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Abstract

In this project the wavelet de-noising method is used to remove the additive
white Gaussian noise from noisy speech signals. The idea of wavelet de-noising is to
remove the noise by discarding small coefficients of the discrete wavelet transform
for the noisy speech signal. These coefficients can be removed by applying some kind
of thresholding function which removes any coefficient below a specific threshold
value and keep any coefficient above it. Then, the signal reconstructed by applying
inverse discrete wavelet transform. To evaluate the performance of such algorithm,
some kind of performance measure such as signa to noise ratio ( SNR ) can be

applied.

Several methods for speech de-noising using wavelets were tested to evaluate
their performance. Universal thresholding method is used to threshold the wavelet
coefficients. This method uses a fixed threshold for all coefficients, and the threshold
selection depends on the dtatistical variance measurement. Interval dependent
thresholding method is aso tested to find its performance, here the signal is divided
into different interval depends on variance change in it. Then, the threshold value is
calculated for each subinterval depends on the noise variance of each interval. Setting
all details coefficients in the first scale to zero by assuming that most of the noise
power inthefirst level istested to evaluate the performance such assumption.

Different comparisons are tested such as comparing the performance with
different threshold selection rules, comparing the performance with different wavel et
families, comparing with other filtering technique. The wiener filtering is compared
with wavelet de-noising method.



Content
Abstract
Content

List of Figures

1 Introduction and Motivation

00 T 101 oo [T { [ PR
1.2 RAAEAWOIKS ... e
1.3 Speech ProduCion ..ot et e e e e e e
1.4 IMOTIVALION L.une ittt e e e e e e e e e e aens

1.5 TheSiS OULIING ... e e e e e e e e

2 Wavedet Transform and Multiresolution Analysis

2.1 What areWaVEEtS ? ...
2.2 Haarwavelet ........oooeiii i
2.3 Main idea of wavelet and haar as example ..........coooiiiiiii i,
2.4 Wavelet and Fourier Transform : comparison .......................

2.5 Wavelets and Multiresolution Analysis ...........ccooeeiiiiiiins

3 Waveet De-noising Algorithm

3.1 Wavelet de-noising model ........coeiiiiiiiici e
3.2 Algorithm for speech de-noising ..........ccccovviiiiiiiiiiiicie s
33 Challenges .......ovviii i

3.4 Performance MeaSUIEIMENT ...t e e e e e e e e e e e e e

4 Speech enhancement evaluation

41 MatlaD Coae ... e e e e e e e e e

4.2 Performance evalUation..........cceeeue e e

5 Conclusion and futureworks

5.1 CONCIUSION ..t e e e e e

.................. 6

17

21

23

25

26

28

38

48



5.2 Future works
Appendix A
Appendix B
Appendix C

References

50
59
88
90



List of Figures

Fig.1.1 Speech -acoustic product of voluntary and well controlled movement of a

vocal mechanism of ahuman .......... ..o 3
Fig.1.2 The schematic diagram of thehumanear ................coooi i, 4
Fig.2.1 Two band filter to extract average and detail of theinput signal ................ 7
Fig.2.2 Average and Difference filters ..........cooo i e, 7

Fig.2.3 Haar scaling and wavelet functions .............ccccoovei i iiiiiiiieiiecee e a0 8

Fig.2.4 Onelevel two channd analysisfilterbank ................ccoooviii i, 10
Fig.2.5 Onelevel decomposition of (sinusoidal signal + white noise) ................. 10
Fig.2.6 Onelevel two channel synthesisfilter bank .................ccociviiiii . 11

Fig.2.7 Analysis and Synthesis two channel filter bank ......................ol 11

Fig.2.8 First channel (low pass channel) in Analysispart ...l

Fig.3.1 Procedure for reconstructing anoisy signal ..........cccooeivievie e e iennn, 18
Fig.3.2 Hard and Soft thresholding functions ...............ccoiiiiiiii e, 19
Fig.3.3 Block diagram of thede-noisingsystem ..o, 22
Fig.4.1 Clear and nOiSy SPEECN SIgNAlS ... .. venien i e e 30
Fig.4.2 Scaling and wavel et functions, decomposition and reconstruction filters, and

FFT of decomposition and reconstruction filteS .............ooooi i, 31
Fig.4.3 Wavelet coefficientsforeachlevel ..., 32
Fig.4.5 Reconstructed signalsfor each level ... 32
Fig.4.5 Energy of coefficients and variance of details at different scales.............. 33
Fig.4.6 Thresholding functions (soft and hard) ..............coooiiii i, 33
Fig.4.7 Noisy, de-noised and residual SIgnalS ..........cooviviieiiiiice e e e 34

Fig.4.8 Comparison between clear signal, noisy signal and de-noised signal ......... 34

Fig.4.9 Correlation between clear speech signal and noisy speech signal, correlation
between clear speech signal and de-noised speechsignal ............ccovvvvviiiininnne, 35

Fig.4.10 Power distribution of clear, noisy and de-noised speech signals.............. 35



Fig.4.11 Spectrograms of clear, noisy and de-noised speech signals.................... 36

Fig.4.12 Comparison between the spectrograms of noisy and de-noised speech signals

..................................................................................................... 36
Fig.4.13 Absolute coefficients of DWT for clear, noisy and de-noised speech

£ 0 7= 37
Fig.4.14 Histograms and cumulative histograms of clear, noisy and de-noised speech

] 0 37
Fig.4.15 Statistical measures of theresidua signal ..., 38
Fig.4.16 Output M SE and output SNR after de-noising ...........ccocevviieininnennnne 38

Fig.4.17aNumber of decomposition levels vs. Output SNR using soft thresholding
function and universal selectionrule ..........oooi i 39

Fig.4.17b Input SNR vs. Output SNR using soft thresholding function and universal
SEECHIONTUIE ... e e e e e 40

Fig.4.18a Number of decomposition levels vs. Output SNR using hard thresholding
function and universal selectionrule ..........oooi i 40

Fig.4.18b Input SNR vs. Output SNR using hard thresholding function and universal
SEECHON TUIE ... e e e e 4D

Fig.4.19a The threshold value vs. output SNR with different levels of decomposition

Fig.4.19b The threshold value vs. output SNR with different input SNRs.............. 42
Fig.4.20a Input SNR vs. Output SNR for interval-dependent thresholding method. 43
Fig.4.20b Input SNR vs. Output SNR for interval-dependent thresholding method . 44

Fig.4.21aInput SNR vs. Output SNR (Setting all coefficientsin the first scale to zero)

Fig.4.21b Input SNR vs. Output SNR (A pplying soft thresholding on details of first
1510 1= ] ) T Lo

Fig.4.22 Input SNR vs. Output SNR with different threshold selection criteria....... 45
Fig.4.23a Input SNR vs. Output SNR with different type of wavelet families ........ 46

Fig.4.23b The number of decomposition levels vs. output SNR with different wavelet

Fig.4.24 Input SNR vs. Output SNR ( comparison between DWT and Wiener
10 0o 47



Chapter 1
| ntroduction and Motivation

1.1 Introduction
1.2 Related works
1.3 Speech Production

1.4 Motivation

1.5 Project Outline



I ntroduction and M otivation
1.1Introduction

Removing of the noise from signals is a key problem in a Digital Signd
Processing field (DSP).

In the mid — 1960s, Dolby noise reduction system was developed for use in
anal og magnetic tape recording. Until the beginning of the 1990s, microelectronic and
low cost computer with computation and algorithm design allowed a fast and vast
expansion in the field of digital signal processing researches.

One of the most fundamental problem in the field of speech processing is how
the noise can be removed from the noisy speech signals.

Speech de-noising is the field of studying methods used to recover an original
speech signa from noisy signals corrupted by different types of noise ( e.g. white
noise, band-limited white noise, narrow band noise, coloured noise, impulsive noise,
transient noise pulses ).These methods can be used in many computers based speech
and speaker recognition, coding and mobile communications, hearing aid. More
reduction in noise increases the quality of such application.

The field of speech de-noising includes a lot of researches to improve the
speeches overall quality and increase the speech intelligibility. There are different
techniques for de-noising the speech signal. Generally speaking the approaches can be
classified into two maor categories of single microphone and multi microphone
methods [1].

1.2 Related works

A lot of agorithms proposed to tackle the problem of noise in speech signals,
such as Spectra Subtraction [2], Wieiner Filtering [3], Ephraim Malah filtering [4],
hidden Markov modeling [5], signal subspace [6].

Gabor [7] introduced a new time — frequency signal analysis. In the field of
mathematic, the papers of mathematicians Mallat [8,9] and Daubechies [10] are a big
contribution not only in a mathematical side, but also in an engineering applications.
These contributions build what so called "multi-rate filter banks basing on wavelet
transform”.

Mallat and Hwang [11] introduced an agorithm to remove white noises based
on singularity information analysis, Donoho [12] introduced a non linear wavelet
methods, Donoho and Johnstone proposed a well known universal wavelet
thresholding to remove White Gaussian Noise (WGN) [Donohol12,13] ,[Donoho and
johnstone 14], Johnstone and Silverman [15] proposed level dependant thresholding
enhancement method.

1.3 Speech Production

In order to apply DSP techniques to speech processing problems, it is
important to understand the fundamentals of the speech production process, [16].



Speech is the acoustic product of voluntary and well-controlled movement of a
vocal mechanism of a human (see fig.1.1). During the generation of speech, air is
inhaled into the human lungs by expanding the rib cage and drawing it in via the nasal
cavity, velum and trachea it is then expelled back into the air by contracting the rib
cage and increasing the lung pressure. During the expulsion of air, the air travels from
the lungs and passes through voca cords which are the two symmetric pieces of
ligaments and muscles located in the larynx on the trachea. Speech is produced by the
vibration of the vocal cords. Before the expulsion of air, the larynx is initialy closed.
When the pressure produced by the expelled air is sufficient, the vocal cords are
pushed apart, allowing air to pass through. The vocal cords close upon the decrease in
air flow. This relaxation cycle is repeated with generation frequencies in the range of
80Hz — 300Hz. The generation of this frequency depends on the speaker‘s age, sex,
stress and emotions. This succession of the glottis openings and closure generates
guasi-periodic pulses of air after the vocal cords. The speech signal is a time varying
signa whose signal characteristics represent the different speech sounds produced.
There are three ways of labelling events in speech. First is the silence state in which
no speech is produced. Second state is the unvoiced state in which the vocal cords are
not vibrating, thus the output speech waveform is a periodic and random in nature.
The last state is the voiced state in which the vocal cords are vibrating periodically
when air is expelled from the lungs. This results in the output speech being quasi-
periodic- shows a speech waveform with unvoiced and voiced state. Speech is
produced as a sequence of sounds. The type of sound produced depends on shape of
the vocal tract. The vocal tract starts from the opening of the vocal cords to the end of
the lips. Its cross sectional area depends on the position of the tongue, lips, jaw and
velum. Therefore the tongue, lips, jaw and velum play an important part in the
production of speech.[17]

Masal Cavily
Hard Palate

Soft Palate
Velum)
Epgiotis

Hyoxd Bona
Cricoud Cartilage

Esophagus

Fig.1.1:Speech -acoustic product of voluntary and well controlled movement of a
voca mechanism of a human
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Audible sounds are transmitted to the human ears through the vibration of the
particlesin the air. Human ears consist of three parts, the outer ear, the middle ear and
the inner ear. The function of the outer ear is to direct speech pressure variations
toward the eardrum where the middle ear converts the pressure variations into
mechanica motion. The mechanical motion is then transmitted to the inner ear, which
transforms these motion into electrical potentials that passes through the auditory
nerve, cortex and then to the brain . Figure (fig.1.2) below shows the schematic
diagram of the human ear.[17]

OUTER
EAR

Fig.1.2: The schematic diagram of the human ear

1.4 Motivation

Speech is a native way for human communication and it considered one of the
most important signals in multimedia system. Noise is presented in a speech signal
due to communication channel. Removing the noise to improve the quality of speech
is needed. One of the most important kind of noise is the white noise which is random
and its power spectral density is constant. Specifically, Gaussian noise is normally
distributed and generated by almost all natural phenomena.

Speech signal is a non-stationary signal. The wavelet transform is considered
as appropriate choice to anayze loca variations in signals. The multi-resolution
properties of wavelet analysis reflect the frequency resolution of the human ear
system. Most of data that represent the speech signal are not totally random, thereis a
certain correlation structure. The harmonic signals content is closely correlated, and
this means that large coefficients represent the speech signal and the small values
represent the uncorrelated noise. Thus, the noise can be removed by discarding the
small coefficients.

1.5 Project Outline

The structure of this project is as follows, in chapter 2 some of background
about wavelets, filter banks and multi-resolution theory. Wavelet de-noising model
and algorithm design are presented in chapter 3. The speech quality evaluation and
performance of algorithm are presented in chapter 4,conclusion is shown in chapter 5.



Chapter 2

Wavel et transform and multiresolution analysis

2.1 What arewavelets ?

2.2 Haar wavelet

2.3 Main idea of wavelet and haar as example
2.4 Wavelet and Fourier Transform: comparison

2.5 Wavelets and Multiresolution Analysis



Wavelet transform and multiresolution analysis

In this chapter, we will briefly introduce the background behind the wavel et transform
and multiresoltion analysis. This introduction will be as short as possible. There are
several papers and articles talking about wavelets. For more details one can refer to
[18 - 27].

2.1 What arewavelets ?

Wavelets are oscillatory waveforms of finite duration and zero average value.
These waveforms must be localized. There are many mathematical conditions must be
satisfied to ensure that an oscillatory function is admissible as a wavelet basis
function. There are many kinds of wavelets whose characteristics vary according to
many criteria. One can choose between smooth wavelets, compactly supported
wavelets, orthogonal wavelets, symmetrical wavelets, wavelets with simple
mathematical expressions, wavelets with ssmple associated fitters, etc. The simplest
and the most important wavelet is the Haar wavelet, and we discuss it as an
introductory example in the next section.

2.2 Haar wavelet

The following table shows the main information about haar wavelet.

Genera characteristic

compactly supported wavelet , the oldest
and simplest wavel et

Scaling function phi "g"

@(t) =10on[0,1] and zero other wise

Wavelet function psi "y

Y(t)=1on[0,0.5,=-10n[0.51] and
zero other wise

Family Haar

Short name Haar

Example haar is the same as dbl
Orthogonal Yes

Biorthogonal Yes

Compact support Yes

Discrete Wavelet Transform (DWT) Possible

Continuous Wavelet Transform (CWT) | Possible

Support width 1

Filter length 2

Regularity haar is not continuous
Symmetry Yes

Number of vanishing moment for psi 1




2.3 Main idea of wavelet and haar as example

The main idea of wavelets is represent the signal with two part the first is the
slow varying part(average) and the second is the fast varying part(difference).

=ﬂ—>A
Signal -

o gD
Fig.2.1: Two band filter to extract average and detail of the input signd

Assumetheinput signd S=[....,s0) s(1),s2),....]. If histwo-point
data averaging and g is two-point data differencing, then we get the simplest wavel et
"HAAR WAVELET".

The output of first filter will be A = [...(So+S1/2),(S1+S0/2),(S2+S1/2) ...] and
the output of second is D = [...(S0-S1/2),(S1-50/2),(S>-S1/2)....]. To recover the origina
signal S from the average values A and detail values D, we can apply reverse
operation which is the same as forward operation. In this example they are addition
and subtraction.

Average coefficients: ..., ap=(S9tS1/2) , &= (S1+S9/2) &= (StS1/2), ....
Details coefficients : ..., do=(S1-5/2) , d1=(S0-51/2) 2= (S1-S/2), ....
Original signal can be recovered using reverse operation (+,-) as following
(@0+do) =S1, (Aa+th) =%, (B+D) =51 ,.....

(20— do) =0,(-d1) =51, (R-02) =,.....

