into a microcontroller and verify that it executes correctly in finished

application.

MPLAB environment as show in figure5.1 first it contain untitled workspace

which contain needed file after create project ,every needed file contain main four

part Header file (p18F4550.h) ,Linker file (p18f4550_g.lkr), library file

(p18f4550.lib) ,source file  add file that contain code of project . Output window

for sure that code correctly executes.

78

Figure 5.1 MPLAB Environment

After complete the code, can we use memory usage gauge to know how many

program take capacity as shown in following figure:

Figure 5.2 Memory Usage Gauge

To download program in PIC can use one of programmer reference in MPLAB,

we use PIC KIT 2.

PIC KIT 2

 In-Circuit-Debugging with MPLAB® IDE

 Debug in the application circuit

 Supported Device Families: PIC10F, PIC12F, PIC16F, PIC18F, and PIC24.

79

Now we should explained code that test sensor status and send char to PC , before

that we mention to important point that we have four sensor and byte contain 8 bits ,

so assume that every sensor represent one bit we need 4 bit to represent the status

,other 4 bit take as don’t care and equal 0.

Let bit 0 represent motion , bit 1 represent smoke , bit 2 represent temp , bit 3

represent magnet ,temp> 35 1, temp< 350 .

Mag Temp Smk Mot Char Status

0 0 0 1 A Motion detecting

0 0 1 0 B Smoke detecting

0 0 1 1 C Motion , Smoke detecting

0 1 0 0 D Temp highover threshold

0 1 0 1 E Temp high , Motion detecting

0 1 1 0 F Temp high , Smoke detecting

0 1 1 1 G Temp high , Motion ,Smoke detecting

1 0 0 0 H Magnet trigger open door

1 0 0 1 I Magnet trigger , Motion detecting

1 0 1 0 J Magnet trigger , Smoke detecting

1 0 1 1 K Magnet trigger , Motion detecting

1 1 0 0 L Magnet trigger, Temp high

1 1 0 1 M Magnet trigger , Motion detecting, Temp high

1 1 1 0 N Magnet trigger , Temp high , Smoke detecting

1 1 1 1 O All sensor make event

Code will be explained in appendices but we explain main code function. In our

code we use main two libraries that c18 provided which is analog to digital

converter library, and USART library as in following figure respectively:

80

Analog to digital converter library can be found on ADC.h

Following figure show the main function used in ADC

Figure 5.3 Step A/D Conversions

OpenADC

ADC_RIGHT_JUST we have two register store value of conversion so we can

determine if read left justified or else.(Result in Least Significant bits)

ADC_2_TAD  2 Tad

ADC_CH0  Channel 0 (AN0)

ADC_INT_OFF Interrupts disabled

USART library:

Main step for USART using c18 library as shown in figure 5.4

Figure 5.4 USART Library

OpenUSART include :

USART_TX_INT_OFF: Transmit interrupt OFF

USART_RX_INT_OFF: Receive interrupt OFF

USART_ASYNCH_MODE: Asynchronous Mode

USART_EIGHT_BIT: 8-bit transmit/receive

USART_BRGH_HIGH: High baud rate

12: value calculated for register spbrg

The flowchart that describe code is

81

Figure 5.5 Flow chart of sensing unit

5.3 Software Description of Cameras

82

We use visual basic .NET for programming and connect to video devices; initially

the video devices are connected to USB port as shown in the following figure.

Figure 5.6 USB Webcam

Here we will explain some steps to connect video devices to our program

1. Creating a Capture Window

A capture window interfaces with the video capture driver and displays a preview

of the video data.

2. Send Message Function

Sends the specified message to a window or windows. The Send Message function

calls the window procedure for the specified window and does not return until the

window procedure has processed the message.

Declare Function SendMessage Lib "user32" Alias
"SendMessageA" (ByVal hWnd As Integer, ByVal wMsg As
Integer, ByVal wParam As Short, ByVal lParam As
String) As Integer

Declare Function capCreateCaptureWindowA Lib "avicap32.dll"
() As Integer

82

We use visual basic .NET for programming and connect to video devices; initially

the video devices are connected to USB port as shown in the following figure.

Figure 5.6 USB Webcam

Here we will explain some steps to connect video devices to our program

1. Creating a Capture Window

A capture window interfaces with the video capture driver and displays a preview

of the video data.

2. Send Message Function

Sends the specified message to a window or windows. The Send Message function

calls the window procedure for the specified window and does not return until the

window procedure has processed the message.

Declare Function SendMessage Lib "user32" Alias
"SendMessageA" (ByVal hWnd As Integer, ByVal wMsg As
Integer, ByVal wParam As Short, ByVal lParam As
String) As Integer

Declare Function capCreateCaptureWindowA Lib "avicap32.dll"
() As Integer

82

We use visual basic .NET for programming and connect to video devices; initially

the video devices are connected to USB port as shown in the following figure.

Figure 5.6 USB Webcam

Here we will explain some steps to connect video devices to our program

1. Creating a Capture Window

A capture window interfaces with the video capture driver and displays a preview

of the video data.

2. Send Message Function

Sends the specified message to a window or windows. The Send Message function

calls the window procedure for the specified window and does not return until the

window procedure has processed the message.

Declare Function SendMessage Lib "user32" Alias
"SendMessageA" (ByVal hWnd As Integer, ByVal wMsg As
Integer, ByVal wParam As Short, ByVal lParam As
String) As Integer

Declare Function capCreateCaptureWindowA Lib "avicap32.dll"
() As Integer

83

This function send message (wMsg) to specific window (hWnd).

3. Video Capture Messages

Right, so you have a capture window. At this stage the capture window appears as

a black rectangle in your program. Before it can capture video you need to connect it

to a device using WM_CAP_DRIVER_CONNECT message .

The WM_CAP_DRIVER_DISCONNECT message disconnects a capture driver

from a capture window.

The WM_CAP_SET_PREVIEW message is used to enable and disable preview

mode. The -1 in this call enables preview mode, a 0 in its place is used to disable

preview mode.

The WM_CAP_SET_PREVIEWRATE message sets the frame rate. In our

program we set the frame rate to 30 frames per second.

The WM_CAP_ABORT message stops the capture operation. In the case of step

capture, the image data collected up to the point of the WM_CAP_ABORT message

will be retained in the capture file

The WM_CAP_STOP message stops the capture operation.

The WM_CAP_FILE_SET_CAPTURE_FILE message names the file used for

video capture.

