

PIC16F84A Data Sheet

18-pin Enhanced FLASH/EEPROM

8-bit Microcontroller

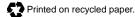
Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, *Flex*ROM, *fuzzy*LAB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

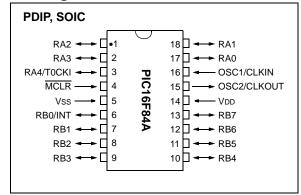
Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

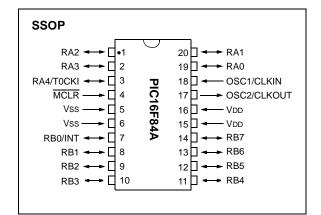
PIC16F84A

18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

- · Only 35 single word instructions to learn
- All instructions single-cycle except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 1024 words of program memory
- · 68 bytes of Data RAM
- 64 bytes of Data EEPROM
- 14-bit wide instruction words
- 8-bit wide data bytes
- 15 Special Function Hardware registers
- Eight-level deep hardware stack
- Direct, indirect and relative addressing modes
- Four interrupt sources:
 - External RB0/INT pin
 - TMR0 timer overflow
 - PORTB<7:4> interrupt-on-change
 - Data EEPROM write complete


Peripheral Features:


- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
 - 25 mA sink max. per pin
 - 25 mA source max. per pin
- TMR0: 8-bit timer/counter with 8-bit programmable prescaler

Special Microcontroller Features:

- 10,000 erase/write cycles *Enhanced* FLASH Program memory typical
- 10,000,000 typical erase/write cycles EEPROM Data memory typical
- EEPROM Data Retention > 40 years
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own On-Chip RC Oscillator for reliable operation
- · Code protection
- Power saving SLEEP mode
- Selectable oscillator options

Pin Diagrams

CMOS Enhanced FLASH/EEPROM Technology:

- · Low power, high speed technology
- Fully static design
- Wide operating voltage range:
 - Commercial: 2.0V to 5.5V
 - Industrial: 2.0V to 5.5V
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 15 μA typical @ 2V, 32 kHz
 - < 0.5 μA typical standby current @ 2V

Table of Contents

1.0	Device Overview					
2.0	Memory Organization	5				
3.0	J/O Ports	13				
4.0	I/O Ports	15				
5.0	Timer0 Module	19				
6.0	Special Features of the CPU	21				
7.0	Special Features of the CPU	35				
8.0	Development Support	43				
9.0	Electrical Characteristics	19				
10.0	DC/AC Characteristic Graphs	31				
11.0	Packaging Information	71				
Appe	ndix A: Revision History	75				
Appe	ndix B: Conversion Considerations	76				
Appe	ndix C: Migration from Baseline to Mid-Range Devices	78				
Index	ndex					
On-Li	Dn-Line Support					
Read	Reader Response					
PIC16	PIC16F84A Product Identification System					

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

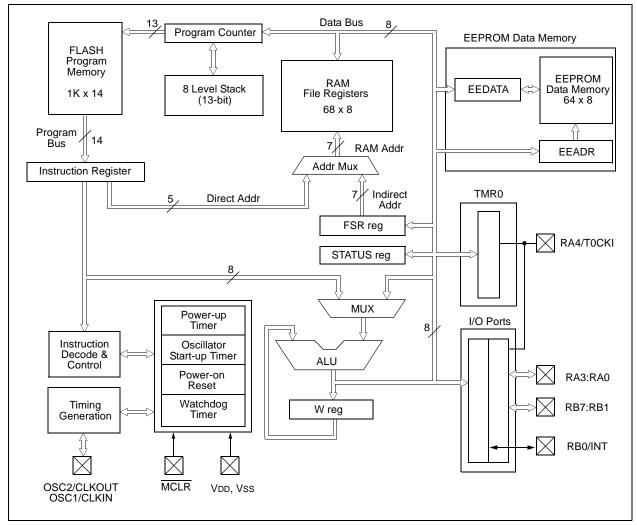
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F84A device. Additional information may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023), which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.


The PIC16F84A belongs to the mid-range family of the PICmicro[®] microcontroller devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 1K words, which translates to 1024 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes.

There are also 13 I/O pins that are user-configured on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- Change on PORTB interrupt
- Timer0 clock input

Table 1-1 details the pinout of the device with descriptions and details for each pin.

Pin Name	PDIP No.	SOIC No.	SSOP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	18	I	ST/CMOS(3)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	19	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	4	4	4	I/P	ST	Master Clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
						PORTA is a bi-directional I/O port.
RA0	17	17	19	I/O	TTL	
RA1	18	18	20	I/O	TTL	
RA2	1	1	1	I/O	TTL	
RA3	2	2	2	I/O	TTL	
RA4/T0CKI	3	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type.
					(1)	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	8	I/O	TTL	
RB2	8	8	9	I/O	TTL	
RB3	9	9	10	I/O	TTL	
RB4	10	10	11	I/O	TTL	Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Interrupt-on-change pin.
RB6	12	12	13	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming clock.
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.
Vss	5	5	5,6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	14	15,16	Р	—	Positive supply for logic and I/O pins.
Legend: I= input	O =	Output		I/O = Ir	put/Output	P = Power

TABLE 1-1:PIC16F84A PINOUT DESCRIPTION

 $--= Not used \qquad TTL = TTL input \qquad ST = Schmitt Trigger input$ **Note 1:**This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

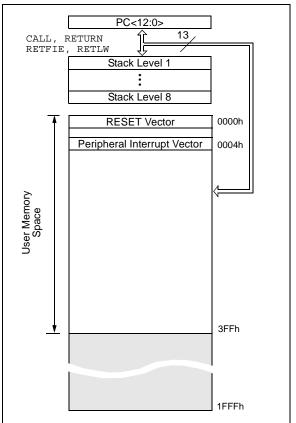
2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F84A. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 3.0.

Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).


2.1 Program Memory Organization

The PIC16FXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F84A, the first 1K x 14 (0000h-03FFh) are physically implemented (Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, for locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h, the instruction will be the same.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1:

PROGRAM MEMORY MAP AND STACK - PIC16F84A

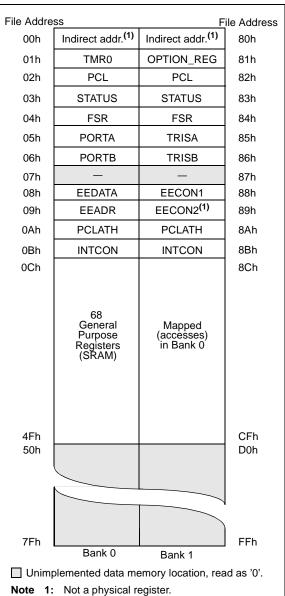
2.2 Data Memory Organization

The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device.

Portions of data memory are banked. This is for both the SFR area and the GPR area. The GPR area is banked to allow greater than 116 bytes of general purpose RAM. The banked areas of the SFR are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the STATUS Register. Figure 2-2 shows the data memory map organization.

Instructions MOVWF and MOVF can move values from the W register to any location in the register file ("F"), and vice-versa.

The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR) (Section 2.5). Indirect addressing uses the present value of the RP0 bit for access into the banked areas of data memory.


Data memory is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected by clearing the RP0 bit (STATUS<5>). Setting the RP0 bit selects Bank 1. Each Bank extends up to 7Fh (128 bytes). The first twelve locations of each Bank are reserved for the Special Function Registers. The remainder are General Purpose Registers, implemented as static RAM.

2.2.1 GENERAL PURPOSE REGISTER FILE

Each General Purpose Register (GPR) is 8-bits wide and is accessed either directly or indirectly through the FSR (Section 2.5).

The GPR addresses in Bank 1 are mapped to addresses in Bank 0. As an example, addressing location 0Ch or 8Ch will access the same GPR.

FIGURE 2-2: REGISTER FILE MAP -PIC16F84A

2.3 Special Function Registers

The Special Function Registers (Figure 2-2 and Table 2-1) are used by the CPU and Peripheral functions to control the device operation. These registers are static RAM.

The special function registers can be classified into two sets, core and peripheral. Those associated with the core functions are described in this section. Those related to the operation of the peripheral features are described in the section for that specific feature.

TABLE 2-1: SF	PECIAL FUNCTION REGISTER FILE SUMMARY
---------------	---------------------------------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on RESET	Details on page
Bank 0											
00h	INDF	Uses contents of FSR to address Data Memory (not a physical register)									11
01h	TMR0	8-bit Rea	I-Time Cloc	k/Counter						xxxx xxxx	20
02h	PCL	Low Orde	er 8 bits of tl	ne Progra	m Counter (P	C)				0000 0000	11
03h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	8
04h	FSR	Indirect [Data Memor	y Address	Pointer 0					xxxx xxxx	11
05h	PORTA ⁽⁴⁾	—	—	—	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	16
06h	PORTB ⁽⁵⁾	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	18
07h	—	Unimpler	mented loca	tion, read	as '0'					—	—
08h	EEDATA	EEPRON	/I Data Regi	ster						xxxx xxxx	13,14
09h	EEADR	EEPRON	/I Address R	egister						XXXX XXXX	13,14
0Ah	PCLATH	—	—	—	Write Buffer	for upper 5	bits of the	PC ⁽¹⁾		0 0000	11
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	10
Bank	1										
80h	INDF	Uses Co	ntents of FS	R to addre	ess Data Merr	nory (not a p	ohysical re	gister)			11
81h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	9
82h	PCL	Low orde	er 8 bits of P	rogram Co	ounter (PC)		•			0000 0000	11
83h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	8
84h	FSR	Indirect of	lata memory	address	pointer 0					xxxx xxxx	11
85h	TRISA	—	—	—	PORTA Data	Direction I	Register			1 1111	16
86h	TRISB	PORTB I	Data Directio	on Registe	er					1111 1111	18
87h	—	Unimpler	mented loca	tion, read	as '0'					—	—
88h	EECON1	—	—	_	EEIF	WRERR	WREN	WR	RD	0 x000	13
89h	EECON2	EEPRON	I Control Re	egister 2 (r	not a physical	register)					14
0Ah	PCLATH	—	—	—	Write buffer f	for upper 5	bits of the	PC ⁽¹⁾		0 0000	11
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	10

Legend: x = unknown, u = unchanged. – = unimplemented, read as '0', q = value depends on condition

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> are never transferred to PCLATH.

2: The TO and PD status bits in the STATUS register are not affected by a MCLR Reset.

3: Other (non power-up) RESETS include: external RESET through MCLR and the Watchdog Timer Reset.

4: On any device RESET, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

2.3.1 STATUS REGISTER

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory.

As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ uluu$ (where u = unchanged).

Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 7-2), because these instructions do not affect any status bit.

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16F84A and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.
 - 3: When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7-6	Unimplem	ented: Main	tain as '0'					
bit 5 RP0 : Register Bank Select bits (used for direct addressing)								
	01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh)							
bit 4 TO : Time-out bit								
		 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred 						
bit 3	PD: Power	-down bit						
		ower-up or lecution of the			on			
bit 2 Z : Zero bit								
		sult of an ar				ro		
bit 1	DC : Digit c is reversed	-	oit (addwf, a	ADDLW,SUB	LW,SUBWF	instructions)	(for borrow,	the polarity
		y-out from th ry-out from t				urred		
bit 0	C : Carry/bo reversed)	orrow bit (AI	DDWF, ADDLI	W,SUBLW,S	UBWF inst	ructions) (fo	r borrow, the	e polarity is
		y-out from th ry-out from t						
	Note:							
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unir	mplemented	bit, read as	'0'
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is	s cleared	x = Bit is ur	known

2.3.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	When	the	prese	caler	is	as	signe	ed	to
	the WI	DT (F	PSA =	'1'),	TM	R 0	has	а	1:1
	prescaler assignment.								

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7	·						bit 0
bit 7	RBPU: PC	ORTB Pull-up	Enable bit					
	 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values 							
bit 6	INTEDG:	nterrupt Edg	e Select bit					
		upt on rising upt on falling	•	•				
bit 5	TOCS: TM	R0 Clock So	urce Select	bit				
		ition on RA4, al instruction		(CLKOUT)				
bit 4	TOSE: TM	R0 Source E	dge Select I	oit				
		nent on high nent on low-						
bit 3	PSA: Pres	caler Assign	ment bit					
		aler is assigr aler is assigr			e			
bit 2-0	PS2:PS0:	Prescaler Ra	ate Select bi	ts				
	Bit Value	TMR0 Rate	WDT Rate					
	000	1:2	1:1					
	001 010	1:4 1:8	1:2 1:4					
	011	1:16	1:8					
	100 101	1 : 32 1 : 64	1 : 16 1 : 32					
	110	1:128	1:64					
	111	1 : 256	1 : 128					
	Lenerd]
	Legend: R = Reada	abla bit		kitabla bit		o plamanta d	hit road as	·0'
	R = Reada - n = Value			/ritable bit it is set		nplemented s cleared	bit, read as x = Bit is u	
			1 = D	11 13 301		3 UCAIEU		

2.3.3 INTCON REGISTER

The INTCON register is a readable and writable register that contains the various enable bits for all interrupt sources.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

- n = Value at POR

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
		s all unmas		ots				
		es all interru	•					
bit 6		Vrite Comple	•					
		s the EE Wi		te interrupts				
bit 5		0 Overflow I	•					
		s the TMR0	•					
	0 = Disable	es the TMRC) interrupt					
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit				
		s the RB0/I		•				
		es the RB0/I		•				
bit 3		Port Change	•					
		s the RB po es the RB po						
bit 2		0 Overflow I	•					
			•	•	eared in softwa	re)		
		register did		•		,		
bit 1	INTF: RB0/	INT Externa	al Interrupt I	Flag bit				
			•	•	must be cleared	l in softwar	e)	
				t did not occ	cur			
bit 0		Port Change		•			<i>(</i> ,)	
			-	ins changed /e changed	l state (must be state	cleared in	software)	
				o onangeu				
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '()'
	1							

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.4 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. If the program counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. All updates to the PCH register go through the PCLATH register.

2.4.1 STACK

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

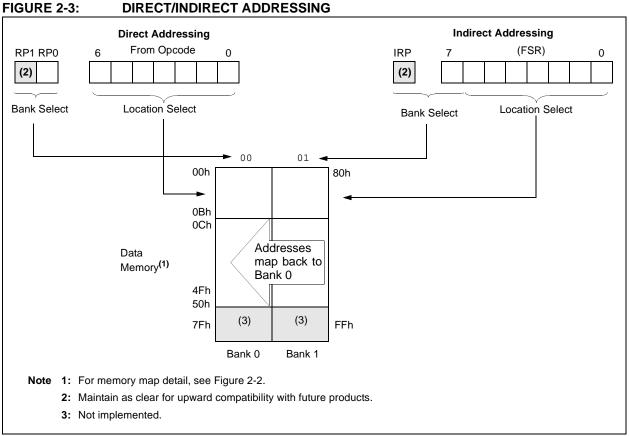
After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.


Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	clear INDF register;
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTIN	IUE		
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16F84A.

3.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F84A devices have 64 bytes of data EEPROM with an address range from 0h to 3Fh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The writetime will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits.

When the device is code protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

Additional information on the Data EEPROM is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

REGISTER 3-1: EECON1 REGISTER (ADDRESS 88h)

	U-0	U-0	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0	
		_	_	EEIF	WRERR	WREN	WR	RD	
	bit 7							bit 0	
bit 7-5	Unimplemented: Read as '0'								
bit 4	EEIF: EEPROM Write Operation Interrupt Flag bit								
		 1 = The write operation completed (must be cleared in software) 0 = The write operation is not complete or has not been started 							
bit 3	WRERR: E	EPROM Er	ror Flag bit						
	 1 = A write operation is prematurely terminated (any MCLR Reset or any WDT Reset during normal operation) 0 = The write operation completed 								
bit 2	WREN: EE	PROM Writ	e Enable bit						
		write cycles write to the							
bit 1	WR: Write	Control bit							
	can onl	y be set (no	tle. The bit is t cleared) in EEPROM is t	software.	hardware or	nce write is	complete. T	he WR bit	
bit 0	RD: Read	Control bit							
	 1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 0 = Does not initiate an EEPROM read 								
								1	
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'	
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown	

3.1 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 3-1: DA	TA EEPROM READ
-----------------	----------------

BCF	STATUS, RPO	; Bank 0
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	STATUS, RPO	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RPO	; Bank 0
MOVF	EEDATA, W	; W = EEDATA

3.2 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 3-2: DATA EEPROM WRITE

	BSF	STATUS, RPO	;	Bank 1
	BCF	INTCON, GIE	;	Disable INTs.
	BSF	EECON1, WREN	;	Enable Write
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
_ U	MOVLW	AAh	;	
uired uence	MOVWF	EECON2	;	Write AAh
equir	BSF	EECON1,WR	;	Set WR bit
eq			;	begin write
പ്പ സ	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

3.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 3-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

Generally, the EEPROM write failure will be a bit which was written as a '0', but reads back as a '1' (due to leakage off the bit).

EXAMPLE 3-3: WRITE VERIFY

	BCF	STATUS, RPO	;	Bank 0
	:		;	Any code
	:		;	can go here
	MOVF	EEDATA,W	;	Must be in Bank 0
	BSF	STATUS, RPO	;	Bank 1
EAD				
	BSF	EECON1, RD	;	YES, Read the
			;	value written
	BCF	STATUS, RPO	;	Bank 0
			;	
			;	Is the value written
			;	(in W reg) and
			;	read (in EEDATA)
			;	the same?
			;	
	SUBWF	EEDATA, W	;	
	BTFSS	STATUS, Z	;	Is difference 0?
	GOTO	WRITE_ERR	;	NO, Write error

TABLE 3-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
08h	EEDATA	EEPRO	EEPROM Data Register								uuuu uuuu
09h	EEADR	EEPRO	EEPROM Address Register								uuuu uuuu
88h	EECON1		—	— — EEIF WRERR WREN WR RD ·							0 d000
89h	EECON2	EEPRO	EEPROM Control Register 2								

R

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023).

4.1 PORTA and TRISA Registers

PORTA is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as inputs and read as '0'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read. This value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

EXAMPLE 4-1:	INITIALIZING PORTA

BCF	STATUS, RPO	;	
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0x0F	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA4 as output
		;	TRISA<7:5> are always
		;	read as '0'.

FIGURE 4-1: BLOCK DIAGRAM OF

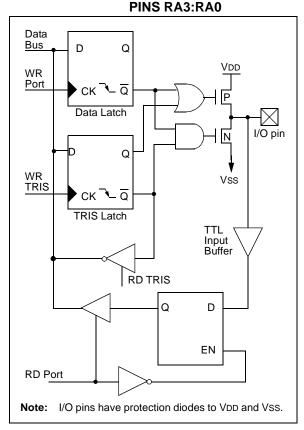
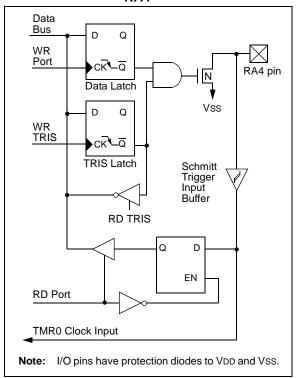



FIGURE 4-2:

BLOCK DIAGRAM OF PIN RA4

TABLE 4-1: PORTA FUNCTIONS

Name	Bit0	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0. Output is open drain type.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
05h	PORTA	_	_		RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are unimplemented, read as '0'.

4.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 4-2: INITIALIZING PORTB

BCF	STATUS, RPO	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\mathsf{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 4-3: BLOCK DIAGRAM OF PINS RB7:RB4

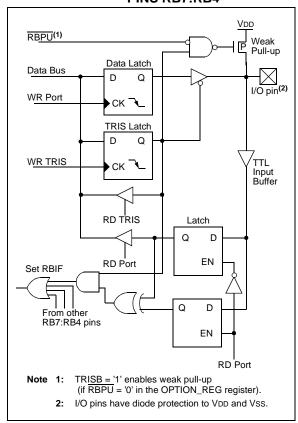
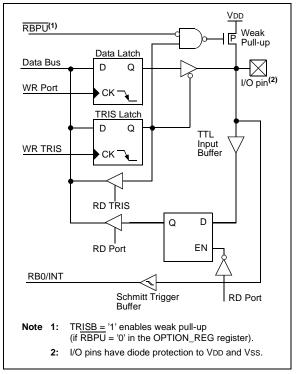



FIGURE 4-4:

BLOCK DIAGRAM OF PINS RB3:RB0

Name	Bit	Buffer Type	I/O Consistency Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger.

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
0Bh,8Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- · Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt-on-overflow from FFh to 00h

Figure 5-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

5.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below.

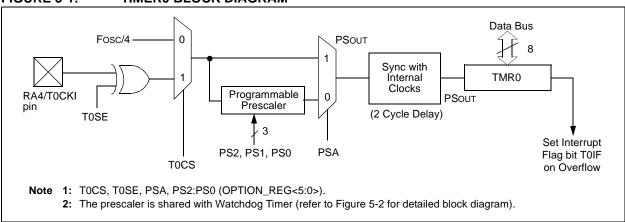
When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

Additional information on external clock requirements is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

5.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

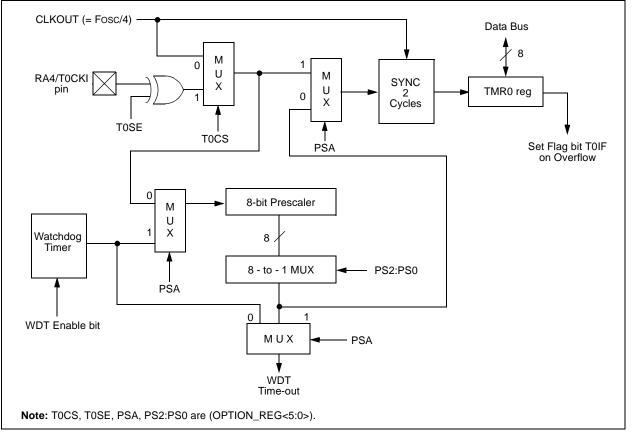
Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 5-1: TIMER0 BLOCK DIAGRAM

5.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution).

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PICmicro[™] Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

5.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut-off during SLEEP.

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
01h	TMR0	Timer0	imer0 Module Register							xxxx xxxx	uuuu uuuu
0Bh,8Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	T0IF INTF		0000 000x	0000 000u
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	TOSE PSA PS2 PS1 P		PS0	1111 1111	1111 1111	
85h	TRISA		_	_	PORTA Data Direction Register					1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16F84A has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F84A has a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options.

Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

6.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

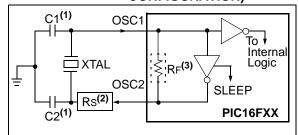
Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

REGISTER 6-1: PIC16F84A CONFIGURATION WORD

R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u
CP	CP	СР	СР	СР	СР	СР	СР	СР	CP	PWRTE	WDTE	F0SC1	F0SC0
bit13													bit0
bit 13-4		1 = Co	de prote	ection bi ction dis n memor	abled	e protec	ted						
bit 3		1 = Pov	PWRTE : Power-up Timer Enable bit 1 = Power-up Timer is disabled 0 = Power-up Timer is enabled										
bit 2		WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0		11 = R 10 = H 01 = X	EFOSCI C oscilla S oscilla T oscilla P oscilla	tor tor	ator Sele	ection bi	ts						

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES


The PIC16F84A can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

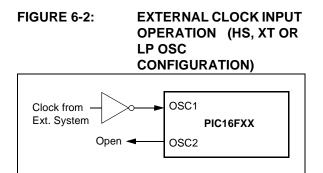

In XT, LP, or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 6-1).

FIGURE 6-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- Note 1: See Table 6-1 for recommended values of C1 and C2.
 - **2:** A series resistor (Rs) may be required for AT strip cut crystals.

The PIC16F84A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 6-2).

TABLE 6-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Tes	ted:		
Mode	Freq	OSC1/C1	OSC2/C2
XT	455 kHz	47 - 100 pF	47 - 100 pF
	2.0 MHz	15 - 33 pF	15 - 33 pF
	4.0 MHz	15 - 33 pF	15 - 33 pF
HS	8.0 MHz	15 - 33 pF	15 - 33 pF
	10.0 MHz	15 - 33 pF	15 - 33 pF
id Hi of st gu its cc ap	ecommended entical to the r gher capacita the oscillato art-up time. Th uidance only. own charac onsult the reso opropriate val ents.	anges tested nce increases r, but also ir hese values a Since each re teristics, the mator manufa	in this table. Is the stability increases the refor design esonator has user should cturer for the

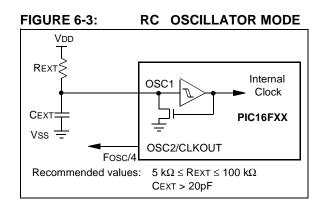

Note:	When using resonators with frequencies							
	above 3.5 MHz, the use of HS mode rather							
	than XT mode, is recommended. HS mode							
	may be used at any VDD for which the							
	controller is rated.							

TABLE 6-2:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1/C1	OSC2/C2
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 33 pF	15 - 33 pF
XT	100 kHz	100 - 150 pF	100 - 150 pF
	2 MHz	15 - 33 pF	15 - 33 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	4 MHz	15 - 33 pF	15 - 33 pF
	20 MHz	15 - 33 pF	15 - 33 pF
Note:	of the oscill start-up time guidance on mode, as we driving crysta cation. Sinc characteristic crystal ma values of ext	lator, but also a. These values ly. Rs may be all as XT mode als with low driv e each crysta cs, the user sho nufacturer for ternal component	tes the stability increases the are for design required in HS to avoid over- ve level specifi- l has its own buld consult the r appropriate ents. 30 pF is recom-

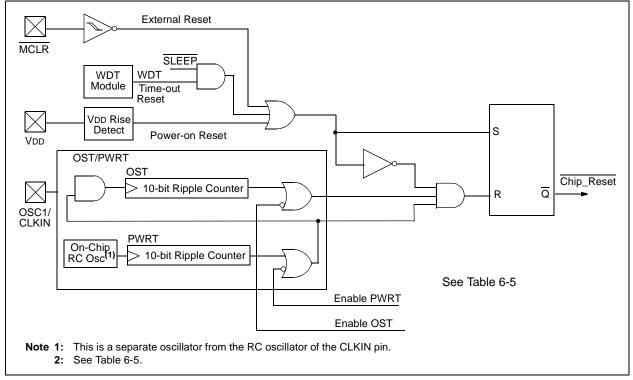
6.2.3 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user needs to take into account variation, due to tolerance of the external R and C components. Figure 6-3 shows how an R/C combination is connected to the PIC16F84A.

6.3 RESET

The PIC16F84A differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR during normal operation
- MCLR during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)


Figure 6-4 shows a simplified block diagram of the On-Chip RESET Circuit. The MCLR Reset path has a noise filter to ignore small pulses. The electrical specifications state the pulse width requirements for the $\overline{\text{MCLR}}$ pin.

Some registers are not affected in any RESET condition; their status is unknown on a POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on POR, MCLR or WDT Reset during normal operation and on MCLR during SLEEP. They are not affected by a WDT Reset during SLEEP, since this RESET is viewed as the resumption of normal operation.

Table 6-3 gives a description of RESET conditions for the program counter (PC) and the STATUS register. Table 6-4 gives a full description of RESET states for all registers.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations (Section 6.7). These bits are used in software to determine the nature of the RESET.

TABLE 6-3: RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR during normal operation	000h	000u uuuu
MCLR during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	սսս0 Օսսս
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu

Legend: u = unchanged, x = unknown

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TADLE 0-4.				
Register	Address	Power-on Reset	MCLR during: – normal operation – SLEEP WDT Reset during normal operation	Wake-up from SLEEP: – through interrupt – through WDT Time-out
W		xxxx xxxx	սսսս սսսս	uuuu uuuu
INDF	00h			
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	05h	x xxxx	u uuuu	u uuuu
PORTB ⁽⁵⁾	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATA	08h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	սսսս սսսս (1)
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
PCL	82h	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	83h	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾

TABLE 6-4: RESET CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: Table 6-3 lists the RESET value for each specific condition.

4: On any device RESET, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

6.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

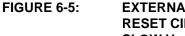
For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

The POR circuit does not produce an internal RESET when VDD declines.

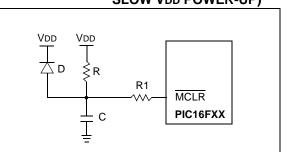
6.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) provides a fixed 72 ms nominal time-out (TPWRT) from POR (Figures 6-6 through 6-9). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level (possible exception shown in Figure 6-9).

A configuration bit, PWRTE, can enable/disable the PWRT. See Register 6-1 for the operation of the PWRTE bit for a particular device.


The power-up time delay TPWRT will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

6.6 Oscillator Start-up Timer (OST)


The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends (Figure 6-6, Figure 6-7, Figure 6-8 and Figure 6-9). This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out (TOST) is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this case (Figure 6-9), an external Power-on Reset circuit may be necessary (Figure 6-5).

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μ A). A larger voltage drop will degrade VIH level on the MCLR pin.
 - **3:** $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C, in the event of a MCLR pin breakdown due to ESD or EOS.

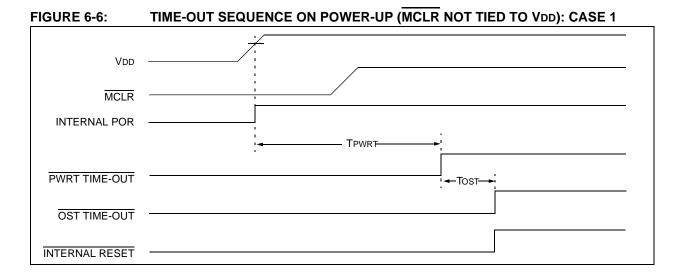


FIGURE 6-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

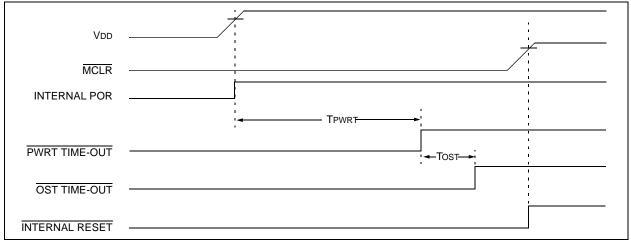
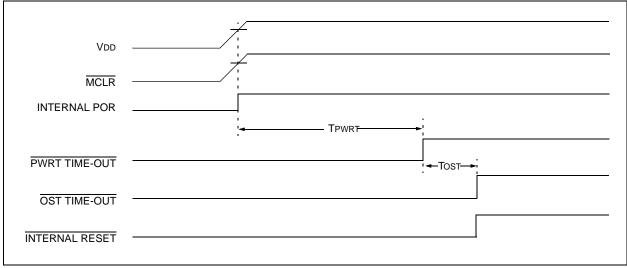
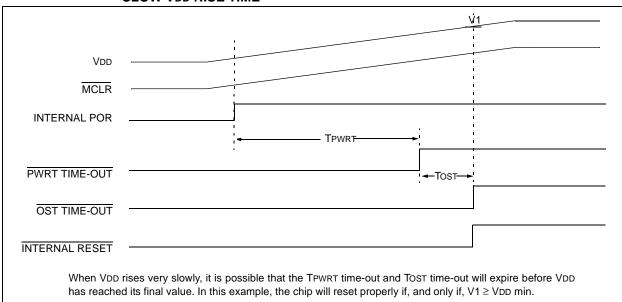




FIGURE 6-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

PIC16F84A

FIGURE 6-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

6.7 Time-out Sequence and _____ Power-down Status Bits (TO/PD)

On power-up (Figures 6-6 through 6-9), the time-out sequence is as follows:

- 1. PWRT time-out is invoked after a POR has expired.
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

TABLE 6-5:TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	Wake-up	
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
RC	72 ms	_	_

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 6-6). This is useful for testing purposes or to synchronize more than one PIC16F84A device when operating in parallel.

Table 6-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 6-3 lists the RESET conditions for some special registers, while Table 6-4 lists the RESET conditions for all the registers.

TABLE 6-6: STATUS BITS AND THEIR SIGNIFICANCE

то	PD	Condition						
1	1	Power-on Reset						
0	х	llegal, TO is set on POR						
x	0	Illegal, PD is set on POR						
0	1	WDT Reset (during normal operation)						
0	0	WDT Wake-up						
1	1	MCLR during normal operation						
1	0	MCLR during SLEEP or interrupt						
		wake-up from SLEEP						

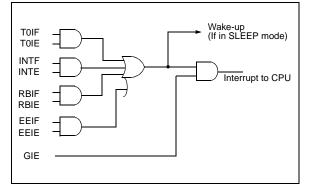
6.8 Interrupts

The PIC16F84A has 4 sources of interrupt:

- External interrupt RB0/INT pin
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB7:RB4)
- Data EEPROM write complete interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also contains the individual and global interrupt enable bits.

The global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. Bit GIE is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. For external interrupt events, such as the RB0/INT pin or PORTB change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for both one and two cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

FIGURE 6-10: INTERRUPT LOGIC

6.8.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION_REG<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing control bit INTE (INTCON<4>). Flag bit INTF must be cleared in software via the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 6.11) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up.

6.8.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in TMR0 will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

6.8.3 PORTB INTERRUPT

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 4.2).

Note: For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide.

6.8.4 DATA EEPROM INTERRUPT

At the completion of a data EEPROM write cycle, flag bit EEIF (EECON1<4>) will be set. The interrupt can be enabled/disabled by setting/clearing enable bit EEIE (INTCON<6>) (Section 3.0).

6.9 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users wish to save key register values during an interrupt (e.g., W register and STATUS register). This is implemented in software.

The code in Example 6-1 stores and restores the STATUS and W register's values. The user defined registers, W_TEMP and STATUS_TEMP are the temporary storage locations for the W and STATUS registers values.

Example 6-1 does the following:

- a) Stores the W register.
- b) Stores the STATUS register in STATUS_TEMP.
- c) Executes the Interrupt Service Routine code.
- d) Restores the STATUS (and bank select bit) register.
- e) Restores the W register.

PUSH	MOVWF	W_TEMP	; Copy W to TEMP register,
	SWAPF	STATUS, W	; Swap status to be saved into W
	MOVWF	STATUS_TEMP	; Save status to STATUS_TEMP register
ISR	:		:
	:		; Interrupt Service Routine
	:		; should configure Bank as required
	:		;
POP	SWAPF	STATUS_TEMP,W	; Swap nibbles in STATUS_TEMP register
			; and place result into W
	MOVWF	STATUS	; Move W into STATUS register
			; (sets bank to original state)
	SWAPF	W_TEMP, F	; Swap nibbles in W_TEMP and place result in W_TEMP
	SWAPF	W TEMP, W	; Swap nibbles in W TEMP and place result into W

6.10 Watchdog Timer (WDT)

The Watchdog Timer is a free running On-Chip RC Oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT wake-up causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming configuration bit WDTE as a '0' (Section 6.1).

6.10.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a WDT time-out.

6.10.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., Max. WDT Prescaler), it may take several seconds before a WDT time-out occurs.

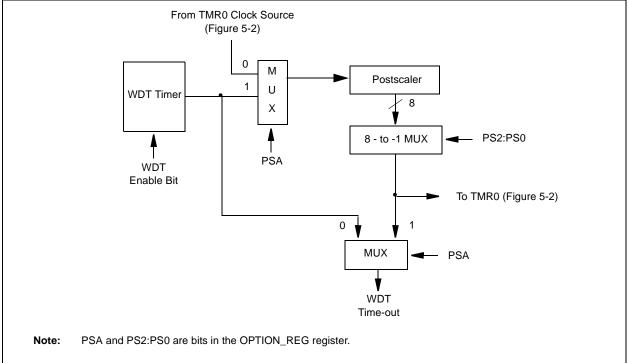


TABLE 6-7: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
2007h	Config. bits	(2)	(2)	(2)	(2)	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0	(2)	
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown. Shaded cells are not used by the WDT.

Note 1: See Register 6-1 for operation of the PWRTE bit.

2: See Register 6-1 and Section 6.12 for operation of the code and data protection bits.

6.11 Power-down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (wake-up from SLEEP).

6.11.1 SLEEP

The Power-down mode is entered by executing the $\ensuremath{\mathtt{SLEEP}}$ instruction.

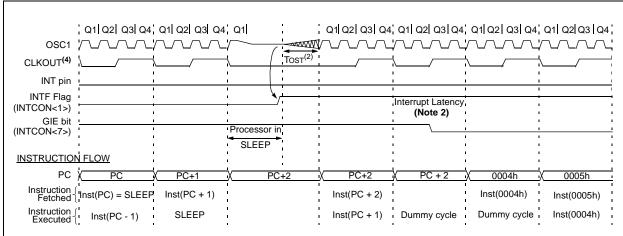
If enabled, the Watchdog Timer is cleared (but keeps running), the PD bit (STATUS<3>) is cleared, the TO bit (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For the lowest current consumption in SLEEP mode, place all I/O pins at either VDD or VSS, with no external circuitry drawing current from the I/O pins, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

6.11.2 WAKE-UP FROM SLEEP


The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. WDT wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete.

Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present.

The first event ($\overline{\text{MCLR}}$ Reset) will cause a device RESET. The two latter events are considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of a device RESET. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

While the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the sLEEP instruction after the subject (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

FIGURE 6-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS, or LP oscillator mode assumed.

- 2: TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC osc mode.
- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

6.11.3 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

6.12 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

6.13 ID Locations

Four memory locations (2000h - 2004h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the four Least Significant bits of ID location are usable.

6.14 In-Circuit Serial Programming

PIC16F84A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

For complete details of Serial Programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide, (DS30277).

NOTES:

7.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 7-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 7-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 7-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compat- ibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
то	Time-out bit
PD	Power-down bit

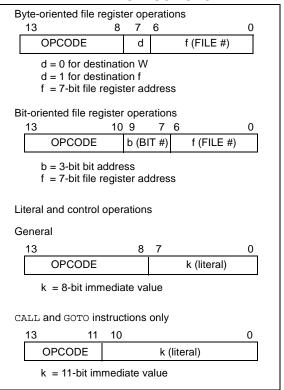
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 7-2 lists the instructions recognized by the MPASM[™] Assembler.

Figure 7-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 7-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

TABLE 7-2: PIC16CXXX INSTRUCTION SET

Mnemonic, Description		14-Bit Opcode		9	Status				
		Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		,
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff		-, -,	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff		Z	1,2
		BIT-ORIENTED FILE REGIST		ATION	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01		bfff			1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb		ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERATI	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	- /	
IORLW	k	Inclusive OR literal with W	1	11	1000		kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO.PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z	
		/O register is modified as a function of itself (a g							

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

7.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IO
Syntax:	[label] INCF f,d	Sy
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Op
Operation:	(f) + 1 \rightarrow (destination)	Op
Status Affected:	Z	Sta
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	De

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

PIC16F84A

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC,$ 1 $\rightarrow GIE$
Status Affected:	None

MOVLW	Move Literal to W		
Syntax:	[<i>label</i>] MOVLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W)$		
Status Affected:	None		
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.		

RETLW	Return with Literal in W		
Syntax:	[<i>label</i>] RETLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$		
Status Affected:	None		
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.		

MOVWF	Move W to f		
Syntax:	[<i>label</i>] MOVWF f		
Operands:	$0 \le f \le 127$		
Operation:	$(W) \to (f)$		
Status Affected:	None		
Description:	Move data from W register to register 'f'.		

RETURN	Return from Subroutine		
Syntax:	[label] RETURN		
Operands:	None		
Operation:	$TOS\toPC$		
Status Affected:	None		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		

NOP	No Operation	
Syntax:	[label] NOP	
Operands:	None	
Operation:	No operation	
Status Affected:	None	
Description:	No operation.	

RLF	Rotate Left f through Carry	
Syntax:	[label] RLF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	
Operation:	See description below	
Status Affected:	С	
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'. Register f	

SUBLW	Subtract W from Literal		
Syntax:	[<i>label</i>] SUBLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \text{ - (W)} \rightarrow (W)$		
Status Affected:	C, DC, Z		
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.		

RRF	Rotate Right f through Carry		
Syntax:	[label] RRF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$		
Operation:	See description below		
Status Affected:	С		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		
	C Register f		

SUBWF	Subtract W from f		
Syntax:	[label] SUBWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) - (W) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.		

SLEEP

Syntax:	[label] SLEEP	
Operands:	None	
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	
Status Affected:	TO, PD	
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.	

SWAPF	Swap Nibbles in f		
Syntax:	[label] SWAPF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$		
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$		
Status Affected:	None		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W regis- ter. If 'd' is 1, the result is placed in register 'f'.		

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d
Operands: Operation:	$0 \le k \le 255$ (W) .XOR. $k \rightarrow$ (W)	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Status Affected:	Z	Operation:	(W) .XOR. (f) \rightarrow (destination)
Description:	The contents of the W register	Status Affected:	Z
	are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

8.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

8.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

8.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

8.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

8.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

8.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

8.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] environment were chosen to best make these features available to you, the end user.

8.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

8.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

8.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

8.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

8.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

8.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I2CTM bus and separate headers for connection to an LCD module and a keypad.

8.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

8.14 **PICDEM 17** Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

8.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 8-1: DEVELOPMENT TOOLS FROM MICROCHIP

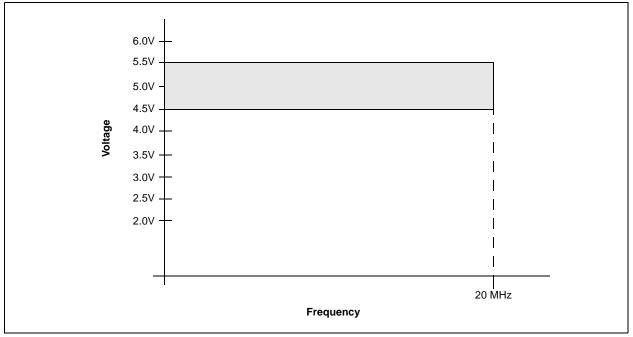
MPLAB® Integrated Development Environment MPLAB® C17 C Compiler		PIC	ыся	PIC16	PIC16	PIC16	PIC16	PIC16	PIC16	PIC160	PIC170	DTIDIA	PIC18C	PIC18F	83CX 52CX 54CX	хѕэн	MCRF	WCP25
	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
											~	~						
MPLAB [®] C18 C Compiler													~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	~	~	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	>	>	~	>	**`	>	>	>	>	>	>	~	~	>				
ICEPIC TM In-Circuit Emulator		>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger Debugger			*/			*>			>					>				
PICSTAR T [®] Plus Entry Level	>	>	>	>	**^	>	>	>	>	>	>	>	>	>				
କୁ PRO MATE® II Duniversal Device Programmer	>	>	>	>	**/^	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board		>		>		÷,		>			>							
PICDEM TM 2 Demonstration Board			^ +			^ +		ļ					>	>				
PICDEM TM 3 Demonstration Board										>								
PICDEM TM 14A Demonstration	>																	
								L				>						
KEELoq® Evaluation Kit																~		
KEELoq® Transponder Kit																~		
microlD TM Programmer's Kit																	>	
125 kHz microlD™ Developer's Kit																	>	
125 kHz Anticollision microlD TM Developer's Kit																	>	
13.56 MHz Anticollision microlD™ Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		~

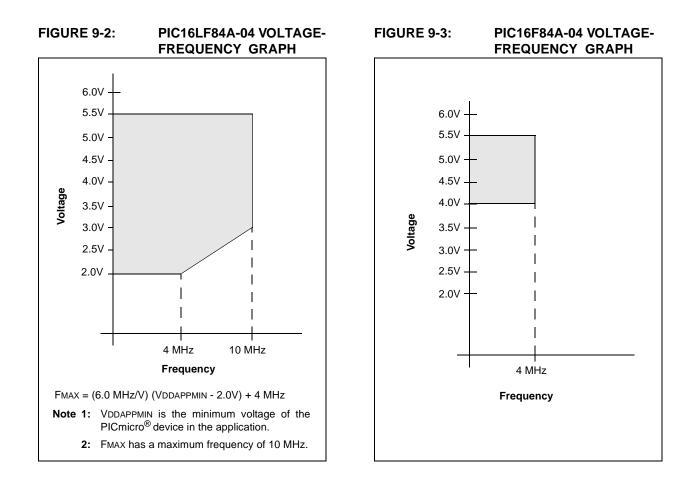
© 2001 Microchip Technology Inc.

NOTES:

9.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †


•	
Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss ⁽¹⁾	
Voltage on RA4 with respect to Vss	0.3 to +8.5V
Total power dissipation ⁽²⁾	800 mW
Maximum current out of Vss pin	
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1. Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 m/	A may cause latch-up


- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, <u>may</u> cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - **2:** Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F84A

9.1 DC Characteristics

	F84A-04 mercial, Ir	ndustrial)		ard Op iting ter			ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
PIC16F	mercial, Ir 84A-20	ndustrial, Extended) ndustrial, Extended)		ard Op tting ter			ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		16LF84A	2.0	—	5.5	V	XT, RC, and LP osc configuration
D001 D001A		16F84A	4.0 4.5	_	5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5	_	_	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		_	V/ms	
	Idd	Supply Current (Note 2)					
D010		16LF84A	_	1	4	mA	RC and XT osc configuration (Note 4) FOSC = 2.0 MHz, VDD = 5.5V
D010		16F84A	_	1.8	4.5	mA	RC and XT osc configuration (Note 4) Fosc = 4.0 MHz, VDD = 5.5V
D010A			—	3	10	mA	RC and XT osc configuration (Note 4) FOSC = 4.0 MHz, VDD = 5.5V (During FLASH programming)
D013			-	10	20	mA	HS osc configuration (PIC16F84A-20) Fosc = 20 MHz, VDD = 5.5V
D014		16LF84A	—	15	45	μA	LP osc configuration Fosc = 32 kHz, VDD = 2.0V, WDT disabled

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - TOCKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
 - 5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.

