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الاھداء

والحمد الله الذي ھدانا ،ما لم یعلمالإنسانعلم ،الحمد الله الذي علم بالقلم
وَھُدُوا إِلَى الطَّیِّبِ "فیھم اللھم اجعلنا ممن قلت ، بھدایتھ ووفقنا بتوفیقھ 

. "مِنْ الْقَوْلِ وَھُدُوا إِلَى صِرَاطِ الْحَمِیدِ

راجین منھ یضعھ في میزان نقدم ھذا العمل المتواضع لوجھ االله تعالى 
.وأن یجعل فیھ البركة والفائدة لكل قارئ لھ،حسناتنا

.أصدقائنا لى أھلنا  ونھدي ھذا العمل ا



شكر

نتقدم ومن ھنا، لم یكن ھذا العمل لینجز لولا جھود كثیر من الاشخاص
دائرةغاندي مناصرة والى الھیئة التدریسیة في لدكتوربالشكر الى ا

.كنك فلسطینلیتالھندسة الكھربائیة في جامعة بو
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Abstract

In this project the wavelet de-noising method is used to remove the additive
white Gaussian noise from noisy speech signals. The idea of wavelet de-noising is to
remove the noise by discarding  small coefficients of the discrete wavelet transform
for the noisy speech signal. These coefficients can be removed by applying some kind
of thresholding function which removes any coefficient below a specific threshold
value and keep any coefficient above it. Then, the signal reconstructed by applying
inverse discrete wavelet transform. To evaluate the performance of such algorithm,
some kind of performance measure such as signal to noise ratio ( SNR ) can be
applied.

Several methods for speech de-noising using wavelets were tested to evaluate
their performance. Universal thresholding method is used to threshold the wavelet
coefficients. This method uses a fixed threshold for all coefficients, and the threshold
selection depends on the statistical variance measurement. Interval dependent
thresholding method is also tested to find its performance, here the signal is divided
into different interval depends on variance change in it. Then, the threshold value is
calculated for each subinterval depends on the noise variance of each interval. Setting
all details coefficients in the first scale to zero by assuming that most of the noise
power in the first level is tested to evaluate the performance such assumption.

Different comparisons are tested such as comparing the performance with
different threshold selection rules, comparing the performance with different wavelet
families, comparing with other filtering technique. The wiener filtering is compared
with wavelet de-noising method.
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Introduction and Motivation

1.1Introduction

Removing of the noise from signals is a key problem in a Digital Signal
Processing field (DSP).

In the mid – 1960s, Dolby noise reduction system was developed for use in
analog magnetic tape recording. Until the beginning of the 1990s, microelectronic and
low cost computer with computation and algorithm design allowed a fast and vast
expansion in the field of digital signal processing researches.

One of the most fundamental problem in the field of speech processing is how
the noise can be removed from the noisy speech signals.

Speech de-noising is the field of studying methods used to recover an original
speech signal from noisy signals corrupted by different types of noise ( e.g. white
noise, band-limited white noise, narrow band noise, coloured noise, impulsive noise,
transient noise pulses ).These methods can be used in many computers based speech
and speaker recognition, coding and mobile communications, hearing aid. More
reduction in noise increases the quality of such application.

The field of speech de-noising includes a lot of researches to improve the
speeches overall quality and increase the speech intelligibility. There are different
techniques for de-noising the speech signal. Generally speaking the approaches can be
classified into two major categories of single microphone and multi microphone
methods [1].

1.2 Related works

A lot of algorithms proposed to tackle the problem of noise in speech signals,
such as Spectral Subtraction [2], Wieiner Filtering [3], Ephraim Malah filtering [4],
hidden Markov modeling [5], signal subspace [6].

Gabor [7] introduced a new time – frequency signal analysis. In the field of
mathematic, the papers of mathematicians Mallat [8,9] and Daubechies [10] are a big
contribution not only in a mathematical side , but also in an engineering applications.
These contributions build what so called "multi-rate filter banks basing on wavelet
transform".

Mallat and Hwang [11] introduced an algorithm to remove white noises based
on singularity information analysis, Donoho [12] introduced a non linear wavelet
methods, Donoho and Johnstone proposed a well known universal wavelet
thresholding to remove White Gaussian Noise (WGN) [Donoho12,13] ,[Donoho and
johnstone 14], Johnstone and Silverman [15] proposed level dependant thresholding
enhancement method.

1.3 Speech Production

In order to apply DSP techniques to speech processing problems, it is
important to understand the fundamentals of the speech production process, [16].
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Speech is the acoustic product of voluntary and well-controlled movement of a
vocal mechanism of a human (see fig.1.1). During the generation of speech, air is
inhaled into the human lungs by expanding the rib cage and drawing it in via the nasal
cavity, velum and trachea it is then expelled back into the air by contracting the rib
cage and increasing the lung pressure. During the expulsion of air, the air travels from
the lungs and passes through vocal cords which are the two symmetric pieces of
ligaments and muscles located in the larynx on the trachea. Speech is produced by the
vibration of the vocal cords. Before the expulsion of air, the larynx is initially closed.
When the pressure produced by the expelled air is sufficient, the vocal cords are
pushed apart, allowing air to pass through. The vocal cords close upon the decrease in
air flow. This relaxation cycle is repeated with generation frequencies in the range of
80Hz – 300Hz. The generation of this frequency depends on the speaker‘s age, sex,
stress and emotions. This succession of the glottis openings and closure generates
quasi-periodic pulses of air after the vocal cords. The speech signal is a time varying
signal whose signal characteristics represent the different speech sounds produced.
There are three ways of labelling events in speech. First is the silence state in which
no speech is produced. Second state is the unvoiced state in which the vocal cords are
not vibrating, thus the output speech waveform is a periodic and random in nature.
The last state is the voiced state in which the vocal cords are vibrating periodically
when air is expelled from the lungs. This results in the output speech being quasi-
periodic- shows a speech waveform with unvoiced and voiced state. Speech is
produced as a sequence of sounds. The type of sound produced depends on shape of
the vocal tract. The vocal tract starts from the opening of the vocal cords to the end of
the lips. Its cross sectional area depends on the position of the tongue, lips, jaw and
velum. Therefore the tongue, lips, jaw and velum play an important part in the
production of speech.[17]

Fig.1.1:Speech -acoustic product of voluntary and well controlled movement of a
vocal mechanism of a human
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Audible sounds are transmitted to the human ears through the vibration of the
particles in the air. Human ears consist of three parts, the outer ear, the middle ear and
the inner ear. The function of the outer ear is to direct speech pressure variations
toward the eardrum where the middle ear converts the pressure variations into
mechanical motion. The mechanical motion is then transmitted to the inner ear, which
transforms these motion into electrical potentials that passes through the auditory
nerve, cortex and then to the brain . Figure (fig.1.2) below shows the schematic
diagram of the human ear.[17]

Fig.1.2: The schematic diagram of the human ear

1.4 Motivation

Speech is a native way for human communication and it considered one of the
most important signals in multimedia system. Noise is presented in a speech signal
due to communication channel. Removing the noise to improve the quality of speech
is needed. One of the most important kind of noise is the white noise which is random
and its power spectral density is constant. Specifically, Gaussian noise is normally
distributed and generated by almost all natural phenomena.

Speech signal is a non-stationary signal. The wavelet transform is considered
as appropriate choice to analyze local variations in signals. The multi-resolution
properties of wavelet analysis reflect the frequency resolution of the human ear
system. Most of data that represent the speech signal are not totally random, there is a
certain correlation structure. The harmonic signals content is closely correlated, and
this means that large coefficients represent the speech signal and the small values
represent the uncorrelated noise. Thus, the noise can be removed by discarding the
small coefficients.

1.5 Project Outline

The structure of this project is as follows, in chapter 2 some of background
about wavelets, filter banks and multi-resolution theory. Wavelet de-noising model
and algorithm design are presented in chapter 3. The speech quality evaluation and
performance of algorithm are presented in chapter 4,conclusion is shown in chapter 5.
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Wavelet transform and multiresolution analysis

In this chapter, we will briefly introduce the background behind the wavelet transform
and multiresoltion analysis. This introduction will be as short as possible. There are
several papers and articles talking about wavelets. For more details one can refer to
[18 - 27].

2.1 What are wavelets ?

Wavelets are oscillatory waveforms of finite duration and zero average value.
These waveforms must be localized. There are many mathematical conditions must be
satisfied to ensure that an oscillatory function is admissible as a wavelet basis
function. There are many kinds of wavelets whose characteristics vary according to
many criteria. One can choose between smooth wavelets, compactly supported
wavelets, orthogonal wavelets, symmetrical wavelets, wavelets with simple
mathematical expressions, wavelets with simple associated fitters, etc. The simplest
and the most important wavelet is the Haar wavelet, and we discuss it as an
introductory example in the next section.

2.2 Haar wavelet

The following table shows the main information about haar wavelet.

General characteristic compactly supported wavelet , the oldest
and simplest wavelet

Scaling function phi " " = 1 on [0,1] and zero other wise
Wavelet function psi " " = 1 on [0,0.5[ , = -1 on [0.5,1] and

zero other wise
Family Haar
Short name Haar
Example haar is the same as db1
Orthogonal Yes
Biorthogonal Yes
Compact support Yes
Discrete Wavelet Transform  (DWT) Possible
Continuous Wavelet Transform  (CWT) Possible
Support width 1
Filter length 2
Regularity haar is not continuous
Symmetry Yes
Number of vanishing moment for psi 1
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2.3 Main idea of wavelet and haar as example

The main idea of wavelets is represent the signal with two part the first is the
slow varying part(average) and the second is the fast varying part(difference).

A
Signal

D

Fig.2.1 : Two band filter to extract average and detail of the input signal

Assume the input signal S =  [ . . . . , s(0) , s(1) , s(2) , . . . . ]. If is two-point
data averaging and is two-point data differencing, then we get the simplest wavelet
"HAAR WAVELET".

The output of first filter will be A = […(s0+s-1/2),(s1+s0/2),(s2+s1/2) …] and
the output of second is D = […(s0-s-1/2),(s1-s0/2),(s2-s1/2)…]. To recover the original
signal S from the average values A and detail values D, we can apply reverse
operation which is the same as forward operation. In this example they are addition
and subtraction.

Average coefficients:  … , a0 = (s0+s-1/2) , a1 = (s1+s0/2) , a2 = (s2+s1/2), ….
Details coefficients :  … , d0 = (s-1-s0/2) , d1 = (s0-s1/2) , d2 = (s1-s2/2), ….
Original signal can be recovered using reverse operation (+,-) as following
(a0 +d0) = s-1 , (a1 + d1) = s0 , (a2 + d2) = s1 ,…..
(a0 – d0) = s0 ,(a1 – d1) = s1 , (a2 – d2) = s2 ,…..

The Haar wavelet coefficient are h = {1/2,1/2} for averaging and ={1/2,-
1/2} for differencing (fig.2.2). Another point is that the output of h are details and it is
less important than average values. In many application these values represent the
noise and can be removed by applying a non-linear thresholding.

h(n) g(n)

0.5 0.5

0 1 n 0 1 n

-0.5

(a) (b)
Fig.2.2 : Average and Difference filters

(a) Low pass average filter. (b) High pass difference filter.

The continuous version of Haar is shown below in (fig.2.3), where is
called scaling function and is a wavelet function.
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, ,
0.5 0.5

0 1 t 0 1 t

-0.5

Fig.2.3 :Haar scaling and wavelet functions

, 0.5 , 0.5 , (2.1)

, 0.5 , 0.5 , (2.2)

2.4 wavelet and Fourier Transform: comparison

The basis functions of fourier analysis are sine and cosine with infinite
duration. These functions are easy to generate, easy to analyze. The back draw of
these functions is that they are not local, all of time information lost in frequency
domain and all of frequency information lost in time domain. These losses of time and
frequency information can be avoided by using wavelet analysis. Wavelet basis
functions are local not global with finite duration which mean most of energy
concentrate with small duration. Wavelet basis functions are derived using single one
function called mother wavelet by time compression and translation. In contrast, the
fourier basis which derived by varying the frequency of a sinusoid.

In a summary. The fourier transform can provide frequency information only.
The wavelet transform can give us time and frequency information simultaneously.

2.5 Wavelets and Multiresolution Analysis

As mentioned above, the wavelet basis achieved by time compression and
translation of mother wavelet.: 2 2 , (2.3)

wherej is the scale factor, k is the translation factor.