Const WM_CAP_START = &H400S
Const WM_CAP_DRIVER_CONNECT = WM_CAP_START + 10
Const WM_CAP_DRIVER_DISCONNECT = WM_CAP_START + 11
Const WM_CAP_SET_PREVIEW = WM_CAP_START + 50
Const WM_CAP_SET_PREVIEWRATE = WM_CAP_START + 52
Const WM_CAP_STOP = WM_CAP_START + 68
Const WM_CAP_ABORT = WM_CAP_START + 69
Const WM_CAP_SEQUENCE = WM_CAP_START + 62
Const WM_CAP_SET_SEQUENCE_SETUP = WM_CAP_START + 64
Const WM_CAP_FILE_SET_CAPTURE_FILE = WM_CAP_START + 20

84

The WM_CAP_SEQUENCE message initiates streaming video and audio capture

to a file.

4. Sample Code for Display Video from Webcam

For Show Resolution Setting and Video Format Dialog

For Show Advance Setting Dialog

The following figure show video format dialog and video source dialog

Figure 5.7 Video format dialog

WebCam webcam = new WebCam();

// passing Image Control Element

webcam.InitializeWebCam(imgVideo1)

// start webcam video playing

webcam.Start()

//stop video playing

webcam.Start()

Webcam.config();

Webcam.config2();

84

The WM_CAP_SEQUENCE message initiates streaming video and audio capture

to a file.

4. Sample Code for Display Video from Webcam

For Show Resolution Setting and Video Format Dialog

For Show Advance Setting Dialog

The following figure show video format dialog and video source dialog

Figure 5.7 Video format dialog

WebCam webcam = new WebCam();

// passing Image Control Element

webcam.InitializeWebCam(imgVideo1)

// start webcam video playing

webcam.Start()

//stop video playing

webcam.Start()

Webcam.config();

Webcam.config2();

84

The WM_CAP_SEQUENCE message initiates streaming video and audio capture

to a file.

4. Sample Code for Display Video from Webcam

For Show Resolution Setting and Video Format Dialog

For Show Advance Setting Dialog

The following figure show video format dialog and video source dialog

Figure 5.7 Video format dialog

WebCam webcam = new WebCam();

// passing Image Control Element

webcam.InitializeWebCam(imgVideo1)

// start webcam video playing

webcam.Start()

//stop video playing

webcam.Start()

Webcam.config();

Webcam.config2();

85

Figure 5.8 Video source dialogs

As shown in previous figure the Video Source dialog box controls the selection of

video input channels and parameters affecting the video image being digitized in the

frame buffer.

This dialog box enumerates the types of signals that connect the video source to

the capture card (typically SVHS and composite inputs), and provides controls to

change hue, contrast, or saturation.

Interfacing between PC and peer mobile

After save images and video from cameras, we need to send text and image to peer

mobile in order to explain event occurred.

Initially, we must be established communication channel between PC and Peer

mobile, the channel was created must be depend on MAC address of peer mobile,

then initiate a new session to load image from specific location on PC and send it to

peer mobile.

85

Figure 5.8 Video source dialogs

As shown in previous figure the Video Source dialog box controls the selection of

video input channels and parameters affecting the video image being digitized in the

frame buffer.

This dialog box enumerates the types of signals that connect the video source to

the capture card (typically SVHS and composite inputs), and provides controls to

change hue, contrast, or saturation.

Interfacing between PC and peer mobile

After save images and video from cameras, we need to send text and image to peer

mobile in order to explain event occurred.

Initially, we must be established communication channel between PC and Peer

mobile, the channel was created must be depend on MAC address of peer mobile,

then initiate a new session to load image from specific location on PC and send it to

peer mobile.

85

Figure 5.8 Video source dialogs

As shown in previous figure the Video Source dialog box controls the selection of

video input channels and parameters affecting the video image being digitized in the

frame buffer.

This dialog box enumerates the types of signals that connect the video source to

the capture card (typically SVHS and composite inputs), and provides controls to

change hue, contrast, or saturation.

Interfacing between PC and peer mobile

After save images and video from cameras, we need to send text and image to peer

mobile in order to explain event occurred.

Initially, we must be established communication channel between PC and Peer

mobile, the channel was created must be depend on MAC address of peer mobile,

then initiate a new session to load image from specific location on PC and send it to

peer mobile.

86

Here we show flow chart for monitoring unit

Figure 5.9 Monitoring Flow Chart

5.4 Mobile Programming

Firstly we need a mobile, which supports java requirements and MMS technology,

this mobile must add the PC as Bluetooth paired device “receive from PC without

user interaction". Secondly you need to install NetBeans IDE (we used version

Private Sub Connect()

Dim add As String = "002345462Ef0" // MAC Address
Dim blue_add As BluetoothAddress =

BluetoothAddress.Parse(add)
Dim remoteEndPoint As BluetoothEndPoint = New

BluetoothEndPoint(blue_add, BluetoothService.ObexFileTransfer)
client = New BluetoothClient()
client.Connect(remoteEndPoint)
session = New ObexClientSession(client.GetStream(), UInt16.MaxValue)
session.Connect(ObexConstant.Target.FolderBrowsing)

End Sub

87

6.7.1) then create new project ,from file => new project => choose Java ME from

categories => choose name and location of your project => select the device

configuration (CLCD 1.1) and device profile (2.0) this depends on the mobile which

will run the application on it .

First we import requires packages, next step is to make MIDlet class named

SendMMS which extends MIDlet, after that we make another class named

MMSFormSend.

First Class

Named SendMMS class extends MIDlet, consist of the following methods:

 Public void startApp() :

Signals the MIDlet that it has entered the Active state.

 Public void pauseApp() :

Signals the MIDlet to enter the Paused state

 public void destroyApp() :

Signals the MIDlet to terminate and enter the Destroyed state.

 public void exitMIDlet():

Signals the MIDlet to call destroyApp ().

Second Class:

The second class was an ordinary Java class named MMSFormSend extends

Form and implements command listener. Now will explain its function:

In order to make system sense, mobile must checks its memory card continuously

for the image, if not exist that’s mean that the system is in safe mode and nothing

happen, else image must exist in its memory card indicating events nature , mobile

application and after founding image will read it also go to read text file and build

the MMS to send it immediately. All that will implements in this class, first we

88

create a timer to be sure that the application will search for the image file

continuously in predefined period suitable to our system consideration.

 initiate a timer equal to five seconds

 Then we will check the Memory Card for image file every five seconds

 If the connection failed then do nothing, else sendMMS() method will be called

Inside sendMMS () method the following steps will occur:

 set up an MMS receiver address

 set up an mms connection

int delay = 5000;

int period = 5000;

Timer timer = new Timer ();

fCon =(FileConnection) Connector.open(file:///C:/predefgallery/predeffilereceived/mm.jpg”);

If (fCon.exists ()){

SendMMS ();}

String address = mms://+972599000000: “ +appID;

89

 Build the multipart message

 set the address of the message

 set the subject of the message

 Send MMS Message

Some of libraries used:

 Set permissions for open connection

 Set permissions for send and receive operations

MessageConnection mmsconn = null;

Mmsconn = (MessageConnection) Connector.open (address);

MultipartMessage mmmessage = (MultipartMessage) mmsconn.newMessage

(MessageConnection.MULTIPART_MESSAGE);

mmmessage.setAddress (address);

mmmessage.setSubject(“Your Emergency MMS “);

mmsconn.send (mmmessage);

javax.microedition.Connector.*;

Javax.wireless.messaging.*;

90

Here we show flow chart diagram for mobile unit:

Figure 5.10 Mobile Flow Chart

93

6.1 Introduction

The whole testing stage will be described in this chapter, that’s mean how to

operate each part independently, in addition how to interface and test these parts

together in order to achieve our goals.