9.1 DC Characteristics (Continued)

(Com	F84A-04 mercial, Ir	ndustrial)	Opera	ting ter	mperat	ure	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)
PIC16F	mercial, Ir 84A-20	ndustrial, Extended) ndustrial, Extended)		ard Op ting ter		-	ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	IPD	Power-down Current (Note 3)				
D020		16LF84A					
D020		16F84A-20 16F84A-04					
D021A		16LF84A	_	0.4	1.0	μΑ	VDD = 2.0V, WDT disabled, industrial
D021A		16F84A-20 16F84A-04		1.5 1.0	3.5 3.0	μΑ μΑ	VDD = 4.5V, WDT disabled, industrial VDD = 4.0V, WDT disabled, industrial
D021B		16F84A-20 16F84A-04		1.5 1.0	5.5 5.0	μΑ μΑ	VDD = 4.5V, WDT disabled, extended VDD = 4.0V, WDT disabled, extended
		Module Differential Current (Note 5)					
D022	Δ IWDT	Watchdog Timer	—	.20	16	μA	VDD = 2.0V, Industrial, Commercial
				3.5	20	μΑ	VDD = 4.0V, Commercial
				3.5 4.8	28 25	μΑ μΑ	VDD = 4.0V, Industrial, Extended VDD = 4.5V, Commercial
				4.8	30	μΑ	VDD = 4.5V, Industrial, Extended

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - TOCKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
- 5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.

9.2 DC Characteristics:

PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial)

	aracteris s Except	tics Power Supply Pins	Operating ten	nperati	ure 0°0 -40	C ≤ 1 °C ≤ 1	Aless otherwise stated) $\Gamma_A \le +70^{\circ}C$ (commercial) $\Gamma_A \le +85^{\circ}C$ (industrial) cribed in DC specifications
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$ (Note 4)
D030A			Vss	_	0.16Vdd	V	Entire range (Note 4)
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V	Entire range
D032		MCLR, RA4/T0CKI	Vss	—	0.2Vdd	V	
D033		OSC1 (XT, HS and LP modes)	Vss	—	0.3Vdd	V	(Note 1)
D034		OSC1 (RC mode)	Vss	_	0.1Vdd	V	
	Viн	Input High Voltage					
		I/O ports:		—			
D040 D040A		with TTL buffer	2.0 0.25VDD+0.8	_	Vdd Vdd	V V	4.5V ≤ VDD ≤ 5.5V (Note 4) Entire range (Note 4)
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd		Entire range
D042		MCLR,	0.8 Vdd	_	Vdd	V	
D042A		RA4/T0CKI	0.8 Vdd	_	8.5	V	
D043		OSC1 (XT, HS and LP modes)	0.8 Vdd	—	Vdd	V	(Note 1)
D043A		OSC1 (RC mode)	0.9 Vdd		Vdd	V	
D050	VHYS	Hysteresis of Schmitt Trigger Inputs	—	0.1	_	V	
D070	Ipurb	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current (Notes 2, 3)					
D060		I/O ports	_	—	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at hi-impedance} \end{split}$
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \leq VPIN \leq VDD$
D063		OSC1	_	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may choose the better of the two specs.

9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial) (Continued)

	aracteris s Except	tics Power Supply Pins	Operating te	mperati oltage V	ure 0° -40	C ≤ ⁻ 0°C ≤ ⁻	hless otherwise stated) TA ≤ +70°C (commercial) TA ≤ +85°C (industrial) cribed in DC specifications
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V
D083		OSC2/CLKOUT	-	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, (RC mode only)
	Vон	Output High Voltage					
D090		I/O ports (Note 3)	Vdd-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V
D092		OSC2/CLKOUT (Note 3)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V (RC mode only)
	Vod	Open Drain High Voltage					
D150		RA4 pin		—	8.5	V	
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (RC mode)	_	—	50	pF	
		Data EEPROM Memory					
D120	ED	Endurance	1M	10M	—	E/W	25°C at 5V
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Vміn = Minimum operating voltage
D122	TDEW	Erase/Write cycle time		4	8	ms	
		Program FLASH Memory					
D130	Eр	Endurance	1000	10K	—	E/W	
D131	Vpr	VDD for read	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for erase/write	4.5	-	5.5	V	
D133	TPEW	Erase/Write cycle time	—	4	8	ms	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as coming out of the pin.
- 4: The user may choose the better of the two specs.

9.3 AC (Timing) Characteristics

9.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

Т			
F	Frequency	Т	Time
Lowercase	letters (pp) and their meanings:		
рр			
2	to	OS, OSC	OSC1
ck	CLKOUT	ost	oscillator start-up timer
су	cycle time	pwrt	power-up timer
io	I/O port	rbt	RBx pins
inp	INT pin	tO	TOCKI
mp	MCLR	wdt	watchdog timer
Uppercase	letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (high impedance)	V	Valid
L	Low	Z	High Impedance

9.3.2 TIMING CONDITIONS

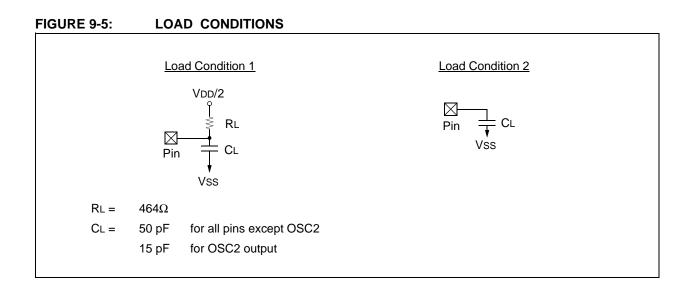

The temperature and voltages specified in Table 9-1 apply to all timing specifications unless otherwise noted. All timings are measured between high and low measurement points as indicated in Figure 9-4. Figure 9-5 specifies the load conditions for the timing specifications.

TABLE 9-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

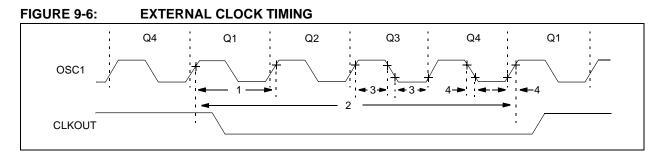
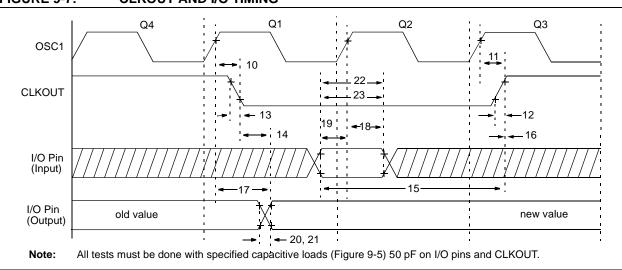

	Standard Operating Conditions (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial
AC CHARACTERISTICS	-40°C \leq TA \leq +85°C for industrial
	Operating voltage VDD range as described in DC specifications (Section 9.1)

FIGURE 9-4: PARAMETER MEASUREMENT INFORMATION

9.3.3 TIMING DIAGRAMS AND SPECIFICATIONS


TABLE 9-2: EXTERNAL CLOCK TIMING REQUIREMENTS

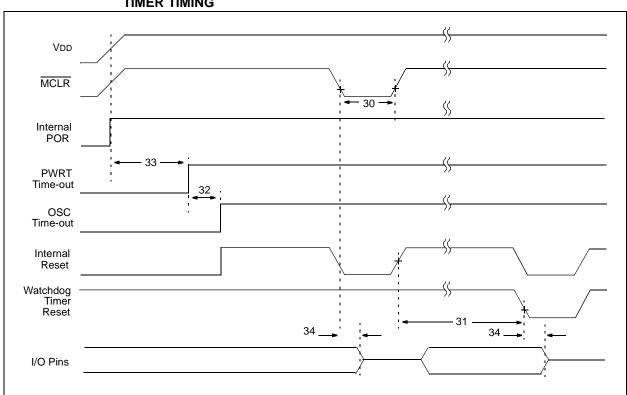
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Cond	ditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		2	MHz	XT, RC osc	(-04, LF)
			DC	—	4	MHz	XT, RC osc	(-04)
			DC	—	20	MHz	HS osc	(-20)
			DC	—	200	kHz	LP osc	(-04, LF)
		Oscillator Frequency ⁽¹⁾	DC	_	2	MHz	RC osc	(-04, LF)
			DC	—	4	MHz	RC osc	(-04)
			0.1	—	2	MHz	XT osc	(-04, LF)
			0.1	—	4	MHz	XT osc	(-04)
			1.0	—	20	MHz	HS osc	(-20)
			DC	—	200	kHz	LP osc	(-04, LF)
1	Tosc	External CLKIN Period ⁽¹⁾	500	_	_	ns	XT, RC osc	(-04, LF)
			250	—	—	ns	XT, RC osc	(-04)
			50	—	—	ns	HS osc	(-20)
			5.0	_	_	μs	LP osc	(-04, LF)
		Oscillator Period ⁽¹⁾	500		_	ns	RC osc	(-04, LF)
			250	—	—	ns	RC osc	(-04)
			500	—	10,000	ns	XT osc	(-04, LF)
			250	—	10,000	ns	XT osc	(-04)
			50	—	1,000	ns	HS osc	(-20)
			5.0	_	_	μs	LP osc	(-04, LF)
2	Тсү	Instruction Cycle Time ⁽¹⁾	0.2	4/Fosc	DC	μs		
3	TosL,	Clock in (OSC1) High or Low	60		_	ns	XT osc	(-04, LF)
	TosH	Time	50	—	—	ns	XT osc	(-04)
			2.0	—	—	μs	LP osc	(-04, LF)
			17.5	—		ns	HS osc	(-20)
4	TosR,	Clock in (OSC1) Rise or Fall	25	—	_	ns	XT osc	(-04)
	TosF	Time	50	—	—	ns	LP osc	(-04, LF)
			7.5	—	—	ns	HS osc	(-20)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 9-7: CLKOUT AND I/O TIMING


TABLE 9-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic	;	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1 [↑] to CLKOUT↓	Standard	_	15	30	ns	(Note 1)
10A			Extended (LF)	—	15	120	ns	(Note 1)
11	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	Standard	—	15	30	ns	(Note 1)
11A			Extended (LF)	—	15	120	ns	(Note 1)
12	TckR	CLKOUT rise time	Standard	—	15	30	ns	(Note 1)
12A			Extended (LF)	—	15	100	ns	(Note 1)
13	TckF	CLKOUT fall time	Standard	—	15	30	ns	(Note 1)
13A			Extended (LF)	—	15	100	ns	(Note 1)
14	TckL2ioV	CLKOUT \downarrow to Port out valid		—	—	0.5TCY +20	ns	(Note 1)
15	TioV2ckH	Port in valid before	Standard	0.30Tcy + 30	—	—	ns	(Note 1)
		CLKOUT ↑	Extended (LF)	0.30Tcy + 80	—	—	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT ↑		0	_	—	ns	(Note 1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to	Standard	—	—	125	ns	
		Port out valid	Extended (LF)	—	—	250	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	Standard	10	—	—	ns	
		input invalid (I/O in hold time)	Extended (LF)	10	-	_	ns	
19	TioV2osH	Port input valid to OSC1↑	Standard	-75	—	—	ns	
		(I/O in setup time)	Extended (LF)	-175	-	_	ns	
20	TioR	Port output rise time	Standard	—	10	35	ns	
20A			Extended (LF)	—	10	70	ns	
21	TioF	Port output fall time	Standard		10	35	ns	
21A			Extended (LF)	—	10	70	ns	
22	TINP	INT pin high	Standard	20	—	—	ns	
22A		or low time	Extended (LF)	55	—	—	ns	
23	Trbp	RB7:RB4 change INT	Standard	Tosc§	—	—	ns	
23A		high or low time	Extended (LF)	Tosc§	—	—	ns	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ By design.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

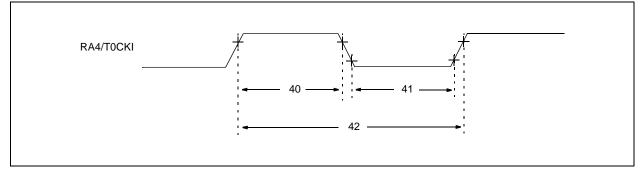

FIGURE 9-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 9-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND
POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μs	VDD = 5.0V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5.0V
32	Tost	Oscillation Start-up Timer Period		1024Tosc		ms	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5.0V
34	Tıoz	I/O hi-impedance from MCLR Low or RESET		_	100	ns	

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 9-9: TIMER0 CLOCK TIMINGS

TABLE 9-5: TIMER0 CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	50 30	_		-	$2.0V \le VDD \le 3.0V$ $3.0V \le VDD \le 6.0V$
41	TtOL	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	_		ns	
			With Prescaler	50 20	_		-	$2.0V \le VDD \le 3.0V$ $3.0V \le VDD \le 6.0V$
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

10.0 DC/AC CHARACTERISTIC GRAPHS

The graphs provided in this section are for **design guidance** and are **not tested**.

In some graphs, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'Min' represents (mean + 3σ) or (mean - 3σ), respectively, where σ is a standard deviation over the whole temperature range.

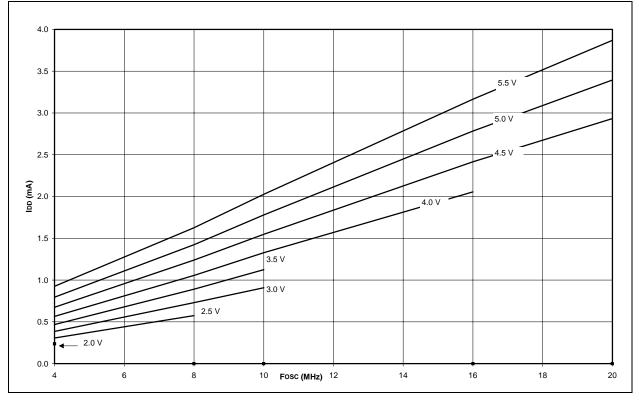


FIGURE 10-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE, -40° TO +125°C)

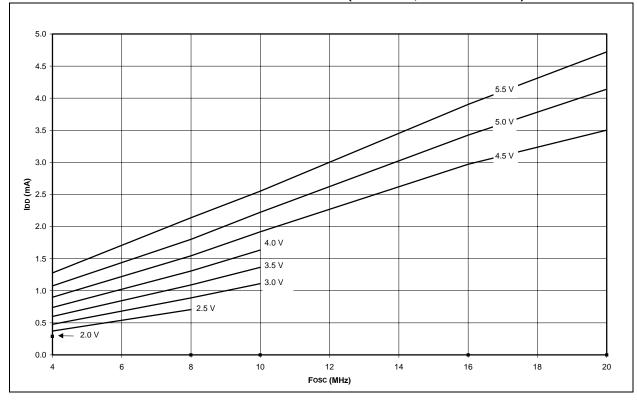


FIGURE 10-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE, 25°C)

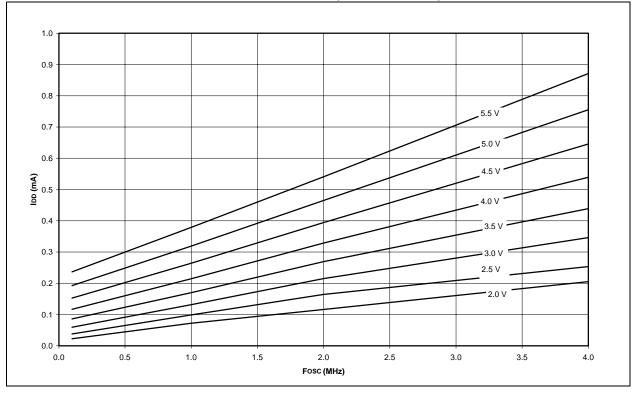
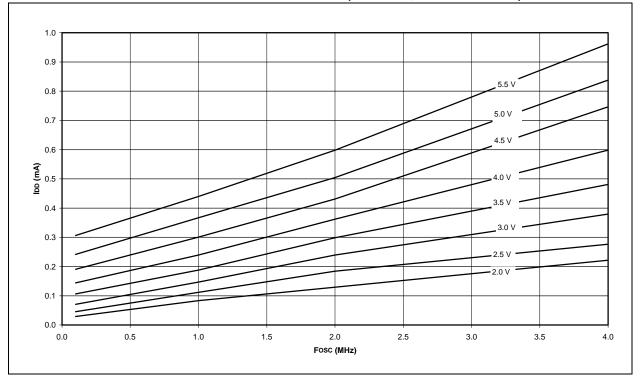



FIGURE 10-4: MAXIMUM IDD vs. Fosc OVER VDD (XT MODE, -40° TO +125°C)

© 2001 Microchip Technology Inc.

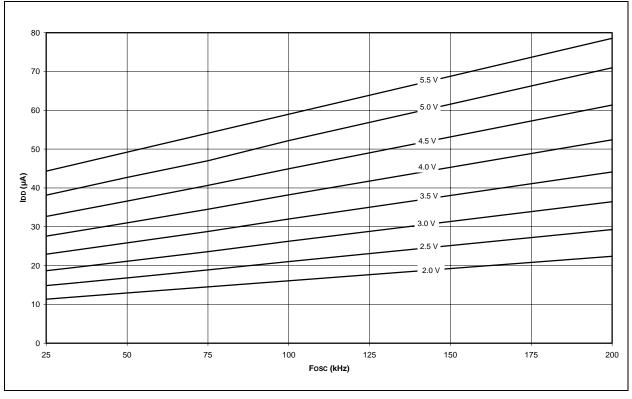
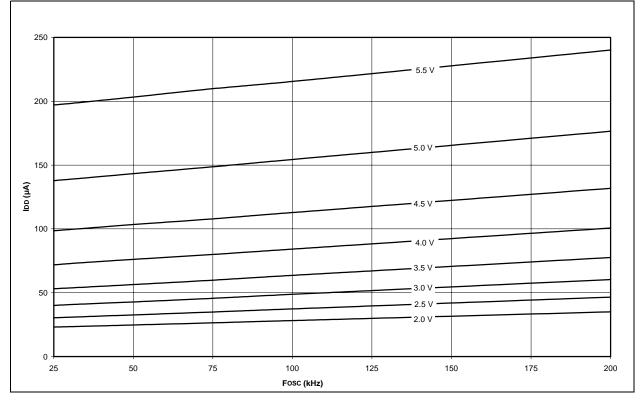



FIGURE 10-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE, 25°C)

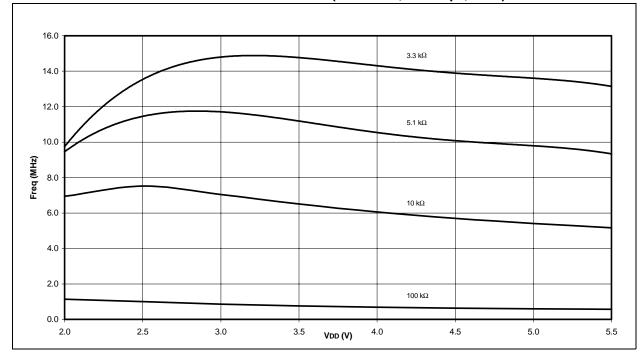
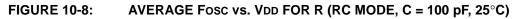
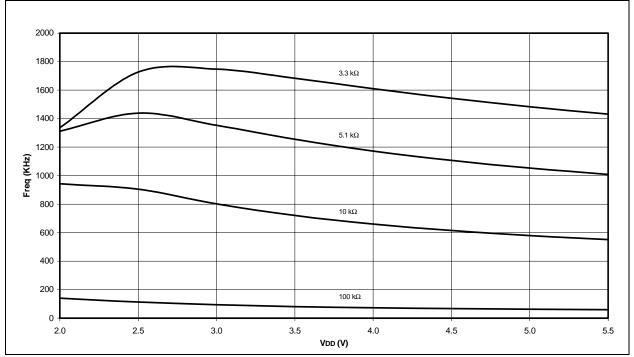
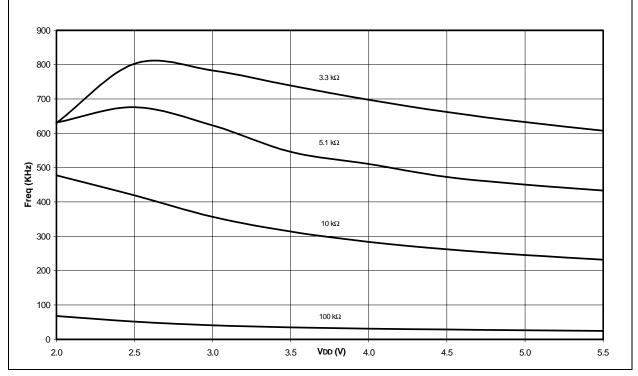
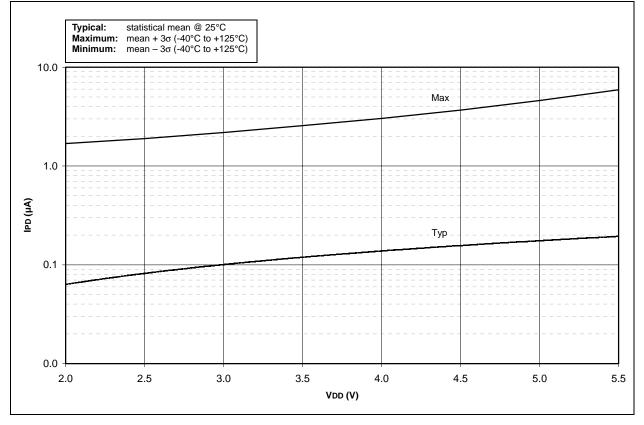
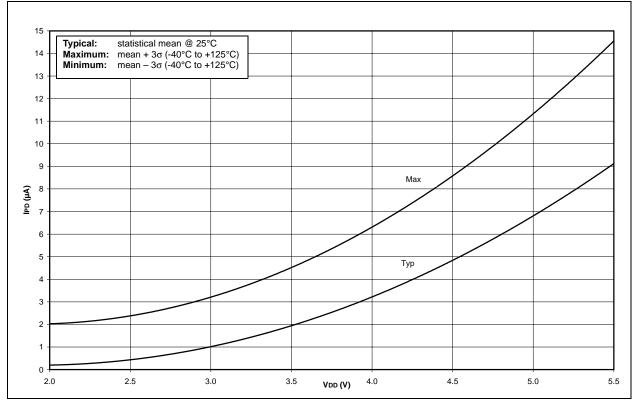
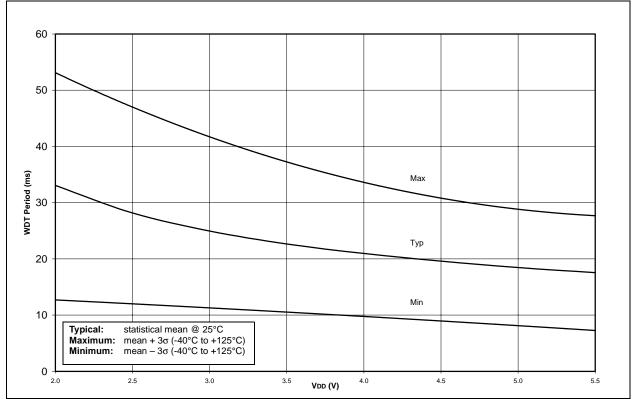
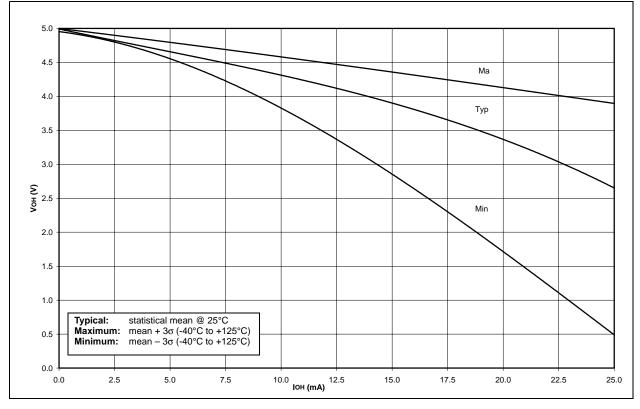





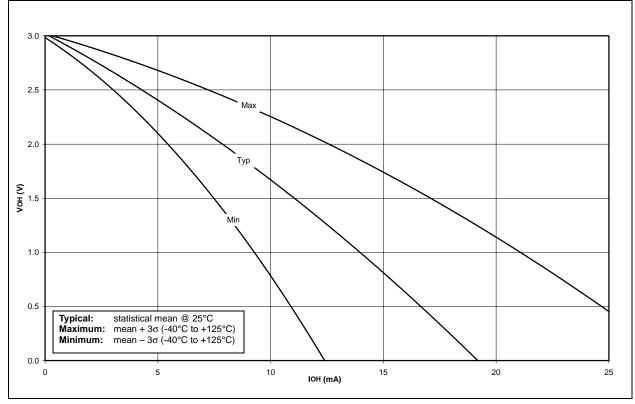
FIGURE 10-7: AVERAGE FOSC vs. VDD FOR R (RC MODE, C = 22 pF, 25°C)











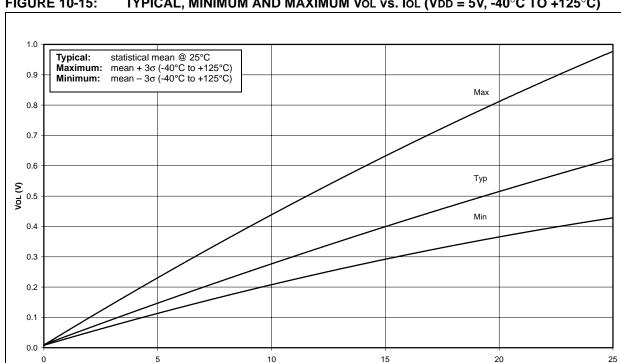
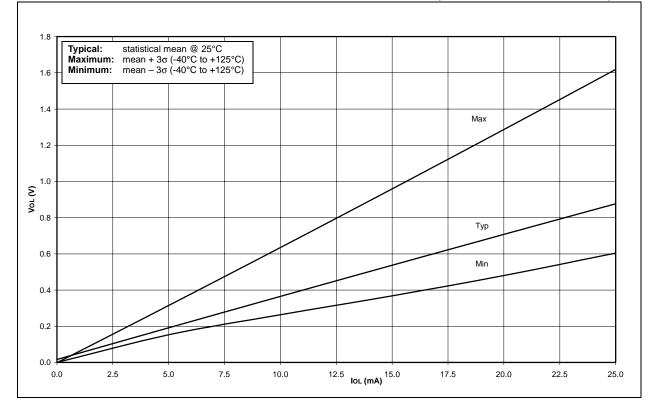
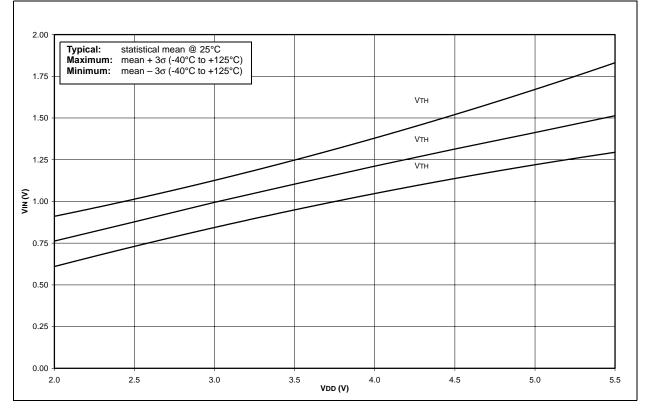
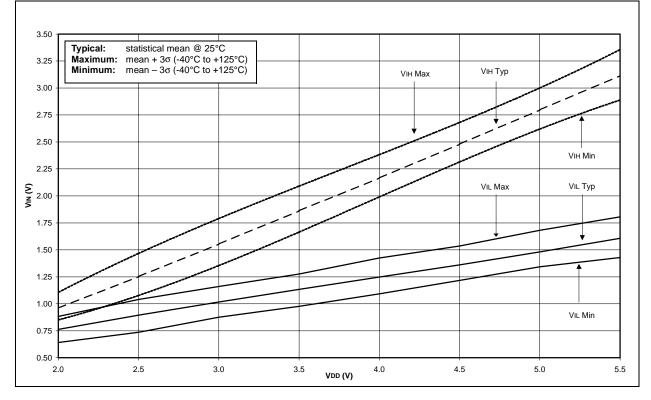
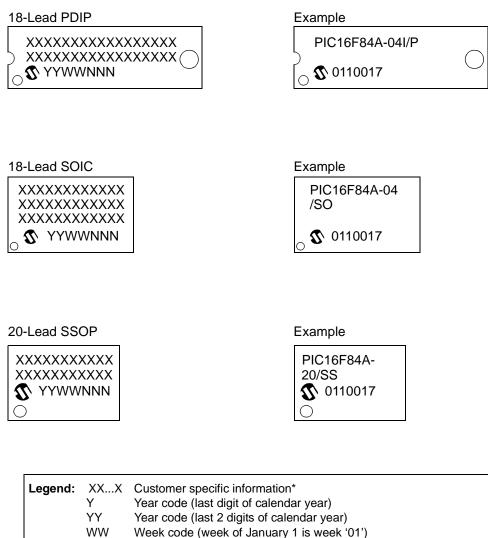


FIGURE 10-13: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

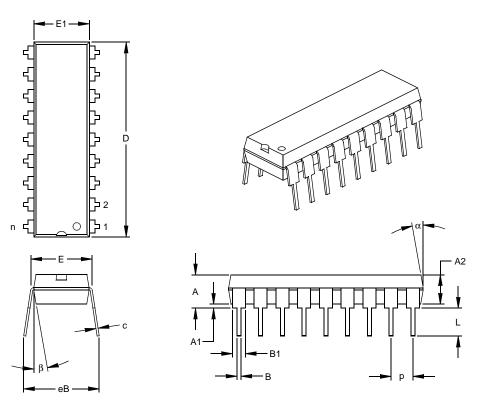

DS35007B-page 68


TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C) **FIGURE 10-15:**


IOL (mA)



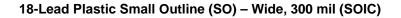
11.0 PACKAGING INFORMATION

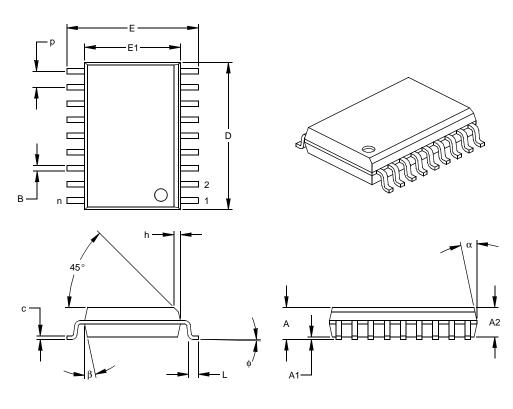

11.1 Package Marking Information

NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip sales office. For QTP devices, any special marking adders are included in QTP price. 18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

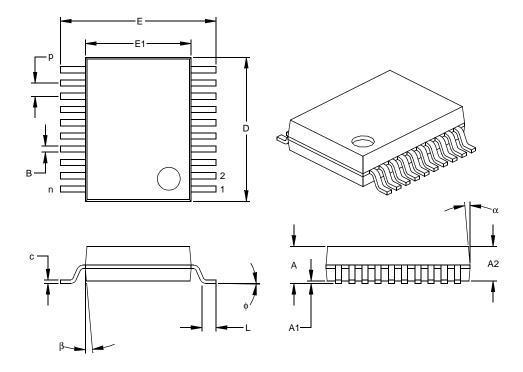



	Units		INCHES*		Ν	IILLIMETERS	6
Dimens	sion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* Controlling Decomptor							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007


	Units		INCHES*		Ν	IILLIMETERS	5
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units		INCHES*		N	IILLIMETERS	6
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	9/98	This is a new data sheet. However, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16F8X Data Sheet</i> , DS30430.
В	8/01	Added DC and AC Characteristics Graphs and Tables to Section 10.

APPENDIX B: CONVERSION CONSIDERATIONS

Considerations for converting from one PIC16X8X device to another are listed in Table 1.

PIC16F84A				
Difference	PIC16C84	PIC16F83/F84	PIC16CR83/ CR84	PIC16F84A
Program Memory Size	1K x 14	512 x 14 / 1K x 14	512 x 14 / 1K x 14	1K x 14
Data Memory Size	36 x 8	36 x 8 / 68 x 8	36 x 8 / 68 x 8	68 x 8
Voltage Range	2.0V - 6.0V (-40°C to +85°C)	2.0V - 6.0V (-40°C to +85°C)	2.0V - 6.0V (-40°C to +85°C)	2.0V - 5.5V (-40°C to +125°C)
Maximum Operating Fre- quency	10 MHz	10 MHz	10 MHz	20 MHz
Supply Current (IDD). See parameter # D014 in the electrical specs for more detail.	$ IDD (typ) = 60 \ \mu A \\ IDD (max) = 400 \ \mu A \\ (LP osc, Fosc = 32 \ kHz, VDD = 2.0V, \\ WDT disabled) $	$\begin{array}{l} \text{IDD} (\text{typ}) = 15 \ \mu\text{A} \\ \text{IDD} (\text{max}) = 45 \ \mu\text{A} \\ (\text{LP osc, Fosc} = 32 \ \text{kHz}, \\ \text{VDD} = 2.0\text{V}, \\ \text{WDT disabled} \end{array}$	$\begin{array}{l} \text{IDD} (\text{typ}) = 15 \ \mu\text{A} \\ \text{IDD} (\text{max}) = 45 \ \mu\text{A} \\ (\text{LP osc, Fosc} = 32 \ \text{kHz}, \\ \text{VDD} = 2.0\text{V}, \\ \text{WDT disabled} \end{array}$	$\begin{array}{l} \text{IDD} (\text{typ}) = 15 \ \mu\text{A} \\ \text{IDD} (\text{max}) = 45 \ \mu\text{A} \\ (\text{LP osc, Fosc} = 32 \ \text{kHz}, \\ \text{VDD} = 2.0\text{V}, \\ \text{WDT disabled} \end{array}$
Power-down Current (IPD). See parameters # D020, D021, and D021A in the electrical specs for more detail.	$\label{eq:PD} \begin{array}{l} \mbox{IPD} \ (typ) = 26 \ \mu A \\ \mbox{IPD} \ (max) = 100 \ \mu A \\ \mbox{(VDD} = 2.0V, \\ \mbox{WDT} \ disabled, \ industrial) \end{array}$	$\begin{split} & \text{IPD} (\text{typ}) = 0.4 \ \mu\text{A} \\ & \text{IPD} (\text{max}) = 9 \ \mu\text{A} \\ & (\text{VDD} = 2.0\text{V}, \\ & \text{WDT disabled, industrial}) \end{split}$	$\begin{split} & \text{IPD (typ)} = 0.4 \mu \text{A} \\ & \text{IPD (max)} = 6 \mu \text{A} \\ & (\text{VDD} = 2.0\text{V}, \\ & \text{WDT disabled, industrial)} \end{split}$	$\label{eq:PD} \begin{array}{l} \text{IPD} (\text{typ}) = 0.4 \ \mu\text{A} \\ \text{IPD} (\text{max}) = 1 \ \mu\text{A} \\ (\text{VDD} = 2.0\text{V}, \\ \text{WDT} \text{ disabled, industrial} \end{array}$
Input Low Voltage (VIL). See parameters # D032 and D034 in the electrical specs for more detail.	VIL (max) = 0.2VDD (OSC1, RC mode)	VIL (max) = 0.1VDD (OSC1, RC mode)	VIL (max) = 0.1VDD (OSC1, RC mode)	VIL (max) = 0.1VDD (OSC1, RC mode)
Input High Voltage (VIH). See parameter # D040 in the electrical specs for more detail.	VIH (min) = 0.36 VDD (I/O Ports with TTL, 4.5 V \leq VDD \leq 5.5 V)	VIH (min) = $2.4V$ (I/O Ports with TTL, $4.5V \le VDD \le 5.5V$)	VIH (min) = $2.4V$ (I/O Ports with TTL, $4.5V \le VDD \le 5.5V$)	VIH (min) = $2.4V$ (I/O Ports with TTL, $4.5V \le VDD \le 5.5V$)
Data EEPROM Memory Erase/Write cycle time (TDEW). See parameter # D122 in the electrical specs for more detail.	TDEW (typ) = 10 ms TDEW (max) = 20 ms	TDEW (typ) = 10 ms TDEW (max) = 20 ms	TDEW (typ) = 10 ms TDEW (max) = 20 ms	TDEW (typ) = 4 ms TDEW (max) = 8 ms
Port Output Rise/Fall time (TioR, TioF). See parameters #20, 20A, 21, and 21A in the elec- trical specs for more detail.	TioR, TioF (max) = 25 ns (C84) TioR, TioF (max) = 60 ns (LC84)	TioR, TioF (max) = 35 ns (C84) TioR, TioF (max) = 70 ns (LC84)	TioR, TioF (max) = 35 ns (C84) TioR, TioF (max) = 70 ns (LC84)	TioR, TioF (max) = 35 ns (C84) TioR, TioF (max) = 70 ns (LC84)
MCLR on-chip filter. See parameter #30 in the electrical specs for more detail.	No	Yes	Yes	Yes
PORTA and crystal oscil- lator values less than 500 kHz	For crystal oscillator con- figurations operating below 500 kHz, the device may generate a spurious internal Q-clock when PORTA<0> switches state.	N/A	N/A	N/A
RB0/INT pin	TTL	TTL/ST* (*Schmitt Trigger)	TTL/ST* (*Schmitt Trigger)	TTL/ST* (*Schmitt Trigger)

TABLE 1:CONVERSION CONSIDERATIONS - PIC16C84, PIC16F83/F84, PIC16CR83/CR84,
PIC16F84A

TABLE 1:CONVERSION CONSIDERATIONS - PIC16C84, PIC16F83/F84, PIC16CR83/CR84,
PIC16F84A (CONTINUED)

Difference	PIC16C84	PIC16F83/F84	PIC16CR83/ CR84	PIC16F84A
EEADR<7:6> and IDD	It is recommended that the EEADR<7:6> bits be cleared. When either of these bits is set, the maxi- mum IDD for the device is higher than when both are cleared.	N/A	N/A	N/A
The polarity of the PWRTE bit	PWRTE	PWRTE	PWRTE	PWRTE
Recommended value of REXT for RC oscillator circuits	Rext = 3kΩ - 100kΩ	Rext = 5kΩ - 100kΩ	$REXT = 5k\Omega - 100k\Omega$	$Rext = 3k\Omega - 100k\Omega$
GIE bit unintentional enable	If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re- enabled by the user's Interrupt Service Routine (the RETFIE instruction).	N/A	N/A	N/A
Packages	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC, SSOP
Open Drain High Voltage (VoD)	14V	12V	12V	8.5V

APPENDIX C: MIGRATION FROM BASELINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following is the list of feature improvements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes, both in program memory (2K now as opposed to 512K before) and the register file (128 bytes now versus 32 bytes before).
- 2. A PC latch register (PCLATH) is added to handle program memory paging. PA2, PA1 and PA0 bits are removed from the STATUS register and placed in the OPTION register.
- 3. Data memory paging is redefined slightly. The STATUS register is modified.
- 4. Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions, TRIS and OPTION, are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to eight-deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, the Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange features.
- 13. T0CKI pin is also a port pin (RA4/T0CKI).
- 14. FSR is a full 8-bit register.
- 15. "In system programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).