The wavelet series is shown below with combination of scale and wavelet function.∑ ∑ ∑ (2.4)
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What we can note from above expression is that the signal is decomposed
by two part, the first part gives the approximation and the second gives the details.
There are infinite choices to use and as basis functions and one can choose the
best one depend on application. Another thing, the small coefficients in and

can be discarded by applying thresholding technique as we will see in the next

chapter.

In section 2.3 we have shown how haar scale and wavelet are expressed as a
sum of { 2. .0.5 2 0.5 2 10.5 2 0.5 2 1
In general form2 ∑ 2 , ℓ (2.5)2 ∑ 2 , ℓ (2.6)

These equations are called dilation equation, and are
scaling sequence (N-coefficients of low-pass filter) and wavelet sequence (M-
coefficients of high-pass filter), respectively.

The relation in equation (2.5) and (2.6) is two-scale relation. The scaling and
wavelet function are a combination of rescaled scaling function 2 and
this introduce us to what so called multiresolution analysis.

Definition : A Multiresolution Analysis is a sequence of nested, closed
subspaces if the following statements are satisfied :

1 .

2 . 2
3 .

4 . 0
5 .

6 .

The complement of is called details space . Hence, we can decompose
into

(2.7)
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As an example, from equation (2.5) we see that , and  from
equation (2.6) we see that , and this imply that

(2.8)

The building block of this decomposition in the discrete time domain can be
seen as two channel filter bank as shown in (fig.2.4).

Signals(n)

Fig 2.4 :One level two channel analysis filter bank

Fig.2.5 shows how the signal is divided by a two channel filter bank into two
signals, the first one is the approximated signal with low frequency and the second is
the detailed signal with high frequency.

Fig2.5 : One level decomposition of (sinusoidal signal + white noise).

Decomposition of signal can take any level by iterating the filter bank at each
output of the low pass filter. One can also iterate this filter bank at the output of high
pass filter in addition to the iteration at the output of low pass filter, in this case it is
called wavelet packet decomposition.

To reconstruct the signal, we can use inverse operation to the two channel
analysis filter bank. The construction of synthesis filter bank is shown below (fig.2.6).



11

̂(n)

Fig 2.6 :One level two channel synthesis filter bank

The overall analysis and synthesis filters are shown below (fig.2.7). The
filtering is linear, the thresholding is not. One can write the filtering and down/up-
sampling in a matrix form.

Analysis decimators expanders Synthesis

Fig 2.7 : Analysis and Synthesis two channel filter bank

Assume that the input signal is the sampled signal of . The discrete
signal can be represented as N-points vector.

Fig.2.8 : First channel (low pass channel) in Analysis part

∑ (2.9)

The matrix representation of equation (2.9) is

101 =
0 1 21 0 12 1 0 101 =

where is a low pass filter matrix , S is the input signal vector. For a causal filter0 for n<0.

After this matrix operation, the down sampler discards the odd rows so that the
number of input samples equals to the output samples.

Processing

e.g thresholding

(n) ̂(n)
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17

Wavelet de-noising algorithm

3.1 Wavelet de-noising model

Wavelet de-noising is a non-parametric method which does not need
parameter estimation of the speech enhancement model. Estimating the signal
corrupted by Gaussian noise is considered as an important problem in many studies,
and it will be our interest in this project. We will restrict our study only to Additive
White Gaussian noise.

Let us consider a speech signal , and an independently and identically
additive white gaussian noise ~ 0, , the noisy signal can be written as follows

, ,….., (3.1)

The goal of wavelet de-noising is to find an approximation to the signal ,
that minimize the mean squared error̃ ∑ (3.2)

Where and ̃ ̃ ̃ ̃
Applying the wavelet transform matrix , the equation (3.1) becomes as follows

(3.3)

, , , (3.4)

where . , are the wavelet coefficients.

Because of using orthogonal transform to express in an orthogonal
wavelet basis, the wavelet coefficients of the i.i.d Gaussian noise are also i.i.d
Gaussian. This kind of transformation preserved the statistical independence of the
noise and it is called a unitary transform.

By choosing a good matched wavelet for signal representation, the noise
power will tend to concentrate in a small coefficients while the most of signal power
will be in large coefficients. This idea of a sparse representation due to the wavelet
transform allows us to remove the noise from the signal by discarding the small
coefficients which represent the noise.  To do that we need to apply a wavelet
thresholding function . on a wavelet coefficients.

, , , (3.5)

, , , (3.6)

where . , are the wavelet coefficient after thresholding.



18

Now the inverse wavelet transform can be applied to get the estimate signal ̃̃ , (3.7)̃ (3.8)

From equation (3.8), the thresholding will introduce some effects on the
signal's power. Thresholding is not linear and it is a lossy algorithm. Thus, it is
impossible to filter out the noise without affecting the signal.

There are three basic steps (fig.3.1) for the de-noising algorithm as follows :

1. Decomposition: compute the discrete wavelet transform of a noisy signal.
2. Thresholding: remove the small coefficient based on the kind of threshoding

function and threshold value.
3. Reconstruction: compute the discrete inverse wavelet transform.

̃
Fig.3.1: Procedure for reconstructing a noisy signal

The most common thresholding function (fig.3.2) or decision rule that used for
coefficient thresholdingare

1. Hard thresholding function.
2. Soft thresholding function (also called the wavelet shrinkage functions).

Hard thresholding keeps the wavelet coefficients above the specific threshold
and set the rest of coefficients to zero. Soft thresholding removes the coefficients
below the threshold value and shrinks the coefficient above it toward the zero. There
is no discontinuity in the case of soft thresholding which is more suitable than hard
thresholding. This means that hard thresholding is more sensitive to small change in
the data. Hard thresholding tends to introduce a high variance because of the
discontinuity while soft thresholding tends to introduce high bias due to the shifting of
all the coefficient which are greater than the threshold with amount equal to the
threshold value.

The mathematical description of these two thresholding functions are shown below

W

DWT

T(.)

THR.

W-1

IDWT
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, | |
Hard thresholding : 0, ∞ (3.9)

0, | |
, | |

Soft thresholding : (3.10)

0, | |0, ∞

x x

- - -

(a)                                            (b)

Fig.3.2: Hard and Soft thresholding functions.

(a) Hard thresholding function. (b) Soft thresholding function

There are another variants of these threshold functions try to obtain smoother
thresholding/shrinking functions, The idea is getting effective de-noising and
preserving more useful information of the clean signal.

The threshold parameter could be fixed or changed. The selection of the
threshold value is very important to get good result of de-noising. There are different
standard methods of selecting a threshold and here we introduce the most common
methods.

No thresholding

With thresholding
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1. Universal method :

It is a fixed threshold de-noising method and the proper selection of the threshold for
a discrete wavelet transform (DWT) is determined as follow2 (3.11)

where N is the length (number of samples) in the noisy signal and is an estimate of
the standard deviation of zero mean additive white gaussian noise calculated by the
following median absolute deviation formula

,. (3.12)

where , is the details wavelet coefficient sequence of the noisy signal on first level.

For a wavelet packet transform (WPT), the threshold can be calculated by2 (3.13)

where is the noisy signal length and is the standard deviation.

The universal threshold method uses global thresholds. This means, the
computed threshold is used for all coefficients. This method of threshold selection
depends on the statistical variance measurement of the noise and noisy signal length
only.

2 .Minimaxmethod :

In this method, the threshold will be selected by minimizing the error between
the wavelet coefficient of noisy signal and original signal. The noisy signal can be
seen as unknown regression function, this kind of estimator can minimize the
maximum mean square error for a given unknown regression function.

The threshold value can be calculated by

(3.14)

where is calculated by a minimax rule such that the maximum error across the data
is minimized.

The threshold selection in this method is independent of any signal
information. Thus, it is good primarily choice for completely unknown signal
information.

3 . SURE method :

SURE (Stein's unbiased risk estimator) is an adaptive thresholdingmethod that
uses a threshold value at each resolution level j of the wavelet coefficients. In the

level dependent universal threshold, the threshold at each scale j is selected as
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2 (3.15)

where is the samples number in the scale j and is an estimate of the standard

deviation in the scale j.

This method is a good choice for non-stationary noise, in this case the variance
of the noise wavelet coefficients will differ for different scales in the wavelet
decomposition.

Adaptive thresholding can be used to enhance the performance of de-noising
algorithm, The threshold can be selected based on the data information in any generic
domain. One choice of generic domain is the energy of the data. The threshold value
depends not only on N but also on the energy  of the data frame as follows

(3.16)

where is the energy of the data frame in a signal.

Since the speech and the noise are uncorrelatedand , from equation (3.1) and
(3.4), we have the following relations

(3.17)

(3.18)

where E is the signal energy in the frame

Equation (3.17) and (3.18) show that the energy of the noisy speech signal
frame in the wavelet domain is equal to the energy of the noisy signal in a time
domain. The energy transformation between time and wavelet domains is preserved.

In this project, we only concentrate our study about a single channel (single
microphone) speech de-noising system which does not use multi-channel for noise
reduction.

3.2 Algorithm for speech de-noising

The main steps of the de-noising procedure are shown below. Fig.3.3 shows
the flow chart of algorithm for speech de-noising.

Summary of the algorithm :

1. Add a random additive white Gaussian noise to the clean signal.
2. Segment the noisy signal into frames.
3. Make the discrete wavelet transform for every input frame.
4. Calculate the energy of wavelet coefficient and zero crossing rate.
5. Based on the previous point, the feature of the frame is extracted to classify

every noisy speech frame into one of three classes (voiced/unvoiced/silence).
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6. The threshold value will change depend on the classifier output.
7. Make the inverse discrete wavelet transform.
8. Apply a performance measurement on the de-noised signal.

Fig.3.3 : Block diagram of  the de-noising system
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3.3 Challenges

Some challenges in applying the above algorithm :

1. Segmentation.
2. Voiced / unvoiced / silence.
3. Filter coefficients of analysis and synthesis.
4. Number of decomposition levels.
5. Thresholding type.
6. Threshold value is very important parameter.
7. Level of noise.

Now, let's proceed to investigate these challenges in more depth.

The first challenge is to segment the speech signal with proper frame duration,
the frame with N samples can be conceived as N dimensional vector space, and when
analyzing this vector of samples some features contained in the frame could be lost if
we do not choose the proper framing mythology. The solution of this problem can be
solved by introducing overlap frames. By choosing a proper widow for segmentation
with some percent of overlapping we can minimize the losses of features in the frame.

Each frame will typically contain 100 sample if we assume the sampling
frequency equal to 8 KHz. This imply that the frame duration will be 12.5 ms. We
need to choose the number of sample in each frame as a power of 2 to avoid using
signal extension(e.g.128samples). .

The second challenge is  that when applying the thresholding on the speech
signal, the possibility of speech degradation is exist since some of frame is unvoiced
which mean that most of energy of the frame is concentrated in the high frequency
bands and eliminating of them will make a degradation in the quality of the de-noised
signal.The solution of this problem is the most hardest part in this algorithm. However
by choosing a proper decision rule for classification process we can avoid the speech
degradation. Here we introduce two features and its equations

. Short – term average energy :

∑ | | (3.19)

where N is the frame length and l is the data index.

. Zero crossing rate: calculate the number of sign changes of successive
samples in the frame.

∑ 1 (3.20)
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where is the signum function.

These features are typically estimated for frames of speech with 10-20 ms duration.

The choice of widow type determines the nature of short-term average energy
representation. If size of the widow is very long, then it is equivalent to a very
narrowband low pass filter, that means the short term energy will reflect the amplitude
variation in a speech signal.In contrast, if the window size is very short, the short-term

energy will not provide a sufficient energy averaging.

Zero crossing rate reflects the frequency content in the frame. It is important to
remove any offset in a signal to ensure a correct calculation in the case of zero
crossing rate.

We can use short term energy and zero crossing rate to change the threshold value
based on Voiced/Unvoiced/Silence classification.

. High energy and low zero crossing rate imply that the frame is voiced.

- Most of the power for the voiced frame is contained in the approximation part
of wavelet decomposition.

. Low energy and high zero crossing rate imply that the frame is unvoiced.

- Most of the power for the unvoiced frame is contained in the details part of
wavelet decomposition.

. Relatively equal power distribution imply that the frame is silence.

The third challenge is about the wavelet filter design. Choosing an appropriate
filter coefficient is considered a critical part in all of this process of de-noising. There
are several criteria that could be used to select the best wavelet filter. In this project
we tended to use the most simple and the most important filter bank which is the Haar
filter. This filter is considered as a good choice since it has a different property such
as symmetry, orthogonality, biorthogonality, compactness and sparsity. We will
investigate many other db wavelets with higher vanishing moments.