6.2. Sensing unit

When we test sensing unit first we test every sensor separately from other sensor

, and connected to circuit two LEDS (Red ,Yellow) to give indicate about the status

in simply form (each led indicate one type of event) .As show in following figure.

Figure 6.1 Interface Magnet To PIC

94

In our project we have two type of sensor ,analog and digital . In Interface analog

sensor take care about configuration by open ADC ,then start conversion , after

complete it should read value and update it to give temperature in Celsius degree.

But in digital sensor it give only ON and OFF status , so system wait until one or

more of sensor go to ON status , then send appropriate signal to PC by serial cable.

as shown in following figure.

Figure 6.2 Interface Sensor To MAX232

In PC we receive data from PIC in program written by VB.net language ,before

that we test serial port by Microsoft hyper terminal ,respond to us by out the value

of event occur . we should configure Hyper terminal as in following

Start by type communicate name

95

Figure 6.3 Connection Name

Previous figure show name of connection .Then configure port as shown In the

following Figure.

Figure 6.4 Configuration of port

96

Example of output status as show in following figure :

Figure 6.5 Status on terminal .

In vb.net code ,first do interface to read from serial port as in following :

Figure 6.6 Interfaces To Serial Port

97

Data Received from serial port and appear it in RichTextBox as show in figure

6.6 .after that make program to test system status depend on command word .

6.3 Monitoring unit

After we connected cameras figure 6.7 to our system and run program on

visual basic .NET , shows us video source dialog as shown in figure 6.8 to add

video devices to our program , then as shown in figure 6.9, the stream of video

comes from cameras is showing in video windows.

Then the program must wait until receive event signal from serial port to take

images and video that store locally in PC.

Figure 6.7 camera device

97

Data Received from serial port and appear it in RichTextBox as show in figure

6.6 .after that make program to test system status depend on command word .

6.3 Monitoring unit

After we connected cameras figure 6.7 to our system and run program on

visual basic .NET , shows us video source dialog as shown in figure 6.8 to add

video devices to our program , then as shown in figure 6.9, the stream of video

comes from cameras is showing in video windows.

Then the program must wait until receive event signal from serial port to take

images and video that store locally in PC.

Figure 6.7 camera device

97

Data Received from serial port and appear it in RichTextBox as show in figure

6.6 .after that make program to test system status depend on command word .

6.3 Monitoring unit

After we connected cameras figure 6.7 to our system and run program on

visual basic .NET , shows us video source dialog as shown in figure 6.8 to add

video devices to our program , then as shown in figure 6.9, the stream of video

comes from cameras is showing in video windows.

Then the program must wait until receive event signal from serial port to take

images and video that store locally in PC.

Figure 6.7 camera device

98

Figure 6.8 video source dialog

Figure 6.9 camera form program

98

Figure 6.8 video source dialog

Figure 6.9 camera form program

98

Figure 6.8 video source dialog

Figure 6.9 camera form program

99

Problems

If we have one video device in our system we don’t need user interaction to add

cameras to our program which mean there is no appearance for video source dialog

, but if we have more than one device (as we need in our project) we notice the

appearance of the dialog.

The driver of video device is showing this dialog and we cannot find a method to

control its appearance, so in our project the user must add cameras initially to

program then, our program wait for event signal.

PC to peer mobile

How send image and text from PC to peer mobile?

Initially we must add PC as Bluetooth paired device on peer mobile as shown in

figure 6.10 then our program send image and text to peer mobile using its MAC

address as shown on the following figure.

Figure 6.10 Mobile paired device

99

Problems

If we have one video device in our system we don’t need user interaction to add

cameras to our program which mean there is no appearance for video source dialog

, but if we have more than one device (as we need in our project) we notice the

appearance of the dialog.

The driver of video device is showing this dialog and we cannot find a method to

control its appearance, so in our project the user must add cameras initially to

program then, our program wait for event signal.

PC to peer mobile

How send image and text from PC to peer mobile?

Initially we must add PC as Bluetooth paired device on peer mobile as shown in

figure 6.10 then our program send image and text to peer mobile using its MAC

address as shown on the following figure.

Figure 6.10 Mobile paired device

99

Problems

If we have one video device in our system we don’t need user interaction to add

cameras to our program which mean there is no appearance for video source dialog

, but if we have more than one device (as we need in our project) we notice the

appearance of the dialog.

The driver of video device is showing this dialog and we cannot find a method to

control its appearance, so in our project the user must add cameras initially to

program then, our program wait for event signal.

PC to peer mobile

How send image and text from PC to peer mobile?

Initially we must add PC as Bluetooth paired device on peer mobile as shown in

figure 6.10 then our program send image and text to peer mobile using its MAC

address as shown on the following figure.

Figure 6.10 Mobile paired device

100

Challenges:

Initially we connect peer mobile by USB cable to PC in order to make a

communication between them but we cannot find a method that enable us to send

image and text from PC and receive them from mobile, so we moving to another

way in order to achieve our goal, we find OTA (Of The Air message) that allow us

to send picture message from pc to mobile but we find that message cannot carry

more than 256 byte picture message.

After that we go to Bluetooth solution and we solve our problem

6.4 Mobile unit

To implement and test implementation in previous chapter, we put the SIM card

and connect the peer mobile to PC through Bluetooth technology, then start to test

step by step:

First step we done to test our application was try to run simple applications in order

to test send an SMS message only.

Figure 6.11 SMS On Simulator

100

Challenges:

Initially we connect peer mobile by USB cable to PC in order to make a

communication between them but we cannot find a method that enable us to send

image and text from PC and receive them from mobile, so we moving to another

way in order to achieve our goal, we find OTA (Of The Air message) that allow us

to send picture message from pc to mobile but we find that message cannot carry

more than 256 byte picture message.

After that we go to Bluetooth solution and we solve our problem

6.4 Mobile unit

To implement and test implementation in previous chapter, we put the SIM card

and connect the peer mobile to PC through Bluetooth technology, then start to test

step by step:

First step we done to test our application was try to run simple applications in order

to test send an SMS message only.

Figure 6.11 SMS On Simulator

100

Challenges:

Initially we connect peer mobile by USB cable to PC in order to make a

communication between them but we cannot find a method that enable us to send

image and text from PC and receive them from mobile, so we moving to another

way in order to achieve our goal, we find OTA (Of The Air message) that allow us

to send picture message from pc to mobile but we find that message cannot carry

more than 256 byte picture message.