To convert code written for PIC16C5X to PIC16F84A, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables for reallocation.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

INDEX

Α

Absolute Maximum Ratings	49
AC (Timing) Characteristics	55
Architecture, Block Diagram	3
Assembler	
MPASM Assembler	43

В

Banking, Data Memory6 Block Diagrams
Crystal/Ceramic Resonator Operation
External Clock Input Operation
External Power-on Reset Circuit
Interrupt Logic
On-Chip Reset
PIC16F84A
PORTA
RA3:RA0 Pins 15
RA4 Pins15
PORTB
RB3:RB0 Pins 17
RB7:RB4 Pins 17
RC Oscillator Mode
Timer019
Timer0/WDT Prescaler
Watchdog Timer (WDT) 31

С

C (Carry) bit	8
CLKIN Pin	
CLKOUT Pin	4
Code Examples	
Clearing RAM Using Indirect Addressing	11
Data EEPOM Write Verify	14
Indirect Addressing	11
Initializing PORTA	
Initializing PORTB	17
Reading Data EEPROM	14
Saving STATUS and W Registers in RAM	
Writing to Data EEPROM	14
Code Protection	21, 33
Configuration Bits	
Configuration Word	21
Conversion Considerations	

D

Data EEPROM Memory	13
Associated Registers	14
EEADR Register	.7, 13, 25
EECON1 Register	7, 13, 25
EECON2 Register	7, 13, 25
EEDATA Register	.7, 13, 25
Write Complete Enable (EEIE Bit)	
Write Complete Flag (EEIF Bit)	29
Data EEPROM Write Complete	
Data Memory	6
Bank Select (RP0 Bit)	
Banking	6
DC Bit	8
DC Characteristics	51, 53
Development Support	
Device Overview	

Е

EECON1 Register
EEIF Bit
Electrical Characteristics
Load Conditions
Parameter Measurement Information
PIC16F84A-04 Voltage-Frequency Graph 50
PIC16F84A-20 Voltage-Frequency Graph 50
PIC16LF84A-04 Voltage-Frequency Graph 50
Temperature and Voltage Specifications - AC 56
Endurance 1
Errata2
External Clock Input (RA4/T0CKI). See Timer0
External Interrupt Input (RB0/INT). See Interrupt Sources
External Power-on Reset Circuit
F
- Firmware Instructions
Firmware instructions
l
I/O Ports
ICEPIC In-Circuit Emulator
ID Locations
In-Circuit Serial Programming (ICSP)21, 33
INDF Register
Indirect Addressing
FSR Register
INDF Register
Instruction Format
Instruction Set
ADDLW
ADDWF
ANDLW
ANDWF
BCF
BSF
BTFSC
BTFSS
CALL
CLRF
CLRW
CLRWDT
COMF
DECF
DECFSZ
GOTO
INCF
INCFSZ 39
IORLW
IORWF
MOVF 40
MOVLW 40
MOVWF
NOP
RETFIE 40
RETLW 40
RETURN 40
RLF 41
RRF 41
SLEEP 41
SUBLW
SUBWF 41
SWAPF
XORLW 42

XORWF
Summary Table
INT Interrupt (RB0/INT)
INTCON Register
EEIE Bit
GIE Bit
INTE Bit
INTF Bit
PEIE Bit10
RBIE Bit
RBIF Bit
TOIE Bit
TOIF Bit
Interrupt Sources
Block Diagram
Data EEPROM Write Complete
Interrupt-on-Change (RB7:RB4)
RB0/INT Pin, External
TMR0 Overflow
Interrupts, Context Saving During
Interrupts, Enable Bits
Data EEPROM Write Complete Enable
(EEIE Bit)
Global Interrupt Enable (GIE Bit)
Interrupt-on-Change (RB7:RB4) Enable
(RBIE Bit)
Peripheral Interrupt Enable (PEIE Bit)
RB0/INT Enable (INTE Bit)
TMR0 Overflow Enable (T0IE Bit)
Interrupts, Flag Bits
Data EEPROM Write Complete Flag
(EEIF Bit)
Interrupt-on-Change (RB7:RB4) Flag
(RBIF Bit)
RB0/INT Flag (INTF Bit)10
TMR0 Overflow Flag (T0IF Bit)
IRP bit

Κ

KEELOQ	Evaluation	and Programmin	g Tools	4	6

Μ

Master Clear (MCLR)	
MCLR Pin	4
MCLR Reset, Normal Operation	24
MCLR Reset, SLEEP	24, 32
Memory Organization	5
Data EEPROM Memory	13
Data Memory	6
Program Memory	5
Migration from Baseline to Mid-Range Devices	78
MPLAB C17 and MPLAB C18 C Compilers	
MPLAB ICD In-Circuit Debugger	45
MPLAB ICE High Performance Universal In-Circuit	
Emulator with MPLAB IDE	44
MPLAB Integrated Development Environment	
Software	
MPLINK Object Linker/MPLIB Object Librarian	
0	
OPCODE Field Descriptions	
OPTION Register	
INTEDG Bit	9
PS2:PS0 Bits	9

	0
TOCS Bit	
T0SE Bit	
OPTION_REG Register7,	18, 20, 25
INTEDG Bit	29
PS2:PS0 Bits	19
PSA Bit	
OSC1 Pin	
OSC2 Pin	
Oscillator Configuration	
Block Diagram	22, 23
Capacitor Selection for Ceramic Resonators	22
Capacitor Selection for Crystal Oscillator	23
Crystal Oscillator/Ceramic Resonators	22
Н\$	22, 28
LP	
Oscillator Types	
RC	.22, 23, 28
XT	

Ρ

Packaging Information	
Marking PD Bit	
PICDEM 1 Low Cost PICmicro	0
Demonstration Board	45
PICDEM 17 Demonstration Board	
PICDEM 17 Demonstration Board	40
Demonstration Board	15
PICDEM 3 Low Cost PIC16CXXX	45
Demonstration Board	46
PICSTART Plus Entry Level Development	40
Programmer	45
Pinout Descriptions	
Pointer, FSR	
POR. See Power-on Reset	
PORTA	. 15
Associated Registers	/
Functions	
Initializing	
PORTA Register	
RA3:RA0 Block Diagram	
RA4 Block Diagram	15
RA4/T0CKI Pin	
TRISA Register	
PORTB4	
Associated Registers	18
Functions	18
Initializing	17
PORTB Register 7, 17, 18	, 25
Pull-up Enable Bit (RBPU Bit)	
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin, External4, 18	
RB3:RB0 Block Diagram	
RB7:RB4 Block Diagram	
RB7:RB4 Interrupt-on-Change4, 17	, 29
RB7:RB4 Interrupt-on-Change	
Enable (RBIE Bit)	10
RB7:RB4 Interrupt-on-Change	
Flag (RBIF Bit)10	
TRISB Register	, 25
Postscaler, WDT	~
Assignment (PSA Bit)	
Rate Select (PS2:PS0 Bits)	9
Postscaler. See Prescaler	
Power-down (PD) Bit. See Power-on Reset (POR)	
Power-down Mode. See SLEEP	

Power-on Reset (POR)21, 24, 26
Oscillator Start-up Timer (OST) 21, 26
PD Bit
Power-up Timer (PWRT) 21, 26
Time-out Sequence28
Time-out Sequence on Power-up 27, 28
TO Bit8, 24, 28, 30, 32, 33
Prescaler19
Assignment (PSA Bit)19
Block Diagram20
Rate Select (PS2:PS0 Bits) 19
Switching Prescaler Assignment20
Prescaler, Timer0
Assignment (PSA Bit)9
Rate Select (PS2:PS0 Bits)9
Assignment (PSA Bit)
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6 Interrupt Vector 5, 29
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6 Interrupt Vector 5, 29 RESET Vector 5
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6 Interrupt Vector 5, 29

R

RAM. See Data Memory	
Register File	;
Register File Map 6	
Registers	
Configuration Word 21	
EECON1 (EEPROM Control)13	5
INTCON 10)
OPTION9	
STATUS	5
Reset	ŀ
Block Diagram24, 26)
MCLR Reset. See MCLR	
Power-on Reset (POR). See Power-on Reset (POR)	
Reset Conditions for All Registers)
Reset Conditions for Program Counter24	ŀ
Reset Conditions for STATUS Register 24	ł
WDT Reset. See Watchdog Timer (WDT)	
Revision History	5
RP1:RP0 (Bank Select) bits	5

S

Saving W Register and STATUS in RA	AM 30
SLEEP	
Software Simulator (MPLAB SIM)	
Special Features of the CPU	
Special Function Registers	
Speed, Operating	
Stack	
STATUS Register	
C Bit	
DC Bit	8
PD Bit	8, 24, 28, 32, 33
RESET Conditions	
RP0 Bit	6
TO Bit	.8, 24, 28, 30, 32, 33
Z Bit	

т

Timer0
Clock Source Edge Select (T0SE Bit)
Overflow Enable (T0IE Bit)
Overflow Flag (T0IF Bit)
Overflow Interrupt
Prescaler. See Prescaler
RA4/T0CKI Pin, External Clock 19
TMR0 Register
Timing Conditions
Timing Diagrams
CLKOUT and I/O 58
Diagrams and Specifications 57
CLKOUT and I/O Requirements 58
External Clock Requirements 57
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up
Timer Requirements59
Timer0 Clock Requirements 60
External Clock 57
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer 59
Time-out Sequence on Power-up27, 28
Timer0 Clock 60
Wake-up From SLEEP Through Interrupt 32
Timing Parameter Symbology
TO bit
W
W Register
Wake-up from SLEEP
Interrupts

Interrupts	
MCLR Reset	32
WDT Reset	32
Watchdog Timer (WDT)	21, 30
Block Diagram	
Postscaler. See Prescaler	
Programming Considerations	31
RC Oscillator	30
Time-out Period	30
WDT Reset, Normal Operation	
WDT Reset, SLEEP	
WWW, On-Line Support	

Ζ

Z (Zero) bit 8

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

013001

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From:	: Name	
	Company	
	City / State / ZIP / Country	
Applic	Telephone: () cation (optional):	FAX: ()
	d you like a reply?YN	
Device	ce: PIC16F84A Literature Number: DS3	5007B
Quest	stions:	
1. W	Vhat are the best features of this document?	
2. Ho	low does this document meet your hardware and software	e development needs?
_		
3. Do	Do you find the organization of this data sheet easy to follo	ow? If not, why?
4 14		and the structure and subject0
4. W	Vhat additions to the data sheet do you think would enhar	ice the structure and subject?
_		
5. W	Vhat deletions from the data sheet could be made without	affecting the overall usefulness?
J. W	what deletions from the data sheet could be made without	
6. Is	s there any incorrect or misleading information (what and	where)?
0. 10		
7. He	low would you improve this document?	
8. H	low would you improve our software, systems, and silicon	products?
_		

PIC16F84A PRODUCT IDENTIFICATION SYSTEM

To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.

PART NO.	-XX X /XX XXX Trequency Temperature Package Pattern Range Range	Examples: a) PIC16F84A -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F84A ⁽¹⁾ , PIC16F84AT ⁽²⁾ PIC16LF84A ⁽¹⁾ , PIC16LF84AT ⁽²⁾	 b) PIC16LF84A - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits.
Frequency Range	04 = 4 MHz 20 = 20 MHz	 c) PIC16F84A - 20I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits.
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}\text{C} & \text{to} & +70^{\circ}\text{C} \\ \text{I} & = & -40^{\circ}\text{C} & \text{to} & +85^{\circ}\text{C} \end{array}$	
Package	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP	Note1: F= Standard VDD rangeLF= Extended VDD range2: T= in tape and reel - SOIC and SSOP packages only.
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements . Blank for OTP and Windowed devices.	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin - Analog 13740 North Highway 183

Building J, Suite 4 Austin, TX 78750 Tel: 512-257-3370 Fax: 512-257-8526

Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston - Analog Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road

Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050 **Chicago**

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas 4570 Westgrove Drive, Suite 160

Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 **Dayton**

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 **Toronto**

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Rm. 531, North Building Fujian Foreign Trade Center Hotel 73 Wusi Road Fuzhou 350001, China Tel: 86-591-7557563 Fax: 86-591-7557572 China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd.

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **China - Shenzhen**

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office **Divyasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Germany - Analog Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/01

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

4N25/ 4N26/ 4N27/ 4N28

Vishay Semiconductors

Optocoupler, Phototransistor Output, With Base Connection

Features

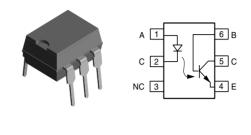
- Isolation Test Voltage 5300 V_{RMS}
- Interfaces with Common Logic Families
- Input-output Coupling Capacitance < 0.5 pF
- · Industry Standard Dual-in-line 6-pin Package

Agency Approvals

- UL File #E52744 System Code H or J
- DIN EN 60747-5-2(VDE0884) DIN EN 60747-5-5 pending Available with Option 1

Applications

AC Mains Detection Reed relay driving Switch Mode Power Supply Feedback Telephone Ring Detection Logic Ground Isolation Logic Coupling with High Frequency Noise Rejection


Description

The 4N25 family is an Industry Standard Single Channel Phototransistor Coupler. This family includes the 4N25/ 4N26/ 4N27/ 4N28. Each optocoupler consists of gallium arsenide infrared LED and a silicon NPN phototransistor.

These couplers are Underwriters Laboratories (UL) listed to comply with a 5300 V_{RMS} isolation test voltage. This isolation performance is accomplished through special Vishay manufacturing process.

Compliance to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending partial discharge isolation specification is available by ordering option1.

These isolation processes and the Vishay ISO9001 quality program results in the highest isolation performance available for a commercial plastic phototransistor optocoupler.

The devices are also available in lead formed configuration suitable for surface mounting and are available either on tape and reel, or in standard tube shipping containers.

Note:

For additional design information see Application Note 45 Normalized Curves

Order Information

Part	Remarks
4N25	CTR > 20 %, DIP-6
4N26	CTR > 20 %, DIP-6
4N27	CTR > 10 %, DIP-6
4N28	CTR > 10 %, DIP-6
4N25-X006	CTR > 20 %, DIP-6 400 mil (option 6)
4N25-X007	CTR > 20 %, SMD-6 (option 7)
4N25-X009	CTR > 20 %, SMD-6 (option 9)
4N26-X006	CTR > 20 %, DIP-6 400 mil (option 6)
4N26-X007	CTR > 20 %, SMD-6 (option 7)
4N26-X009	CTR > 20 %, SMD-6 (option 9)
4N27-X007	CTR > 10 %, SMD-6 (option 7)
4N27-X009	CTR > 10 %, SMD-6 (option 9)
4N28-X009	CTR > 10 %, SMD-6 (option 9)

For additional information on the available options refer to Option Information.

Vishay Semiconductors

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	6.0	V
Forward current		١ _F	60	mA
Surge current	t < 10 μs	I _{FSM}	2.5	A
Power dissipation		P _{diss}	100	mW

Output

Parameter	Test condition	Symbol	Value	Unit
Collector-emitter breakdown voltage		V _{CEO}	70	V
Emitter-base breakdown voltage		V _{EBO}	7.0	V
Collector current		Ι _C	50	mA
Collector currrent	t < 1.0 ms	Ι _C	100	mA
Power dissipation		P _{diss}	150	mW

Coupler

Parameter	Test condition	Symbol	Value	Unit
Isolation test voltage		V _{ISO}	5300	V _{RMS}
Creepage			≥ 7.0	mm
Clearance			≥ 7.0	mm
Isolation thickness between emitter and detector			≥ 0.4	mm
Comparative tracking index	DIN IEC 112/VDE0303, part 1		175	
Isolation resistance	V_{IO} = 500 V, T_{amb} = 25 °C	R _{IO}	10 ¹²	Ω
	V_{IO} = 500 V, T_{amb} = 100 °C	R _{IO}	10 ¹¹	Ω
Storage temperature		T _{stg}	- 55 to + 150	٥C
Operating temperature		T _{amb}	- 55 to + 100	٥C
Junction temperature		Tj	100	٥C
Soldering temperature	max.10 s, dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C

Vishay Semiconductors

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage ¹⁾	I _F = 50 mA	V _F		1.3	1.5	V
Reverse current ¹⁾	V _R = 3.0 V	I _R		0.1	100	μA
Capacitance	V _R = 0 V	CO		25		pF

¹⁾ Indicates JEDEC registered values

Output

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Collector-base breakdown voltage ¹⁾	I _C = 100 μA		BV _{CBO}	70			V
Collector-emitter breakdown voltage ¹⁾	I _C = 1.0 mA		BV _{CEO}	30			V
Emitter-collector breakdown voltage ¹⁾	I _E = 100 μA		BV _{ECO}	7.0			V
I _{CEO} (dark) ¹⁾	V _{CE} = 10 V, (base open)	4N25			5.0	50	nA
		4N26			5.0	50	nA
		4N27			5.0	50	nA
		4N28			10	100	nA
I _{CBO} (dark) ¹⁾	V _{CB} = 10 V, (emitter open)				2.0	20	nA
Collector-emitter capacitance	$V_{CE} = 0$		C _{CE}		6.0		pF

¹⁾ Indicates JEDEC registered values

Coupler

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Isolation voltage ¹⁾	Peak, 60 Hz	4N25	V _{IO}	2500			V
		4N26	V _{IO}	1500			V
		4N27	V _{IO}	1500			V
		4N28	V _{IO}	500			V
Saturation voltage, collector- emitter	I _{CE} = 2.0 mA, I _F = 50 mA		V _{CE(sat)}			0.5	V
Resistance, input output ¹⁾	V _{IO} = 500 V		R _{IO}	100			GΩ
Capacitance (input-output)	f = 1.0 MHz		C _{IO}		0.5		pF

1) Indicates JEDEC registered values

Current Transfer Ratio

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
DC Current Transfer Ratio ¹⁾	$V_{CE} = 10 \text{ V}, I_F = 10 \text{ mA}$	4N25	CTR_{DC}	20	50		%
		4N26	CTR _{DC}	20	50		%
		4N27	CTR_{DC}	10	30		%
		4N28	CTR _{DC}	10	30		%

1) Indicates JEDEC registered value

4N25/ 4N26/ 4N27/ 4N28

Vishay Semiconductors

Switching Characteristics

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Rise and fall times	V_{CE} = 10 V, I _F = 10 mA, R _L = 100 Ω	t _r , t _f		2.0		μs

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

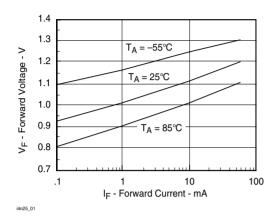


Fig. 1 Forward Voltage vs. Forward Current



Fig. 2 Normalized Non-Saturated and Saturated CTR vs. LED Current

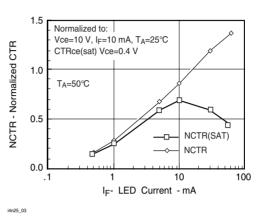


Fig. 3 Normalized Non-saturated and Saturated CTR vs. LED Current

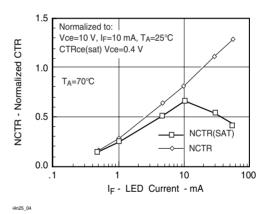


Fig. 4 Normalized Non-saturated and saturated CTR vs. LED Current

4N25/ 4N26/ 4N27/ 4N28

Vishay Semiconductors

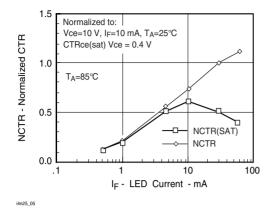


Fig. 5 Normalized Non-saturated and saturated CTR vs. LED Current

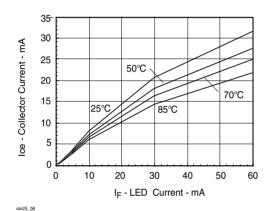


Fig. 6 Collector-Emitter Current vs. Temperature and LED Current

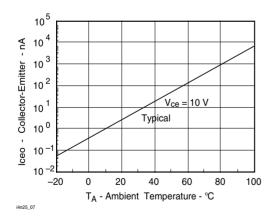


Fig. 7 Collector-Emitter Leakage Current vs.Temp.

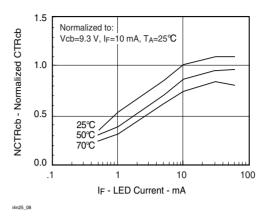
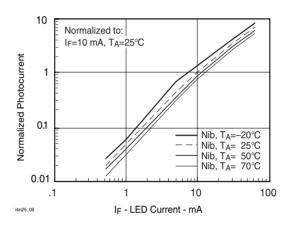



Fig. 8 Normalized CTRcb vs. LED Current and Temp.

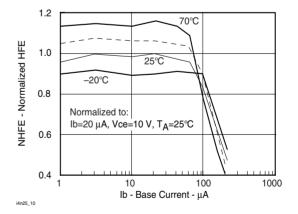
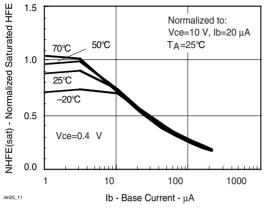



Fig. 10 Normalized Non-saturated HFE vs. Base Current and Temperature

4N25/4N26/4N27/4N28

Vishay Semiconductors

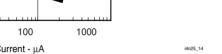


Fig. 11 Normalized HFE vs. Base Current and Temp.

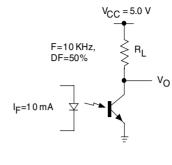


Fig. 14 Switching Schematic

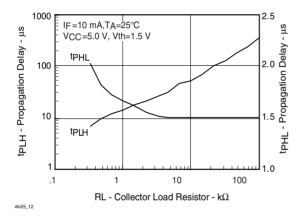
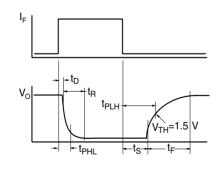



Fig. 12 Propagation Delay vs. Collector Load Resistor

i4n25_13

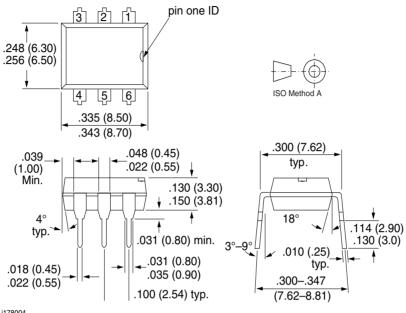
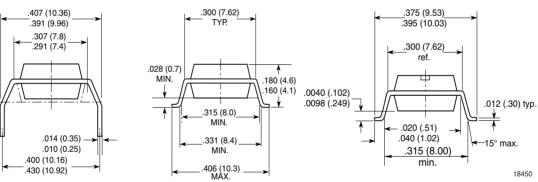

6

Fig. 13 Switching Timing

Vishay Semiconductors

Package Dimensions in Inches (mm)



i178004

Option 9

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Low Cost, Low Power Instrumentation Amplifier

AD620

FEATURES

EASY TO USE Gain Set with One External Resistor (Gain Range 1 to 1000) Wide Power Supply Range (±2.3 V to ±18 V) Higher Performance than Three Op Amp IA Designs Available in 8-Lead DIP and SOIC Packaging Low Power, 1.3 mA max Supply Current

EXCELLENT DC PERFORMANCE ("B GRADE") 50 μV max, Input Offset Voltage 0.6 μV/°C max, Input Offset Drift 1.0 nA max, Input Bias Current 100 dB min Common-Mode Rejection Ratio (G = 10)

LOW NOISE

9 nV/ $\sqrt{\text{Hz}}$, @ 1 kHz, Input Voltage Noise 0.28 μ V p-p Noise (0.1 Hz to 10 Hz)

EXCELLENT AC SPECIFICATIONS 120 kHz Bandwidth (G = 100) 15 μs Settling Time to 0.01%

APPLICATIONS Weigh Scales ECG and Medical Instrumentation Transducer Interface Data Acquisition Systems Industrial Process Controls Battery Powered and Portable Equipment

PRODUCT DESCRIPTION

The AD620 is a low cost, high accuracy instrumentation amplifier that requires only one external resistor to set gains of 1 to

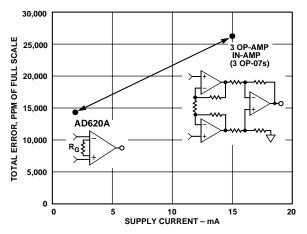
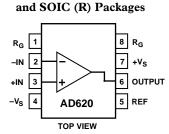



Figure 1. Three Op Amp IA Designs vs. AD620

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

CONNECTION DIAGRAM

8-Lead Plastic Mini-DIP (N), Cerdip (Q)

1000. Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller than discrete designs, and offers lower power (only 1.3 mA max supply current), making it a good fit for battery powered, portable (or remote) applications.

The AD620, with its high accuracy of 40 ppm maximum nonlinearity, low offset voltage of 50 μ V max and offset drift of 0.6 μ V/°C max, is ideal for use in precision data acquisition systems, such as weigh scales and transducer interfaces. Furthermore, the low noise, low input bias current, and low power of the AD620 make it well suited for medical applications such as ECG and noninvasive blood pressure monitors.

The low input bias current of 1.0 nA max is made possible with the use of Superßeta processing in the input stage. The AD620 works well as a preamplifier due to its low input voltage noise of 9 nV/ $\sqrt{\text{Hz}}$ at 1 kHz, 0.28 μ V p-p in the 0.1 Hz to 10 Hz band, 0.1 pA/ $\sqrt{\text{Hz}}$ input current noise. Also, the AD620 is well suited for multiplexed applications with its settling time of 15 μ s to 0.01% and its cost is low enough to enable designs with one inamp per channel.

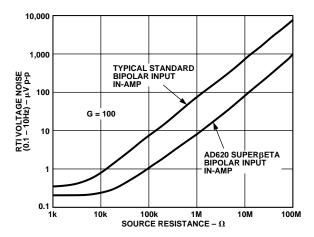


Figure 2. Total Voltage Noise vs. Source Resistance

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

AD620—SPECIFICATIONS (Typical @ +25°C, $V_s = \pm 15 V$, and $R_L = 2 k\Omega$, unless otherwise noted)

Model	Conditions	A Min	D620A Typ	Max	Min	AD620E Typ	: Max	Min	AD620 Typ	S ¹ Max	Units
GAIN Gain Range Gain Error ² $G = 1$ $G = 10$ $G = 100$ $G = 100$ $G = 1000$ $S = 1000$ $S = 1000$ $G = 1000$ $G = 1000$ $G = 1-1000$ $G = 1-1000$	$G = 1 + (49.4 \text{ k/R}_{G})$ $V_{OUT} = \pm 10 \text{ V}$ $V_{OUT} = -10 \text{ V to } +10 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$	1	0.03 0.15 0.15 0.40 10	10,000 0.10 0.30 0.30 0.70 40 95	1	0.01 0.10 0.10 0.35 10 10	10,000 0.02 0.15 0.15 0.50 40 95	1	0.15	10,000 0.10 0.30 0.30 0.70 40 95	% % % ppm ppm
Gain vs. Temperature	G =1 Gain >1 ²			10 -50			10 -50			10 -50	ppm/°C ppm/°C
VOLTAGE OFFSET Input Offset, V _{OSI} Over Temperature Average TC Output Offset, V _{OSO} Over Temperature Average TC Offset Referred to the Input vs.	$ \begin{array}{l} (Total RTI Error = V_{OSI} + V_{C} \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ V_{S} = \pm 5 \ V \ to \ \pm 15 \ V \\ \end{array} $	_{JSO} /G)	30 0.3 400 5.0	125 185 1.0 1000 1500 2000 15		15 0.1 200 2.5	50 85 0.6 500 750 1000 7.0		30 0.3 400 5.0	125 225 1.0 1000 1500 2000 15	μV μV μV/°C μV μV μV μV
Supply (PSR) G = 1 G = 10 G = 100 G = 100 G = 1000	$V_{\rm S}$ = ±2.3 V to ±18 V	80 95 110 110	100 120 140 140		80 100 120 120	100 120 140 140		80 95 110 110	100 120 140 140		dB dB dB dB
INPUT CURRENT Input Bias Current Over Temperature Average TC Input Offset Current Over Temperature Average TC			0.5 3.0 0.3 1.5	2.0 2.5 1.0 1.5		0.5 3.0 0.3 1.5	1.0 1.5 0.5 0.75		0.5 8.0 0.3 8.0	2 4 1.0 2.0	nA nA pA/°C nA nA pA/°C
INPUT Input Impedance Differential Common-Mode Input Voltage Range ³ Over Temperature Over Temperature Common-Mode Rejection Ratio DC to 60 Hz with I k Ω Source Imbalance G = 1 G = 10	$V_{S} = \pm 2.3 V \text{ to } \pm 5 V$ $V_{S} = \pm 5 V \text{ to } \pm 18 V$ $V_{CM} = 0 V \text{ to } \pm 10 V$	$-V_{s} + 1.9$ $-V_{s} + 2.1$ $-V_{s} + 1.9$ $-V_{s} + 2.1$ 73 93	90 110	$\begin{array}{c} +V_{S}-1.2\\ +V_{S}-1.3\\ +V_{S}-1.4\\ +V_{S}-1.4\end{array}$	$ \begin{array}{c} -V_{S} + 1.9 \\ -V_{S} + 2.1 \\ -V_{S} + 1.9 \\ -V_{S} + 2.1 \\ \end{array} $ 80 100 100	90 110	$\begin{array}{l} +V_{S}-1.2\\ +V_{S}-1.3\\ +V_{S}-1.4\\ +V_{S}-1.4\end{array}$	$-V_{s} + 1.9$ $-V_{s} + 2.1$ $-V_{s} + 1.9$ $-V_{s} + 2.3$ 73 93 93	10 2 10 2 90 110	$+V_{S} - 1.2$ $+V_{S} - 1.3$ $+V_{S} - 1.4$ $+V_{S} - 1.4$	$G\Omega \ pF$ $G\Omega \ pF$ V V V V V U U U U U U U U
G = 100 $G = 1000$		110 110	130 130		120 120	130 130		110 110	130 130		dB dB
OUTPUT Output Swing Over Temperature Over Temperature Short Current Circuit	$\begin{split} R_{\rm L} &= 10 \text{ k}\Omega, \\ V_{\rm S} &= \pm 2.3 \text{ V to } \pm 5 \text{ V} \\ V_{\rm S} &= \pm 5 \text{ V to } \pm 18 \text{ V} \end{split}$	$-V_{S} + 1.1$ $-V_{S} + 1.4$ $-V_{S} + 1.2$ $-V_{S} + 1.2$		$+V_{S} - 1.2$ $+V_{S} - 1.3$ $+V_{S} - 1.4$ $+V_{S} - 1.5$	$-V_{s} + 1.1$ $-V_{s} + 1.4$ $-V_{s} + 1.4$ $-V_{s} + 1.4$	4 2	$+V_{S} - 1.2$ $+V_{S} - 1.3$ $+V_{S} - 1.4$ $+V_{S} - 1.5$	$-V_{s} + 1.1$ $-V_{s} + 1.6$ $-V_{s} + 1.2$ $-V_{s} + 2.3$	±18	$\begin{array}{l} +V_{S}-1.2 \\ +V_{S}-1.3 \\ +V_{S}-1.4 \\ +V_{S}-1.5 \end{array}$	V V V V mA

			AD620	A	AD620B			AD620S ¹			
Model	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
DYNAMIC RESPONSE Small Signal –3 dB Bandwidth											
G = 1			1000			1000			1000		kHz
G = 10			800			800			800		kHz
G = 100			120			120			120		kHz
G = 1000			12			12			12		kHz
Slew Rate		0.75	1.2		0.75	1.2		0.75	1.2		V/µs
Settling Time to 0.01%	10 V Step										
G = 1 - 100			15			15			15		μs
G = 1000			150			150			150		μs
NOISE											
Voltage Noise, 1 kHz	Total RTI Noise = $\sqrt{(e^2_{ni})^2}$	$+(e_{n0}/G)$	2								
Input, Voltage Noise, e _{ni}		i.	9	13		9	13		9	13	nV/√Hz
Output, Voltage Noise, e _{no} RTI, 0.1 Hz to 10 Hz			72	100		72	100		72	100	nV/√Hz
G = 1			3.0			3.0	6.0		3.0	6.0	μV p-p
G = 10			0.55			0.55	0.8		0.55	0.8	μV p-p
G = 100 - 1000			0.28			0.28	0.4		0.28	0.4	μV p-p
Current Noise	f = 1 kHz		100			100			100		fA/√Hz
0.1 Hz to 10 Hz			10			10			10		pA p-p
REFERENCE INPUT											
R _{IN}			20			20			20		kΩ
I _{IN}	$V_{IN+}, V_{REF} = 0$		+50	+60		+50	+60		+50	+60	μA
Voltage Range		$-V_{s} + 1.6$		$+V_{s} - 1.6$	$-V_{s} + 1.6$		$+V_{S} - 1.6$	$-V_{s} + 1.6$		$+V_{s} - 1.6$	V
Gain to Output			1 ± 0	.0001		1 ± 0	.0001		1 ± 0	.0001	
POWER SUPPLY											
Operating Range ⁴		±2.3		± 18	±2.3		± 18	±2.3		± 18	V
Quiescent Current	$V_{\rm S} = \pm 2.3 \text{ V}$ to $\pm 18 \text{ V}$		0.9	1.3		0.9	1.3		0.9	1.3	mA
Over Temperature			1.1	1.6		1.1	1.6		1.1	1.6	mA
TEMPERATURE RANGE											
For Specified Performance		-40	0 to +8	5	-40) to +8	5	-55	to +1	25	°C

NOTES ¹See Analog Devices military data sheet for 883B tested specifications. ²Does not include effects of external resistor R_G . ³One input grounded. G = 1. ⁴This is defined as the same supply range which is used to specify PSR.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage±18 V
Internal Power Dissipation ²
Input Voltage (Common Mode) $\dots \dots \dots$
Differential Input Voltage±25 V
Output Short Circuit Duration Indefinite
Storage Temperature Range (Q)65°C to +150°C
Storage Temperature Range (N, R)65°C to +125°C
Operating Temperature Range
AD620 (A, B) -40° C to $+85^{\circ}$ C
AD620 (S)55°C to +125°C
Lead Temperature Range
(Soldering 10 seconds) +300°C

NOTES

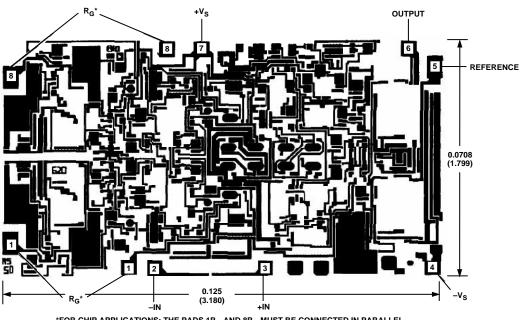
¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Specification is for device in free air:

8-Lead Plastic Package: $\theta_{JA} = 95^{\circ}C/W$

8-Lead Cerdip Package: $\theta_{JA} = 110^{\circ}C/W$

8-Lead SOIC Package: $\theta_{JA} = 155^{\circ}C/W$


ORDERING GUIDE

Model	Temperature Ranges	Package Options*		
AD620AN	-40°C to +85°C	N-8		
AD620BN	-40°C to +85°C	N-8		
AD620AR	-40°C to +85°C	SO-8		
AD620AR-REEL	-40°C to +85°C	13" REEL		
AD620AR-REEL7	-40°C to +85°C	7" REEL		
AD620BR	-40°C to +85°C	SO-8		
AD620BR-REEL	-40°C to +85°C	13" REEL		
AD620BR-REEL7	-40°C to +85°C	7" REEL		
AD620ACHIPS	-40°C to +85°C	Die Form		
AD620SQ/883B	–55°C to +125°C	Q-8		

*N = Plastic DIP; Q = Cerdip; SO = Small Outline.

Dimensions shown in inches and (mm). Contact factory for latest dimensions.

*FOR CHIP APPLICATIONS: THE PADS $1R_{\rm G}$ and $8R_{\rm G}$ must be connected in parallel to the external gain register $R_{\rm G}$. Do not connect them in series to $R_{\rm G}$. For unity gain applications where $R_{\rm G}$ is not required, the pads $1R_{\rm G}$ may simply be bonded together, as well as the pads $8R_{\rm G}$.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD620 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Characteristics (@ +25°C, $V_s = \pm 15 V$, $R_L = 2 k\Omega$, unless otherwise noted)

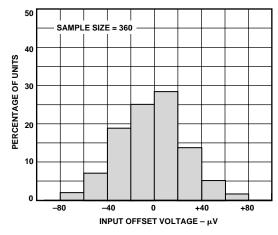


Figure 3. Typical Distribution of Input Offset Voltage

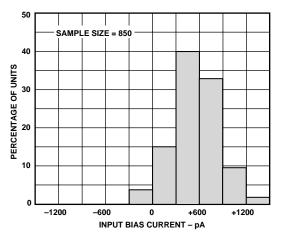


Figure 4. Typical Distribution of Input Bias Current

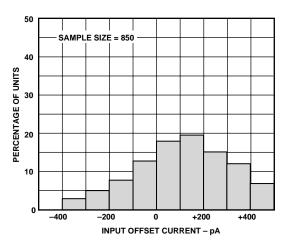


Figure 5. Typical Distribution of Input Offset Current

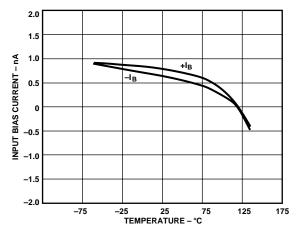


Figure 6. Input Bias Current vs. Temperature

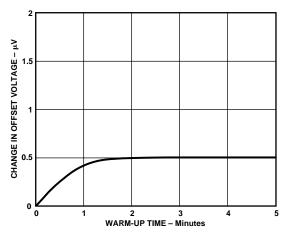


Figure 7. Change in Input Offset Voltage vs. Warm-Up Time

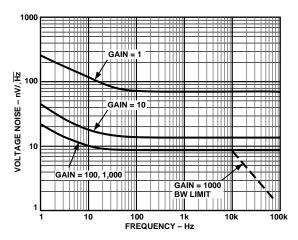


Figure 8. Voltage Noise Spectral Density vs. Frequency, (G = 1-1000)

AD620–Typical Characteristics

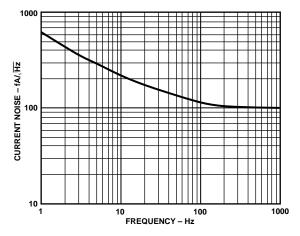


Figure 9. Current Noise Spectral Density vs. Frequency

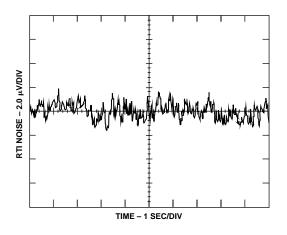


Figure 10a. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)

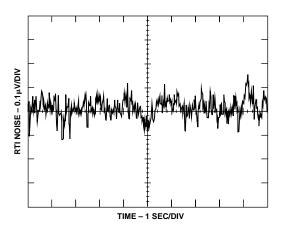


Figure 10b. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)

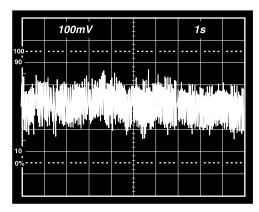


Figure 11. 0.1 Hz to 10 Hz Current Noise, 5 pA/Div

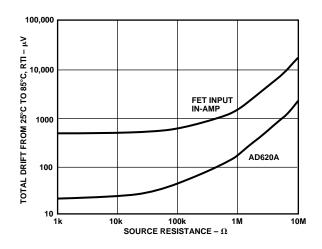


Figure 12. Total Drift vs. Source Resistance

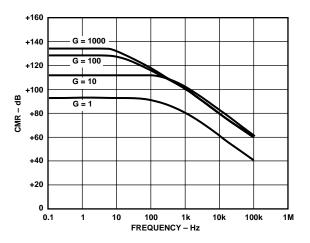


Figure 13. CMR vs. Frequency, RTI, Zero to 1 $k\!\Omega$ Source Imbalance

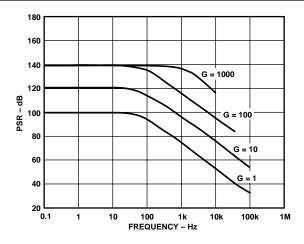


Figure 14. Positive PSR vs. Frequency, RTI (G = 1–1000)

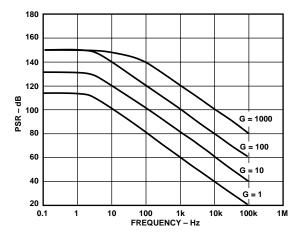


Figure 15. Negative PSR vs. Frequency, RTI (G = 1-1000)

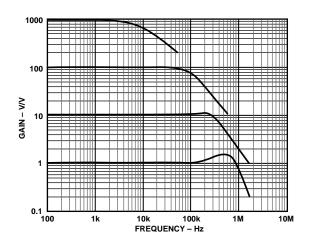


Figure 16. Gain vs. Frequency

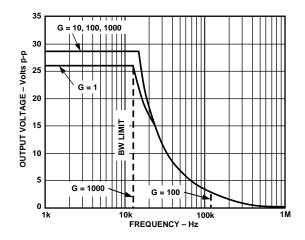


Figure 17. Large Signal Frequency Response

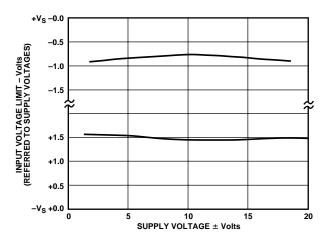


Figure 18. Input Voltage Range vs. Supply Voltage, G = 1

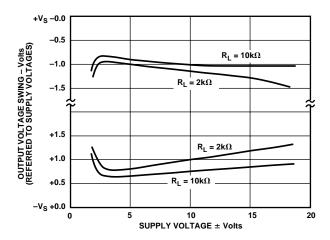


Figure 19. Output Voltage Swing vs. Supply Voltage, G = 10

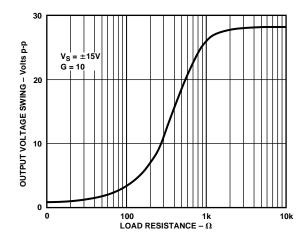


Figure 20. Output Voltage Swing vs. Load Resistance

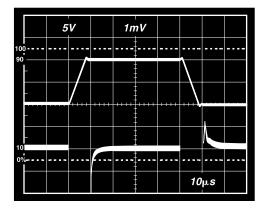


Figure 21. Large Signal Pulse Response and Settling Time G = 1 (0.5 mV = 0.01%)

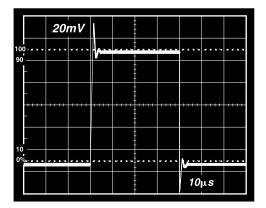


Figure 22. Small Signal Response, G = 1, R_L = 2 k Ω , C_L = 100 pF

	5	v	1n	ηV				
100		····	 ••••		· · · ·			••••
90						\backslash		
_		7						
-								
-								
0%			 ••••					
						10	μS	

Figure 23. Large Signal Response and Settling Time, G = 10 (0.5 mV = 001%)

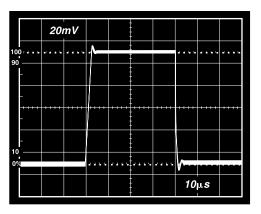


Figure 24. Small Signal Response, G = 10, R_L = 2 k Ω , C_L = 100 pF

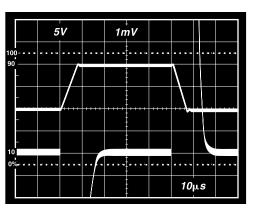


Figure 25. Large Signal Response and Settling Time, G = 100 (0.5 mV = 0.01%)

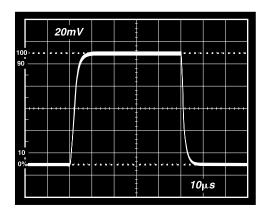


Figure 26. Small Signal Pulse Response, G = 100, $R_L = 2 \ k\Omega$, $C_L = 100 \ pF$

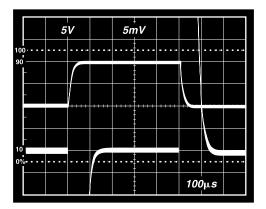


Figure 27. Large Signal Response and Settling Time, G = 1000 (0.5 mV = 0.01%)

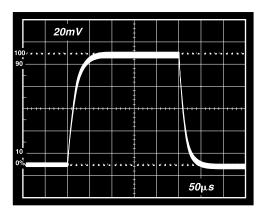


Figure 28. Small Signal Pulse Response, G = 1000, $R_L = 2 \ k\Omega$, $C_L = 100 \ pF$

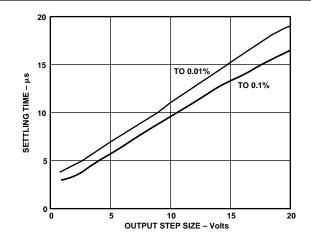


Figure 29. Settling Time vs. Step Size (G = 1)

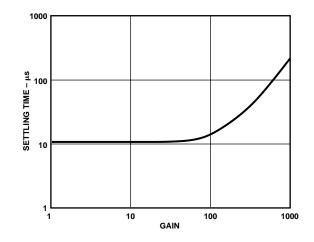


Figure 30. Settling Time to 0.01% vs. Gain, for a 10 V Step

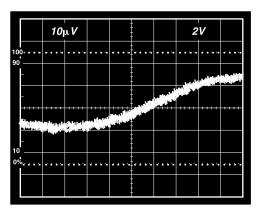


Figure 31a. Gain Nonlinearity, G = 1, $R_L = 10 \ k\Omega$ (10 μ V = 1 ppm)

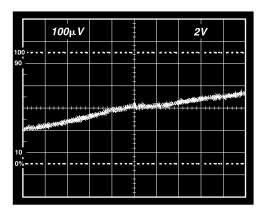


Figure 31b. Gain Nonlinearity, G = 100, R_L = 10 k Ω (100 μ V = 10 ppm)

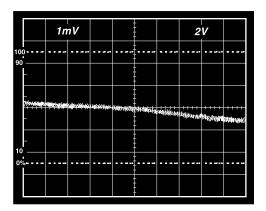


Figure 31c. Gain Nonlinearity, G = 1000, $R_L = 10 k\Omega$ (1 mV = 100 ppm)

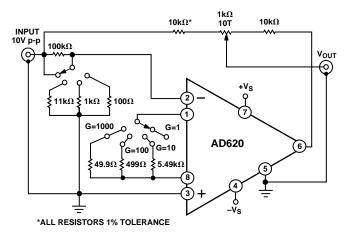


Figure 32. Settling Time Test Circuit

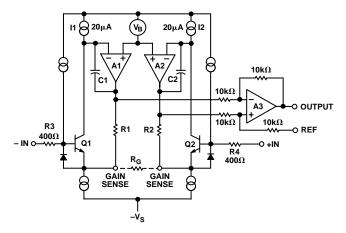


Figure 33. Simplified Schematic of AD620

THEORY OF OPERATION

The AD620 is a monolithic instrumentation amplifier based on a modification of the classic three op amp approach. Absolute value trimming allows the user to program gain *accurately* (to 0.15% at G = 100) with only one resistor. Monolithic construction and laser wafer trimming allow the tight matching and tracking of circuit components, thus ensuring the high level of performance inherent in this circuit.

The input transistors Q1 and Q2 provide a single differentialpair bipolar input for high precision (Figure 33), yet offer 10× lower Input Bias Current thanks to Superβeta processing. Feedback through the Q1-A1-R1 loop and the Q2-A2-R2 loop maintains constant collector current of the input devices Q1, Q2 thereby impressing the input voltage across the external gain setting resistor R_G. This creates a differential gain from the inputs to the A1/A2 outputs given by $G = (R1 + R2)/R_G + 1$. The unity-gain subtracter A3 removes any common-mode signal, yielding a single-ended output referred to the REF pin potential.

The value of R_G also determines the transconductance of the preamp stage. As R_G is reduced for larger gains, the transconductance increases asymptotically to that of the input transistors. This has three important advantages: (a) Open-loop gain is boosted for increasing programmed gain, thus reducing gain-related errors. (b) The gain-bandwidth product (determined by C1, C2 and the preamp transconductance) increases with programmed gain, thus optimizing frequency response. (c) The input voltage noise is reduced to a value of 9 nV/ $\overline{\text{Hz}}$, determined mainly by the collector current and base resistance of the input devices.

The internal gain resistors, R1 and R2, are trimmed to an absolute value of 24.7 k Ω , allowing the gain to be programmed accurately with a single external resistor.

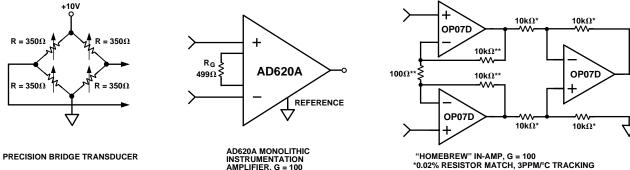
The gain equation is then

$$G = \frac{49.4 \ k\Omega}{R_G} + 1$$

so that

$$R_G = \frac{49.4 \, k\Omega}{G - 1}$$

AD620


Make vs. Buy: A Typical Bridge Application Error Budget

The AD620 offers improved performance over "homebrew" three op amp IA designs, along with smaller size, fewer components and $10\times$ lower supply current. In the typical application, shown in Figure 34, a gain of 100 is required to amplify a bridge output of 20 mV full scale over the industrial temperature range of -40° C to $+85^{\circ}$ C. The error budget table below shows how to calculate the effect various error sources have on circuit accuracy.

Regardless of the system in which it is being used, the AD620 provides greater accuracy, and at low power and price. In simple

systems, absolute accuracy and drift errors are by far the most significant contributors to error. In more complex systems with an intelligent processor, an autogain/autozero cycle will remove all absolute accuracy and drift errors leaving only the resolution errors of gain nonlinearity and noise, thus allowing full 14-bit accuracy.

Note that for the homebrew circuit, the OP07 specifications for input voltage offset and noise have been multiplied by $\sqrt{2}$. This is because a three op amp type in-amp has two op amps at its inputs, both contributing to the overall input error.