The fourth challenge is selecting the number of levels for wavelet
decomposition. Generally speaking, the number of needed level for decomposition
will increase as the power noise increases, however, increasing the levels of
decomposition increase the computational complexity in the wavelet de-noising
algorithm. Practically, increasing the number of the level more than five will not
introduce a very significant change in the output signal to noise ratio. The selection of
number of levels will depend on the kind of the signal or on some criteria as entropy.

The fifth challenge is choosing an appropriate threshold function, in this
project we intend to use soft thresholding function since it is more stable than hard
thresholding.
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The sixth challenge is about how we can choose the threshold value. As
discussed in the previous section the threshold should be adapted to avoid the speech
degradation, the choice of threshold will be chosen such that the small coefficients are
best threshold with high threshold values, whereas the small coefficients needed to be
threshold with small threshold values. .

The seventh challenge is about the level power of the additive noise.
Practically, if the SNRs of the noisy signal is very low, such this method will fail
since the noisy coefficient will becomes significantly large so that it is difficult to
distinguish between the clean and noisy coefficient. In this project the signal to noise
ratio level will  be  about 0 dB to 20 dB.

Actually, speech is a complex noise process and these are not the only
challenges nor the only typical solution. There are a lot of optimization and adaptation
process to get more optimum de-noising algorithm that could be used with a diverse
conditions.

For performance measurement, objective and subjective quality can be used to
provide a measure how much improvement occurred before the processing. The goal
is to increase the output signal to noise ratio (SNR) in each frame such that the
average SNR isincreased.

Objectively, there are two common measure as follows

. Signal to noise ratio SNR :

, ∑∑ ̃ (3.23)

where , is the segmental output signal to noise ratio of the frame ,

is the input frame of the clean speech signal and ̃ is the output  enhanced
frame of the speech signal.

. Mean Square Error MSE :∑ ̃ 3.22
frame.where is a mean squared error in the
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Chapter 4
Speech enhancement evaluation

4.1 Matlab code

4.2 Performance evaluation
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Speech enhancement evaluation

In this chapter we are going to construct a matlab code for the wavelet de-noising
algorithm and tackle the different challenges which discussed in previous chapter. After that, the
discussion about the results is introduced in the context of the performance evaluation.

As mentioned before, the main three steps in the de-noising algorithm using wavelet
thresholding are decoposition, thresholding and reconstruction. Every step in this algorithm is
implemented using matlab programming language. The Wavelet Toolbox in Matlab contains
various functions that can be called to build the de-noising algorithm. This kind of programming
is called a procedural programming which is a programming paradigm, derived fromstructured
programming. The abstraction nature of the function in Matlab is an input-output relation as
shown below

[ output arguments ] = functionName( input arguments )

The above statement uses to call the functions built in Matlab. To get an information
about how to use a given function, Matlab provides an help documentation about using the
functions e.g. ( doc functionName ,  help functionName). To get the details about the code of
any function, the command ( edit functionName ) can be used.

Appendix-A contains the various functions in Wavelet Toolbox which used to write the
code of de-noising algorithm. Here, we introduce some of these functions

Function name Input arguments Output arguments Description
wavread ('filename.wav') [s , Fs , nbits] Reading audio file

randn (length(s),1) n Random noise
(µ ,) ~(1,0)

wavedec (y , N , 'wname') [Cad , L] Multilevel 1-D
wavelet

decomposition
wthcoef ('t' , Cad , L , N , T

, s_or_h)
NC Wavelet coefficient

thresholding 1-D
waverec (NC , L , 'wname') den_s Multilevel 1-D

wavelet
reconstruction

Table 4.1 : Some predefined functions

From above table, the wavread function is used to read an audio file, returning the
sampled data in s. It also return the sample rate (Fs) in Hertz used to encode the data in the file,
and it returns  the number of bits per sample (nbits). The randn function generates a normally
distributed pseudorandom numbers in vector (y). The wavedec function performs a multilevel
one-dimensional wavelet analysis using a specific wavelet ('wname') , returns the wavelet
decomposition of the signal (y) at level (N).The wthcoef thresholds wavelet coefficients for the
denoising of a 1-Dsignal, returns coefficients obtained from the wavelet decomposition
structure [Cad , L] by soft (if s_or_h ='s') or hard (if s_or_h ='h') thresholding defined in
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vectors (N) and (T). Vector (N) contains the detail levels to be thresholded and vector (T) is the
corresponding thresholds. (N) and (T) must be of the same length. The waverec function
performs a multilevel one-dimensional wavelet reconstruction using a specific wavelet ('wname'
), reconstructs the signal (den_s) based on the multilevel wavelet decomposition structure [NC ,
L]. For more information about many different functions for wavelet analysis, Reference [  ]
provide a lot of details about these functions.

4.1 Matlabcode

Appendix-B shows the Matlab code for de-noising the speech signals. It includes many
options that can be used to provide illustrative steps of wavelet de-noising method. The first
subsection of this section introduces the different options of this Matlabprogram, the next
subsection shows an illustrative example of using the program.

4.1.1 Program options

 Reading Speech signal and adding noise
 Reading an audio file stored in computer.

o Ability to choose (.wav or .mat) extension.
o Ability to take any segment from the signal.
o Ability to decide the sample frequency and number of bits per sample.
o Ability to decide whether the chosen file is noisy speech or clear speech, in

the second case the noise with specific SNR can be added to the clear signal.
 Online recording speech using microphone

o Ability to record a speech signal with specific duration time and sample rate.
 De-noising using discrete wavelet transform DWT or DWP

o Discrete wavelet transform DWT
o Ability to decide the number of decomposition levels and wavelet function.
o Ability to decide the type of thresholding function (soft or hard).
o Ability to choose the global threshold value (the default value is calculated for

a given decomposition using universal threshold selection rule).
o Ability to segment the speech signal for frame by frame de-noising usinga

specific window with percent of overlap between these segments.
o Ability to choose the type of thresholding.

o Global thresholding
o Level dependent thresholding
 Manual setting
 Based on threshold selection rule

 rigrsure , heursure , sqtwolog , minimaxi
o Thresholding the details for a given set of levels
 Forcing all coefficients at a given levels to zero
 Using soft or hard at a given levels

o Interval dependent
 Manual setting
 Based on variance change
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o Discrete wavelet packet DWP
o Ability to decide the number of decomposition levels and wavelet function.
o Ability to decide the type of thresholding function (soft or hard).
o Ability to choose the global threshold value (the default value is calculated for

a given decomposition using a penalization method).
 Illustration plots

o Case of DWT
 Clear and noisy speech signals
 Scaling and wavelet functions
 Decomposition and reconstruction filters
 FFT of filters
 Decomposition coefficients for each level
 Reconstructed coefficients for each level
 Energy of coefficients and variance of detailsfor each level
 Thresholding functions illustration
 Noisy, de-noised and residual signals
 Clear, noisy, de-noised signals
 Correlation between clear signal and noisy signal before denoising, and

correlation between clear signal and de-noised signal after de-noising
 Power distribution of clear, noisy and de-noised signals
 Spectrograms of clear, noisy and de-noised signals
 Absolute coefficients of DWT for clear, noisy and de-noised signals
 Histogram and cumulative histogram of clear, noisy and de-noised signals
 Some statistics about residual signal

o Case of DWP
 Clear and noisy speech signals
 Wavelet packets functions at third scale
 Decomposition and reconstruction filters
 FFT of filters
 Thresholding functions illustration
 Noisy, de-noised and residual signals
 Clear, noisy, de-noised signals
 Correlation between clear signal and noisy signal before denoising, and

correlation between clear signal and de-noised signal after de-noising
 Power distribution of clear, noisy and de-noised signals
 Spectrograms of clear, noisy and de-noised signals
 Wavelet packet spectrum
 Histogram and cumulative histogram of clear, noisy and de-noised signals
 Some statistics about residual signal

 Performance measurements
o Signal to noise ratio SNR
o Mean squared error MSE
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4.1.2 Illustrative example

In this example, the clear speech signal with duration time equal to four seconds and
sample rate equal to 8000 sample/second, every sample is encoded using 16 bit/sample.
Normally and identically additive white Gaussian noise with zero mean and variance equal to
one tenth of average power of clear signal which implies that the input signal to noise ratio equal
to 10 db. The signal is segmented using hamming window of 160 samples and 50% overlapping.
Figure 4.1 shows both the clear speech and noisy speech signals.

Fig.4.1 : Clear and noisy speech signals

Applying FWT on the noisy speech signal by using three levels of decomposition and
db4 as a wavelet function. Figure 4.2 shows the scaling and wavelet function, also it shows the
wavelet filers and its FFT. Wavelet function has more oscillation than scaling function so that
the integration of wavelet function equal to zero and integration of scaling function equal to one.
Using db wavelet with four vanishing moment, the length of each filter will be equal to eight.
These filters have a quadrature mirror image property. It is clear from below figure that the
analysis and synthesis low pass filters have the same magnitude of FFT, however, they differ in
phase, the analysis and synthesis high pass filters also differ in phase.
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Fig 4.2 : scaling and wavelet functions, decomposition and reconstruction filters, and FFT of
decomposition and reconstruction filters

Fig 4.3 shows the wavelet coefficients at each level from the finest scale (third level) to
the coarser scale (first level). Figure 4.4 shows the reconstructed signal at each level, the sum of
these signals will give the original noisy speech signal. Fig 4.5 shows the energy of coefficients
at every scale, and the variance of details at every scale. It is clear from the figure that the largest
percent of power is in the third level (approximation coefficients) and small power is
concentrated in the first level.
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Fig 4.3 : Wavelet coefficients for each level

Fig 4.5 Reconstructed signals for each level
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Fig 4.5 : Energy of coefficients and variance of details at different scales

For de-noising process, the soft thresholding function is used and the universal threshod
selection rule is applied to fine the global threshold value. The thresholding was not applied on
the approximation coefficients. Fig 4.6 shows an illustration about both of thresholding function
(soft and hard), the value of global threshold for 32000 samples with no framing is equal to
0.13116

Fig 4.6 : thresholding functions (soft and hard)
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Figure 4.7 shows the noisy speech before de-noising and de-noised speech after applying
the wavelet de-noising. It is clear from the Fig 4.7 that the noise is reduced, however, there is
some residual noise. The bottom of the figur is the residual signal which taken as the difference
between the clear signal and the de-noised signal.

Fig 4.7 : Noisy, de-noised and residual signals

Figure 4.8 shows a comparison between the clear speech signal , noisy speech signal and
de-noised speech signal.

Fig 4.8 : Comparison between clear signal, noisy signal and de-noised signal

The top of Fig 4.9 shows the correlation relation between the clear speech signal and the
noisy speech signal, the correlation is equal to 0.9539 at zero lag. In the bottom of the figure, the
correlation between the clear speech signal and de-noised speech signal, the correlation is equal
to 0.966 which is greater than 0.9539. This indicates that the de-noised signal is tended to
become more correlated with the original clear speech signal.
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Fig 4.9 : Correlation between clear speech signal and noisy speech signal, correlation
between clear speech signal and de-noised speech signal

Fig 4.10 shows the power distribution of the clear, noisy and de-noised speech signals.
The power of the additive white Gaussian noise is spreaded over all the frequency band of the
speech signal and its power density is constant. As it shown below figure, the most power of the
signal is between 0 Hz and 2000 Hz. The power distribution of noisy speech signal indicates that
the detail coefficients of low value in the first scale can be discarded to remove the noise in this
high frequency band. The thresholding can be applied to the rest of bands in the wavelet
decomposition to remove any small coefficient.

Fig 4.10 : Power distribution of clear, noisy and de-noised speech signals

Fig 4.11 shows the spectrograms of clear, noisy and de-noised speech signals. The
spectrogram uses to clarify the time and frequency contents of the speech signal. It is clear from
below figure that the spectrogram of de-noised speech signal tends to be more similar to the
original clear speech signal. Fig 4.11 and Fig 4.12 show that the power of STFT coefficients of
noisy speech signal in the high frequency band is reduced after de-noising process.
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Fig 4.11 : Spectrograms of clear, noisy and de-noised speech signals

Fig4.12 : Comparison between the spectrograms of noisy and de-noised speech signals.