The Haar wavelet coefficient are h = {1/2,1/2} for averaging and g ={1/2,-
1/2} for differencing (fig.2.2). Another point is that the output of h are detailsand it is
less important than average values. In many application these values represent the
noise and can be removed by applying a non-linear thresholding.

h(n) A g(n) A
05 0.5
« 01 on « 0 1 on
-05

v v

(@ (b)
Fig.2.2 : Average and Difference filters

(a) Low pass average filter. (b) High pass differencefilter.

The continuous version of Haar is shown below in (fig.2.3), whereg@ t is
called scaling function and (t) is a wavelet function.



A Pppt Mi"l],t] (t)

0.5 05 —

0 1 o1 q Jl g
-0.5 v v

Fig.2.3 :Haar scaling and wavelet functions

A

@i_gp t = 0.5¢ 7 t +0.5¢; 244 (t)(2.1)

’i’; 1,k t = 0-5';{],',2!\' t = O-Sq],l,z.klll:t:l(z-z)

2.4 wavelet and Fourier Transform: comparison

The basis functions of fourier analysis are sine and cosine with infinite
duration. These functions are easy to generate, easy to analyze. The back draw of
these functions is that they are not local, all of time information lost in frequency
domain and all of frequency information lost in time domain. These losses of time and
frequency information can be avoided by using wavelet anaysis. Wavelet basis
functions are local not global with finite duration which mean most of energy
concentrate with small duration. Wavelet basis functions are derived using single one
function called mother wavelet by time compression and transation. In contrast, the
fourier basis which derived by varying the frequency of asinusoid.

In asummary. The fourier transform can provide frequency information only.
The wavelet transform can give us time and frequency information simultaneously.

2.5 Waveets and Multiresolution Analysis

As mentioned above, the wavelet basis achieved by time compression and
trangation of mother wavelet.

W t =281 2t —k  jREL (2.3)
wherg isthe scale factor, k is the trangdlation factor.

The wavel et series is shown below with combination of scale and wavel et function.

St = Ypiia@@t—k +3520 3 0Byl (B) (2.4)



What we can note from above expression isthat thesignal s ¢t isdecomposed
by two part, the first part gives the approximation and the second gives the details.
There are infinite choices to use g and 1! as basis functions and one can choose the
best one depend on application. Another thing, the small coefficients in {a,} and
[B,,} can be discarded by applying thresholding technique as we will see in the next
chapter.

In section 2.3 we have shown how haar scale and wavelet are expressed as a

@pt = 05p 2t +05p(2t —1)

Wt = 05¢p 2t — 05¢@(2t —1)

In general form

ot =230 hy k @ 2t—k k€EZ h,€e* Z (2.5)
Wt =230 080 k @2t — k) kEZ g, €L X (2.6)

These equations are called dilation equation, {h, (k)}.cx and { gy (k)} ez are
scaling sequence (N-coefficients of low-pass filter) and wavelet sequence (M-
coefficients of high-pass filter), respectively.

The relation in equation (2.5) and (2.6) is two-scale relation. The scaling and
wavelet function are a combination of rescaled scaling function {@(2t — k} .. and
thisintroduce us to what so called multiresolution analysis.

Definition : A Multiresolution Analysis is a sequence of nested, closed
subspaces{V, }c; if the following statements are satisfied :

1V, eV, Vi€EZ
2xt €V, ox2t €V, VjER
3.xt EV, = xt—k €V, YkeET
4.Nez ¥V =0
5.Uiez Vi = L¥(R)
6 .3 Orthogonal basis soVy =span ¢ t =k VYKETR
The complement of V; iscalled details space I, . Hence, we can decompose ¥,
into

W, (2.7)



As an example, from equation (2.5) we see thatp(t) € V, < V,, and from
eguation (2.6) we seethat W (t) € W, < V;, and thisimply that
Vy

Wy (2.8)

= ¥p

The building block of this decomposition in the discrete time domain can be
seen as two channel filter bank as shownin (fig.2.4).

A 4

1
h—»@—» gy,
I |
1 Box
a '< : > ’

Fig 2.4 :Onelevel two channel analysisfilter bank

Signals(n)

Fig.2.5 shows how the signal is divided by a two channel filter bank into two
signals, the first one is the approximated signal with low frequency and the second is
the detailed signa with high frequency.

et el 1= =t

E mﬂﬁ y/ “f

M

W
W

W’ N

X, " ;‘

h lr'|ll'|

';
‘l"t'ffp ||f"ﬁ"l

&ﬂm“

W,

o

WWW

I"ll'

I"ll'

anc

bl pi= 1 1

Fig2.5: Oneleve decomposmon of (SI nusoidal S|gnal + white noise).

Decomposition of signal can take any level by iterating the filter bank at each
output of the low pass filter. One can also iterate this filter bank at the output of high
pass filter in addition to the iteration at the output of low pass filter, in this caseit is
called wavelet packet decomposition.

To reconstruct the signal, we can use inverse operation to the two channel
anaysisfilter bank. The construction of synthesisfilter bank is shown below (fig.2.6).
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! §(n)

»Nea
»

1

g

1

(P
(D

Fig 2.6 :Onelevel two channel synthesisfilter bank

The overal analysis and synthesis filters are shown below (fig.2.7). The
filtering is linear, the thresholding is not. One can write the filtering and down/up-
sampling in amatrix form.

N
&
|

Py
O s
Processing e v
"
1 1
O " R
— W

Analysis  decimators expanders  Synthesis

s(n)

e.g thresholding

Fig 2.7 : Analysis and Synthesis two channel filter bank

Assume that the input signal s nn is the sampled signal of s t . The discrete
signa 5 n can be represented as N-points vector.

c
sn o 5 ,<:> > a(n)
1

Fig.2.8 : First channel (low pass channel) in Analysis part

cn =sn =hyn=>Y,skhn-k (2.9)

The matrix representation of equation (2.9) is

(=) | ho(0) ho(=1) ho(=2)  ||s(~1)

c(0)| =] ~ hy(l) hy(0) ho(=1) * ||s(0)|=Hy S

c( 1) ho(2)  ho(1)  hy(0) s(1)
where H; isalow pass filter matrix , Sisthe input signal vector. For a causal filter
h, n =0 for n<O.

After this matrix operation, the down sampler discards the odd rows so that the
number of input samples equals to the output samples.

11



Chapter 3
Wavelet de-noising algorithm

3.1 Wavelet de-noising model
3.2 Algorithm for speech de-noising
3.3 Challenges

3.4 Perfor mance measur ement
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Wavelet de-noising algorithm
3.1 Wavelet de-noising model

Wavelet de-noising is a non-parametric method which does not need
parameter estimation of the speech enhancement model. Estimating the signal
corrupted by Gaussian noise is considered as an important problem in many studies,
and it will be our interest in this project. We will restrict our study only to Additive
White Gaussian noise.

Let us consider a speech signa s,, and an independently and identically
additive white gaussian noise n;~N(0, %), the noisy signal can be written as follows

Yi=s5+n i=01,...N 1(3.1)

The goal of wavelet de-noising is to find an approximation ¥, to the signa s,,
that minimize the mean squared error

E s=§ =Yl E[s;=5]°32

Wheres = [s; 51 " sy JT and§ =[5, 5y - 8y 11T

Applying the wavel et transform matrix W, the equation (3.1) becomes as follows
Wy, =Ws, + Wn, (3.3

Vi =8 +ni, (34)

where (. )], arethewavelet coefficients.

Because of using orthogonal transform W to express s, in an orthogonal
wavelet basis, the wavelet coefficients of the i.i.d Gaussian noise are also i.i.d
Gaussian. This kind of transformation preserved the statistical independence of the
noise and it is caled aunitary transform.

By choosing a good matched wavelet for signal representation, the noise
power will tend to concentrate in a small coefficients while the most of signal power
will be in large coefficients. This idea of a sparse representation due to the wavelet
transform alows us to remove the noise from the signal by discarding the small
coefficients which represent the noise. To do that we need to apply a wavelet
thresholding function T'(. ) on awavelet coefficients.

Tje) = T(s) +T(nj,) (3.5)
Vi =5 +7(36)

where { . | .} are the wavelet coefficient after thresholding.

17



Now the inverse wavelet transform can be applied to get the estimate signal 5;
S=W"1¥, (37
=W HT Wy, )38

From equation (3.8), the thresholding will introduce some effects on the
signal's power. Thresholding is not linear and it is a lossy agorithm. Thus, it is
impossible to filter out the noise without affecting the signal.

There are three basic steps (fig.3.1) for the de-noising algorithm as follows :

1. Decomposition: compute the discrete wavel et transform of anoisy signal.

2. Thresholding: remove the small coefficient based on the kind of threshoding
function and threshold value.

3. Reconstruction: compute the discrete inverse wavel et transform.

w T(.) wt

DWT THR. IDWT

Fig.3.1: Procedure for reconstructing anoisy signa

The most common thresholding function (fig.3.2) or decision rule that used for
coefficient thresholdingare

1. Hard thresholding function.
2. Soft thresholding function (also called the wavel et shrinkage functions).

Hard thresholding keeps the wavelet coefficients above the specific threshold
and set the rest of coefficients to zero. Soft thresholding removes the coefficients
below the threshold value and shrinks the coefficient above it toward the zero. There
is no discontinuity in the case of soft thresholding which is more suitable than hard
thresholding. This means that hard thresholding is more sensitive to small change in
the data. Hard thresholding tends to introduce a high variance because of the
discontinuity while soft thresholding tends to introduce high bias due to the shifting of
al the coefficient which are greater than the threshold A with amount equal to the
threshold value.

The mathematical description of these two thresholding functions are shown below

18



x x| =A
Hard thresholding: T x = < where A € [0, oof (3.9
o]x| =4
.
~
sgn x x—=4 |x| =4
Soft thresholding: T; x = < (3.10)
0 x| <A
where A € [0, oo
" x T x
A A ,
=== No thresholding /,'
— With thresholding /,/
X 0X
* 3 A g ) % 3 g
v // v
@ (b)

Fig.3.2: Hard and Soft thresholding functions.

(a) Hard thresholding function. (b) Soft thresholding function

There are another variants of these threshold functions try to obtain smoother
thresholding/shrinking functions, The idea is getting effective de-noising and
preserving more useful information of the clean signal.

The threshold parameter could be fixed or changed. The selection of the
threshold value is very important to get good result of de-noising. There are different
standard methods of selecting a threshold and here we introduce the most common
methods.

19



1. Universal method :

It isafixed threshold de-noising method and the proper selection of the threshold for
adiscrete wavelet transform (DWT) is determined as follow

A=d 2log. N (3.112)

where N is the length (number of samples) in the noisy signal and & is an estimate of
the standard deviation of zero mean additive white gaussian noise calculated by the
following median absolute deviation formula

il

5= median ¥y y (3.12)

0.6745
where y{', isthe details wavelet coefficient sequence of the noisy signal on first level.

For awavelet packet transform (WPT), the threshold can be calculated by

A=a 2log. Nlog.(N) (3.13)
whereN isthe noisy signal length and & isthe standard deviation.

The universal threshold method uses globa thresholds. This means, the
computed threshold is used for al coefficients. This method of threshold selection
depends on the statistical variance measurement of the noise and noisy signal length
only.

2 .Minimaxmethod :

In this method, the threshold will be selected by minimizing the error between
the wavelet coefficient of noisy signal and original signal. The noisy signal can be
seen as unknown regression function, this kind of estimator can minimize the
maximum mean square error for a given unknown regression function.

The threshold value can be calculated by
1=da, (3.14)

whered,, is calculated by a minimax rule such that the maximum error across the data
IS minimized.

The threshold selection in this method is independent of any signa
information. Thus, it is good primarily choice for completely unknown signal
information.

3. SURE method :

SURE (Stein's unbiased risk estimator) is an adaptive thresholdingmethod that
uses a threshold value 4; at each resolution level | of the wavelet coefficients. In the
level dependent universal threshold, the threshold at each scale j is selected as
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A =da 2log.(N,) (3.15)

wherelV, is the samples number in the scale j and &, is an estimate of the standard
deviation in the scalej.

This method is agood choice for non-stationary noise, in this case the variance
of the noise wavelet coefficients will differ for different scales in the wavelet
decomposition.

Adaptive thresholding can be used to enhance the performance of de-noising
algorithm, The threshold can be selected based on the data information in any generic
domain. One choice of generic domain is the energy of the data. The threshold value
depends not only on N but also on the energy of the data frame as follows

A4, =T E, (3.16)
whereE, is the energy of the data i*" framein asignal.

Since the speech and the noise are uncorrelatedand , from equation (3.1) and
(3.4), we have the following relations

E, = E, +E, (3.17)
E[w_v,g, = E[Ww.gj + E(L‘.-"iz,g] (3.18)
where E isthe signal energy in the i*" frame

Equation (3.17) and (3.18) show that the energy of the noisy speech signal
frame in the wavelet domain is equal to the energy of the noisy signa in a time
domain. The energy transformation between time and wavelet domainsis preserved.

In this project, we only concentrate our study about a single channel (single
microphone) speech de-noising system which does not use multi-channel for noise
reduction.

3.2 Algorithm for speech de-noising

The main steps of the de-noising procedure are shown below. Fig.3.3 shows
the flow chart of algorithm for speech de-noising.

Summary of the algorithm :

Add arandom additive white Gaussian noise to the clean signal.

Segment the noisy signal into frames.

Make the discrete wavelet transform for every input frame.

Calculate the energy of wavelet coefficient and zero crossing rate.

Based on the previous point, the feature of the frame is extracted to classify
every noisy speech frame into one of three classes (voiced/unvoiced/silence).

a bk wdPE
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6. Thethreshold value will change depend on the classifier output.
7. Maketheinverse discrete wavelet transform.
8. Apply aperformance measurement on the de-noised signal.

Recorded Speech
Signal

AWGN signal

A
\

A 4

Noisy Speech Signal

Framing

.segmentation as blocks

|

DWT

.# of decomposition level
.analysis filter coeff's

A 4
Thresholding

.technique ,thresholde
value

A 4
IDWT

.Synthesis filter coeff's

\ 4

De-noised Speech
Signal

A 4

Performance Measurement

. SNR, MSE

Fig.3.3 : Block diagram of the de-noising system
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3.3 Challenges
Some challenges in applying the above algorithm :

1. Segmentation.

2. Voiced / unvoiced / silence.

3. Filter coefficients of analysis and synthesis.
4. Number of decomposition levels.

5. Thresholding type.

6. Threshold value is very important parameter.
7. Level of noise.

Now, let's proceed to investigate these challenges in more depth.

Thefirst challenge is to segment the speech signal with proper frame duration,
the frame with N samples can be concelved as N dimensional vector space, and when
analyzing this vector of samples some features contained in the frame could be lost if
we do not choose the proper framing mythology. The solution of this problem can be
solved by introducing overlap frames. By choosing a proper widow for segmentation
with some percent of overlapping we can minimize the losses of featuresin the frame.

Each frame will typically contain 100 sample if we assume the sampling
frequency equal to 8 KHz. This imply that the frame duration will be 12.5 ms. We
need to choose the number of sample in each frame as a power of 2 to avoid using
signal extension(e.g.128samples).

The second challenge is that when applying the thresholding on the speech
signal, the possibility of speech degradation is exist since some of frame is unvoiced
which mean that most of energy of the frame is concentrated in the high frequency
bands and eliminating of them will make a degradation in the quality of the de-noised
signal.The solution of this problem is the most hardest part in this algorithm. However
by choosing a proper decision rule for classification process we can avoid the speech
degradation. Here we introduce two features and its equations

. Short — term average energy :
Ey=33ily LI? (3.19)

where N isthei®" frame length and | is the dataindex.

. Zero crossing rate: calculate the number of sign changes of successive
samplesin the i** frame.

ZCR, =5 sgn y, | —=sgn y l-1 (3.20)
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wheresgn is the signum function.
These features are typically estimated for frames of speech with 10-20 ms duration.

The choice of widow type determines the nature of short-term average energy
representation. If size of the widow is very long, then it is equivaent to a very
narrowband low pass filter, that means the short term energy will reflect the amplitude
variation in a speech signal.In contrast, if the window sizeis very short, the short-term

energy will not provide a sufficient energy averaging.