*0.02% RESISTOR MATCH, 3PPM/°C TRACKING **DISCRETE 1% RESISTOR, 100PPM/°C TRACKING SUPPLY CURRENT = 15mA MAX

SUPPLY CURRENT = 1.3mA MAX

Figure 34. Make vs. Buy

Table I.	Make vs.	Buy Error	Budget
----------	----------	------------------	--------

	AD620 Circuit	"Homebrew" Circuit	Error, ppn	n of Full Scale
Error Source	Calculation	Calculation	AD620	Homebrew
ABSOLUTE ACCURACY at $T_A = +25^{\circ}C$				
Input Offset Voltage, µV	125 μV/20 mV	$(150 \ \mu V \times \sqrt{2})/20 \ mV$	6,250	10,607
Output Offset Voltage, µV	1000 μV/100/20 mV	$((150 \ \mu V \times 2)/100)/20 \ mV$	500	150
Input Offset Current, nA	$2 \text{ nA} \times 350 \Omega/20 \text{ mV}$	(6 nA × 350 Ω)/20 mV	18	53
CMR, dB	110 dB→3.16 ppm, × 5 V/20 mV	(0.02% Match × 5 V)/20 mV/100	791	500
		Total Absolute Error	7,558	11,310
DRIFT TO +85°C				
Gain Drift, ppm/°C	(50 ppm + 10 ppm) × 60°C	100 ppm/°C Track × 60°C	3,600	6,000
Input Offset Voltage Drift, µV/°C	$1 \mu\text{V}^\circ\text{C} \times 60^\circ\text{C}/20 \text{mV}$	$(2.5 \mu\text{V/}^{\circ}\text{C} \times \sqrt{2} \times 60^{\circ}\text{C})/20 \text{ mV}$	3,000	10,607
Output Offset Voltage Drift, $\mu V/^{\circ}C$	$15 \ \mu V^{\circ}C \times \ 60^{\circ}C/100/20 \ mV$	$(2.5 \ \mu V)^{\circ}C \times 2 \times 60^{\circ}C)/100/20 \ mV$	450	150
		Total Drift Error	7,050	16,757
RESOLUTION				
Gain Nonlinearity, ppm of Full Scale	40 ppm	40 ppm	40	40
Typ 0.1 Hz–10 Hz Voltage Noise, µV p-p	0.28 μV p-p/20 mV	$(0.38 \ \mu V \ p-p \times \sqrt{2})/20 \ mV$	14	27
		Total Resolution Error	54	67
		Grand Total Error	14,662	28,134

G = 100, $V_S = \pm 15$ V.

(All errors are min/max and referred to input.)

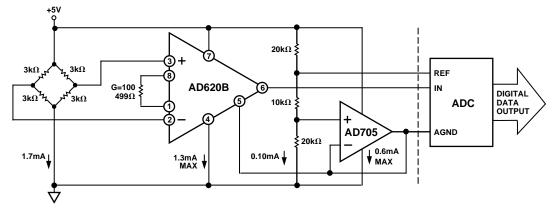


Figure 35. A Pressure Monitor Circuit which Operates on a +5 V Single Supply

Pressure Measurement

Although useful in many bridge applications such as weigh scales, the AD620 is especially suitable for higher resistance pressure sensors powered at lower voltages where small size and low power become more significant.

Figure 35 shows a 3 k Ω pressure transducer bridge powered from +5 V. In such a circuit, the bridge consumes only 1.7 mA. Adding the AD620 and a buffered voltage divider allows the signal to be conditioned for only 3.8 mA of total supply current.

Small size and low cost make the AD620 especially attractive for voltage output pressure transducers. Since it delivers low noise and drift, it will also serve applications such as diagnostic noninvasive blood pressure measurement.

Medical ECG

The low current noise of the AD620 allows its use in ECG monitors (Figure 36) where high source resistances of 1 M Ω or higher are not uncommon. The AD620's low power, low supply voltage requirements, and space-saving 8-lead mini-DIP and SOIC package offerings make it an excellent choice for battery powered data recorders.

Furthermore, the low bias currents and low current noise coupled with the low voltage noise of the AD620 improve the dynamic range for better performance.

The value of capacitor C1 is chosen to maintain stability of the right leg drive loop. Proper safeguards, such as isolation, must be added to this circuit to protect the patient from possible harm.

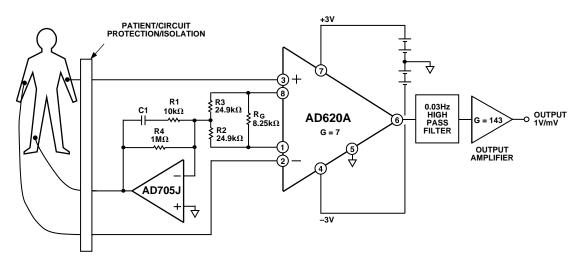


Figure 36. A Medical ECG Monitor Circuit

Precision V-I Converter

The AD620, along with another op amp and two resistors, makes a precision current source (Figure 37). The op amp buffers the reference terminal to maintain good CMR. The output voltage V_X of the AD620 appears across R1, which converts it to a current. This current less only, the input bias current of the op amp, then flows out to the load.

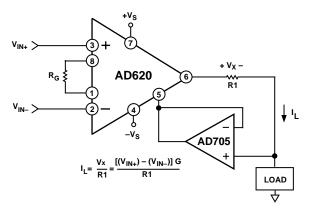


Figure 37. Precision Voltage-to-Current Converter (Operates on 1.8 mA, ± 3 V)

GAIN SELECTION

The AD620's gain is resistor programmed by R_G , or more precisely, by whatever impedance appears between Pins 1 and 8. The AD620 is designed to offer accurate gains using 0.1%-1% resistors. Table II shows required values of R_G for various gains. Note that for G = 1, the R_G pins are unconnected ($R_G = \infty$). For any arbitrary gain R_G can be calculated by using the formula:

$$R_G = \frac{49.4 \, k\Omega}{G - 1}$$

To minimize gain error, avoid high parasitic resistance in series with R_G ; to minimize gain drift, R_G should have a low TC—less than 10 ppm/°C—for the best performance.

Table II. Required Values of Gain Resistors

1% Std Table Value of R_G , Ω	Calculated Gain	0.1% Std Table Value of R_G , Ω	Calculated Gain
49.9 k	1.990	49.3 k	2.002
12.4 k	4.984	12.4 k	4.984
5.49 k	9.998	5.49 k	9.998
2.61 k	19.93	2.61 k	19.93
1.00 k	50.40	1.01 k	49.91
499	100.0	499	100.0
249	199.4	249	199.4
100	495.0	98.8	501.0
49.9	991.0	49.3	1,003

INPUT AND OUTPUT OFFSET VOLTAGE

The low errors of the AD620 are attributed to two sources, input and output errors. The output error is divided by G when referred to the input. In practice, the input errors dominate at high gains and the output errors dominate at low gains. The total V_{OS} for a given gain is calculated as:

Total Error RTI = input error + (output error/G)

Total Error RTO = (input error \times G) + output error

REFERENCE TERMINAL

The reference terminal potential defines the zero output voltage, and is especially useful when the load does not share a precise ground with the rest of the system. It provides a direct means of injecting a precise offset to the output, with an allowable range of 2 V within the supply voltages. Parasitic resistance should be kept to a minimum for optimum CMR.

INPUT PROTECTION

The AD620 features 400 Ω of series thin film resistance at its inputs, and will safely withstand input overloads of up to ± 15 V or ± 60 mA for several hours. This is true for all gains, and power on and off, which is particularly important since the signal source and amplifier may be powered separately. For longer time periods, the current should not exceed 6 mA ($I_{\rm IN} \leq V_{\rm IN}/400~\Omega$). For input overloads beyond the supplies, clamping the inputs to the supplies (using a low leakage diode such as an FD333) will reduce the required resistance, yielding lower noise.

RF INTERFERENCE

All instrumentation amplifiers can rectify out of band signals, and when amplifying small signals, these rectified voltages act as small dc offset errors. The AD620 allows direct access to the input transistor bases and emitters enabling the user to apply some first order filtering to unwanted RF signals (Figure 38), where RC $\approx 1/(2 \pi f)$ and where $f \ge$ the bandwidth of the AD620; C ≤ 150 pF. Matching the extraneous capacitance at Pins 1 and 8 and Pins 2 and 3 helps to maintain high CMR.

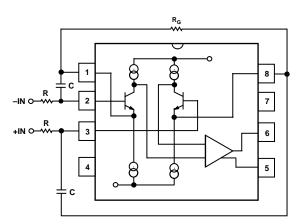


Figure 38. Circuit to Attenuate RF Interference

AD620

COMMON-MODE REJECTION

Instrumentation amplifiers like the AD620 offer high CMR, which is a measure of the change in output voltage when both inputs are changed by equal amounts. These specifications are usually given for a full-range input voltage change and a specified source imbalance.

For optimal CMR the reference terminal should be tied to a low impedance point, and differences in capacitance and resistance should be kept to a minimum between the two inputs. In many applications shielded cables are used to minimize noise, and for best CMR over frequency the shield should be properly driven. Figures 39 and 40 show active data guards that are configured to improve ac common-mode rejections by "bootstrapping" the capacitances of input cable shields, thus minimizing the capacitance mismatch between the inputs.

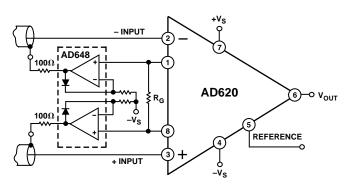


Figure 39. Differential Shield Driver

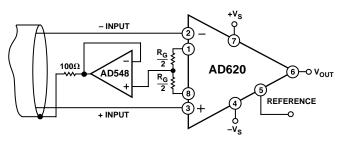


Figure 40. Common-Mode Shield Driver

GROUNDING

Since the AD620 output voltage is developed with respect to the potential on the reference terminal, it can solve many grounding problems by simply tying the REF pin to the appropriate "local ground."

In order to isolate low level analog signals from a noisy digital environment, many data-acquisition components have separate analog and digital ground pins (Figure 41). It would be convenient to use a single ground line; however, current through ground wires and PC runs of the circuit card can cause hundreds of millivolts of error. Therefore, separate ground returns should be provided to minimize the current flow from the sensitive points to the system ground. These ground returns must be tied together at some point, usually best at the ADC package as shown.

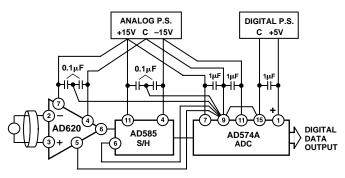


Figure 41. Basic Grounding Practice

GROUND RETURNS FOR INPUT BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of an amplifier. There must be a direct return path for these currents; therefore, when amplifying "floating" input

+Vs - INPUT R_G AD620 6 Vout LOAD + INPUT 3 -Vs TO POWER SUPPLY GROUND

Figure 42a. Ground Returns for Bias Currents with Transformer Coupled Inputs

sources such as transformers, or ac-coupled sources, there must be a dc path from each input to ground as shown in Figure 42. Refer to the *Instrumentation Amplifier Application Guide* (free from Analog Devices) for more information regarding in amp applications.

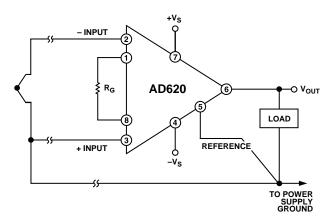


Figure 42b. Ground Returns for Bias Currents with Thermocouple Inputs

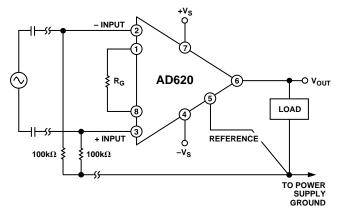
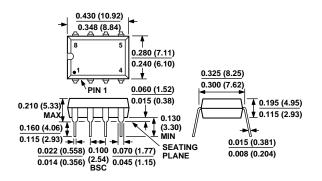
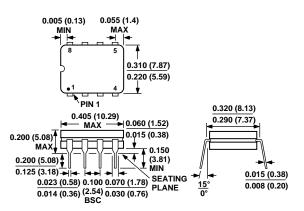
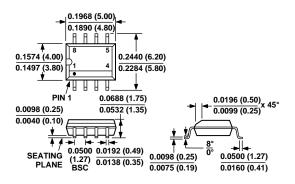



Figure 42c. Ground Returns for Bias Currents with AC Coupled Inputs


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).


Plastic DIP (N-8) Package

Cerdip (Q-8) Package

SOIC (SO-8) Package

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

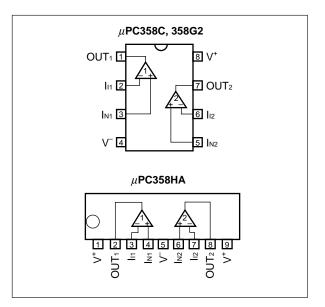
BIPOLAR ANALOG INTEGRATED CIRCUIT


μ**PC358**

LOW POWER DUAL OPERATIONAL AMPLIFIERS

DESCRIPTION

The μ PC358 is a dual operational amplifier which is designed to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the power supply current drain is very low. Further advantage, the input common-mode voltage range includes ground in the linear mode.


EQUIVALENT CIRCUIT (1/2 Circuit)

FEATURES

- Internally frequency compensation
- Wide output voltage swing V⁻ to V⁺ –1.5 V
- Common mode input voltage range includes V⁻
- Wide supply voltage range
 - 3 V to 30 V (Single)
 - ± 1.5 V to ± 15 V (Split)
- Output short circuit protection

PIN CONFIGURATION (Marking Side)

ORDERING INFORMATION

Part Number	Package
μPC358C	8-pin plastic DIP (300 mil)
μ PC358G2	8-pin plastic SOP (225 mil)
μ PC358HA	9-pin slim SIP

The information in this document is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (T_A = 25 $^{\circ}$ C)

	Parameter		Symbol	Ratings	Unit
Voltage between V ⁺ and	d V-	Note 1	V+ - V-	-0.3 to +32	V
Differential Input Voltag	e		Vid	±32	V
Input Voltage		Note 2	Vi	V ⁻ -0.3 to V ⁻ +32	V
Output Voltage		Note 3	Vo	V ⁻ -0.3 to V ⁺ +0.3	V
Power Dissipation	C Package	Note 4	Рт	350	mW
	G2 Package	Note 5		440	mW
	HA Package	Note 4		350	mW
Output Short Circuit Du	ration	Note 6		Indefinite	s
Operating Ambient Temperature		TA	-20 to +80	°C	
Storage Temperature			Tstg	-55 to +125	°C

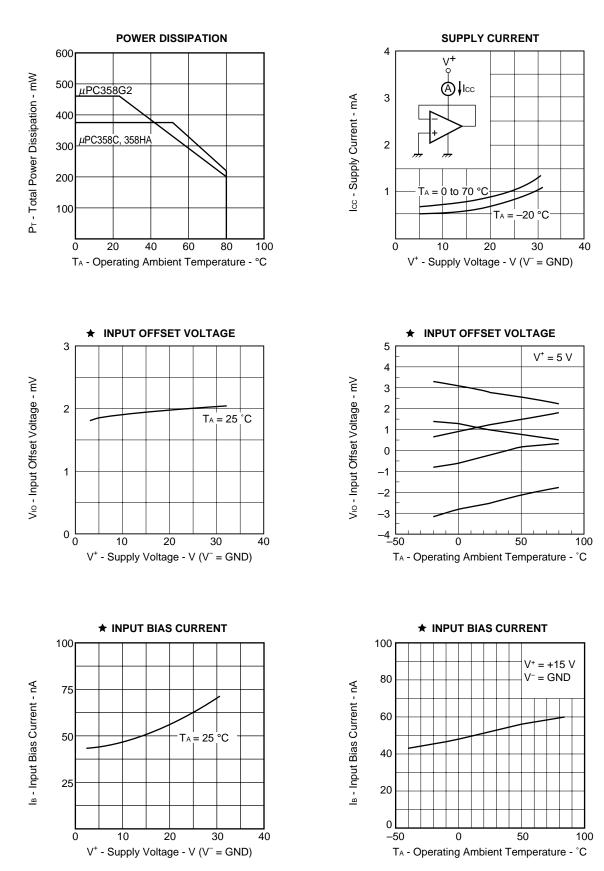
Notes 1. Reverse connection of supply voltage can cause destruction.

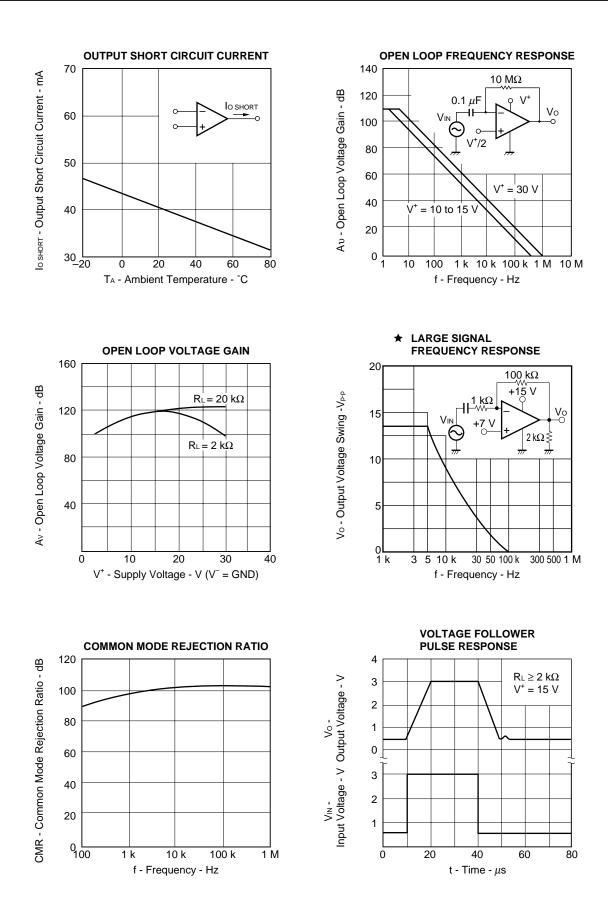
2. The input voltage should be allowed to input without damage or destruction independent of the magnitude of V⁺. Either input signal should not be allowed to go negative by more than 0.3 V. The normal operation will establish when the both inputs are within the Common Mode Input Voltage Range of electrical characteristics.

- 3. This specification is the voltage which should be allowed to supply to the output terminal from external without damage or destructive. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics.
- 4. Thermal derating factor is -5.0 mW/°C when operating ambient temperature is higher than 55 °C.
- 5. Thermal derating factor is -4.4 mW/°C when operating ambient temperature is higher than 25 °C.
- 6. Pay careful attention to the total power dissipation not to exceed the absolute maximum ratings, Note 4 and Note 5.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage (Split)	V±	±1.5		±15	V
Supply Voltage (V ⁻ = GND)	V+	+3		+30	V

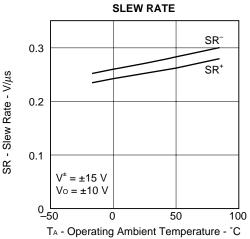

ELECTRICAL CHARACTERISTICS (T_A = 25 °C, V⁺ = +5 V, V⁻ = GND)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Offset Voltage	Vio	Rs = 0 Ω		±2	±7	mV
Input Offset Current	lio			±5	±50	nA
Input Bias Current Note 7	в			45	250	nA
Large Signal Voltage Gain	Av	$R_L \ge 2 \ k\Omega$	25	100		V/mA
Supply Current	lcc	$R_L = \infty$, Io = 0 A, Both Amplifiers		0.7	1.2	mA
Common Mode Rejection Ratio	CMR		65	70		dB
Supply Voltage Rejection Ratio	SVR		65	100		dB
Output Voltage Swing	Vo	$R_{L} = 2 k\Omega$ (Connect to GND)	0		V ⁺ -1.5	V
Common Mode Input Voltage Range	VICM		0		V ⁺ -1.5	V
Output Current (SOURCE)	lo source	$V_{IN}^{+} = +1 V, V_{IN}^{-} = 0 V$	20	40		mA
Output Current (SINK)	lo sink	$V_{IN}^{-} = +1 V, V_{IN}^{+} = 0 V$	10	20		mA
		$V_{IN}^{-} = +1 V, V_{IN}^{+} = 0 V,$ Vo = 200 mV	12	50		μΑ
Channel Separation		f = 1 kHz to 20 kHz		120		dB

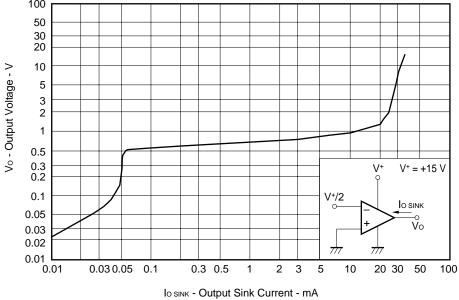
Note 7. Input bias currents flow out from IC. Because each currents are base current of PNP-transistor on input stage.

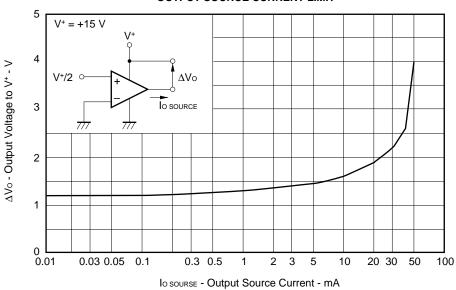
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25 $^{\circ}$ C, TYP.)

NEC



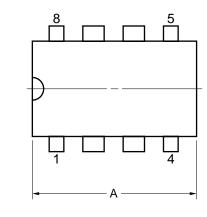
*

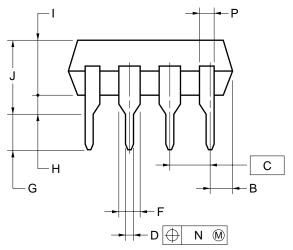

*

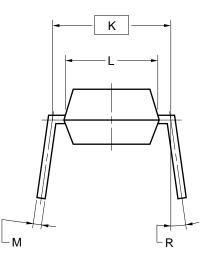

★

Voltage - V Voltage - V Voltage - V Voltage - V Value - V/µs

OUTPUT SINK CURRENT LIMIT

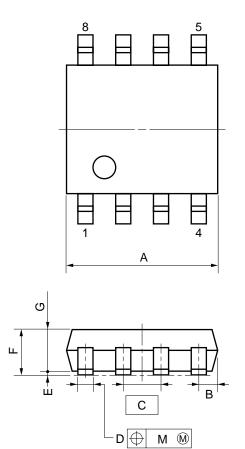






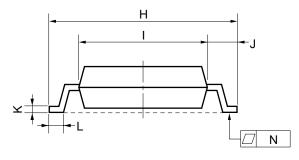
PACKAGE DRAWINGS

8 PIN PLASTIC DIP (300 mil)



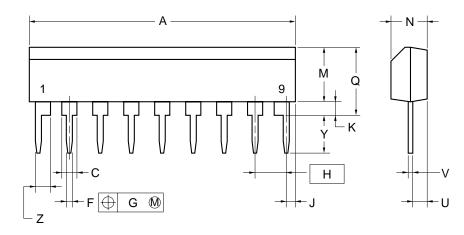
NOTES

- 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	10.16 MAX.	0.400 MAX.
В	1.27 MAX.	0.050 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	1.4 MIN.	0.055 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.25	0.01
Р	0.9 MIN.	0.035 MIN.
R	0~15°	0~15°
		P8C-100-300B,C-1

8 PIN PLASTIC SOP (225 mil)

detail of lead end



NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	5.37 MAX.	0.212 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016^{+0.004}_{-0.003}$
E	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071 MAX.
G	1.49	0.059
Н	6.5±0.3	0.256±0.012
I	4.4	0.173
J	1.1	0.043
к	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.002}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
N	0.10	0.004
Р	3°+7° -3°	3°+7° -3°
		S8GM-50-225B-4

9 PIN PLASTIC SLIM SIP

NOTE

Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	22.86 MAX.	0.900 MAX.
С	1.1 MIN.	0.043 MIN.
F	0.5±0.1	$0.02^{+0.004}_{-0.005}$
G	0.25	0.010
Н	2.54	0.100
J	1.27 MAX.	0.050 MAX.
К	0.51 MIN.	0.020 MIN.
М	5.08 MAX.	0.200 MAX.
Ν	2.8±0.2	$0.11^{+0.009}_{-0.008}$
Q	5.75 MAX.	0.227 MAX.
U	1.5 MAX.	0.059 MAX.
V	$0.25_{-0.05}^{+0.10}$	$0.01^{+0.004}_{-0.003}$
Y	3.2±0.5	0.126±0.02
Z	1.1 MIN.	0.043 MIN.
		P9HA-254B-1

RECOMMENDED SOLDERING CONDITIONS

When soldering these products, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Type of Surface Mount Device

Process	Conditions	Symbol
Infrared ray reflow	Peak temperature: 230 °C or below (Package surface temperature), Reflow time: 30 seconds or less (at 210 °C or higher), Maximum number of reflow processes: 1 time.	IR30-00-1
Vapor phase soldering	Peak temperature: 215 °C or below (Package surface temperature), Reflow time: 40 seconds or less (at 200 °C or higher), Maximum number of reflow processes: 1 time.	VP15-00-1
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or less, Maximum number of flow processes: 1 time, Pre-heating temperature: 120 °C or below (Package surface temperature).	WS60-00-1
Partial heating method	Pin temperature: 300 °C or below, Heat time: 3 seconds or less (Per each side of the device).	-

µPC358G2: 8-pin plastic SOP (225 mil)

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

Types of Through-hole Device

μ PC358C: 8-pin plastic DIP (300 mil) μ PC358HA: 9-pin slim SIP

Process	Conditions
Wave soldering (only to leads)	Solder temperature: 260 °C or below, Flow time: 10 seconds or less.
Partial heating method	Pin temperature: 300 °C or below, Heat time: 3 seconds or less (per each lead).

Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure that the package body does not get jet soldered.

REFERENCE DOCUMENTS

QUALITY GRADES ON NEC SEMICONDUCTOR DEVICES	C11531E
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL	C10535E
IC PACKAGE MANUAL	C10943X
GUIDE TO QUALITY ASSUARANCE FOR SEMICONDUCTOR DEVICES	MEI-1202
SEMICONDUCTORS SELECTION GUIDE	X10679E
NEC SEMICONDUCTOR DEVICE RELIABILITY/	IEI-1212
QUALITY CONTROL SYSTEM - STANDARD LINEAR IC	

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

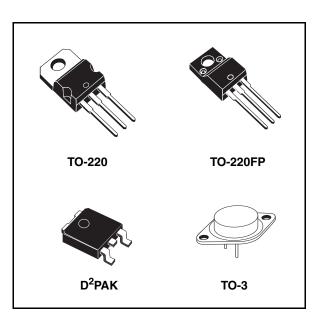
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

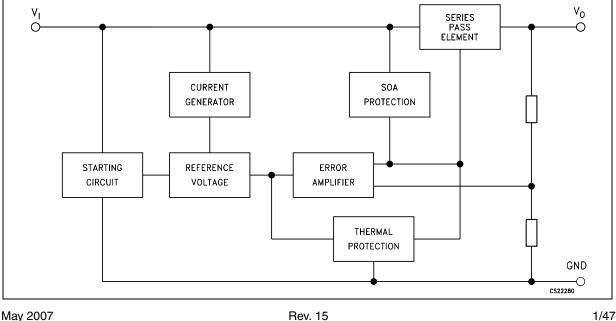
Anti-radioactive design is not implemented in this product.

L7800 series


Positive voltage regulators

Features

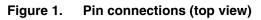
- Output current to 1.5A
- Output voltages of 5; 5.2; 6; 8; 8.5; 9; 10; 12; 15; 18; 20; 24V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

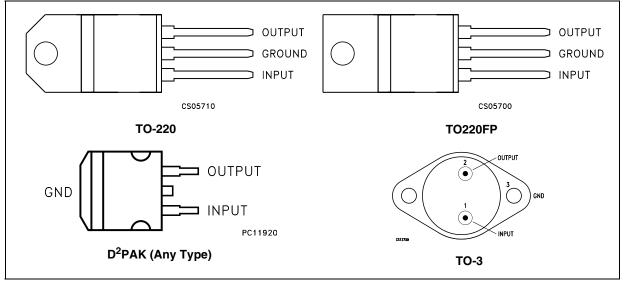

Description

The L7800 series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed

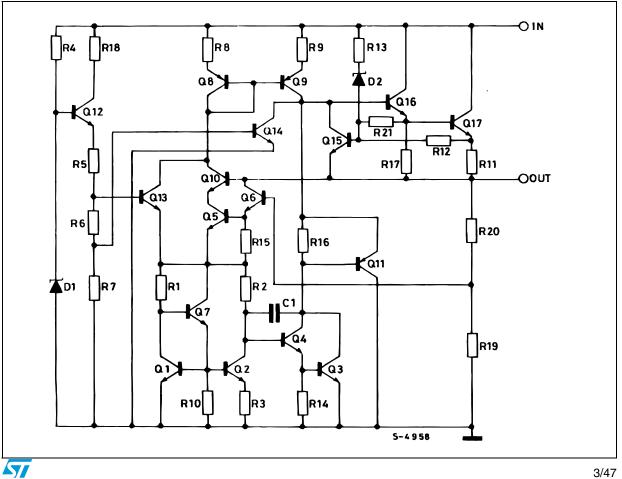
primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Schematic diagram




Contents

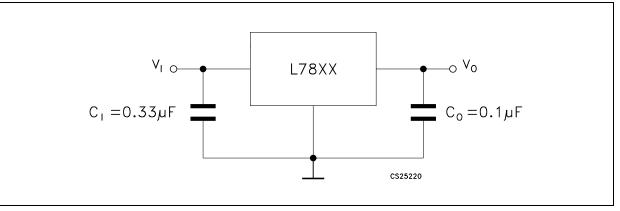
1	Pin configuration
2	Maximum ratings
3	Test circuits
4	Electrical characteristics
5	Typical performance
6	Package mechanical data 36
7	Order code
8	Revision history



1 Pin configuration

Figure 2. Schematic diagram

2 Maximum ratings


Symbol	Parameter		Value	Unit		
V		for V_{O} = 5 to 18V	35	V		
VI	DC Input voltage	for V _O = 20, 24V	40	v		
Ι _Ο	Output current		Internally Limited			
PD	Power dissipation		Power dissipation		Internally Limited	
T _{STG}	Storage temperature range		-65 to 150	°C		
		for L7800	-55 to 150	°C		
T _{OP}	Operating junction temperature range	for L7800C	0 to 150	0		

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied


Table 2. Thermal Data

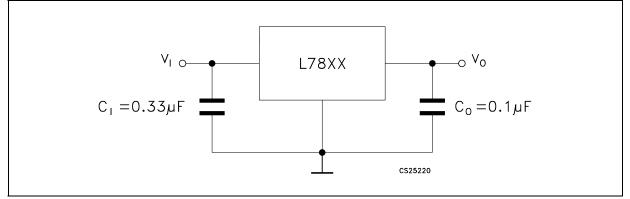
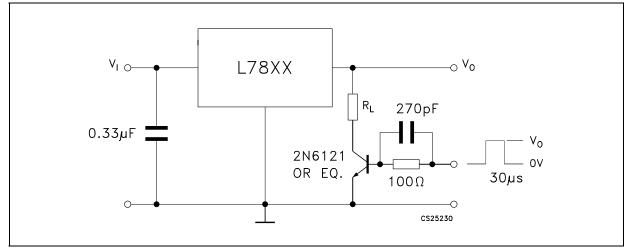

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	35	°C/W

Figure 3. Application circuits



3 Test circuits

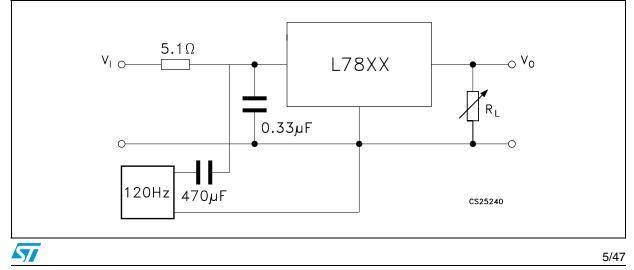


Figure 5. Load regulation

4 Electrical characteristics

Table 3.	Electrical characteristics of L7805 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 10$ V, I_O
	= 500 mA, C_I = 0.33 µF, C_O = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	4.8	5	5.2	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 8$ to 20V	4.65	5	5.35	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 7$ to 25V, $T_{J} = 25^{\circ}C$		3	50	mV
Δ ν Ο()		$V_{I} = 8$ to 12V, $T_{J} = 25^{\circ}C$		1	25	
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			100	mV
ΔνΟ. γ		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			25	111V
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
41		I _O = 5mA to 1A			0.5	mA
ΔI_d	Quiescent current change	V ₁ = 8 to 25 V			0.8	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		0.6		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V ₁ = 8 to 18V, f = 120Hz	68			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ}{\rm C}$	1.3	2.2	3.3	А

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	5.75	6	6.25	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 9$ to 21V	5.65	6	6.35	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 8$ to 25V, $T_{J} = 25^{\circ}C$			60	mV
ΔvO、	Line regulation	$V_{\rm I} = 9$ to 13V, $T_{\rm J} = 25^{\circ}{\rm C}$			30	
$\Delta V_{O}^{(1)}$	Lood regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			100	m)/
$\Delta v_0^{(1)}$	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			30	mV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
		$I_{O} = 5mA$ to 1A			0.5	
ΔI_d	Quiescent current change	V ₁ = 9 to 25V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		0.7		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19V, f = 120Hz	65			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$	1.3	2.2	3.3	Α

Table 4.	Electrical characteristics of L7806 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 11$ V, I_O
	= 500 mA, C _I = 0.33 μ F, C _O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	7.7	8	8.3	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ V _I = 11.5 to 23V	7.6	8	8.4	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 10.5$ to 25V, $T_{J} = 25^{\circ}C$			80	m\/
ΔvO、	Line regulation	$V_{I} = 11$ to 17V, $T_{J} = 25^{\circ}C$			40	mV
$\Delta V_{O}^{(1)}$	Lood regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			100	mV
Δv _O 、,	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			40	
I _d	Quiescent current	$T_J = 25^{\circ}C$			6	mA
41	Quiessent surrent shange	$I_{O} = 5$ mA to 1A			0.5	
ΔI_d	Quiescent current change	V _I = 11.5 to 25V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	$\mu V/V_O$
SVR	Supply voltage rejection	V _I = 11.5 to 21.5V, f = 120Hz	62			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$	1.3	2.2	3.3	Α

Table 5.	Electrical characteristics of L7808 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 14$ V, I_O
	= 500 mA, C _I = 0.33 μ F, C _O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	11.5	12	12.5	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 15.5$ to 27V	11.4	12	12.6	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 14.5$ to 30V, $T_{J} = 25^{\circ}C$			120	mV
Δv _O ()	Line regulation	$V_{I} = 16 \text{ to } 22 \text{V}, \text{ T}_{J} = 25^{\circ}\text{C}$			60	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			100	mV
Δv _O , ,		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			60	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
41	Quiescent current change	I _O = 5mA to 1A			0.5	mA
ΔI_d	Quescent current change	V ₁ = 15 to 30V			0.8	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		1.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	µV/V _O
SVR	Supply voltage rejection	$V_1 = 15$ to 25V, f = 120Hz	61			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$	1.3	2.2	3.3	А

Table 6.	Electrical characteristics of L7812 (refer to the test circuits, T_J = -55 to 150°C, V_I = 19V, I_O
	= 500 mA, C_I = 0.33 µF, C_O = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	14.4	15	15.6	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ V _I = 18.5 to 30V	14.25	15	15.75	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 17.5$ to 30V, $T_{J} = 25^{\circ}C$			150	m\/
ΔvO、	Line regulation	$V_{I} = 20$ to 26V, $T_{J} = 25^{\circ}C$			75	mV
$\Delta V_{O}^{(1)}$	Lood regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			150	
ΔvO、	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			75	mV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
41	Quiescent current change	$I_0 = 5$ mA to 1A			0.5	m 4
ΔI_d		V ₁ = 18.5 to 30V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		1.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5V, f = 120Hz	60			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$	1.3	2.2	3.3	Α

Table 7.	Electrical characteristics of L7815 (refer to the test circuits, $T_J = -55$ to 150°C, $V_I = 23V$, I_O
	= 500 mA, C_I = 0.33 µF, C_O = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	17.3	18	18.7	V
Vo	Output voltage	$I_O = 5mA \text{ to } 1A, P_O \leq 15W$ $V_I = 22 \text{ to } 33V$	17.1	18	18.9	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 21$ to 33V, $T_{J} = 25^{\circ}C$			180	mV
Δ v ₀ , ,	Line regulation	$V_{I} = 24$ to 30V, $T_{J} = 25^{\circ}C$			90	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			180	mV
Δv _O ()		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			90	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
41	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
ΔI_d		V ₁ = 22 to 33V			0.8	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		2.3		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V ₁ = 22 to 32V, f = 120Hz	59			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$	1.3	2.2	3.3	Α

Table 8.	Electrical characteristics of L7818 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 26$ V, I_O
	= 500 mA, C_I = 0.33 µF, C_O = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	19.2	20	20.8	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 24$ to 35V	19	20	21	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 22.5$ to 35V, $T_{J} = 25^{\circ}C$			200	mV
ΔvO、	Line regulation	$V_1 = 26 \text{ to } 32\text{V}, \text{ T}_3 = 25^{\circ}\text{C}$			100	IIIV
a) (1)	Lood regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			200	m)/
$\Delta V_O^{(1)}$	Load regulation	$I_{O} = 250 \text{ to } 750\text{mA}, T_{J} = 25^{\circ}\text{C}$			100	mV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
41	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	
ΔI_d		V ₁ = 24 to 35V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		2.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V ₁ = 24 to 35V, f = 120Hz	58			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		24		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$	1.3	2.2	3.3	Α

Table 9.	Electrical characteristics of L7820 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 28$ V, I_O
	= 500 mA, C _I = 0.33 μ F, C _O = 0.1 μ F unless otherwise specified)

25.2

240

120 240

120

6

0.5

0.8

40

2.5

1.2

3.3

٧

mV

mV

mΑ

mΑ

mV/°C μV/V_O

dB

V

 $\text{m}\Omega$

А

А

22.8

56

1.3

24

3

2

28

0.75

2.2

Vo

 $\Delta V_{O}^{(1)}$

 $\Delta V_{O}^{(1)}$

l_d

 ΔI_d

 $\Delta V_O / \Delta T$

eN

SVR

 V_{d}

R_O

Isc

 I_{scp}

57

Output voltage

Line regulation

Load regulation

Quiescent current

Output voltage drift

Output noise voltage

Dropout voltage Output resistance

Short circuit current

Short circuit peak current

Supply voltage rejection

Quiescent current change

= 500 mA, $C_I = 0.33 \ \mu\text{F}$, $C_O = 0.1 \ \mu\text{F}$ unless otherwise specified)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	23	24	25	V
Ve		I _O = 5mA to 1A, P _O ≤15W	22.8	24	25.2	V

 $V_1 = 28 \text{ to } 38V$

 $T_{J} = 25^{\circ}C$

 $I_O = 5mA$

f = 1 KHz

 $T_{.1} = 25^{\circ}C$

 $I_O = 5mA$ to 1A

V_I = 28 to 38V

 $V_{I} = 27$ to 38V, $T_{J} = 25^{\circ}C$

 $V_{I} = 30$ to 36V, $T_{J} = 25^{\circ}C$

 $I_O = 5$ mA to 1.5A, $T_J = 25^{\circ}C$

 $I_O = 250$ to 750mA, $T_J = 25^{\circ}C$

B =10Hz to 100KHz, $T_J = 25^{\circ}C$

V_I = 28 to 38V, f = 120Hz

I_O = 1A, T_J = 25°C

 $V_{I} = 35V, T_{J} = 25^{\circ}C$

Table 10.	Electrical characteristics of L7824 (refer to the test circuits, $T_J = -55$ to 150°C, $V_I = 33V$, I_O
	= 500 mA, C_{I} = 0.33 µF, C_{O} = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	4.8	5	5.2	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ V _I = 7 to 20V	4.75	5	5.25	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 7 \text{ to } 25V, T_{J} = 25^{\circ}C$		3	100	mV
ΔvO、	Line regulation	$V_{I} = 8$ to 12V, $T_{J} = 25^{\circ}C$		1	50	niv
$\Delta V_{O}^{(1)}$	Lood regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			100	
$\Delta V_0^{(1)}$	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			50	- mV
Ι _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
41	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
ΔI_d		V ₁ = 7 to 25 V			0.8	ma
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1.1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		40		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18V, f = 120Hz	62			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75		А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		А

Table 11.	Electrical characteristics of L7805C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 10$ V,
	$I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}$ unless otherwise specified)

Table 12.	Electrical characteristics of L7852C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 10V$,
	$I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	5.0	5.2	5.4	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 8$ to 20V	4.95	5.2	5.45	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 7$ to 25V, $T_{J} = 25^{\circ}C$		3	105	mV
Δ ν Ο()		$V_{I} = 8$ to 12V, $T_{J} = 25^{\circ}C$		1	52	
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			105	mV
ΔνΟ. γ		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			52	
I _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
41	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	- mA
ΔI_d		V _I = 7 to 25 V			1.3	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		42		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18V, f = 120Hz	61			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75		Α
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.2		Α

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	5.75	6	6.25	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 8$ to 21V	5.7	6	6.3	v
$\Delta V_O^{(1)}$	Line regulation	$V_{I} = 8 \text{ to } 25V, T_{J} = 25^{\circ}C$			120	- mV
		$V_{I} = 9$ to 13V, $T_{J} = 25^{\circ}C$			60	
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			120	- mV
		I _O = 250 to 750mA, T _J = 25°C			60	
I _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
Δl_d	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
		V _I = 8 to 25V			1.3	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		45		μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19V, f = 120Hz	59			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.55		Α
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		Α

Table 13.	Electrical characteristics of L7806C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 11$ V,
	I_{O} = 500 mA, C_{I} = 0.33 µF, C_{O} = 0.1 µF unless otherwise specified)

Table 14.	Electrical characteristics of L7808C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 14V$,
	$I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	7.7	8	8.3	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 10.5$ to 25V	7.6	8	8.4	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 10.5$ to 25V, $T_{J} = 25^{\circ}C$			160	mV
Δ ν Ο()		$V_{I} = 11$ to 17V, $T_{J} = 25^{\circ}C$			80	
a) (1)	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			160	mV
$\Delta V_{O}^{(1)}$		$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			80	
l _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
41	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
ΔI_d		V _I = 10.5 to 25V			1	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		52		μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5V, f = 120Hz	56			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.45		А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		А

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	8.2	8.5	8.8	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 11$ to 26V	8.1	8.5	8.9	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 11$ to 27V, $T_{J} = 25^{\circ}C$			160	mV
Δv _O , ,	Line regulation	$V_{I} = 11.5$ to 17.5V, $T_{J} = 25^{\circ}C$			80	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			160	mV
ΔνΟ、	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			80	mv
۱ _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
41	Quieseent ourrent abange	$I_{O} = 5mA$ to 1A			0.5	
ΔI_d	Quiescent current change	V _I = 11 to 27V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		55		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 22V, f = 120Hz	56			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.45		А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.2		Α

Table 15.	Electrical characteristics of L7885C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I =$
	14.5V, $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 16.	Electrical characteristics of L7809C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 15V$,
	$I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	8.64	9	9.36	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 11.5$ to 26V	8.55	9	9.45	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 11.5$ to 26V, $T_{J} = 25^{\circ}C$			180	mV
Δ ν Ο()		$V_{I} = 12$ to 18V, $T_{J} = 25^{\circ}C$			90	
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			180	mV
Δ ν Ο, γ		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			90	
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			8	mA
41	Quiescent current change	I _O = 5mA to 1A			0.5	mA
ΔI_d	Quiescent current change	V _I = 11.5 to 26V			1	ШA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		70		μV/V _O
SVR	Supply voltage rejection	V ₁ = 12 to 23V, f = 120Hz	55			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.40		Α
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.2		Α

1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	9.6	10	10.4	V
Vo	Output voltage	I_O = 5mA to 1A, P_O ${\leq}15W$ V_I = 12.5 to 26V	9.5	10	10.5	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 12.5$ to 26V, $T_{J} = 25^{\circ}C$			200	mV
Δv_0		$V_{I} = 13.5$ to 19V, $T_{J} = 25^{\circ}C$			100	mv
$\Delta V_{O}^{(1)}$	Lood regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			200	- mV
Δv _O 、,	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			100	
Ι _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
41	Quiessent surrent shange	$I_{O} = 5mA$ to 1A			0.5	m 4
ΔI_d	Quiescent current change	V _I = 12.5 to 26V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		70		μV/V _O
SVR	Supply voltage rejection	V _I = 13 to 23V, f = 120Hz	55			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		Α

Table 17.	Electrical characteristics of L7810C (refer to the test circuits, $T_J = -55$ to 150°C, $V_I = 15V$,
	I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 18.	Electrical characteristics of L7812C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 19$ V,
	I_{O} = 500 mA, C_{I} = 0.33 µF, C_{O} = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	11.5	12	12.5	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ V _I = 14.5 to 27V	11.4	12	12.6	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 14.5$ to 30V, $T_{J} = 25^{\circ}C$			240	mV
Δ ν Ο ^()		$V_{I} = 16 \text{ to } 22 \text{V}, \text{ T}_{J} = 25^{\circ}\text{C}$			120	
ΔV _O ⁽¹⁾	Lood regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			240	m\/
Δ v 0`,	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			120	mV
۱ _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			8	mA
41	Quipagent ourrent change	$I_{O} = 5mA$ to 1A			0.5	mA
ΔI_d	Quiescent current change	V _I = 14.5 to 30V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		75		μV/V _O
SVR	Supply voltage rejection	V ₁ = 15 to 25V, f = 120Hz	55			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.35		А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.2		А

1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Line regulation

Load regulation

Quiescent current

Output voltage drift

Dropout voltage

Output resistance

Short circuit current

Short circuit peak current

Output noise voltage

Supply voltage rejection

Quiescent current change

 $\Delta V_{O}^{(1)}$

 $\Delta V_{O}^{(1)}$

l_d

 ΔI_d

 $\Delta V_O / \Delta T$

eN

SVR

 V_{d}

 R_O

Isc

 I_{scp}

mV

mV

mΑ

mΑ

mV/°C

μV/V_O

dB

V

mΩ

А

А

5

150

300

150

8

0.5

1

-1

90

2

19

0.23

2.2

54

	$I_O = 500 \text{ mA}, C_I = 0.33 \ \mu\text{F}, C_O = 0.1 \ \mu\text{F}$ unless otherwise specified)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	14.5	15	15.6	V	
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ V _I = 17.5 to 30V	14.25	15	15.75	V	
a) (1)		$V_{I} = 17.5$ to 30V, $T_{J} = 25^{\circ}C$			300		

 V_I = 20 to 26V, T_J = 25°C

 $T_J = 25^{\circ}C$

 $I_O = 5mA$

f = 1 KHz

 $T_J = 25^{\circ}C$

 $I_O = 5mA$ to 1A

V_I = 17.5 to 30V

I_O = 1A, T_J = 25°C

 $V_{I} = 35V, T_{J} = 25^{\circ}C$

 $I_O = 5$ mA to 1.5A, $T_J = 25^{\circ}C$

 $I_O = 250$ to 750mA, $T_J = 25^{\circ}C$

B =10Hz to 100KHz, $T_J = 25^{\circ}C$

V_I = 18.5 to 28.5V, f = 120Hz

Table 19.	Electrical characteristics of L7815C (refer to the test circuits, $T_J = -55$ to 150°C, $V_I = 23V$,
	$I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}$ unless otherwise specified)

Load and line regulation are specified at constant junction temperature. Changes in $V_{\rm O}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. 1.