Fig 4.13 shows the absolute coefficients of DWT for clear, noisy and de-noised speech
signals. The percent of noise power in each level is reduced so that most of the power of original
speech signal is preserved.
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Fig 4.13 : Absolute coefficients of DWT for clear, noisy and de-noised speech signals

Fig 4.14 shows some of statistic measurements about clear, noisy, de-noised. The
histograms and cumulative histograms of the clear, noisy and de-noised speech signals indicate
that the estimated probability distribution of these three signals are approximately normal
distribution. Specifically, Gaussian distribution with zero mean. Since most of the noise power is
reduced, the variance of de-noised speech signal is less than the variance of noisy speech signal.

Fig 4.14:Histograms and cumulative histograms of clear, noisy and de-noised speech signals.

Fig 4.15 shows the statistics of residual signal. Residual signal indicate that the noise was
not removed totally. Some of statistical measure of this signal such as means, median, standard
deviation, variance, L1-norm and L2-norm are shown in below figure, the mean is approximately
zero, the variance is very low which is an indication of existing a high frequency components.
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The autocorrelation between the residual samples is equal to zero, the sample is only correlated
with itself. The FFT of the residual signal shows that the low frequency band contains some of
noise power.

Fig 4.15 : Statistical measures of the residual signal

Finally, Fig 4.16 is a dialogue which display the output mean squared error and the
output signal to noise ratio. The MSE_in is the mean squared error between the clear and noisy
speech signals while the MSE_out is the mean squared error between the clear and de-noised
speech signals. It is clear that the MSE_out is less than the MSE_in which implies a reduction of
noise. The SNR_in is the ratio between the mean squared power of clear signal and the mean
squared error between clear and noisy signals. The SNR_out is the ratio between the mean
squared power of clear signal and the mean squared error between clear and de-noised signals.

Fig 4.16 : Output MSE and output SNR after de-noising
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some of them are fixed and other was changed to get information about the performance of these
methods. The performance measure that we used is the output signal to noise ratio so that it is
considered as a dependent variable for all tests.In the following subsections we show the results
from these tests .

4.2.1 Global thresholding method

Fig 4.17a shows the relation between output SNR and number of decomposition levels by using
global thresholding with different types of db family. The thresholding function that used is soft
and the input SNR is equal to 10 db. The speech signal was framed using hamming window with
50% percent of overlapping. The frame length is 160 samples, 80 samples of overlapping with
any previous frame.

Fig 4.17a :Number of decomposition levels vs. Output SNR using soft thresholding function and
universal selection rule

From Fig4.17a, the output SNRs are increased with different levels. Increasing the
number of vanishing moments of db wavelet increases the output SNR. Increasing the number of
decomposition levels greater than five levels will not introduce a large change for output SNR.

Fig 4.17b shows the relation between the input SNR and the output SNR by using global
thresholding with different types of db family. The thresholding function that used is soft and the
level of decomposition is equal to six levels. The clear signal is corrupted by additive white
Gaussian noise at different level of signal to noise ratio (0 db, 5db, 10db, 15 db and 20 db). . The
speech signal was framed using hamming window with 50% percent of overlapping. The frame
length is 160 samples, 80 samples of overlapping with any previous frame.
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Fig 4.17b: Input SNR vs. Output SNR using soft thresholding function and universal selection
rule

From Fig 4.17b,there is an enhancement in the output SNR. Increasing the number of
vanishing moments of db wavelet increases the output SNR, but as the power of noise increases
then, the rate of increasing of output SNR slows down.

Fig 4.18a shows the relation between output SNR and number of decomposition levels by
using global thresholding with different types of db family. The thresholding function that used
is hard and the input SNR is equal to 10 db. The speech signal was framed using hamming
window with 50% percent of overlapping. The frame length is 160 samples, 80 samples of
overlapping with any previous frame.

Fig 4.18a :Number of decomposition levels vs. Output SNR using hard thresholding function
and universal selection rule
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From Fig4.18a, the output SNRs are increased with different levels. Increasing the
number of vanishing moments of db wavelet not implies increasing the output SNR for any
specific level. Increasing the number of decomposition levels greater than five levels will not
introduce a large change for output SNR as in the case of soft thresholding.

Fig 4.18b shows the relation between the input SNR and the output SNR by using global
thresholding with different types of db family. The thresholding function that used is soft and the
number of decomposition levels is equal to six levels. The clear signal is corrupted by additive
white Gaussian noise at different level of signal to noise ratio (0 db, 5db, 10db, 15 db and 20 db.
The speech signal was framed using hamming window with 50% percent of overlapping. The
frame length is 160 samples, 80 samples of overlapping with any previous frame.

Fig 4.18b :Input SNR vs. Output SNR using hardthresholding function and universal selection
rule

From Fig 4.18b,there is an enhancement in the output SNR. Increasing the number of
vanishing moments of db wavelet increases the output SNR in the case of high SNR, but as the
power of noise increases then, there is no significant change about the output SNR at a specific
signal to noise ratio.

Fig 4.19a shows the relation between different threshold values and the output SNR with
different levels of decomposition. The speech signal was framed using hamming window with
50% percent of overlapping. The frame length is 160 samples, 80 samples of overlapping with
any previous frame. The input SNR is 10 db, the wavelet that used is db8 and the thresholding
function is of type soft thresholding.
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Fig 4.19a : The threshold value vs. output SNR with different levels of decomposition

From Fig 4.19a the output SNR starts to increase as the threshold value increases until
reaching a specific threshold value ( less than 0.05 ), after that, the output SNR decreases as the
threshold value increases. For example, the maximum output SNR for the sixth level is with
threshod value equal to 0.02 which approximately equal to the calculated value using universal
thresholding method.

Fig 4.19b shows the same relation as in Fig 4.19a but with different input SNRs. The
speech signal was framed using hamming window with 50% percent of overlapping. The frame
length is 160 samples, 80 samples of overlapping with any previous frame.The number of
decomposition levels is equal to six levels, the wavelet that used is db8 and the thresholding
function is of type soft thresholding.

Fig 4.19b : The threshold value vs. output SNR with different input SNRs
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4.2.2 Interval-Dependent thresholding method

Fig 4.20a shows the relation between input SNR and output SNR by using interval-
dependent thresholding with different number of intervals. The thresholding function that used is
soft, the wavelet is db8 and the number of decomposition levels is equal to six levels. The speech
signal was framed using hamming window with 50% percent of overlapping. The frame length is
160 samples, 80 samples of overlapping with any previous frame.Every frame is divided into
several intervals based on variance changes,then the coefficients of each interval are thresholded
using universal thresholding method.

Fig 4.20a : Input SNR vs. Output SNR for interval-dependent thresholding method

From Fig 4.20a, increasing the number of intervals at a specific input SNR  will reduce
the output SNR. The best number of interval is one, this is because the white noise that we added
have a constant variance that does not change with time.

Fig 4.20b shows the relation between the number of decomposition levels and output
SNR by using interval-dependent thresholding with different number of intervals. The
thresholding function that used is soft, the wavelet is db8 and input SNR is equal to 10 db. The
speech signal was framed using hamming window with 50% percent of overlapping. The frame
length is 160 samples, 80 samples of overlapping with any previous frame. Every frame is
divided into several intervals based on variance changes,then the coefficients of each interval are
thresholded using universal thresholding method.

-5 0 5 10 15 20 25
5

10

15

20

25

30

35

40

45

Input SNR

O
ut

pu
t S

NR

Input SNR vs. Output-SNR

1 interval

2 intervals

3 intervals
4 intervals

5 intervals

6 intervals

Number of levels = 6
Wavelet : db8
Thresholding function : soft



44

Fig 4.20b : Input SNR vs. Output SNR for interval-dependent thresholding method

From Fig 4.20b, increasing the number of intervals using a specific number of
decomposition levels will reduce the output SNR. The best number of interval is one, this is also
because the white noise that we added have a constant variance that does not change with time.

4.2.3 Setting all details coefficients in the first scale to zero

In this test only the detail coefficients of the first scale are setted to zero by assuming that
most of the noise power is in the first level. Fig 4.21a shows the relation between the input SNR
and output SNR with different db wavelets.

Fig 4.21a : Input SNR vs. Output SNR (Setting all coefficients in the first scale to zero)
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Fig 4.21b shows the same relation as in Fig 4.21a but instead of setting the detail
coefficients of the first scale to zero, soft thresholding function with universal threshold selection
rule is used to threshold the details of first scale.

Fig 4.21b : Input SNR vs. Output SNR (Applying soft thresholding on details of first scale only)

From Fig 4.21a and Fig 4.21b, Applying soft thresholding on details of first scale only at
a specific input SNR, the output SNR did not changed significantly as the number of vanishing
changed. However, in the case of setting the details of first scale to zero, the output SNR is
changed significantly as the number of vanishing changed, especially at high input SNR.

4.3 : Comparing the performance with different threshold selection rules

Fig 4.22 shows the relation between the input SNR and the output SNR with different
threshold selection criteria ( Fixed threshold, SURE, Mix of fixed threshold and SURE,
minimaxi ). The number of decomposition levels that used is equal to six, the wavelet is db8 and
the type of thresholding function is soft.

Fig 4.22 : Input SNR vs. Output SNR with different threshold selection criteria
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4.4 Comparing the performance with different wavelet families

Fig 4.23a shows the relation between the input SNR and the output SNR with different
types of wavelet families. The threshold selection rule is the universal method, the number of
levels is six and the thresholding function is soft.

Fig 4.23a : Input SNR vs. Output SNR with different type of wavelet families

From Fig 4.23a, there is approximately only 1 db change with output SNR between coif5
and db8 .This comparison is with using six levels of decomposition. Fig 4.23b shows the relation
between the number of decomposition levels and output SNR. The input SNR is 10db and the
thresholding function that used is soft.

Fig 4.23b : The number of decomposition levels vs. output SNR with different wavelet families
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From Fig 4.23b, using coif5 introduced the largest output SNR for all levels. Using two
levels of decomposition maximize the global output SNR. Also, increasing the number of
decomposition levels greater than five levels will not introduce a significant change in output
SNR.

Fig 4.24 shows the relation between the input SNR and the output SNR using two
methods of de-noising. The first method is by using DWT and the second is by using Wiener
filtering. The wiener filtering is based on noise estimation using wavelet decomposition, so that
the variance of the noise is estimated by using median approximation of the detail coefficients in
the first scale. Appendix C gives brief discussion about the wiener filtering.

Fig 4.24 : Input SNR vs. Output SNR( comparison between DWT and Wiener Filtering )

From Fig 4.24, the wiener filtering is better than de-noising by DWT. Wiener filtering
gives a constant output SNR approximately. However, wiener filtering needs to know the
spectral properties of the original signal and the noise, for this purpose the variance of the noise
is estimated from details of the first wavelet decomposition level.
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Chapter 5
Conclusion and Future works

5.1 Conclusion

5.2 Future works
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5.1 Conclusion

Speech de-noising algorithm using discrete wavelet transform is implemented to
eliminate a white noise. As shown in this project the selection of threshold value is an important
parameter for speech enhancement. Using universal thesholding by fixed threshold applied to
threshold the wavelet coefficients introduce an efficient way to remove the additive white
Gaussian noise. Interval dependent method is also used to adapt the threshold value, however
since the Gaussian noise is stationary and its variance did not change with time this method is
more appropriate to non-white noise. Different parameters were changed to get more optimal
choice of them. This project concentrates on db wavelets and shows that this kind of wavelet
tends to be an appropriate choice for speech enhancement, Specially, under the assumption that
the noise is Additive white Gaussian noise. Soft thresholding function is more appropriate for
speech de-noising.

As a comparison with other method of de-noising, Wiener filtering based on the wavelet
decomposition for noise estimation. In this method the noise is estimated from the first scale of
wavelet decomposition and this estimation used to apply wiener filtering. The experiment shows
that wiener filtering introduce more enhancement in output SNR compared with de-noising using
global thresholding in the discrete wavelet domain.