After that we go to Bluetooth solution and we solve our problem

6.4 Mobile unit

To implement and test implementation in previous chapter, we put the SIM card

and connect the peer mobile to PC through Bluetooth technology, then start to test

step by step:

First step we done to test our application was try to run simple applications in order

to test send an SMS message only.

Figure 6.11 SMS On Simulator

101

Second was try to read an image and display it on simulator screen in order to be

sure that our application can deal with the image comfortably.

At the first time, there was an exception appeared in simulator screen, that’s mean

that we can't read the image .Finally we place the image want to read in the same

application package " in resource file " which mean that this image packaged

inside JAR file, by doing that we can read and display the image on the simulator

screen.

Figure 6.12 Image On Simulator

After that we go to test another component of the application ,it was Timer. We

try to choose the most suitable timer value in order to get real time or near real time

response, we find that 5 seconds was fine.

101

Second was try to read an image and display it on simulator screen in order to be

sure that our application can deal with the image comfortably.

At the first time, there was an exception appeared in simulator screen, that’s mean

that we can't read the image .Finally we place the image want to read in the same

application package " in resource file " which mean that this image packaged

inside JAR file, by doing that we can read and display the image on the simulator

screen.

Figure 6.12 Image On Simulator

After that we go to test another component of the application ,it was Timer. We

try to choose the most suitable timer value in order to get real time or near real time

response, we find that 5 seconds was fine.

101

Second was try to read an image and display it on simulator screen in order to be

sure that our application can deal with the image comfortably.

At the first time, there was an exception appeared in simulator screen, that’s mean

that we can't read the image .Finally we place the image want to read in the same

application package " in resource file " which mean that this image packaged

inside JAR file, by doing that we can read and display the image on the simulator

screen.

Figure 6.12 Image On Simulator

After that we go to test another component of the application ,it was Timer. We

try to choose the most suitable timer value in order to get real time or near real time

response, we find that 5 seconds was fine.

102

The next step was actually very hard one , its take a lot of time. We now move to

read the image from another platform on the mobile, the application try to catch the

image and the text files and read both from the mobile memory.

First goals of j2ME application was to check for the existence of these files , then if

they exist read them.

Here we faced a problem of how we can reach and read saved image, we used

FileConnection in order to attach this image and check for its existence ,then read

it.

Then create this folder " grad " and copy the image " img " inside. When the

program run they print on the simulator screen " NotFound " string indicates that

J2ME application can't find target file as shown in the next figure, although we

make sure that it is exist in the correct directory.

Figure 6.13 Mobile Testing Result

102

The next step was actually very hard one , its take a lot of time. We now move to

read the image from another platform on the mobile, the application try to catch the

image and the text files and read both from the mobile memory.

First goals of j2ME application was to check for the existence of these files , then if

they exist read them.

Here we faced a problem of how we can reach and read saved image, we used

FileConnection in order to attach this image and check for its existence ,then read

it.

Then create this folder " grad " and copy the image " img " inside. When the

program run they print on the simulator screen " NotFound " string indicates that

J2ME application can't find target file as shown in the next figure, although we

make sure that it is exist in the correct directory.

Figure 6.13 Mobile Testing Result

102

The next step was actually very hard one , its take a lot of time. We now move to

read the image from another platform on the mobile, the application try to catch the

image and the text files and read both from the mobile memory.

First goals of j2ME application was to check for the existence of these files , then if

they exist read them.

Here we faced a problem of how we can reach and read saved image, we used

FileConnection in order to attach this image and check for its existence ,then read

it.

Then create this folder " grad " and copy the image " img " inside. When the

program run they print on the simulator screen " NotFound " string indicates that

J2ME application can't find target file as shown in the next figure, although we

make sure that it is exist in the correct directory.

Figure 6.13 Mobile Testing Result

103

Here we try tens of method to solve this problem which is J2ME programming

related , but without any result. Also look for any suggestion on internet, actually

there were more than one solution , once said that we must use a form for the path

like this " file:/// ", so this form was used but no result appeared all known ways

tried, but without any effectiveness unless the solution had appeared , the problem

was that the J2ME application can't see all parts of the computer, it can see just a

folder named " root folder " this folder must be created manually in long folder

series before run the application ,otherwise the application will not see target file.

This folder is create by following next steps:

Go to javame-sdk which installed in the beginning of using J2ME " java SDK ".

There, create new folder named " 3.0 ". Inside 3.0 folder create another new folder

named " 0 ". Another new folder will be created inside 0 folder, named " appdp ".

Here create another folder named " filesystem ". Inside the filesystem create the last

folder named " root1 ".

Inside this folder " root1" put any file want your J2ME application to see and read

it, so we conclude that the J2ME application deal with constant unique path called

its application root, inside this root everything is accessible , any path else will be

not useful.

The next step was, how to find the root of the mobile, we know now the

application root on PC in order to test application , also it is most necessary to find

out application root on the mobile needed to run the application on.

Here we found nothing about mobile application root , also application was print

out " NOT founded " on the mobile screen. as shown on the next figure.

104

Figure 6.14 Mobile Root Problem

so we enforced to use our methods to check out the mobile application root.

Another J2ME application was created , but this time it has different job. The

following is a sub code of the second J2ME application.

This new J2ME application have the function of mobile root finder. First it runs

on PC in order to check if it work properly, it print out " The Valid Root Found are

: root1/ " on the simulator screen. See figure 6.15.

104

Figure 6.14 Mobile Root Problem

so we enforced to use our methods to check out the mobile application root.

Another J2ME application was created , but this time it has different job. The

following is a sub code of the second J2ME application.

This new J2ME application have the function of mobile root finder. First it runs

on PC in order to check if it work properly, it print out " The Valid Root Found are

: root1/ " on the simulator screen. See figure 6.15.

104

Figure 6.14 Mobile Root Problem

so we enforced to use our methods to check out the mobile application root.

Another J2ME application was created , but this time it has different job. The

following is a sub code of the second J2ME application.

This new J2ME application have the function of mobile root finder. First it runs

on PC in order to check if it work properly, it print out " The Valid Root Found are

: root1/ " on the simulator screen. See figure 6.15.

105

Figure 6.15 PC Root

Next it run on the mobile and print out its roots, yes the mobile have more than

one root , J2ME application deal with mobile memories just like root1 in PC , so it

deal with the mobile memory as first root named "C : " , and with the memory Card

as the second root named " E : ", as shown in Figure 6.16. by this way we can

solves our roots big problem, so we now stand on the first element of the image/

text files path.