Table 20.	Electrical characteristics of L7818C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 26V$,
	$I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	17.3	18	18.7	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 21$ to 33V	17.1	18	18.9	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 21$ to 33V, $T_{J} = 25^{\circ}C$			360	mV
Δ ν Ο()		$V_{\rm I} = 24$ to 30V, $T_{\rm J} = 25^{\circ}{\rm C}$			180	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			360	m\/
Δ v 0`,		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			180	mV
l _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA
41	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
ΔI_d	Quiescent current change	V ₁ = 21 to 33V			1	ma
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		110		μV/V _O
SVR	Supply voltage rejection	V ₁ = 22 to 32V, f = 120Hz	53			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	$V_{\rm I} = 35V, T_{\rm J} = 25^{\circ}C$		0.20		Α
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.1		Α

1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 21.	Electrical characterist	tics of L7820C (refer to the test circu	iits, T _J =	-55 to 1	50°C, V	, = 28V,
	l _O = 500 mA, C _I = 0.33	μ F, C _O = 0.1 μ F unless otherwise sp	ecified)			

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	19.2	20	20.8	V	
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 23$ to 35V	19	20	21	V	
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 22.5$ to 35V, $T_{J} = 25^{\circ}C$			400	mV	
7 v 0()		$V_{I} = 26 \text{ to } 32V, T_{J} = 25^{\circ}C$			200	111V	
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			400	mV	
Δv _O ()		$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			200		
I _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA	
41	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	0.5 1 mA	
ΔI_d		V _I = 23 to 35V			1		
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C	
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		150		μV/V _O	
SVR	Supply voltage rejection	$V_1 = 24$ to 35V, f = 120Hz	52			dB	
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V	
R _O	Output resistance	f = 1 KHz		24		mΩ	
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.18		Α	
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.1		А	

1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 22.	Electrical characteristics of L7824C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 33$ V,
	$I_0 = 500 \text{ mA}, C_1 = 0.33 \mu\text{F}, C_0 = 0.1 \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	$T_J = 25^{\circ}C$	23	24	25	V	
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 27$ to 38V	22.8	24	25.2	V	
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 27$ to 38V, $T_{J} = 25^{\circ}C$			480	mV	
Δ ν Ο()		$V_{\rm I} = 30$ to 36V, $T_{\rm J} = 25^{\circ}{\rm C}$			240	IIIV	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			480	mV	
Δ v 0`,		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			240		
I _d	Quiescent current	$T_J = 25^{\circ}C$			8	mA	
41	Quiessent current change	$I_{O} = 5$ mA to 1A			0.5	5 mA	
ΔI_d	Quiescent current change	V ₁ = 27 to 38V			1		
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1.5		mV/°C	
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		170		μV/V _O	
SVR	Supply voltage rejection	V ₁ = 28 to 38V, f = 120Hz	50			dB	
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V	
R _O	Output resistance	f = 1 KHz		28		mΩ	
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.15		А	
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.1		Α	

 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Typical performance 5

Figure 7. Dropout voltage vs junction temperature

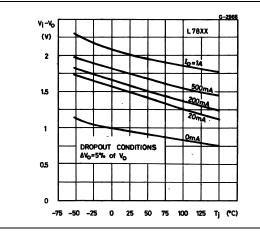


Figure 9. Supply voltage rejection vs frequency

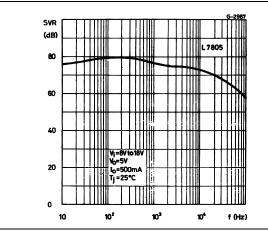


Figure 8. Peak output current vs input/output differential voltage

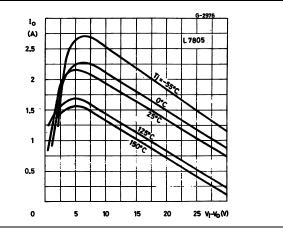
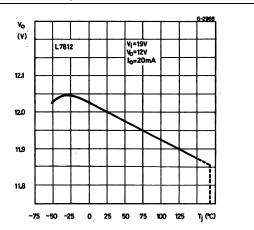
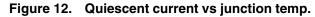
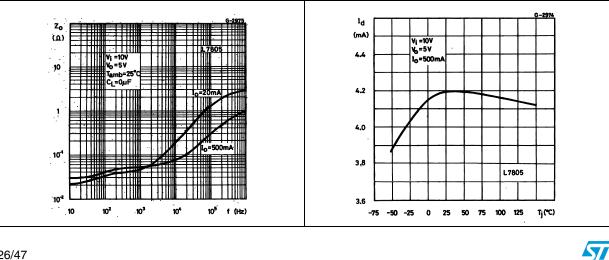
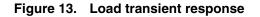





Figure 10. Output voltage vs junction temperature

2972/1 Vi

15


10

5

0

10 t(µs)

L7805

INPUT VOLTAGE

OUTPUT VOLTAGE

∆V_O (mV)

20

10

0

-10

-20

0

lo=500mA Vo=5V

2

4

6

8

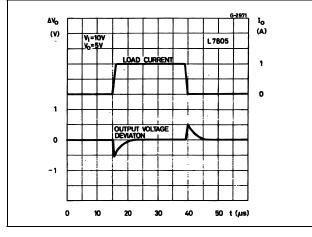
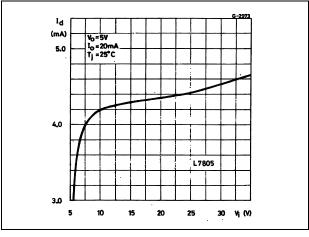
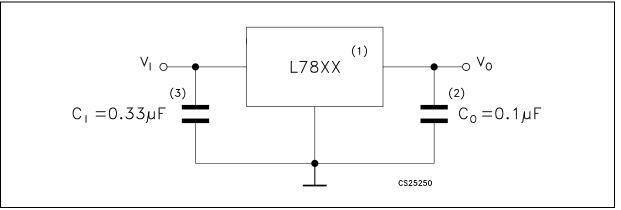
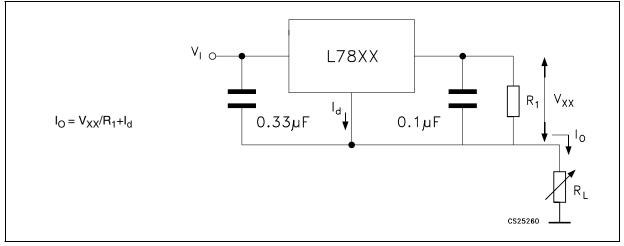
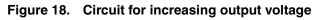


Figure 15. Quiescent current vs input voltage


Figure 16. Fixed output regulator



- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 17. Current regulator

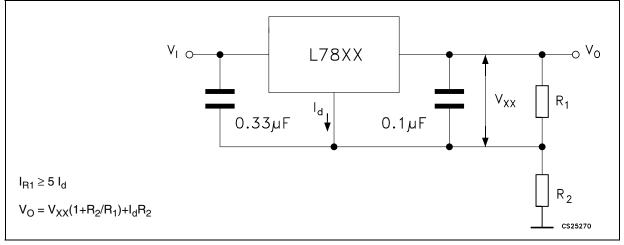


Figure 19. Adjustable output regulator (7 to 30V)

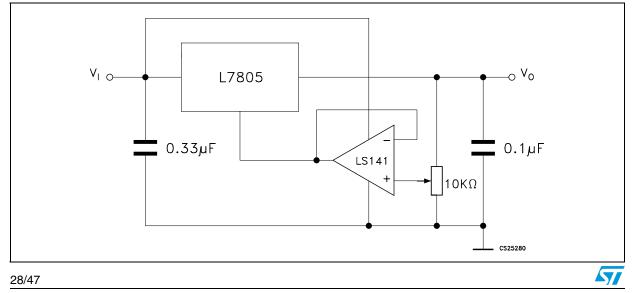


Figure 20. 0.5 to 10V Regulator

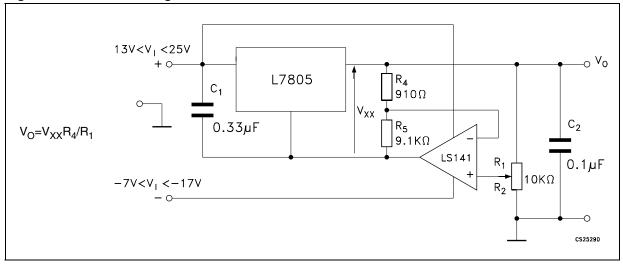
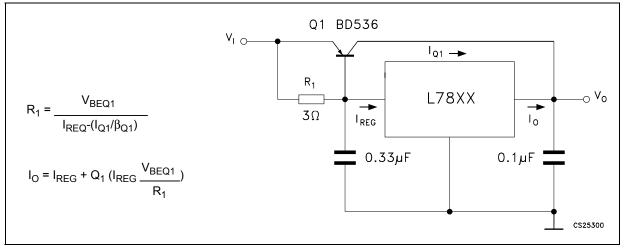
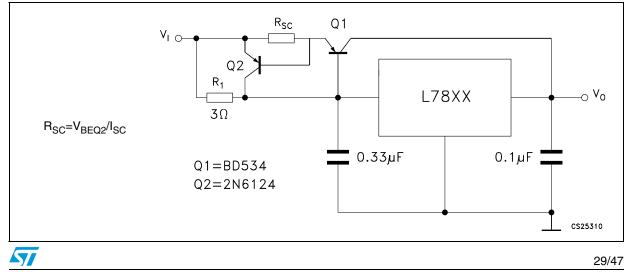
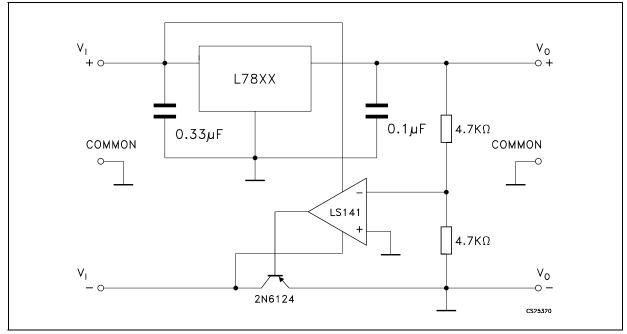
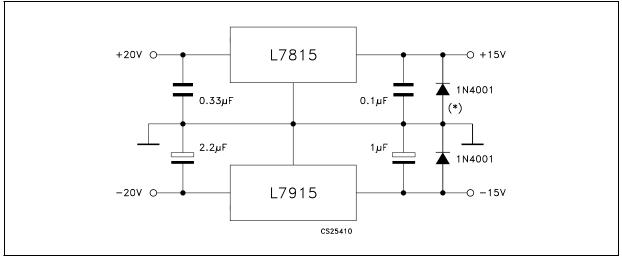
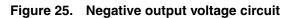



Figure 21. High current voltage regulator

Figure 22. High output current with short circuit protection


Figure 23. Tracking voltage regulator

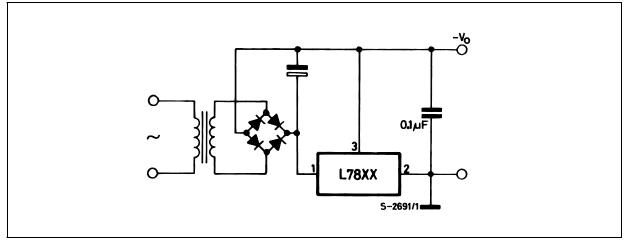
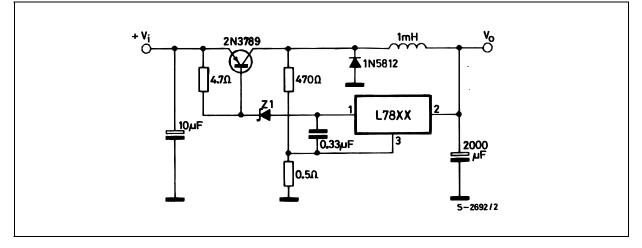
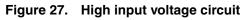


Figure 24. Split power supply (± 15V - 1 A)




* Against potential latch-up problems.

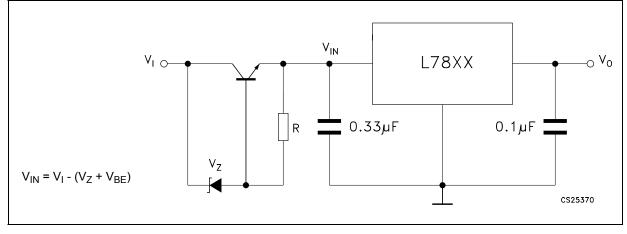
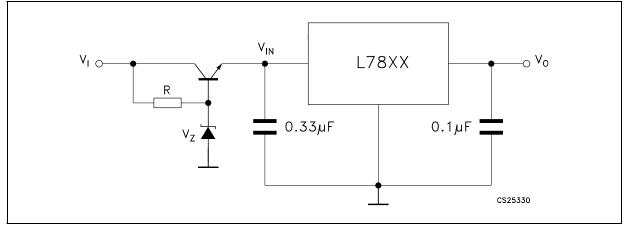
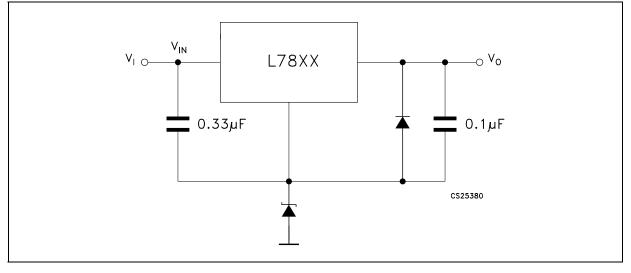
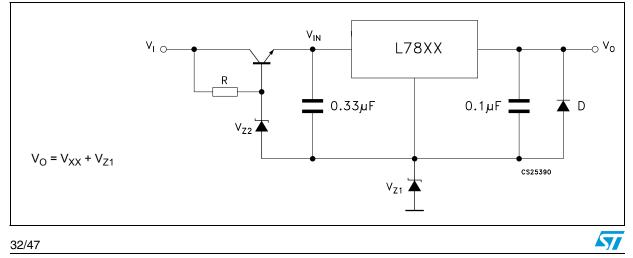


Figure 26. Switching regulator




57



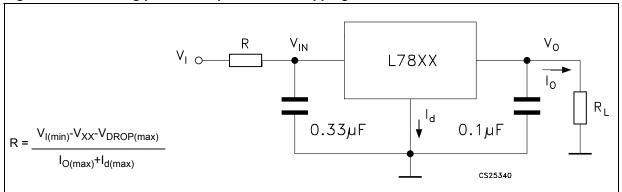
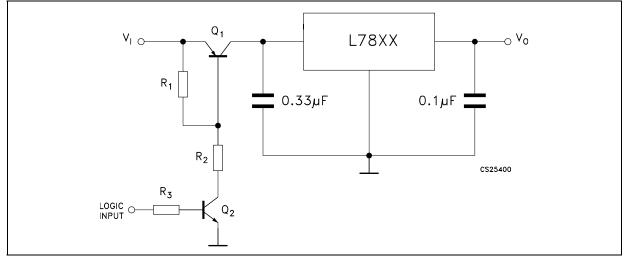
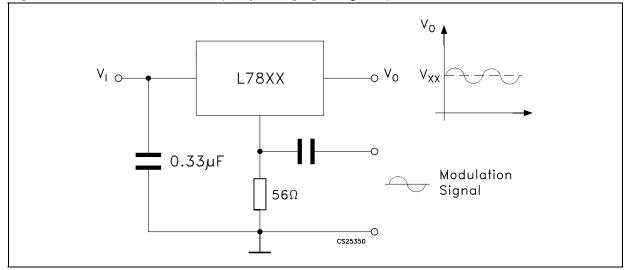
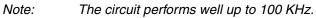
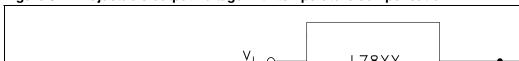


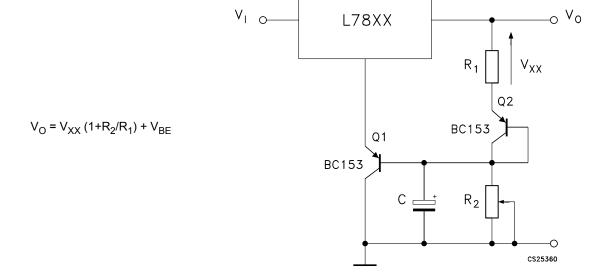
Figure 29. High output voltage regulator

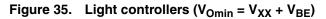

Figure 30. High input and output voltage

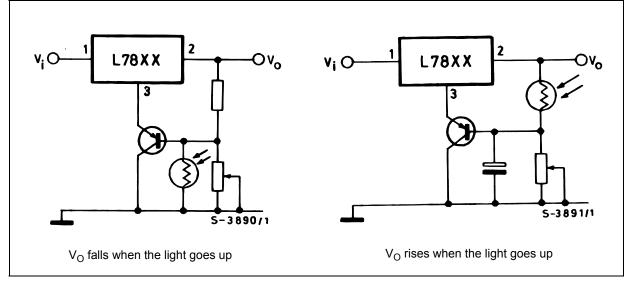


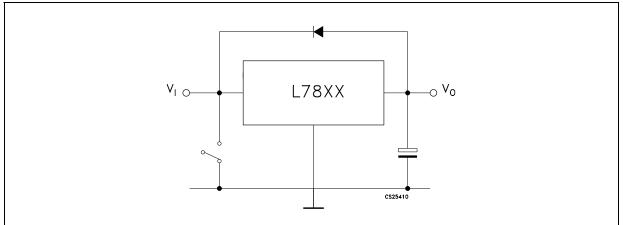

Figure 31. Reducing power dissipation with dropping resistor


Figure 32. Remote shutdown


Figure 33. Power AM modulator (unity voltage gain, $I_0 \le 0.5$)



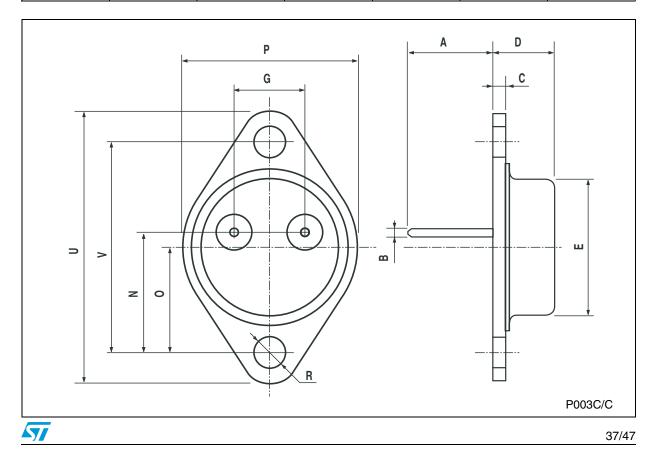




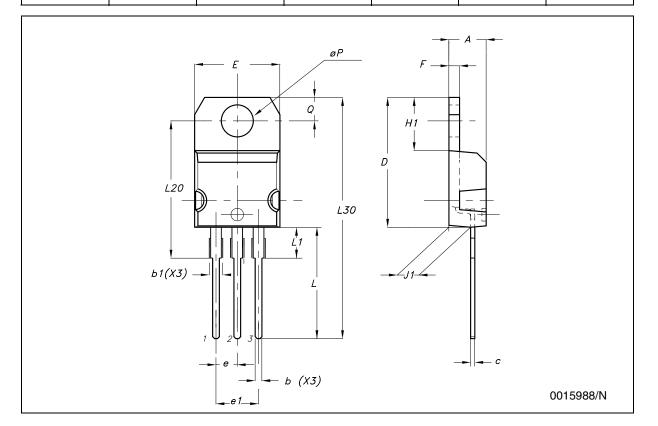
Note: Q_2 is connected as a diode in order to compensate the variation of the $Q_1 V_{BE}$ with the temperature. C allows a slow rise time of the V_0 .

Figure 36. Protection against input short-circuit with high capacitance loads

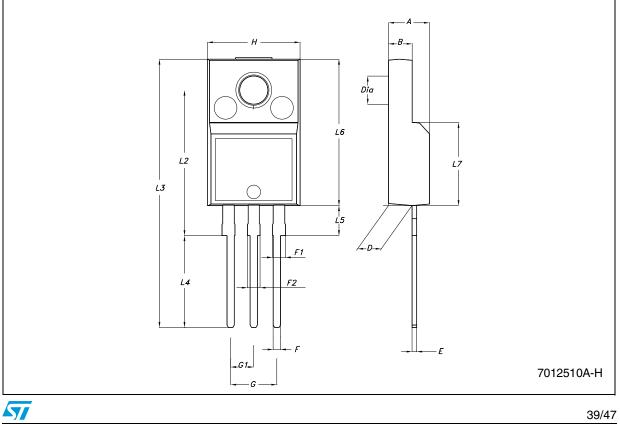
 Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 32) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

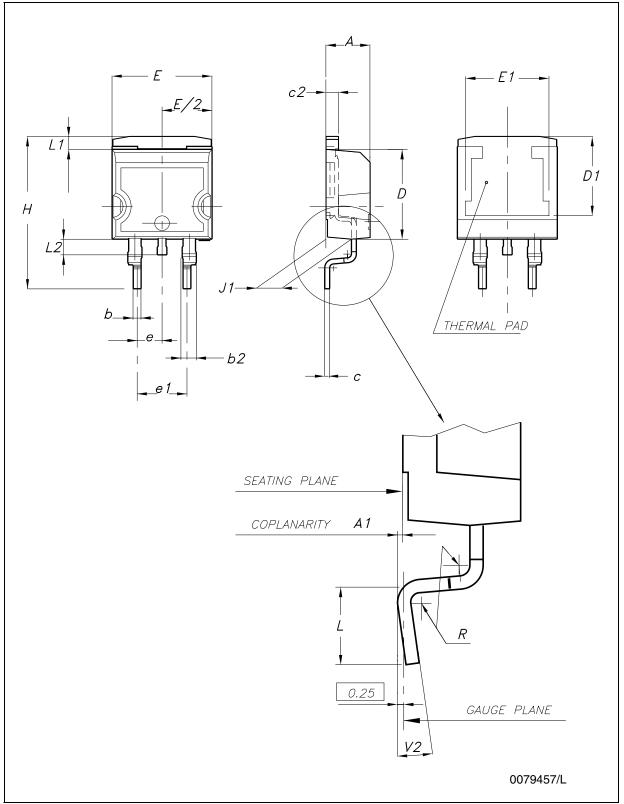

6 Package mechanical data

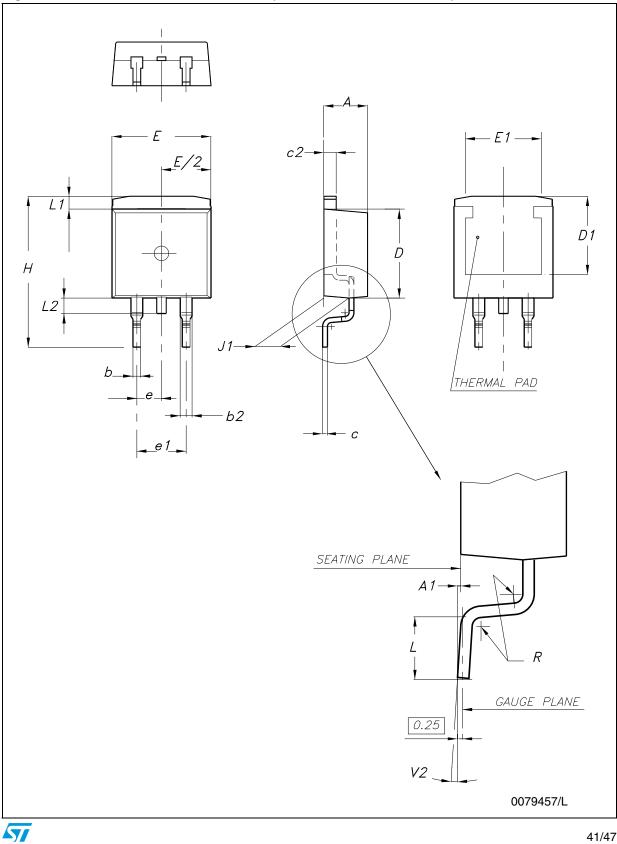
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.


TO-3 MECHANICAL DATA

DIM.	1	mm.		inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
Ν		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	




DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.067
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.600		0.620
Е	10.0		10.40	0.393		0.409
е	2.4		2.7	0.094		0.106
e1	4.95		5.15	0.194		0.203
F	1.23		1.32	0.048		0.051
H1	6.2		6.6	0.244		0.260
J1	2.40		2.72	0.094		0.107
L	13.0		14.0	0.511		0.551
L1	3.5		3.93	0.137		0.154
L20		16.4			0.645	
L30		28.9			1.138	
φP	3.75		3.85	0.147		0.151



DIM.		mm.		inch		
DIWI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

Figure 37. DRAWING DIMENSION D²PAK (TYPE STD-ST)

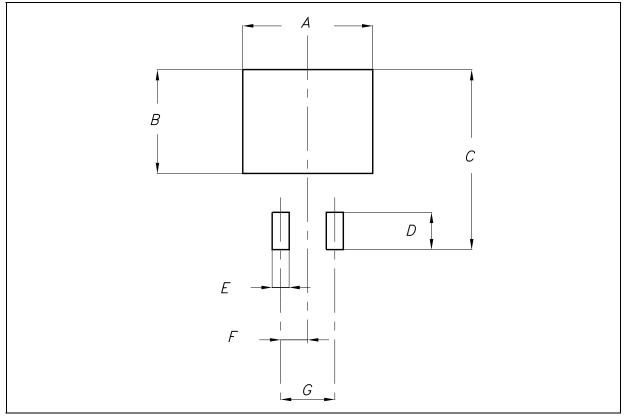


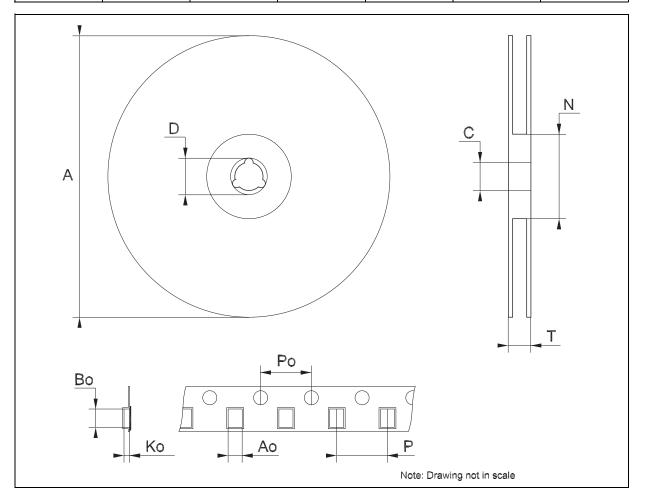
Figure 38. DRAWING DIMENSION D²PAK (TYPE WOOSEOK-SUBCON.)

		TYPE STD-ST		TYPE	WOOSEOK-SU	BCON.
DIM.	mm.				mm.	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	4.30		4.70
A1	0.03		0.23	0		0.20
b	0.70		0.93	0.70		0.90
b2	1.14		1.70	1.17		1.37
С	0.45		0.60	0.45	0.50	0.60
c2	1.23		1.36	1.25	1.30	1.40
D	8.95		9.35	9	9.20	9.40
D1	7.50			7.50		
Е	10		10.40	9.80		10.20
E1	8.50			7.50		
е		2.54			2.54	
e1	4.88		5.28		5.08	
Н	15		15.85	15	15.30	15.60
J1	2.49		2.69	2.20		2.60
L	2.29		2.79	1.79		2.79
L1	1.27		1.40	1		1.40
L2	1.30		1.75	1.20		1.60
R		0.4			0.30	
V2	0°		8°	0°		3°

Table 23.	D ² PAK MECHANICAL DATA
-----------	------------------------------------

Note: The D^2 PAK package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

Figure 39. D²PAK FOOTPRINT RECOMMENDED DATA


Table 24.FOOTPRINT DATA

57

VALUES						
	mm.	inch.				
A	12.20	0.480				
В	9.75	0.384				
С	16.90	0.665				
D	3.50	0.138				
E	1.60	0.063				
F	2.54	0.100				
G	5.08	0.200				

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM.	mm.			inch		
Diwi.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ко	4.80	4.90	5.00	0.189	0.193	0.197
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

44/47

7 Order code

		Packagi	ng	
Part numbers	ТО-220 (А Туре)	D ² PAK	TO-220FP	то-з
L7805				L7805T
L7805C	L7805CV	L7805CD2T-TR	L7805CP	L7805CT
L7852C	L7852CV	L7852CD2T-TR ⁽¹⁾	L7852CP ⁽¹⁾	L7852CT ⁽¹⁾
L7806C	L7806CV	L7806CD2T-TR		L7806CT
L7808C	L7808CV	L7808CD2T-TR	L7808CP	L7808CT
L7885C	L7885CV	L7885CD2T-TR ⁽¹⁾	L7885CP ⁽¹⁾	L7885CT ⁽¹⁾
L7809C	L7809CV	L7809CD2T-TR	L7809CP	L7809CT
L7810C	L7810CV	L7810CD2T-TR ⁽¹⁾		
L7812C	L7812CV	L7812CD2T-TR	L7812CP	L7812CT
L7815C	L7815CV	L7815CD2T-TR	L7815CP	L7815CT
L7818C	L7818CV	L7818CD2T-TR ⁽¹⁾		L7818CT
L7820C	L7820CV	L7820CD2T-TR ⁽¹⁾	L7820CP ⁽¹⁾	L7820CT ⁽¹⁾
L7824C	L7824CV	L7824CD2T-TR	L7824CP	L7824CT

1. Available on request.

57

8 Revision history

Table 26. Revision history

Date	Revision	Changes
21-Jun-2004	12	Document updating.
03-Aug-2006	13	Order codes has been updated and new template.
19-Jan-2007	14	D ² PAK mechanical data has been updated and add footprint data.
31-May-2007	15	Order codes has been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

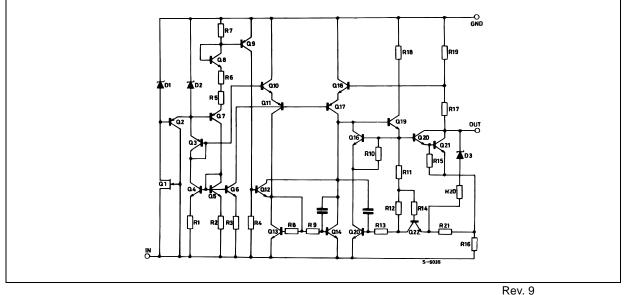
© 2007 STMicroelectronics - All rights reserved

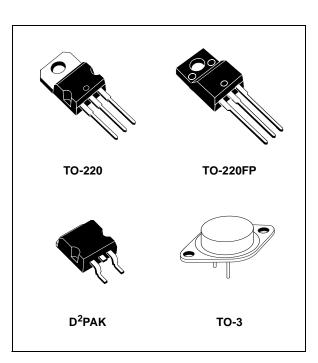
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

NEGATIVE VOLTAGE REGULATORS


- OUTPUT CURRENT UP TO 1.5A
- OUTPUT VOLTAGES OF -5; -6; -8; -12; -15; -18; -20; -24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

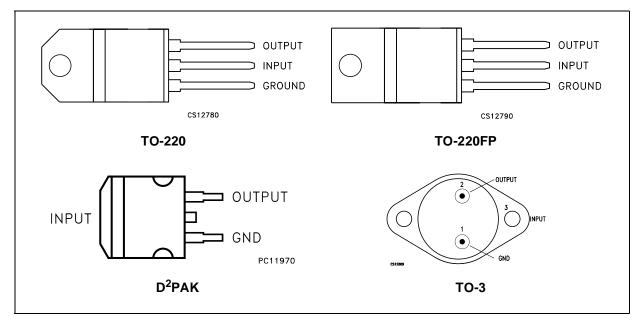

DESCRIPTION

The L7900 series of three-terminal negative regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage option as the L7800 positive standard series, they are particularly suited for split power supplies. If adequate heat sinking is provided, they can deliver over 1.5A output current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

SCHEMATIC DIAGRAM

Symbol	Parameter		Value	Unit
V	DC Input Voltage	for $V_0 = 5$ to $18V$	-35	V
VI	for V _O = 20, 24V		-40	
Ι _Ο	Output Current	Output Current		
P _{tot}	Power Dissipation		Internally Limited	
T _{stg}	Storage Temperature Range)	-65 to 150	°C
T _{op}	Operating Junction Tempera	ture Range	0 to 150	°C

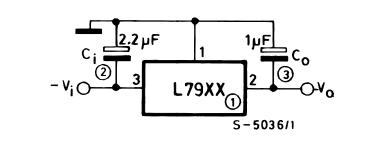

Table 1: Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Symbol	Parameter		D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thj-case}	Thermal Resistance Junction-case	Max	3	3	5	4	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	50	60	35	°C/W

Figure 1: Connection Diagram (top view)


Table 3: Ordering Codes

ТҮРЕ	ТО-220 (А Туре)	ТО-220 (С Туре)	D ² PAK (A Type) (#)	D ² PAK (C Type) (T & R)	TO-220FP	TO-3	OUTPUT VOLTAGE
L7905C	L7905CV	L7905C-V	L7905CD2T	L7905C-D2TR	L7905CP	L7905CT (*)	-5 V
L7906C	L7906CV		L7906CD2T		L7906CP (*)	L7906CT (*)	-6 V
L7908C	L7908CV		L7908CD2T		L7908CP (*)	L7908CT (*)	-8 V
L7912C	L7912CV	L7912C-V	L7912CD2T		L7912CP	L7912CT (*)	-12 V
L7915C	L7915CV		L7915CD2T		L7915CP	L7915CT	-15 V
L7918C	L7918CV		L7918CD2T(*)		L7918CP (*)	L7918CT (*)	-18 V
L7920C	L7920CV		L7920CD2T(*)		L7920CP (*)	L7920CT (*)	-20 V
L7924C	L7924CV		L7924CD2T(*)		L7924CP (*)	L7924CT	-24 V

(#) Available in Tape & Reel with the suffix "-TR".

(*) Available on Request.

Figure 2: Test Circuit

Table 4: Electrical Characteristics Of L7905C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -10V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu$ F, $C_O = 1 \ \mu$ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-4.8	-5	-5.2	V
V _O	Output Voltage	$\begin{array}{ll} I_O = -5 \text{ mA to -1 A} & P_O \leq 15 \text{ W} \\ V_I = 8 \text{ to 20 V} \end{array}$	-4.75	-5	-5.25	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -7 \text{ to } -25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$V_{I} = -8 \text{ to } -12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			50	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			50	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -8 to -25 V			1.3	
$\Delta V_O / \Delta T$	Output Voltage Drift	I _O = 5 mA		-0.4		mV/°C
eN	Output Noise Voltage	$B = 10Hz \text{ to } 100KHz \qquad T_J = 25^{\circ}C$		100		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120 Hz$	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100$ mV		1.4		V
I _{sc}	Short Circuit Current			2.1		A

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-5.75	-6	-6.25	V
V _O	Output Voltage	$I_{O} = -5 \text{ mA to } -1 \text{ A}$ $P_{O} \le 15 \text{ W}$ V _I = -9.5 to -21.5 V	-5.7	-6	-6.3	V
ΔV _O (*)	Line Regulation	$V_{I} = -8.5 \text{ to } -25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	mV
		$V_{I} = -9 \text{ to } -15 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			120	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			60	
l _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -9.5 to -25 V			1.3	
$\Delta V_{O} / \Delta T$	Output Voltage Drift	I _O = 5 mA		-0.6		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		144		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120Hz$	54	60		dB
V _d	Dropout Voltage	$I_{O} = 1 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ $\Delta V_{O} = 100$ mV		1.4		V
I _{sc}	Short Circuit Current			2		A

Table 5: Electrical Characteristics Of L7906C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -11V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu$ F, $C_O = 1 \ \mu$ F unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 6: Electrical Characteristics Of L7908C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -14V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu\text{F}$, $C_O = 1 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-7.7	-8	-8.3	V
Vo	Output Voltage	$I_{O} = -5 \text{ mA to } -1 \text{ A}$ $P_{O} \le 15 \text{ W}$ $V_{I} = -11.5 \text{ to } -23 \text{ V}$	-7.6	-8	-8.4	V
ΔV _O (*)	Line Regulation	$V_{I} = -10.5 \text{ to } -25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			160	mV
		$V_{I} = -11 \text{ to } -17 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			80	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			160	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			80	
۱ _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_0 = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -11.5 to -25 V			1	
$\Delta V_O / \Delta T$	Output Voltage Drift	I _O = 5 mA		-0.6		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		175		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120Hz$	54	60		dB
V _d	Dropout Voltage	$I_O = 1 A$ $T_J = 25^{\circ}C$ $\Delta V_O = 100$ mV		1.1		V
I _{sc}	Short Circuit Current			1.5		А

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

لركم الركم

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-11.5	-12	-12.5	V
V _O	Output Voltage	$\begin{array}{ll} I_O = -5 \text{ mA to -1 A} & P_O \leq 15 \text{ W} \\ V_I = -15.5 \text{ to -27 V} \end{array}$	-11.4	-12	-12.6	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -14.5 \text{ to } -30 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			240	mV
		$V_{I} = -16 \text{ to } -22 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	
$\Delta V_{O}(*)$	Load Regulation	$I_0 = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			240	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -15 to -30 V			1	
$\Delta V_O / \Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		200		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120 Hz$	54	60		dB
V _d	Dropout Voltage	$I_{O} = 1 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ $\Delta V_{O} = 100$ mV		1.1		V
I _{sc}	Short Circuit Current			1.5		А

Table 7: Electrical Characteristics Of L7912C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -19V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu\text{F}$, $C_O = 1 \ \mu\text{F}$ unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 8: Electrical Characteristics Of L7915C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -23V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu\text{F}$, $C_O = 1 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-14.4	-15	-15.6	V
V _O	Output Voltage	$I_{O} = -5 \text{ mA to } -1 \text{ A}$ $P_{O} \le 15 \text{ W}$ $V_{I} = -18.5 \text{ to } -30 \text{ V}$	-14.3	-15	-15.7	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -17.5 \text{ to } -30 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			300	mV
		$V_{I} = -20 \text{ to } -26 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			150	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			300	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			150	
ا _ط	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -18.5 to -30 V			1	
$\Delta V_{O} / \Delta T$	Output Voltage Drift	I _O = 5 mA		-0.9		mV/°C
eN	Output Noise Voltage	$B = 10Hz \text{ to } 100KHz \qquad T_J = 25^{\circ}C$		250		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120 Hz$	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100$ mV		1.1		V
I _{sc}	Short Circuit Current			1.3		А

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-17.3	-18	-18.7	V
V _O	Output Voltage	$I_{O} = -5 \text{ mA to } -1 \text{ A}$ $P_{O} \le 15 \text{ W}$ $V_{I} = -22 \text{ to } -33 \text{ V}$	-17.1	-18	-18.9	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -21 \text{ to } -33 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			360	mV
		$V_{I} = -24 \text{ to } -30 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			180	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			360	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			180	
l _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = -22 to -33 V			1	
$\Delta V_{O} / \Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		300		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120Hz$	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100$ mV		1.1		V
I _{sc}	Short Circuit Current			1.1		Α

Table 9: Electrical Characteristics Of L7918C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -27V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu$ F, $C_O = 1 \ \mu$ F unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 10: Electrical Characteristics Of L7920C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -29V$, $I_O = 500$ mA, $C_I = 2.2 \ \mu$ F, $C_O = 1 \ \mu$ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-19.2	-20	-20.8	V
Vo	Output Voltage	$I_{O} = -5 \text{ mA to } -1 \text{ A} \qquad P_{O} \le 15 \text{ W}$ V _I = -24 to -35 V	-19	-20	-21	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -23 \text{ to } -35 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			400	mV
		$V_{I} = -26 \text{ to } -32 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			200	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			400	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			200	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V ₁ = -24 to -35 V			1	
$\Delta V_{O} / \Delta T$	Output Voltage Drift	I _O = 5 mA		-1.1		mV/°C
eN	Output Noise Voltage	$B = 10Hz \text{ to } 100KHz \qquad T_J = 25^{\circ}C$		350		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120 Hz$	54	60		dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $\Delta V_O = 100$ mV		1.1		V
I _{sc}	Short Circuit Current			0.9		А

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

لركم الركم

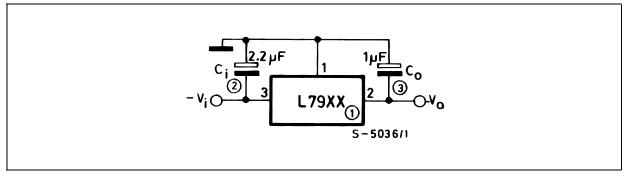
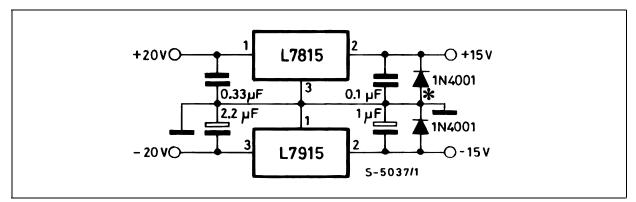

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	-23	-24	-24.5	V
V _O	Output Voltage	$\begin{array}{ll} I_O = -5 \text{ mA to -1 A} & P_O \leq 15 \text{ W} \\ V_I = -27 \text{ to -38 V} \end{array}$	-22.8	-24	-25.2	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = -27 \text{ to } -38 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			480	mV
		$V_{I} = -30 \text{ to } -36 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			240	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			480	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			240	
۱ _d	Quiescent Current	$T_J = 25^{\circ}C$			3	mA
ΔI_d	Quiescent Current Change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V ₁ = -27 to -38 V			1	
$\Delta V_{O} / \Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25^{\circ}C$		400		μV
SVR	Supply Voltage Rejection	$\Delta V_{I} = 10 V f = 120Hz$	54	60		dB
V _d	Dropout Voltage	$I_{O} = 1 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α

Table 11: Electrical Characteristics Of L7924C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = -33V$, I_O = 500 mA, C_I = 2.2 $\mu F,$ C_O = 1 μF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

APPLICATIONS INFORMATION

Figure 3: Fixed Output Regulator


NOTE:

1. To specify an output voltage, substitute voltage value for "XX".

2. Required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolytics are used, at least ten times value should

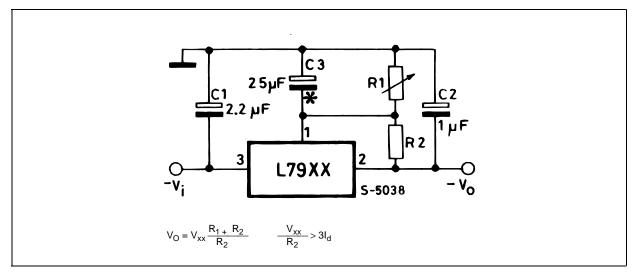

be selected. C1 is required if regulator is located an appreciable distance from power supply filter. 3. To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be intro-duced to protect the device from momentary input short circuit.

