
1

Elec
tric

al and Computer Engineering Department

Communication and Electronics Engineering Program
Computer Engineering program

Bachelor Thesis

Graduation Project

GPS Car Tracking System

Project Team

Samah Rateb AL-badawi Ola Mohammad Rashed

Project Supervisor

Eng. Ayman Wazwaz

Hebron – Palestine
june,2012

2

GPS Car Tracking System

Project Team:
SamahRatebAL-badawi Ola Mohammed Rashed

Project Supervisor:
Eng.Ayman Wazwaz

This under-graduate project report submitted to computer and electrical
engineering department in college of engineering and technology.

Palestine Polytechnic University

For accomplishment the requirements of the bachelor degree in computer
system, and telecommunication engineering fields.

Palestine Polytechnic University
Hebron-Palestine

May,2012

3

Dedication

To Palestine Polytechnic University, and all our teachers.

To our parents, brothers, and sisters

To our all friends and colleagues

To all, whom raising us to be the persons we are today, whom being with

us in every step of the way, through good times and bad, thanks you for all the

support that you have always give us, helping us to succeed and instilling in us

the confidence that we are capable of doing anything we put in our minds.

Thank you for everything.

4

Acknowledgements

This graduation project has been supported by the Deanship of Graduate

Studies and Scientific Research through "Distinguished Graduation Projects

Fund", special thanks for them.

Special thanks to Palestine Polytechnic university for its attention,

support, and chances that give us to be graduated students, and improve our

selves and abilities to be engineering.

Thanks to our supervisor Eng .AymanWazwaz for his support and advice

during our works, thanks to our teachers who help us in the project, especially

Eng. MajdiZalloum, and thanks to all teachers in electrical and computer

engineering department.

Thanks to Palearth organization, especially Mr.AliTaha, fore provide us

with some project resources .

Special thanks to our parents, families, friends, and anyone help us, and

trusted deeply that we can success.

To each of the above, we extend our deepest appreciation.

5

Abstract

Depending on the high usage of mobile phones, and the large services that

it provides, and the needs to always be connected to others, and share

information with them, we built a mobile based car tracking system.

Car tracking system, will give users the ability to determine their locations,

and other cars locations, during any travel interval; by providing an obvious

and clear observation, to the movement of group of cars in different places, and

reflecting their paths on a map. Also it provides the ability of continuously

checking of speed of the moving car.

It uses mobiles built in GPS Receiver, to determine the coordinates and

speed of the moving cars, then sends them over GSM network, by GPRS

services based on connection technique, frequently to a central server. In order

to process and plot on the map, with complete and clear system interface, and

provide the user with accurate history for cars movements and speeds in the

past period, which can be retrieved at any time.

We built our system, using all needed hardware components and software

programs, and we created a way to interface them with each other, to

completely achieve the system objectives in efficient way.

6

الملخص

بفعل الاستخدام المتزاید للھواتف المتنقلة ، وما تقدمھ من خدمات متزایدة، وبفعل الحاجة المستمرة الى

دالتواصل مع الآخرین والمشاركة بالمعلومات المختلفة، فقد قمنا ببناء نظام تتبع حركة السیارات بالاعتما

.على الھواتف المتنقلة

ت، ھذا النظام الذي سیتیح للأفراد القدرة على تحدید مساراتھم، وكذلك تحدید نظام تتبع السیارا

ومعرفة ، مسارات حركة الآخرین، ضمن فترات مختلفة، وتمثیلھا برسم توضیحي على خرائط جغرافیھ

.سرعة السیارات خلال تعقبھا

واتف المتنقلة، لیتمكن من تحدید سیستخدم النظام، نظام تحدید المواقع العالمي الموجود ضمن الھ

إحداثیات لموقع الحركة وسرعة السیارة المتحركة، ومن ثم إرسالھا عبر شبكة الاتصالات اللاسلكیة إلى

الخادم المركزي بطریقة اتصال معینھ وبشكل متكرر بعد كل فتره محدده ، حیث سیتم تمثیل ھذه الإحداثیات

. ائط الجغرافیة الممثلة للمنطقة المُتابعةكمسارات متتابعة من الحركة، على الخر

لقد قمنا باستخدام جمیع الاجزاء والبرمجیات اللازمة لإتمام المشروع ، وقد قمنا بعمل ربط بین

.ھذه الأجزاء بطریقھ متكاملة، لتحقیق أفضل كفاءة وعمل للمشروع

7

CHAPTER ONE :
INTRODUCTION
1.1 Overview 2
1.2 Aim of the project 2
1.3 Requirements 2

1.3.1 Functional requirements 2
1.3.2 Non-Functional requirements 3

1.4 Assumption and dependencies 3
1.5 Literature Review(related projects) 4

1.5.1 GPS and GSM based vehicle tracking system 4
1.5.2 Vehicle tracking and control systems 5

1.5.3 OpenGTS™ - Open GPS Tracking System 5
1.5.4 Vehicle Tracking System using GPS and GSM modem 6

1.6 Project Schedule 7
1.7 General system description 9

1.8 Report Content 9

CHAPTER TWO :
THEORITICAL BACKGROUND
2.1 Overview 12
2.2 GPS technology 12

2.2.1 Definition 12
2.2.2 GPS components 13
2.2.3 How it works? 14
2.2.4 The GPS satellite system 14
2.2.5 GPS in our project 14

2.3 Coordinate systems 15
2.3.1 World Geodetic System 1984 (WGS84) 15
2.3.2 Earth Gravitational Model (EGM96) 15
2.3.3 Earth Gravitational Model (EGM2008) 15
2.3.4 North American Datum of 1927 (NAD27) 15
2.3.5 North American Datum of 1983 (NAD83) 15
2.3.6 Coordinate systems in our project: 16

2.4 GSM technology 16
2.4.1 Definition 16
2.4.2 GSM transmission and frequency allocation 16
2.4.3 GSM Network Architecture 17

2.4.3.1 The Mobile Station (MS) 17
2.4.3.2 The Base Station Subsystem (BSS). 18
2.4.3.3 The Network and Switching Subsystem (NSS). 18
2.4.3.4 Operation and Support Subsystem (OSS) 18

2.4.4 GSM In Our Project 19
2.5 GPRS service 19

2.5.1 Definition 19

1

11

8

2.5.2 GPRS and packet data in GSM 19
2.5.3 GPRS Network Elements 20
2.5.4 GPRS in our project 21

2.6 HTTP 21
2.6.1 Definition 21
2.6.2 Terminology 22
2.6.3 HTTP Client/Server Communication 23
2.6.4 HTTP Message 23

2.6.4.1 Message Types 23
2.6.4.2 Message Headers 24
2.6.4.3 Message Body 24

2.6.5 Methods 25
2.6.5.1 POST 25

2.6.6 HTTP in our project 26
2.7 Mobile phone (cellular phone) 26

2.7.1 Mobile Operating systems (mobile software platform) 27
2.7.1.1 Android operating system: 27
2.7.1.2 Android architecture 28
2.7.1.3 Android features 29

2.7.2 Mobile programming language 30
2.7.2.1 Java architecture 30
2.7.2.2 Java development environment (E_clips) 31
2.7.2.3 Java features 31

2.7.3 Mobile phone in our project 32
2.8 C# Programming language 32

2.8.1 C# architecture 33
2.8.2 C# features 34
2.8.3 C# in our project 34

2.9 Software design blocks 35

CHAPTER THREE :
CONCEPTUAL DESIGN
3.1 Overview 37
3.2 General system block diagram 37
3.3 System main components 37

3.3.1 GPS Receiver 38
3.3.1.1 Android OS 38
3.3.1.2 Galaxy S 39
3.3.1.3 Why GPRS 40
3.3.1.4 Connection Options 40

3.3.1.4.1 GPRS mobile with PC interface. 40
3.3.1.4.2 HTTP Connection 41

3.3.2 Central server 41
3.3.2.1 Geographic maps 41

3.4 System flow chart 42
3.4.1 Fill registration data and get coordinates 43

36

9

3.4.1.1 Fill registration data 43
3.4.1.2 Get coordinates and speed 44

3.4.2 Send data and coordinates to main server 45
3.4.3 Receive data and view system interface 46
3.4.4 Register cars, and display movement on map 48

3.5 Data Flow Diagram 49
3.6 System Functions 50

3.6.1 Functional block diagram 50
3.6.2 Mobile Functions 51
3.6.3 Main server functions 51

CHAPTER FOUR:
DETAILED DESIGN

4.1 Overview 54
4.2 System classes Model Diagram 54

4.2.1 Mobile Software UML diagram 54
4.2.1.1 classes implementation 54

4.2.2 Desktop Software UML diagram 58
4.2.2.1 classes implementation: 58

4.3 System use case 66
4.4 System Sequence diagram: 67

4.4.1 send registration request sequence diagram 67
4.4.2 receive new request sequence diagram 68
4.4.3 select mode sequence diagram 69
4.4.4 added car to system sequence diagram 70
4.4.5 Send GPS coordinates sequence diagram 72
4.4.6 plot received coordinates sequence diagram 73
4.4.7 Log In to system sequence diagram 73
4.4.8 Activate tracking sequence diagram 74
4.4.9 zoom sequence diagram 75
4.4.10 display cars information sequence diagram 75
4.4.11 display cars history sequence diagram 77

CHAPTER FIVE:
SYSTEM TESTING
5.1 Overview 79
5.2 Sub-System Testing: 79
5.3 Installation and preparing the system 79

5.3.1 Mobile application 79
5.3.2 Server Application 84

5.4 Testing Scenarios 89
5.4.1 TEST 1 90
5.4.2 TEST 2 92

53

78

10

5.4.3 TEST 3 94
5.4.4 TEST 4 96
5.4.5 TEST 5 96

CHAPTER SIX:
CONCLUSION AND RECOMMENDATION
6.1 Overview 99
6.2 Conclusion and Achievement 99
6.3 Challenges 99
6.4 Future work Recommendation 100
References 101

98

11

Figure 1.1 system description 9

Figure 2.1 Earth-circling satellites orbits 13

Figure 2.2 GSM Band Spectrum 16

Figure 2.3 GSM Network's Components 18

Figure 2.4 GPRS network elements 20

Figure 2.5 architecture of Android OS 28

Figure 2.6 java main architecture 31

Figure 2.7 software design block 35

Figure 3.1: general system block diagram 37

Figure 3.2: system flow chart 43

Figure 3.3: get coordinates flow chart 44

Figure 3.4: Send data and coordinates flow chart 45

Figure 3.5: server received data, and coordinates 47

Figure 3.6: received data processing 48

Figure 3.7: Data Flow Diagram 49

Figure 3.8: Functional Block Diagram 50

Figure 4.1: Mobile UML model 55

Figure 4.2 Desktop UML model Diagram 59

Figure 4.3 System use case diagram 66

Figure 4.4 send registration request sequence diagram 68

Figure 4.5 receive new request sequence diagram 69

Figure 4.6 select mode sequence diagram 70

Figure 4.7 added car to system sequence diagram 71

Figure 4.8 Send GPS coordinates sequence diagram 72

Figure 4.9 plot received coordinates sequence diagram 73

Figure 4.10 Log In to system sequence diagram. 74

Figure 4.11 Activate tracking sequence diagram 75

Figure 4.12 zoom sequence diagram 76

Figure 4.13 display cars information sequence diagram 76

Figure 4.14 display cars history sequence diagram 77

Figure 5.1: Opening apk file 80

Figure 5.2: Installing application 80

FIGURES

12

Figure 5.3: Installation completed 81

Figure 5.4: Welcome Screen 82

Figure 5.5: Registration 82

Figure 5.6: Select mode 83

Figure 5.7:Walking mode/GPS off 83

Figure 5.8:Driving mode/ coordinates and speed 83

Figure 5.9 GPSCarTrackingSystem Project file 84

Figure 5.10 GPSCarTrackingSystem Welcome Screen 84

Figure 5.11 GPSCarTrackingSystem Log In Screen 85

Figure 5.12 GPSCarTrackingSystem Main Screen 85

Figure 5.13 system screen car’s dynamic region 86

Figure 5.14 new connection message 86

Figure 5.15 System registration screen 87

Figure 5.16 System Car’s Information form 87

Figure 5.17 System Car’s history form 88

Figure 5.18 System Car’s Information form 89

Figure 5.19 test1 result tracked paths 91

Figure 5.20 test2 result tracked paths 93

Figure 5.21 desktop test2 error 93

Figure 5.22 test3 result tracked paths 95

Figure 5.23 test4 result tracked paths 96

Figure 5.24 test5 result tracked paths 97

Table 1.1: Timing plane for first semester 8

Table 1.2: Timing plane for second semester 8

Table 2.1 Data Rate for GPRS Software 20

TABLES

13

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

1.2 Aim of the project

1.3 Requirements

1.4 Assumption and dependencies

1.5 Literature Review

1.6 Project schedule

1.7 General system description

1.8 Report contents

14

1.9 Overview

In this chapter, we will introduce the main idea for our project, the aim we try to achieve
by this system, the main requirement that will be needed in our work, some of the assumption
and dependencies that we will rely on, we also made some literature review, and we mention
some of these project that are related to our work and show how we will be different from there,
we also show general block diagram for our system.

1.10 Aim of the project

The project main idea is to provide car tracking system, which gives a clear vision about
car movements through it’s travel.

Our system will enable the customer to easily track his cars, over country or even
worldwide, and for companies with a large number of vehicles, knowing where customer's cars
are at every moment in real time and know the speed of traveling at any interval.

1.11 Requirements

The requirements of our project will be described in two parts the functional and
nonfunctional requirements as follow:

1.3.1 Functional requirements:

 The system must, track users cars in real time, over its travel along any time, this will

require a hardware to receive the GPS coordinates, and send it through communication

network to the server.

 The system must be able to track more than one car at the same time, and update each car

movement separately, and this require server software that deal with coordinates and

geographic maps.

15

 The system should be able to provide clear history for cars, and their travel over long

period of times, and this require server software to deal with database and cars history.

1.3.2 Non-Functional requirements:

 Usability, the system will be used from car’s owner, and company’s owners, or even any

customer need to track one of its valuable components, so it must be useful and easy to

use.

 Availability, the system will be able for any person wants to use, and also it should be

available at any place during car travel, so we rely on GPS system that have wide spread

in our countries, and if some region does not have this we try to solve this limitation.

 Reliability, the system will be reliable, so it can give you a proper location of your car,

with acceptable minimum error.

And for all these requirements to be achieved we will need the following hardware and software:
Hardware:

o Mobile phones with GPS services.

o GSM network with GPRS capability

o Main server.

Software :

o Mobile programming language (Android Programming).

o Programming software for map display.

o Graphical user interface (GUI).

16

o Database for cars and history.