Figure 6.16 Mobile Roots

105

Figure 6.15 PC Root

Next it run on the mobile and print out its roots, yes the mobile have more than

one root , J2ME application deal with mobile memories just like root1 in PC , so it

deal with the mobile memory as first root named "C : " , and with the memory Card

as the second root named " E : ", as shown in Figure 6.16. by this way we can

solves our roots big problem, so we now stand on the first element of the image/

text files path.

Figure 6.16 Mobile Roots

105

Figure 6.15 PC Root

Next it run on the mobile and print out its roots, yes the mobile have more than

one root , J2ME application deal with mobile memories just like root1 in PC , so it

deal with the mobile memory as first root named "C : " , and with the memory Card

as the second root named " E : ", as shown in Figure 6.16. by this way we can

solves our roots big problem, so we now stand on the first element of the image/

text files path.

Figure 6.16 Mobile Roots

106

Now we have the image, the next step is how to send it as MMS message : we set

up the address and the subject of MMS to send our message.

And now our application is ready to test in its terminal shape on mobile. We

install the application and start it from the game menu where it is installed.

Figure 6.17 Application On Mobile Screen

In this stage we faced another problem , this was an authentication problem.

When application run on the mobile, an authentication string is print out on the

mobile screen, it indicates user to allow application to :

 Read user data

 Write and edit user data

 Send MMS message

Also its indicates user that this application is not from trusted supplier. This is

shown in the next figures.

106

Now we have the image, the next step is how to send it as MMS message : we set

up the address and the subject of MMS to send our message.

And now our application is ready to test in its terminal shape on mobile. We

install the application and start it from the game menu where it is installed.

Figure 6.17 Application On Mobile Screen

In this stage we faced another problem , this was an authentication problem.

When application run on the mobile, an authentication string is print out on the

mobile screen, it indicates user to allow application to :

 Read user data

 Write and edit user data

 Send MMS message

Also its indicates user that this application is not from trusted supplier. This is

shown in the next figures.

106

Now we have the image, the next step is how to send it as MMS message : we set

up the address and the subject of MMS to send our message.

And now our application is ready to test in its terminal shape on mobile. We

install the application and start it from the game menu where it is installed.

Figure 6.17 Application On Mobile Screen

In this stage we faced another problem , this was an authentication problem.

When application run on the mobile, an authentication string is print out on the

mobile screen, it indicates user to allow application to :

 Read user data

 Write and edit user data

 Send MMS message

Also its indicates user that this application is not from trusted supplier. This is

shown in the next figures.

107

Figure 6.18 Write Authentication Problem

Figure 6.19 Read Authentication Problem

107

Figure 6.18 Write Authentication Problem

Figure 6.19 Read Authentication Problem

107

Figure 6.18 Write Authentication Problem

Figure 6.19 Read Authentication Problem

108

Figure 6.20 Send MMS Authentication Problem

Figure 6.21 Not Trusted Application

The authentication problem was a big seriously problem, we tried hard to solve it

. first we look for a solution in the same mobile , look for application details and

properties, found something called application access " app.access " see Figure

6.22.

108

Figure 6.20 Send MMS Authentication Problem

Figure 6.21 Not Trusted Application

The authentication problem was a big seriously problem, we tried hard to solve it

. first we look for a solution in the same mobile , look for application details and

properties, found something called application access " app.access " see Figure

6.22.

108

Figure 6.20 Send MMS Authentication Problem

Figure 6.21 Not Trusted Application

The authentication problem was a big seriously problem, we tried hard to solve it

. first we look for a solution in the same mobile , look for application details and

properties, found something called application access " app.access " see Figure

6.22.

109

Figure 6.22 Phone Application Access

In this list , three option were found:

communication ,

Data access ,

And Auto start , see Figure 6.23

Figure 6.23 Application Data Access

Then, in Data access option something interesting was found. There were an

access control on each of operation, we interesting in two of them. Look at Figure

6.24.

109

Figure 6.22 Phone Application Access

In this list , three option were found:

communication ,

Data access ,

And Auto start , see Figure 6.23

Figure 6.23 Application Data Access

Then, in Data access option something interesting was found. There were an

access control on each of operation, we interesting in two of them. Look at Figure

6.24.

109

Figure 6.22 Phone Application Access

In this list , three option were found:

communication ,

Data access ,

And Auto start , see Figure 6.23

Figure 6.23 Application Data Access

Then, in Data access option something interesting was found. There were an

access control on each of operation, we interesting in two of them. Look at Figure

6.24.

110

Figure 6.24 : Data Access Options

First one was Read User Data option, inside this option another sub list contained

four option:

 Ask Every Time

 Ask First Time Only

 Always Allowed

 Not Allowed , see figure 6.25.

Figure 6.25 Data Access Option 1

110

Figure 6.24 : Data Access Options

First one was Read User Data option, inside this option another sub list contained

four option:

 Ask Every Time

 Ask First Time Only

 Always Allowed

 Not Allowed , see figure 6.25.

Figure 6.25 Data Access Option 1

110

Figure 6.24 : Data Access Options

First one was Read User Data option, inside this option another sub list contained

four option:

 Ask Every Time

 Ask First Time Only

 Always Allowed

 Not Allowed , see figure 6.25.

Figure 6.25 Data Access Option 1

111

Second, was Add And Edit user Data option, inside this option another sub list

contained also four option:

 Ask Every Time

 Ask First Time Only

 Always Allowed

 Not Allowed , see figure 6.26

Figure 6.26 Data Access Option 2

Unfortunately, second and third option is not available for us, as shown in the last

figure. So by using mobile sitting ,the problem can't solved yet.

Sign MIDlet:

We'll show how to sign a MIDlet Suite to grant the execution of operations that

usually the midlet may only run after a user confirmation.

WTK: The Sun J2ME Wireless Toolkit supports the development of Java

applications that run on devices such as cellular phones .We’ll use WTK to sign our

application.

111

Second, was Add And Edit user Data option, inside this option another sub list

contained also four option:

 Ask Every Time

 Ask First Time Only

 Always Allowed

 Not Allowed , see figure 6.26

Figure 6.26 Data Access Option 2

Unfortunately, second and third option is not available for us, as shown in the last

figure. So by using mobile sitting ,the problem can't solved yet.

Sign MIDlet:

We'll show how to sign a MIDlet Suite to grant the execution of operations that

usually the midlet may only run after a user confirmation.

WTK: The Sun J2ME Wireless Toolkit supports the development of Java

applications that run on devices such as cellular phones .We’ll use WTK to sign our

application.

111

Second, was Add And Edit user Data option, inside this option another sub list

contained also four option:

 Ask Every Time

 Ask First Time Only

 Always Allowed

 Not Allowed , see figure 6.26

Figure 6.26 Data Access Option 2

Unfortunately, second and third option is not available for us, as shown in the last

figure. So by using mobile sitting ,the problem can't solved yet.

Sign MIDlet:

We'll show how to sign a MIDlet Suite to grant the execution of operations that

usually the midlet may only run after a user confirmation.