Zero crossing rate reflects the frequency content in the frame. It isimportant to
remove any offset in asignal to ensure a correct calculation in the case of zero
crossing rate.

We can use short term energy and zero crossing rate to change the threshold value
based on V oiced/Unvoiced/Silence classification.

. High energy and low zero crossing rate imply that the frame is voiced.

- Most of the power for the voiced frame is contained in the approximation part
of wavelet decomposition.

. Low energy and high zero crossing rate imply that the frame is unvoiced.

- Most of the power for the unvoiced frame is contained in the details part of
wavel et decomposition.

. Relatively equal power distribution imply that the frameis silence.

The third challenge is about the wavelet filter design. Choosing an appropriate
filter coefficient is considered a critical part in al of this process of de-noising. There
are severa criteria that could be used to select the best wavelet filter. In this project
we tended to use the most simple and the most important filter bank which is the Haar
filter. This filter is considered as a good choice since it has a different property such
as symmetry, orthogonality, biorthogonality, compactness and sparsity. We will
investigate many other db wavel ets with higher vanishing moments.

The fourth challenge is selecting the number of levels for wavelet
decomposition. Generally speaking, the number of needed level for decomposition
will increase as the power noise increases, however, increasing the levels of
decomposition increase the computational complexity in the wavelet de-noising
algorithm. Practically, increasing the number of the level more than five will not
introduce a very significant change in the output signal to noise ratio. The selection of
number of levels will depend on the kind of the signal or on some criteria as entropy.

The fifth challenge is choosing an appropriate threshold function, in this
project we intend to use soft thresholding function since it is more stable than hard
thresholding.
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The sixth challenge is about how we can choose the threshold value. As
discussed in the previous section the threshold should be adapted to avoid the speech
degradation, the choice of threshold will be chosen such that the small coefficients are
best threshold with high threshold values, whereas the small coefficients needed to be
threshold with small threshold values.

The seventh challenge is about the level power of the additive noise.
Practically, if the SNRs of the noisy signa is very low, such this method will fail
since the noisy coefficient will becomes significantly large so that it is difficult to
distinguish between the clean and noisy coefficient. In this project the signal to noise
ratio level will be about 0 dB to 20 dB.

Actually, speech is a complex noise process and these are not the only
challenges nor the only typical solution. There are alot of optimization and adaptation
process to get more optimum de-noising algorithm that could be used with a diverse
conditions.

For performance measurement, objective and subjective quality can be used to
provide a measure how much improvement occurred before the processing. The goa
is to increase the output signa to noise ratio (SNR) in each frame such that the
average SNR isincreased.

Objectively, there are two common measure as follows
. Signal to noiseratio SNR :

vl ;
Sn=15i° n

SNR | e = (323)

] ~ e.
Z:..;=j nn=-5n

where SNR , .., isthe segmental output signal to noise ratio of the i*" frame, 5, n
isthe i*"input frame of the clean speech signal and & n isthei*" output enhanced
frame of the speech signal.

. Mean Square Error MSE :

2

MSE, =i SN _ssn=-§n (3.22)

whereM SE, is amean squared error in the i* frame.
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Chapter 4
Speech enhancement evaluation

4.1 Matlab code

4.2 Performance evaluation
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Speech enhancement evaluation

In this chapter we are going to construct a matlab code for the wavelet de-noising
algorithm and tackle the different challenges which discussed in previous chapter. After that, the
discussion about the results is introduced in the context of the performance evaluation.

As mentioned before, the main three steps in the de-noising algorithm using wavelet
thresholding are decoposition, thresholding and reconstruction. Every step in this agorithm is
implemented using matlab programming language. The Wavelet Toolbox in Matlab contains
various functions that can be called to build the de-noising algorithm. This kind of programming
is called a procedura programming which is aprogramming paradigm, derived fromstructured
programming. The abstraction nature of the function in Matlab is an input-output relation as
shown below

[ output arguments | = functionName( input arguments))

The above statement uses to call the functions built in Matlab. To get an information
about how to use a given function, Matlab provides an help documentation about using the
functions e.g. ( doc functionName , help functionName). To get the details about the code of
any function, the command ( edit functionName ) can be used.

Appendix-A contains the various functions in Wavelet Toolbox which used to write the
code of de-noising algorithm. Here, we introduce some of these functions

Function name Input arguments Output arguments Description
wavread (‘filename.wav’) [s, Fs, nbits] Reading audio file
randn (length(s),1) n Random noise

(h,0) ~(1,0)

wavedec (y, N, 'wname) [Cad, L] Multilevel 1-D
wavel et

decomposition

wthcoef (‘t,Cad,L,N, T NC Wavel et coefficient
,S or_h) thresholding 1-D

waver ec (NC, L, 'wname) den s Multilevel 1-D
wavelet

reconstruction

Table 4.1 : Some predefined functions

From above table, the wavread function is used to read an audio file, returning the
sampled datain s. It also return the sample rate (Fs) in Hertz used to encode the datain the file,
and it returns the number of bits per sample (nbits). The randn function generates a normally
distributed pseudorandom numbers in vector (y). The wavedec function performs a multilevel
one-dimensiona wavelet analysis using a specific wavelet (‘wname'), returns the wavelet
decomposition of the signal (y) at level (N).The wthcoef thresholds wavelet coefficients for the
denoising of a 1-Dsignal, returns coefficients obtained from the wavelet decomposition
structure[Cad , L] by soft (if s or_h ='s) or hard (if s or_h='h") thresholding defined in
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vectors (N) and (T). Vector (N) contains the detail levels to be thresholded and vector (T) isthe
corresponding thresholds. (N) and (T) must be of the same length. The waverec function
performs a multilevel one-dimensional wavelet reconstruction using a specific wavelet (‘wname'
), reconstructs the signal (den_s) based on the multilevel wavelet decomposition structure [NC ,
L]. For more information about many different functions for wavelet analysis, Reference [ ]
provide alot of details about these functions.

4.1 Matlabcode

Appendix-B shows the Matlab code for de-noising the speech signals. It includes many
options that can be used to provide illustrative steps of wavelet de-noising method. The first
subsection of this section introduces the different options of this Matlabprogram, the next
subsection shows an illustrative example of using the program.

4.1.1 Program options

¢+ Reading Speech signal and adding noise
e Reading an audio file stored in computer.
Ability to choose (.wav or .mat) extension.
Ability to take any segment from the signal.
Ability to decide the sample frequency and number of bits per sample.
Ability to decide whether the chosen file is noisy speech or clear speech, in
the second case the noise with specific SNR can be added to the clear signal.
e Online recording speech using microphone
o Ability to record a speech signal with specific duration time and sample rate.
¢+ De-noising using discrete wavelet transform DWT or DWP
0 Discrete wavelet transform DWT
0 Ability to decide the number of decomposition levels and wavel et function.
0 Ability to decide the type of thresholding function (soft or hard).
o Ability to choose the global threshold value (the default value is calculated for
a given decomposition using universal threshold selection rule).
o Ability to segment the speech signa for frame by frame de-noising usinga
specific window with percent of overlap between these segments.
0 Ability to choose the type of thresholding.
0 Global thresholding
0 Level dependent thresholding
= Manua setting
» Based on threshold selection rule
» rigrsure, heursure, sgtwolog , minimaxi
0 Thresholding the details for a given set of levels
» Forcing al coefficients at agiven levelsto zero
= Using soft or hard at agiven levels
0 Interval dependent
= Manua setting
= Based on variance change

O O O O

28



0 Discrete wavelet packet DWP

o Ability to decide the number of decomposition levels and wavel et function.

0 Ability to decide the type of thresholding function (soft or hard).

0 Ability to choose the global threshold value (the default value is calculated for
a given decomposition using a penalization method).

¢ Illustration plots
o Caseof DWT
» Clear and noisy speech signals
= Scaling and wavelet functions
= Decomposition and reconstruction filters
= FFT of filters
= Decomposition coefficients for each level
= Reconstructed coefficients for each level
= Energy of coefficients and variance of detailsfor each level
» Thresholding functionsillustration
* Noisy, de-noised and residual signals
» Clear, noisy, de-noised signals
= Correlation between clear signal and noisy signal before denoising, and
correlation between clear signal and de-noised signal after de-noising
= Power distribution of clear, noisy and de-noised signals
= Spectrograms of clear, noisy and de-noised signals
= Absolute coefficients of DWT for clear, noisy and de-noised signals
= Histogram and cumulative histogram of clear, noisy and de-noised signals
= Some statistics about residual signal
o Caseof DWP

» Clear and noisy speech signals

»  Wavelet packets functions at third scale

= Decomposition and reconstruction filters

= FFT of filters

= Thresholding functionsillustration

= Noisy, de-noised and residual signals

» Clear, noisy, de-noised signals

= Correlation between clear signa and noisy signal before denoising, and
correlation between clear signal and de-noised signal after de-noising

= Power distribution of clear, noisy and de-noised signals

= Spectrograms of clear, noisy and de-noised signals

=  Wavelet packet spectrum

= Histogram and cumulative histogram of clear, noisy and de-noised signals

= Some statistics about residual signal

% Performance measurements
o Signa tonoiseratio SNR
0 Mean squared error MSE
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4.1.2 lllustrative example

In this example, the clear speech signal with duration time equal to four seconds and
sample rate equal to 8000 sample/second, every sample is encoded using 16 bit/sample.
Normally and identically additive white Gaussian noise with zero mean and variance equa to
one tenth of average power of clear signal which implies that the input signal to noise ratio equal
to 10 db. The signal is segmented using hamming window of 160 samples and 50% overlapping.
Figure 4.1 shows both the clear speech and noisy speech signals.

Clear speech signal

® T T T T T T T
=
=
= O——M—MW
S
< -1 ] ] ] ] ] ] ]
(o} 0.5 1 1.5 2 2.5 3 3.5 4
Time(s)
Noisy speech signal
o 1 T T T T T T T
=
=
=] OMM’MMNMWWMWHMWMWMWWW
IS
< 1 : : : : : : :
(0} 0.5 1 1.5 2 2.5 3 3.5 4
Time(s)

Fig.4.1 : Clear and noisy speech signals

Applying FWT on the noisy speech signal by using three levels of decomposition and
db4 as a wavelet function. Figure 4.2 shows the scaling and wavelet function, also it shows the
wavelet filers and its FFT. Wavelet function has more oscillation than scaling function so that
the integration of wavelet function equal to zero and integration of scaling function equal to one.
Using db wavelet with four vanishing moment, the length of each filter will be equal to eight.
These filters have a quadrature mirror image property. It is clear from below figure that the
analysis and synthesis low pass filters have the same magnitude of FFT, however, they differ in
phase, the analysis and synthesis high pass filters also differ in phase.
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Scaling function phi Wavelet function psi
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Fig 4.2 : scaling and wavelet functions, decomposition and reconstruction filters, and FFT of
decomposition and reconstruction filters

Fig 4.3 shows the wavelet coefficients at each level from the finest scale (third level) to
the coarser scale (first level). Figure 4.4 shows the reconstructed signal at each level, the sum of
these signals will give the original noisy speech signal. Fig 4.5 shows the energy of coefficients
at every scae, and the variance of details at every scale. It is clear from the figure that the largest
percent of power is in the third level (approximation coefficients) and small power is
concentrated in thefirst level.
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Fig 4.3 : Wavelet coefficients for each level
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Fig 4.5 Reconstructed signals for each level
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Energy of coefficients at different scale
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Fig 4.5 : Energy of coefficients and variance of details at different scales

For de-noising process, the soft thresholding function is used and the universal threshod
selection rule is applied to fine the global threshold value. The thresholding was not applied on
the approximation coefficients. Fig 4.6 shows an illustration about both of thresholding function
(soft and hard), the value of global threshold for 32000 samples with no framing is equal to
0.13116

Original function Soft thresholded function Hard thresholded function
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Fig 4.6 : thresholding functions (soft and hard)
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Figure 4.7 shows the noisy speech before de-noising and de-noised speech after applying
the wavelet de-noising. It is clear from the Fig 4.7 that the noise is reduced, however, there is
some residual noise. The bottom of the figur is the residual signa which taken as the difference
between the clear signal and the de-noised signal.

Noisy speech signal

De-noised speech signal

Amplitude
Amplitude
s
S

Fig 4.7 : Noisy, de-noised and residua signals

Figure 4.8 shows a comparison between the clear speech signal , noisy speech signal and
de-noised speech signal.

Clear and denoised speech signals

Amplitude

Amplitude

0 0.5 1 15 2 25 3 35 4
Time(s)

Fig 4.8 : Comparison between clear signal, noisy signal and de-noised signal

The top of Fig 4.9 shows the correlation relation between the clear speech signal and the
noisy speech signal, the correlation is equal to 0.9539 at zero lag. In the bottom of the figure, the
correlation between the clear speech signal and de-noised speech signal, the correlation is equa
to 0.966 which is greater than 0.9539. This indicates that the de-noised signa is tended to
become more correlated with the original clear speech signal.
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Fig 4.9 : Correlation between clear speech signal and noisy speech signal, correlation
between clear speech signal and de-noised speech signal

Fig 4.10 shows the power distribution of the clear, noisy and de-noised speech signals.
The power of the additive white Gaussian noise is spreaded over all the frequency band of the
speech signal and its power density is constant. As it shown below figure, the most power of the
signal is between 0 Hz and 2000 Hz. The power distribution of noisy speech signal indicates that
the detail coefficients of low value in the first scale can be discarded to remove the noise in this
high frequency band. The thresholding can be applied to the rest of bands in the wavelet
decomposition to remove any small coefficient.

o o o
9 2000 4000 6000 8000 9 2000 4000 6000 8000 o 2000 4000 6000 8000
frequency Hz frequency Hz frequency Hz

Fig 4.10 : Power distribution of clear, noisy and de-noised speech signals

Fig 4.11 shows the spectrograms of clear, noisy and de-noised speech signals. The
spectrogram uses to clarify the time and frequency contents of the speech signal. It is clear from
below figure that the spectrogram of de-noised speech signal tends to be more similar to the
original clear speech signal. Fig 4.11 and Fig 4.12 show that the power of STFT coefficients of
noisy speech signal in the high frequency band is reduced after de-noising process.
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Spectrogram of clear speech Spectrogram of noisy speech Spectrogram of denoised speech
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Fig 4.11 : Spectrograms of clear, noisy and de-noised speech signals

noisy and denoised speech signals
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Fig4.12 : Comparison between the spectrograms of noisy and de-noised speech signals.

Fig 4.13 shows the absolute coefficients of DWT for clear, noisy and de-noised speech
signals. The percent of noise power in each level is reduced so that most of the power of original
speech signal is preserved.
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Clear speech signal Absolute coefficients of DWT for clear speech
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Fig 4.13 : Absolute coefficients of DWT for clear, noisy and de-noised speech signals

Fig 4.14 shows some of statistic measurements about clear, noisy, de-noised. The
histograms and cumulative histograms of the clear, noisy and de-noised speech signals indicate
that the estimated probability distribution of these three signals are approximately normal
distribution. Specifically, Gaussian distribution with zero mean. Since most of the noise power is
reduced, the variance of de-noised speech signal is less than the variance of noisy speech signal.
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Fig 4.14:Histograms and cumulative histograms of clear, noisy and de-noised speech signals.

Fig 4.15 shows the statistics of residual signal. Residual signal indicate that the noise was
not removed totally. Some of statistical measure of this signa such as means, median, standard
deviation, variance, L1-norm and L2-norm are shown in below figure, the mean is approximately
zero, the variance is very low which is an indication of existing a high frequency components.
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The autocorrelation between the residual samples is equal to zero, the sample is only correlated
with itself. The FFT of the residual signal shows that the low frequency band contains some of
Noi se power.