5.2 Future works

The project concentrated on the additive white Gaussian noise, and this work can be
extended to a non-white noise. There are many wavelet families that could be tested for speech
enhancement. There are many other variations about thresholding function that could also be
tested. There are many other techniques to adapt the threshold value which could be tested.
Using other filtering techniques with wavelet de-noising method to get more optimal filtering.
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treedpth Tree depth

treeord Tree order

wtbo WTBO constructor

wtreemgr NTREE manager

Denoising

cmddenoise Interval-dependent denoising

ddencmp Default values for denoising or compression

thselect Threshold selection for de-noising

wbmpen Penalized threshold for wavelet 1-D or 2-D de-noising

wdcbm Thresholds for wavelet 1-D using Birgé-Massart strategy

wdcbm2 Thresholds for wavelet 2-D using Birgé-Massart strategy

wden Automatic 1-D de-noising

wdencmp De-noising or compression

wmulden Wavelet multivariate de-noising

wnoise Noisy wavelet test data

wnoisest Estimate noise of 1-D wavelet coefficients

wpbmpen Penalized threshold for wavelet packet de-noising

wpdencmp De-noising or compression using wavelet packets

wpthcoef Wavelet packet coefficients thresholding

wthcoef 1-D wavelet coefficient thresholding

wthcoef2 Wavelet coefficient thresholding 2-D

wthresh Soft or hard thresholding



wthrmngr Threshold settings manager

wvarchg Find variance change points

measerr Approximation quality metrics

wavemenu Wavelet Toolbox GUI tools

Compression

wcompress True compression of images using wavelets

wpdencmp De-noising or compression using wavelet packets

measerr Approximation quality metrics

wmpalg Matching pursuit

wmpdictionary Dictionary for matching pursuit

wavemenu Wavelet Toolbox GUI tools

Reference :

https://www.mathworks.com/help/wavelet/index.html



Appendix B
Matlab code

clc
clear all
close all
%% Stage 1:
% 1.1 - Reading speech signal.
% 1.2 - Adding Additive White Gaussian Noise.
% 1.3 - Plotting  clear signal and noisy signal.
% 1.4 - Playing clear signal and noisy signal.

%----------
%1.1 - Reading speech signal.
% option 1 : Get recorded file from PC (.wav OR .mat).
% option 2 : Online recording via microphone.
c = menu('speech choice options :','Get recorded file
from PC (clear signal or noisy signal)','Online recording
via microphone');
switch c
%----------
% option 1 : Get recorded file from PC

case 1
d = dir;
strn = {d.name};
[s,v] = listdlg('PromptString' , 'Select a file : ' ,
'SelectionMode' , 'single' , 'ListString' , strn);
[ a , b] = strread(strn{s} , '%s %s' , 'delimiter' ,
'.');
file_str_name = strn{s};

if strcmp(b , 'mat')
n_c_mat = menu('Is this signal noisy or

clear','Clear','Noisy');
switch n_c_mat

case 1
ref0 = 0;ref1= 0;
signal_mat = load(file_str_name);
FieldName = fieldnames(signal_mat);
Field_speech_full =

getfield(signal_mat,FieldName{1});
N_samples = length(Field_speech_full);
N_str = num2str(N_samples);
prompt = {strcat('Enter the number of first

N_samples of signal : N_samples <= ',N_str),'Enter the
frequency of sampling','Enter the number of bits per
sample','Enter the value of signal to noise ratio'};

dlg_title = 'Audio File Selection';
num_lin = 1;
def_filename_snr = {'1,32000','8000','16','10'};



file_name = inputdlg(prompt ,dlg_title ,num_lin
,def_filename_snr);

[N1 , N2] = strread(file_name{1} , '%s %s' ,
'delimiter' , ',');

N1 = str2num(N1{1});
N2 = str2num(N2{1});
len_seg = N2 - N1 + 1;
Fs = str2num(file_name{2});
nbits = str2num(file_name{3});
snrval = str2num(file_name{4});

clear_speech = Field_speech_full(N1:N2);%clear
signal

case 2
ref0 = 0;ref1= 1;
signal_mat = load(file_str_name);
FieldName = fieldnames(signal_mat);
Field_speech_full =

getfield(signal_mat,FieldName{1});
N_samples = length(Field_speech_full);
N_str = num2str(N_samples);
prompt = {strcat('Enter the number of first

N_samples of signal : N_samples <= ',N_str),'Enter the
frequency of sampling','Enter the number of bits per
sample'};

dlg_title = 'Audio File Selection';
num_lin = 1;
def_filename_snr = {'1,32000','8000','16'};
file_name = inputdlg(prompt ,dlg_title ,num_lin

,def_filename_snr);
[N1 , N2] = strread(file_name{1} , '%s %s' ,

'delimiter' , ',');
N1 = str2num(N1{1});
N2 = str2num(N2{1});
len_seg = N2 - N1 + 1;
Fs = str2num(file_name{2});
nbits = str2num(file_name{3});
noisy_speech = Field_speech_full(N1:N2)';

load h_orig.mat;% clear signal
clear_speech = h_orig(N1:N2)';
snrval = 10;

end

elseif strcmp(b , 'wav')
n_c_wav = menu('Is this signal noisy or

clear','Clear','Noisy' );
switch n_c_wav

case 1
ref0 = 1;ref1= 0



[clear_speech_all , Fs , nbits] =
wavread(file_str_name);

N_samples = length(clear_speech_all);
N_str = num2str(N_samples);
prompt = {strcat('Enter two numbers N1 and N2

separated by commas\n N1 < N2 <= ',N_str),'Enter the
value of signal to noise ratio'};

dlg_title = 'Signal Interval and SNR values';
num_lin = 1;
def_filename_snr = {'1,8000','10'};
file_name = inputdlg(prompt ,dlg_title

,num_lin ,def_filename_snr);
snrval = str2num(file_name{2});
firstNsamp = str2num(file_name{1});
[N1 , N2] = strread(file_name{1} , '%s %s' ,

'delimiter' , ',');
N1 = str2num(N1{1});
N2 = str2num(N2{1});
len_seg = N2 - N1 + 1;
snrval = str2num(file_name{2});
clear_speech = clear_speech_all(N1:N2);

case 2
ref0 = 1;ref1 = 1;
[noisy_speech_all , Fs , nbits] =

wavread(file_str_name);
N_samples = length(noisy_speech_all);
N_str = num2str(N_samples);
prompt = {strcat('Enter two numbers N1 and N2

separated by commas\n N1 < N2 <= ',N_str),};
dlg_title = 'Signal Interval';
num_lin = 1;
def_filename_snr = {'1,32000'};
file_name = inputdlg(prompt ,dlg_title

,num_lin ,def_filename_snr);
firstNsamp = str2num(file_name{1});
[N1 , N2] = strread(file_name{1} , '%s %s' ,

'delimiter' , ',');
N1 = str2num(N1{1});
N2 = str2num(N2{1});
len_seg = N2 - N1 + 1;
noisy_speech = noisy_speech_all(N1:N2);
load h_orig.mat;
clear_speech = h_orig;%clear signal
snrval = 5;

end

else
msg = msgbox('Extension of the file must be .wav or

.mat');
end



if (size(clear_speech,1) == 1)
clear_speech = clear_speech';

end

%----------
%1.2 - Adding Aditive White Gaussian Noise
if (ref0 == 0 && ref1 == 0) ||(ref0 == 1 && ref1 == 0)
noise_generator = menu('noise generator','Add white
gaussian noise to signal' , 'Add normally distributed
pseduorandom numbers to signal');
if ~(noise_generator-1)
noisy_speech = awgn(clear_speech,snrval,'measured');%Add
AWGN
else
snr_lin = 10^(snrval/10);
power_signal = mean(abs(clear_speech).^2);
var = power_signal/snr_lin;
noise = (randn(length(clear_speech),1).*sqrt(var));
noisy_speech = clear_speech + noise; % Add I.I.D AWGN
end
end
% Test the vector dimensions agreement.

if(size(clear_speech,1)-size(noisy_speech,1))~=0
if size(noisy_speech,1)==1

noisy_speech = noisy_speech';
else

clear_speech = clear_speech';
end

end

save E:\Noisy_File\noisy_speech.mat
noisyfile = 'E:\Noisy_File\noisy_speech.wav';
wavwrite(noisy_speech, Fs ,nbits, noisyfile)% Write the
noisy signal into noisyfile

%----------
%1.3 - Plotting  clear signal and noisy signal

%----------
fig1 = figure('name' ,'clear and noisy speech

signals','Color','w');
%----------

subplot(211); axis tight;
plot([1:length(clear_speech)]/Fs , clear_speech ,'b');
xlabel('Time(s)'); ylabel('Amplitude');
title('Clear speech signal');
subplot(212); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech,'r');
xlabel('Time(s)'); ylabel('Amplitude');



title('Noisy speech signal');
%----------
%1.4 - Play clean and noisy speech signal
Pause_t = (length(clear_speech)/Fs) + 2 ;
sound(clear_speech,Fs)
pause(Pause_t);
sound(noisy_speech , Fs)
%----------
% option 2 : Online recording via microphone

case 2
prompt = {'Enter the number of second to be

recorded','Enter the frequency sampling rate'};
dlg_title = 'Audio Recording';
num_lin = 2;
def_t_f = {'5','8000'};
record_par = inputdlg(prompt ,dlg_title ,num_lin

,def_t_f);
record_t = str2num(record_par{1})
Fs = str2num(record_par{2})
record_speechObj = audiorecorder(Fs , 16 , 1);
msg0 = msgbox('Start speaking');
h = waitbar(0,'Start speaking')
for step=1:1
recordblocking(record_speechObj , record_t);
waitbar(step)
end
msg1 = msgbox('End speaking');
pause(2);
close(h)
noisy_speech = getaudiodata(record_speechObj ,

'double');

%----------
fig2 = figure('name' , 'noisy recorded

speech','Color','w');
%----------
plot([1:length(noisy_speech)]/Fs ,

noisy_speech);% Plotting the noisy recorded signal
play(record_speechObj); % Play the noisy recorded

speech signal
end

%----------

%% Stage 2:
% 2.1 - Choose a)DWT or b)DPT
%   In the case of DWT :
% 2.2.a - Set the number of level decomposition and the
wavelet function name
% 2.3.a - Find the wavelet and scaling functions
% 2.4.a - Find the wavelet and scaling filters



% 2.5.a - Decompose the noisy signal at a given level
using the wavelet filters
% 2.6.a - Extract the approximation coefficients at
coarser scale(final level) from
%   the wavelet decomposition structure [Cad , L]
% 2.7.a - Extract the detail coefficients at the levels
(1 , 2 , ... , level)
%   from the wavelet decomposition structure [Cad , L]
% 2.8.a - Find the energy of the wavelet coefficients
% 2.9.a - Reconstruct the approximation signal at
coarser scale(final level)from wavelet decomposition
% 2.10.a - Reconstruct the detail signals at all levels
from the wavelet decomposition
%   structure [Cad , L]
% 2.11.a - Plotting illustration

%----------
%2.1 - Choose a)DWT or b)DPT
c1 = menu('Denoising using :' ,'Discrete Wavelet
Transform (DWT)','Discrete Wavelet packet (DWP)');
switch c1

case 1% DWT
%----------
%2.2.a - Set the number of level decomposition and the
wavelet function name
lev_wname = inputdlg({'Enter the number of decomposition
levels','Enter the wave name : dbN'},'Number of level and
wavename');
level = str2num(lev_wname{1});
wavename = lev_wname{2};
%----------
%2.3.a - Find the wavelet and scaling functions
iteration = 15;
[phi , psi , xval_dbn] = wavefun(wavename , iteration);
%----------
%2.4.a - Find the wavelet and scaling filters
[Lo_d , Lo_r] = wfilters(wavename , 'l')
Hi_r = qmf(Lo_r)
Hi_d = wrev(Hi_r)

sum_Hi_d = sum(Hi_d)
sum_Lo_d = sum(Lo_d)

Nextpow2_Lo_d = nextpow2(length(Lo_d));
Nextpow2_Hi_d = nextpow2(length(Lo_d));
Nextpow2_Lo_r = nextpow2(length(Lo_r));
Nextpow2_Hi_r = nextpow2(length(Lo_r));

fftLo_d = fft(Lo_d,2^Nextpow2_Lo_d);
fftHi_d= fft(Hi_d,2^Nextpow2_Hi_d);
fftLo_r = fft(Lo_r,2^Nextpow2_Lo_r);



fftHi_r= fft(Hi_r,2^Nextpow2_Hi_r);

%----------
%2.5.a - Decompose the noisy signal at a given level
using the wavelet filters
[Cad , L] = wavedec(noisy_speech(:,1) ,level , wavename);
%----------
%2.6.a - Extract the approximation coefficients
%2.7.a - Extract the detail coefficients
%2.8.a - Find the energy of the wavelet coefficients
Capp = appcoef(Cad , L , Lo_d , Hi_d, level);%Extract the
approximation coefficients for level (level)
a2sq = sum(Capp.^2);%energy of the wavelet approximation
coefficients
Energy_coef = zeros(1,level+1);
Energy_coef(1) = a2sq;
SDEV = zeros(1,level);
SDEV_COEF = zeros(1,level);
for i= level : -1 : 1