WTK: The Sun J2ME Wireless Toolkit supports the development of Java

applications that run on devices such as cellular phones .We’ll use WTK to sign our

application.

112

Main Concepts:

Permission: is an operation or method that the application can execute inside its

runtime environment.

Protection domain: is a set of permissions.

Keystore: which is a repository of certificates . As we'll see later, when we install a

signed midlet into a device, it checks for a certificate that can be used to recognize

the midlet suite as signed. If no certificate is found, the midlet isn't secure and the

device can advise the user to not install it. On the contrary, if one suitable

certificate is found, the device keystore can be used for verifying that the midlet

suite is signed, and thus we have what we call a trusted midlet suite.

Trusted and Untrusted Midlet Suites:

The trusted ones are linked to a certificate and so they have all the permissions

included in the associated protection domain. The untrusted ones are linked to a

domain which is often called untrusted domain which has no specific permissions.

How can a device know if a midlet suite is trusted or untrusted? Well, if the

midlet suite is signed with a specific certificate, the device will search, into its

keystore, for a suitable certificate. The subsystem in charge of associating a specific

certificate to a particular protection domain is provided by the device vendor, and

so it's a vendor-specific process. On general terms, we can say that every protection

domain is linked to a root certificate the device itself uses to check signed

applications. When an application developer signs a midlet suite, he or she can use

different certificates released by different certificate authorities. The protection

113

domain linked to the midlet suite will be the one the first matching root certificate

recognizes. This means that a midlet suite can be linked to only one protection

domain.

How to set the permissions for a midlet suite :

From the user interaction point of view, MIDP 2.0 specification describes two

different kinds of permissions:

- Allowed permission

- User permission

Allowed permissions are those a trusted midlet suite can execute without an

explicit user interaction.This kind of permissions are assigned to a signed midlet

suite by its protection domain. User permissions requires an interaction with the

user. So, if we want a midlet suite to execute a protected API without any user

interaction, we have to sign our application using a certificate that the device links

to a protection domain in which the API is marked as allowed.

On the other hand, if the midlet suite is linked to a protection domain in which the

protected API permission is marked as "user permission", the application will ask

the user if he or she wants to execute it or not.

Following steps show how sign our midlet using WTK

1- Loading JAD file to WTK.

2- Choose trusted domain using edit/preference/security (Fig6_27).

114

Figure 6.27 Trusted Protection Domain

3- Generate a Key pair to sign the midlet suite using Keystore/New Key Pair

option of our tool (Fig6_28).

115

fig. 6_28 generate New Key

Here we can insert information about the company and the alias name. When we

press ok we have the important step. Here the tool shows us the list of available

protection domains we can associate to the key we're generating. It's a fundamental

step, since the protection domain we choose here will be the one associated to the

midlet when it'll be executed . We choose the trusted one as shown on the following

figure.

Figure 6.29 Trusted Certificate Domain

4- All we have to do now is to sign the midlet suite with the Action/Sign Midlet

Suite option of the tool. Here we want to sign and then confirm. The midlet is

now signed and associated to the trusted domain.

116

5- Run Midlet and install it to peer mobile , after that we show that all option

became active

When we execute now our midlet into the peer mobile - the midlet suite being

associated to the trusted domain - the MMS operation can be done without user

confirmation.

113

7.1 Introduction

The project that has been done was a step for developing the idea of remote monitor

home. Also the project was a good step in developing smart houses. Meanwhile we

have some recommendations and suggestions for the future work. The following

section will discusses them.

7.2. System Achievements

Almost all the goals of our system have been achieved. In this point the main

achievements of the system are discussed and the ways of achieving it.

We build sensing unit that cover many event natures (motion, smoke, door

/windows, and temperature) in order to discover any abnormal action happen inside

home.

We can connect more than video device to our system in order to capture images

and record video from different corner and we can send image and text using

Bluetooth to mobile unit.

We can run our application continuously on peer mobile in order to achieve project

goals to get real time or near real time response as soon as the image is arrived on to

mobile memory by bluetooth, this application will catch it and send it immediately to

the owner, which mean our project is success to alert home owner.

7.3. Real Learning Outcomes

After the implementation of the project we have an expert in the following points:

 Learn how to use and program 18F4550 microcontroller.

 How to remotely monitor device.

 learn how to program video devices using visual basic.NET

114

 Bluetooth programming.

 Mobile programming.

 Faces many problems with communicating with the mobile and learn how to

solve it.

7.4. Recommendations

After our work on this project and after facing many problems during the

implementation, we as a project team, see that the following points may be a good

improvement for this project in order to make it more sense and more reliable:

 Increase number of cameras to avoid system failure when one camera is

damaged.

 Increase number of sensing unit.

 Add another sensor type.

 Increase number of MMS receiver.

 Send video record to owner.

 Send voice record.

Imports System.Drawing.Imaging
Imports System.Runtime.InteropServices, System.IO

Imports System.Data
Imports WebCam_Capture
Imports System
Imports System.Collections.Generic
Imports System.ComponentModel
Imports System.Drawing
Imports System.Net.Sockets
Imports System.Windows.Forms

Imports InTheHand.Net
Imports InTheHand.Net.Bluetooth
Imports InTheHand.Net.Sockets
Imports InTheHand.Windows.Forms
Imports Brecham.Obex
Imports Brecham.Obex.Objects

Imports System.IO.Ports.SerialPort
Imports System.IO.Ports

Public Class Form1

Private WithEvents serialPort As New IO.Ports.SerialPort
Dim by As Byte

Dim file, filename As String
Dim w As Integer = 20
Dim i As Integer

Public Structure CAPTUREPARMS
Dim dwRequestMicroSecPerFrame As Integer
Dim fMakeUserHitOKToCapture As Boolean
Dim wPercentDropForError As Integer
Dim fYield As Boolean
Dim dwIndexSize As Integer
Dim wChunkGranularity As Integer
Dim fUsingDOSMemory As Boolean
Dim wNumVideoRequested As Integer
Dim fCaptureAudio As Boolean
Dim wNumAudioRequested As Integer
Dim vKeyAbort As Integer
Dim fAbortLeftMouse As Boolean
Dim fAbortRightMouse As Boolean
Dim fLimitEnabled As Boolean
Dim wTimeLimit As Integer
Dim fMCIControl As Boolean
Dim fStepMCIDevice As Boolean
Dim dwMCIStartTime As Integer
Dim dwMCIStopTime As Integer
Dim fStepCaptureAt2x As Boolean
Dim wStepCaptureAverageFrames As Integer
Dim dwAudioBufferSize As Integer
Dim fDisableWriteCache As Boolean
Dim AVStreamMaster As Integer

End Structure

Declare Function SetWindowPos Lib "user32" Alias "SetWindowPos" _
(ByVal hwnd As Integer, ByVal hWndInsertAfter As Integer, ByVal x