1.12 Assumption and dependencies

The following assumptions are considered in our project:

o Each car that will be tracked has a mobile with GPS service to receive GPS data.

o Longitude and latitude coordinates received from the GPS satellite and speed of

car determined using number of GPS satellites will be sent using GSM network

service to the central server.

1.13 Literature Review (Related Projects)

Many projects around the world have similar points to this project, but we try to be
different, and make it suitable for our country, with reasonable cost.

And here we will mention some similar projects, that related to our work, and show the
difference between our works and their works.

1.13.1GPS and GSM based vehicle tracking system

Description:

This Project presents a positioning system using GPS and GSM-SMS services. The
system permits localization of the automobile and transmitting the position to the owner on his
mobile phone as a short message (SMS) at his request.

The system can be interconnected with the car alarm system and alert the owner on his
mobile phone. This tracking system is composed of a GPS receiver, Microcontroller and a GSM
Modem. GPS Receiver gets the location information from satellites in the form of latitude and
longitude.

The Microcontroller processes this information and this processed information is sent to
the user/owner using GSM modem. The presented application is a low cost solution for

17

automobile position and status, very useful in case of car theft situations, for monitoring
adolescent drivers by their parents as well as in car tracking system applications. The proposed
solution can be used in other types of application, where the information needed is requested
rarely and at irregular period of time, when requested. [1]

Advantage:
o This project can used in different types of applications.

Disadvantage:
o The use of sms service is considered to be highly cost compared to other

technologies such as GPRS.
o Sending the location depends on the request of the owner only; so if the owner

become busy or forget to request the position of the tracked vehicle , he will not
get any information.

Differences:
o We want to use GPRS service instead of SMS.
o Tracked cars/vehicles continuously send their location frequently without a

request from the owner.

1.13.2Vehicle tracking and control systems

Description:

This Project Promote a Pre-competitive Research Project and demonstrate Telematics in
Public Transportation. Provide buses time schedule with starting and arrival time, It enables
communication of location data from the device fitted in the vehicle to a center using
GSM/CDMA, GPS, SMS technology. Applied in 'Koyambedu' Asia’s Largest Bus Terminus.[2]

Advantage:
o Handle more than 2500 bus trips per day.
o Control in real time
o Cost effective project, pay utilization , productivity and efficiency.

Disadvantage:
o The used technologies don't fit the existence technologies in Palestine.
o Complicated.

Differences:
o Our project will provide same service with lower cost and using the available

technology which is limited compared to those used in 'Koyambedu' project.

1.13.3OpenGTS™ - Open GPS Tracking System

18

Description:

This Project is the first available open source project designed specifically to provide
web-based GPS tracking services for a "fleet" of vehicles.

Until now, OpenGTS™ has been downloaded and put to use in over 90 countries around
the world to track many 1000's of vehicles, assets around all 7 Continents. The types of vehicles
and assets tracked include taxis, delivery vans, trucks, trailers, farm equipment, personal
vehicles, service vehicles, containers, ships, ATVs, personal tracking, cell phones, and more.
OpenGTS™ is very highly configurable and scalable to large enterprises.[3]

Advantage:
o Use in over 90 countries.
o Operating system independent: written entirely in Java, using technologies such

as Apache Tomcat for web service deployment, and MySQL for the data
store. Cost effective project, pay utilization , productivity and efficiency.

Disadvantage:
o Support only determined types of devices.

Differences:
o Many cars will be tracked at the same time in real time manner, all locations will

be send to the same direction (central server).

1.13.4Vehicle Tracking System using GPS and GSM modem

Description:

In this Project, it is proposed to design an embedded system which is used for tracking
and positioning of any vehicle by using Global Positioning System (GPS) and Global system for
mobile communication (GSM).

Microcontroller is used for interfacing to various hardware peripherals. The current
design is an embedded application, which will continuously monitor a moving Vehicle and
report the status of the Vehicle on demand.

A GSM modem is used to send the position (Latitude and Longitude) of the vehicle from
a remote place. The GPS modem will continuously give the data, the latitude and longitude
indicating the position of the vehicle. The GPS modem also gives many parameters as the output,
but only the NMEA data coming out is read and displayed on to the LCD. The same data is sent
to the mobile at the other end from where the position of the vehicle is demanded. An EEPROM
is used to store the mobile number.

When the request by user is sent to the number at the modem, the system automatically

19

sends a return reply to that mobile indicating the position of the vehicle in terms of latitude and
longitude.[4]

Advantage:
o This project can used in different types of applications.

Disadvantage:
o The driver have to do and repeat some steps in order to send its location, he has to

press the Button to send the Location to a stored number.(Switch on the kit, give a
call)

Differences:
o No effort from the drivers of vehicles or the owner while tracking, because
o Tracked cars/vehicles continuously send their location every 10 minutes without a

request from the owner.

1.14 Project Schedule

 Stag1: Select the idea
Determine the idea of the project, the motivation, and the main objective we intend to

achieve.

 Stage2: Preparing for the project
In this stage, more and deeper determination of the tasks, and steps we want to perform,

is done.

 Stage3: Project Analysis
In this step, a study of the all possible design options to determine our own design.

 Stage4: Determine the project requirement
after determine our design scheme, we specify all the needed requirement for the user and

the system, software and hardware. And try to bring them to be ready for the implementation
stage.

 Stage5: Studying the Principles
This stage of the project is necessary to study the GSM, GPS, GPRS, mobile

programming language, main server programming language.

20

 Stage6: Documentation Writing
Documenting the project will begin from the first stage to the last stage.

 Stage7: make the hardware available
In this stage, the needed hardware mobiles and main server’s PC will be brought for the

next step

 Stage8: build up the software
the programming of the project code is started and will be downloaded to the mobile and

the central server. Make sure the needed maps are existing.

 Stage9: testing the system
In this stage cars will move, tracking will start, feedback will be provided.

 Stage10: Writing Documentation
The documentation will continue from the first stage to the last one in parallel.

Table 1.1: Timing plane for first semester

Task/

week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1

S2

S3

S4

S5

S6

Table 1.2: Timing plane for second semester

21

Task/

week

16 17 18 19 20 21 22 23 24 25 26 27 28

S7

S8

S9

S10

1.15 General system description

From the general description for our project idea, and main requirements, we will need
major parts to achieve our goals, the hardware which used to receive the GPS signals from the
satellites, and this will be a mobile with GSM service, then these information and any other we
want to add will be sent through the GSM base station to the central server through http
connection , at the server side and after receiving transmitted data we will convert these
coordinates to be suitable to reflect accurate values to our city coordinates, and then using
software to display car movements on the map, and provide the system user with all available
services in clear and complete interface. Figure 1.1 shows a main block diagram of the project
parts.

Figure 1.1 system descrip on

22

1.16 Report contents

This report includes the following sex chapters:

 Chapter one: Introduction.

In this chapter, we introduce a general overview about the project, the main idea of the project,
requirements, assumption and dependences, the time schedule, and the estimated cost.

 Chapter two: Theoretical Background.

This chapter includes the Theoretical background related to the main idea of the project, and
technologies, hardware, and software used in the project.

 Chapter three: Project Conceptual Design.

In this chapter we talk about the design concepts; the general block diagram that show how the
system works, the system flow chart, the data flow diagram, and the functional block diagram
that mention all the implemented functions in the system.

 Chapter four: Detailed Design.

In this chapter we talk about the detailed software engineering design including UML model
diagram for both mobile and server application software classes. Then system use case diagram
will be described, also the sequence diagram for use cases will be mentioned.

 Chapter five: System Testing.

In this chapter, the whole testing stage will be described, that's mean a test of an entire
interconnected set of components and software for the purpose of determining proper functions
and achieving the desired goals of the system. We will talk about testing of each part of the
system, describe the scenarios, represent each test and it's errors, challenges and modifications,
and also we will figure out the error rate.

 Chapter six: Conclusion and Recommendations

In this chapter, we will mention what we achieved in this project and the conclusion for all
things that we have done, also we will talk about the challenges that we faced and ending with
recommendation needed for the future work.

23

2
CHAPTER TWO

THEORITICAL BACKGROUND

2.1 Overview

2.2 GPS Technology

2.3 Coordinate Systems

2.4 GSM Technology

2.5 GPRS Service

2.6 HTTP

2.7 Mobile Phone

2.8 C# Programming Language

24

2.1 Overview

In this chapter we will mention the basic theoretical information, some technologies, and
learn about some devices that will be used in our project. In order to use them in an appropriate
way and take the desired advantages of them. So make it easy for the reader to understand and
interact with the project.

We will talk about the GPS technology, GSM/GPRS technology; a collection of
hardware includes the mobiles, GPS receivers, GPRS modems.

Software that will be used represented by a programming language on the mobile phone,
software on the central server in order to receive locations coordinates and process them, and
then plot on the geographic maps, and we will mention some of popular used systems
coordinate.

And also we will talk about the connection technique, which represents important part in
our system, where the data and coordinates will be transmitted from tracking mobile to the main
server.

2.2 GPS Technology

2.2.1 Definition

The global positioning system (GPS) is a system for determining the geographic
location of people with GPS receivers. Consists of constellation of 24 well-spaced satellites
that makes a revolution every 12 hours.

 Global: Anywhere on earth but not inside buildings, underground, or anywhere else not having

a direct view of a portion of the sky.

 Positioning: Give answers to the following questions, Where are you? How fast are you

moving and in what direction? What direction should you go to get to some other specific

location?

 System: A collection of components with connections between them.

The official U.S. Department of Defense name for GPS is NAVSTAR (Navigation
System with Time And Ranging) which is a constellation of 24 satellites orbiting the earth,
broadcasting data that allows users on or near the earth to determine their spatial positions.[5]

25

2.2.2 GPS components

The GPS technology consists of the following components:

 The Earth: it's the major component of GPS, it's mass and its surface, and the space

immediately above. The mass of the Earth holds the satellites in orbit.

 Earth-circling satellites: as shown in figure 2-1, twenty four solar powered radio

transmitters, forming a constellation such that several are visible from any point on Earth

at any given time. The satellites are at middle altitude of 20200 kilometers(Km) , each is

in a 12 hour orbit.

 Ground based stations: the GPS satellites are crammed with electronics, so they require

monitoring. This is done by four ground based stations located on ascension Island, at

Diego Garcia, in Hawaii, and Kwajalein. Each satellite passes over at least one

monitoring station twice a day. Information developed by the monitoring station is

transmitted back to the satellite, which in turn re-broadcasts it to GPS receivers.

Figure 2.1 Earth-circling satellites orbits [6]

26

 GPS Receivers: it consists of

o An antenna whose position the receiver reports
o Electronics to receive the satellite signals
o A microcomputer to process the data that determines the antenna position, and to

record position values
o Controls to provide user input to the receiver
o Screen to display information.

 The United States Department of Defense: The U.S. DoD is developing and

maintaining NAVSTAR.[5]

2.2.3 How it works?

GPS satellites circle the earth twice a day in a very precise orbit and transmit signal
information to earth. GPS receivers take this information and use triangulation to calculate the
user's exact location. Essentially, the GPS receiver compares the time a signal was transmitted
by a satellite with the time it was received. The time difference tells the GPS receiver how far
away the satellite is. Now, with distance measurements from a few more satellites, the
receiver can determine the user's position.

To calculate a 2D position (latitude and longitude) and track movement, GPS receiver
must be locked on to the signal of at least three satellites. With four or more satellites in view,
the receiver can determine the user's 3D position (latitude, longitude and altitude). Once the
user's position has been determined, the GPS unit can calculate other information, such as
speed, bearing, track, trip distance, distance to destination, sunrise and sunset time and more.
[5]

2.2.4 The GPS satellite system

The first GPS satellite was launched in 1978, a full constellation of 24 satellites was
achieved in 1994, and each satellite is built to last about 10 years. Replacements are
constantly being built and launched into orbit. A GPS satellite weighs approximately 2000
pounds and is about 17feet across with the solar panels extended. Transmitter power is only
50 watts or less.[5]

AVASTAR uses radio waves instead of sound: The waves that are used to measure the
distance are electromagnetic radiation (EM). They move a lot faster than sound. Regardless of
frequency, in vacuum, EM moves at about 299,792.5Km/sec, which is roughly 186,282
statute miles per hour.[5]

27

2.2.5 GPS in our project

We will use GPS to determine the real time location of the moving tracked car, using
GPS receiver built in the mobile phone. Mobile needs GPS receiver plus processing to
calculate position, and read assistance data from network. The handset takes GPS
measurements, and report these to the central server in the network.

2.3 Coordinate systems

There are many coordinates system, which are systems that used to represent coordinates
position of a point or geometric elements that can appear in different formats and they are
different from each other related to the reference, which used to create them.

Some of these common modern systems mentioned here:

2.3.1 World Geodetic System 1984 (WGS84):

The World Geodetic System, is one of the coordinates system used in GPS, where it
consists of three-dimensional Cartesian coordinate system and an associated ellipsoid, so that
WGS84 positions can be described as either XYZ Cartesian coordinates or latitude, longitude
and ellipsoid height coordinates.[7]

2.3.2 Earth Gravitational Model (EGM96):

Earth Gravitational Model geoids 96, defines the nominal sea level surface by
means of a spherical harmonics series of degree 360, which will provides about 100km
horizontal resolution. And the deviations of the EGM96 geoids from the WGS 84
reference ellipsoid range from about 150m to about 85m .[7]

2.3.3 Earth Gravitational Model (EGM2008):

Earth Gravitational Model geoids 2008 is a new higher fidelity model for the original
WGS 84, This new model will have a geoids with a resolution approaching 10km,
requiring over 4.6 million terms in the spherical expansion, versus 130317, EGM96 and
32,757 in WGS 84.[7]

2.3.4 North American Datum of 1927 (NAD27) :

North American Datum of 1927, is a datum based on the Clarke ellipsoid of 1866.
The reference or base station is located at Meades Ranch in Kansas, There are over
50,000 surveying monuments throughout the US and these have served as starting points
for more local surveying and mapping efforts.[7]

28

2.3.5 North American Datum of 1983 (NAD83):

North American Datum of 1983, is an earth-centered datum based on the Geodetic
Reference System of 1980. The size and shape of the earth was determined through
measurements made by satellites and other sophisticated electronic equipment; the
measurements accurately represent the earth to within two meters.[7]

2.3.6 Coordinate systems in our project:

The received coordinates will be in one of the common coordinates systems, that
depend on the type of mobile being used to transmit the coordinates. In our system, we
will depend on American coordinate systems, where our mobile operating system
android, will support these types of coordinates in accurate manner.