Cdet = detcoef(Cad , L , i);% Extract the detail
coefficients for level (i)

d2sq = sum(Cdet.^2);
Array_det_coef{level-i+1} = Cdet;
d2sq = sum(Array_det_coef{level-i+1}.^2);%energy of

the wavelet coefficients for every scale
Energy_coef(level-i+2)= d2sq;
SDEV(i) = wnoisest(Cad , L ,i);% standard deviation

appriximation for detail coefficients for every scale
SDEV_COEF(i) = std(Cdet);

end
engcoef = sum(Energy_coef)% total energy of wavelet
coefficients(approximation & detail)
engsig = sum(noisy_speech(:,1).^2)% total energy of the
noisy signal
engerr = abs(engcoef - engsig)% energy preservation
percent_energy_app =
(Energy_coef(1)/sum(Energy_coef))*100
%----------
%2.9.a - Reconstruct the approximation signal at coarser
scale(final level)from wavelet decomposition
App_sig = wrcoef('a' , Cad , L , wavename , level);
ReconstructArray_sig{1} = App_sig;
%----------
%2.10.a - Reconstruct the detail signals at all levels
from the wavelet decomposition
SDEV_REC = zeros(1,level);
for j = level : -1 : 1

Det_sig  = wrcoef('d' , Cad , L , wavename , j);
ReconstructArray_sig{level-j+2} = Det_sig;
SDEV_REC(j) = std(Det_sig);

end



%----------
%2.11.a - Plotting illustration

%----------
fig3 = figure('name' , 'phi_psi functions ,filters

and fft of filters','Color','w');
%----------

subplot(521); axis tight ;
plot(xval_dbn, phi);title('Scaling function phi');
subplot(522); axis tight ;
plot(xval_dbn, psi);title('Wavelet function psi');

subplot(523); axis tight ;
stem(Lo_d,'r');title('Decomposition low pass filter');
subplot(524); axis tight ;
stem(Hi_d,'r');title('Decomposition high pass filter');
subplot(525); axis tight ;
stem(Lo_r,'b');title('Reconstruction low pass filter');
subplot(526); axis tight ;
stem(Hi_r,'b');title('Reconstruction high pass filter');

subplot(527); axis tight
Freq_Lo_d = (2*pi)/(2^Nextpow2_Lo_d)
:(2*pi)/(2^Nextpow2_Lo_d) : pi ;
fa_ld = abs(fftLo_d(1:(2^(Nextpow2_Lo_d)/2)));
plot(Freq_Lo_d,fa_ld);title('FFT of analysis low pass
filter');
xlim([(2*pi)/(2^Nextpow2_Lo_d) , pi+0.5]);

subplot(528); axis tight
Freq_Lo_r = (2*pi)/(2^Nextpow2_Lo_r)
:(2*pi)/(2^Nextpow2_Lo_r) : pi ;
fa_hr = abs(fftLo_r(1:(2^(Nextpow2_Lo_r)/2)));
plot(Freq_Lo_r,fa_hr);title('FFT of synthesis low pass
filter');
xlim([(2*pi)/(2^Nextpow2_Lo_r) , pi+0.5]);

subplot(529); axis tight
Freq_Hi_d = (2*pi)/(2^Nextpow2_Hi_d)
:(2*pi)/(2^Nextpow2_Hi_d) : pi ;
fa_ld = abs(fftHi_d(1:((2^Nextpow2_Hi_d)/2)));
plot(Freq_Hi_d,fa_ld);title('FFT of analysis high pass
filter');
xlim([(2*pi)/(2^Nextpow2_Hi_d) , pi+0.5]);

subplot(5,2,10); axis tight
Freq_Hi_r = (2*pi)/(2^Nextpow2_Hi_r)
:(2*pi)/(2^Nextpow2_Hi_r) : pi ;
fa_hr = abs(fftHi_r(1:((2^Nextpow2_Hi_r)/2)));



plot(Freq_Hi_r,fa_hr);title('FFT of synthesis high pass
filter');
xlim([(2*pi)/(2^Nextpow2_Hi_r) , pi+0.5]);

%----------
fig4 = figure('name' , 'decomposition

coefficients','Color','w');
%----------

subplot(level+2,1,1); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech,'r');
title('Noisy speech signal');
subplot(level+2,1,2); axis tight;
plot(Capp , 'b')
title(['Approximation coefficients at level '
,num2str(level)]);
ylabel(['Ca' , num2str(level)], 'Color' , 'b');
for f = level : -1 : 1

row = level+2;
no_fig = level-f+3;
s = level-f+1;
lbl = num2str(f);

subplot(row,1,no_fig); axis tight;
plot(Array_det_coef{s} , 'g')
title(['Detail coefficients at level ' ,lbl]);
ylabel(['Cd',lbl],'Color' , 'g')
end
subplot(row,1,row)

%----------
fig5 = figure('name' , 'reconstructed

coefficients','Color','w') ;
%----------

subplot(level+2,1,1); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech,'r');
title(['Noisy speech signal : a',num2str(level),' +
d',num2str(level),' = d',num2str(level-1)]);
subplot(level+2,1,2); axis tight;
plot( ReconstructArray_sig{1} , 'b')
title(['Approximation signal at level '
,num2str(level)]);
ylabel(['a' ,num2str(level)],'Color' , 'b')
for r = level : -1 : 1

row = level+2;
no_fig = level-r+3;
s = level-r+1;
lbl = num2str(r);

subplot(row,1,no_fig); axis tight;
plot(ReconstructArray_sig{level-r+2} , 'g')



title(['Reconstructed coefficients at level ' ,lbl]);
ylabel(['d' , lbl],'Color' , 'g')
end
subplot(row,1,row);
xlabel('Time');

%----------
fig6 = figure('name' , 'energy and standard

deviation','Color','w');
%----------

subplot(211) , axis tight;
stem(Energy_coef(2:end),'g');
hold on
stem(Energy_coef(1),'b');
title('Energy of coefficients at different scale');
xlabel('level number'); ylabel('energy of coefficients');
legend('detail coefficients energy','approximation
coefficients energy')
subplot(212); axis tight;
stem(wrev(SDEV.^2),'r'); title('Variance of details at
different scales');
xlabel('level number'); ylabel('Variance of details at
different scales');

tilefigs
%----------

%% Stage 3:
% 3.1.a - Choose the type of thresholding function (
soft or hard)
% s : soft thresholding  or  h : hard
thresholding
% 3.2.a - Decide whether you need to threshod the
approximation coefficient or not
% KeepApp = 1 : withno threshold approx.
coeff's  or  KeepApp = 0 : with threshold approx. coeff's
% 3.3.a - Set the value of threshold (this value for
global thresholding)
%   The above three steps could also be choosen by
default option instead of manual option.
% 3.4.a - Choose the type of thresholding
% 3.4.a.1 - gbl : global thresholding
% 3.4.a.2 - lvd : level dependent thresholding
% 3.4.a.2.1 - Choose the noise model
% 3.4.a.2.2 - Chooose the threshold
selection rule
% 3.4.a.2.3 - Calculate the threshold
vector which contains
% the threshold values for
every level



% 3.4.a.3 selected level thresholding
% 3.4.a.3.1 - Choose selcted level
thresholding methology
%               ( set all coeff's of selected level to
zero or threshod the selected level by (s or h) )
% 3.4.a.3.2 - Decide the level numbers to
be thresholded
% 3.4.a.4 Interval dependent thresholding
% 4.4.a - Reconstruct the signal from thresholded
coefficients
% 4.5.a - Reconstruct the approximation and detail
signals from wavelet thresholded decomposition
% 4.6.a - Plotting illustration
% 4.7.a - Playing the denoised speech

%----------
%3.1.a - Choose the type of thresholding function ( soft
or hard)
%3.2.a - Decide whether you need to threshod the
approximation coefficient or not
%3.3.a - Set the value of threshold (this value for
global thresholding)
%The above three steps could also be choosen by default
option instead of manual option.
setting = menu('Set the values of (threshold value , soft
or hard thresholding function , KeepApp)','manual
setting','defult setting');
switch setting

case 1
std_glb =

median(abs(Array_det_coef{level}))/0.6745;
thr = std_glb*sqrt(2*log(length(noisy_speech)));
thr_globstr = num2str(thr);
def_thr_s_1 = {thr_globstr,'s','1'};
thr_sorh_k = inputdlg({'Enter the value of

threshold','Enter the type of thresholding function soft
or hard s or h','Threshold the approximation? 1:no or
0:yes'},'Setting parameters',1,def_thr_s_1);

thr = str2num(thr_sorh_k{1});
s_or_h = thr_sorh_k{2};
KeepApp = str2num(thr_sorh_k{3});

case 2
% the default value of the threshold is

calculated as thr = std*sqrt(2*log(length(noisy_speech)))
where std = median(abs(D))/0.6745

% such that D is calculated form the single level
DWT using haar wavelet.[D , A] = dwt('db1' ,
noisy_speech];also, std(noise) = median(abs(D))/0.6745

[thr , s_or_h , KeepApp] = ddencmp('den' , 'wv' ,
noisy_speech(:,1));



default_dialog = msgbox({'thr = ',num2str(thr)
,'s_or_h = ' ,s_or_h, 'Keepapp =
',num2str(KeepApp)},'Default values');
end
%----------
%3.4.a - Choose the type of thresholding

gbl_or_lvd = menu('Type of thresholding','Global
thresholding','Level-dependent thresholding','1-D wavelet
coefficients thresholding','Interval-dependent
thresholding');
msg2 = msgbox('De_noising ...');

FrameSelection = menu('Do you want to segment the speech
or not?','Yes','No');

switch FrameSelection
case 1

seg_step = Fs*0.01;
overlap = Fs*0.01;
seg_len = seg_step + overlap;
sp_len = length(noisy_speech);
Nseg = floor(sp_len/(seg_step))-1;
window = hamming(seg_len);
de = hanning(2*overlap - 1)';
dewindow =  [de(1:overlap) , ones(1,seg_len -2*overlap) ,
de(overlap:end)]'./window;

switch gbl_or_lvd
%----------
%3.4.a.1 - gbl : global thresholding
case 1

%----------
%4.4.a - Reconstruct the signal from thresholded
coefficients

denoised_speech = zeros(sp_len, 1);

for i = 1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+1 :

i*seg_step+overlap);

noisy_speechW(:,i) = window.*sp_Seg(:,i);
[Cad_seg , L] =

wavedec(noisy_speechW(:,i),level,wavename);

Cdet_seg = detcoef(Cad_seg , L , 1);
sigma_seg = median(abs(Cdet_seg))/0.6745;
thr_seg =

sigma_seg*sqrt(2*log(length(noisy_speechW(:,i))));



[denoised_seg ,Cad_thr_seg , L_thr_seg ,
L2norm_recovery_seg , cmp_score_seg] = wdencmp('gbl' ,
Cad_seg , L , wavename , level ,thr_seg , s_or_h , 1);

denoised_seg (:,i) = denoised_seg;
noisy_speechDe(:,i) = denoised_seg (:,i).*dewindow;
denoised_speech((i-1)*seg_step+1 :

i*seg_step+overlap) = noisy_speechDe(:,i) +
denoised_speech((i-1)*seg_step+1 : i*seg_step+overlap);
end
%----------

%----------
%3.4.a.2 - lvd : level-dependent thresholding
case 2

THR_setManual = menu('Choose the thresholds (only
details coefficients) for level-dependet
thresholding','Manual setting','Based on threshold
selection rules');

if ~(THR_setManual-1)
THR_dlg = inputdlg({'Enter a list of thresholds

seperated by commas'},'Thresholds setting for level-
dependent')

THR = str2num(THR_dlg{1});

else

%----------
%3.4.a.2.1 - Choose the noise model
noise_mod_menu = menu('Noise model','Unscaled

white noise','Scaled white noise','Non-white noise');
noise_model = {'one' , 'sln' , 'mln'};
SCAL = noise_model(noise_mod_menu);
f =char(SCAL{1})
%----------
%3.4.a.2.2 - Chooose the threshold selection rule
thrrule = menu('Threshold selection

rule','rigrsure' ,'heursure' , 'sqtwolog' , 'minimaxi');
menu_thrrule = {'rigrsure' ,'heursure' ,