Figure 4: Split Power Supply (± 15V/1A)

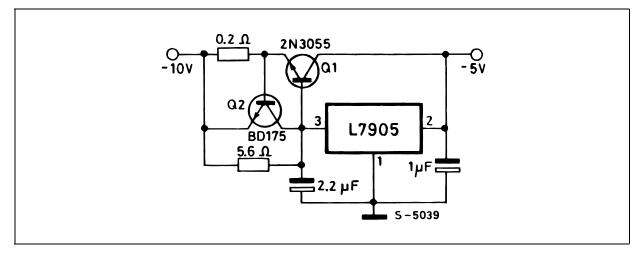
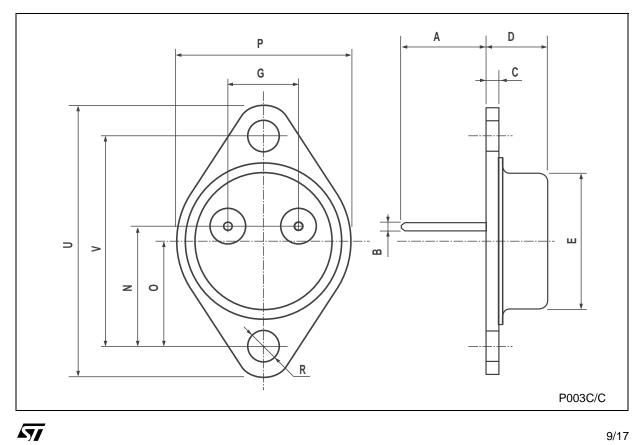

Against potential latch-up problems.

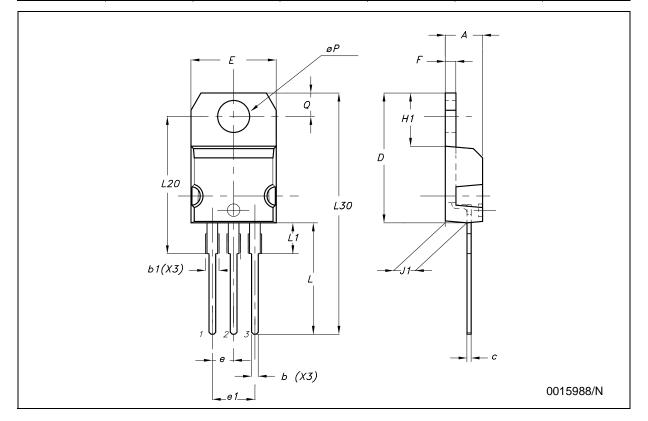
Figure 5: Circuit for Increasing Output Voltage

C3 Optional for improved transient response and ripple rejection.


Figure 6: High Current Negative Regulator (-5V/4A with 5A current limiting)

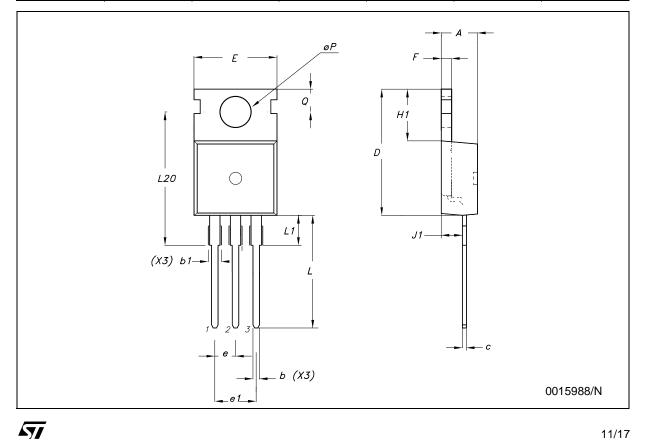
5

TO-3 MECHANICAL DATA

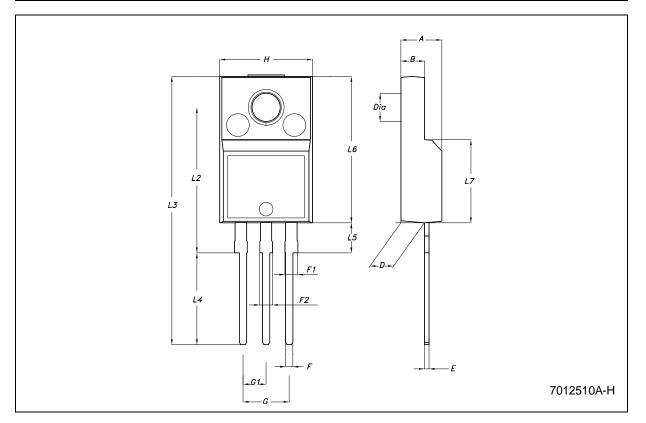

DIM.		mm.		inch					
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А		11.85			0.466				
В	0.96	1.05	1.10	0.037	0.041	0.043			
С			1.70			0.066			
D			8.7			0.342			
E			20.0			0.787			
G		10.9			0.429				
Ν		16.9			0.665				
Р			26.2			1.031			
R	3.88		4.09	0.152		0.161			
U			39.5			1.555			
V		30.10			1.185				

9/17

TO-220 (A TYPE) MECHANICAL DATA

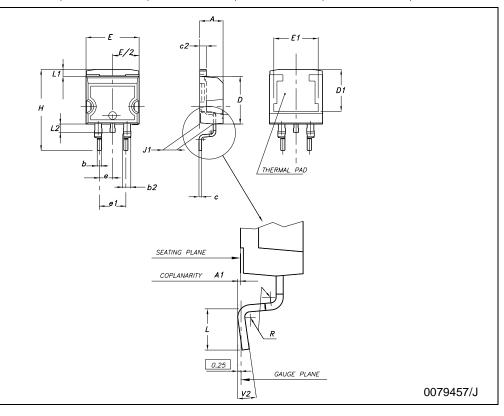

DIM.		mm.				
DINI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.067
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.600		0.620
E	10.0		10.40	0.393		0.409
е	2.4		2.7	0.094		0.106
e1	4.95		5.15	0.194		0.203
F	1.23		1.32	0.048		0.051
H1	6.2		6.6	0.244		0.260
J1	2.40		2.72	0.094		0.107
L	13.0		14.0	0.511		0.551
L1	3.5		3.93	0.137		0.154
L20		16.4			0.645	
L30		28.9			1.138	
φP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

<u>ل</u>رکا

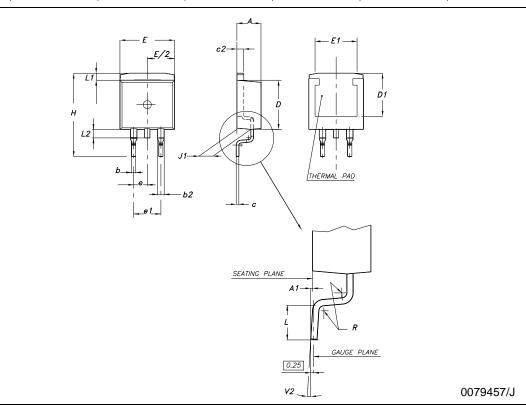

TO-220 (C TYPE) MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.30		4.70	0.169		0.185
b	0.70		0.90	0.028		0.035
b1	1.42		1.62	0.056		0.064
С	0.45		0.60	0.018		0.024
D		15.70			0.618	
Е	9.80		10.20	0.386		0.402
е		2.54			0.100	
e1		5.08			0.200	
F	1.25		1.39	0.049		0.055
H1		6.5			0.256	
J1	2.20		2.60	0.087		0.202
L	12.88		13.28	0.507		0.523
L1		3			0.118	
L20	15.70		16.1	0.618		0.634
L30		28.9			1.138	
φP	3.50		3.70	0.138		0.146
Q	2.70		2.90	0.106		0.114

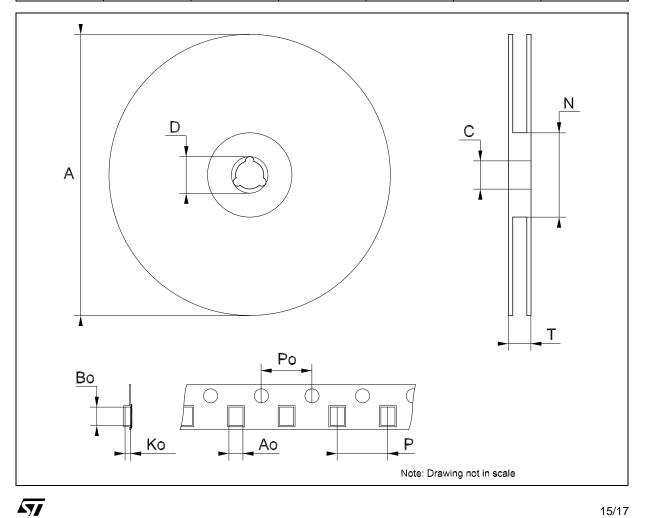
TO-220FP MECHANICAL DATA


DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

D²PAK (A TYPE) MECHANICAL DATA


DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.7		0.93	0.027		0.036
b2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	8			0.315		
E	10		10.4	0.393		0.409
E1	8.5			0.335		
е		2.54			0.100	
e1	4.88		5.28	0.192		0.208
Н	15		15.85	0.590		0.624
J1	2.49		2.69	0.098		0.106
L	2.29		2.79	0.090		0.110
L1	1.27		1.4	0.050		0.055
L2	1.3		1.75	0.051		0.069
R		0.4			0.016	
V2	0°		8°	0°		8°

57


D²PAK (C TYPE) MECHANICAL DATA

5.14		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.3		4.7	0.169		0.185
A1	0		0.20	0.000		0.008
b	0.70		0.90	0.028		0.035
b2	1.17		1.37	0.046		0.054
С	0.45	0.50	0.6	0.018	0.020	0.024
c2	1.25	1.30	1.40	0.049	0.051	0.055
D	9.0	9.2	9.4	0.354	0.362	0.370
D1	7.5			0.295		
Е	9.8		10.2	0.386		0.402
E1	7.5			0.295		
е		2.54			0.100	
e1		5.08			0.200	
Н	15	15.30	15.60	0.591	0.602	0.614
J1	2.20		2.60	0.087		0.102
L	1.79		2.79	0.070		0.110
L1	1.0		1.4	0.039		0.055
L2	1.2		1.6	0.047		0.063
R		0.3			0.012	
V2	0°		3°	0°		3°

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А			180			7.086			
С	12.8	13.0	13.2	0.504	0.512	0.519			
D	20.2			0.795					
Ν	60			2.362					
Т			14.4			0.567			
Ao	10.50	10.6	10.70	0.413	0.417	0.421			
Во	15.70	15.80	15.90	0.618	0.622	0.626			
Ko	4.80	4.90	5.00	0.189	0.193	0.197			
Po	3.9	4.0	4.1	0.153	0.157	0.161			
Р	11.9	12.0	12.1	0.468	0.472	0.476			

Table 12: Revision History

Date	Revision	Description of Changes
22-Jun-2004	9	Ordering Codes updated Table 3, pag. 3.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

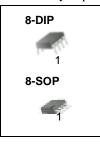
This datasheet has been download from:

www.datasheetcatalog.com

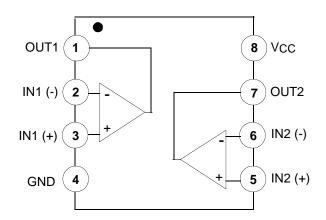
Datasheets for electronics components.

FAIRCHILD

SEMICONDUCTOR®

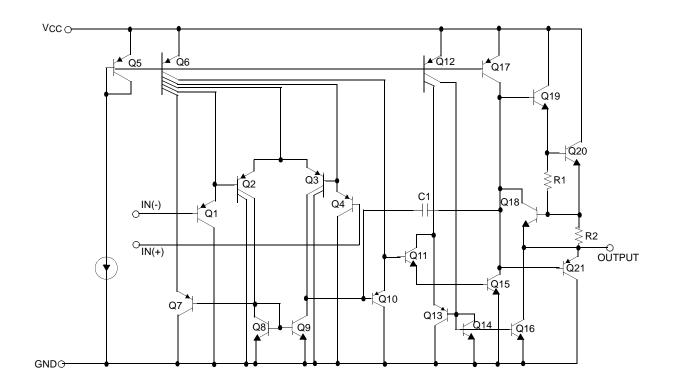

LM2904,LM358/LM358A,LM258/ LM258A Dual Operational Amplifier

Features


- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100dB
- Wide Power Supply Range: LM258/LM258A, LM358/LM358A: 3V~32V (or ±1.5V ~ 16V)
- LM2904 : $3V \sim 26V$ (or $\pm 1.5V \sim 13V$)
- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V DC to Vcc -1.5V DC
- Power Drain Suitable for Battery Operation.

Description

The LM2904,LM358/LM358A, LM258/LM258A consist of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifier, DC gain blocks and all the conventional OP-AMP circuits which now can be easily implemented in single power supply systems.



Internal Block Diagram

Schematic Diagram

(One section only)

Absolute Maximum Ratings

Parameter	Symbol	LM258/LM258A	LM358/LM358A	LM2904	Unit
Supply Voltage	Vcc	±16 or 32	±16 or 32	±13 or 26	V
Differential Input Voltage	VI(DIFF)	32	32	26	V
Input Voltage	Vi	-0.3 to +32	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND V _{CC} ≤15V, T _A = 25°C(One Amp)	-	Continuous	Continuous	Continuous	-
Operating Temperature Range	TOPR	-25 ~ +85	0 ~ +70	-40 ~ +85	°C
Storage Temperature Range	TSTG	-65 ~ +150	-65 ~ +150	-65 ~ +150	°C

Electrical Characteristics

Deremeter	Symbol	Condi	tiono		LM25	8		LM35	8	I	LM290	4	Unit
Parameter	Symbol	Condi	tions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	VCM = 0V -1.5V VO(P) = 1.4 Rs = 0Ω		-	2.9	5.0	-	2.9	7.0	-	2.9	7.0	mV
Input Offset Current	lio	-	-		3	30	-	5	50	-	5	50	nA
Input Bias Current	IBIAS	-		-	45	150	-	45	250	-	45	250	nA
Input Voltage Range	VI(R)	V _{CC} = 30V (LM2904, V		0	-	Vcc -1.5	0	-	Vcc -1.5	0	-	Vcc -1.5	V
Supply Current	Icc	RL = ∞, VC (LM2904, V		-	0.8	2.0	-	0.8	2.0	-	0.8	2.0	mA
Supply Current		RL = ∞, VC	C = 5V	-	0.5	1.2	-	0.5	1.2	-	0.5	1.2	mA
Large Signal Voltage Gain	G∨	$V_{CC} = 15V,$ $R_{L} = 2k\Omega$ $V_{O(P)} = 1V \text{ to } 11V$		50	100	-	25	100	-	25	100	-	V/mV
	VO(H)	Vcc=30V	$R_L = 2k\Omega$	26	-	-	26	-	-	22	-	-	V
Output Voltage Swing		(VCC =26V for LM2904)	RL= 10kΩ	27	28	-	27	28	-	23	24	-	V
	VO(L)	VCC = 5V,	$R_L=10k\Omega$	-	5	20	-	5	20	-	5	20	mV
Common-Mode Rejection Ratio	CMRR	-		70	85	-	65	80	-	50	80	-	dB
Power Supply Rejection Ratio	PSRR	-		65	100	-	65	100	-	50	100	-	dB
Channel Separation	CS	f = 1kHz to (Note1)	20kHz	-	120	-	-	120	-	-	120	-	dB
Short Circuit to GND	ISC	-		-	40	60	-	40	60	-	40	60	mA
	ISOURCE	VI(+) = 1V, VI(-) = 0V VCC = 15V VO(P) = 2V	Ι,	20	30	-	20	30	-	20	30	-	mA
Output Current		VI(+) = 0V, VCC = 15V VO(P) = 2V		10	15	-	10	15	-	10	15	-	mA
	ISINK	VI(+) = 0V, VCC = 15V VO(P) = 20	<i>'</i> , ΄	12	100	-	12	100	-	-	-	-	μA
Differential Input Voltage	VI(DIFF)	-		-	-	Vcc	-	-	Vcc	-	-	Vcc	V

Note:

1. This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(VCC= 5.0V, VEE = GND, unless otherwise specified) The following specification apply over the range of -25°C \leq T_A \leq +85°C for the LM258; and the 0°C \leq T_A \leq +70°C for the LM358; and the -40°C \leq T_A \leq +85°C for the LM2904

Demonstra	0	Conditions			LM25	8	LM358			LM2904			Unit
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio	$V_{CM} = 0V \text{ to}$ $V_{CC} -1.5V$ $V_{O(P)} = 1.4V,$ $R_{S} = 0\Omega$		-	-	7.0	-	-	9.0	-	-	10.0	mV
Input Offset Voltage Drift	ΔVIO/ΔΤ	$R_S = 0\Omega$		-	7.0	-	-	7.0	-	-	7.0	-	μV/°C
Input Offset Current	ΙΟ	-		-	-	100	-	-	150	-	45	200	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	-		-	10	-	-	10	-	-	10	-	pA/∘C
Input Bias Current	IBIAS	-		-	40	300	-	40	500	-	40	500	nA
Input Voltage Range	VI(R)	V _{CC} = 30V (LM2904 , V _{CC} = 26V)		0	-	Vcc -2.0	0	-	Vcc -2.0	0	-	Vcc -2.0	V
Large Signal Voltage Gain	Gv	VCC = 15V, RL =2.0kΩ VO(P) = 1V to 11V		25	-	-	15	-	-	15	-	-	V/mV
		Vcc=30V	$R_L = 2k\Omega$	26	-	-	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)	(VCC = 26V for LM2904)	RL=10kΩ	27	28	-	27	28	-	23	24	-	V
	VO(L)	VCC = 5V,	$R_L=10k\Omega$	-	5	20	-	5	20	-	5	20	mV
	ISOURCE	$V_{I(+)} = 1V,$ $V_{I(-)} = 0V$ $V_{CC} = 15V,$ $V_{O(P)} = 2V$		10	30	-	10	30	-	10	30	-	mA
Output Current	ISINK	$V_{I(+)} = 0V,$ $V_{I(-)} = 1V$ $V_{CC} = 15V,$ $V_{O(P)} = 2V$		5	8	-	5	9	-	5	9	-	mA
Differential Input Voltage	VI(DIFF)	-		-	-	Vcc	-	-	Vcc	-	-	Vcc	V

Electrical Characteristics (Continued)

Deveneter	Symbol Conditions			LM258A				114:4		
Parameter			ons	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio			-	1.0	3.0	-	2.0	3.0	mV
Input Offset Current	lio	-		-	2	15	-	5	30	nA
Input Bias Current	IBIAS	-		-	40	80	-	45	100	nA
Input Voltage Range	VI(R)	VCC = 30V		0	-	VCC -1.5	0	-	VCC -1.5	V
Supply Current	laa	RL = ∞,VCC =	30V	-	0.8	2.0	-	0.8	2.0	mA
Supply Current	ICC	RL = ∞, VCC =	5V	-	0.5	1.2	-	0.5	1.2	mA
Large Signal Voltage Gain	Gv	VCC = 15V, RL= $2k\Omega$ VO = 1V to 11V		50	100	-	25	100	-	V/mV
Output Voltage Swing	Vон	Vcc = 30V	$R_L = 2k\Omega$	26	-	-	26	-	-	V
			RL =10kΩ	27	28	-	27	28	-	V
	VO(L)	VCC = 5V, RL=10k Ω		-	5	20	-	5	20	mV
Common-Mode Rejection Ratio	CMRR	-		70	85	-	65	85	-	dB
Power Supply Rejection Ratio	PSRR	-	-		100	-	65	100	-	dB
Channel Separation	CS	f = 1kHz to 20	(Hz (Note1)	-	120	-	-	120	-	dB
Short Circuit to GND	ISC	-		-	40	60	-	40	60	mA
	ISOURCE	VI(+) = 1V, VI(- VCC = 15V, VC		20	30	-	20	30	-	mA
Output Current		VI(+) = 1V, VI(- VCC = 15V, VC		10	15	-	10	15	-	mA
	ISINK	$V_{in +} = 0V, V_{in (-)} = 1V$ $V_{O(P)} = 200mV$		12	100	-	12	100	-	μΑ
Differential Input Voltage	VI(DIFF)	-		-	-	Vcc	-	-	Vcc	V

(VCC = 5.0V, VEE = GND, TA = 25° C, unless otherwise specified)

Note:

1. This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified) The following specification apply over the range of -25°C \leq T_A \leq +85°C for the LM258A; and the 0°C \leq T_A \leq +70°C for the LM358A

Baramatar	Symbol Conditions		LM258A			LM358A			Unit	
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	$V_{CM} = 0V \text{ to } V_{CC} - 1.5V$ $V_{O(P)} = 1.4V, R_S = 0\Omega$		-	-	4.0	-	-	5.0	mV
Input Offset Voltage Drift	$\Delta V_{IO} / \Delta T$		-	-	7.0	15	-	7.0	20	μV/°C
Input Offset Current	lio		-	-	-	30	-	-	75	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	-		-	10	200	-	10	300	pA/°C
Input Bias Current	IBIAS	-		-	40	100	-	40	200	nA
Input Common-Mode Voltage Range	VI(R)	V _{CC} = 30V		0	-	Vcc -2.0	0	-	Vcc -2.0	V
	VO(H)	VCC = 30V	$R_L = 2k\Omega$	26	-	-	26	-	-	V
Output Voltage Swing			$R_L = 10k\Omega$	27	28	-	27	28	-	V
	VO(L)	$V_{CC} = 5V, R_L = 10k\Omega$		-	5	20	-	5	20	mV
Large Signal Voltage Gain	Gv	Vcc = 15V, RL=2.0kΩ Vo(P) = 1V to 11V		25	-	-	15	-	-	V/mV
	ISOURCE	VI(+) = 1V, V VCC = 15V,		10	30	-	10	30	-	mA
Output Current	ISINK	VI(+) = 1V, V VCC = 15V,		5	9	-	5	9	-	mA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Typical Performance Characteristics

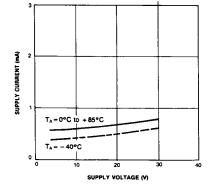


Figure 1. Supply Current vs Supply Voltage

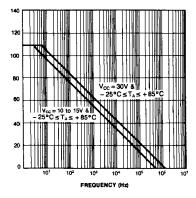


Figure 3. Open Loop Frequency Response

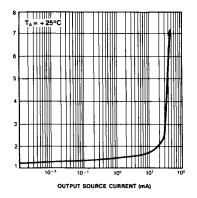


Figure 5. Output Characteristics vs Current Sourcing

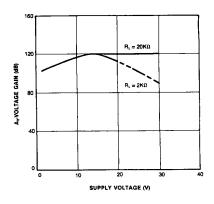


Figure 2. Voltage Gain vs Supply Voltage

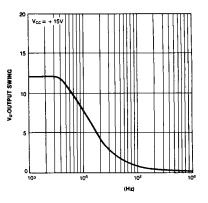


Figure 4. Large Signal Output Swing vs Frequency

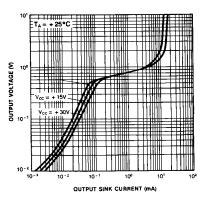


Figure 6. Output Characteristics vs Current Sinking

Typical Performance Characteristics (Continued)

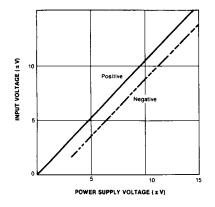


Figure 7. Input Voltage Range vs Supply Voltage

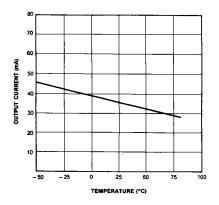


Figure 9. Output Current vs Temperature (Current Limiting)

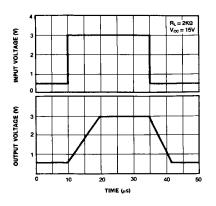


Figure 11. Voltage Follower Pulse Response

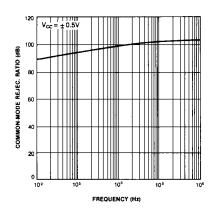


Figure 8. Common-Mode Rejection Ratio

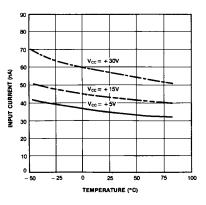


Figure 10. Input Current vs Temperature

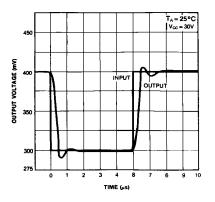
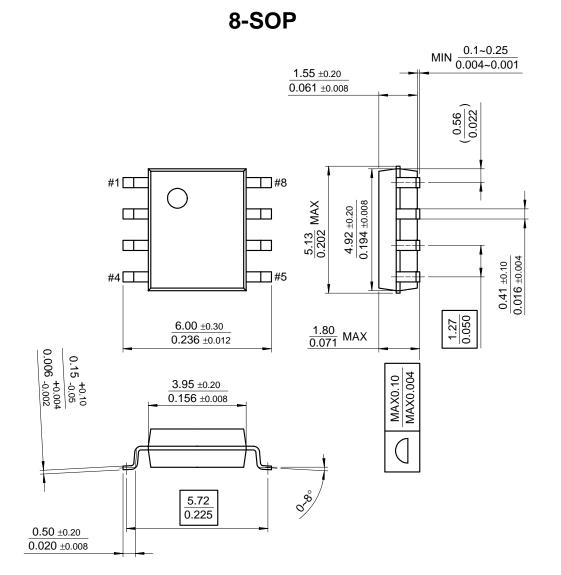


Figure 12. Voltage Follower Pulse Response (Small Signal)

Dimensions in millimeters

Mechanical Dimensions

Package


6.40 ±0.20 0.79 0.252 ±0.008 $\begin{array}{c} 0.46 \pm 0.10 \\ 0.018 \pm 0.004 \end{array}$ 1.524 ±0.10 0.060 ± 0.004 #8 #1 $\begin{array}{c} 9.20 \pm \! 0.20 \\ \hline 0.362 \pm \! 0.008 \end{array}$ 9.60 0.378 MAX #4 #5 <u>2.54</u> 0.100 3.30 ± 0.30 $\frac{5.08}{0.200}\text{ MAX}$ $\overline{0.130 \pm 0.012}$ 7.62 $\frac{0.33}{0.013}\,\text{MIN}$ 3.40 ± 0.20 0.300 0.134 ±0.008 0.25 ^{+0.10}_-0.05 0.010 +0.004 0~15°

8-DIP

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
LM358N	8-DIP	
LM358AN		0 ~ +70°C
LM358M	- 8-SOP	0~770 C
LM358AM	0-30F	
LM2904N	8-DIP	-40 ~ +85°C
LM2904M	8-SOP	-40 ~ +85 C
LM258N	8-DIP	
LM258AN	0-DIF	-25 ~ +85°C
LM258M	- 8-SOP	-23 ~ +03 C
LM258AM	0-30F	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

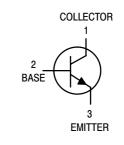
This datasheet has been download from:

www.datasheetcatalog.com

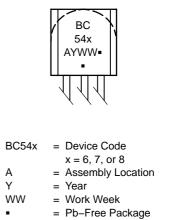
Datasheets for electronics components.

BC546B, BC547A, B, C, BC548B, C

Amplifier Transistors NPN Silicon


Features

• Pb–Free Packages are Available*


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

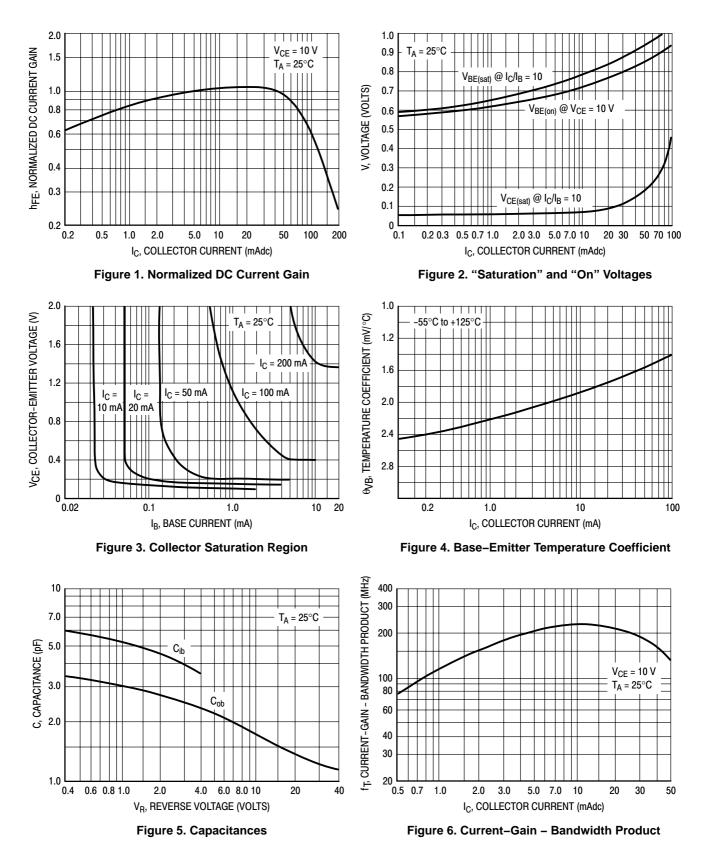
MAXIMUM RATINGS Rating

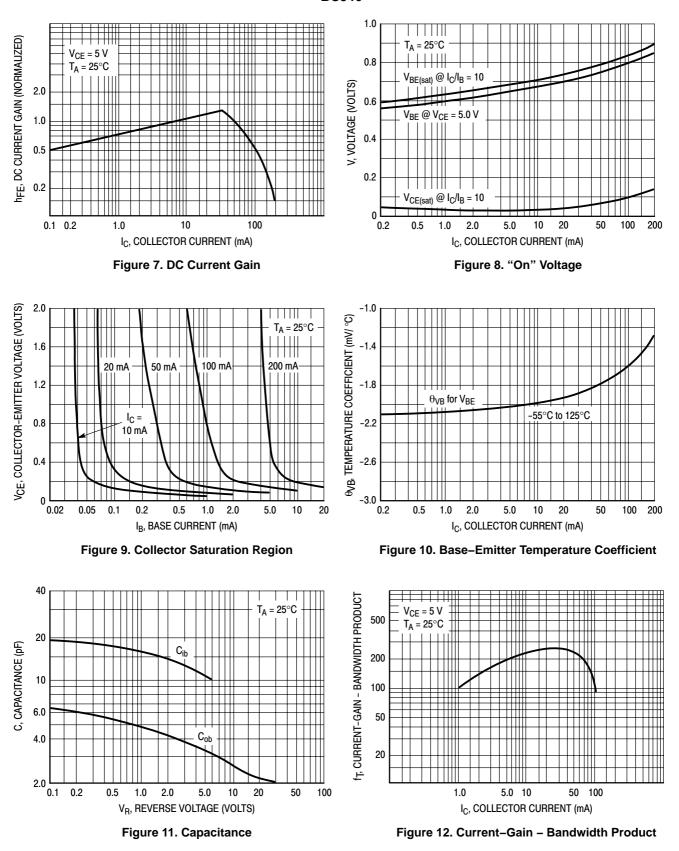
Rating	Symbol	Value	Unit
Collector - Emitter Voltage BC546 BC547 BC548	V _{CEO}	65 45 30	Vdc
Collector - Base Voltage BC546 BC547 BC548	V _{CBO}	80 50 30	Vdc
Emitter - Base Voltage	V_{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	83.3	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


BC546B, BC547A, B, C, BC548B, C


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

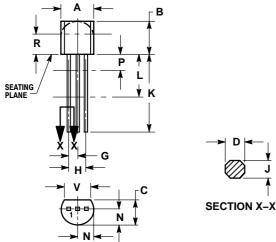
Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage	BC546	V _{(BR)CEO}	65	_	-	V
$(I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0)$	BC547		45	_	_	
	BC548		30	_	_	Unit V V N nA μA V V NA μA V PF dB
Callester Dees Dreakdown Malters		M				M
Collector – Base Breakdown Voltage	BC546	V _{(BR)CBO}	80	-	-	V
(I _C = 100 μAdc)	BC547		50	-	-	
	BC548		30	-	-	
Emitter – Base Breakdown Voltage	BC546	V _{(BR)EBO}	6.0	-	-	V
$(I_{\rm F} = 10 \ \mu A, I_{\rm C} = 0)$	BC547	(BR)EBO	6.0	_	_	
	BC548		6.0	_	_	
Collector Cutoff Current	20010					
Collector Cutoff Current	D0540	ICES			45	
$(V_{CE} = 70 \text{ V}, V_{BE} = 0)$	BC546		-	0.2	15	nA
$(V_{CE} = 50 \text{ V}, V_{BE} = 0)$	BC547		-	0.2	15	
$(V_{CE} = 35 \text{ V}, V_{BE} = 0)$	BC548		-	0.2	15	
(V _{CE} = 30 V, T _A = 125°C)	BC546/547/548		-	-	4.0	μΑ
ON CHARACTERISTICS				•		
			1	1	1	1
DC Current Gain	DOC 174	h _{FE}	1			-
$(I_{C} = 10 \ \mu A, \ V_{CE} = 5.0 \ V)$	BC547A			90	-	1
	BC546B/547B/548B		-	150	-	1
	BC548C		-	270	-	
						1
(I _C = 2.0 mA, V _{CE} = 5.0 V)	BC546		110	_	450	1
	BC547		110	_	800	
	BC548		110		800	
				100		
	BC547A		110	180	220	
	BC546B/547B/548B		200	290	450	
	BC547C/BC548C		420	520	800	
(I _C = 100 mA, V _{CE} = 5.0 V)	BC547A/548A		-	120	-	
	BC546B/547B/548B		-	180	_	
	BC548C		_	300	_	
	200100	V		000		
Collector – Emitter Saturation Voltage		V _{CE(sat)}				v
(I _C = 10 mA, I _B = 0.5 mA)			-	0.09	0.25	
(I _C = 100 mA, I _B = 5.0 mA)			-	0.2	0.6	
(I _C = 10 mA, I _B = See Note 1)			-	0.3	0.6	
Base – Emitter Saturation Voltage		V _{BE(sat)}	_	0.7	_	V
$(I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA})$		• DE(Sal)		0.1		, i
-		M				
Base – Emitter On Voltage		V _{BE(on)}	0.55			v
$(I_{C} = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$			0.55	-	0.7	
(I _C = 10 mA, V _{CE} = 5.0 V)			-	-	0.77	
SMALL-SIGNAL CHARACTERISTICS						
Current – Gain – Bandwidth Product		f _T			<u> </u>	
		ιŢ	450	200		IVITIZ
(I _C = 10 mA, V _{CE} = 5.0 V, f = 100 MHz)	BC546		150	300	-	
	BC547		150	300	-	
	BC548		150	300	-	
Output Capacitance		C _{obo}	-	1.7	4.5	pF
(V _{CB} = 10 V, I _C = 0, f = 1.0 MHz)		0.00				
Input Capacitance		C _{ibo}	_	10	_	~E
		Cibo	-	10	-	μ
$(V_{EB} = 0.5 \text{ V}, I_C = 0, f = 1.0 \text{ MHz})$						<u> </u>
Small – Signal Current Gain		h _{fe}	1		1	-
(I _C = 2.0 mA, V _{CE} = 5.0 V, f = 1.0 kHz)	BC546		125	- 1	500	1
	BC547/548		125	-	900	1
	BC547A		125	220	260	1 I
						1 I
	BC546B/547B/548B		240	330	500	1
	BC547C/548C		450	600	900	
		NF				dB
Noise Figure						
	BC546		-	2.0	10	
Noise Figure ($I_C = 0.2 \text{ mA}, V_{CE} = 5.0 \text{ V}, R_S = 2 \text{ k}\Omega,$ $f = 1.0 \text{ kHz}, \Delta f = 200 \text{ Hz}$)	BC546 BC547			2.0 2.0	10 10	

1. I_B is value for which I_C = 11 mA at V_{CE} = 1.0 V.

BC547/BC548

BC546B, BC547A, B, C, BC548B, C

DEVICE ORDERING INFORMATION


Device	Package	Shipping [†]
BC546B	TO-92	5000 Units / Bulk
BC546BG	TO-92 (Pb-Free)	5000 Units / Bulk
BC546BRL1	TO-92	2000 / Tape & Reel
BC546BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC546BZL1	TO-92	2000 / Ammo Box
BC546BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC547ARL	TO-92	2000 / Tape & Reel
BC547ARLG	TO-92 (Pb-Free)	2000 / Tape & Reel
BC547ARL1	TO-92	2000 / Tape & Reel
BC547ARL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC547AZL1	TO-92	2000 / Ammo Box
BC547AZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC547B	TO-92	5000 Units / Bulk
BC547BG	TO–92 (Pb–Free)	5000 Units / Bulk
BC547BRL1	TO-92	2000 / Tape & Reel
BC547BRL1G	TO–92 (Pb–Free)	2000 / Tape & Reel
BC547BZL1	TO-92	2000 / Ammo Box
BC547BZL1G	TO–92 (Pb–Free)	2000 / Ammo Box
BC547C	TO-92	5000 Units / Bulk
BC547CG	TO–92 (Pb–Free)	5000 Units / Bulk
BC547CZL1	TO-92	2000 / Ammo Box
BC547CZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC548B	TO-92	5000 Units / Bulk
BC548BG	TO–92 (Pb–Free)	5000 Units / Bulk
BC548BRL1	TO-92	2000 / Tape & Reel
BC548BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC548BZL1	TO-92	2000 / Ammo Box
BC548BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC548C	TO-92	5000 Units / Bulk
BC548CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC548CZL1	TO-92	2000 / Ammo Box
BC548CZL1G	TO-92 (Pb-Free)	2000 / Ammo Box

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BC546B, BC547A, B, C, BC548B, C

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI 1. Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- 2. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R
- IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. 4.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
Κ	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

STYLE 17 PIN 1. COLLECTOR 2. BASE

3 EMITTER

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and actual performance may any content applications. Intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

PIC16F84A Data Sheet

18-pin Enhanced FLASH/EEPROM

8-bit Microcontroller

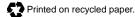
Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, *Flex*ROM, *fuzzy*LAB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

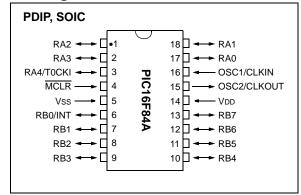
Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

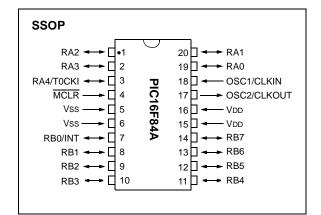
PIC16F84A

18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

- · Only 35 single word instructions to learn
- All instructions single-cycle except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 1024 words of program memory
- · 68 bytes of Data RAM
- 64 bytes of Data EEPROM
- 14-bit wide instruction words
- 8-bit wide data bytes
- 15 Special Function Hardware registers
- Eight-level deep hardware stack
- Direct, indirect and relative addressing modes
- Four interrupt sources:
 - External RB0/INT pin
 - TMR0 timer overflow
 - PORTB<7:4> interrupt-on-change
 - Data EEPROM write complete


Peripheral Features:


- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
 - 25 mA sink max. per pin
 - 25 mA source max. per pin
- TMR0: 8-bit timer/counter with 8-bit programmable prescaler

Special Microcontroller Features:

- 10,000 erase/write cycles *Enhanced* FLASH Program memory typical
- 10,000,000 typical erase/write cycles EEPROM Data memory typical
- EEPROM Data Retention > 40 years
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own On-Chip RC Oscillator for reliable operation
- · Code protection
- Power saving SLEEP mode
- Selectable oscillator options

Pin Diagrams

CMOS Enhanced FLASH/EEPROM Technology:

- · Low power, high speed technology
- Fully static design
- Wide operating voltage range:
 - Commercial: 2.0V to 5.5V
 - Industrial: 2.0V to 5.5V
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 15 μA typical @ 2V, 32 kHz
 - < 0.5 μA typical standby current @ 2V

Table of Contents

1.0	Device Overview	
2.0	Memory Organization	5
3.0	J/O Ports	13
4.0	I/O Ports	15
5.0	Timer0 Module	19
6.0	Special Features of the CPU	21
7.0	Special Features of the CPU	35
8.0	Development Support	43
9.0	Electrical Characteristics	19
10.0	DC/AC Characteristic Graphs	31
11.0	Packaging Information	71
Appe	ndix A: Revision History	75
Appe	ndix B: Conversion Considerations	76
Appe	ndix C: Migration from Baseline to Mid-Range Devices	78
Index		79
On-Li	ne Support	33
Read	ne Support er Response	34
PIC16	F84A Product Identification System	35

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

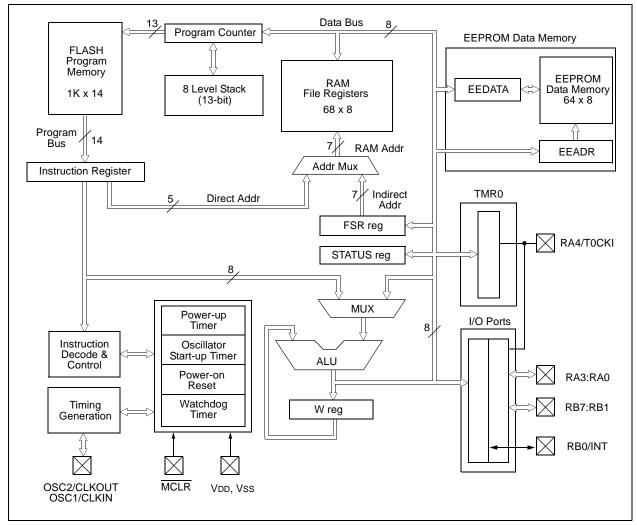
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F84A device. Additional information may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023), which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.


The PIC16F84A belongs to the mid-range family of the PICmicro[®] microcontroller devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 1K words, which translates to 1024 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes.

There are also 13 I/O pins that are user-configured on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- Change on PORTB interrupt
- Timer0 clock input

Table 1-1 details the pinout of the device with descriptions and details for each pin.

Pin Name	PDIP No.	SOIC No.	SSOP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	18	I	ST/CMOS(3)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	19	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	4	4	4	I/P	ST	Master Clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
						PORTA is a bi-directional I/O port.
RA0	17	17	19	I/O	TTL	
RA1	18	18	20	I/O	TTL	
RA2	1	1	1	I/O	TTL	
RA3	2	2	2	I/O	TTL	
RA4/T0CKI	3	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type.
					(1)	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	8	I/O	TTL	
RB2	8	8	9	I/O	TTL	
RB3	9	9	10	I/O	TTL	
RB4	10	10	11	I/O	TTL	Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Interrupt-on-change pin.
RB6	12	12	13	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming clock.
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.
Vss	5	5	5,6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	14	15,16	Р	—	Positive supply for logic and I/O pins.
Legend: I= input	O =	Output		I/O = Ir	put/Output	P = Power

TABLE 1-1:PIC16F84A PINOUT DESCRIPTION

 $--= Not used \qquad TTL = TTL input \qquad ST = Schmitt Trigger input$ **Note 1:**This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

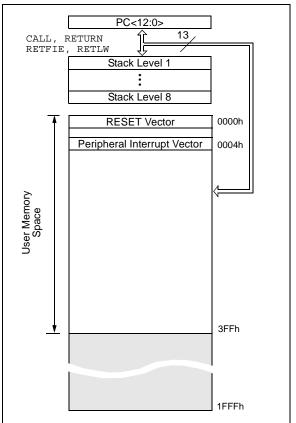
2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F84A. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 3.0.

Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).


2.1 Program Memory Organization

The PIC16FXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F84A, the first 1K x 14 (0000h-03FFh) are physically implemented (Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, for locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h, the instruction will be the same.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1:

PROGRAM MEMORY MAP AND STACK - PIC16F84A

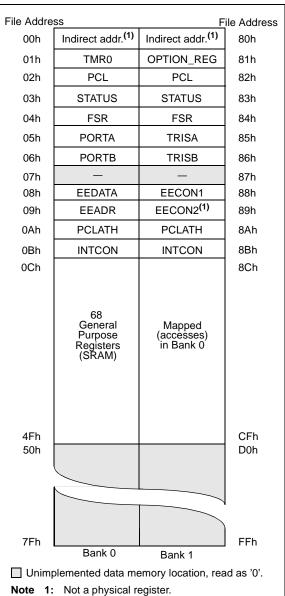
2.2 Data Memory Organization

The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device.

Portions of data memory are banked. This is for both the SFR area and the GPR area. The GPR area is banked to allow greater than 116 bytes of general purpose RAM. The banked areas of the SFR are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the STATUS Register. Figure 2-2 shows the data memory map organization.