2.4 GSM technology

2.4.1 Definition

GSM (Global System for Mobile communications) is a second-generation digital
network, supporting voice and simple data services, including “dial-up” data and text
messaging. Open, digital cellular technology used for transmitting mobile voice and data
services. GSM supports voice calls and data transfer speeds of up to 9.6 kbps, together with
the transmission of SMS (Short Message Service). It predates Code Division Multiple Access
(CDMA), which is especially strong in Europe. Enhanced Data rates for GSM Evolution
(EDGE) (also known as Enhanced GPRS (EGPRS) is faster than GSM and was built upon
GSM.

The system built based on cell phone technology. GSM is the dominant digital mobile
phone standard for most of the world. It determines the way in which mobile phones
communicate with the land-based network of towers.[8]

2.4.2 GSM transmission and frequency allocation

29

Figure 2.2 GSM Band Spectrum[8]

Radio systems such as GSM can have hundreds of frequencies specified for use within
a specified part of the frequency spectrum,. GSM needs multiple frequencies to allow
different frequencies to be used, in different geographical parts of the network, to avoid radio
interference within the communication channels.

GSM operates in many frequency, the 900MHz
and 1.8GHz bands in Europe, and the 1.9GHz and
850MHz bands in the US. The 850MHz band is also
used for GSM and 3G in Australia, Canada and many
South American countries.

For GSM Frequency Allocation, the spectrum
assigned for the various GSM bands, In each case,
there is an uplink (from mobile phone to base station), and a downlink (from base station to
mobile phone). It is standard practice for the uplink to use the lower frequencies in cellular
systems, as the attenuation of this link will be marginally less than the corresponding
downlink. Transmitting and receiving on different frequency bands is known as Frequency
Division Duplex (FDD).

Each of the bands is divided into a number of radio By carriers. These carriers are
separated in all cases by 200 kHz. The GSM 900 bands are each 25 MHz wide, and therefore
each contains 124 carriers. The end carriers are positioned at 200 kHz inside the band edges.
As shown in figure 2.2, the lowest carrier in the 900 uplink band is 890.2 MHz, and the
highest is 914.8 MHz.

The 1900 bands (United States) contain 299 carriers. Carriers are assigned in pairs
(uplink and downlink), and each pair is always separated by a fixed amount, equal 45 MHz at
900, and 95 MHz at 1800. A number called the Absolute Radio Frequency Channel Number
(ARFCN) commonly refers to the pairs.

GSM also has the advantage of using SIM (Subscriber Identity Module) cards in. The
SIM card, which acts as digital identity, is tied to the cell phone service carrier’s network
rather than to the handset itself. This allows for easy exchange from one phone to another
without new cell phone service activation.

The main purpose of the GSM network is to facilitate easier access to cellular and
satellite platforms across international lines. Using digital technology, it employs both speech
and data channels in its system. At minimum these channels operate on the second generation

30

(2G) network, but many use the third generation (3G) system to offer these services to clients.
This enables the exchange of information at high-speed data rates via satellites and mobile
cellular towers across networks and company lines.[8]

2.4.3 GSM Network Architecture

The GSM network can be divided into four main parts:

2.4.3.1 The Mobile Station (MS)

Consists of following two main components: The Subscriber Identity Module
(SIM) which protected by a four-digit Personal Identification Number (PIN). In order to
identify the subscriber to the system, and Mobile equipment/terminal (ME) with
different types of terminals distinguished principally by their power and application.

2.4.3.2 The Base Station Subsystem (BSS).

It may be divided into two parts: Base Station Controller (BSC) which controls a
group of BTSs and manages their radio sources. And Base Transceiver Station (BTS)
which usually placed in the center of a cell, its transmitting power defines the size of a
cell.

2.4.3.3 The Network and Switching Subsystem (NSS).

Its main function is to manage the communications between the mobile users and
other users. It also includes data bases needed in order to store information about the
subscribers and to manage their mobility. The different components of the NSS are:
Mobile Switching Center (MSC), Gateway MSC (GMSC), Home Location Register
(HLR), Visitor Location Register (VLR), Authentication Center (AuC),Equipment
Identity Register (EIR), GSM Interworking Unit (GIWU).

2.4.3.4 Operation and Support Subsystem (OSS)

It is connected to components of the NSS and the BSC, in order to control and
monitor the GSM system. It is also in charge of controlling the traffic load of the BSS.
It must be noted that as the number of BS increases with the scaling of the subscriber
population some of the maintenance tasks are transferred to the BTS, allowing savings
in the cost of ownership of the system.[8]

All previous networks' elements are shown in the following figure, that shows the
relation between them.

31

2.4.4 GSM In Our Project

The usage of the GSM technology in this project represented by transferring the data
from the cars that contain the GPS receiver (or the mobile phone) to the central server. these
data will contained position, and other information the driver want to send.

2.5 GPRS service

2.5.1 Definition

General Packet Radio Services (GPRS), is a packet-based wireless communication
service that provides data rates from 56 up to 114 Kbps, and continuous connection to the
Internet for mobile phone and computer users. The higher data rates allow users to take part in
video conferences, and interact with multimedia Web sites, and similar applications using
mobile handheld devices as well as notebook computers. GPRS is based on Global System for
Mobile communication (GSM) and complements existing services such circuit-switched
cellular phone connections and the Short Message Service (SMS).

In theory, GPRS packet-based services cost users less than circuit-switched services,
since communication channels are being used on a shared-use, as-packets-are-needed basis
rather than dedicated to only one user at a time. It is also easier to make applications available
to mobile users, because the faster data rate means that middleware currently needed to adapt
applications to the slower speed of wireless systems are no longer be needed.

Figure 2.3 GSM Network's Components[9]

32

GPRS also complements Bluetooth, a standard for replacing wired connections
between devices with wireless radio connections. In addition to the Internet Protocol (IP),
GPRS supports X.25, a packet-based protocol that is used mainly in Europe. GPRS is an
evolutionary step toward Enhanced Data GSM Environment (EDGE) and Universal Mobile
Telephone Service (UMTS).[10]

2.5.2 GPRS and packet data in GSM

GPRS adds a packet-based data capability to the GSM system, and brings IP
networking into the GSM world. As well as modifications within the handsets and the radio
interface, GPRS also involves the addition of new packet routers into the GSM core network,
producing a core network with separate circuit- and packet switched domains. Using GPRS,
each user only requires radio resources when a packet of information is sent or arrives, it does
not require the channel for the entire duration of the data transfer. In this way, the single
timeslot can be made available for more than one user, allowing radio channels to be shared,
by up to seven users in GPRS.

The overall data rates in GPRS are specified for each timeslot, varying depending on
what is known as the coding scheme. There are four coding schemes (CS) in GPRS (known as
CS1, CS2, CS3, and CS4). The data rates for each coding scheme are shown in table 2.1. Note
that each overall channel is actually designed to carry 22.8 kbps (as in standard GSM
connections), and the extra capacity is actually used for error protection. Where there is a
good error protection for CS1, but not so good for CS4. In practice, only coding schemes 1
and 2 are widely used.

CS1 and CS2 offer good error detection and correction with low throughput; in the
first step of GPRS software only these two techniques may be used. CS3 and CS4 provide
higher throughputs but have little or no error correction capabilities.

Due to the packet switched characteristics of GPRS software the allocation of the
available timeslots may vary from one instant to the next. So, it may have 8 timeslots at one
time and 4 later on. [11]

User Data Rate CS1 CS2 CS3 CS4

1 Timeslot 9.05 kbps 13.4 kbps 15.6 kbps 21.4 kbps

8 Timeslot 72.4 kbps 107.2 kbps 124.8 kbps 171.2 kbps

Table 2.1 Data Rate for GPRS Software[11]

33

Figure 2.4 GPRS network elements.[8]

2.5.3 GPRS Network Elements

Additional elements are required to provide the General Packet Radio Services
(GPRS), including:

 core network GPRS support nodes (GSNs), comprising:

o Serving GSN (SGSN).

o Gateway GSN (GGSN).

These elements use IP (Internet Protocol) technology to route information to and from
the mobile handset. They are effectively IP routers with modifications to allow for managing
subscriber access, mobility, and IP sessions. A GPRS data session would be handled by the
GSN rather than the MSC, which is used for voice. In addition, GPRS operation requires the
BTS to be GPRS-capable, and a packet control unit must be available, usually at or within the
BSC. These two base station subsystem (BSS) elements allow the data packets to transfer in
the right format on the correct GPRS radio channels.[8]

2.5.4 GPRS in our project

After determining the driver
location coordinates by the GPS receiver
in the mobile, this coordinates and other
additional information will be sent using
the GPRS technology from mobile,
through the base stations, to another
GPRS mobile near to the central server to
be stored and processed.

34

2.6 HTTP

2.6.1 Definition

HTTP stands for Hypertext Transfer Protocol. It's the network protocol used to deliver
virtually all files and other data on the World Wide Web, whether they're HTML files, image
files, query results, or anything else. Usually, HTTP takes place through TCP/IP sockets.

HTTP concepts include (as the Hypertext part of the name implies) the idea that files
can contain references to other files whose selection will elicit additional transfer requests.
Any Web server machine contains, in addition to the Web page files it can serve, an HTTP
daemon, a program that is designed to wait for HTTP requests and handle them when they
arrive. Your Web browser is an HTTP client, sending requests to server machines. When the
browser user enters file requests by either "opening" a Web file (typing in a Uniform
Resource Locator or URL) or clicking on a hypertext link, the browser builds an HTTP
request and sends it to the Internet Protocol address (IP address) indicated by the URL. The
HTTP daemon in the destination server machine receives the request and sends back the
requested file or files associated with the request.

A browser is an HTTP client because it sends requests to an HTTP server (Web
server), which then sends responses back to the client. The standard (and default) port for
HTTP servers to listen on is 80, though they can use any port.[12]

2.6.2 Terminology

HTTP's specification uses a number of terms to refer to the roles played by
participants in, and objects of, the HTTP communication.

 Connection

A transport layer virtual circuit established between two programs for the purpose
of communication.

 Message

The basic unit of HTTP communication, consisting of a structured sequence of
octets and transmitted via the connection.

 Request

An HTTP request message from a client to a server includes, within the first line
of that message, the method to be applied to the resource, the identifier of the
resource, and the protocol version in use.

35

 Response

An HTTP response message. Each request message sent by an HTTP client to a
server prompts the server to send back a response message. Actually, in certain
cases the server may in fact send two responses, a preliminary response followed
by the real one. Usually though, one request yields one response, which indicates
the results of the server's processing of the request, and often also carries an entity
(file or resource) in the message body.

 Resource

A network data object or service that can be identified by a URI(Uniform
Resource Identifiers). Resources may be available in multiple representations
(multiple languages, data formats, size, and resolutions) or vary in other ways.

 Entity

The information transferred as the payload of a request or response. An entity
consists of meta information in the form of entity-header fields and content in the
form of an entity-body.

 Representation

An entity included with a response that is subject to content negotiation. There
may exist multiple representations associated with a particular response status.

 Variant

A resource may have one, or more than one, representation(s) associated with it at
any given instant. Each of these representations is termed a `variant'. Use of the
term `variant' does not necessarily imply that the resource is subject to content
negotiation.

 Client

A program that establishes connections, for the purpose of sending requests.

 User agent

The client which initiates a request. These are often browsers, editors, spiders
(web-traversing robots), or other end user tools.

 Server

An application program that accepts connections in order to service requests by
sending back responses. Any given program may be capable of being both a client
and a server; our use of these terms refers only to the role being performed by the
program for a particular connection, rather than to the program's capabilities in

36

general. Likewise, any server may act as an origin server, proxy, gateway, or
tunnel, switching behavior based on the nature of each request.

 Origin server

The server on which a given resource resides or is to be created.[12]

2.6.3 HTTP Client/Server Communication

Its simplest form, the operation of HTTP involves only an HTTP client, usually a Web
browser on a client machine, and an HTTP server, more commonly known as a Web server.
After a TCP connection is created, the two steps in communication are as follows:

1. Client Request: The HTTP client sends a request message formatted according to the

rules of the HTTP standard—an HTTP Request. This message specifies the resource that

the client wishes to retrieve, or includes information to be provided to the server.

2. Server Response: The server reads and interprets the request. It takes action relevant to

the request and creates an HTTP Response message, which it sends back to the client.

The response message indicates whether the request was successful, and may also contain

the content of the resource that the client requested, if appropriate. [12]

2.6.4 HTTP Message

2.6.4.1 Message Types

HTTP messages consist of requests from client to server and responses from server to
client.

HTTP-message = Request | Response.
The format of the request and response messages are similar, and English-oriented.

Both kinds of messages consist of:
 an initial line,

 zero or more header lines,

 a blank line (i.e. a CRLF by itself), and

 an optional message body (e.g. a file, or query data, or query output).

37

2.6.4.2 Message Headers

HTTP header fields, which include general-header, request-header, response-
header, and entity-header fields. Each header field consists of a name followed by a
colon (":") and the field value. Field names are case-insensitive. The field value MAY
be preceded by any amount of LWS(linear white space).

The common forms:

message-header = field-name ":" [field-value]
field-name = token
field-value = *(field-content | LWS)
field-content = <the OCTETs making up the field-value and consisting of either *TEXT or

combinations of token, separators, and quoted-string>

2.6.4.3 Message Body

The message-body (if any) of an HTTP message is used to carry the entity-body
associated with the request or response. The message-body differs from the entity-body
only when a transfer-coding has been applied, as indicated by the Transfer-Encoding
header field.

message-body = entity-body

| <entity-body encoded as per Transfer-Encoding>

Transfer-Encoding MUST be used to indicate any transfer-codings applied by an
application to ensure safe and proper transfer of the message. Transfer-Encoding is a
property of the message, not of the entity, and thus MAY be added or removed by any
application along the request/response chain. The rules for when a message-body is
allowed in a message differ for requests and responses.

The presence of a message-body in a request is signaled by the inclusion of a
Content-Length or Transfer-Encoding header field in the request's message-headers. A
server SHOULD read and forward a message-body on any request; if the request
method does not include defined semantics for an entity-body, then the message-body
SHOULD be ignored when handling the request.

38

For response messages, whether or not a message-body is included with a
message is dependent on both the request method and the response status code. All
responses to the HEAD request method MUST NOT include a message-body, even
though the presence of entity- header fields might lead one to believe they do. All 1xx
(informational), 204 (no content), and 304 (not modified) responses MUST NOT
include a message-body. All other responses do include a message-body, although it
MAY be of zero length.[12]

2.6.5 Methods

There are many methods to send request from client to server, the set of common
methods for HTTP/1.1 is defined below.

 "OPTIONS"

 "GET"

 "HEAD"

 "POST"

 "PUT"

 "DELETE"

 "TRACE"

 "CONNECT"

We will use the POST method in our project so we will explain it in details
below.