As Integer, _
ByVal y As Integer, ByVal cx As Integer, ByVal cy As Integer,

ByVal wFlags As Integer) As Integer

'--This function destroys the specified window--
Declare Function DestroyWindow Lib "user32" (ByVal hndw As Integer)

As Boolean

'--This function sends the specified message to a window or
windows--

Declare Function SendMessage Lib "user32" Alias "SendMessageA"
(ByVal hWnd As Integer, ByVal wMsg As Integer, ByVal wParam As Short,
ByVal lParam As String) As Integer

Declare Function SendMessage2 Lib "user32" Alias "SendMessageA"
(ByVal hWnd As Integer, ByVal wMsg As Integer, ByVal wParam As Short,
ByRef lParam As CAPTUREPARMS) As Integer

Private webcam As WebCam
Dim caprams As New CAPTUREPARMS
Dim hWnd As Integer

Const WM_CAP_START = &H400S
Const WS_CHILD = &H40000000
Const WS_VISIBLE = &H10000000

Const WM_CAP_DRIVER_CONNECT = WM_CAP_START + 10
Const WM_CAP_DRIVER_DISCONNECT = WM_CAP_START + 11
Const WM_CAP_SEQUENCE = WM_CAP_START + 62
Const WM_CAP_SET_SEQUENCE_SETUP = WM_CAP_START + 64
Const WM_CAP_SET_SCALE = WM_CAP_START + 53
Const WM_CAP_SET_PREVIEWRATE = WM_CAP_START + 52
Const WM_CAP_SET_PREVIEW = WM_CAP_START + 50
Const WM_CAP_STOP = WM_CAP_START + 68
Const WM_CAP_FILE_SET_CAPTURE_FILE = WM_CAP_START + 20
Const WM_CAP_ABORT = WM_CAP_START + 69

Const SWP_NOMOVE = &H2S
Const SWP_NOSIZE = 1
Const SWP_NOZORDER = &H4S
Const HWND_BOTTOM = 1
Private mintCount As Integer = 3
Dim client As BluetoothClient
Dim previousItemsStack As Stack(Of ListViewItem()) = New Stack(Of

ListViewItem())
Dim session As ObexClientSession

Private Sub bntStart_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles bntStart.Click

webcam.Start()

End Sub

Private Sub bntStop_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles bntStop.Click

webcam.Stop()
End Sub

Private Sub bntCapture_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles bntCapture.Click

imgCapture.Image = imgVideo1.Image

End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

With caprams
.AVStreamMaster = 1 'maybe 1?
.dwAudioBufferSize = 10
.dwIndexSize = 34952
.dwMCIStartTime = 0
.dwMCIStopTime = 0
.dwRequestMicroSecPerFrame = 16667
.fAbortLeftMouse = False
.fAbortRightMouse = False
.fCaptureAudio = True
.fDisableWriteCache = False
.fLimitEnabled = True
.fMakeUserHitOKToCapture = False
.fMCIControl = False
.fStepCaptureAt2x = False
.fStepMCIDevice = False
.fUsingDOSMemory = False
.fYield = True
.vKeyAbort = Nothing
.wChunkGranularity = 0
.wNumAudioRequested = 10
.wNumVideoRequested = 32
.wPercentDropForError = 0
.wStepCaptureAverageFrames = 0
.wTimeLimit = 300 '# of seconds of video to caputre!!

End With

webcam = New WebCam()
webcam.InitializeWebCam(imgVideo1)

webcam.Start()
PreviewVideo(imgVideo2)
capture_img()

End Sub

Private Sub PreviewVideo(ByVal pbCtrl As PictureBox)

hWnd = WebCam_Capture.WebCamCapture.capCreateCaptureWindowA(0,
WS_VISIBLE Or WS_CHILD, 0, 0, 0, 0, imgVideo2.Handle.ToInt32, 0)

If WebCam_Capture.WebCamCapture.SendMessage(hWnd,
WM_CAP_DRIVER_CONNECT, 0, 0) Then

'---set the preview scale---
WebCam_Capture.WebCamCapture.SendMessage(hWnd, WM_CAP_SET_SCALE, True,
0)
'---set the preview rate (ms)---
WebCam_Capture.WebCamCapture.SendMessage(hWnd, WM_CAP_SET_PREVIEWRATE,
30, 0)
'---start previewing the image---
WebCam_Capture.WebCamCapture.SendMessage(hWnd, WM_CAP_SET_PREVIEW,
True, 0)
'---resize window to fit in PictureBox control---
SetWindowPos(hWnd, HWND_BOTTOM, 0, 0, pbCtrl.Width, pbCtrl.Height,
SWP_NOMOVE Or SWP_NOZORDER)

Else
'--error connecting to video source---
DestroyWindow(hWnd)
End If
End Sub

Private Sub capture_img()

Dim i As Integer
Dim e As EventArgs

For i = 0 To 4 Step 1

System.Threading.Thread.Sleep(1000)
bntCapture_Click(Capture, e)
System.Threading.Thread.Sleep(1000)

file = DateTime.Now.ToString("yyyyMMdd") & "_" &
DateTime.Now.ToString("HHmmss")

filename = "d:\\monitor\" & file & ".bmp"
imgCapture.Image.Save(filename, ImageFormat.Bmp)

Next

filename = "d:\\monitor\1.jpeg"
imgCapture.Image.Save(filename, ImageFormat.Jpeg)

send_image()
webcam.Stop()
record_video()

End Sub

Private Sub record_video()

file = DateTime.Now.ToString("yyyyMMdd") & "_" &
DateTime.Now.ToString("HHmmss")

filename = "d:\\monitor\" & file & ".avi"

SendMessage2(hWnd, WM_CAP_SET_SEQUENCE_SETUP, Len(caprams), caprams)
SendMessage(hWnd, WM_CAP_FILE_SET_CAPTURE_FILE, 0, filename)
SendMessage(hWnd, WM_CAP_SEQUENCE, 0, CType(0, String))

System.Threading.Thread.Sleep(300000)

End Sub

Private Sub send_image()

Connect()
System.Threading.Thread.Sleep(1000)

UploadFiles(" d:\\monitor\1.jpeg")
System.Threading.Thread.Sleep(3000)

End Sub

Private Sub VideoFormat_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles VideoFormat.Click

webcam.ResolutionSetting()
End Sub

''
Private Sub VideoSource_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles VideoSource.Click
webcam.AdvanceSetting()

End Sub
'''

Private Sub ExitToolStripMenuItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ExitToolStripMenuItem.Click

Me.Close()
End Sub

'''
Private Sub AboutToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
AboutToolStripMenuItem.Click

End Sub
'''

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

Form1_Load(sender, e)
' serial_config()
Timer1.Enabled = False

End Sub

'''
Private Sub Connect()