'sqtwolog' , 'minimaxi'};
ThrSelectRule = menu_thrrule(thrrule);
tptr = ThrSelectRule{1}
%----------
denoised_speech = zeros(sp_len , 1);

for i = 1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+1 :

i*seg_step+overlap);
noisy_speechW(:,i) = window.*sp_Seg(:,i);



denoised_seg =
wden(noisy_speechW(:,i),tptr,s_or_h,f,level,wavename);

denoised_seg(:,i) = denoised_seg;
noisy_speechDe(:,i) = denoised_seg (:,i).*dewindow;
denoised_speech((i-1)*seg_step+1 :

i*seg_step+overlap) = noisy_speechDe(:,i) +
denoised_speech((i-1)*seg_step+1 : i*seg_step+overlap);

THR = zeros(1,level);
end

end
%----------

%----------

%----------
%3.4.a.3 selected level thresholding (only details

coefficients)
case 3

%----------
%3.4.a.3.1 - Choose selcted level thresholding

methology
x = menu('detail coeficients

thresholding:','thresholding the details for a given set
of level by forceing all coefficients to be
zero','thresholding the details for a given set of level
by using soft or hard thresholding function');

if ~(x-1) %set all coeff's of selected level to
zero

selected_lev = inputdlg({'Enter a list of
numbers (number of levels for thresholding)separated by
spaces or commas'},'Wavelet coefficient thresholding');

LEV = str2num(selected_lev{1});

denoised_speech = zeros(sp_len,1);

for i = 1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+1 :

i*seg_step+overlap);

noisy_speechW(:,i) = window.*sp_Seg(:,i);

[Cad_seg , L] =
wavedec(noisy_speechW(:,i),level,wavename);

Cdet_seg = detcoef(Cad_seg , L , 1);
Capp = appcoef(Cad_seg,L,wavename,1);
sigma_seg = median(abs(Cdet_seg))/0.6745;
thr_seg = sigma_seg*sqrt(2*log(length(sp_Seg(:,i))));

Cad_thr_seg = wthcoef('d' , Cad_seg , L , 1);
denoised_seg = waverec(Cad_thr_seg,L,wavename);



denoised_seg(:,i) = denoised_seg;
noisy_speechDe(:,i) = denoised_seg (:,i).*dewindow;
denoised_speech((i-1)*seg_step+1 :

i*seg_step+overlap) = noisy_speechDe(:,i) +
denoised_speech((i-1)*seg_step+1 : i*seg_step+overlap);
end

else %threshod the selected level by (s or h)

selected_lev = inputdlg({'Enter a list of
numbers (number of levels for thresholding)separated by
spaces or commas','Enter the crresponding
thresholds'},'Wavelet coefficient thresholding');

LEV = str2num(selected_lev{1});
T = str2num(selected_lev{2});

denoised_speech = zeros(sp_len,1);

for i = 1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+1 :

i*seg_step+overlap);

noisy_speechW(:,i) = window.*sp_Seg(:,i);

[Cad_seg , L] =
wavedec(noisy_speechW(:,i),level,wavename);

Cdet_seg = detcoef(Cad_seg , L , 1);
Capp = appcoef(Cad_seg,L,wavename,1);
sigma_seg = median(abs(Cdet_seg))/0.6745;
thr_seg = sigma_seg*sqrt(2*log(length(sp_Seg(:,i))));

Cad_thr_seg = wthcoef('t' , Cad_seg , L , LEV
,T,s_or_h);

denoised_seg = waverec(Cad_thr_seg,L,wavename);

denoised_seg(:,i) = denoised_seg;
noisy_speechDe(:,i) = denoised_seg (:,i).*dewindow;
denoised_speech((i-1)*seg_step+1 :

i*seg_step+overlap) = noisy_speechDe(:,i) +
denoised_speech((i-1)*seg_step+1 : i*seg_step+overlap);
end

end
%----------

%----------
%3.4.a.4 - Interval-dependent thresholding
case 4

x1 = menu('Interval-dependent
denoising:','Interval-dependent denoising based on
variance change');



num_int = inputdlg({'Enter the number of
intervals'} ,'Number of intervals' , 1 ,{'1'});

nb_int = str2num(num_int{1});
denoised_speech = zeros(sp_len,1);

for i = 1 : Nseg
sp_Seg(:,i) = noisy_speech((i-1)*seg_step+1 :

i*seg_step+overlap);

noisy_speechW(:,i) = window.*sp_Seg(:,i);

[denoised_seg,Cad_thr_seg,thrParamsOut_seg,int_DepThr_Cel
l_seg,BestNbOfInt_seg] =
cmddenoise(noisy_speechW(:,i),wavename,level,s_or_h,nb_in
t);

denoised_seg = denoised_seg';
denoised_seg0(:,i) = denoised_seg;
noisy_speechDe(:,i) = denoised_seg0(:,i).*dewindow;
denoised_speech((i-1)*seg_step+1 :

i*seg_step+overlap) = noisy_speechDe(:,i) +
denoised_speech((i-1)*seg_step+1 : i*seg_step+overlap);
end

%

end

[Cad_thr , L] =
wavedec(denoised_speech,level,wavename);

case 2

switch gbl_or_lvd
%----------
%3.4.a.1 - gbl : global thresholding
case 1

%----------
%4.4.a - Reconstruct the signal from thresholded
coefficients

[denoised_speech ,Cad_thr , L_thr ,
L2norm_recovery , cmp_score] = wdencmp('gbl' , Cad , L ,
wavename , level,thr , s_or_h , KeepApp);

L2norm_recovery ,cmp_score
%----------

%----------
%3.4.a.2 - lvd : level-dependent thresholding



case 2
THR_setManual = menu('Choose the thresholds (only

details coefficients) for level-dependet
thresholding','Manual setting','Based on threshold
selection rules');

if ~(THR_setManual-1)
THR_dlg = inputdlg({'Enter a list of thresholds

seperated by commas'},'Thresholds setting for level-
dependent')

THR = str2num(THR_dlg{1});

else

%----------
%3.4.a.2.1 - Choose the noise model
noise_mod_menu = menu('Noise model','Unscaled

white noise','Scaled white noise','Non-white noise');
noise_model = {'one' , 'sln' , 'mln'};
SCAL = noise_model(noise_mod_menu);
f =char(SCAL{1})
%----------
%3.4.a.2.2 - Chooose the threshold selection rule
thrrule = menu('Threshold selection

rule','rigrsure' ,'heursure' , 'sqtwolog' , 'minimaxi');
%----------
%3.4.a.2.3 - Calculate the threshold vector
switch thrrule

case 1
THR= wthrmngr('dw1ddenoLVL' ,'rigrsure',Cad , L

,f);
case 2

THR= wthrmngr('dw1ddenoLVL' ,'heursure',Cad , L
,f);

case 3
THR= wthrmngr('dw1ddenoLVL','sqtwolog',Cad , L

,f);
case 4

THR= wthrmngr('dw1ddenoLVL' ,'minimaxi',Cad , L
,f);

end
%----------
end

%----------

%----------
%4.4.a - Reconstruct the signal from the thresholded
coefficients

[denoised_speech ,Cad_thr , L_thr ,
L2norm_recovery , cmp_score] = wdencmp('lvd' , Cad , L ,
wavename ,level , THR , s_or_h);



%----------

%----------
%3.4.a.3 selected level thresholding (only details

coefficients)
case 3

%----------
%3.4.a.3.1 - Choose selcted level thresholding

methology
x = menu('detail coeficients

thresholding:','thresholding the details for a given set
of level by forceing all coefficients to be
zero','thresholding the details for a given set of level
by using soft or hard thresholding function');

if ~(x-1) %set all coeff's of selected level to
zero

selected_lev = inputdlg({'Enter a list of
numbers (number of levels for thresholding)separated by
spaces or commas'},'Wavelet coefficient thresholding');

LEV = str2num(selected_lev{1});
Cad_thr = wthcoef('d' , Cad , L , LEV);%1<=

N(i)<=length(L)-2
else %threshod the selected level by (s or h)

selected_lev = inputdlg({'Enter a list of
numbers (number of levels for thresholding)separated by
spaces or commas','Enter the crresponding
thresholds'},'Wavelet coefficient thresholding');

LEV = str2num(selected_lev{1});
T = str2num(selected_lev{2});

Cad_thr = wthcoef('t' , Cad , L , LEV ,T,s_or_h);
end
%----------

%----------

%----------
%4.4.a - Reconstruct the signal from the thresholded
coefficients

denoised_speech = waverec(Cad_thr,L,wavename);
%----------

%----------
%3.4.a.4 - Interval-dependent thresholding
case 4

x1 = menu('Interval-dependent
denoising:','Interval-dependent denoising based on
variance change','Manual setting for intervals and its
thresholds');

if ~(x1-1)
num_int = inputdlg({'Enter the number of

intervals'} ,'Number of intervals' , 1 ,{'1'});



nb_int = str2num(num_int{1});

[denoised_speech,Cad_thr,thrParamsOut,int_DepThr_Cell,Bes
tNbOfInt] =
cmddenoise(noisy_speech,wavename,level,s_or_h,nb_int);

denoised_speech = denoised_speech';

else
cel = cell(1,level);
def = cell(1,level);
for w0 = 1 :level

cel{w0} = strcat('level',' '
,num2str(w0));

def{w0} = strcat('start , end , thr ;
...');

end
options.Resize = 'on';
THR_int_dep = inputdlg(cel,'Threshold setting

for interval-dependent thresholding',level,def,options);
for w1 = 1:level
f = str2num(THR_int_dep{w1});
cel{w1} = f;
end
Cad_thr =

cadthrCompute(cel,Cad,L,level,s_or_h);

denoised_speech =
cmddenoise(noisy_speech,wavename,level,s_or_h,NaN,cel);

denoised_speech = denoised_speech';
end

%----------
%4.5.a - Reconstruct the approximation and detail signals
from wavelet thresholded decomposition

App_den_sig = wrcoef('a', Cad_thr , L ,
wavename , level);

ReconstructArray_densig{1} = App_den_sig;
for k0 = level : -1 : 1

Det_den_sig  = wrcoef('d' , Cad_thr , L ,
wavename , k0);

ReconstructArray_densig{k0+1} =
Det_den_sig;

end
end
end

case 2 %DWP
%----------

%2.2.a - Set the number of level decomposition and the
wavelet function name



lev_wname = inputdlg({'Enter the number of decomposition
levels','Enter the wave name : dbN'},'Number of level and
wavename');
level = str2num(lev_wname{1});
wavename = lev_wname{2};
%----------
%2.3.a - Find the wavelet and scaling functions
[W , xval_dbn] = wpfun(wavename ,7);
%----------
%2.4.a - Find the wavelet and scaling filters
[Lo_d , Lo_r] = wfilters(wavename , 'l')
Hi_r = qmf(Lo_r)
Hi_d = wrev(Hi_r)

sum_Hi_d = sum(Hi_d);
sum_Lo_d = sum(Lo_d);

Nextpow2_Lo_d = nextpow2(length(Lo_d));
Nextpow2_Hi_d = nextpow2(length(Lo_d));
Nextpow2_Lo_r = nextpow2(length(Lo_r));
Nextpow2_Hi_r = nextpow2(length(Lo_r));

fftLo_d = fft(Lo_d,2^Nextpow2_Lo_d);
fftHi_d= fft(Hi_d,2^Nextpow2_Hi_d);
fftLo_r = fft(Lo_r,2^Nextpow2_Lo_r);
fftHi_r= fft(Hi_r,2^Nextpow2_Hi_r);
%----------
%2.5.a - Decompose the noisy signal at a given level
using the wavelet filters
wpt = wpdec(noisy_speech ,level , wavename);
%----------
cfs_cell = cell(1,level);
rcfs_cell = cell(1,level);
for i = 1 :level+1

for j = 0 : (2^level)-1
node(1) = i-1;
node(2) = j;

cfs_cell{i} = wpcoef(wpt,[node(1),node(2)]);
rcfs_cell{i} = wprcoef(wpt,[node(1),node(2)]);

end
end
%----------
det_first_scl = wpcoef(wpt,[1 1]);
sigma_stdNoise = median(det_first_scl)/0.6745;
alpha = 2
thr = wpbmpen(wpt,sigma_stdNoise,alpha);
setting = menu('Set the values of (threshold value , soft
or hard thresholding function , KeepApp)','setting');

thr_str = num2str(thr);
def_thr_s_1 = {thr_str,'s','1'};



thr_sorh_k = inputdlg({'Enter the value of
threshold','Enter the type of thresholding function soft
or hard s or h','threshold the approximation 1 or
0'},'Setting parameters',1,def_thr_s_1);

thr = str2num(thr_sorh_k{1});
s_or_h = thr_sorh_k{2};
KeepApp = str2num(thr_sorh_k{3});