2.6.5.1 POST

The POST method is used to request that the origin server accept the entity
enclosed in the request as a new subordinate of the resource identified by the Request-
URI in the Request-Line. POST is designed to allow a uniform method to cover the
following functions:

- Annotation of existing resources;

39

- Posting a message to a bulletin board, newsgroup, mailing list, or similar group of
articles;
- Providing a block of data, such as the result of submitting a form, to a data-handling
process;
- Extending a database through an append operation.

The actual function performed by the POST method is determined by the server
and is usually dependent on the Request-URI. The posted entity is subordinate to that
URI in the same way that a file is subordinate to a directory containing it, a news article
is subordinate to a newsgroup to which it is posted, or a record is subordinate to a
database.

The request URI is not a resource to retrieve; it's usually a program to handle the
data you're sending. And the responses to this method are not cacheable; the HTTP
response is normally program output, not a static file.

The most common use of POST, by far, is to submit HTML form data to CGI
scripts. In this case, the Content-Type: header is usually application/x-www-form-
urlencoded, and the Content-Length: header gives the length of the URL-encoded form
data. The CGI script receives the message body through STDIN, and decodes it. Here's
a typical form submission, using POST:

POST /path/script.cgi HTTP/1.1
From: frog@jmarshall.com
User-Agent: HTTPTool/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 32

"Message Body"

You can use a POST request to send whatever data you want, not just form
submissions. Just make sure the sender and the receiving program agree on the
format.[12]

2.6.6 HTTP in our project

After determining GPRS to transfer data between mobile in cars and main server,
we choose the HTTP connection to represent the GPRS service, considering the phone
as a HTTP client and PC as a HTTP server.

2.7 Mobile phone (cellular phone):

40

Mobile phone is one of the most sophisticated and modern techniques that spread
dramatically in our societies, it transformed from a simple use to make calls, to be used
nowadays in many complex and useful applications.

Back to the history of mobile phones, we found that the first mobile telephone call
was made from a car in St. Louis, Missouri, USA on June 17, 1946, using the Bell
System's Mobile Telephone Service.

Many updates and developments are quickly continued on mobile phones, and
still updates until now, Mobile phones become nowadays a very smart, efficient, and
small device that puts the whole world in your hands, and support large number of
modern techniques included within this small device.[13]

2.7.1 Mobile Operating systems (mobile software platform):

Like Microsoft's Windows, Apple's Macintosh, and Linux, and many others
desktop operating systems, the evolution that has occurred on the mobile phone also
enable us to control a mobile devices , applications and services, with their special
operating systems, as the case with computer operating systems.

The most common mobile operating systems are:

 Android from Google Inc. (open source, Apache).

 BlackBerry OS from RIM (closed source, proprietary).

 Symbian OS from the Symbian Foundation (open public license).

 Windows Phone from Microsoft (closed source, proprietary).

These operating systems and many other ones, represent the operating systems for
our mobile phones, and by using the appropriate programming language for each
operating system ,we enable to programming these phones, so we can build different
applications and services we want from these mobiles.[13]

In our system Android is the operating system that we want to use in order to
support our project objective requirements.

41

2.7.1.1 Android operating system:

In recent years Open Handset Alliance led by Google has deployed a neat,
versatile, powerful, and elegant platform which was android. This platform spread
widely and its market quickly growing, because it is supported by large set of hardware,
software, and network carriers.

“Android is an open source platform and it is released under open source license.
The Android operating system software stack consists of Java applications running on a
Java based object oriented application framework on top of Java core libraries running
on a Dalvik virtual machine featuring JIT compilation. Libraries written in C include the
surface manager, Open Core media framework, SQLite relational database management
system, OpenGL ES 2.0 3D graphics API, WebKit layout engine, SGL graphics engine,
SSL.”[13]

2.7.1.2 Android architecture

The architecture of Android operating system is described as following diagram
with briefly explanation:

 Application java is the programming language for most of applications written

with android , using Android SDK.

These application when deployed is being a single file in a format (.apk). which is
a modified Java Archive (JAR) file. this file contains the Java classes in a custom
format (.dex) which make up the application, as well as an application manifest.

Figure 2.5 architecture of Android OS[14]

42

 Application Frameworks are also written in Java, and are based on the low level

core libraries -which provide the basic subset of Java – java.io.*, java.util.*, etc.

And there is many level of manage and control the application, such as activity,
window, package, telephony, and many other managers, that control the application you
build.

 Dalvik VM Dalvik virtual machine which has been adapted to the specifics of

mobile systems with limited CPU capabilities, low RAM and disk space, and

limited battery life.

Dalvik is a register-based virtual machine, and it is neither fully J2SE nor J2ME
compatible. Instead it works with its own version of Java Byte Code, pre-processing its
input by using a utility called “dx” which produce “.dex” files from the corresponding
Java “.class” files.

 Native Binaries this is a standard Linux binaries of ELF formatted, they can be

created with the Android Native Development Kit after being coded in C or C++

usually, and then compiled directly to the target processor (usually, ARM).

 JNI Java Native Interface which used to achieve native-level functionality,

mainly by enables a Java application to directly invoke a non-Java function.

Which make the runtime environment is so rich. And a Good reasons to use JNI

are, efficiency, and obfuscation.

 Libraries: when the Dalvik VM wants to execute an operation . it will call for

services from these libraries which are a collection of many libraries, all open

source, and implement the low level functionality provided by the runtime.

Android support advanced point to these libraries which is preloaded into
memory, which allows for faster load times, and doesn't waste any memory.

 Linux : Android uses the open source Linux Kernel as its own, the kernel is

similar, but not identical, to the standard Linux kernel distribution.[14]

43

2.7.1.3 Android features:

There are many features supported by android operating system, and here we
mention some of them which give a helpful point for our system objectives:

 Android supports connectivity technologies including GSM, Bluetooth, and many

other, but in our project mainly we need the GSM support, and we may need the

Bluetooth.

 Android operating system is powerful OS that growing worldwide and widely

supported by large number of hardware, software and network, so it will be useful

in our project, and available to large number of customers.

 Android support some forms of messaging, like SMS and MMS, and in our

project it may be needed for communication.

 While most Android applications are written in Java, there is no Java Virtual

Machine in the platform and Java byte code is not executed. Java classes are

compiled into Dalvik executable and run on Dalvik, a specialized virtual machine

designed specifically for Android and optimized for battery-powered mobile

devices with limited memory and CPU. J2ME support can be provided via third-

party applications.[14]

2.7.2 Mobile programming language :

In our project the phones will being programmed using java programming language,
where it is an important languages, that is created by James Gosling from Sun Microsystems
in 1991,and nowadays owned by Oracle, it’s one of a very popular, powerful, general-
purpose, concurrent, class-based, and object-oriented language.

It uses to support many important applications and one of these are Android
applications, which relies heavily on java fundamentals.

The Android SDK includes many standard Java libraries such as data structure
libraries, math libraries, graphics libraries, and many other ones as you want.

44

2.7.2.1 Java architecture:

We will mention the main architecture for java programming language, where Java
programming language consists mainly of four components; Java compiler, Java virtual
machine, java run time environment, and the Java class libraries. and the relation between
these three components can be described in brief during program execution as follow :

 You write your source code with the programming instructions.

 When you run your code it will be compiled using the language compiler that

translates it from the source to Java class files.

 Run the class files on a Java virtual machine, where JVM is written specifically

for a specific operating system.

 Java class libraries: that enables you to access system resources; by calling

methods in the classes that implement the Java Application Programming

Interface. As your program runs, it fulfills your program's Java API calls by

invoking methods in class files that implement the Java API.

 Java runtime environment (JRE) that consists of the JVM and the Java class

libraries.[15]

45

Figure 2.6 java main architecture[15]

2.7.2.2 Java development environment (E_clips):

Eclipse will be the development environment for our mobile phone software, where it
is an integrated development environment (IDE) for Java. and also a multi-language software
development environment comprising an integrated development environment (IDE) and an
extensible plug-in system.

And nowadays you can build your applications on mobile, and one of your best
choices is to get started on mobile Java development using Eclipse, where to build any
application on mobile you will need three main software, first will be sun’s java, then
Eclipse, and Eclipse ME plug-in and the Sun Java Wireless Toolkit also needed.[15]

2.7.2.3 Java features:

 Platform Independence: Java compilers produce byte-code instructions for the

Java Virtual Machine (JVM). and use the JVM as abstraction and do not access

the operating system directly. so same compiled byte code can run unmodified on

several platforms.

46

 Objects Oriented: everything in a Java program is an object and everything is

descended from a root object class. except the primitive data types.

 Strongly-typed programming language: Java is strongly-typed, where the types

of the used variables must be pre-defined and conversion to other objects is

relatively strict

 Familiar C++-like Syntax: there is similarity between Java syntax and that of

the popular C++ programming language. which enabling the rapid adoption of

Java.

 Garbage Collection: this feature make your programming easier to write and less

prone to memory errors, make memory use efficient and reduce the losses and

unused space. where Java does not require programmers to explicitly free

dynamically allocated memory.[15]

2.7.3 Mobile phone in our project:

We will use the mobile phone, as mainly device in our project; in order to transmit the
GPS coordinates for each car, to another mobile adjacent to the main server, to finally reach
the server.

2.8 C# Programming language:

The advancement of programming tools and consumer-electronic devices like, cell
phones and PDAs created problems and new requirements. Also the integration of software
components from various languages proved difficult, and installation problems were common
because new versions of shared components were incompatible with old software.

Developers also discovered they needed Web-based applications that could be
accessed and used via the internet. And also the need for software that was accessible to
anyone and available via almost any type of device. and to address these needs, in 2000,
Microsoft announced the C# programming language.

47

C# developed at Microsoft by a team led by Andres Hejlsberg and Scott Wiltamuth,
was designed specifically for the .NET platform as a language that would enable
programmers to migrate easily to .NET.

C# has roots in C, C++, Java, adapting the best features of each and adding new
features of its own. Also it is object oriented and contains a powerful class library of prebuilt
components, enabling programmers to develop applications quickly.

C# and .NET are set both to revolutionize the way that you write programs, and to
make programming on Windows much easier than it has been, where c# provides a means for
you to code up almost any type of software or component that you might need to write for the
windows platform, not just a language for writing internet or network-aware applications.[16]

2.8.1 C# architecture:

C# (pronounced C-sharp) is a powerful programming language that support the power
of C++ and simplicity of Visual Basic. And it is supposed to be the best language for
Microsoft's .NET programming.

C# is an object-oriented language, and has support for component-oriented
programming, and it has many features aid in the construction of robust and durable
applications such as Garbage collection, exception handling, type-safe and many other
features.

C# is significant mainly in two aspects:
First: it is designed specifically and targeted for use with Microsoft’s .NET framework.
Second: it’s a language that based on the modern object-oriented design methodology.

And here we will mention the main architecture components of c# programming
language, where it’s important to notice that c# is a language in its own right, and although it
is designed to generate code that targets the .NET environment it is not itself part of .NET.

The main architecture can be described in :

 Common Language Runtime (CLR):

o manages code execution

o provides services

 Compiler

48

Always the source code you develop for any programming language, needs to be
compiled before it can be executed by the CLR .

o C# compiler is part of .NET Framework SDK.

Where in .NET compilation occurs in two step first: compilation of source code to
intermediate language(IL). Second: compilation of IL to platform-specific code by the CLR.

Microsoft intermediate language shares with java byte code the idea that it is a low
level-language with a simple syntax, which can be very quickly translated into native machine
code. Which also has significant advantages:

 Platform independence: mean that the same file containing byte code

instruction can be placed on any platform, so by compiling to IL you obtain

platform independence for .NET.

 Performance improvement: instead of compiling the entire application in one

go, the JIT compiler simply compiles each portion of code as it is called, so

when code has been compiled once, the resultant native executable is stored

until the application exits so that it does not need to be recompiled the next

time that portion of code is run.

 Language interoperability: the use of IL facilitates language interoperability,

simply put you can compile to IL from one language, and this compiled code

should then be interoperable with code that has been compiled to IL from

another language.[16]

2.8.2 C# features:

C# is powerful programming language, and it has several features and advantages,
here we mention some of general features that being helpful for any application or system you
build, based on this language:
 Garbage collection relieves the programmer of the burden of manual memory

management.

 Variables in C# are automatically initialized by the environment.

49

 Managed execution environment

 Variables are type-safe.

 Native support for the Component Object Model (COM) and Windows-based APIs.

 With C#, every object is automatically a COM object.

 Platform and language independent.

 Inside a specially marked code block, developers are allowed to use pointers and

traditional C/C++ features such as manually managed memory and pointer arithmetic.

 Compiler allows use of initialised Variables only.

 Strong exception handling.

 Suited well for building Web Services.

 Array bounds checking.

 The language is intended for use in developing software components suitable for

deployment in distributed environments.[16]

2.8.3 C# in our project:

This will be the programming language for the main server, where the interface to our
system will be, deal with maps, process the coordinates, and display each car path on the map.

2.9 Software design blocks:

Here we design a block that shows the software parts, and the relation between them,
in a clear way, for our system:

As we see in the figure (2.7) the mobile will be programmed with java, and the main
server with c# and they will be connected through http client/server connection technique.

50

Figure 2.7 software design block

51

3

CHAPTER THREE

PROJECT CONCEPTUAL DESIGN

3.1 Overview

3.2 General system block diagram

3.3 System main components

3.4 System flow charts

3.5 Data flow diagram

3.6 System functions

52

3.1 Overview

In this chapter we will describe our system main parts and the design concepts in some
details, we will talk about system general block diagram, the system main components and their
related options, system main flow chart, system data flow diagram, and the system main
functions.

3.2 General system block diagram:

As shown in figure(3.1)the general system block diagram; the main parts of our project
are: GPS receiver, where data and locations coordinates will be created, GSM network which is
the connection medium through which data will be transferred, and Central server where the data
will be received and processed, and create complete system user interface.

3.3 System main components:

The main components of our system are the GPS Receiver, GSM network, and Central
server, all of them in this section will be described in more details, and the options for these
components will be also described as follow:

Figure 3.1: general system block diagram

53

3.3.1 GPS Receiver:

The first component of our system is the GPS receiver, it’s the main component in the
tracked car that will receive the GPS coordinate from the GPS satellite. Many alternatives of
GPS receivers are available to be used, and it can be one of the following types:

 Type 1: Separate GPS Receiver, come as a separate device, that can be one of the

following:

o Not-self-contained receivers (without screen), also known as RS232 receivers or

also GPS mice. This type needs a computer (often a Pocket-PC or Palm PDA)

and according program in order to visualize the actual position of the GPS

receiver.

o Self-contained receivers (with screen). Here the computer is integrated in the GPS

receiver. This type sometimes has extra features as an electronic compass or

even a radio transmitter/receiver.