Residual signal
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Fig 4.15 : Statistical measures of the residual signa

Finally, Fig 4.16 is a dialogue which display the output mean squared error and the
output signal to noise ratio. The MSE_in is the mean squared error between the clear and noisy
speech signals while the MSE_out is the mean squared error between the clear and de-noised
speech signals. It is clear that the MSE _out is less than the MSE_in which implies a reduction of
noise. The SNR_in is the ratio between the mean squared power of clear signal and the mean
squared error between clear and noisy signals. The SNR_out is the ratio between the mean
squared power of clear signal and the mean squared error between clear and de-noised signals.
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MSE_in iz22.7996 and MSE_out is15.6327
SMA_iniz10 and SMA_outis26.8643

o]

Fig 4.16 : Output MSE and output SNR after de-noising

4.2 Performance evaluation

We tested severa methods for speech de-noising using wavelets. The speech signal with
duration equal to four seconds that used is sampled at 8 Khz. Different parameters wereused,
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some of them are fixed and other was changed to get information about the performance of these
methods. The performance measure that we used is the output signal to noise ratio so that it is
considered as a dependent variable for all tests.In the following subsections we show the results
from these tests .

4.2.1 Global thresholding method

Fig 4.17a shows the relation between output SNR and number of decomposition levels by using
global thresholding with different types of db family. The thresholding function that used is soft
and the input SNR is equal to 10 db. The speech signal was framed using hamming window with
50% percent of overlapping. The frame length is 160 samples, 80 samples of overlapping with
any previous frame.
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Fig 4.17a:Number of decomposition levels vs. Output SNR using soft thresholding function and
universal selection rule

From Fig4.17a, the output SNRs are increased with different levels. Increasing the
number of vanishing moments of db wavelet increases the output SNR. Increasing the number of
decomposition levels greater than five levels will not introduce alarge change for output SNR.

Fig 4.17b shows the relation between the input SNR and the output SNR by using global
thresholding with different types of db family. The thresholding function that used is soft and the
level of decomposition is equal to six levels. The clear signal is corrupted by additive white
Gaussian noise at different level of signal to noise ratio (O db, 5db, 10db, 15 db and 20 db). . The
speech signal was framed using hamming window with 50% percent of overlapping. The frame
length is 160 samples, 80 samples of overlapping with any previous frame.
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Fig 4.17b: Input SNR vs. Output SNR using soft thresholding function and universal selection
rule

From Fig 4.17b,there is an enhancement in the output SNR. Increasing the number of
vanishing moments of db wavelet increases the output SNR, but as the power of noise increases
then, the rate of increasing of output SNR slows down.

Fig 4.18a shows the relation between output SNR and number of decomposition levels by
using global thresholding with different types of db family. The thresholding function that used
is hard and the input SNR is equal to 10 db. The speech signal was framed using hamming
window with 50% percent of overlapping. The frame length is 160 samples, 80 samples of
overlapping with any previous frame.
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Fig 4.18a:Number of decomposition levels vs. Output SNR using hard threshol ding function
and universal selectionrule
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From Fig4.18a, the output SNRs are increased with different levels. Increasing the
number of vanishing moments of db wavelet not implies increasing the output SNR for any
specific level. Increasing the number of decomposition levels greater than five levels will not
introduce alarge change for output SNR as in the case of soft thresholding.

Fig 4.18b shows the relation between the input SNR and the output SNR by using global
thresholding with different types of db family. The thresholding function that used is soft and the
number of decomposition levels is equal to six levels. The clear signal is corrupted by additive
white Gaussian noise at different level of signal to noise ratio (0 db, 5db, 10db, 15 db and 20 db.
The speech signal was framed using hamming window with 50% percent of overlapping. The
frame length is 160 samples, 80 samples of overlapping with any previous frame.
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Fig 4.18b :Input SNR vs. Output SNR using hardthresholding function and universal selection
rule

From Fig 4.18b,there is an enhancement in the output SNR. Increasing the number of
vanishing moments of db wavelet increases the output SNR in the case of high SNR, but as the
power of noise increases then, there is no significant change about the output SNR at a specific
signal to noiseratio.

Fig 4.19a shows the relation between different threshold values and the output SNR with
different levels of decomposition. The speech signal was framed using hamming window with
50% percent of overlapping. The frame length is 160 samples, 80 samples of overlapping with
any previous frame. The input SNR is 10 db, the wavelet that used is db8 and the thresholding
function is of type soft thresholding.
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Fig 4.19a: The threshold value vs. output SNR with different levels of decomposition

From Fig 4.19a the output SNR starts to increase as the threshold value increases until
reaching a specific threshold value ( less than 0.05 ), after that, the output SNR decreases as the
threshold value increases. For example, the maximum output SNR for the sixth level is with
threshod value equal to 0.02 which approximately equal to the calculated value using universal
threshol ding method.

Fig 4.19b shows the same relation as in Fig 4.19a but with different input SNRs. The
speech signal was framed using hamming window with 50% percent of overlapping. The frame
length is 160 samples, 80 samples of overlapping with any previous frame.The number of
decomposition levels is equal to six levels, the wavelet that used is db8 and the thresholding
function is of type soft thresholding.
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Fig 4.19b : The threshold value vs. output SNR with different input SNRs
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4.2.2 Interval-Dependent thresholding method

Fig 4.20a shows the relation between input SNR and output SNR by using interval-
dependent thresholding with different number of intervals. The thresholding function that used is
soft, the wavelet is db8 and the number of decomposition levelsis equal to six levels. The speech
signa was framed using hamming window with 50% percent of overlapping. The frame length is
160 samples, 80 samples of overlapping with any previous frame.Every frame is divided into
severa intervals based on variance changes,then the coefficients of each interval are thresholded
using universal thresholding method.
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Fig 4.20a: Input SNR vs. Output SNR for interval-dependent thresholding method

From Fig 4.20a, increasing the number of intervals at a specific input SNR will reduce
the output SNR. The best number of interval is one, thisis because the white noise that we added
have a constant variance that does not change with time.

Fig 4.20b shows the relation between the number of decomposition levels and output
SNR by using interval-dependent thresholding with different number of intervals. The
thresholding function that used is soft, the wavelet is db8 and input SNR is equal to 10 db. The
speech signal was framed using hamming window with 50% percent of overlapping. The frame
length is 160 samples, 80 samples of overlapping with any previous frame. Every frame is
divided into several intervals based on variance changes,then the coefficients of each interval are
thresholded using universal thresholding method.
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Fig 4.20b : Input SNR vs. Output SNR for interval -dependent thresholding method

From Fig 4.20b, increasing the number of intervals using a specific number of
decomposition levels will reduce the output SNR. The best number of interval is one, thisis also
because the white noise that we added have a constant variance that does not change with time.

4.2.3 Setting all details coefficientsin thefirst scaleto zero

In this test only the detail coefficients of the first scale are setted to zero by assuming that
most of the noise power isin thefirst level. Fig 4.21a shows the relation between the input SNR
and output SNR with different db wavelets.
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Fig4.21a: Input SNR vs. Output SNR (Setting al coefficientsin the first scale to zero)
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Fig 4.21b shows the same relation as in Fig 4.21a but instead of setting the detail
coefficients of the first scale to zero, soft thresholding function with universal threshold selection
ruleis used to threshold the details of first scale.
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Fig 4.21b : Input SNR vs. Output SNR (Applying soft thresholding on details of first scale only)

From Fig 4.21aand Fig 4.21b, Applying soft thresholding on details of first scale only at
a specific input SNR, the output SNR did not changed significantly as the number of vanishing
changed. However, in the case of setting the details of first scale to zero, the output SNR is
changed significantly as the number of vanishing changed, especially at high input SNR.

4.3 : Comparing the performance with different threshold selection rules

Fig 4.22 shows the relation between the input SNR and the output SNR with different
threshold selection criteria ( Fixed threshold, SURE, Mix of fixed threshold and SURE,
minimaxi ). The number of decomposition levels that used is equal to six, the wavelet is db8 and
the type of thresholding function is soft.
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Fig 4.22 : Input SNR vs. Output SNR with different threshold selection criteria
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4.4 Comparing the performance with different wavelet families

Fig 4.23a shows the relation between the input SNR and the output SNR with different
types of wavelet families. The threshold selection rule is the universal method, the number of
levelsis six and the thresholding function is soft.
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Fig 4.23a: Input SNR vs. Output SNR with different type of wavelet families

From Fig 4.233, there is approximately only 1 db change with output SNR between coif5
and db8 .This comparison is with using six levels of decomposition. Fig 4.23b shows the relation
between the number of decomposition levels and output SNR. The input SNR is 10db and the
thresholding function that used is soft.
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Fig 4.23b : The number of decomposition levels vs. output SNR with different wavelet families
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From Fig 4.23b, using coif5 introduced the largest output SNR for all levels. Using two
levels of decomposition maximize the global output SNR. Also, increasing the number of
decomposition levels greater than five levels will not introduce a significant change in output
SNR.

Fig 4.24 shows the relation between the input SNR and the output SNR using two
methods of de-noising. The first method is by using DWT and the second is by using Wiener
filtering. The wiener filtering is based on noise estimation using wavelet decomposition, so that
the variance of the noise is estimated by using median approximation of the detail coefficientsin
the first scale. Appendix C gives brief discussion about the wiener filtering.
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Fig 4.24 : Input SNR vs. Output SNR( comparison between DWT and Wiener Filtering )

From Fig 4.24, the wiener filtering is better than de-noising by DWT. Wiener filtering
gives a constant output SNR approximately. However, wiener filtering needs to know the
spectral properties of the original signal and the noise, for this purpose the variance of the noise
is estimated from details of the first wavelet decomposition level.
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Chapter 5
Conclusion and Future works

5.1 Conclusion

5.2 Futureworks
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5.1 Conclusion

Speech de-noising algorithm using discrete wavelet transform is implemented to
eliminate a white noise. As shown in this project the selection of threshold value is an important
parameter for speech enhancement. Using universal thesholding by fixed threshold applied to
threshold the wavelet coefficients introduce an efficient way to remove the additive white
Gaussian noise. Interval dependent method is also used to adapt the threshold value, however
since the Gaussian noise is stationary and its variance did not change with time this method is
more appropriate to non-white noise. Different parameters were changed to get more optimal
choice of them. This project concentrates on db wavelets and shows that this kind of wavelet
tends to be an appropriate choice for speech enhancement, Specially, under the assumption that
the noise is Additive white Gaussian noise. Soft thresholding function is more appropriate for
speech de-noising.

As a comparison with other method of de-noising, Wiener filtering based on the wavelet
decomposition for noise estimation. In this method the noise is estimated from the first scale of
wavelet decomposition and this estimation used to apply wiener filtering. The experiment shows
that wiener filtering introduce more enhancement in output SNR compared with de-noising using
global thresholding in the discrete wavel et domain.

5.2 Futureworks

The project concentrated on the additive white Gaussian noise, and this work can be
extended to a non-white noise. There are many wavelet families that could be tested for speech
enhancement. There are many other variations about thresholding function that could also be
tested. There are many other techniques to adapt the threshold value which could be tested.
Using other filtering techniques with wavelet de-noising method to get more optimal filtering.
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Real or complex continuous 1-D wavel et coefficients using extensit
Continuous wavelet transform using FFT agorithm

Vaid analyzing wavelets for FFT-based CWT

Supported 2-D CWT wavelets and Fourier transforms

2-D continuous wavel et transform

Inverse CWT

Inverse continuous wavel et transform (CWT) for linearly spaced sc
Identify and chain local maxima

Build wavelet from pattern

Wavelet coherence

Scalogram for continuous wavelet transform

Wavelet Toolbox GUI tools

Wavelet manager

Dyadic downsampling
Dyadic upsampling



upcoef

Direct reconstruction from 1-D wavel et coefficients

appcoef 1-D approximation coefficients

det coef 1-D detail coefficients

wr coef Reconstruct single branch from 1-D wavelet coefficients
dwt Single-level discrete 1-D wavelet transform

dwt node Discrete wavelet transform extension mode

i dwt Single-level inverse discrete 1-D wavelet transform

waver ec Multilevel 1-D wavelet reconstruction

wavedec Multilevel 1-D wavelet decomposition

upw ev Single-level reconstruction of 1-D wavelet decomposition

[ wt 1-D lifting wavelet transform

| wt coef Extract or reconstruct 1-D LWT wavelet coefficients

i lwt Inverse 1-D lifting wavel et transform

swt Discrete stationary wavelet transform 1-D

i swt Inverse discrete stationary wavelet transform 1-D
dddtree Dual-tree and double-density 1-D wavelet transform

dddt reecf s Extract dual-tree/double-density wavelet coefficients or projections
dtfilters Anaysis and synthesisfilters for oversampled wavelet filter banks
i dddtree Inverse dual-tree and double-density 1-D wavelet transform
pl ot dt Plot dual-tree or double-density wavel et transform

wener gy Energy for 1-D wavelet or wavelet packet decomposition
wvar chg Find variance change points

wrax| ev Maximum wavelet decomposition level

wf bm Fractional Brownian motion synthesis

wf bnest i Parameter estimation of fractional Brownian motion
measerr Approximation quality metrics

wr ev Flip vector

wext end Extend vector or matrix

wkeep Keep part of vector or matrix

wavemnenu Wavelet Toolbox GUI tools

wavemgr Wavelet manager




Image Analysis

dyaddown

dyadup

upcoef 2

appcoef 2

det coef 2

dwt 2

dwt nnde

i dwt 2

wavedec?

waver ec?

wr coef 2

upw ev2

wener gy2

w2

i swt 2

[ wt 2

| wt coef 2

swt 2

i swt 2

dddtr eecf s

dddtree?2

dtfilters

i dddtr ee2

pl ot dt

wcodemat

wf usi ng

wf usmat

neaserr

wext end

wkeep

wavenenu

wavemgr

Dyadic downsampling

Dyadic upsampling

Direct reconstruction from 2-D wavelet coefficients

2-D approximation coefficients

2-D detail coefficients

Single-level discrete 2-D wavelet transform

Discrete wavel et transform extension mode

Single-level inverse discrete 2-D wavelet transform
Multilevel 2-D wavelet decomposition

Multilevel 2-D wavelet reconstruction

Reconstruct single branch from 2-D wavelet coefficients
Single-level reconstruction of 2-D wavelet decomposition
Energy for 2-D wavelet decomposition

Inverse 2-D lifting wavel et transform

Inverse discrete stationary wavelet transform 2-D

2-D lifting wavelet transform

Extract or reconstruct 2-D LWT wavelet coefficients
Discrete stationary wavelet transform 2-D

Inverse discrete stationary wavelet transform 2-D

Extract dual-tree/double-density wavelet coefficients or projections
Dual-tree and double-density 2-D wavelet transform
Analysis and synthesisfilters for oversampled wavel et filter banks
Inverse dual-tree and double-density 2-D wavelet transform
Plot dual-tree or double-density wavel et transform
Extended pseudocolor matrix scaling

Fusion of two images

Fusion of two matrices or arrayz

Approximation quality metrics

Extend vector or matrix

Keep part of vector or matrix

Wavelet Toolbox GUI tools

Wavelet manager



3-D Analysis

dwt 3

dwt node

i dwt 3

wavedec3

waver ec3

wavenenu

wavemgr

Multisignal Analysis

chgwdeccf s

dwt node

mdwt cl ust er

mdwt dec

mdwt r ec

MBWC NP

MBWCNpPSCr

mewWCnpt p

mswden

mswt hr esh

wavenenu

wdecener gy

wnspca

wext end

wkeep

wavenenu

Wavelet Packet Analysis

dwt nnde

wpdec

wpdec?2

wpr ec

wpr ec?2

Single-level discrete 3-D wavelet transform
Discrete wavel et transform extension mode
Single-level inverse discrete 3-D wavelet transform
Multilevel 3-D wavelet decomposition

Multilevel 3-D wavelet reconstruction

Wavelet Toolbox GUI tools

Wavelet manager

Change multisigna 1-D decomposition coefficients
Discrete wavel et transform extension mode
Multisignals 1-D clustering

Multisignal 1-D wavelet decomposition

Multisignal 1-D wavelet reconstruction

Multisignal 1-D compression using wavel ets

Multisignal 1-D wavelet compression scores

Multisignal 1-D compression thresholds and performances

Multisignal 1-D denoising using wavelets

Perform multisignal 1-D thresholding

Wavelet Toolbox GUI tools

Multisignal 1-D decomposition energy distribution
Multiscale Principal Component Analysis