Instructions MOVWF and MOVF can move values from the W register to any location in the register file ("F"), and vice-versa.

The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR) (Section 2.5). Indirect addressing uses the present value of the RP0 bit for access into the banked areas of data memory.


Data memory is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected by clearing the RP0 bit (STATUS<5>). Setting the RP0 bit selects Bank 1. Each Bank extends up to 7Fh (128 bytes). The first twelve locations of each Bank are reserved for the Special Function Registers. The remainder are General Purpose Registers, implemented as static RAM.

2.2.1 GENERAL PURPOSE REGISTER FILE

Each General Purpose Register (GPR) is 8-bits wide and is accessed either directly or indirectly through the FSR (Section 2.5).

The GPR addresses in Bank 1 are mapped to addresses in Bank 0. As an example, addressing location 0Ch or 8Ch will access the same GPR.

FIGURE 2-2: REGISTER FILE MAP -PIC16F84A

2.3 Special Function Registers

The Special Function Registers (Figure 2-2 and Table 2-1) are used by the CPU and Peripheral functions to control the device operation. These registers are static RAM.

The special function registers can be classified into two sets, core and peripheral. Those associated with the core functions are described in this section. Those related to the operation of the peripheral features are described in the section for that specific feature.

TABLE 2-1: SF	PECIAL FUNCTION REGISTER FILE SUMMARY
---------------	---------------------------------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on RESET	Details on page
Bank	0										
00h	INDF	Uses cor	ntents of FSI	R to addre	ess Data Mem	ory (not a p	hysical re	gister)			11
01h	TMR0	8-bit Rea	bit Real-Time Clock/Counter x								20
02h	PCL	Low Orde	er 8 bits of tl	ne Progra	m Counter (P	C)				0000 0000	11
03h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	8
04h	FSR	Indirect [Data Memor	y Address	Pointer 0					xxxx xxxx	11
05h	PORTA ⁽⁴⁾	—	—	—	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	16
06h	PORTB ⁽⁵⁾	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	18
07h	—	Unimpler	mented loca	tion, read	as '0'					—	—
08h	EEDATA	EEPRON	EPROM Data Register							xxxx xxxx	13,14
09h	EEADR	EEPRON	EPROM Address Register							XXXX XXXX	13,14
0Ah	PCLATH	—	—	— Write Buffer for upper 5 bits of the PC ⁽¹⁾					0 0000	11	
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	10
Bank	1										
80h	INDF	Uses Co	ntents of FS	R to addre	ess Data Merr	nory (not a p	ohysical re	gister)			11
81h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	9
82h	PCL	Low orde	er 8 bits of P	rogram Co	ounter (PC)		•			0000 0000	11
83h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	8
84h	FSR	Indirect of	lata memory	address	pointer 0					xxxx xxxx	11
85h	TRISA	—	—	—	PORTA Data	Direction I	Register			1 1111	16
86h	TRISB	PORTB I	Data Directio	on Registe	er					1111 1111	18
87h	—	Unimpler	mented loca	tion, read	as '0'					—	—
88h	EECON1	—	—	_	EEIF	WRERR	WREN	WR	RD	0 x000	13
89h	EECON2	EEPRON	/I Control Re	egister 2 (r	not a physical	register)					14
0Ah	PCLATH	—	—	—	Write buffer f	for upper 5	bits of the	PC ⁽¹⁾		0 0000	11
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	10

Legend: x = unknown, u = unchanged. – = unimplemented, read as '0', q = value depends on condition

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> are never transferred to PCLATH.

2: The TO and PD status bits in the STATUS register are not affected by a MCLR Reset.

3: Other (non power-up) RESETS include: external RESET through MCLR and the Watchdog Timer Reset.

4: On any device RESET, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

2.3.1 STATUS REGISTER

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory.

As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ uluu$ (where u = unchanged).

Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 7-2), because these instructions do not affect any status bit.

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16F84A and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.
 - 3: When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
	IRP	RP1	RP0	TO	PD	Z	DC	С		
	bit 7							bit 0		
bit 7-6	Unimplem	ented: Main	tain as '0'							
bit 5	RP0: Regis	RP0 : Register Bank Select bits (used for direct addressing)								
		01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh)								
bit 4	TO: Time-c	TO: Time-out bit								
		 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred 								
bit 3	PD: Power	PD: Power-down bit								
		 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 								
bit 2	Z: Zero bit									
		sult of an ar				ro				
bit 1	DC : Digit c is reversed	-	oit (addwf, a	ADDLW,SUB	LW,SUBWF	instructions)	(for borrow,	the polarity		
		y-out from th ry-out from t				urred				
bit 0	C : Carry/bo reversed)	orrow bit (AI	DDWF, ADDLI	W,SUBLW,S	UBWF inst	ructions) (fo	r borrow, the	e polarity is		
		y-out from th ry-out from t								
	Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.									
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unir	mplemented	bit, read as	'0'		
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is	s cleared	x = Bit is ur	known		

2.3.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	When	the	prese	caler	is	as	signe	ed	to
	the WI	DT (F	PSA =	'1'),	TM	R 0	has	а	1:1
	prescal	er as	signm	ent.					

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
	bit 7	·						bit 0	
bit 7	RBPU: PC	ORTB Pull-up	Enable bit						
		⁻B pull-ups a ⁻B pull-ups a		oy individual	port latch v	alues			
bit 6	INTEDG:	INTEDG: Interrupt Edge Select bit							
		upt on rising upt on falling	•	•					
bit 5	TOCS: TM	R0 Clock So	urce Select	bit					
		ition on RA4, al instruction		(CLKOUT)					
bit 4	TOSE: TM	R0 Source E	dge Select I	oit					
		nent on high nent on low-							
bit 3	PSA: Pres	caler Assign	ment bit						
		aler is assigr aler is assigr			e				
bit 2-0	PS2:PS0:	Prescaler Ra	ate Select bi	ts					
	Bit Value	TMR0 Rate	WDT Rate						
	000	1:2	1:1						
	001 010	1:4 1:8	1:2 1:4						
	011	1:16	1:8						
	100 101	1 : 32 1 : 64	1 : 16 1 : 32						
	110	1:128	1:64						
	111	1 : 256	1 : 128						
	Lenerd]	
	Legend:	abla bit		kitabla bit		o plamanta d	hit road as	·0'	
	R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown$								
			1 = D	11 13 301		3 UCAIEU			

2.3.3 INTCON REGISTER

The INTCON register is a readable and writable register that contains the various enable bits for all interrupt sources.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

- n = Value at POR

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	
	bit 7							bit 0	
bit 7	GIE: Global Interrupt Enable bit								
	1 = Enables all unmasked interrupts								
		es all interru	•						
bit 6		Vrite Comple	•						
		s the EE Wi		te interrupts					
bit 5		0 Overflow I	•						
		s the TMR0	•						
	0 = Disable	es the TMRC) interrupt						
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit					
		s the RB0/I		•					
		es the RB0/I		•					
bit 3		Port Change	•						
		s the RB po es the RB po							
bit 2		0 Overflow I	•						
			•	•	eared in softwa	re)			
		register did		•		,			
bit 1	INTF: RB0/	INT Externa	al Interrupt I	Flag bit					
			•	•	must be cleared	l in softwar	e)		
				t did not occ	cur				
bit 0		Port Change		•			<i>(</i> ,)		
			-	ins changed /e changed	l state (must be state	cleared in	software)		
				o onangeu					
	Legend:								
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '()'	
	1								

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.4 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. If the program counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. All updates to the PCH register go through the PCLATH register.

2.4.1 STACK

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

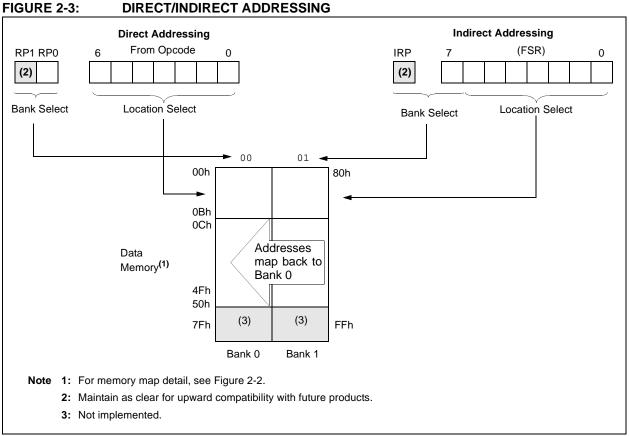
After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.


Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	clear INDF register;
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTIN	IUE		
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16F84A.

3.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F84A devices have 64 bytes of data EEPROM with an address range from 0h to 3Fh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The writetime will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits.

When the device is code protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

Additional information on the Data EEPROM is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

REGISTER 3-1: EECON1 REGISTER (ADDRESS 88h)

	U-0	U-0	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0	
		_	_	EEIF	WRERR	WREN	WR	RD	
	bit 7							bit 0	
bit 7-5	Unimplemented: Read as '0'								
bit 4	EEIF: EEP	ROM Write	Operation Ir	terrupt Flag	bit				
	 1 = The write operation completed (must be cleared in software) 0 = The write operation is not complete or has not been started 								
bit 3	WRERR: E	EPROM Er	ror Flag bit						
	 1 = A write operation is prematurely terminated (any MCLR Reset or any WDT Reset during normal operation) 0 = The write operation completed 								
bit 2	WREN: EEPROM Write Enable bit								
		write cycles write to the							
bit 1	WR: Write	Control bit							
	can onl	y be set (no	tle. The bit is t cleared) in EEPROM is t	software.	hardware or	nce write is	complete. T	he WR bit	
bit 0	RD: Read	Control bit							
	 1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 0 = Does not initiate an EEPROM read 								
								1	
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'	
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown	

3.1 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 3-1: DA	TA EEPROM READ
-----------------	----------------

BCF	STATUS, RPO	; Bank 0
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	STATUS, RPO	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RPO	; Bank 0
MOVF	EEDATA, W	; W = EEDATA

3.2 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 3-2: DATA EEPROM WRITE

	BSF	STATUS, RPO	;	Bank 1
	BCF	INTCON, GIE	;	Disable INTs.
	BSF	EECON1, WREN	;	Enable Write
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
_ U	MOVLW	AAh	;	
uired uence	MOVWF	EECON2	;	Write AAh
equir	BSF	EECON1,WR	;	Set WR bit
eq			;	begin write
പ്പ സ	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

3.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 3-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

Generally, the EEPROM write failure will be a bit which was written as a '0', but reads back as a '1' (due to leakage off the bit).

EXAMPLE 3-3: WRITE VERIFY

	BCF	STATUS, RPO	;	Bank 0
	:		;	Any code
	:		;	can go here
	MOVF	EEDATA,W	;	Must be in Bank 0
	BSF	STATUS, RPO	;	Bank 1
EAD				
	BSF	EECON1, RD	;	YES, Read the
			;	value written
	BCF	STATUS, RPO	;	Bank 0
			;	
			;	Is the value written
			;	(in W reg) and
			;	read (in EEDATA)
			;	the same?
			;	
	SUBWF	EEDATA, W	;	
	BTFSS	STATUS, Z	;	Is difference 0?
	GOTO	WRITE_ERR	;	NO, Write error

TABLE 3-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
08h	EEDATA	EEPRO	M Data R		XXXX XXXX	uuuu uuuu					
09h	EEADR	EEPRO	M Addres	s Registe	er					xxxx xxxx	uuuu uuuu
88h	EECON1		—	0 x000	0 d000						
89h	EECON2	EEPRO	M Contro								

R

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023).

4.1 PORTA and TRISA Registers

PORTA is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as inputs and read as '0'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read. This value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

EXAMPLE 4-1:	INITIALIZING PORTA

BCF	STATUS, RPO	;	
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0x0F	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA4 as output
		;	TRISA<7:5> are always
		;	read as '0'.

FIGURE 4-1: BLOCK DIAGRAM OF

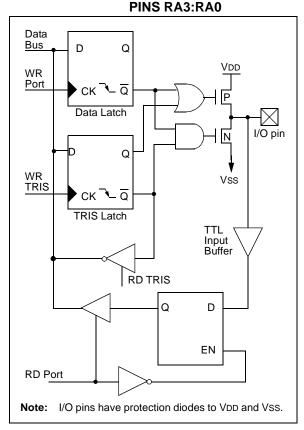
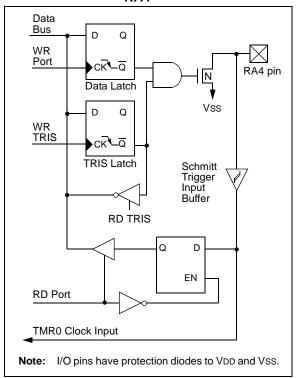



FIGURE 4-2:

BLOCK DIAGRAM OF PIN RA4

TABLE 4-1: PORTA FUNCTIONS

Name	Bit0	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0. Output is open drain type.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
05h	PORTA	_	_		RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are unimplemented, read as '0'.

4.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 4-2: INITIALIZING PORTB

BCF	STATUS, RPO	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\mathsf{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 4-3: BLOCK DIAGRAM OF PINS RB7:RB4

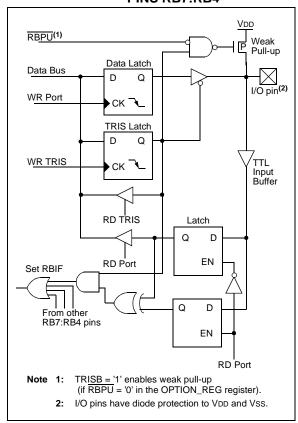
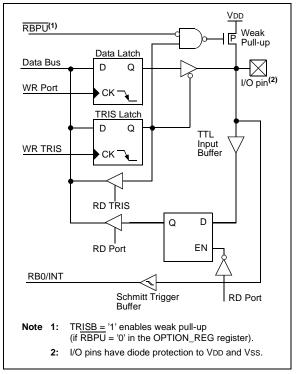



FIGURE 4-4:

BLOCK DIAGRAM OF PINS RB3:RB0

Name	Bit	Buffer Type	I/O Consistency Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger.

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
0Bh,8Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- · Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt-on-overflow from FFh to 00h

Figure 5-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

5.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below.

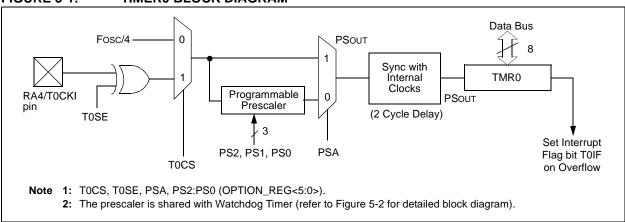
When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

Additional information on external clock requirements is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

5.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

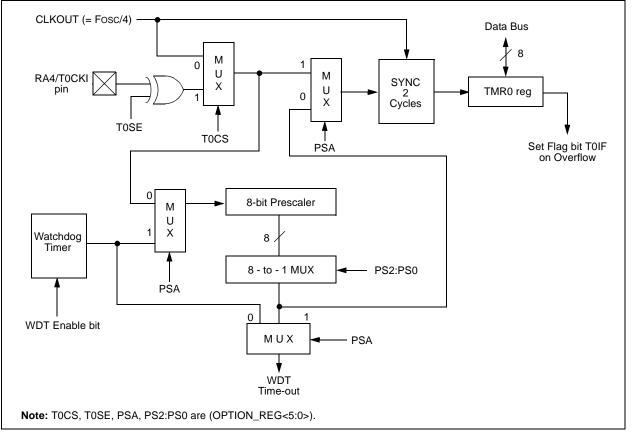
Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 5-1: TIMER0 BLOCK DIAGRAM

5.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution).

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PICmicro[™] Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

5.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut-off during SLEEP.

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
01h	TMR0	Timer0	Module Re	gister						xxxx xxxx	uuuu uuuu
0Bh,8Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA		_	_	PORTA	Data Dire	ection Re	1 1111	1 1111		

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16F84A has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F84A has a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options.

Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

6.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

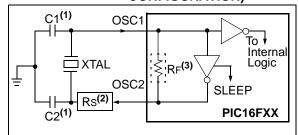
Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

REGISTER 6-1: PIC16F84A CONFIGURATION WORD

R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u
CP	CP	СР	СР	CP	СР	СР	СР	СР	CP	PWRTE	WDTE	F0SC1	F0SC0
bit13													bit0
bit 13-4		1 = Co	CP: Code Protection bit 1 = Code protection disabled 0 = All program memory is code protected										
bit 3		PWRTE : Power-up Timer Enable bit 1 = Power-up Timer is disabled 0 = Power-up Timer is enabled											
bit 2		WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0		FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator											

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES


The PIC16F84A can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

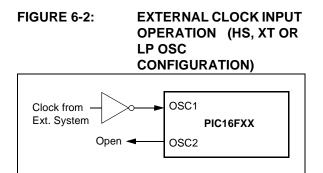

In XT, LP, or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 6-1).

FIGURE 6-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- Note 1: See Table 6-1 for recommended values of C1 and C2.
 - **2:** A series resistor (Rs) may be required for AT strip cut crystals.

The PIC16F84A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 6-2).

TABLE 6-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Tested:								
Mode	Freq	OSC1/C1	OSC2/C2					
XT	455 kHz	47 - 100 pF	47 - 100 pF					
	2.0 MHz	15 - 33 pF	15 - 33 pF					
	4.0 MHz	15 - 33 pF	15 - 33 pF					
HS	8.0 MHz	15 - 33 pF	15 - 33 pF					
	10.0 MHz	15 - 33 pF	15 - 33 pF					
id Hi of st gu its cc ap	ecommended entical to the r gher capacita the oscillato art-up time. Th uidance only. own charac onsult the reso opropriate val ents.	anges tested nce increases r, but also ir hese values a Since each re teristics, the mator manufa	in this table. Is the stability increases the refor design esonator has user should cturer for the					

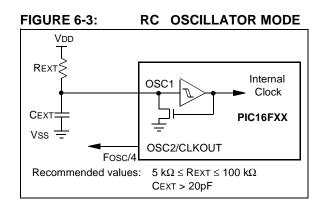

Note:	When using resonators with frequencies
	above 3.5 MHz, the use of HS mode rather
	than XT mode, is recommended. HS mode
	may be used at any VDD for which the
	controller is rated.

TABLE 6-2:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1/C1	OSC2/C2		
LP	32 kHz	68 - 100 pF	68 - 100 pF		
	200 kHz	15 - 33 pF	15 - 33 pF		
XT	100 kHz	100 - 150 pF	100 - 150 pF		
	2 MHz	15 - 33 pF	15 - 33 pF		
	4 MHz	15 - 33 pF	15 - 33 pF		
HS	4 MHz	15 - 33 pF	15 - 33 pF		
	20 MHz	15 - 33 pF	15 - 33 pF		
Note:	of the oscill start-up time guidance on mode, as we driving crysta cation. Sinc characteristic crystal ma values of ext	lator, but also a. These values ly. Rs may be all as XT mode als with low driving e each crystance, the user sho nufacturer for ternal component	tes the stability increases the are for design required in HS to avoid over- ve level specifi- l has its own buld consult the r appropriate ents. 30 pF is recom-		

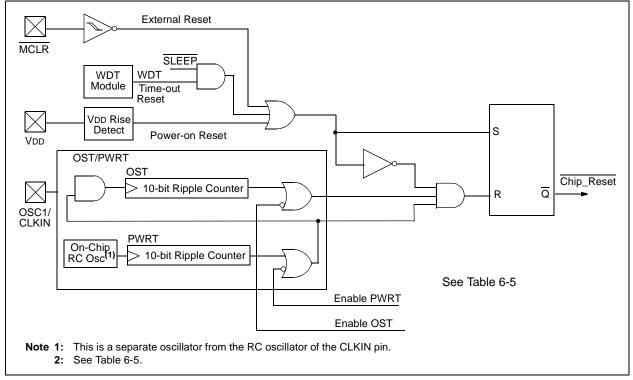
6.2.3 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user needs to take into account variation, due to tolerance of the external R and C components. Figure 6-3 shows how an R/C combination is connected to the PIC16F84A.

6.3 RESET

The PIC16F84A differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR during normal operation
- MCLR during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)


Figure 6-4 shows a simplified block diagram of the On-Chip RESET Circuit. The MCLR Reset path has a noise filter to ignore small pulses. The electrical specifications state the pulse width requirements for the $\overline{\text{MCLR}}$ pin.

Some registers are not affected in any RESET condition; their status is unknown on a POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on POR, MCLR or WDT Reset during normal operation and on MCLR during SLEEP. They are not affected by a WDT Reset during SLEEP, since this RESET is viewed as the resumption of normal operation.

Table 6-3 gives a description of RESET conditions for the program counter (PC) and the STATUS register. Table 6-4 gives a full description of RESET states for all registers.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations (Section 6.7). These bits are used in software to determine the nature of the RESET.

TABLE 6-3: RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR during normal operation	000h	000u uuuu
MCLR during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	սսս0 Օսսս
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu

Legend: u = unchanged, x = unknown

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TADLE 0-4.				
Register	Address	Power-on Reset	MCLR during: – normal operation – SLEEP WDT Reset during normal operation	Wake-up from SLEEP: – through interrupt – through WDT Time-out
W		xxxx xxxx	սսսս սսսս	uuuu uuuu
INDF	00h			
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	05h	x xxxx	u uuuu	u uuuu
PORTB ⁽⁵⁾	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATA	08h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	սսսս սսսս (1)
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
PCL	82h	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	83h	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾

TABLE 6-4: RESET CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: Table 6-3 lists the RESET value for each specific condition.

4: On any device RESET, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

6.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

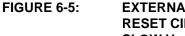
For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

The POR circuit does not produce an internal RESET when VDD declines.

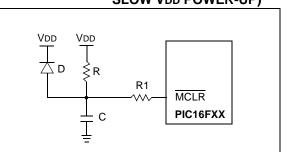
6.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) provides a fixed 72 ms nominal time-out (TPWRT) from POR (Figures 6-6 through 6-9). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level (possible exception shown in Figure 6-9).

A configuration bit, PWRTE, can enable/disable the PWRT. See Register 6-1 for the operation of the PWRTE bit for a particular device.


The power-up time delay TPWRT will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

6.6 Oscillator Start-up Timer (OST)


The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends (Figure 6-6, Figure 6-7, Figure 6-8 and Figure 6-9). This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out (TOST) is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this case (Figure 6-9), an external Power-on Reset circuit may be necessary (Figure 6-5).

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μ A). A larger voltage drop will degrade VIH level on the MCLR pin.
 - **3:** $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C, in the event of a MCLR pin breakdown due to ESD or EOS.

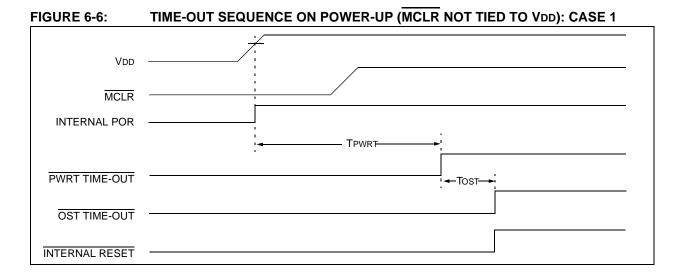


FIGURE 6-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

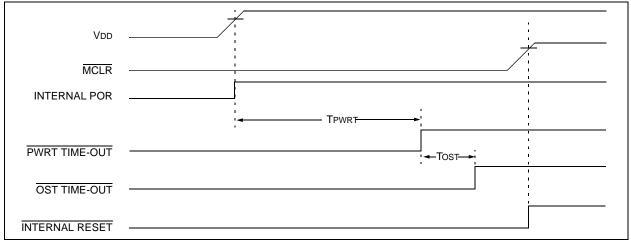
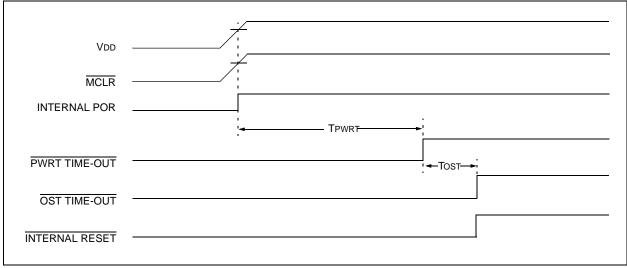
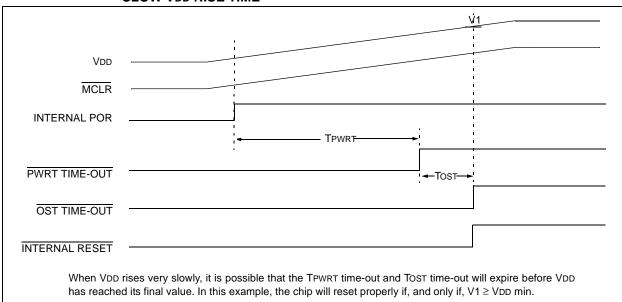




FIGURE 6-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

PIC16F84A

FIGURE 6-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

6.7 Time-out Sequence and _____ Power-down Status Bits (TO/PD)

On power-up (Figures 6-6 through 6-9), the time-out sequence is as follows:

- 1. PWRT time-out is invoked after a POR has expired.
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

TABLE 6-5:TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	Wake-up	
Configuration	PWRT PWRT Enabled Disabled		from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
RC	72 ms	_	_

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 6-6). This is useful for testing purposes or to synchronize more than one PIC16F84A device when operating in parallel.

Table 6-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 6-3 lists the RESET conditions for some special registers, while Table 6-4 lists the RESET conditions for all the registers.

TABLE 6-6: STATUS BITS AND THEIR SIGNIFICANCE

то	PD	Condition
1	1	Power-on Reset
0	х	Illegal, TO is set on POR
x	0	Illegal, PD is set on POR
0	1	WDT Reset (during normal operation)
0	0	WDT Wake-up
1	1	MCLR during normal operation
1	0	MCLR during SLEEP or interrupt
		wake-up from SLEEP

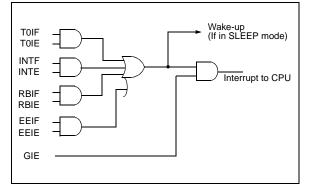
6.8 Interrupts

The PIC16F84A has 4 sources of interrupt:

- External interrupt RB0/INT pin
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB7:RB4)
- Data EEPROM write complete interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also contains the individual and global interrupt enable bits.

The global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. Bit GIE is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. For external interrupt events, such as the RB0/INT pin or PORTB change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for both one and two cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

FIGURE 6-10: INTERRUPT LOGIC

6.8.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION_REG<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing control bit INTE (INTCON<4>). Flag bit INTF must be cleared in software via the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 6.11) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up.

6.8.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in TMR0 will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

6.8.3 PORTB INTERRUPT

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 4.2).

Note: For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide.

6.8.4 DATA EEPROM INTERRUPT

At the completion of a data EEPROM write cycle, flag bit EEIF (EECON1<4>) will be set. The interrupt can be enabled/disabled by setting/clearing enable bit EEIE (INTCON<6>) (Section 3.0).

6.9 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users wish to save key register values during an interrupt (e.g., W register and STATUS register). This is implemented in software.

The code in Example 6-1 stores and restores the STATUS and W register's values. The user defined registers, W_TEMP and STATUS_TEMP are the temporary storage locations for the W and STATUS registers values.

Example 6-1 does the following:

- a) Stores the W register.
- b) Stores the STATUS register in STATUS_TEMP.
- c) Executes the Interrupt Service Routine code.
- d) Restores the STATUS (and bank select bit) register.
- e) Restores the W register.

PUSH	MOVWF	W_TEMP	; Copy W to TEMP register,
	SWAPF	STATUS, W	; Swap status to be saved into W
	MOVWF	STATUS_TEMP	; Save status to STATUS_TEMP register
ISR	:		:
	:		; Interrupt Service Routine
	:		; should configure Bank as required
	:		;
POP	SWAPF	STATUS_TEMP,W	; Swap nibbles in STATUS_TEMP register
			; and place result into W
	MOVWF	STATUS	; Move W into STATUS register
			; (sets bank to original state)
	SWAPF	W_TEMP, F	; Swap nibbles in W_TEMP and place result in W_TEMP
	SWAPF	W TEMP, W	; Swap nibbles in W TEMP and place result into W

6.10 Watchdog Timer (WDT)

The Watchdog Timer is a free running On-Chip RC Oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT wake-up causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming configuration bit WDTE as a '0' (Section 6.1).

6.10.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a WDT time-out.

6.10.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., Max. WDT Prescaler), it may take several seconds before a WDT time-out occurs.

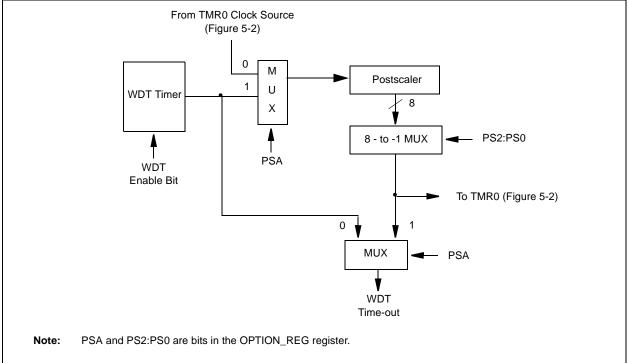


TABLE 6-7: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
2007h	Config. bits	(2)	(2)	(2)	(2)	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0	(2)	
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown. Shaded cells are not used by the WDT.

Note 1: See Register 6-1 for operation of the PWRTE bit.

2: See Register 6-1 and Section 6.12 for operation of the code and data protection bits.

6.11 Power-down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (wake-up from SLEEP).

6.11.1 SLEEP

The Power-down mode is entered by executing the $\ensuremath{\mathtt{SLEEP}}$ instruction.

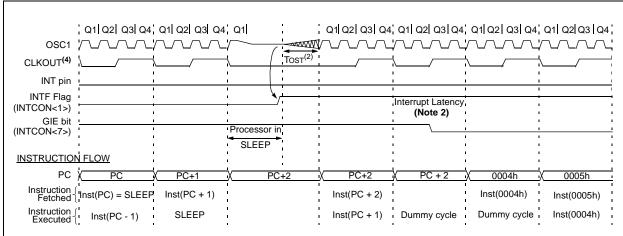
If enabled, the Watchdog Timer is cleared (but keeps running), the PD bit (STATUS<3>) is cleared, the TO bit (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For the lowest current consumption in SLEEP mode, place all I/O pins at either VDD or VSS, with no external circuitry drawing current from the I/O pins, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

6.11.2 WAKE-UP FROM SLEEP


The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on $\overline{\text{MCLR}}$ pin.
- 2. WDT wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete.

Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present.

The first event ($\overline{\text{MCLR}}$ Reset) will cause a device RESET. The two latter events are considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of a device RESET. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

While the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the sLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

FIGURE 6-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS, or LP oscillator mode assumed.

- 2: TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC osc mode.
- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

6.11.3 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

6.12 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

6.13 ID Locations

Four memory locations (2000h - 2004h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the four Least Significant bits of ID location are usable.

6.14 In-Circuit Serial Programming

PIC16F84A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

For complete details of Serial Programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide, (DS30277).

NOTES:

7.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 7-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 7-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 7-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compat- ibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
то	Time-out bit
PD	Power-down bit

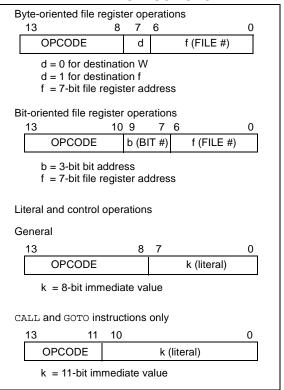
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 7-2 lists the instructions recognized by the MPASM[™] Assembler.

Figure 7-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 7-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

TABLE 7-2: PIC16CXXX INSTRUCTION SET

Mnemonic, Description				14-Bit Opcode		Status	•••		
		Description	Cycles	MSb			LSb	Affected	Notes
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		,
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff		-, -,	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff		Z	1,2
		BIT-ORIENTED FILE REGIST		ATION	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01		bfff			1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb		ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERATI	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	- /	
IORLW	k	Inclusive OR literal with W	1	11	1000		kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO.PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z	
		/O register is modified as a function of itself (a g							

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

7.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

BTFSC	Bit Test, Skip if Clear		
Syntax:	[<i>label</i>] BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	skip if (f) = 0		
Status Affected:	None		
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.		

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	10
Syntax:	[<i>label</i>] INCF f,d	Sy
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	Ор
Operation:	(f) + 1 \rightarrow (destination)	Ор
Status Affected:	Z	Sta
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	De

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

PIC16F84A

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC,$ 1 $\rightarrow GIE$
Status Affected:	None

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k \text{ - } (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

RRF	Rotate Right f through Carry
Syntax:	[label] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	C Register f

SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W regis- ter. If 'd' is 1, the result is placed in register 'f'.

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d
Operands: Operation:	$0 \le k \le 255$ (W) .XOR. $k \rightarrow$ (W)	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Status Affected:	Z	Operation:	(W) .XOR. (f) \rightarrow (destination)
Description:	The contents of the W register	Status Affected:	Z
	are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

8.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

8.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

8.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

8.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

8.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

8.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

8.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] environment were chosen to best make these features available to you, the end user.

8.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

8.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

8.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

8.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

8.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

8.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I2CTM bus and separate headers for connection to an LCD module and a keypad.

8.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

8.14 **PICDEM 17** Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

8.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 8-1: DEVELOPMENT TOOLS FROM MICROCHIP

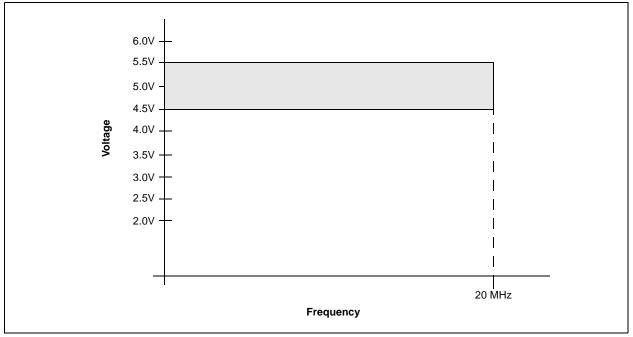
MPLAB® Integrated Development Environment MPLAB® C17 C Compiler		PIC	ыся	PIC16	PIC16	PIC16	PIC16	PIC16	PIC16	PIC160	PIC170	DTIDIA	PIC18C	PIC18F	83CX 52CX 54CX	хѕэн	MCRF	WCP25
	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
											~	~						
MPLAB [®] C18 C Compiler													~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	~	~	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	>	>	~	>	**`	>	>	>	>	>	>	~	~	>				
ICEPIC TM In-Circuit Emulator		>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger Debugger			*/			*>			>					>				
PICSTAR T [®] Plus Entry Level	>	>	>	>	**^	>	>	>	>	>	>	>	>	>				
କୁ PRO MATE® II Duniversal Device Programmer ଦ	>	>	>	>	**/^	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board		>		>		÷,		>			>							
PICDEM TM 2 Demonstration Board			^ +			^ +		ļ					>	>				
PICDEM TM 3 Demonstration Board										>								
PICDEM TM 14A Demonstration	>																	
								L				>						
KEELoq® Evaluation Kit																~		
KEELoq® Transponder Kit																~		
microlD TM Programmer's Kit																	>	
125 kHz microlD™ Developer's Kit																	>	
125 kHz Anticollision microlD TM Developer's Kit																	>	
13.56 MHz Anticollision microlD™ Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		~

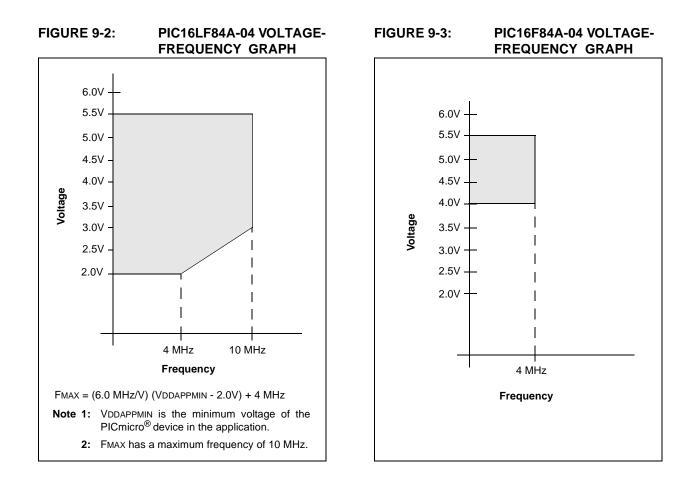
© 2001 Microchip Technology Inc.

NOTES:

9.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †


•	
Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss ⁽¹⁾	
Voltage on RA4 with respect to Vss	0.3 to +8.5V
Total power dissipation ⁽²⁾	800 mW
Maximum current out of Vss pin	
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1. Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 m/	A may cause latch-up


- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, <u>may</u> cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - **2:** Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F84A

9.1 DC Characteristics

	F84A-04 mercial, Ir	ndustrial)		ard Op iting ter			ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
PIC16F	mercial, Ir 84A-20	ndustrial, Extended) ndustrial, Extended)		ard Op tting ter			ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		16LF84A	2.0	—	5.5	V	XT, RC, and LP osc configuration
D001 D001A		16F84A	4.0 4.5	_	5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5	_	_	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		_	V/ms	
	Idd	Supply Current (Note 2)					
D010		16LF84A	_	1	4	mA	RC and XT osc configuration (Note 4) FOSC = 2.0 MHz, VDD = 5.5V
D010		16F84A	_	1.8	4.5	mA	RC and XT osc configuration (Note 4) Fosc = 4.0 MHz, VDD = 5.5V
D010A			—	3	10	mA	RC and XT osc configuration (Note 4) FOSC = 4.0 MHz, VDD = 5.5V (During FLASH programming)
D013			-	10	20	mA	HS osc configuration (PIC16F84A-20) Fosc = 20 MHz, VDD = 5.5V
D014		16LF84A	—	15	45	μA	LP osc configuration Fosc = 32 kHz, VDD = 2.0V, WDT disabled

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - TOCKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
 - 5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.

9.1 DC Characteristics (Continued)

(Com	F84A-04 mercial, Ir	ndustrial)	Opera	ting ter	mperat	ure	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)
PIC16F	mercial, Ir 84A-20	ndustrial, Extended) ndustrial, Extended)		ard Op ting ter		-	ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	IPD	Power-down Current (Note 3)				
D020		16LF84A					
D020		16F84A-20 16F84A-04					
D021A		16LF84A	_	0.4	1.0	μΑ	VDD = 2.0V, WDT disabled, industrial
D021A		16F84A-20 16F84A-04		1.5 1.0	3.5 3.0	μΑ μΑ	VDD = 4.5V, WDT disabled, industrial VDD = 4.0V, WDT disabled, industrial
D021B		16F84A-20 16F84A-04		1.5 1.0	5.5 5.0	μΑ μΑ	VDD = 4.5V, WDT disabled, extended VDD = 4.0V, WDT disabled, extended
		Module Differential Current (Note 5)					
D022	Δ IWDT	Watchdog Timer	—	.20	16	μA	VDD = 2.0V, Industrial, Commercial
				3.5	20	μΑ	VDD = 4.0V, Commercial
				3.5 4.8	28 25	μΑ μΑ	VDD = 4.0V, Industrial, Extended VDD = 4.5V, Commercial
				4.8	30	μΑ	VDD = 4.5V, Industrial, Extended

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NR Not rated for operation.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - TOCKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula IR = VDD/2REXT (mA) with REXT in kOhm.
- 5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD measurement.

9.2 DC Characteristics:

PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial)

	aracteris s Except	tics Power Supply Pins	Operating ten	nperati	ure 0°0 -40	C ≤ 1 °C ≤ 1	Aless otherwise stated) $\Gamma_A \le +70^{\circ}C$ (commercial) $\Gamma_A \le +85^{\circ}C$ (industrial) cribed in DC specifications
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$ (Note 4)
D030A			Vss	_	0.16Vdd	V	Entire range (Note 4)
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V	Entire range
D032		MCLR, RA4/T0CKI	Vss	—	0.2Vdd	V	
D033		OSC1 (XT, HS and LP modes)	Vss	—	0.3Vdd	V	(Note 1)
D034		OSC1 (RC mode)	Vss	_	0.1Vdd	V	
	Viн	Input High Voltage					
		I/O ports:		—			
D040 D040A		with TTL buffer	2.0 0.25VDD+0.8	_	Vdd Vdd	V V	4.5V ≤ VDD ≤ 5.5V (Note 4) Entire range (Note 4)
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd		Entire range
D042		MCLR,	0.8 Vdd	_	Vdd	V	
D042A		RA4/T0CKI	0.8 Vdd	_	8.5	V	
D043		OSC1 (XT, HS and LP modes)	0.8 Vdd	—	Vdd	V	(Note 1)
D043A		OSC1 (RC mode)	0.9 Vdd		Vdd	V	
D050	VHYS	Hysteresis of Schmitt Trigger Inputs	—	0.1	_	V	
D070	Ipurb	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current (Notes 2, 3)					
D060		I/O ports	_	—	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at hi-impedance} \end{split}$
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \leq VPIN \leq VDD$
D063		OSC1	_	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may choose the better of the two specs.

9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial) (Continued)

	aracteris s Except	tics Power Supply Pins	Operating te	mperati oltage V	ure 0° -40	C ≤ ⁻ 0°C ≤ ⁻	hless otherwise stated) TA ≤ +70°C (commercial) TA ≤ +85°C (industrial) cribed in DC specifications
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V
D083		OSC2/CLKOUT	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, (RC mode only)
	Vон	Output High Voltage					
D090		I/O ports (Note 3)	Vdd-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V
D092		OSC2/CLKOUT (Note 3)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V (RC mode only)
	Vod	Open Drain High Voltage					
D150		RA4 pin		—	8.5	V	
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (RC mode)	_	—	50	pF	
		Data EEPROM Memory					
D120	ED	Endurance	1M	10M	—	E/W	25°C at 5V
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Vміn = Minimum operating voltage
D122	TDEW	Erase/Write cycle time		4	8	ms	
		Program FLASH Memory					
D130	Eр	Endurance	1000	10K	—	E/W	
D131	Vpr	VDD for read	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for erase/write	4.5	-	5.5	V	
D133	TPEW	Erase/Write cycle time	—	4	8	ms	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F84A with an external clock while the device is in RC mode, or chip damage may result.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as coming out of the pin.
- 4: The user may choose the better of the two specs.

9.3 AC (Timing) Characteristics

9.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

Т			
F	Frequency	Т	Time
Lowercase	letters (pp) and their meanings:		
рр			
2	to	OS, OSC	OSC1
ck	CLKOUT	ost	oscillator start-up timer
су	cycle time	pwrt	power-up timer
io	I/O port	rbt	RBx pins
inp	INT pin	tO	TOCKI
mp	MCLR	wdt	watchdog timer
Uppercase	letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (high impedance)	V	Valid
L	Low	Z	High Impedance

9.3.2 TIMING CONDITIONS

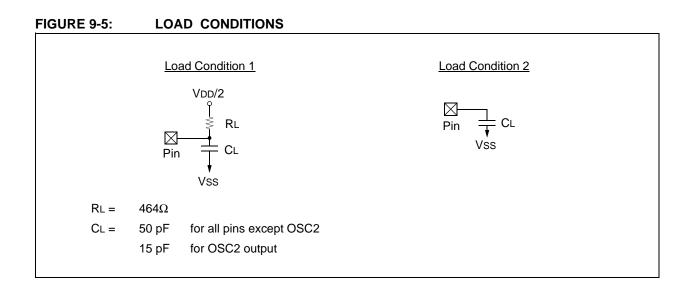

The temperature and voltages specified in Table 9-1 apply to all timing specifications unless otherwise noted. All timings are measured between high and low measurement points as indicated in Figure 9-4. Figure 9-5 specifies the load conditions for the timing specifications.