This type of receiver will not be used, because of the need to many other components
to perform the objectives of the system. Which mean combination of GPS receiver, Micro
controller, GPRS modem, and a small screen may be needed. And accurate interfaces between
them must be established, which increase the complexity and cost of the system.

 Type 2: Phones with incorporated GPS receiver.

This will provides a GPS receiver built inside the mobile phone to provide better
outdoor GPS solution.

This type of receiver will be used in our system, due to its availability and widespread
in our life. Besides that, it can be used alone without the need to other components such as
modems, microcontrollers or screens.

Mobiles with GPS receiver available with different operating system. In our system,
Android is the operating system that we want to use. [17]

54

3.3.1.1 Android OS

Google Android is an "open source software" and a competitive operating system, we
choose it to be used between all other alternatives, because it is taking over other leading
systems with many advantages, such as:

 Android Has a Better App Market, allows developers and programmers to develop apps

(applications) in what is known as "application without borders".

 Updated user interface design.

 Support for extra-large screen sizes and resolutions.

 Improved power management and application control.

 “Google fully developed Android and make it into an Open Source. Now, any phone

manufacturer can use Android without expensive license fee from Google. Because it is

open, manufacturer can modify Android without restriction, allowing it to fit the device

they are making total freedom. This makes it a big incentive for any device

manufacturers to adopt Android. The ability to run tens of thousands of apps is another

big incentive”.[18]

6.3.1.2 Galaxy S

We choose galaxy S mobile phone to implement our system, it's one of many other
mobiles phones that can be used, it has been chosen because it contains and supports all of
the required technologies to perform the project objectives. It has the following features:

 Support Operating Frequency:
o 2G Network: GSM 850 / 900 / 1800 / 1900.
o 3G Network: HSDPA 900 / 1900 / 2100

 Operating System

o Android OS, v2.1 (Eclair), upgradable to v2.3

55

 GPS : with A-GPS support
 Support for GSM voice communication, SMS, and MMS.

 Connectivity

o Wi-Fi: 802.11 b/g/n
o USB 2.0
o Bluetooth 3.0 Connectivity

 Network

o GPRS/EDGE

6.3.2 GSM network:

The second component of our system is the GSM network. It represents the service
provider in the system, which we will perform the transmission of the coordinates from the
cars to the central server, over GSM components.

The transmission procedure will be done through GPRS, so the used network must
support GPRS, which adds a packet-based data capability to the GSM system, brings IP
networking into the GSM world, and involves the addition of new packet routers into the
GSM core network, producing a core network with separate circuit- and packet switched
domains.

6.3.2.1 Why GPRS ?

 Cost: Communication via GPRS is cheaper than through the regular GSM network.
Customers only pay for the amount of data transported, and not for the duration of the
Internet connection. Also it's cheaper than transmitting messages in SMS (short message
service). So, it's more suitable to our system in order to send coordinates continuously with
acceptable cost.

 Constant Connection: Through GPRS technology, users are constantly connected to the
Internet. As GPRS services are available wherever there is GSM coverage.

 Mobility: GPRS provides wireless access to the Internet from any location where there is
a network signal. This enables you to surf the Internet on your laptop or phone, even in
remote areas. That's what we need to track the moving cars.

 Speed: Although new, faster technology exists today, GPRS is still faster than the older
WAP (Wireless Application Protocol) and regular GSM services. GPRS data is transferred
at speeds ranging from 9.6 kilobytes per second up to 114kbps.

 Simultaneous Use: When you access the Internet through GPRS, it does not block
incoming calls through the GSM network. This enables you to make or receive voice calls
while you are using our application.

56

6.3.2.2 Connection Options

To implement a GPRS connection, many connection options are available. Here we
will mention it and choose the most proper one:

 GPRS mobile with PC interface.

At this option, the user data and location coordinates well be sent from the first
mobile inside the tracked car to next mobile beside the main server. So an interface is needed
between the adjacent mobile and the PC, this interface can be:

o Bluetooth connection (wireless interface): which is efficient to be used here,

because we want to transmit data over short range distance,(between GPRS

mobile and the central server).Transmit and receive data between mobile and

central server, as Bluetooth signals.

o USB cable (wired interface): A data cable is a long cord, which connects

computer with the mobile in order to share data between them. The data cable

transfers data on the form of electrical signals from mobile to central server and

vice versa.

 HTTP Connection

At this option we will consider the mobile phone at each car as HTTP client, that has
an application make a post directly to the PC, which will be considered as a HTTP server.
The data will be posted directly as a parameter to the functions built on the server.

In our system we will use the second option, HTTP connection, because it more direct
and practical, and it cancel the need of the PC mobile adjacent and the interface between
them.

6.3.3 Central server:

The last main component of our system, will be the central server, where the data and
location coordinates that transmitted by the mobile will be received, processed, plot cars
movement as continuous paths on the geographic map, and provide the user with clear

57

system interface, and provide them with other available services like cars history and
customers related information.

The server can be programmed using one of the common programming languages,
like C#, Java, Visual Basic, and many other choices, that all has its own features, and in our
system it will be programmed with C# language, by creating a complete program that process
the received cars coordinates, then display it then update the paths each time the coordinates
being received.

6.3.3.1 Geographic maps :

There are many sources where our geographic maps can be taken, to create our
system tracked geographic area, and some of these sources are:

 Google earth :

Google earth is a map and geographic information software that Puts the whole world
in your hands, this product released in 2005, and become nowadays available on all
personal computers and mobiles, you only need to download free version of this software,
then you can use it easily, which provide you with ,word maps and geographical information
about any region on the earth, these maps and photos was taken via satellite imagery, aerial
photography, and GIS 3D globe.[19]

 Pal earth :

Pal Earth is the first website to provide electronic Palestinian specialized geographic
information services through the Internet, That provide us with infrastructure and
frameworks for the provision of geographic information systems and services, PAL aims
Earth through this effort to play a role in raising the level of use of geographic information
systems and applications for individuals and institutions alike, and that by providing the
possibility of using these systems and their applications at a cost commensurate with the
goals to be achieved.[20]

 Yahoo maps :

Yahoo maps is a free online mapping portal provided by Yahoo, The street network
and other vector data Yahoo maps uses is from Navteq Tele Atlas, and public domain
sources. Detailed street network data is currently available for the United States, Canada,
Puerto Rico, the Virgin Islands, and most European countries. while Country borders, cities,
and water bodies are mapped for the rest of the world, moderate resolution satellite imagery
is available worldwide. Where one to two meter resolution is available for most of the
contiguous United States, and select cities worldwide.[21]

58

In our system, we will use PAL earth as reference for our regions map, because it
give us the best resolution and appearance for Palestine cities, streets, and high locations
details, more than what Google earth or yahoo maps provide, because it focus especially on
Palestine region, and try to process it in the best vision.

6.4 System flow chart:

To achieve the objectives of our system, many steps will be done, and these can be
described in general, as shown in the system main flow chart in figure (3.2) where these main
steps are :

1. Fill the required registration data by customer, and determine the car's location, using

GPS Technology.

2. Develop mobile application, First to send registration information, and then get the

active car’s location, and send them periodically, via GPRS.

3. Data send via mobile will be received by the main server, and the whole system interface

will be created for server side’s user.

4. Data that received will be processed, register the new cars, and display their locations, as

continuous path of movements on map.

59

Each one of these steps , will be described in detail as follow:

6.4.1 Fill registration data and get coordinates :

6.4.1.1 Fill registration data

The first step in our system is to make a registration for a new car, this is done by
letting the user to enter some required information, in order to be sent to the main server, as a
request for joining the whole system. These data sent only one time before the start of
sending coordinates and speed.

6.4.1.2 Get coordinates and speed

After registration completed, the next step is to determine the accurate – real time –
GPS coordinates and speed of the tracked car. The used mechanism of getting these
coordinates is described as shown in figure (3.3) get coordinates flow chart:

Figure 3.2: system flow chart

60

 The received signal from the GPS satellite are processed, at the mobile's built-in

receiver, to determine the longitude and latitude.

 A code will be added to the mobile, to provide access to the built-in receiver, and store

the longitude and latitude parameters, at the defined coordinates variables.

 The speed of the car is determined by the GPS system relative to the rounding

satellites, received also by the GPS receiver and inserted into speed variable updated

with every new coordinates.

 Now, longitude and latitude of the current location and speed are available to be sent

in the next step.

Figure 3.3: get coordinates flow chart

61

6.4.2 Send data and coordinates to main server :

At this step, the registration information and coordinates variables will be transmitted

using the described mechanism as shown in figure (3.4) send data and coordinates

flow chart:

 As shown in the figure, as well as the required registration information is available;

they will be transferred immediately to the main server as a posted data.

 The success of post process is a sign that the system accept this user and it can

continue to send its coordinates and speed.

Figure 3.4: Send data and coordinates flow chart

62

 The received coordinates and the calculated speed which already stored at the defined

variables will be prepared to be posted to the main server frequently.

 A countdown timer will be started -at the same time when the coordinates ready to be

posted and will be checked continuously.

 After performing the post process, the registration information and location

coordinates and speed, are now at the server side, and ready to be processed and

plotted.

 The received messages will be stored at coordinate’s data base on the main server.

 The system continuously checks the timer, and has to wait until it reaches zero. When

that happened, it repeats the whole process, with new coordinates, of the new car's

location.

6.4.3 Receive data and view system interface :

In the other side of our system, where the server need to continue the system work,
there are main steps, start with connection side that is related to the mobile posted data, these
data will be received by the server to process it, and full clear system interface will be created
to the system users, to provide them with all available services that our system support.

The connection server side is described as shown in figure (3.5) server received data
and coordinates flow chart:

Where the main parts of the connection process are :

 First activate the ability to receive new cars, that want to connect to our system.

63

 Then for each new car try to connecting, we will give the server system side’s user the

ability to accept new cars or reject them.

 Then when the car accepted it will be able to start its coordinates and speed posting

continuously to main server, which receives these coordinates for any tracked car, and

at the same time still waiting for any new connection and sending of registration data.

64

6.4.4 Register cars, and display movement on map :

Each time registration data or location coordinates and speed will be posted to the
main server, and after received by the connection server side, it will be processed before add
to the system as shown in the figure 3.6 received data processing flow chart:

Figure 3.5: server received data, and coordinates

65

As shown the received data process will be done in main steps as:

 Each time the data received by the server, it will be tested to see whether new car

try connecting to your system or coordinates for one of active cars being received.

 When registration data received, the user will be able to see these information and

accept the registration, so the car will be inserted to the system and add to data

base , also he can reject the car that try connecting without add to the system.

Figure 3.6: received data processing

66

 When coordinates being received, it will be processed in some way, according to

the type of system coordinates being used, and then add to data base, and plot on

the map. Also with each receiving coordinates speed will processed to be shown on

the screen and stored at the database.

 Each time we receive data we still have the ability to receive new cars registration

data and new locations coordinates.

6.5 Data Flow Diagram:

The following figure (3.7) Data flow diagram, describe how data will be flow in our
system, from the GPS system to our mobile application, then through GSM network to the
main server:

Figure 3.7: Data Flow Diagram

67

6.6 System Functions :

Here we mention more details about main parts in our project, and the main functions
that will be implemented.

6.6.1 Functional block diagram:

In order to perform the main parts, many functions have to be done, the following
figure describe these functions:

Figure 3.8: Functional Block Diagram

68

6.6.2 Mobile Functions:

There is a specific mechanism the mobile follows to determine the location of the
tracked car specifically, and then transmit it. This mechanism consists of the following
functions:

 Create user interface: We will built an application to be installed on the

mobile; this application must be usable and easy for the users to interact

with it.

 Get registration information: For any user, in order to register in the

system; some information are necessary to be supplied, this information

consist of: Car number, Mobile number, and Car driver.

 Get coordinates: This is done by activating the GPS receiver, to enable it

to receive the coordinates, of the tracked car, from the GPS satellites. Then,

read the stored coordinates, in the GPS receiver of the mobile.

 Get speed: This function also required the GPS to be activated in order to

enable the GPS receiver to calculate the speed.

 Start a countdown timer: The determination of the car's coordinates will

be done every 'X' seconds. So, we need a timer to determine the moment at

which the coordinates must be read. The timer will be initiated by a value

equals the 'X', then reduced and checked continuously.

 Post data to main server: after getting the data it must be posted to the

main server directly by the http connection. A POST request sends

additional data to the web server, specified after the URL, A header will be

added, followed by a blank line to indicate the end of the headers, then the

sent data. An example:

69

POST /login.jsp HTTP/1.1
Host: www.mysite.com
User-Agent: Mozilla/4.0
Content-Length: 27
Content-Type: application/x-www-form-urlencoded

" posted data".

6.6.3 Main server functions:

There is a specific mechanism the main server follows to continue the system build .
And this mechanism consists of the following main functions:

 Receive data: each data or coordinates that post from the mobile will be

received on the server side, through the http connection mechanism, which

will be the server side of http connection where the client post the data.

 Process received data: the data that are received will be processed in some

way, even it is new car registration data or location coordinates send by one

of current active cars.

 Create user interface: to make our system usable and easy for the system

server side user to interact with; a clear interface must be created, and all

services that available by the system will be set. .

 Register new cars: any new car try connecting to the system, will be

determined to be accepted or not by the system user, and when accepted it

will be add to the system database, and to system active tracked cars.

 Plot cars movement on map: each time new coordinates are received, it

will be processed to be represented accurately on tracked geographic map

in our system, then update the current tracking car’s path for each car

70

separately . So at any time of tracking you can see a continuous path of

movements for cars on the map.

 View cars history: the system must be able to save, any cars that connected

to it , store its registration data, and store the history for the cars over any

time they previously connected to the system, and clear way to retrieve this

history .

 Waiting for new connection: during all process of the system, it must still

able to receive any new car that try to connect to the system, and receiving

all active cars coordinates, process them, and plot on the map, without any

reflection in the processes sequence or connections.

71

4

CHAPTER FOUR

DETAILED DESIGN

4.1 Overview

4.2 System classes model diagram

4.3 System use cases

4.4 System sequence diagram

72

4.1 Overview

In this chapter, the software engineering details will be mentioned and described,
including UML model diagram for both mobile and server application software classes, with
implementation for these classes, then the system use case diagram will be described, also the
sequence diagram for use cases will be mentioned.

4.2 System Classes Model Diagram:

4.2.1 Mobile Software UML diagram:

A detailed description for our Mobile Application will be implemented using UML
model diagram; that will describe the main classes, the attributes used in each class, methods that
were defined, and a detailed description of these methods.

The mobile application software are described as shown in figure (4.1).