Extend vector or matrix

Keep part of vector or matrix

Wavelet Toolbox GUI tools

Discrete wavel et transform extension mode
Wavelet packet decomposition 1-D
Wavelet packet decomposition 2-D
Wavelet packet reconstruction 1-D
Wavelet packet reconstruction 2-D



wpcoef

wpr coef

best | evt

besttree

ent r upd

went r opy

pl ot

wpvi ewcf

wavenenu

wpf un

wpspect rum

cf s2wpt

depo2i nd

Wo2wW r ee

wpcut r ee

wpspl t

Wpj oi n

i nd2depo

ot nodes

wite

r ead

readtree

set

t nodes

wpt r ee

di sp

drawt r ee

dtree

al | nodes

get

i snode

i st node

Wavelet packet coefficients

Reconstruct wavelet packet coefficients

Best level tree wavelet packet analysis

Best tree wavelet packet analysis

Entropy update (wavelet packet)

Entropy (wavelet packet)

Plot tree GUI

Plot wavelet packets colored coefficients
Wavelet Toolbox GUI tools

Wavelet packet functions

Wavelet packet spectrum

Wavelet packet tree construction from coefficients
Node depth-position to node index

Extract wavelet tree from wavel et packet tree
Cut wavel et packet tree

Split (decompose) wavel et packet

Recompose wavel et packet

Node index to node depth-position

Order terminal nodes of binary wavelet packet tree
Write values in WPTREE fields

Read values of WPTREE

Read wavel et packet decomposition tree from figure
WPTREE field contents

Determine terminal nodes

WPTREE constructor

WPTREE information

Draw wavelet packet decomposition tree (GUI)
DTREE constructor

Tree nodes

WPTREE contents

Existing node test

Termina nodes indices test



| eaves Determine terminal nodes

nodeasc Node ascendants

nodedesc Node descendants

nodej oi n Recompose node

nodepar Node parent

nodespl t Split (decompose) node

nol eaves Determine nonterminal nodes

nt node Number of terminal nodes

ntree NTREE constructor

treedpth Tree depth

treeord Tree order

wt bo WTBO constructor

W reengr NTREE manager

Denoising

cnddenoi se Interval-dependent denoising

ddencnp Default values for denoising or compression

t hsel ect Threshold selection for de-noising

wbnpen Penalized threshold for wavelet 1-D or 2-D de-noising
wdcbm Thresholds for wavelet 1-D using Birgé-Massart strategy
wdchn? Thresholds for wavelet 2-D using Birgé-Massart strategy
wden Automatic 1-D de-noising

wdencnp De-noising or compression

wirul den Wavelet multivariate de-noising

WNoi se Noisy wavelet test data

wnoi sest Estimate noise of 1-D wavelet coefficients

wpbnpen Penalized threshold for wavelet packet de-noising
wpdencnp De-noising or compression using wavelet packets

wpt hcoef Wavelet packet coefficients thresholding

wt hcoef 1-D wavelet coefficient thresholding

wt hcoef 2 Wavelet coefficient thresholding 2-D

wt hr esh Soft or hard thresholding




wt hr mgr Threshold settings manager

wvar chg Find variance change points
measerr Approximation quality metrics
wavemenu Wavelet Toolbox GUI tools

Compression

WConpr ess True compression of images using wavelets
wpdencnp De-noising or compression using wavelet packets
measerr Approximation quality metrics

wrpal g Matching pursuit

wnpdi ct i onary Dictionary for matching pursuit

wavemenu Wavelet Toolbox GUI tools

Reference :

https://www.mathworks.com/help/wavelet/index.html




Appendix B
Matlab code

clc

cl ear al

cl ose al

%0 St age 1:

% 1.1 - Reading speech signal.

% 1.2 - Adding Additive Wite Gaussi an Noi se.

% 1.3 - Plotting clear signal and noisy signal.
% 1.4 - Playing clear signal and noisy signal.
O - - — = -

%1.1 - Readi ng speech signal.

%option 1 : Get recorded file fromPC (.wav OR . nat).
%option 2 : Online recording via m crophone.

¢ = nmenu(' speech choice options :',"'Get recorded file
fromPC (clear signal or noisy signal)','Online recording
via m crophone');

switch c
% ---------
%option 1 : Get recorded file fromPC
case 1
d =dir;
strn = {d. nane};
[s,v] = listdlg(' PronptString" , '"Select a file : ' |
' Sel ecti onMbde' , 'single' , 'ListString' , strn);
[ a, b] = strread(strn{s} , "% %' , '"delimter' |,
)

file_str_name = strn{s};

if strenp(b , "mat')
nc mat = nmenu('ls this signal noisy or
clear',"Cear',"  Noisy');
switch n_c_mat
case 1
refO = 0;refl= 0;
signal _mat = load(file_str_name);
Fi el dNanme = fi el dnanmes(signal _mat);
Fi el d_speech_full =
getfield(signal _nmat, Fi el dNane{1});
N sanples = |l ength(Fi el d_speech_full);
N str = nun2str(N_sanpl es);
pronpt = {strcat(' Enter the nunmber of first
N sanples of signal : N sanples <= ',N_str), ' Enter the
frequency of sanpling','Enter the nunber of bits per
sanple',' ' Enter the value of signal to noise ratio'};
dlg_title = "Audio File Selection';
numlin = 1;
def _filename_snr = {'1,632000","8000","16"," 10" };



file_name = inputdl g(pronpt ,dlg_title ,numlin
, def _filename_snr);

[NL , N2] = strread(file_nane{l} , "% %'
‘delimter' , ",");

N1 str2num N1{1});

N2 str2num(N2{1});

len_seg = N2 - N1 + 1

Fs str2num(fil e_nanme{2});

nbits = str2nun(file_nanme{3});

snrval = str2nun(fil e_nanme{4});

cl ear _speech = Field_speech_full (Nl: N2); %l ear

si gnal
case 2

refO = 0;refl= 1;

signal _mat = load(file_str_name);

Fi el dNane = fi el dnanmes(signal _mat);

Field speech full =
getfield(signal _mat, Fi el dNanme{1});

N sanples = |l ength(Fi el d_speech_full);

N str = nunstr(N_sanpl es);

pronpt = {strcat(' Enter the nunmber of first
N sanpl es of signal : N sanples <= ',N str), ' Enter the
frequency of sanpling','Enter the nunber of bits per
sanpl e' };

dlg_title = "Audio File Selection';

numlin = 1;

def filenane_snr = {'1, 32000 ,'8000","16"};

file_name = inputdl g(pronpt ,dlg_title ,numlin
,def _filename_snr);

[NL , N2] = strread(file_nane{l} , '% %'
‘delimter' , ',");

N1 str2num N1{1});

N2 str2num(N2{1});

len_seg = N2 - N1 + 1

Fs str2num(fil e_nanme{2});

nbits = str2nun(file_nanme{3});

noi sy_speech = Field_speech_full (Nl1: N2)";

|l oad h_orig. mt; % cl ear signal
cl ear _speech = h_orig(NL: N2)";
snrval = 10;

end

elseif strcnmp(b , "wav')
n_c wav = nmenu('ls this signal noisy or
clear',"Cear',' Noisy' );
switch n_c_wav
case 1
refO = 1;refl=0



[clear _speech _all , Fs , nbits] =
wavread(file_str_name);

N sanpl es = |l ength(cl ear_speech_all);

N str = nunstr(N_sanpl es);

pronpt = {strcat(' Enter two nunbers N1 and N2

separated by commmas\n N1 < N2 <= ', N str),"' Enter the
val ue of signal to noise ratio'};
dlg_title = "Signal Interval and SNR val ues';

numlin = 1;
def _filenane_snr = {'1,8000","'10'};
file_name = inputdl g(pronpt ,dlg_title
,numlin ,def _filenane_snr);
snrval = str2nunm(fil e_nanme{2});
firstNsanp = str2nunm(file_nane{1});
[NL , N2] = strread(file_nanme{l} , '% %'

‘delimter' , ',");

N1 = str2nun(N1{1});

N2 = str2nun(N2{1});

len_seg = N2 - N1 + 1

snrval = str2nun(fil e_nanme{2});

cl ear _speech = clear_speech_al |l (NL: N2) ;

case 2

refO = 1;refl = 1,

[ noi sy _speech_all , Fs , nbits] =
wavread(file_str_name);

N_sanpl es = | ength(noi sy_speech_all);

N str = nun2str(N_sanpl es);

pronpt = {strcat(' Enter two nunbers N1 and N2
separated by commas\n N1 < N2 <= ', N str), };

dlg_title = "Signal Interval";

numlin = 1;

def _filenane_snr = {'1,32000'};

file_name = inputdl g(pronpt ,dlg_title
,numlin ,def _filenanme_snr);

firstNsanp = str2nun(file_nanme{1});

[NL , N2] = strread(file_nane{l} , "% %' |,
‘delimter' , ",");
N1 = str2nun(N1{1});
N2 = str2nun(N2{1});
len_seg = N2 - N1 + 1
noi sy_speech = noi sy_speech_al | ( NL: N2) ;
| oad h_orig. mat;
cl ear _speech = h_orig; %l ear signal
snrval = 5;
end
el se
msg = nmegbox(' Extension of the file nmust be .wav or
.mat ') ;

end



if (size(clear_speech,1l) == 1)
cl ear _speech = cl ear _speech’;
end

%1.2 - Adding Aditive Wiite Gaussi an Noi se

if (refO == 0 && refl ==0) ||(ref0 == 1 && refl == 0)
noi se_generator = nenu(' noi se generator',"' Add white
gaussi an noise to signal' , 'Add normally distributed
pseduor andom nunbers to signal');

if ~(noi se_generator-1)

noi sy _speech = awgn(cl ear _speech, snrval , ' neasured'); %Add
AVWGN

el se
snr_lin = 10"(snrval /10);
power _signal = nmean(abs(cl ear_speech).”"2);

var = power_signal/snr_lin;
noi se = (randn(l ength(cl ear_speech), 1).*sqrt(var));
noi sy_speech = cl ear _speech + noise; % Add |.l.D AWGN
end
end
% Test the vector dinensions agreenent.
i f(size(clear_speech, 1)-size(noi sy _speech, 1)) ~=0
i f size(noisy_speech,1)==1
noi sy_speech = noi sy_speech’;
el se
cl ear _speech = cl ear _speech’;
end
end

save E:\ Noi sy_Fil e\ noi sy_speech. mat

noi syfile = '"E \ Noi sy_Fil e\noi sy_speech. wav';

wavw i t e(noi sy_speech, Fs ,nbits, noisyfile)% Wite the
noi sy signal into noisyfile

%.3 - Plotting clear signal and noisy signal

figl = figure('nane' ,'clear and noi sy speech
signals',"Color', " w);

subpl ot (211); axis tight;

plot([1l:1ength(clear _speech)]/Fs , clear _speech ,'b");
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' dear speech signal');

subpl ot (212); axis tight;

pl ot ([ 1: 1 engt h(noi sy_speech)]/Fs , noisy_speech,'r");
xl abel (" Tine(s)'); ylabel (" Anplitude');



title(' Noisy speech signal');
% ---------
%.4 - Play clean and noi sy speech signal
Pause t = (length(clear_speech)/Fs) + 2 ;
sound( cl ear _speech, Fs)
pause( Pause t);
sound( noi sy_speech , Fs)
% ---------
% option 2 : Online recording via m crophone
case 2
pronpt = {' Enter the nunmber of second to be
recorded' ,' Enter the frequency sanpling rate'};

dlg_title = "Audi o Recording';

numlin = 2;

def t f = {'5","'8000'};

record _par = inputdlg(pronpt ,dlg title ,numlin
,def t _f);

record_t = str2nun(record_par{1})

Fs = str2num(record_par{2})

record _speechObj = audiorecorder(Fs , 16 , 1);

nmsg0 = nsgbox(' Start speaking');

h = waitbar (0, Start speaking')

for step=1:1

recor dbl ocki ng(record_speechj , record_t);

wai t bar (st ep)

end

msgl = nsgbox(' End speaking');

pause(2);

cl ose(h)

noi sy_speech = getaudi odat a(record_speechChj
"doubl e');

fig2 = figure('nane' , 'noisy recorded
speech',"' Color','w);

pl ot ([ 1: 1 engt h(noi sy_speech)]/Fs ,
noi sy_speech); % Pl otting the noisy recorded signa

pl ay(record_speechCbj); % Play the noisy recorded
speech signa
end

%% St age 2:

% 2.1 - Choose a)DWr or b)DPT

% In the case of DW :

% 2.2.a - Set the nunber of |evel deconposition and the
wavel et function nane

% 2.3.a - Find the wavel et and scaling functions

% 2.4.a - Find the wavelet and scaling filters



% 2.5.a - Deconpose the noisy signal at a given |evel
using the wavelet filters

% 2.6.a - Extract the approximation coefficients at
coarser scale(final level) from

% the wavel et deconposition structure [Cad , L]

% 2.7.a - Extract the detail coefficients at the |levels
(r, 2, ..., level)

% fromthe wavel et deconposition structure [Cad , L]

% 2.8.a - Find the energy of the wavel et coefficients
% 2.9.a - Reconstruct the approxi mation signal at
coarser scale(final |evel)fromwavel et deconposition

% 2.10.a - Reconstruct the detail signals at all |evels
fromthe wavel et deconposition

% structure [Cad , L]

% 2.11.a - Plotting illustration

%2.1 - Choose a) DWI or b)DPT
cl = menu(’' Denoising using :' ,'Discrete Wavel et
Transform (DW)',' Discrete Wavel et packet (DWP)');
switch cl

case 1% DWI

%.2.a - Set the nunber of |evel deconposition and the
wavel et function nane

| ev_wnanme = inputdl g({' Enter the nunmber of deconposition
| evel s'," Enter the wave nanme : dbN },' Nunber of |evel and
wavenane') ;

| evel = str2nun(lev_wnane{1l});

wavenane = | ev_wnane{2};

%.3.a - Find the wavel et and scaling functions
iteration = 15;

[phi , psi , xval _dbn] = wavefun(wavenane , iteration);
0% -----=----

%.4.a - Find the wavelet and scaling filters

[Lod, Lo_r] = wilters(wavenane , '|")
H r = qgnf(Lo_r)

H d = wev(H _r)

sumH d = sum(H _d)

sum Lo _d = sum(Lo_d)

Next pow2_Lo_d
Next pow2_Hi _d
Next pow2_Lo_r
Next pow2_Hi r

next pow2(| engt h(Lo_d));
next pow2(| engt h(Lo_d));
next pow2(| ength(Lo_r));
next pow2(l ength(Lo_r));

fftLo_d = fft(Lo_d, 2"Nextpow2_Lo_d);
fftH _d= fft(H _d, 2"Next pow2_Hi _d);
fftLor = fft(Lo_r, 2"Nextpow2_Lo_r);



fftH r=fft(H _r, 2 "Nextpow2_H r);