Dim add As String = "002345462Ef0"
Dim blue_add As BluetoothAddress = BluetoothAddress.Parse(add)
Dim remoteEndPoint As BluetoothEndPoint = New

BluetoothEndPoint(blue_add, BluetoothService.ObexFileTransfer)
client = New BluetoothClient()
client.Connect(remoteEndPoint)
session = New ObexClientSession(client.GetStream(),

UInt16.MaxValue)
session.Connect(ObexConstant.Target.FolderBrowsing)

End Sub
'''

Private Sub UploadFiles(ByVal files As String)

Dim size As Long = 0
Dim filestoupload As List(Of String) = New List(Of String)()
Dim info As FileInfo = New FileInfo(files)
filestoupload.Add(files)
size += info.Length

Dim download As Boolean = False
Dim filesProcessed As Integer = 0
Dim progress As Long = 0
Dim i As Integer
Dim start As DateTime = DateTime.Now

Dim currentfile As String = filestoupload(0)
bgwWorker.ReportProgress(Int(((progress * 100) / size)), i + 1)

Dim filename As String
If (download) Then

filename = Path.Combine(Dir, currentfile)
Else

filename = currentfile
End If

Dim hoststream As FileStream
hoststream = New FileStream(filename, FileMode.Open,

FileAccess.Read, FileShare.None)

Dim remotestream As AbortableStream = Nothing

remotestream = session.Put(Path.GetFileName(currentfile), Nothing)

Using (hoststream)

Using (remotestream)

Dim result As Long
result = ProcessStreams(hoststream, remotestream, progress,

currentfile)

If (result <> 0) Then
progress = result

End If
End Using

End Using

End Sub

'''

Private Sub Disconnect()

session.Disconnect()
session.Dispose()
session = Nothing
client.Close()
client.Dispose()
client = Nothing

End Sub

'''

Private Function ProcessStreams(ByVal source As Stream, ByVal
destination As Stream, ByRef progress As Long, ByVal filename As
String) As Long

Dim buffer(1024 * 4) As Byte
While (True)
Dim length As Integer = source.Read(buffer, 0, buffer.Length)

If (length <> 0) Then
destination.Write(buffer, 0, length)
progress += length

Else
Exit Function

End If

End While
Return progress

End Function

'''
Private Sub serial_config()

If serialPort.IsOpen Then
serialPort.Close()

End If
Try

'---configure the serial port with the various
' parameters---
With serialPort

.PortName = "COM20"

.BaudRate = 9600

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One

.Handshake = IO.Ports.Handshake.None
End With
'---open the serial port---
serialPort.Open()

Catch ex As Exception
MsgBox(ex.ToString)

End Try

End Sub

'''

Private Sub serialPort_DataReceived(ByVal sender As Object, ByVal e
As System.IO.Ports.SerialDataReceivedEventArgs) Handles
serialPort.DataReceived

by = serialPort.ReadByte
serialPort.DiscardInBuffer()

TextBox1.BeginInvoke(New myDelegate(AddressOf updateControl),
New Object() {})

serialPort.Close()
webcam.Stop()

End Sub

'''
Public Delegate Sub myDelegate()

Public Sub updateControl()

Try
If by = 65 Then

TextBox1.Text = "Motion detector "
End If

If by = 66 Then
TextBox1.Text = "Door / window open "

End If

Catch ex As Exception
MsgBox(ex.ToString)

End Try

End Sub

End Class

///

#include<p18f4550.h>
#include<delays.h>
#include<adc.h>
#include<usart.h>

#define mot PORTDbits.RD0
#define mag PORTDbits.RD1
#define smk PORTDbits.RD2

#pragma config WDT=OFF
#pragma config LVP=OFF
#pragma config FOSC=INTOSC_HS

void main()
{
int temp =0;
unsigned int t_val=0;

OSCCON=0b01111110;

OpenADC(ADC_FOSC_64 & ADC_RIGHT_JUST & ADC_2_TAD , ADC_CH0 &
ADC_INT_OFF & ADC_REF_VDD_VSS , ADC_2ANA);

OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_ASYNCH_MODE
& USART_EIGHT_BIT & USART_CONT_RX & USART_BRGH_LOW, 12);

PORTD=0;
PORTC=0;
PORTA=0;

TRISC=0;
TRISD=255;
TRISA= 1;

while(1)
{

ConvertADC();
while(BusyADC());
t_val= ReadADC();
Delay10TCYx(0);

temp = ((t_val * 500) /1023);

if (mot) // motion ------1
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('A');
}

else if (!smk) // smoke -----2
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('C');
}

else if (mot && !smk) // -----3
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('C');
}

else if (temp > 35) // LM ----4
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('D');
}

else if (temp >35 && mot) // -----5
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('E');
}

else if (temp >35 && !smk)//-----6
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('F');
}

else if (temp>35 && mot && !smk)//-----7
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('G');
}

else if (mag) // magnat ------8
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('B');
}

else if (mag && mot) // ------9

{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('I');
}

else if (mag && !smk) //-----10
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('J');
}

else if (mag && mot && !smk)//----11
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('K');
}

else if (mag && temp>35)//------12
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('L');
}

else if (mag && temp >35 && mot) //-----13
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('M');
}

else if (mag && temp >35 && !smk) //-----14
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('N');
}

else if (mag && temp >35 && mot && !smk) // -----15
{
while(BusyUSART());
Delay10TCYx(0);
WriteUSART('O');
}}
CloseUSART();
}

References:

[1] http://www.tradercity.com/board/products-1/offers-to-sell-and-export-1/projects-on-

home-security-using-mobile-phone-107195 [Accessed September 8 2010]

[2] http://www.plainfonet.com/vb/showthread.php?t=464 [Accessed September 30

2010]

[3] Jon S. Wilson, Sensor Technology Handbook, Elsevier, 30 Corporate Drive, suite

400, Burlington, MA 01803, USA; 2005, Elsevier Inc.

[4] http://hobby_elec.piclist.com/e_pic.htm [October 3 2010]

[5] http:// www.beyondlogic.org/serial/serial.htm#30 [October 3 2010]

[6] http://electronic.howstuffworks.com/cell-phone1.htm [Accessed October 3 2010]

[7] http://en.wikipedia.org/wiki/GSM [Accessed October 12 2010]

[8]http://www.wisegeek.com/what-is-sms.htm [Accessed October 12 2010]

[9] http://en.wikipedia.org/wiki/SMS [Accessed October 27 2010]

[10] http://en.wikipedia.org/wiki/Multimedia_messaging_Service [Accessed November

13 2010]

[11] http://en.kioskea.net/contents/bluetooth/bluetooth-intro.php3 [Accessed November

15 2010]

	first papers.pdf
	final document2.pdf
	ch1.pdf
	ch2.pdf
	ch3.pdf
	ch4.pdf
	ch5.pdf
	ch6.pdf
	ch7.pdf
	Imports System.pdf
	references.pdf