4.2.1.1 Classes Implementation:

Our system Mobile application software contains a group of classes that interact with
each other, to make the whole system work properly, and complete the system objectives, and
these classes are:

 Hello class:

This class will be used when starting the application, as greeting screen, it consist mainly
of two parts:

 Variables:

mpstart: it's media player object plays music at the beginning of the application.
logtimer: a thread contains the run and sleep method.
timer: an integer contains the number of second represent the time interval for showing
the hello class and playing its music.
RegisterActivity: Intent contains the new activity that will be shown when the welcome
activity finished.

 Methods:

onCreate: Called when the activity is starting, this is where most initialization should go.
run: this is runnable thread method, that will be applied when the form being loaded, to
start get the timer its interval value, and then start its down counting.

73

startActivity: Launch a new activity, this implementation overrides the current activity,
clear the screen and start the next activity.

Figure 4.1: Mobile UML model
Diagram

74

 Register class:

This class will be used to allow the user to enter it's information and register to system

 Variables:

Car_Driver, Car_No, mobile_No: An editable text view fields that will be filled by the
user to hold the name of the driver, the car number and the mobile number of the user.
mob_no,car_no, driver_name: sting variables to hold the entered information by the
user on the previously mentioned edit text.
sendButton: Push-buttons can be pressed, or clicked, by the user to perform an action,
the action here is to post user information to main server.
httpclient: Interface for an HTTP client required to execute HTTP requests while
handling cookies, authentication, connection management, and other features.
httppost: declare a POST method to request that the origin server accept the entity
enclosed in the request as a new subordinate of the resource identified by the Request-
URI in the Request-Line. POST is designed to allow posting the string variables entered
by the user.
ModesActivity: Intent contains the new activity that will be shown when the Register
activity finished.

 Methods:

onCreate: Called when the activity is starting, this is where the initialization for the text
fields should go.
send: this method that gets called when you click the sendButton to get the message from
the message text box, make sure the fields are not empty, prepare the data to be posted
and finally perform the post process.
run: this is runnable thread method, that will be applied to make delay between the two
activities.
startActivity: Launch a new activity, this implementation overrides the current activity,
and moved to the next activity.

 Modes class:

This class will be used after completing the registration process in order to select the
mode of travelling. It consists of:

 Variables:

walkingButton: a button when you click on it, open the walking mode activity.

75

drivingButton: a button when you click on it, open the driving mode activity.
WalkingActivity: The activity that will be opened by clicking the first button.
DrivingActivity: The activity that will be opened by clicking the second button.

 Methods:

onCreate: Called when the activity is starting, for making initialization for the buttons.
onClick: This is runnable thread method, Called when a view has been clicked.

startActivity: Launch a new activity, this implementation overrides the current activity,
clear the screen and start the next activity, walking or driving depends on the clicked
button.

 Walking class:

This class will be used to get the location's coordinates and speed for a walking user and
post them to the server.
 Variables:

mlocManager: a location manager object needed to obtain GPS location.
mlocListener: Define a listener that responds to location updates.

 Methods:

onCreate: Called when the activity is starting, initialization for mlocManager and
mlocListener is done, and calling the MyLocationListener class.

 Driving class:

This class will be used to get the location's coordinates and speed for a moving car and
post them to the server. The variables and methods in this class is the same as the walking class
with different assigned values.

 MyLocationListener class:

This class will be used to register the listener with the Location Manager to receive
location updates.
 Variables:

Lat, lng, spd: double variable change continuously with the location, Returns the latitude
and longitude of the location and the speed of travelling.
str_lat, str_lng, str_speed: string variables results from converting the coordinates and
speed from double type into string type.

76

sub_lat, sub_lng: sting variables returns a string containing a subsequence of characters
from str_lat, str_lng strings.
sendButton: Push-buttons can be pressed, or clicked, by the user to perform an action,
the action here is to post user information to main server.
httpclient: Interface for an HTTP client required to execute HTTP requests while
handling cookies, authentication, connection management, and other features.
httppost: declare a POST method to request that the origin server accept the entity
enclosed in the request as a new subordinate of the resource identified by the Request-
URI in the Request-Line. POST is designed to allow posting coordinates obtained by the
application.

 Methods:

onLocationChanged: Called when the location has changed, contains the coordinates
data and the posting process and the timer for posting. Parameter, the new location, as a
Location object.
onProviderDisabled: Called when the provider is disabled by the user. If
requestLocationUpdates is called on an already disabled provider, this method is called
immediately. Its parameter, the name of the location provider associated with this update.
onProviderEnabled: Called when the provider is enabled by the user. Its parameter, the
name of the location provider associated with this update.
onStatusChanged: Called when the provider status changes. This method is called when
a provider is unable to fetch a location or if the provider has recently become available
after a period of unavailability.

4.2.2 Desktop Software UML diagram:

A detailed description for our desktop software will be implemented using UML model
diagram; that will describe our main classes in the built system, the attributes used in these
classes, methods that were defined, and a detailed description of these methods and our system
classes will interact with each other during system working, and also some points that needed to
be clarified will be mentioned in this section.

Our system desktop software are described as shown in figure (4.2):

4.2.2.1 Classes Implementation:

Our system desktop software built a group of classes that interact with each other, to
make the whole system work properly, and complete the system objectives, and these classes are:

77

 FrmWelcome class:

This class will be used at the beginning of your program, as greeting screen to our
system, that consist mainly of two parts:

 Variables:

timer: that will be used as counter to display the welcome screen for short time.
LogIn_Form: that will be used to hold object from the following class that will appear
after close welcome screen, which is of type FrmLogIn class.

78

 Methods:

FrmWelcome_Load: this is an event handler method, that will be applied when the form
being loaded, to get the timer its interval value, and then start its down counting.
timer_tick: this is an event handler method, that will be applied when the timer stop, to
hide current screen and open the next Log In screen.

Figure 4.2 Desktop UML model Diagram

79

 FrmLogin class:

This class will be used to allow the user to log in to the system by insert correct
Username and password according to the code built in values:

 Variables:

User_Name: the user name variable that will be used during registration, it’s value given
to be “PPU”.
Password: the password variable that will be used during registration, it’s value given to
be “12345”.
System_Form: that will be used to hold object from the following class that will appear
after insert correct username and password, which is of type FrmSystem class.

 Methods:

BtnEnter_Click: this is an event handler method, that will be applied when the enter
button in the log in screen clicked, to call the check registration method.
check_Registration: this is a method with void return value, and without parameters, it
used to open the next screen of the system form class, only when you enter correct user
name and password, if not you will stay in the log in screen to try another times.

 FrmSystem class:

This is the main class in the system, where most of classes interact with, and a lot of
operations will be performed in this class mainly the draw region of cars movement, and
dynamic region for tracked cars and their related information and history ,it created directly after
you log in correctly to the system.

This class contains a large number of variables and methods, the most important ones
will be mentioned, and other ones will be grouped according to their usage in the code and the
main ones will mentioned while leaving the other with less importance, and other ones will be
left when we need to talk about it in other places.

 Variables:

obj_of_inf_class, obj_of_cutPart_class, obj_of_reg_class, obj_of_hist_class: these
will be used to hold objects from the needed classes that will appear from the main
system screen at run time.
Port, listener, thread, listening : these variables used for the http server side connection,
where the port will set to “80”.

80

regORcoo: this important variable used to determine the type of received data.
dataset1, dataAdapter1:and other like variables are needed to connect with database.
wholemap_bmp, tracked_region_bmp : and other like variables are needed in the
system to hold images.
tracked_region_width, start_lat_value: and other like variables for the height and
longitude values , that used to determine the tracked region borders and size.
new_car_id, car_color: these are variables use to store the ID and color of the active
tracked car.
verify_car_displayed, car_is_displayed, car_accepted: variable that used to ensure that
the car is already displayed on the dynamic region or not, and to test wither new car
accepted or not.
Panel_number, btn_inf, panel_and_car_number, active_cars_id:these are variables
related to the dynamic part of the system, where the car related regions, symbols, control
buttons, and history control regions will be added.
line_points, lat,To_x, Hist_X, lat_d, lat_change, start_point: and other like variables
are needed during the process of received data, and for draw of paths and movements of
the cars.
Speed: this variable is used to hold the cars' received speed.

 Methods:

FrmSystem_Load: this is an event handler method, which will be applied when the form
being loaded, to open the connection with database, load the image of the geographic
map, cut the tracked region from the whole map, initialize all the dynamic region
controls, and their related event handlers.
btnStart_Click: this is an event handler method, which will be applied when the start
tracking button in the screen clicked, to initialize the http listener and start Listen thread.
Listen: this is void method, without parameter, that created for the Listen thread to start
listening, and to accept new clients, and for each of these new clients create another
Listenthread.
ListenThread: this is an event handler method, that called each time new client accepted
by the listener, that create network stream for the related client, t, to transmit the data
according to the information format that established between the server and client .

There are two type of message format can be received as :
 " RegORcoo = 0,car_id=””,car_number=””, phone_number=””,driver_name=”””

 " RegORcoo = 1,car_id=””,latitude=””, longitude=”” ”

Each with the http header that is needed for determine http connection path.

81

btnNewCar_Click_1: this is an event handler method, that will be applied when accept
new car button in the screen clicked, , then an object of registration form will created, and
displayed where it’s data filled from the received message.
update_values: this is an event handler method, that called when you pressed on the
enter button of registration form, to retrieve the ID, color, verified of displayed string,
and close the registration form, that call another event handler display_car_on_screen.
display_car_on_screen: if data entered from the registration form correctly without
errors, then if it’s already displayed on screen notify that with a message, else call
another method add_new_car to display car dynamic region on screen.
add_new_car: this is void method, without parameter, that used to add dynamic related
region, for each new active tracked car, and set the control size, name, color, and
location, to create ordered region for cars, and store each panel ID that being set with, in
order to make another processes easier.
btn_inf_Click: this is an event handler method, that will be applied when information
button in the dynamic screen region clicked, it will retrieve the selected related car ID
information from the database and fill it in the created object of the information class.
new_coordinate: this is void method, without parameter, that will be called when new
coordinate being received, and if these values are within the tracked region call another
methods, convertGPS_To_XY,draw_line.
convertGPS_To_XY: this is void method, with two parameters of type string that
represent the latitude and longitude received values, in order to convert them into their
equivalent X,Y values that will be used to draw on the map, and also the values that will
be used to draw on the history map.

The built equation that will be used for X value is :

To_x = Convert.ToInt32(lat_step) + 243;
where:
(lat_step)=lat_diff / 0.000011429.
(0.000011429) related to width pixels with range of digrees.
(lat_diff)=lat_d-region_start_lat.
(243) related to left start border in the image.

The built equation that will be used for Y value is :

To_y = 6930 - Convert.ToInt32(lng_step) + 3560;
where:

(lng_step)=lng_diff / 0.000009707.
(0.000009707) related to height pixels with range of digrees.
(lng_diff)= lng_d-region_start_lng.
(3560) related to upper start border.

82

The same relations are created to convert the latitude and longitude received value to the
X,Y values for history related points,with some changes in the constants, then after this
conversion, the draw_line method will be called.

draw_line: this is void method, with one parameter, which is integer that represent the
sender ID, it will added the data to database, and draw a line between the new received
point and the last processed point for that car, and each time a new point drawn the map
will be updated to reflect this change for the system user.
picMap_Click: this is an event handler method, that applied when click on the picture
box region, so it will create New object of the cut part class , where the zoom can be
performed.
display_clicked_part_of_image: this is void method, without parameter, that will be
used to retrieve the related clicked point region on the map, from the whole map with size
determined by the cut width and cut height.
btnHistory_Click: this is an event handler method, that applied when click on history
button, that will open the history form.
btnStop_Click: this is an event handler method, that applied when click on stop tracking
button, to close the system.

 FrmRegCar class:

This class will be used when cars try to register to the system, in order to view the cars
information that try to connect with, give the user the ability to select the car tracked color on the
screen, to change or modify information, and then to add this registration to the database if it’s
not set before :

 Variables:

Dataset1, dataadapter1: these are variables that needed to connect with database.
enter_error: this is Boolean variable that used to notify any error occurred during the
insertion of data.
new_car_id: this is used to hold the value of the new car id.
car_color: this is used to hold the value of the new car color.
enter_is_pressed: this is Boolean variable that used to notify the case of close the form
without accept the car, or the request to enter the data to system.

 Methods:

83

FrmRegCar_Load: this is an event handler method, that will be applied when the form
being loaded, to open the connection with data base, initialize enter_error, and view the
registration data.
BtnEnter_Click: this is an event handler method, that will be applied when enter button
in the screen clicked, to get the registration car ID, then if it’s found in data base before
this time, show message for this case, if it’s new car call the insert_Row method.
insert_Row: this is void method, without parameter, that called when the registration
new and not registered in data base before, so insert it to the database.

 FrmCarInf class:

This class will be used to display the selected car information, that stored the first time it
register to the system, any time the user want during the run of the system:

 Variables:

timer: that will be used as counter to display the information screen for specific time, so
when you forget to close it will disappear automatically.

 Methods:

FrmCarInf_Load: this is an event handler method, that will be applied when the form
being loaded, to get the timer its interval value, and then start its down counting, and
view the information data.
t_tick: this is an event handler method, that will be applied when the timer stop, to hide
information screens that opened for long time, and not closed yet.

 FrmCutPart class:

This class will be used to perform zoom in and zoom out on the selected region, that cut
from the whole image when you click on it in the system form. In order to give clear level of
view than the whole one:

 Variables:

zoomIN: this is Boolean variable used to indicate that we want to perform zoom in
operation not zoom out.
zoomOUT: this is Boolean variable used to indicate that we want to perform zoom

outoperation not zoom in.
zoom_level: this is used to determine the level of zoom that you currently perform, and

it’s value change by clicking on the image picture box, which has max value of “14”.

84

Mapbmap: this is image object, that represent a copy of the whole map that the zoom
will performed on, in order to hold all changes that occurs on the whole map during the
run of the system.
map_x: this will retrieve the related x value for the clicked point on the whole map box
to the whole map original bmp image, as it stored in its path.

The built equation that will be used are :

obj_of_cutPart_class.map_x = (tracked_region_width / picMap.Width) * point_x;

map_y:this will retrieve the related y value for the clicked point on the whole map
picture box to the whole map original bmp image, as it stored in its path.