%2.5.a - Deconpose the noisy signal at a given |eve
using the wavelet filters

[Cad , L] = wavedec(noi sy speech(:,1) ,level , wavenane);
0% -----=----

%.6.a - Extract the approximtion coefficients

%2.7.a - Extract the detail coefficients

%2.8.a - Find the energy of the wavel et coefficients

Capp = appcoef(Cad , L, Lo.d, H _d, level); %xtract the

approxi mation coefficients for level (level)
a2sq = sum(Capp."2); %energy of the wavel et approxi mation
coefficients
Energy_coef = zeros(1,|evel +1);
Energy coef (1) = a2sq;
SDEV = zeros(1,!level);
SDEV_CCEF = zeros(1,!level);
for i=level : -1: 1
Cdet = detcoef(Cad , L, i);%Extract the detai
coefficients for level (i)
d2sq = sum(Cdet."2);
Array _det coef{l evel-i+1l} = Cdet;
d2sq = sum(Array_det coef{level -i +1}.72); %ener gy of
t he wavel et coefficients for every scale
Energy_coef (|l evel -i +2) = d2sq;
SDEV(i) = wnoisest(Cad , L ,i);%standard devi ation
appriximation for detail coefficients for every scale
SDEV_COEF(i) = std(Cdet);
end
engcoef = sun({Energy_coef)% total energy of wavel et
coefficients(approximtion & detail)
engsi g = sum(noi sy_speech(:,1).72)%total energy of the
noi sy signa
engerr = abs(engcoef - engsig)% energy preservation
percent _energy_app =
(Energy_coef (1)/sum Energy_coef))*100
% ---------
%.9.a - Reconstruct the approximtion signal at coarser
scal e(final level)fromwavel et deconposition
App_sig = wcoef('a , Cad , L, wavenane , |evel);
Reconstruct Array_sig{1l} = App_sig;
O -----=----
%2.10.a - Reconstruct the detail signals at all |evels
fromthe wavel et deconposition
SDEV_REC = zeros(1,!level);
for j =level : -1: 1
Det sig = wecoef('d , Cad, L, wavenane , j);
Reconstruct Array_si g{l evel -j+2} = Det_sig;
SDEV_REC(j) = std(Det_sig);
end



%.11.a - Plotting illustration

0B ---------

fig3 = figure('nane' , 'phi _psi functions ,filters
and fft of filters', Color','w);

0B ---------

subpl ot (521); axis tight ;
pl ot (xval _dbn, phi);title(' Scaling function phi');
subpl ot (522); axis tight ;
pl ot (xval _dbn, psi);title(' Wavel et function psi');

subpl ot (523); axis tight ;
stenm(Lo_d, ' r");title( Deconposition |ow pass filter");
subpl ot (524); axis tight ;

stem(H _d, r");title( Deconposition high pass filter');
subpl ot (525); axis tight
stem(Lo_r, ' b");title(  Reconstruction |ow pass filter');
subpl ot (526); axis tight

stenm(H _r," ' b");title(' Reconstruction high pass filter");

subpl ot (527); axis tight

Freq_Lo d = (2*pi)/ (2"Next pow2_Lo_d)

s (2*pi )/ (2"Nextpow2_Lo_d) : pi

fald = abs(fftLo_d(1: (2*(Nextpow2_Lo d)/2)));
plot(Freq_Lo d,fa ld);title(' FFT of anal ysis | ow pass
filter');

xbim([(2*pi)/ (2"Next pow2_Lo_d) , pi+0.5]);

subpl ot (528); axis tight

Freq_Lo r = (2*pi)/ (2"Nextpow2_Lo_r)

s (2*pi )/ (2"Nextpow2_Lo _r) : pi

fa hr = abs(fftLo_r(1: (2*(Nextpow2_Lo r)/2)));
plot(Freq_Lo r,fa_hr);title(' FFT of synthesis | ow pass
filter');

xbim([(2*pi)/ (2"Next pow2_Lo_r) , pi+0.5]);

subpl ot (529); axis tight

Freq_H _d = (2*pi)/ (2"Next pow2_Hi _d)

c(2*pi )/ (2"Nextpow2_Hi _d) : pi

fald = abs(fftH _d(1: ((2"Nextpow2 H d)/2)));
plot(Freq_H _d,fa_ld);title(' FFT of anal ysis high pass
filter');

xbim([(2*pi)/ (2"Next pow2_H _d) , pi+0.5]);

subpl ot (5, 2,10); axis tight

Freq_H r = (2*pi)/ (2"Nextpow2_Hi _r)

c(2*pi )/ (2"Nextpow2_Hi _r) : pi

fa hr = abs(fftH _r(1: ((2"Nextpow2_ H r)/2)));



plot(Freq_H _r,fa_hr);title(' FFT of synthesis high pass
filter');
xbim([(2*pi)/ (2 "Next pow2_Hi r) , pi+0.5]);

0B ---------

figd = figure(' nane' , 'deconposition
coefficients',"Color',"wW);

0B ---------

subpl ot (l evel +2, 1, 1); axis tight;
plot([1l:1ength(noisy speech)]/Fs , noisy speech,'r');
title(' Noisy speech signal');

subpl ot (I evel +2, 1, 2); axis tight;

plot(Capp , "b")

title([" Approxi mation coefficients at |evel

, hunstr (level )]);

ylabel (['Ca' , nunstr(level)], "Color" , '"b');
for f =level : -1: 1

row = | evel +2;

no_fig = level -f+3;

s = level -f+1;

[ bl = nun@str(f);
subpl ot (row, 1, no_fig); axis tight;
pl ot (Array_det _coef{s} , 'g')

title(['Detail coefficients at level ' ,1bl]);
ylabel (["Cd" ,Ibl], Color" , "g")
end

subpl ot (row, 1, r ow)

0 ---------

figh = figure(' nane' , 'reconstructed
coefficients',"Color',"wW) ;

0 ---------

subpl ot (l evel +2, 1, 1); axis tight;
plot([1l:1ength(noisy speech)]/Fs , noisy speech,'r');
title([' Noisy speech signal : a' ,nun@str(level),’ +
d ,nun2str(level)," = d ,nunRstr(level-1)]);
subpl ot (l evel +2,1,2); axis tight;
pl ot ( ReconstructArray sig{1l} , 'b")
title([' Approxi mation signal at |evel
, hunstr (level )]);
ylabel (["a" , nunstr(level)], Color" , "b")
for r =level : -1: 1
row = | evel +2;
no fig = level -r+3;
s = level -r+1,
[ bl = nun@str(r);
subpl ot (row, 1, no_fig); axis tight;
pl ot (Reconstruct Array_sig{level-r+2} , 'qg")



title([' Reconstructed coefficients at level ' ,1bl]);
ylabel (["d" , Ibl], Color" , "g")

end

subpl ot (row, 1, row);

x|l abel (" Tine');

fige = figure('nane’ , '"energy and standard
deviation',"Color'," ' w);
O mmmmmmm e -

subpl ot (211) , axis tight;

stem Energy_coef (2:end), ' g');

hol d on

stem Energy_coef(1),"'b");

title(' Energy of coefficients at different scale');

x|l abel (" | evel nunber'); ylabel (' energy of coefficients');
| egend(' detail coefficients energy',' approxi mation
coefficients energy')

subpl ot (212); axis tight;

stem(wev(SDEV."2),'r"); title(' Variance of details at
different scales');

x| abel (' | evel nunber'); ylabel (' Variance of details at
different scales');

tilefigs

%% St age 3:

% 3.1.a - Choose the type of thresholding function (
soft or hard)

% s : soft thresholding or h : hard

t hr eshol di ng

% 3.2.a - Decide whether you need to threshod the
approxi mation coefficient or not

% KeepApp = 1 : withno threshol d approx.
coeff's or KeepApp = 0 : with threshold approx. coeff's
% 3.3.a - Set the value of threshold (this value for
gl obal threshol ding)

% The above three steps could al so be choosen by
default option instead of manual option.

% 3.4.a - Choose the type of threshol ding

% 3.4.a.1 - gbl : global thresholding

% 3.4.a.2 - lvd : level dependent threshol ding
% 3.4.a.2.1 - Choose the noise nodel

% 3.4.a.2.2 - Chooose the threshold

sel ection rule

% 3.4.a.2.3 - Calculate the threshold
vector whi ch contains

% the threshold val ues for

every | evel



% 3.4.a.3 selected | evel threshol ding

% 3.4.a.3.1 - Choose selcted | evel

t hreshol di ng net hol ogy

% ( set all coeff's of selected level to
zero or threshod the selected I evel by (s or h) )

% 3.4.a.3.2 - Decide the | evel nunmbers to
be threshol ded

% 3.4.a.4 Interval dependent threshol ding

% 4.4.a - Reconstruct the signal fromthreshol ded
coefficients

% 4.5.a - Reconstruct the approximation and det ai
signals fromwavel et threshol ded deconposition

% 4.6.a - Plotting illustration

% 4.7.a - Playing the denoi sed speech

%38.1.a - Choose the type of thresholding function ( soft
or hard)
3. 2.a - Decide whether you need to threshod the
approxi mation coefficient or not
%8.3.a - Set the value of threshold (this value for
gl obal threshol di ng)
%he above three steps could al so be choosen by default
option instead of manual option.
setting = nenu(' Set the values of (threshold value , soft
or hard threshol ding function , KeepApp)',' nanual
setting', 'defult setting');
switch setting
case 1

std_glb =
medi an(abs(Array_det _coef{l evel}))/0.6745;

thr = std_gl b*sqrt(2*1 og(l engt h(noi sy_speech)));

thr _globstr = nunstr(thr);

def _thr_s 1 = {thr_globstr,"'s","1"};

thr_sorh_k = inputdl g({'Enter the val ue of
threshold' ,'Enter the type of threshol ding function soft
or hard s or h',"' Threshold the approximtion? 1:no or
O:yes'}, Setting paraneters',1,def _thr_s 1);

thr = str2num(thr_sorh_k{1});

s_or_h = thr_sorh_k{2};

KeepApp = str2nunm(thr_sorh_k{3});

case 2

%the default value of the threshold is
calculated as thr = std*sqrt(2*!1 og(l engt h(noi sy_speech)))
where std = nedi an(abs(D))/0. 6745

% such that Dis calculated formthe single |eve
DWI using haar wavelet.[D, Al = dw (' dbl’
noi sy _speech];al so, std(noise) = median(abs(D))/0.6745

[thr , s_or_h , KeepApp] = ddencnp('den" , "w' |,
noi sy_speech(:,1));



defaul t _dial og = nmsgbox({ ' thr ="', nunRstr(thr)

,"s or_h =" ,s or_h, 'Keepapp =
", nunkst r (KeepApp) }, ' Defaul t val ues');
end

3. 4.a - Choose the type of threshol ding

gbl _or _Ivd = nmenu(' Type of thresholding ,'d obal
t hreshol ding', ' Level -dependent thresholding','1-D wavel et

coefficients thresholding','lnterval -dependent
t hreshol ding');
nmsg2 = nsgbox(' De_noising ...");

FrameSel ection = nmenu(' Do you want to segnment the speech
or not?' ,"'Yes',' No');

swi tch FraneSel ection

case 1
seg_step = Fs*0. 01;
overlap = Fs*0.01;
seg len = seg_step + overl ap;
sp_l en = I engt h(noi sy_speech);

Nseg = floor(sp_l en/ (seg_step))-1;
wi hdow = hanmm ng(seg_| en);
de = hanni ng(2*overlap - 1)';
dewi ndow = [de(1l:overlap) , ones(l,seg |len -2*overl ap)
de(overl ap: end)]' ./ w ndow,
switch gbl_or _|vd

%3.4.a.1 - gbl : global thresholding
case 1

%l.4.a - Reconstruct the signal fromthreshol ded
coefficients

denoi sed_speech = zeros(sp_len, 1);

for i =1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg step+l
i *seg_st ep+overl ap);

noi sy_speechW:,i) = w ndow. *sp_Seg(:,i);
[Cad_seg , L] =
wavedec(noi sy _speechW:,i), | evel,wavenane);

Cdet _seg = detcoef(Cad_seg , L, 1);
sigma_seg = nedi an(abs(Cdet _seg))/0.6745;
thr_seg =

si gma_seg*sqgrt (2*1 og(l engt h(noi sy_speechW:,i))));



[ denoi sed seg ,Cad thr_seg , L _thr_seg ,
L2norm recovery_seg , cnp_score_seg] = wdencnp(' gbl' ,
Cad_seg , L, wavenanme , level ,thr_seg, s or_h , 1);

denoi sed_seg (:,i) = denoi sed_seg;
noi sy _speechDe(:,i) = denoised _seg (:,i).*dew ndow,
denoi sed_speech((i-1)*seg_step+l :
i *seg_step+overl ap) = noisy_speechDe(:,i) +
denoi sed_speech((i-1)*seg_step+l : i*seqg_step+overl ap);
end

%3.4.a.2 - lvd : |evel -dependent thresholding
case 2
THR_set Manual = menu(' Choose the thresholds (only
details coefficients) for |evel-dependet
t hreshol ding',' Manual setting','Based on threshold
selection rules');

if ~(THR set Manual -1)

THR dlg = inputdl g({" Enter a |ist of thresholds
seperated by commas'},' Threshol ds setting for |evel-
dependent ')

THR = str2num THR dl g{1});

el se

93.4.a.2.1 - Choose the noi se nodel

noi se_nod_nenu = nmenu(' Noi se nodel ', " Unscal ed
white noise',' Scal ed white noise',' Non-white noise');
noi se_nmodel = {"one" , "sln" , "mn'};

SCAL = noi se_nodel (noi se_nod_nenu) ;
f =char (SCAL{1})

98.4.a.2.2 - Chooose the threshold selection rule
thrrule = nmenu(’ Threshol d sel ection

rule' ,'rigrsure' ,'heursure' , 'sqtwolog' , 'mninmaxi');
menu_thrrule = {'rigrsure' ,'heursure' |,
"sqgtwol og" , "mninmaxi'};

ThrSel ect Rule = nmenu_thrrule(thrrule);
tptr = Thr Sel ect Rul e{ 1}
% ---------
denoi sed_speech = zeros(sp_len , 1);
for i =1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+l
I *seg_step+overl ap);
noi sy_speechW:,i) = w ndow. *sp_Seg(:,i);



denoi sed_seqg =
wden( noi sy_speechW:,i),tptr,s_or_h,f, | evel,wavenane);

denoi sed_seg(:,i) = denoi sed_seg;
noi sy_speechDe(:,i) = denoised_seg (:,i).*dew ndow,
denoi sed_speech((i-1)*seg_step+l :

I *seg_step+overl ap) = noisy_speechDe(:,i) +

denoi sed_speech((i-1)*seg_step+l : i*seg_step+overlap);
THR = zeros(1,Ievel);

end

%3.4.a.3 selected level thresholding (only details
coefficients)
case 3

98.4.a.3.1 - Choose selcted | evel threshol ding
nmet hol ogy
X = menu(' detail coeficients
thresholding:', thresholding the details for a given set
of level by forceing all coefficients to be
zero','thresholding the details for a given set of |evel
by using soft or hard threshol ding function');
if ~(x-1) %et all coeff's of selected level to
zero
selected_lev = inputdl g({ Enter a |ist of
nunbers (nunber of levels for threshol di ng) separated by
spaces or comas'}, ' Wavel et coefficient threshol ding');
LEV = str2nun(sel ected_l ev{1});

denoi sed_speech = zeros(sp_len,1);

for i =1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg step+l
i *seg_st ep+overl ap);

noi sy_speechW:,i) = w ndow. *sp_Seg(:,i);

[Cad_seg , L] =
wavedec(noi sy _speechW:,i), | evel,wavenane);

Cdet _seg = detcoef(Cad_seg , L, 1);

Capp = appcoef(Cad_seg, L, wavenane, 1) ;

si gnma_seg = nedi an(abs(Cdet _seg))/0. 6745;

thr _seg = sigma_seg*sqrt(2*l og(l ength(sp_Seg(:,i1))));

Cad_thr_seg = whcoef('d , Cad_seg, L, 1);
denoi sed_seg = waverec(Cad_thr_seg, L, wavenane) ;



denoi sed_seg(:,i) = denoi sed_seg;
noi sy_speechDe(:,i) = denoised _seg (:,i).*dew ndow,
denoi sed_speech((i-1)*seg_step+l :
i *seg_step+overl ap) = noisy_speechDe(:,i) +
denoi sed_speech((i-1)*seg_step+l : i1*seg_step+overl ap);
end

el se % hreshod the selected |level by (s or h)

selected lev = inputdl g({ Enter a |ist of
nunbers (nunber of l|evels for threshol di ng)separated by
spaces or commas',' Enter the crrespondi ng
t hreshol ds'}, ' Wavel et coefficient thresholding);

LEV = str2nun(sel ected_l ev{1});