TABLE 9-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

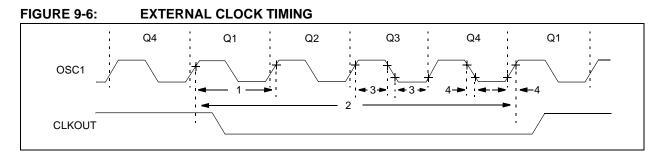
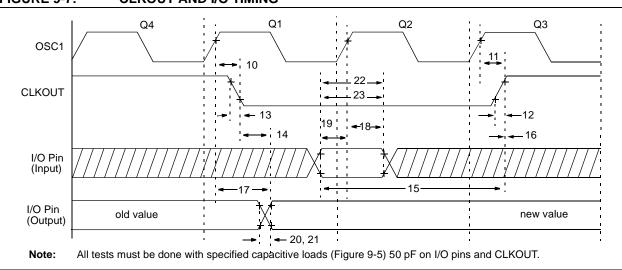

	Standard Operating Conditions (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial
AC CHARACTERISTICS	-40°C \leq TA \leq +85°C for industrial
	Operating voltage VDD range as described in DC specifications (Section 9.1)

FIGURE 9-4: PARAMETER MEASUREMENT INFORMATION

9.3.3 TIMING DIAGRAMS AND SPECIFICATIONS


TABLE 9-2: EXTERNAL CLOCK TIMING REQUIREMENTS

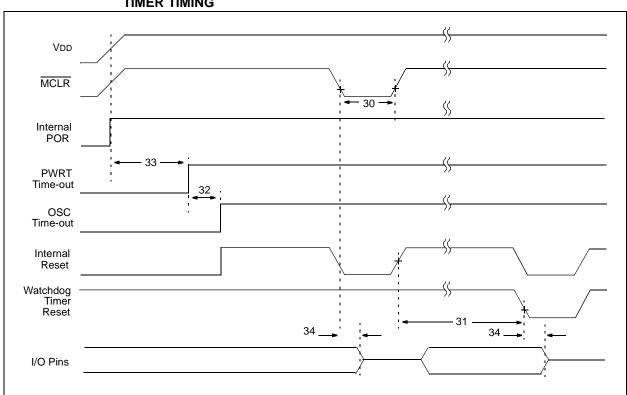
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Cond	ditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		2	MHz	XT, RC osc	(-04, LF)
			DC	—	4	MHz	XT, RC osc	(-04)
			DC	—	20	MHz	HS osc	(-20)
			DC	—	200	kHz	LP osc	(-04, LF)
		Oscillator Frequency ⁽¹⁾	DC	_	2	MHz	RC osc	(-04, LF)
			DC	—	4	MHz	RC osc	(-04)
			0.1	—	2	MHz	XT osc	(-04, LF)
			0.1	—	4	MHz	XT osc	(-04)
			1.0	—	20	MHz	HS osc	(-20)
			DC	—	200	kHz	LP osc	(-04, LF)
1	Tosc	External CLKIN Period ⁽¹⁾	500	_	_	ns	XT, RC osc	(-04, LF)
			250	—	—	ns	XT, RC osc	(-04)
			50	—	—	ns	HS osc	(-20)
			5.0	_	_	μs	LP osc	(-04, LF)
		Oscillator Period ⁽¹⁾	500		_	ns	RC osc	(-04, LF)
			250	—	—	ns	RC osc	(-04)
			500	—	10,000	ns	XT osc	(-04, LF)
			250	—	10,000	ns	XT osc	(-04)
			50	—	1,000	ns	HS osc	(-20)
			5.0	_	_	μs	LP osc	(-04, LF)
2	Тсү	Instruction Cycle Time ⁽¹⁾	0.2	4/Fosc	DC	μs		
3	TosL,	Clock in (OSC1) High or Low	60		_	ns	XT osc	(-04, LF)
	TosH	Time	50	—	—	ns	XT osc	(-04)
			2.0	—	—	μs	LP osc	(-04, LF)
			17.5	—		ns	HS osc	(-20)
4	TosR,	Clock in (OSC1) Rise or Fall	25	—	_	ns	XT osc	(-04)
	TosF	Time	50	—	—	ns	LP osc	(-04, LF)
			7.5	—	—	ns	HS osc	(-20)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 9-7: CLKOUT AND I/O TIMING


TABLE 9-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1 [↑] to CLKOUT↓	Standard	_	15	30	ns	(Note 1)
10A			Extended (LF)		15	120	ns	(Note 1)
11	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	Standard		15	30	ns	(Note 1)
11A			Extended (LF)	—	15	120	ns	(Note 1)
12	TckR	CLKOUT rise time	Standard	—	15	30	ns	(Note 1)
12A			Extended (LF)	—	15	100	ns	(Note 1)
13	TckF	CLKOUT fall time	Standard	—	15	30	ns	(Note 1)
13A			Extended (LF)	—	15	100	ns	(Note 1)
14	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	0.5Tcy +20	ns	(Note 1)
15	TioV2ckH	Port in valid before	Standard	0.30Tcy + 30	-	_	ns	(Note 1)
		CLKOUT ↑	Extended (LF)	0.30Tcy + 80	_	_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT ↑		0	_	—	ns	(Note 1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to	Standard	—	—	125	ns	
	F	Port out valid	Extended (LF)	—	-	250	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	Standard	10	-	_	ns	
		input invalid (I/O in hold time)	Extended (LF)	10		_	ns	
19	TioV2osH	Port input valid to OSC1↑	Standard	-75	_	-	ns	
		(I/O in setup time)	Extended (LF)	-175	-	_	ns	
20	TioR	Port output rise time	Standard	—	10	35	ns	
20A			Extended (LF)	—	10	70	ns	
21	TioF	Port output fall time	Standard	—	10	35	ns	
21A			Extended (LF)		10	70	ns	
22	TINP	INT pin high	Standard	20	_	-	ns	
22A		or low time	Extended (LF)	55	—	_	ns	
23	Trbp	RB7:RB4 change INT	Standard	Tosc§	—	_	ns	
23A		high or low time	Extended (LF)	Tosc§	—	_	ns	

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ By design.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

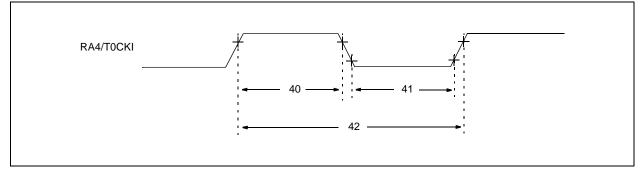

FIGURE 9-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 9-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND
POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μs	VDD = 5.0V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5.0V
32	Tost	Oscillation Start-up Timer Period	Start-up Timer 1024Tosc ms Tosc = OS		Tosc = OSC1 period		
33	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5.0V
34	Tioz	I/O hi-impedance from MCLR Low or RESET	_	_	100	ns	

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 9-9: TIMER0 CLOCK TIMINGS

TABLE 9-5: TIMER0 CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	U U	No Prescaler	0.5Tcy + 20	—	_	ns	
		Width	With Prescaler	50 30	_		-	$2.0V \le VDD \le 3.0V$ $3.0V \le VDD \le 6.0V$
41	Tt0L		No Prescaler	0.5Tcy + 20	_		ns	
		Width	With Prescaler	50 20	_		-	$2.0V \le VDD \le 3.0V$ $3.0V \le VDD \le 6.0V$
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

10.0 DC/AC CHARACTERISTIC GRAPHS

The graphs provided in this section are for **design guidance** and are **not tested**.

In some graphs, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'Min' represents (mean + 3σ) or (mean - 3σ), respectively, where σ is a standard deviation over the whole temperature range.

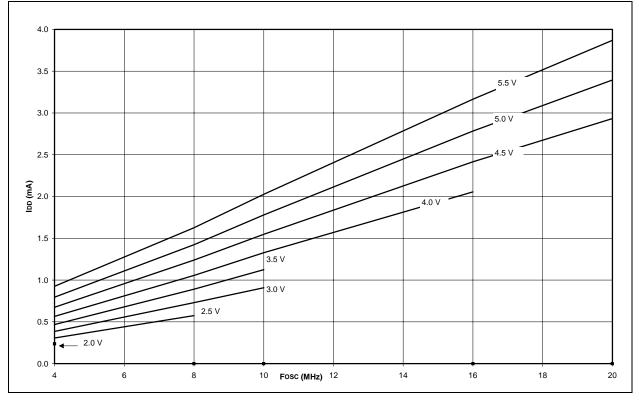


FIGURE 10-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE, -40° TO +125°C)

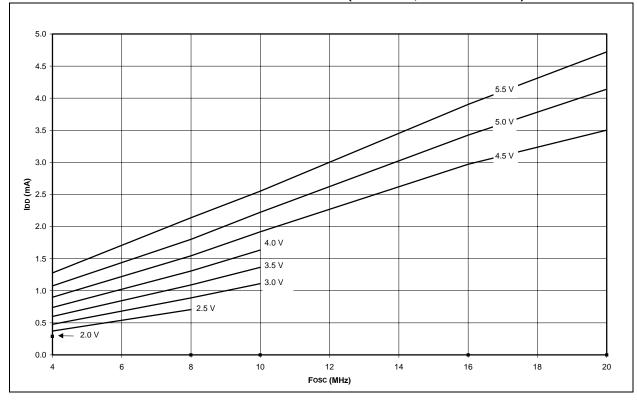


FIGURE 10-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE, 25°C)

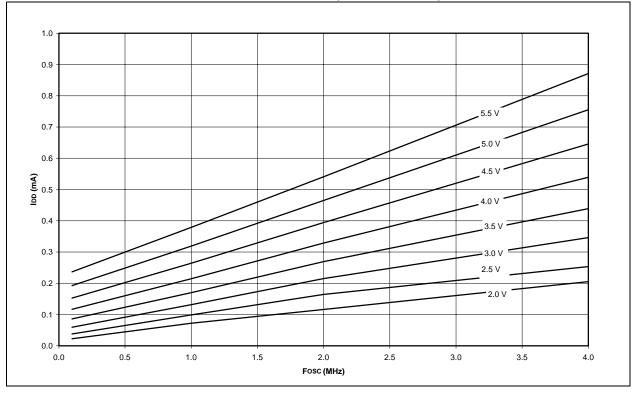
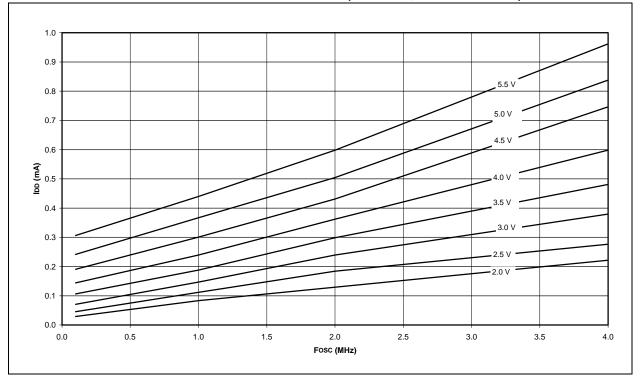



FIGURE 10-4: MAXIMUM IDD vs. Fosc OVER VDD (XT MODE, -40° TO +125°C)

© 2001 Microchip Technology Inc.

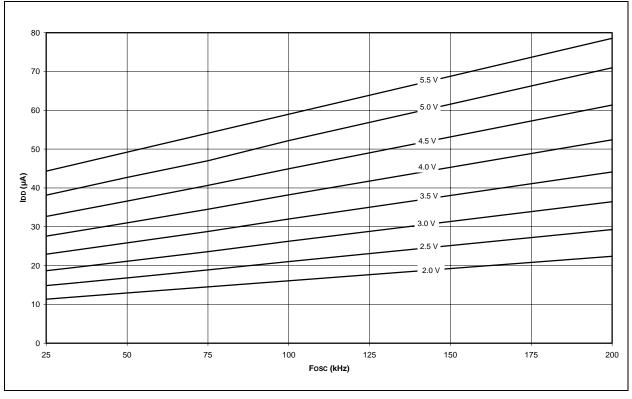
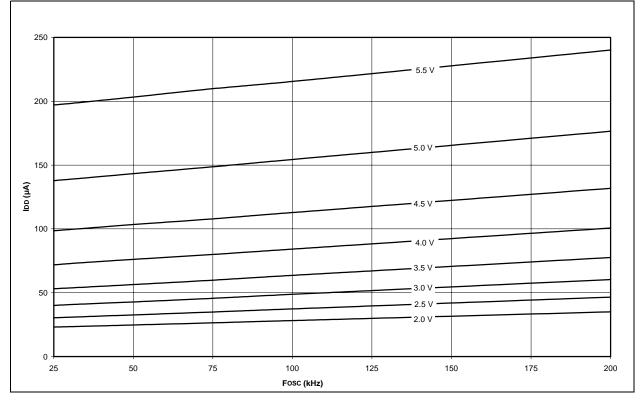



FIGURE 10-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE, 25°C)

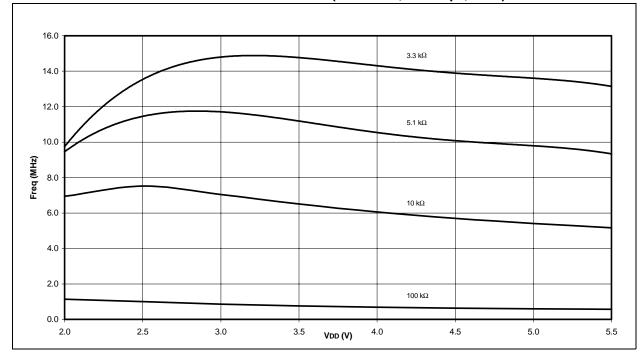
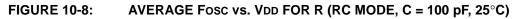
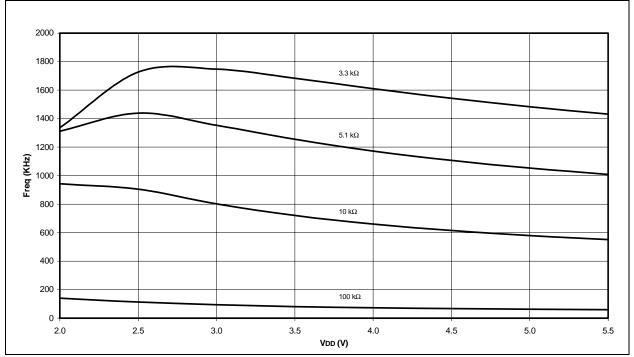
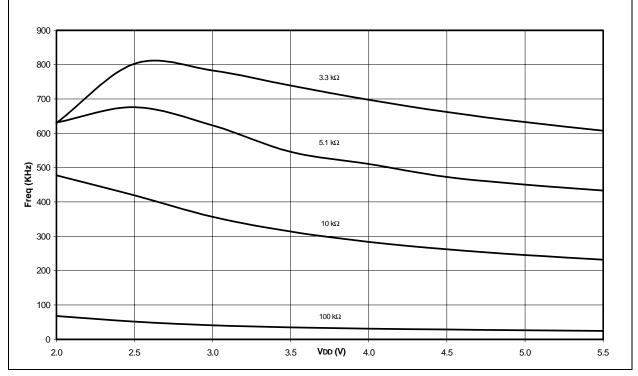
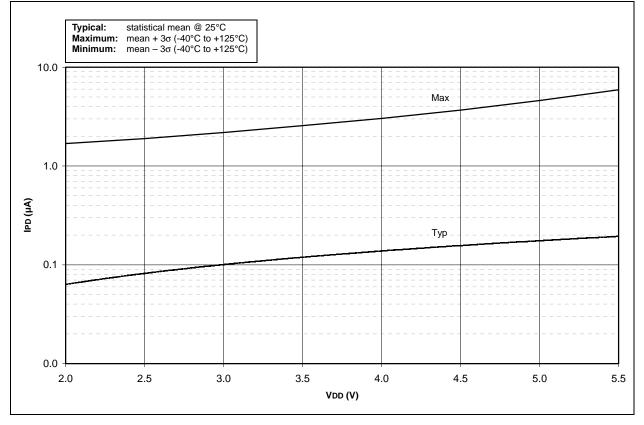
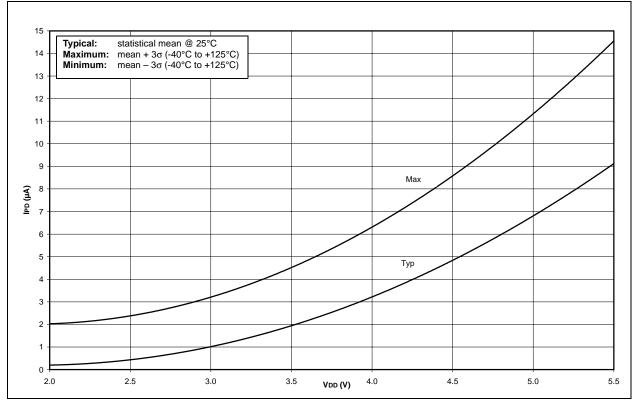
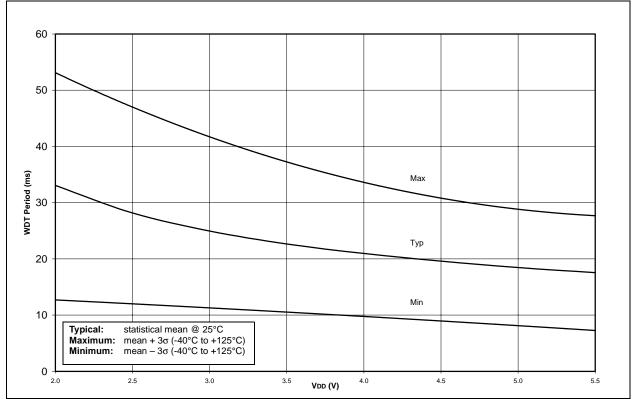
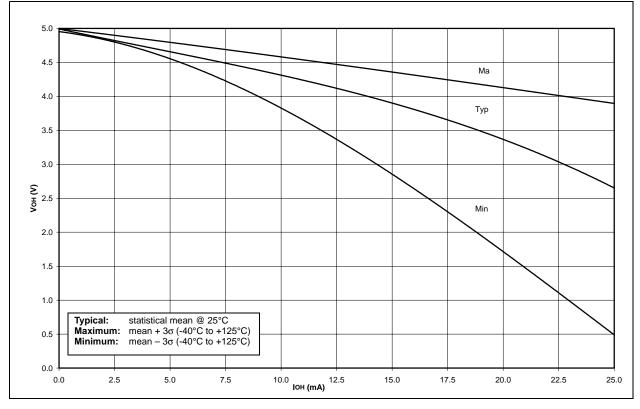





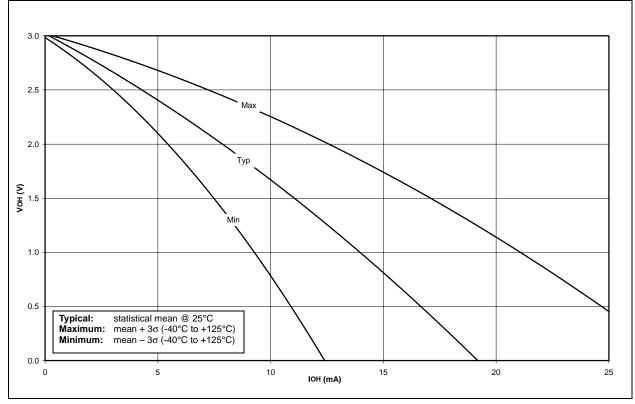
FIGURE 10-7: AVERAGE FOSC vs. VDD FOR R (RC MODE, C = 22 pF, 25°C)











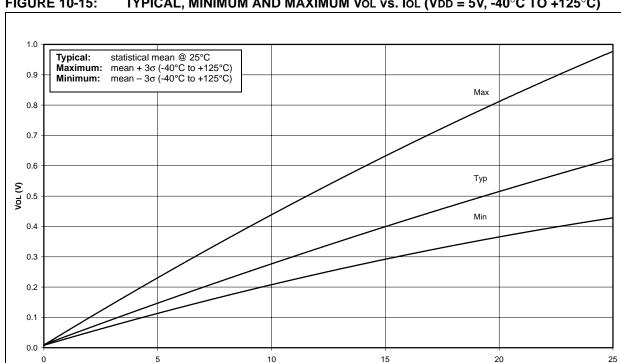
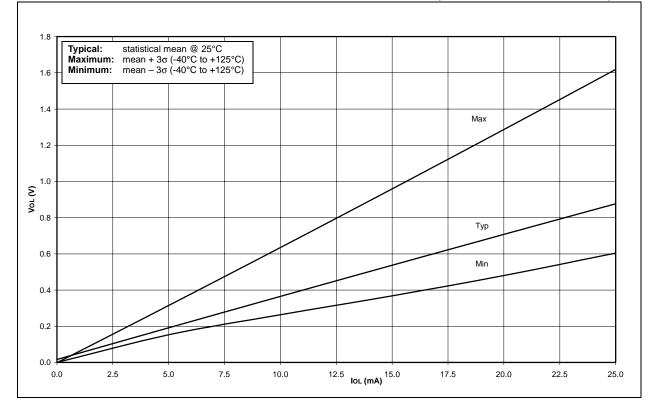
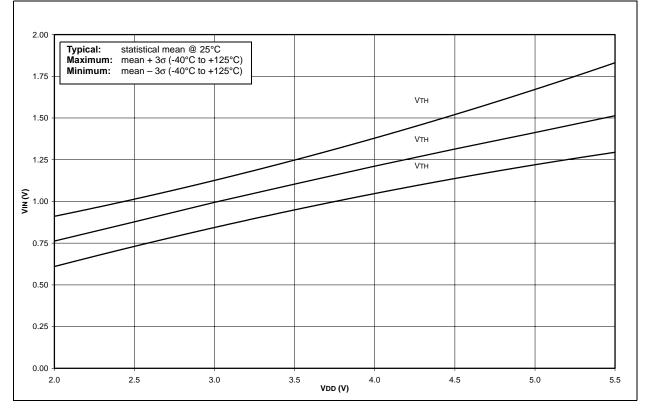
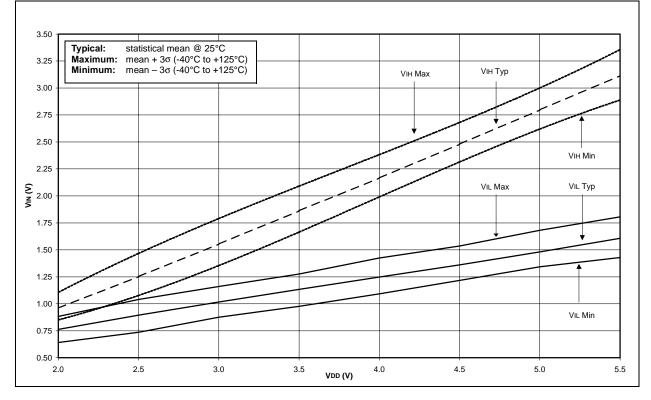
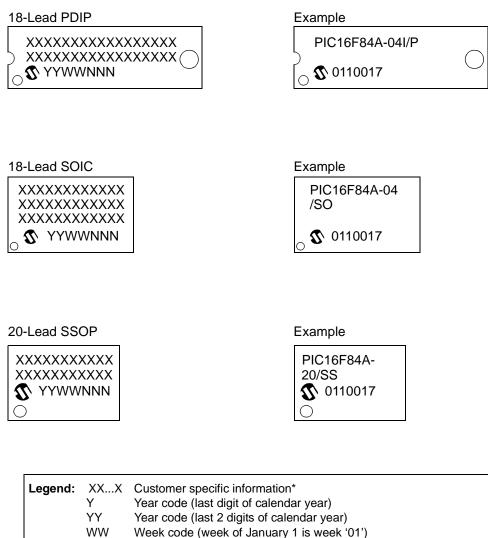


FIGURE 10-13: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

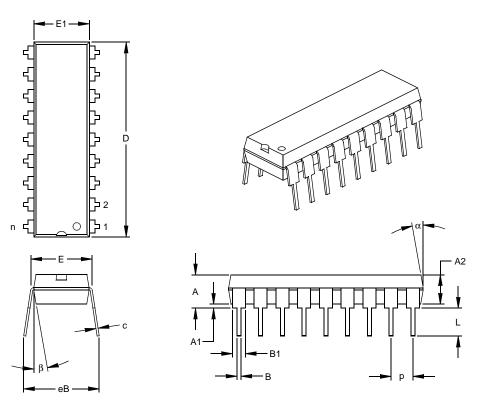

DS35007B-page 68


TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C) **FIGURE 10-15:**


IOL (mA)



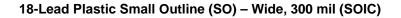
11.0 PACKAGING INFORMATION

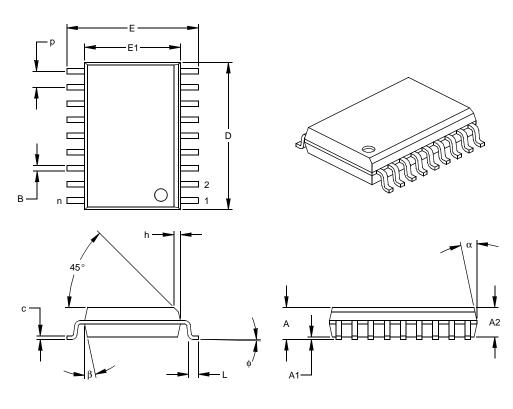

11.1 Package Marking Information

NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip sales office. For QTP devices, any special marking adders are included in QTP price. 18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

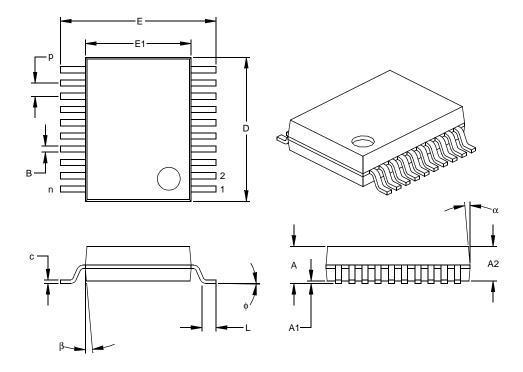



		INCHES*		MILLIMETERS			
Dimen	sion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	A	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* Controlling Decomptor							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007


		INCHES*		MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

		INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	9/98	This is a new data sheet. However, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16F8X Data Sheet</i> , DS30430.
В	8/01	Added DC and AC Characteristics Graphs and Tables to Section 10.

APPENDIX B: CONVERSION CONSIDERATIONS

Considerations for converting from one PIC16X8X device to another are listed in Table 1.

PIC16F84A				
Difference	PIC16C84	PIC16F83/F84	PIC16CR83/ CR84	PIC16F84A
Program Memory Size	1K x 14	512 x 14 / 1K x 14	512 x 14 / 1K x 14	1K x 14
Data Memory Size	36 x 8	36 x 8 / 68 x 8	36 x 8 / 68 x 8	68 x 8
Voltage Range	2.0V - 6.0V (-40°C to +85°C)	2.0V - 6.0V (-40°C to +85°C)	2.0V - 6.0V (-40°C to +85°C)	2.0V - 5.5V (-40°C to +125°C)
Maximum Operating Fre- quency	10 MHz	10 MHz	10 MHz	20 MHz
Supply Current (IDD). See parameter # D014 in the electrical specs for more detail.	$ IDD (typ) = 60 \ \mu A \\ IDD (max) = 400 \ \mu A \\ (LP osc, Fosc = 32 \ kHz, VDD = 2.0V, \\ WDT disabled) $	$\begin{array}{l} \text{IDD} (\text{typ}) = 15 \ \mu\text{A} \\ \text{IDD} (\text{max}) = 45 \ \mu\text{A} \\ (\text{LP osc, Fosc} = 32 \ \text{kHz}, \\ \text{VDD} = 2.0\text{V}, \\ \text{WDT disabled} \end{array}$	$\begin{array}{l} \text{IDD} (\text{typ}) = 15 \ \mu\text{A} \\ \text{IDD} (\text{max}) = 45 \ \mu\text{A} \\ (\text{LP osc, Fosc} = 32 \ \text{kHz}, \\ \text{VDD} = 2.0\text{V}, \\ \text{WDT disabled} \end{array}$	$\begin{array}{l} \text{IDD} (\text{typ}) = 15 \ \mu\text{A} \\ \text{IDD} (\text{max}) = 45 \ \mu\text{A} \\ (\text{LP osc, Fosc} = 32 \ \text{kHz}, \\ \text{VDD} = 2.0\text{V}, \\ \text{WDT disabled} \end{array}$
Power-down Current (IPD). See parameters # D020, D021, and D021A in the electrical specs for more detail.	$\label{eq:PD} \begin{array}{l} \mbox{IPD} \ (typ) = 26 \ \mu A \\ \mbox{IPD} \ (max) = 100 \ \mu A \\ \mbox{(VDD} = 2.0V, \\ \mbox{WDT} \ disabled, \ industrial) \end{array}$	$\begin{split} & \text{IPD} (\text{typ}) = 0.4 \ \mu\text{A} \\ & \text{IPD} (\text{max}) = 9 \ \mu\text{A} \\ & (\text{VDD} = 2.0\text{V}, \\ & \text{WDT disabled, industrial}) \end{split}$	$\begin{split} & \text{IPD (typ)} = 0.4 \mu \text{A} \\ & \text{IPD (max)} = 6 \mu \text{A} \\ & (\text{VDD} = 2.0\text{V}, \\ & \text{WDT disabled, industrial)} \end{split}$	$\begin{array}{l} \mbox{IPD} (typ) = 0.4 \ \mu A \\ \mbox{IPD} (max) = 1 \ \mu A \\ \mbox{(VDD} = 2.0V, \\ \mbox{WDT} \ \mbox{disabled, industrial} \end{array}$
Input Low Voltage (VIL). See parameters # D032 and D034 in the electrical specs for more detail.	VIL (max) = 0.2VDD (OSC1, RC mode)	VIL (max) = 0.1VDD (OSC1, RC mode)	VIL (max) = 0.1VDD (OSC1, RC mode)	VIL (max) = 0.1VDD (OSC1, RC mode)
Input High Voltage (VIH). See parameter # D040 in the electrical specs for more detail.	VIH (min) = 0.36 VDD (I/O Ports with TTL, 4.5 V \leq VDD \leq 5.5 V)	VIH (min) = $2.4V$ (I/O Ports with TTL, $4.5V \le VDD \le 5.5V$)	VIH (min) = $2.4V$ (I/O Ports with TTL, $4.5V \le VDD \le 5.5V$)	VIH (min) = $2.4V$ (I/O Ports with TTL, $4.5V \le VDD \le 5.5V$)
Data EEPROM Memory Erase/Write cycle time (TDEW). See parameter # D122 in the electrical specs for more detail.	TDEW (typ) = 10 ms TDEW (max) = 20 ms	TDEW (typ) = 10 ms TDEW (max) = 20 ms	TDEW (typ) = 10 ms TDEW (max) = 20 ms	TDEW (typ) = 4 ms TDEW (max) = 8 ms
Port Output Rise/Fall time (TioR, TioF). See parameters #20, 20A, 21, and 21A in the elec- trical specs for more detail.	TioR, TioF (max) = 25 ns (C84) TioR, TioF (max) = 60 ns (LC84)	TioR, TioF (max) = 35 ns (C84) TioR, TioF (max) = 70 ns (LC84)	TioR, TioF (max) = 35 ns (C84) TioR, TioF (max) = 70 ns (LC84)	TioR, TioF (max) = 35 ns (C84) TioR, TioF (max) = 70 ns (LC84)
MCLR on-chip filter. See parameter #30 in the electrical specs for more detail.	No	Yes	Yes	Yes
PORTA and crystal oscil- lator values less than 500 kHz	For crystal oscillator con- figurations operating below 500 kHz, the device may generate a spurious internal Q-clock when PORTA<0> switches state.	N/A	N/A	N/A
RB0/INT pin	TTL	TTL/ST* (*Schmitt Trigger)	TTL/ST* (*Schmitt Trigger)	TTL/ST* (*Schmitt Trigger)

TABLE 1:CONVERSION CONSIDERATIONS - PIC16C84, PIC16F83/F84, PIC16CR83/CR84,
PIC16F84A

TABLE 1:CONVERSION CONSIDERATIONS - PIC16C84, PIC16F83/F84, PIC16CR83/CR84,
PIC16F84A (CONTINUED)

Difference	PIC16C84	PIC16F83/F84	PIC16CR83/ CR84	PIC16F84A
EEADR<7:6> and IDD	It is recommended that the EEADR<7:6> bits be cleared. When either of these bits is set, the maxi- mum IDD for the device is higher than when both are cleared.	N/A	N/A	N/A
The polarity of the PWRTE bit	PWRTE	PWRTE	PWRTE	PWRTE
Recommended value of REXT for RC oscillator circuits	Rext = 3kΩ - 100kΩ	Rext = 5kΩ - 100kΩ	$REXT = 5k\Omega - 100k\Omega$	$Rext = 3k\Omega - 100k\Omega$
GIE bit unintentional enable	If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re- enabled by the user's Interrupt Service Routine (the RETFIE instruction).	N/A	N/A	N/A
Packages	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC	PDIP, SOIC, SSOP
Open Drain High Voltage (VoD)	14V	12V	12V	8.5V

APPENDIX C: MIGRATION FROM BASELINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following is the list of feature improvements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes, both in program memory (2K now as opposed to 512K before) and the register file (128 bytes now versus 32 bytes before).
- 2. A PC latch register (PCLATH) is added to handle program memory paging. PA2, PA1 and PA0 bits are removed from the STATUS register and placed in the OPTION register.
- 3. Data memory paging is redefined slightly. The STATUS register is modified.
- 4. Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions, TRIS and OPTION, are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to eight-deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, the Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange features.
- 13. T0CKI pin is also a port pin (RA4/T0CKI).
- 14. FSR is a full 8-bit register.
- 15. "In system programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).

To convert code written for PIC16C5X to PIC16F84A, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables for reallocation.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

INDEX

Α

Absolute Maximum Ratings	49
AC (Timing) Characteristics	55
Architecture, Block Diagram	3
Assembler	
MPASM Assembler	43

В

Banking, Data Memory6 Block Diagrams
Crystal/Ceramic Resonator Operation
External Clock Input Operation
External Power-on Reset Circuit
Interrupt Logic
On-Chip Reset
PIC16F84A
PORTA
RA3:RA0 Pins 15
RA4 Pins15
PORTB
RB3:RB0 Pins 17
RB7:RB4 Pins 17
RC Oscillator Mode
Timer019
Timer0/WDT Prescaler
Watchdog Timer (WDT) 31

С

C (Carry) bit	8
CLKIN Pin	
CLKOUT Pin	4
Code Examples	
Clearing RAM Using Indirect Addressing	11
Data EEPOM Write Verify	14
Indirect Addressing	11
Initializing PORTA	
Initializing PORTB	17
Reading Data EEPROM	14
Saving STATUS and W Registers in RAM	
Writing to Data EEPROM	14
Code Protection	21, 33
Configuration Bits	
Configuration Word	21
Conversion Considerations	

D

Data EEPROM Memory	13
Associated Registers	14
EEADR Register	.7, 13, 25
EECON1 Register	7, 13, 25
EECON2 Register	7, 13, 25
EEDATA Register	.7, 13, 25
Write Complete Enable (EEIE Bit)	
Write Complete Flag (EEIF Bit)	29
Data EEPROM Write Complete	
Data Memory	6
Bank Select (RP0 Bit)	
Banking	6
DC Bit	8
DC Characteristics	51, 53
Development Support	
Device Overview	

Е

EECON1 Register
EEIF Bit
Electrical Characteristics
Load Conditions
Parameter Measurement Information
PIC16F84A-04 Voltage-Frequency Graph 50
PIC16F84A-20 Voltage-Frequency Graph 50
PIC16LF84A-04 Voltage-Frequency Graph 50
Temperature and Voltage Specifications - AC 56
Endurance 1
Errata2
External Clock Input (RA4/T0CKI). See Timer0
External Interrupt Input (RB0/INT). See Interrupt Sources
External Power-on Reset Circuit
F
- Firmware Instructions
Firmware instructions
l
I/O Ports
ICEPIC In-Circuit Emulator
ID Locations
In-Circuit Serial Programming (ICSP)21, 33
INDF Register
Indirect Addressing
FSR Register
INDF Register
Instruction Format
Instruction Set
ADDLW
ADDWF
ANDLW
ANDWF
BCF
BSF
BTFSC
BTFSS
CALL
CLRF
CLRW
CLRWDT
COMF
DECF
DECFSZ
GOTO
INCF
INCFSZ 39
IORLW
IORWF
MOVF 40
MOVLW 40
MOVWF 40
NOP
RETFIE 40
RETLW 40
RETURN 40
RLF 41
RRF 41
SLEEP 41
SUBLW
SUBWF 41
SWAPF
XORLW 42

XORWF
Summary Table
INT Interrupt (RB0/INT)
INTCON Register
EEIE Bit
GIE Bit
INTE Bit
INTF Bit
PEIE Bit10
RBIE Bit
RBIF Bit
TOIE Bit
TOIF Bit
Interrupt Sources
Block Diagram
Data EEPROM Write Complete
Interrupt-on-Change (RB7:RB4)4, 17, 29, 32
RB0/INT Pin, External
TMR0 Overflow
Interrupts, Context Saving During
Interrupts, Enable Bits
Data EEPROM Write Complete Enable
(EEIE Bit)
Global Interrupt Enable (GIE Bit)
Interrupt-on-Change (RB7:RB4) Enable
(RBIE Bit)
Peripheral Interrupt Enable (PEIE Bit)
RB0/INT Enable (INTE Bit)
TMR0 Overflow Enable (T0IE Bit)
Interrupts, Flag Bits
Data EEPROM Write Complete Flag
(EEIF Bit)
Interrupt-on-Change (RB7:RB4) Flag
(RBIF Bit)
RB0/INT Flag (INTF Bit)10
TMR0 Overflow Flag (T0IF Bit)
IRP bit

Κ

KEELOQ	Evaluation	and Programmin	g Tools	4	6

Μ

Master Clear (MCLR)	
MCLR Pin	4
MCLR Reset, Normal Operation	24
MCLR Reset, SLEEP	24, 32
Memory Organization	5
Data EEPROM Memory	13
Data Memory	6
Program Memory	5
Migration from Baseline to Mid-Range Devices	78
MPLAB C17 and MPLAB C18 C Compilers	
MPLAB ICD In-Circuit Debugger	45
MPLAB ICE High Performance Universal In-Circuit	
Emulator with MPLAB IDE	44
MPLAB Integrated Development Environment	
Software	
MPLINK Object Linker/MPLIB Object Librarian	
0	
OPCODE Field Descriptions	
OPTION Register	
INTEDG Bit	9
PS2:PS0 Bits	9

	0
TOCS Bit	
T0SE Bit	
OPTION_REG Register7,	18, 20, 25
INTEDG Bit	29
PS2:PS0 Bits	19
PSA Bit	
OSC1 Pin	
OSC2 Pin	
Oscillator Configuration	
Block Diagram	22, 23
Capacitor Selection for Ceramic Resonators	22
Capacitor Selection for Crystal Oscillator	23
Crystal Oscillator/Ceramic Resonators	22
Н\$	22, 28
LP	
Oscillator Types	
RC	.22, 23, 28
XT	

Ρ

Packaging Information	
Marking PD Bit	
PICDEM 1 Low Cost PICmicro	0
Demonstration Board	45
PICDEM 17 Demonstration Board	
PICDEM 17 Demonstration Board	40
Demonstration Board	15
PICDEM 3 Low Cost PIC16CXXX	45
Demonstration Board	46
PICSTART Plus Entry Level Development	40
Programmer	45
Pinout Descriptions	
Pointer, FSR	
POR. See Power-on Reset	
PORTA	. 15
Associated Registers	/
Functions	
Initializing	
PORTA Register	
RA3:RA0 Block Diagram	
RA4 Block Diagram	15
RA4/T0CKI Pin	
TRISA Register	
PORTB4	
Associated Registers	18
Functions	18
Initializing	17
PORTB Register 7, 17, 18	, 25
Pull-up Enable Bit (RBPU Bit)	
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin, External4, 18	
RB3:RB0 Block Diagram	
RB7:RB4 Block Diagram	
RB7:RB4 Interrupt-on-Change4, 17	, 29
RB7:RB4 Interrupt-on-Change	
Enable (RBIE Bit)	10
RB7:RB4 Interrupt-on-Change	
Flag (RBIF Bit)10	
TRISB Register	, 25
Postscaler, WDT	~
Assignment (PSA Bit)	
Rate Select (PS2:PS0 Bits)	9
Postscaler. See Prescaler	
Power-down (PD) Bit. See Power-on Reset (POR)	
Power-down Mode. See SLEEP	

Power-on Reset (POR)21, 24, 26
Oscillator Start-up Timer (OST) 21, 26
PD Bit
Power-up Timer (PWRT) 21, 26
Time-out Sequence28
Time-out Sequence on Power-up 27, 28
TO Bit
Prescaler19
Assignment (PSA Bit)19
Block Diagram20
Rate Select (PS2:PS0 Bits) 19
Switching Prescaler Assignment20
Prescaler, Timer0
Assignment (PSA Bit)9
Rate Select (PS2:PS0 Bits)9
Rate Select (PS2:PS0 Bits)
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6 Interrupt Vector 5, 29
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6 Interrupt Vector 5, 29 RESET Vector 5
Rate Select (PS2:PS0 Bits) 9 PRO MATE II Universal Device Programmer 45 Program Counter 11 PCL Register 7, 11, 25 PCLATH Register 7, 11, 25 Reset Conditions 24 Program Memory 5 General Purpose Registers 6 Interrupt Vector 5, 29

R

RAM. See Data Memory	
Register File	;
Register File Map 6	
Registers	
Configuration Word 21	
EECON1 (EEPROM Control)13	5
INTCON 10)
OPTION9	
STATUS	5
Reset	ŀ
Block Diagram24, 26)
MCLR Reset. See MCLR	
Power-on Reset (POR). See Power-on Reset (POR)	
Reset Conditions for All Registers)
Reset Conditions for Program Counter24	ŀ
Reset Conditions for STATUS Register 24	ł
WDT Reset. See Watchdog Timer (WDT)	
Revision History	5
RP1:RP0 (Bank Select) bits	5

S

Saving W Register and STATUS in RA	AM 30
SLEEP	
Software Simulator (MPLAB SIM)	
Special Features of the CPU	
Special Function Registers	
Speed, Operating	
Stack	
STATUS Register	
C Bit	
DC Bit	8
PD Bit	8, 24, 28, 32, 33
RESET Conditions	
RP0 Bit	6
TO Bit	.8, 24, 28, 30, 32, 33
Z Bit	

т

Time-out (TO) Bit. See Power-on Reset (POR) Timer0 Associated Registers Block Diagram	20 19
Clock Source Edge Select (TOSE Bit) Clock Source Select (TOCS Bit)	
Overflow Enable (TOIE Bit)	
Overflow Flag (T0IF Bit)	
Overflow Interrupt	
Prescaler. See Prescaler	-
RA4/T0CKI Pin, External Clock	19
TMR0 Register	25
Timing Conditions	56
Timing Diagrams	
CLKOUT and I/O	
Diagrams and Specifications	
CLKOUT and I/O Requirements	
External Clock Requirements	57
RESET, Watchdog Timer, Oscillator Start-up	
Timer and Power-up	
Timer Requirements	
Timer0 Clock Requirements	
External Clock	57
RESET, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	
Time-out Sequence on Power-up27,	
Timer0 Clock	
Wake-up From SLEEP Through Interrupt	
Timing Parameter Symbology	
TO bit	. 8
W	
W Register	30
Wake-up from SLEEP21, 26, 28, 29,	
Interrupts	
<u></u> ,	

Interrupts	
MCLR Reset	32
WDT Reset	32
Watchdog Timer (WDT)	21, 30
Block Diagram	
Postscaler. See Prescaler	
Programming Considerations	31
RC Oscillator	30
Time-out Period	30
WDT Reset, Normal Operation	
WDT Reset, SLEEP	
WWW, On-Line Support	

Ζ

Z (Zero) bit 8

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

013001

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From:	: Name	
	Company	
	City / State / ZIP / Country	
Applic	Telephone: () cation (optional):	FAX: ()
	d you like a reply?YN	
Device	ce: PIC16F84A Literature Number: DS3	5007B
Quest	stions:	
1. W	Vhat are the best features of this document?	
2. Ho	low does this document meet your hardware and softwar	e development needs?
_		
3. Do	Do you find the organization of this data sheet easy to foll	ow? If not, why?
4 14		nee the structure and subject0
4. W	Vhat additions to the data sheet do you think would enha	nce the structure and subject?
_		
5. W	Vhat deletions from the data sheet could be made withou	t affecting the overall usefulness?
J. W		
6. Is	s there any incorrect or misleading information (what and	where)?
0. 10		
7. He	low would you improve this document?	
8. Ho	low would you improve our software, systems, and silico	n products?
_		

PIC16F84A PRODUCT IDENTIFICATION SYSTEM

To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.

PART NO.	-XX X /XX XXX Trequency Temperature Package Pattern Range Range	Examples: a) PIC16F84A -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F84A ⁽¹⁾ , PIC16F84AT ⁽²⁾ PIC16LF84A ⁽¹⁾ , PIC16LF84AT ⁽²⁾	 b) PIC16LF84A - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits.
Frequency Range	04 = 4 MHz 20 = 20 MHz	 c) PIC16F84A - 20I/P = Industrial temp., PDIP package, 20 MHz, normal VDD limits.
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}\text{C} & \text{to} & +70^{\circ}\text{C} \\ \text{I} & = & -40^{\circ}\text{C} & \text{to} & +85^{\circ}\text{C} \end{array}$	
Package	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP	Note1: F= Standard VDD rangeLF= Extended VDD range2: T= in tape and reel - SOIC and SSOP packages only.
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements . Blank for OTP and Windowed devices.	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin - Analog 13740 North Highway 183

Building J, Suite 4 Austin, TX 78750 Tel: 512-257-3370 Fax: 512-257-8526

Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston - Analog Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road

Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050 **Chicago**

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas 4570 Westgrove Drive, Suite 160

Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 **Dayton**

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 **Toronto**

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Rm. 531, North Building Fujian Foreign Trade Center Hotel 73 Wusi Road Fuzhou 350001, China Tel: 86-591-7557563 Fax: 86-591-7557572 China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd.

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **China - Shenzhen**

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office **Divyasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Germany - Analog Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/01

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.