The built equation that will be used are :

obj_of_cutPart_class.map_y = (tracked_region_width/picMap.Width)*point_y+3560;
 Methods:

butZoomIN_Click : this is an event handler method, that will be applied when the
zoomIN button in the screen clicked, to set the Boolean zoomIN value to be true and
zoomOUT false. butZoomOut_Click: this is an event handler method, that will be
applied when the zoomOUT button in the screen clicked, to set the Boolean zoomOUT
value to be true and zoomIN false.
picSelectedRegion_Click: this is an event handler method, that applied when click on
the picture box region, determine zoomIN or OUT, ensure that zooming level not reach
max, increase or decrease the zoom level , then call DO_zoom function.
DO_zoom: when we click on any region on the cut part to perform zoom we needed the
following equations:

To find the value of clicked points related to the original whole map,

by the built equation:

x2=(x2*3)+(map_x-900);
Where:
(x2): at first equal the x value of clicked point on the zoom picture box.
(3): comes from ”cut width/zoom Box width = 1800/600”.
(900): we want to retrieve the clicked point at the center of the new image, so we subtract
“1800/2= 900”.

The same equation will be applied for the y value.

To determine the zoom size we need the built equation:

85

zoom_size = 2*(900-60*zoom_level);
Where:
(60): represents our factor of zoom each time.

The same equation will be applied for the y value.

Then and before retrieving the zoom region, we will determine the start x value and y
value for the region, and perform testing for the cases of click near the borders of the image,
finally we will draw the retrieved zoom region from the whole image in both zoomIN or out
cases.

 HistoryMap class:

This class will be used to display the selected car history at specific interval, any time the
user wants during the run of the system:
 Variables:

view_pressed_once: used to hold how many time you pressed on draw path button.
dataset1, dataAdapter1: and other like variables, that used for connection with data
base.
history_id: used to store selected car id.
dateTime_Start,dateTime_end: used for select the history interval.
history_points_number, history_points: used to store the related interval and car
history points.
car_color, Graphics s: used for draw the points on map.

 Methods:

HistoryMap_Load: this is an event handler method, that will be applied when the form
being loaded, to initialize the view_pressed_once variable to zero.
btn_retrieve_cars_Click: used to retrieve all cars id from database.
comboID_SelectedIndexChanged: used to select one of cars by its id.
comboxstart_SelectedIndexChanged: used to select start time of interval.
comboxend_SelectedIndexChanged: used to select end time of interval.
btnViewHist_Click: this is an event handler method, which will be applied when the
draw path button in the screen being clicked, to draw the path on map.

4.3 System use cases

A detailed of how the system outside users, and the system actions will interact with each
other during the process of the system, will be described in the system use cases clearly in this
section, as shown in figure (4.3) :

86

From the figure we can note that:

 Two actors mainly interact to our system, the mobile user, and desktop user.

 The mobile user who will start the mobile application.

 Then he will fill the required registration fields, and activate the action of send the

registration request from mobile to the main server.

 This action will activate the process of selection the tracking mode, where mobile user

needed to select mode, also activate the action of received these data at the server side.

 Then the other actor desktop user, will interact with this part by accept this car, and added

it to the system.

 If car added to the system this will activate the action of reading GPS coordinates on the

mobile side, and send it to main server, where also the selection of tracking mode is

needed before start sending coordinates and speed.

87

 Also this action will activate the action of receiving data at the server side, and each time

it received it will be processed and plot on the map.

 Then after plot in map, it will be used for history process, by adding it to data base where

it can be retrieved any time you want.

 Other actions can be performed by the desktop user which are start the desktop

application.

 The desktop user activate the action of Log in to the system to continue the processes.

 The desktop user also can activate the action of tracking, and the ability of receiving new

cars.

 The desktop user can activate the action of zoom in and out operation when needed.

 The desktop user can activate the action of display cars information when needed.

 The desktop user activates the action of display cars history when needed.

 The desktop user can end the desktop user.

 Also the mobile user can end the mobile application.

4.4 System Sequence diagram:

For each of the use cases a sequence diagram will be created in this section, in order to
show which objects are needed to perform this case, how they will interact with each other, and
the time sequence of the process steps :

4.4.1 Send registration request sequence diagram:

As shown in figure (4.4); we can realize the time sequence for this use case, where the
mobile user needed to fill the required registration data fields, then he click on the “send” button,
this will open new httpclient, get the text from the fields, then it will execute httppost that first
will request the information data from the register form, then arrange them into an array list, then
execute the post process to the server httpURL.
And the main methods in the system needed for this process are:

public void onCreate(Bundle savedInstanceState)

88

public void send(View v)
public void run()
startActivity(new Intent("gps.post.TRACKING"));

Figure 4.4 send registration request sequence diagram

4.4.2 Receive new request sequence diagram:

As shown in figure (4.5) ; we can realize the time sequence for this use case, where the
server is built to accept any number of request, by multithreading way, where when the listener
accept new client it create a thread for this new client to receive data with it, while other request
allow to connect at the same time.

And the main methods in the system needed for this process are:
public void Listen().
public void ListenThread(Object client).

89

4.4.3 Select mode sequence diagram:

As shown in figure(4.6); we can realize the time sequence for this use case, where after
posting the registration data and accept them by the server the mobile application open new
activity called the mode activity, where the user have to decide the mode of travelling, if he is
walking or driving by clicking the proper button.

The two modes have variation in timer variables with similar methods, the difference
appears here:

public void requestLocationUpdates (String provider, long minTime, float
minDistance, LocationListener listener)

The minTime and minDistance variables differ from one mode to another, and they indicate the
time interval or the distance at which the location is required to be sent.

And the main methods in the system needed for this process are:

protected void onCreate(Bundle savedInstanceState)
public void onClick(View v)

Figure 4.5 receive new request sequence diagram

90

4.4.4 Adding car to system sequence diagram:

As shown in figure (4.7); we can realize the time sequence for this use case, where each
time the system receive new request it display a message to notify that, then the desktop user
needed to press on accept new car button to continue its registration, and select the tracked color,
this will open the registration form with data, then when user press enter , if data are new then it
added to database, else it’s related information will be retrieved from database, then after press
enter the car related symbols will added to the dynamic region on the screen, if it’s already
displayed a message will appear to notify that.
And the main methods in the system needed for this process are:

private void btnNewCar_Click_1(object sender, EventArgs e).

if

else

click on walkingButton

Figure 4.6 select mode sequence diagram

91

private void update_values(Object sender, System.EventArgs e).
private void display_car_on_screen(object sender, FormClosingEventArgs e).
void add_new_car().

desktopuser

FrmSystem
FrmRegCar DataBase

car_accepted

Message.Show

btnNewCar_Click_1

Show

BtnEnter_Click

insert_Row

Select information

information

BtnEnter_Click

message.Show

display_car_on_screen

4.4.5 Send GPS coordinates sequence diagram:

if

else

new car

Figure 4.7 added car to system sequence diagram

if

else

Old car

Figure 4.7 Adding car to system sequence diagram

92

As shown figure (4.8) ; we can realize the time sequence for this use case, where after
registration data being send, the system will go to the tracking form automatically, and start a
location manager that start a location listener ,which request the coordinates if it’s available by
the GPS receiver from the GPS Provider, and if it not available it will be read from the mobile
network provider, and after coordinates being read this will open httpclient that execute httppost,
and before post it will request the coordinates from location listener and arrange them into an
array list and finally execute the post process to the server httpURL, and this process will be
repeated during the listening to GPS or Network provider and on location change case.
And the main methods in the system needed for this process are:

protected void onCreate(Bundle savedInstanceState)
public void onLocationChanged(Location loc)
public void onProviderDisabled(String provider)
public void onProviderEnabled(String provider)
public void onStatusChanged(String provider, int status, Bundle extras)

4.4.6 Plot received coordinates sequence diagram:

Figure 4.8 Send GPS coordinates sequence diagram

loop On location change

GPS available

if

else

93

As shown in figure (4.9); we can realize the time sequence for this use case, where each
time a ListenThread receive new coordinate, it will be processed with some equations as shown
above in the classes implementation, then after process the system will draw these points at the
map, and added it also to the data base, to be used in the history retrieve.
And the main methods in the system needed for this process are:

private void new_coordinate().
public void convertGPS_To_XY(string lat, string lng).
public void draw_line(int ID).

4.4.7 Log In to system sequence diagram:

As shown in figure (4.10); we can realize the time sequence for this use case, where the
desktop user need to log in to the system, by insert correct user name and password in order to go
to the next form. But while insert wrong user name or password, he will stay in the same log in
form.

And the main methods in the system needed for this process are:
private void BtnEnter_Click(object sender, EventArgs e).
private void check_Registration().

Figure 4.9 plot received coordinates sequence
diagram

94

4.4.8 Activate tracking sequence diagram:

As shown in figure (4.11); we can realize the time sequence for this use case, where the
user needed to start tracking by click on start tracking button, this will initialize the listener, and
create a thread that will start the listener, in order to accept new connections.

And the main methods in the system needed for this process are:

private void btnStart_Click(object sender, EventArgs e).
public void Listen().
public void ListenThread(Object client).

Figure 4.10 Log In to system sequence diagram.

Loop Wrong password , username

95

4.4.9 Zoom sequence diagram:

As shown in figure (4.12); we can realize the time sequence for this use case, where the
user needed to press on the whole map at the system form, this will cut a region around the
clicked point, then to perform another levels of zoom in and out the user also will press on the
cut map, then the zoom will done.

And the main methods in the system needed for this process are:

private void picMap_Click(object sender, EventArgs e).
private void display_clicked_part_of_image().
private void picSelectedRegion_Click(object sender, EventArgs e).
private void butZoomIN_Click(object sender, EventArgs e).
private void butZoomOut_Click(object sender, EventArgs e).
private void DO_zoom().

4.4.10 Display cars information sequence diagram:

As shown in figure (4.13); we can realize the time sequence for this use case, where the
desktop user request the information form from the system by click on the information button,
this will retrieve the request data from the database and display on the form and open it.

And the main methods in the system needed for this process are:

private void btn_inf_Click(Object sender, System.EventArgs e).
private void FrmCarInf_Load(object sender, EventArgs e).

Figure 4.11 Activate tracking sequence diagram

96

desktopuser
FrmSystem cut part

picMap_Click

show

picSelectedRegion_Click

DO_zoom

desktopuser

FrmSystem DataBaseInformationForm

btn_inf_Click
select information

information

show

Figure 4.12 zoom sequence diagram

Figure 4.13 display cars information sequence diagram

97

4.4.11 Display cars history sequence diagram:

As shown in figure (4.14) display cars history sequence diagram; we can realize the time
sequence for this use case, where the user first request the history dynamic region, this will
added it’s related symbols on the screen, then the user needed to select its history region, then
also he must request the history map to appear, then at this form he will request the points to be
drawn.
And the main methods in the system needed for this process are:

private void HistoryMap_Load(object sender, EventArgs e).
private void btn_retrieve_cars_Click(object sender, EventArgs e).
private void comboID_SelectedIndexChanged(object sender, EventArgs e).
private void comboxstart_SelectedIndexChanged(object sender, EventArgs e).
private void comboxend_SelectedIndexChanged(object sender, EventArgs e).
private void btnViewHist_Click(object sender, EventArgs e).

Figure 4.14 display cars history sequence diagram

98

5

CHAPTER FIVE

SYSTEM TESTING

5.1 Overview

5.2 Sub-System Testing

5.3 Installation and preparing the system

5.4 Testing Scenarios

99

5.1 Overview

In this chapter, the whole testing stage will be described, including a test of an entire
interconnected set of components and software for the purpose of determining proper functions
and achieving the desired goals of the system. We will talk about testing of each part of the
system, describe the scenarios, represent each test and it's errors, challenges and modifications,
and also we will figure out the error rate.

5.2 Sub-System Testing:

The main aim of this testing part is to test the main operations in the system. There are
five main operations in the system. The first one is the getting the correct coordinates and speed.
The second operation is posting data to the main server. The third is receiving the data and
processing it to register car and plot it's coordinate to get its path of travelling. The fourth
operation is accepting more than one car at the same time. The last one is allowing access to
history data base at any time. All the operations mentioned before are tested and meet the
expectations.

5.3 Installation and preparing the system

At this stage, all system parts must be ready to be tested at the two sides, mobile
application at the car to be tracked, and the desktop application at the server.

5.3.1 Mobile application:

An application has already been built using the Eclipse environment, to use this
application it must be installed to the mobile, and to perform this we can do one of the following
ways:

 The first is to connect the mobile phone (Galaxy S) by the USB cable or Bluetooth

connection to the PC at which the workspace of Eclipse is created. Then the following

file must be copied to the mobile SD card.

C:\workspace\GpsCarTrackingSystym\bin\GPS_Car_Tracker.apk

Open the ".apk" file, a message will appear at the screen of the mobile as shown in

figure(5.1),show the name of the application and the permutations needed for it to

works probably. In our application we need to access the GPS location to get the

location of the tracked car, and we need a full internet access for the communication

between mobile(client) and PC(server) while posting data.

100

Click the install button to allow the installation of the application as shown at

figure(5.2).

When the installation is completed, as shown in figure (5.3), click the open button to

start the application

Figure 5.1: Opening apk file Figure 5.2: Installing application

101

 The second way to install the application is to connect the mobile phone directly to the

Eclipse and define it as one of the active running android device, choose it manually to

run the application on.

After choosing one of the previous way to install the application, it will be opened and

became ready to use, as shown in figure (5.4).

Now, the application on the mobile is ready to be used by the user.This welcome screen
will last only 7 second then immediately a new module will be opened, as shown at figure(5.5),
the user must enter it's information then click the "send car information" button.

Figure 5.3: Installation completed

102

As shown, the required information is: the number of the car, the mobile number of the
driver, and his name. This information will be needed at the server side. All the fields are
required, so if the user tries to skip this step and click the send car information button without
filling the fields a message will appear at the screen and tell him that:
"All field are required, Fill it please".

Pressing the send car information button will post the data to the main server and move to
the next module, select mode module, as shown at figure (5.6).

o For user how is walking without using a car he should click the " WALKING"

button, to move immediately to walking module shown at figure(5.7).

o For user how is driving a car, he should click the "DRIVING" button to move

immediately to driving module shown at figure (5.8).

At both of these modules, if the GPS is disabled immediately the following message will
appear at the screen "GPS Disabled, turn on to start tracking your car", to tell the user that he has
to turn GPS on in order to start receiving and sending the coordinates.

Figure 5.4: Welcome Screen Figure 5.5: Registration

103

Figure 5.6: Select mode
module/Coordinates

Figure 5.7:Walking mode/GPS off Figure 5.8:Driving mode/ coordinates and speed

104

While the car is moving, the coordinates and speed will appear at the screen and posted
to the server at the same time. As shown at figure (5.8).

Now the driver can put the mobile in front of him at the car while moving, so the mobile
application will works alone without any efforts from the driver.

5.3.2 Server Application:

An application has already been built using c# programming language, and to start up the
application:

 we will open our built project "GPSCarTrackingSystem" From the project

path, that was created using the Microsoft visual studio 2008 program. As

shown in figure(5.9)

 Then after start it, a screen for the c# 2008 environment will be open with the

project solution explorer that contain our system, then we debug the system to

start it by click on Debug then , or press

F5.