T = str2nun(sel ected | ev{2});

denoi sed_speech = zeros(sp_len,1);

for i =1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg step+l
i *seg_step+overl ap);

noi sy_speechW:,i) = wi ndow. *sp_Seg(:,i);

[Cad _seg , L] =
wavedec(noi sy_speechW:,i), | evel,wavenane);

Cdet _seg = detcoef(Cad_seg , L, 1);

Capp = appcoef (Cad_seg, L, wavenane, 1) ;

sigma_seg = nedi an(abs(Cdet _segqg))/0.6745;

thr _seg = sigma_seg*sqrt(2*l og(length(sp_Seg(:,i))));

Cad thr_seg = whcoef('t" , Cad_seg , L, LEV
, T,s_or_h);
denoi sed_seg = waverec(Cad_t hr_seg, L, wavenane) ;

denoi sed_seg(:,i) = denoi sed_seg;
noi sy_speechDe(:,i) = denoised_seg (:,i).*dew ndow,
denoi sed_speech((i-1)*seg_step+l :
i *seg_step+overl ap) = noisy_speechDe(:,i) +
denoi sed_speech((i-1)*seg_step+l : i*seg_step+overlap);
end

%3.4.a.4 - Interval -dependent threshol ding
case 4
x1 = menu(' | nterval - dependent
denoi sing:','Interval -dependent denoi sing based on
vari ance change');



num.int = inputdl g({ Enter the nunber of
intervals'} ,' Nunber of intervals' , 1 ,{'1});

nb_int = str2num num.int{1});

denoi sed_speech = zeros(sp_len,1);

for i =1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+l
I *seg_step+overl ap);

noi sy_speechW:,i) = wi ndow. *sp_Seg(:,i);

[ denoi sed_seg, Cad_t hr _seg, t hr ParansQut _segq, i nt _DepThr _Cel
| seg, Best NoOf I nt _seg] =
cnddenoi se(noi sy_speechW:,i),wavenane, |l evel ,s _or_h,nb_in
t);
denoi sed_seg = denoi sed_seqg';
denoi sed_segO(:,i) = denoi sed_seg;
noi sy _speechDe(:,i) = denoised _segO(:,i).*dew ndow,
denoi sed_speech((i-1)*seg_step+l :
i *seg_step+overl ap) = noisy_speechDe(:,i) +
denoi sed_speech((i-1)*seg_step+l : i1*seg_step+overl ap);
end

%
end

[Cad_thr , L] =
wavedec(denoi sed_speech, | evel , wavenane) ;

case 2

switch gbl _or_|vd

% ---------

%3.4.a.1 - gbl : global threshol ding
case 1

%.4.a - Reconstruct the signal fromthreshol ded
coefficients

[ denoi sed_speech ,Cad _thr , L_thr
L2norm recovery , cnp_score] = wdencnp('gbl" , Cad , L ,
wavenane , level,thr , s or_h , KeepApp);

L2norm recovery , cnp_score

38.4.a.2 - lvd : |evel -dependent threshol di ng



case 2
THR set Manual = menu(' Choose the thresholds (only
details coefficients) for |evel-dependet
t hreshol ding',' Manual setting','Based on threshold
selection rules');

if ~(THR_set Manual - 1)

THR dlg = inputdl g({" Enter a |ist of thresholds
seperated by commas'},' Threshol ds setting for |evel-
dependent ')

THR = str2num THR dl g{1});

el se

93.4.a.2.1 - Choose the noi se nodel

noi se_nod_mnmenu = menu(' Noi se nodel ', Unscal ed
white noise','Scaled white noise',’'Non-white noise');
noi se_nodel = {'one'" , 'sln" , 'mn'},;

SCAL = noi se_nodel (noi se_nod_nenu) ;
f =char (SCAL{1})

%3.4.a.2.2 - Chooose the threshold selection rule
thrrule = menu(’ Threshol d sel ection
rule ,'rigrsure' ,'heursure' , 'sqtwolog' , '"mninmaxi');

8.4.a.2.3 - Calculate the threshold vector
switch thrrule

case 1
THR= wt hr mgr (' dwlddenoLVL" ,'rigrsure',Cad , L

)
case 2
THR= wt hr mgr (' dwlddenoLVL" , "' heursure',Cad , L
)
case 3
THR= wt hr mgr (' dwlddenoLVL', " sqtwol og',Cad , L
)
case 4
THR= wt hr mgr (' dwlddenoLVL' ,"mininmaxi',Cad , L
)
end
O - - — = -
end

%.4.a - Reconstruct the signal fromthe threshol ded
coefficients

[ denoi sed_speech ,Cad_thr , L_thr ,
L2norm recovery , cnp_score] = wdencnp('lvd" , Cad , L ,
wavenane ,level , THR, s_or_h);



93.4.a.3 selected level thresholding (only details
coefficients)
case 3

%3.4.a.3.1 - Choose selcted | evel threshol ding
met hol ogy
X = menu('detail coeficients
thresholding:', thresholding the details for a given set
of level by forceing all coefficients to be
zero','thresholding the details for a given set of |evel
by using soft or hard threshol ding function');
if ~(x-1) %et all coeff's of selected |level to
zero
selected lev = inputdl g({ Enter a |ist of
nunbers (nunber of |evels for threshol di ng)separated by
spaces or commuas'},' Wavel et coefficient thresholding');
LEV = str2nun(sel ected_| ev{1});
Cad_thr = whcoef('d , Cad , L, LEV); %d<=
N(i)<=length(L)-2
el se % hreshod the selected | evel by (s or h)

selected lev = inputdl g({ Enter a |ist of
nunbers (nunber of |evels for threshol di ng)separated by
spaces or commas',' Enter the crrespondi ng
t hreshol ds'}, ' Wavel et coefficient thresholding');
LEV = str2nun(sel ected_| ev{1});
T = str2nun(sel ected | ev{2});
Cad_thr = whcoef('t" , Cad , L, LEV ,T,s_or_h);
end

%l.4.a - Reconstruct the signal fromthe threshol ded
coefficients
denoi sed_speech = waverec(Cad_thr, L, wavenane) ;

%3.4.a.4 - Interval -dependent threshol ding
case 4
x1 = menu(' | nterval -dependent
denoi sing:','Interval -dependent denoi si ng based on
variance change',' Manual setting for intervals and its
t hreshol ds');
if ~(x1-1)
num.int = inputdl g({ Enter the nunber of
intervals'} ,'Nunber of intervals' , 1 ,{'1});



nb_int = str2num num.int{1});

[ denoi sed_speech, Cad_t hr, t hr ParamsQut, i nt _DepThr _Cel | , Bes

tNoOF I nt] =

cnddenoi se(noi sy_speech, wavenane, | evel ,s_or_h,nb_int);
denoi sed_speech = denoi sed_speech’;

el se
cel cell (1,1evel);
def cell (1,1evel);
for wO =1 :level
cel {w0} = strcat('level',"
, hunstr (w0) ) ;

)

Q.
e
.
S
—
I

strcat('start , end , thr ;

end
options. Resize = 'on';
THR int _dep = inputdlg(cel,’ Threshold setting
for interval -dependent threshol ding' ,Ievel,def, options);
for wiL = 1:1evel
f = str2nun( THR_i nt _dep{wl});
cel {wl} = f;
end
Cad thr =
cadt hr Conput e(cel , Cad, L, | evel ,s_or_h);

denoi sed_speech =
cnddenoi se( noi sy_speech, wavenane, | evel , s_or _h, NaN, cel ) ;
denoi sed_speech = denoi sed_speech’;
end

%.5.a - Reconstruct the approximation and detail signals
from wavel et threshol ded deconposition
App_den_sig = wcoef('a", Cad _thr , L
wavenane , |evel);
Reconstruct Array_densi g{ 1} = App_den_si g;
for kKO =1level : -1 : 1
Det _den_sig = wcoef('d , Cad_thr , L
wavenane , KkO);
Reconstruct Array_densi g{ kO+1} =
Det _den_si g;
end
end
end

case 2 YOWP

%2.2.a - Set the nunber of |evel deconposition and the
wavel et function nane



[ ev_wnane = inputdl g({' Enter the nunber of deconposition
| evel s'," Enter the wave nane : dbN }, ' Nunber of |evel and
wavenane') ;

l evel = str2nun(l ev_wnane{1});

wavenane = | ev_wnanme{2};

0B ---------

%.3.a - Find the wavel et and scaling functions

[W, xval _dbn] = wpfun(wavenane ,7);

0 ---------

%.4.a - Find the wavel et and scaling filters

[Lod, Lo r] = wilters(wavenane , '|")
H r = qnf(Lo_r)

H d = wev(H _r)

sumH d = sum(H _d);

sum Lo d = sum(Lo_d);

Next pow2_Lo_d
Next pow2_Hi d
Next pow2_Lo_r
Next pow2_Hi _r

next pow2(l ength(Lo_d));
next pow2(| engt h(Lo_d));
next pow2(| ength(Lo_r));
next pow2(| ength(Lo_r));

fftLo d = fft(Lo_d, 2"Nextpow2_Lo_d);

fftH _d= fft(H _d, 2"Next pow2_Hi _d);

fftLor = fft(Lo_r, 2"Nextpow2_ Lo _r);

fftH r=fft(H _r, 2 "Next pow2_H _r);

% ---------

%.5.a - Deconpose the noisy signal at a given |evel
using the wavelet filters

wpt = wpdec(noi sy_speech ,level , wavenane);
0 ---------
cfs_cell = cell(1,level);
rcfs cell = cell(1,1evel);
for i =1 :level+1
for j =0 : (2" evel)-1
node(1l) = i-1;
node(2) = j;

cfs_cell{i} = wpcoef (wpt,[node(1l), node(2)]);
rcfs_cell{i} = wprcoef(wpt,[node(1l), node(2)]);
end

det _first_scl = wpcoef (wpt,[1 1]);

si gnma_st dNoi se = nedi an(det _first_scl)/0.6745;

al pha = 2

thr = wpbnpen(wpt, si gma_st dNoi se, al pha) ;

setting = nenu(' Set the values of (threshold value , soft

or hard threshol ding function , KeepApp)','setting');
thr_str = nunstr(thr);
def thr_s 1 = {thr_str,"'s","1"};



thr_sorh_k = inputdl g({ Enter the val ue of
threshold' ," Enter the type of thresholding function soft
or hard s or h',"threshold the approximtion 1 or
0"}, Setting paraneters',1,def_thr_s_1);

thr = str2nun(thr_sorh_k{1});

s_or_h = thr_sorh_k{2};

KeepApp = str2nun(thr_sorh_k{3});

NT = wpt hcoef (wpt , KeepApp, s_or _h, thr);
denoi sed_speech = wprec(NT);
%lenoi sed_speech =
wpdencnp(wpt, s_or _h, ' nobest' , t hr, KeepApp) ;

% ---------
% ---------
fig7 = figure(' nane' , strcat(' The ',wavenane,'
Wavel et Packets'),  Color','w);
%6 ---------
[ d str , nmonent_str] = strread(wavenane , '% %' ,
‘delimter' , "b");
moment = str2nun(nonment _str{1});
for wfun=1:8
subpl ot (2,4,wfun); axis tight;
pl ot (xval _dbn, Wwfun,:));
x|l abel (strcat ("W, nun2str(wfun-1)));
xlim([0, (2*monent ) -1]) ;
end
title(strcat(' The ',wavenane,' Wavel et Packets'));
% ---------
fig8 = figure('nane’ , "filters and fft of
filters',"Color','w);
% ---------

subpl ot (421); axis tight ;
stem(Lo_d, ' r");title( Deconposition |ow pass filter");
subpl ot (422); axis tight ;

stem(H _d, ' r");title( Deconposition high pass filter');
subpl ot (423); axis tight ;
stenm(Lo_r, ' b");title(' Reconstruction |low pass filter');
subpl ot (424); axis tight ;

stem(H _r," ' b");title( Reconstruction high pass filter");

subpl ot (425); axis tight

Freq_Lo d = (2*pi)/ (2"Next pow2_Lo_d)

2 (2*pi )/ (2"Nextpow2_Lo_d) : pi

fald = abs(fftLo d(1:(2*"(Nextpow2 Lo d)/2)));
plot(Freq_Lo d,fa_ld);title(' FFT of anal ysis | ow pass
filter');

xim([(2*pi)/ (2 "Next pow2_Lo_d) , pi+0.5]);



subpl ot (426); axis tight

Freq Lo r = (2*pi)/ (2"Nextpow2_Lo_r)

s (2*pi )/ (2"Nextpow2_Lo r) : pi

fa hr = abs(fftLo_r(1: (2*(Nextpow2_Lo r)/2)));
plot(Freq_Lo r,fa _hr);title(' FFT of synthesis | ow pass
filter');

xbim([(2*pi)/ (2"Next pow2_Lo_r) , pi+0.5]);

subpl ot (427); axis tight

Freq_H _d = (2*pi)/ (2"Next pow2_Hi _d)

c(2*pi )/ (2"Nextpow2_Hi _d) : pi

fald = abs(fftH _d(1:((2"Nextpow2_H d)/2)));
plot(Freq_H d,fa ld);title(' FFT of anal ysis high pass
filter');

xbim([(2*pi)/ (2"Next pow2_H _d) , pi+0.5]);

subpl ot (428); axis tight

Freq_H r = (2*pi)/ (2"Nextpow2_Hi _r)

s (2*pi )/ (2"Nextpow2_Hi r) : pi

fa hr = abs(fftH _r(1: ((2"Nextpow2_H r)/2)));
plot(Freq_H _r,fa_hr);title(' FFT of synthesis high pass

filter");
xbim([(2*pi )/ (2"Next pow2_H _r) , pi+0.5]);
end
0 - == - === = -
%.6.a/b - Plotting illustration
0 - == - === = -
fig9 = figure('nane' , '"threshol ding function
illustration',"Color','w);
0 - == - === = -
lin_fun i nspace(-0.5, 0.5, 100);

= |

l[in_fun_s = whresh(lin_fun , '"s' , thr);
lin fun_h = wthresh(lin_fun , "h" , thr);
subpl ot (131); plot(lin_fun,lin_fun,"k"); title(' Oiginal
function');
subpl ot (132); plot(lin_fun,lin_fun_s,"b"); title(' Soft
t hreshol ded function');
text(thr , -0.05, [ strcat(' (',nunRstr(thr),",") ,
strcat (nunmstr(0),")")],"  Color'
"b', " Horizontal Alignnment',' center')
subpl ot (133); plot(lin_fun,lin_fun_h,"r"); title( Hard
t hreshol ded function');
text(thr , -0.05, [ strcat(' (',nun2str(thr),",")
strcat (nunm2str(0),")")]," Color"'
"r',"Horizontal Alignnment', ' center')
for fig=1: 3

subpl ot (1, 3,fiQ)

x|l abel (' coefficients before thresholding);



yl abel (' coefficients after thresholding');
end

shg
switch c
case 1
% ---------
figlo = figure(' nane' , 'clear , Noisy and Denoi sed
speech signals',"Color',"'w);
% ---------

subplot(2,4,1:2); axis tight;

pl ot ([ 1: 1 engt h(noi sy_speech)]/Fs , noisy_speech ,'r");
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' Noisy speech signal');

subplot(2,4,3:4); axis tight;

pl ot ([ 1: 1 engt h(denoi sed_speech)]/Fs ,
denoi sed_speech, ' k');

xl abel (" Tine(s)'); ylabel (" Anplitude');
title(' De-noi sed speech signal');

subplot(2,4,6:7); axis tight;

resi dual = denoi sed_speech - clear_speech;

pl ot ([ 1: 1 engt h(denoi sed_speech)]/Fs , residual,' g');
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' Residual signal');

% ---------

figll = figure(' nane' , 'clear , Noisy and Denoi sed
speech signals',"Color',"'w);

% ---------

subpl ot (211); axis tight;

plot ([ 1: 1 engt h(cl ear _speech)]/Fs , clear_speech ,'b");
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' dear and denoi sed speech signals');

hol d on;

pl ot ([ 1: 1 engt h(denoi sed_speech)]/Fs ,

denoi sed_speech, ' k');

| egend(' cl ear speech' , 'denoi sed speech');

subpl ot (212); axis tight;

plot([1l:1ength(noisy speech)]/Fs , noisy speech ,'r");
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' noisy and denoi sed speech signals');

hol d on;

pl ot ([ 1: 1 engt h(denoi sed_speech)]/Fs ,

denoi sed_speech, ' k');

| egend(' noi sy speech' , 'denoised speech');



figl2 = figure(' nane' , 'correlation',' Color",

subpl ot (211); axis tight;

[ xcor _bef , lag_bef] = crosscorr(clear_speech ,
noi sy_speech) ;

xc_bef = xcor_bef(21);

pl ot (1 ag _bef , xcor_bef);

xl abel ("l ag'); ylabel ('sanple cross correlation);
title('correlation between clear signl and noisy
signal ');

subpl ot (212); axis tight;

[ xcor _aft,lag_aft] = crosscorr(clear_speech ,

denoi sed_speech) ;

xc_aft = xcor_aft(21);

plot(lag aft , xcor_aft);

xl abel ("l ag'); ylabel ('sanple cross correlation);
title('correlation between clear signl and denoi sed
signal ');

figl3 = figure(' nane' , 'power
di stribution',"Color','w);

Npow2 = pow2( next pow2(| engt h(denoi sed_speech)));
denoi sed_speech_pad = fft(denoi sed_speech , Npow2);
noi sy _speech_pad = fft(noi sy _speech , Npow2);

cl ear _speech_pad = fft(clear_speech , Npow2);

freg_range = (0: (Npow2 - 1))*(Fs/ Npow2);

power _denoi sed_speech =

‘W) ;

denoi sed_speech_pad. *conj (denoi sed_speech_pad) / Npow2;

power _noi sy_speech =
noi sy_speech_pad. *conj (noi sy_speech_pad) / Npow2;
power cl ear_speech =
cl ear _speech_pad. *conj (cl ear _speech_pad) / Npow2;

subpl ot (131); axis tight;

pl ot (freq_range , power_denoi sed_speech);

x|l abel (' frequency Hz'); vyl abel (' power');

title(' power distribution of denoi sed speech signal

subpl ot (132); axis tight;

plot(freq_range , power_noi sy speech);

x|l abel (" frequency Hz'); vyl abel (" power');

title(' power distribution of noisy speech signal');

)



subpl ot (133); axis tight;

pl ot (freq_range , power_cl ear_speech);

x|l abel (' frequency Hz'); vyl abel (' power');

title(' power distribution of clear speech signal');

figld = figure(' nane' , 'Spectrograns',' Color',"'w);

subpl ot (131);
spectrogran{cl ear _speech);ylabel (' Tine(ns)");
title(' Spectrogram of clear speech')
subpl ot (132) ;
spectrogran(noi sy_speech);ylabel (" Tine(ns)");
title(' Spectrogram of noi sy speech')
subpl ot (133);
spect rogran{denoi sed_speech);ylabel (' Tine(ns)');
title(' Spectrogram of denoi sed speech')
figx = figure('nane' , ' Spectrograns of noisy and
denoi sed speech signals',"Color','w);
subpl ot (311);
pl ot ([ 1: 1 engt h(noi sy_speech)]/Fs , noisy_speech ,'r");
xl abel (" Tine(s)'); ylabel (" Anplitude');
title(' noisy and denoi sed speech signals');
hol d on;
plot([1l:1ength(noisy speech)]/Fs , denoised speech, k');
subpl ot (312);
spectrogranm(noi sy_speech, 'yaxis');
xl abel (" Tinme(ns)")
title(' Spectrogram of noi sy speech signal')
subpl ot (313);
spect rogran(denoi sed_speech, ' yaxi s');
xl abel (" Tinme(ns)")
title(' Spectrogram of de-noi sed speech signal')

if(cl-1)

figls = figure(' nane',' Wavel et Packet
Spectrum , " Color', " wW);
O - - — = -

subpl ot (131);

[ spect _noi sy_coef, Ti ne0, Frequency0] =
wpspect rum(wpt , Fs, ' plot");

title(' Wavel et Packet Deconposition of Noisy Speech')
subpl ot (132) ;

[ spect denoi sed_coef, Ti nel, Frequencyl] =

wpspect run(NT, Fs, "plot');

title(' Wavel et Packet Deconposition of Denoi sed Speech')
subpl ot (133);



wpt ¢ = wpdec(cl ear _speech ,level , wavenane);

[ spect _cl ear _coef, Ti ne2, Frequency2] =

wpspect rumwpt _c, Fs, ' plot');

title(' Wavel et Packet Deconposition of C ear Speech')
el se

figls5 = figure(' nane' , 'Absolute coefficients of
DW , " Color',"'w);

[Cad_clear , L] = wavedec(cl ear_speech, | evel , wavenane);

I en = Il ength(cl ear_speech);

cfdl zeros(l evel,len);

cfd2 zeros(l evel,len);

cfd3 zeros(level l en);

for 1: level

det coef (Cad_cl ear, L, k0) ;
det coef (Cad, L, k0O);

det coef (Cad_t hr, L, kO);

d 1(:)";

d_2(:)";

d_3(:)"

d l(ones(l 2"k0), :);

d 2(ones(1, 2"k0),:);

d 3(ones(1 2"k0), :);
cfdl(kO ) = wkeepl(d_ 1( ), len);

kO
d_
d_
d_
d_
d_
d_
d_
d_
d_

OONI—‘CDNI—‘CDNI—‘

cfd2(k0,:) = wkeepl(d 2(:)',len);
cfd3(k0,:) = wkeepl(d_3(:)',len);
end
cfdl = cfdl(:);
cfd2 = cfd2(:);
cfd3 = cfd3(:);

| 1 =find(abs(cfdl)<sqrt(eps));
| 2 =find(abs(cfd2)<sqrt(eps));
| 3 =find(abs(cfd3)<sqrt(eps));

cfdl(11) = zeros(size(ll));
cfd2(12) = zeros(size(l2));
cfd3(13) = zeros(size(13));

cfdl = reshape(cfdl, | evel, | ength(denoi sed speech));

cfd2 reshape(cfd2, | evel , | engt h(denoi sed_speech));

cfd3 reshape(cfd3, | evel , | engt h(denoi sed_speech));

%l ot abs. of DWI

subpl ot (321);

pl ot (cl ear _speech); title(' Cl ear speech signal');

subpl ot (322) ;

i mge(flipud(wcodemat (cfdl, 255, row )));

col or map( pi nk(255));

set(gca, ' yticklabel' ,[]);

title(' Absolute coefficients of DWM for clear speech');
yl abel (' Level ") ;



subpl ot (323);

pl ot (noi sy_speech); title(' Noisy speech signal');

subpl ot (324);

i mge(flipud(wcodemat (cfd2, 255, row )));

col or map( pi nk(255));

set(gca, ' yticklabel' ,[]);

title(' Absolute coefficients of DM for noisy speech');
yl abel (' Level ") ;

subpl ot (325) ;

pl ot (denoi sed_speech); title(' Denoi sed speech signal');
subpl ot (326) ;

i mge(flipud(wcodemat (cfd3, 255, row )));

col or map( pi nk(255));

set(gca, ' yticklabel',[]);

title(' Absolute coefficients of DWM for denoi sed
speech'); ylabel (' Level ");
end

figle = figure(' nane' , 'H stogranms',' Color',"w);

X _bar = -1.5:0.05:1.5;

subpl ot (231);rng(0, 'twister');

hi st (cl ear _speech, x_bar);

title(' H stogram of clear speech')
subpl ot (234) ;

n_1 = histc(clear_speech, x_bar);

cum1l = cunsunm(n_1);

bar (x_bar,cum 1, BarWdth', 1);
title(' Curul ative histogram of clear speech')
subpl ot (232);rng(0, 'twi ster');

hi st (noi sy_speech, x_bar);

title(' H stogram of noi sy speech')
subpl ot (235) ;

n_2 = histc(noi sy_speech, x_bar);

cum 2 = cunsum(n_2);

bar (x_bar,cum 2, BarWdth', 1);
title(' Cunul ative histogram of noi sy speech')
subpl ot (233);rng(0, "twister');

hi st (denoi sed_speech, x_bar) ;
title(' H stogram of denoi sed speech')
subpl ot (236) ;

n_3 = histc(denoi sed_speech, x_bar);

cum 3 = cunsum(n_3);

bar (x_bar, cum 3, BarWdth', 1);
title(' Cunul ative histogram of denoi sed speech')



figl7 = figure(' nane' , 'Statistics of residual
signal', " Color',"w);
O - - — = -

%struct statistic =

struct (' nean', nean(residual), ' nmedian', nedi an(residual),'s
td' ,std(residual),'var',var(residual),'L1 norm, sun{abs(r
esidual )),'L2_norm , sun(abs(residual).”2));

data _colm=

{"nmean', ' nmedian','std ,"'var','L1 norm,'L2 norm};

data _statistic =

[ mean(resi dual ), nedi an(resi dual ), std(residual), var(residu
al ), sumabs(residual)), sun(abs(residual).”2)];

X_bar = -1:0.005:1;

subpl ot (4, 2,1:2);

pl ot (residual); axis tight;

subpl ot (4, 2, 3);

hi st (resi dual , x_bar);

title(' H stogram of residual signal')

subpl ot (4, 2, 4);

n_4 = histc(residual,x_bar);

cum4 = cunsum(n_4);

bar (x_bar, cum 4);

title(' Cunul ative histogram of residual signal')
subpl ot (4, 2,5);

[auto_cor,lag _auto] = xcorr(residual, coeff');

pl ot (I ag_aut o, auto_cor);

title(' Auto-correl ation of residuals')

subpl ot (4, 2, 6);

residual _pad = fftshift(fft(residual , Npow2));

pl ot (freq_range , residual pad);

title(' FFT of residual signal')

subpl ot (4, 2,7:8);

axis off

tab =

uitabl e(figl7, Data',data_statistic,' ColumNane', data_col
m ' RowNane',"' Res."', ' Position ,[40 40 650 70]);

case 2

figl8 = figure(' nane' ,' Noisy and Denoi sed recorded
speech signals',"Color',"'w);

subpl ot (211); axis tight;

pl ot ([ 1: 1 engt h(noi sy_speech)]/Fs , noisy_speech,'r");
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' noisy recorded speech signals');

| egend(' noi sy recorded speech');



subpl ot (212); axis tight;

pl ot ([ 1: 1 engt h(noi sy_speech)]/Fs , noisy_speech,'r");
xl abel (" Tine(s)'); ylabel (" Anplitude');

title(' Noisy and De-noi sed speech signal');

hol d on;

pl ot ([ 1: 1 engt h(denoi sed_speech)]/Fs |,

denoi sed_speech, ' k' );

| egend(' noi sy speech' , 'denoised speech');

figl9 = figure(' nane' , 'power
di stribution',"Color','w);

Npow2 = pow2( next pow2( | engt h(denoi sed_speech)));
denoi sed_speech_pad = fft(denoi sed_speech , Npow2);
noi sy_speech_pad = fft(noi sy_speech , Npow2);

freg_range = (0: (Npow2 - 1))*(Fs/ Npow2);

power _denoi sed_speech =

denoi sed_speech_pad. *conj (denoi sed_speech_pad) / Npow2;
power noi sy _speech =

noi sy_speech_pad. *conj (noi sy_speech_pad) / Npow2;

subpl ot (121); axis tight;

pl ot (freq_range , power_denoi sed_speech);

x|l abel (' frequency Hz'); vyl abel (' power');

title(' power distribution of denoi sed speech signal');

subpl ot (122); axis tight;

plot(freq_range , power_noi sy speech);

x|l abel (' frequency Hz'); vyl abel (' power');

title(' power distribution of noisy recorded speech
signal');

end

%.7.a - Playing denoi sed speech
switch c
case 1
sound(cl ear _speech , Fs); pause((length(clear_speech)/Fs)
+2)
sound(noi sy_speech , Fs); pause((length(clear_speech)/Fs)
+2)
sound( denoi sed_speech , Fs);

case 2
sound( noi sy_speech , Fs); pause((length(noisy _speech)/Fs)
+ 2)
sound(denoi sed_speech , Fs);



end

tilefigs

0% -----=----

%% St age 4:

% 5.1.a - Performance neasurenents

% 5.1.a.1 - Mean Square Error (NMSE)

% 5.1.a.2 - Signal to Noise Ratio (SNR)
% 5.2.a - Plotting of curve nmeasurenents

%.1.a.1 - Mean Square Error (MSE)

if ~(c-1)

MBE i n = nean(sun((cl ear _speech - noi sy _speech).”"2));

MSE out = nmean(sum((cl ear _speech - denoi sed _speech).”2));
% ---------

%.1.a.2 - Signal to Noise Ratio (SNR)

SNR out =

10*1 og(nmean(abs(cl ear _speech.”2))/ nmean(abs((cl ear_speech-
denoi sed_speech).”"2)));

% ---------

nmsg3 = nsgbox({strcat('MSE in is ', nunkstr(MSE_in)," and
MBE out is ',nunRstr(MSE out)),'',strcat('SNR in is

", nunkstr(snrval ), and SNR out

is",nunm2str(SNR out))});

end



Appendix C
Wiener Filtering

The goa of the Wiener filter is to compute a statistical estimate of an unknown
signa using arelated signa as an input and filtering that known signal to produce the
estimate as an output. For example, the known signal might consist of an unknown
signa of interest that has been corrupted by additive noise. The Wiener filter can be
used to filter out the noise from the corrupted signal to provide an estimate of the
underlying signal of interest.

The design of the Wiener filter takes a different approach. One is assumed to have
knowledge of the spectral properties of the original signal and the noise, and one
seeks the linear time-invariant filter whose output would come as close to the origina
signal as possible. The assumption is that the signal and additive noise are stationary
linear stochastic processeswith known spectral characteristics or  known
autocorrelation and cross-correlation. The requirement is that the filter must be
physically realizable/causal (this requirement can be dropped, resulting in a non-
causal solution). The performance criterion is theminimum mean-square
error (MMSE).[29]

y(n) . .
s(n) . > Wlerﬁe(;)Fllter > & (n)

h(n)

Block diagram of Wiener filtering

From the above block diagram, the equation that describe the wiener filtering as
follows

yn =sn +hmn (1)
§n =hn =yn (2)
en =sn —§n (3)
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Wheres n isthe clear speech signal, h(n) isthe additive noise, ¥ n isthe noisy
speech signal, h n istheimpulse response of wiener filter, ¥n isthe de-noised
speech signal and e n istheerror signal.

Based on the assumption that the speech signal and the additive noise signal are
uncorrel ated stationary random process then the wiener filter frequency responseis

520w

Hw =_—anjl T

(4)

Where H w isthe transfer function of the wiener filter, $(w) isthe clear speech
power spectrum and N*(w)is the noise power spectrum.

For the additive white gaussian noisy signal with length equal to L and variance noise
equal to s then

Nfw =L.s* (5)
_ _ SHw)
i w T SE(w)+ LsE (6)

To estimate the variance of the noise, the following estimation can be used based on
wavelet transform

2
¥ ol
<7 median ¥y

0.6745
where y{fk Isthe detail s wavel et coefficient sequence of the noisy signal on first level.
Matlab code for wiener filtering:

[Cad, L] = wavedec(y, 1, db8");
si gnma = nedi an(abs(detcoef (Cad, L, 1)))/0.6745;

FFT_s
FFT_y

fft(s); % FFT of clear speech signal
fft(y); % FFT of noisy speech signal

Power s = abs(FFT_s.*FFT_s); % Power density of clear
speech si gnal

H = Power_s./(Power s+ sp_ | en*sigma"2); % Wener filter
FFT _den = FFT_y.*H % FFT of de-noi sed speech signal

Power _err = abs((FFT_s - FFT_y).*(FFT_s - FFT_y));%
Esti mate of noi se power density

denoi sed_speech = real (ifft(FFT_den)); % denoi sed speech
si gnal
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