 Then our system will start it’s execution, where the first screen are the

Welcome Screen as shown in figure (5.10)

Figure 5.9: GPSCarTrackingSystem Project

file

105

 Then Log in screen will be opened, in order to request the user name and password

to sign in to the system as shown in figure(5.11)

 Then we will reach the main system screen where all processes will created from,

and the design for this screen is shown in figure (5.12)

Figure 5.10: GPSCarTrackingSystem Welcome Screen

Figure 5.11: GPSCarTrackingSystem Log In Screen

106

As shown above it consists mainly of 4 regions:

Region1:

It is the region for control buttons that used to start the tracking process, accept new car’s

try connecting to system, deal with history part, and to end the process of tracking.

Region2:

This is the region where the whole tracked map being hold, which is represent a part of

Hebron city, around PPU university.

Region3:the dynamic region where car’s will be added and their related symbols, as

shown in figure (5.13) :

2
1

3
Figure 5.12: GPSCarTrackingSystem Main Screen

Figure 5.13: system screen car’s dynamic region

107

And here we need to note that the test are done for maximum of 10 car’s active, and

tracked at the same time on the screen.

 Now to start tracking we need to press on the control button , then

when new connection received a message will appear to notify that as shown in

figure (5.14):

 Then when user must press on the control button this will open the

registration screen with the registration information, and this screen is as shown in

figure (5.15):

Figure 5.14: new connection message

Figure 5.15: System registration screen

108

 During the process there are other processes available, like view car’s information

that stored with it. And the form for this information is as shown in figure (5.16):

 Also you can display car’s history, and the form will appear as shown in

figure (5.17):

Figure 5.16: System Car’s Information form

109

 Also zooming can be performed by click on whole tracked region to give better

resolution, for the image. And the form for that is as shown in figure (5.18):

Figure 5.17: System Car’s history form

110

These are the main screens that will appear during the process of the system at the server
side.

5.4 Testing Scenarios

In this section, the scenario of starting the system with all its parts will be mentioned,
including all the necessary steps which include:

o Download the mobile application and open it, then give it to the car driver.

o Open the desktop application and login to it, then activate the listening for the new

cars to register to system, by clicking on the " Start Tracking" button.

o At the mobile, fill the registration information and click the "send Car information"

button.

Figure 5.18: System Car’s Zoom In form

111

o When the data reach the server a notification message will be displayed , it will be

accepted by the user at the server side, and a color of the tracking path will be selected

by selecting from system colors list, and then added to system by click enter.

o After the acceptance, the mobile application will start the tracking module; if the GPS

receiver is off, the application will inform the driver to turn it on by a text appears at

the screen bottom. So:

If GPS is off, Message= "GPS Disabled, turn on to start tracking your car".
If GPS is on, message="GPS Enabled".

o Enable the GPS, the mobile will start receiving GPS signals and calculate it's location's

coordinates then show them on the screen and post them to the main server.

o At the same time a connected dots will appear continuously at the map on the main

server screen.

o If more than one car is active, there will be more than one path at the map with

different colors each with its’ related car. And for more clarity. we can perform the

operation zoom in and out to see the path; by click the "zoom in" button or “zoom

out” as you want, then press on the map where you want.

o And during plot process also you can select information display and history display by

click on their related buttons at the screen.

To make a test, the previous scenario including all of the previous steps is done in order.
We have performed a number of tests to explore if the system works probably and to figure out
the errors and challenges then make modification and corrections.

5.4.1 TEST 1

The first test is applied over a small distances without using a car, this is done at the
university. A person carries the mobile, open the application and start walking with a medium
speed around building B to building A, with one mobile.

112

Results

Number of reading = the mobile sends so many points approximately 50 with 6 only
appear on the map.
The total cost= 1.00 NIS
The speed between 1 to 2 meter/ second.
Time: the time is approximately 3minutes.
The drawing path: shown at figure (5.19).

Errors
While testing the system the following errors happened:

o When the mobile sends the registration request to the server, it starts directly

sending coordinates, before the server complete the accepting and registration of

the new car, and the car information forum stay empty.

o At the server software there are error occurred after drawing a small number of

points, that said there is out of memory exception.

Figure 5.19 test1 result tracked paths

113

Challenges
The mentioned errors bring the following challenges :

o Give the server the enough time to complete the registration and acceptance

process.

o Dealing with image errors at server side.

Modifications
The following modification is done to solve the errors and meet the challenges:

o At the mobile side a delay between the Register activity and Tracking activity is

added,

timer = 0;
while(timer <9000){
sleep(1000);
timer=timer +1000;
}

so it gives the server the needed time to assign a color to the car and accept it.
o At the server side, the error is expected to be because each time we draw on the

map we call it again and create object of bitmap class with large size of pixels,

without being disposed after use, so to solve the problem we try to use the same

object and overwrite it each time we use and define it as public variable, used

once in the system with modify on the same object each time.

5.4.2 TEST 2

Another test is performed after applying the previous modifications, to check the system
state after solving the errors. It's also over small distances without using cars yet, where two
persons move between building A and B inside the university. one person carries the first
mobile and start tracking, then after time the other mobile start working while the first also
working at the same time.

Results

114

First mobile
Number of reading =30.
The total cost =0.6 NIS
Time: approximately 5 minutes.

Second mobile
Number of reading= 10.
The total cost = 0.2 NIS
Approximately3 minutes.

Speed for both are approximately between 1 and 2 meter per second.

The drawing path: shown at figure (5.20):

Errors
The errors that we faced previously are disappeared at this test and the results are
acceptable and meet the expectations, but other errors were appeared

o The first mobile start sending readings continuously at very near places, appear

approximately on the same point at the map, and with large number of coordinates

during small interval, the same like first error on mobile side.

o The number of dots on the map related directly to the cost (how many time the

application post data to the server?), this produce an unacceptable cost must be

reduced.

Figure 5.20: test2 result tracked paths

115

o At the server side Error occur during process of two mobiles at the same time, and

the application on the server meet errors and work incorrectly with two mobiles

,where following error message appear as shown in figure (5.21):

Challenges
All of these mentioned errors bring the following challenges:

o Control when to send coordinates.

o Reduce the cost.

Modifications
The following modification is done to solve the error and solve the challenges:

o Two timers is added to the mobile application to control the post process.

Timer # 1: Measures the travel distance, coordinates are sent every 'x'
meters.

Timer # 2: Measures the time between readings, coordinates are sent every
'x' seconds or minutes.

o For reducing the cost, unnecessary data was deleted from the sent messages from

mobile to server. Also we take only the first five digit after the decimal point from

the longitude and latitude

o By putting these timers we try to solve the first two mentioned challenges; when

to send data and reduce the cost

Figure 5.21 desktop test2 error

116

o At the server side, the error is expected to be because each time we draw on the

map we use the object whole map_bmp, and when two reading reaches at the

same time, they try to use the same object of map to draw on at the same time, so

this cause the error, and to solve it we try to use a build in loop to create some

delay between reaching coordinates, this time is small but also enough to draw

one point on the object, without being interrupted with other reading.

The code used to solve this error is shown below:
int timer = 2099999999;

while (timer > 0)
{ timer--;

}

Added to the beginning of Listen() function that receive the data.

5.4.3 TEST 3

This test is performed at larger distance using travelling cars. A car is moving from the
out door of the university to Ain_sarah region .

Results
Number of reading= 49 reading
The total cost = 0.49 NIS
The sped is between 20 to 30 meter/second.
Time: approximately 30 minutes.
The drawing path: shown at figure (5.22).

117

Errors
The errors that we faced previously are disappeared at this test and the results are
acceptable and meet the expectations, and more than one car can tracked at the same time,
without previous exception.

o But another error appear on the server which is occur during process of

movement, especially when we try to perform zoom operation, and it’s the same

as error2 but in different location of code, in the cutForm at line:

g.DrawImage(mapbmap, 0, 0, region, GraphicsUnit.Pixel);

because when we try to perform zoom in operation, we use the same object we darw on.

Modifications
The following modification is done to solve the error and solve the challenges:
at server side, and to solve its error of perform zooming at the same time we draw
on the map, we solve it by using try and catch, for this case as shown in the
following code that added to the DoZoom(function), where when such exception
error occur it will be catched, to allow the point to be drawn, then do zoom
without error :
try

{
.
.
.

}

Figure 5.22: test3 result tracked paths

118

catch (Exception error2) { ;}

5.4.4 TEST 4

At this test two cars are active in the system at the same time, start moving from different
points. The first car start moving from the outdoor of university to Ein_sara again, and the
second car moving from Al_haras region to Dowar Al_sehah region.

The system accept the two cars successfully and draw their paths accurately as shown an
figure(15.23).

Results
First car
Number of readings:40
Cost =0.40 NIS
speed between 20 and 25
meter/second
Time: approximately 25 minutes.
Second car
Number of readings:35
Cost= 0.35 NIS
speed between 20 and 30
meter/second
approximately 20 minutes.

Figure 5.23: test4 result tracked paths

119

5.4.5 TEST 5

At this test we use one car, to test the use of modes during tracking, where the
user has the ability to select which mode of tracking he want. Where two types are
available, one for walking and other for driving.

The car start with driving mode from region near university, then at the
outdoor near building A, the mode converted to walking.

The paths of movements as shown in figure(15.24).

Figure 5.24: test5 result tracked paths

120

Results
Driving mode
Number of reading:26
Cost =0.26
Time: approximately 10minutes.
Walking mode
Number of reading:15
cost = 0.15
approximately 5minutes
Speed: between 20 and 25 meter/second Speed: between 1 and 2
meter/second

121

6

CHAPTER SIX

CONCLUSION AND
RECOMMENDATION

6.1 Overview

6.2 Conclusion and Achievement

6.3 Challenges

6.4 Future work Recommendation

122

6.1 Overview

In this chapter, we will mention what we achieved in this project and the
conclusion for all things that we have done, also we will talk about the challenges that
we faced and ending with recommendation needed for the future work.

6.2 Conclusion and Achievement

Almost all the goals of our system have been achieved. In this section the
main achievements of the system are discussed and the ways of achieving it.

 We built a mobile application to give the accurate location, of the travelling

car and send it to the main server.

 We built desktop software dealing with maps and received location and

plotting the coordinates accurately on it.

 We built an accessible database for car drivers information and travelling

history, that can be retrieved any time.

 We calculate the speed of the traveling cars, and display it on the screen

according to any change, during the tracking.

6.3 Challenges

At this project we have faced some critical points that still need a solution for them.
Such as:

 In the system implementation, we used a small map showing part of Hebron

city , because we couldn’t use a larger one with higher resolution.

123

 And it will be better if we can use a map with names of places, cities and

streets added on it.

 Using the mobile application for a long time consumes large amount of power,

so we get battery Restrictions.

 The approximation of meters related to the selected value, differ in some cases

according to the state of GPS system.

6.4 Future work Recommendation

In this project, there are some ideas that could be done or added to

improve its performance, or add some capabilities, some techniques that are

efficient and meet user needs. Some of these ideas are mentioned below:

 System could be improved by adding a mechanical information about the state

of the car by testing the internal structure and explore it. This improvements

need a mechanical engineering knowledge.

 System could be improved to let all cars at the system know the locations of

each other by sending them a photo.

 System can be improved by sending instructions to cars to go to a specific

place.

124

[1] ECE Live Projects, "GPS and GSM based Vehicle Tracking System".

Available at
http://www.mycollegeproject.com/GPS%20and%20GSM%20based%20Vehicle%20Tracking%20System.html.

[2] Pallavan Transport Consulting Services, Ashok Leyland, Harita Infoserve

Ltd, "Vehicle Tracking and Control Systems".

Available at
http://www.simbaproject.org/download/india/Presentation%20and%20Feedback/ITS/IIT%20Bangalore.pdf

[3] Source forge team, "Open GPS Tracking System".

Available at http://opengts.sourceforge.net/

[4] 8051 projects, Astra Telematics Limited telematics hardware supplier,

"Vehicle Tracking System using GPS and GSM modem".

Available at http://www.8051projects.info/content/projects/7-vehicle-tracking-system-using-gps-gsm-

modem.html

[5] M. kennedy, , "The Global Positioning System and GIS An Introduction",

fanrica, United State of America, 1996.

[6] Image from Top gps reviews.

Available at http://topgpsreviews.net/wp-content/uploads/2010/08/gps-satellite-orbits.jpg

[7] Wikipedia, the free encyclopedia, "World Geodetic System".

Available at http://en.wikipedia.org/wiki/World_Geodetic_System

[8] D. Bowler, A. Mayne, D. McNally, T. Wakefield, Introduction To Mobile

Communication Technology Services Markets, Auerbach Publication Informa,

New York, 2007.

REFERENCES:

125

[9] Image from Bundesamt.

Available at

https://www.bsi.bund.de/SharedDocs/Bilder/DE/BSI/Publikationen/GSM/gsm_e2_jpg.jpg?__blob=normal&v=2

[10] Search mobile computing, "GPRS".

Available at http://searchmobilecomputing.techtarget.com/definition/GPRS

[11] P. Calduwel Newton, DR. L. Arockiam, and Tai-hoon Kim, International

Journal of Advanced Science and Technology, "A Quality of Service Strategy to

Select Coding Schemes

in General Packet Radio Service System". Available at

http://www.sersc.org/journals/IJAST/vol7/1.pdf

[12] C. Kozierok,The TCP/IP guide, Available at

http://www.tcpipguide.com/free/t_TCPIPHypertextTransferProtocolHTTP.htm

[13] Wikipedia, the free encyclopedia, "Mobile operating system". Available at

http://en.wikipedia.org/wiki/Mobile_operating_system

[14] From Linux to Android, Android Internals for Linux Developers,

"Introduction to Android Architecture". Available at

http://technologeeks.com/Courses/Android-Excerpt.pdf

[15] B. Venners, artima developer, "Introduction to Java's Architecture".

Available at

http://www.artima.com/insidejvm/ed2/introarchP.html

[16] B. Evjen, J. Glynn, C. Nagel, M. Skinner, K. Watson, "C# 2008", Wiley

Publishing Inc, 2008.

[16] GPS-practice-and-fun, "Different types of GPS receivers". Available at

http://www.gps-practice-and-fun.com/gps-receivers.html

126

[18] Android compare, "Why Android". Available at

http://androidcompare.com/#ixzz1h91s3wrS

[19] Wikipedia, the free encyclopedia, "Google Earth". Available at

http://en.wikipedia.org/wiki/Google_Earth

[20] Palearth, Available at

http://www.palearth.ps/?q=ar/aboutus

[21] Wikipedia, the free encyclopedia, "Yahoo Maps". Available at

http://en.wikipedia.org/wiki/Yahoo!_Maps