NT = wpthcoef(wpt,KeepApp,s_or_h,thr);
denoised_speech = wprec(NT);

%denoised_speech =
wpdencmp(wpt,s_or_h,'nobest',thr,KeepApp);
%----------

%----------
fig7 = figure('name' , strcat('The ',wavename,'

Wavelet Packets'),'Color','w');
%----------

[ d_str , moment_str] = strread(wavename , '%s %s' ,
'delimiter' , 'b');

moment = str2num(moment_str{1});
for wfun=1:8

subplot(2,4,wfun); axis tight;
plot(xval_dbn,W(wfun,:));
xlabel(strcat('W',num2str(wfun-1)));
xlim([0,(2*moment)-1]);

end
title(strcat('The ',wavename,' Wavelet Packets'));

%----------
fig8 = figure('name' , 'filters and fft of

filters','Color','w');
%----------

subplot(421); axis tight ;
stem(Lo_d,'r');title('Decomposition low pass filter');
subplot(422); axis tight ;
stem(Hi_d,'r');title('Decomposition high pass filter');
subplot(423); axis tight ;
stem(Lo_r,'b');title('Reconstruction low pass filter');
subplot(424); axis tight ;
stem(Hi_r,'b');title('Reconstruction high pass filter');

subplot(425); axis tight
Freq_Lo_d = (2*pi)/(2^Nextpow2_Lo_d)
:(2*pi)/(2^Nextpow2_Lo_d) : pi ;
fa_ld = abs(fftLo_d(1:(2^(Nextpow2_Lo_d)/2)));
plot(Freq_Lo_d,fa_ld);title('FFT of analysis low pass
filter');
xlim([(2*pi)/(2^Nextpow2_Lo_d) , pi+0.5]);



subplot(426); axis tight
Freq_Lo_r = (2*pi)/(2^Nextpow2_Lo_r)
:(2*pi)/(2^Nextpow2_Lo_r) : pi ;
fa_hr = abs(fftLo_r(1:(2^(Nextpow2_Lo_r)/2)));
plot(Freq_Lo_r,fa_hr);title('FFT of synthesis low pass
filter');
xlim([(2*pi)/(2^Nextpow2_Lo_r) , pi+0.5]);

subplot(427); axis tight
Freq_Hi_d = (2*pi)/(2^Nextpow2_Hi_d)
:(2*pi)/(2^Nextpow2_Hi_d) : pi ;
fa_ld = abs(fftHi_d(1:((2^Nextpow2_Hi_d)/2)));
plot(Freq_Hi_d,fa_ld);title('FFT of analysis high pass
filter');
xlim([(2*pi)/(2^Nextpow2_Hi_d) , pi+0.5]);

subplot(428); axis tight
Freq_Hi_r = (2*pi)/(2^Nextpow2_Hi_r)
:(2*pi)/(2^Nextpow2_Hi_r) : pi ;
fa_hr = abs(fftHi_r(1:((2^Nextpow2_Hi_r)/2)));
plot(Freq_Hi_r,fa_hr);title('FFT of synthesis high pass
filter');
xlim([(2*pi)/(2^Nextpow2_Hi_r) , pi+0.5]);
end

%----------
%4.6.a/b - Plotting illustration

%----------
fig9 = figure('name' , 'thresholding function

illustration','Color','w');
%----------

lin_fun = linspace(-0.5 , 0.5 , 100);
lin_fun_s = wthresh(lin_fun , 's' , thr);
lin_fun_h = wthresh(lin_fun , 'h' , thr);
subplot(131); plot(lin_fun,lin_fun,'k'); title('Original
function');
subplot(132); plot(lin_fun,lin_fun_s,'b'); title('Soft
thresholded function');
text(thr , -0.05 , [ strcat('(',num2str(thr),',') ,
strcat(num2str(0),')')],'Color' ,
'b','HorizontalAlignment','center')
subplot(133); plot(lin_fun,lin_fun_h,'r'); title('Hard
thresholded function');
text(thr , -0.05 , [ strcat('(',num2str(thr),',') ,
strcat(num2str(0),')')],'Color' ,
'r','HorizontalAlignment','center')
for fig = 1 : 3

subplot(1,3,fig)
xlabel('coefficients before thresholding');



ylabel('coefficients after thresholding');
end
shg

switch c
case 1

%----------
fig10 = figure('name' , 'clear , Noisy and Denoised

speech signals','Color','w');
%----------

subplot(2,4,1:2); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech ,'r');
xlabel('Time(s)'); ylabel('Amplitude');
title('Noisy speech signal');

subplot(2,4,3:4); axis tight;
plot([1:length(denoised_speech)]/Fs ,
denoised_speech,'k');
xlabel('Time(s)'); ylabel('Amplitude');
title('De-noised speech signal');

subplot(2,4,6:7); axis tight;
residual = denoised_speech - clear_speech;
plot([1:length(denoised_speech)]/Fs , residual,'g');
xlabel('Time(s)'); ylabel('Amplitude');
title('Residual signal');

%----------
fig11 = figure('name' , 'clear , Noisy and Denoised

speech signals','Color','w');
%----------

subplot(211); axis tight;
plot([1:length(clear_speech)]/Fs , clear_speech ,'b');
xlabel('Time(s)'); ylabel('Amplitude');
title('Clear and denoised speech signals');
hold on;
plot([1:length(denoised_speech)]/Fs ,
denoised_speech,'k');
legend('clear speech' , 'denoised speech');

subplot(212); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech ,'r');
xlabel('Time(s)'); ylabel('Amplitude');
title('noisy and denoised speech signals');
hold on;
plot([1:length(denoised_speech)]/Fs ,
denoised_speech,'k');
legend('noisy speech' , 'denoised speech');



%----------
fig12 = figure('name' , 'correlation','Color','w');
%----------

subplot(211); axis tight;
[xcor_bef , lag_bef] = crosscorr(clear_speech ,
noisy_speech);
xc_bef = xcor_bef(21);
plot(lag_bef , xcor_bef);
xlabel('lag'); ylabel('sample cross correlation');
title('correlation between clear signl and noisy
signal');

subplot(212); axis tight;
[xcor_aft,lag_aft] = crosscorr(clear_speech ,
denoised_speech);
xc_aft = xcor_aft(21);
plot(lag_aft , xcor_aft);
xlabel('lag'); ylabel('sample cross correlation');
title('correlation between clear signl and denoised
signal');

%----------
fig13 = figure('name' , 'power

distribution','Color','w');
%----------

Npow2 = pow2(nextpow2(length(denoised_speech)));
denoised_speech_pad = fft(denoised_speech , Npow2);
noisy_speech_pad = fft(noisy_speech , Npow2);
clear_speech_pad = fft(clear_speech , Npow2);

freq_range = (0:(Npow2 - 1))*(Fs/Npow2);

power_denoised_speech =
denoised_speech_pad.*conj(denoised_speech_pad)/Npow2;
power_noisy_speech =
noisy_speech_pad.*conj(noisy_speech_pad)/Npow2;
power_clear_speech =
clear_speech_pad.*conj(clear_speech_pad)/Npow2;

subplot(131); axis tight;
plot(freq_range , power_denoised_speech);
xlabel('frequency Hz'); ylabel('power');
title('power distribution of denoised speech signal');

subplot(132); axis tight;
plot(freq_range , power_noisy_speech);
xlabel('frequency Hz'); ylabel('power');
title('power distribution of noisy speech signal');



subplot(133); axis tight;
plot(freq_range , power_clear_speech);
xlabel('frequency Hz'); ylabel('power');
title('power distribution of clear speech signal');

%----------
fig14 = figure('name' , 'Spectrograms','Color','w');
%----------

subplot(131);
spectrogram(clear_speech);ylabel('Time(ms)');
title('Spectrogram of clear speech')
subplot(132);
spectrogram(noisy_speech);ylabel('Time(ms)');
title('Spectrogram of noisy speech')
subplot(133);
spectrogram(denoised_speech);ylabel('Time(ms)');
title('Spectrogram of denoised speech')
figx = figure('name' , 'Spectrograms of noisy and
denoised speech signals','Color','w');
subplot(311);
plot([1:length(noisy_speech)]/Fs , noisy_speech ,'r');
xlabel('Time(s)'); ylabel('Amplitude');
title('noisy and denoised speech signals');
hold on;
plot([1:length(noisy_speech)]/Fs , denoised_speech,'k');
subplot(312);
spectrogram(noisy_speech,'yaxis');
xlabel('Time(ms)')
title('Spectrogram of noisy speech signal')
subplot(313);
spectrogram(denoised_speech,'yaxis');
xlabel('Time(ms)')
title('Spectrogram of de-noised speech signal')

if(c1-1)

%----------
fig15 = figure('name','Wavelet Packet

Spectrum','Color','w');
%----------

subplot(131);
[spect_noisy_coef,Time0,Frequency0] =
wpspectrum(wpt,Fs,'plot');
title('Wavelet Packet Decomposition of Noisy Speech')
subplot(132);
[spect_denoised_coef,Time1,Frequency1] =
wpspectrum(NT,Fs,'plot');
title('Wavelet Packet Decomposition of Denoised Speech')
subplot(133);



wpt_c = wpdec(clear_speech ,level , wavename);
[spect_clear_coef,Time2,Frequency2] =
wpspectrum(wpt_c,Fs,'plot');
title('Wavelet Packet Decomposition of Clear Speech')
else

%----------
fig15 = figure('name' , 'Absolute coefficients of

DWT','Color','w');
%----------

[Cad_clear , L] = wavedec(clear_speech,level,wavename);

len = length(clear_speech);
cfd1 = zeros(level,len);
cfd2 = zeros(level,len);
cfd3 = zeros(level,len);
for k0 = 1 : level

d_1 = detcoef(Cad_clear,L,k0);
d_2 = detcoef(Cad,L,k0);
d_3 = detcoef(Cad_thr,L,k0);
d_1 = d_1(:)';
d_2 = d_2(:)';
d_3 = d_3(:)';
d_1 = d_1(ones(1,2^k0),:);
d_2 = d_2(ones(1,2^k0),:);
d_3 = d_3(ones(1,2^k0),:);
cfd1(k0,:) = wkeep1(d_1(:)',len);
cfd2(k0,:) = wkeep1(d_2(:)',len);
cfd3(k0,:) = wkeep1(d_3(:)',len);

end
cfd1 = cfd1(:);
cfd2 = cfd2(:);
cfd3 = cfd3(:);
I1 =find(abs(cfd1)<sqrt(eps));
I2 =find(abs(cfd2)<sqrt(eps));
I3 =find(abs(cfd3)<sqrt(eps));
cfd1(I1) = zeros(size(I1));
cfd2(I2) = zeros(size(I2));
cfd3(I3) = zeros(size(I3));
cfd1 = reshape(cfd1,level,length(denoised_speech));
cfd2 = reshape(cfd2,level,length(denoised_speech));
cfd3 = reshape(cfd3,level,length(denoised_speech));
%Plot abs. of DWT
subplot(321);
plot(clear_speech); title('Clear speech signal');
subplot(322);
image(flipud(wcodemat(cfd1,255,'row')));
colormap(pink(255));
set(gca,'yticklabel',[]);
title('Absolute coefficients of DWT for clear speech');
ylabel('Level');



subplot(323);
plot(noisy_speech); title('Noisy speech signal');
subplot(324);
image(flipud(wcodemat(cfd2,255,'row')));
colormap(pink(255));
set(gca,'yticklabel',[]);
title('Absolute coefficients of DWT for noisy speech');
ylabel('Level');

subplot(325);
plot(denoised_speech); title('Denoised speech signal');
subplot(326);
image(flipud(wcodemat(cfd3,255,'row')));
colormap(pink(255));
set(gca,'yticklabel',[]);
title('Absolute coefficients of DWT for denoised
speech'); ylabel('Level');
end

%----------
fig16 = figure('name' , 'Histograms','Color','w');
%----------

x_bar = -1.5:0.05:1.5;
subplot(231);rng(0,'twister');
hist(clear_speech,x_bar);
title('Histogram of clear speech')
subplot(234);
n_1 = histc(clear_speech,x_bar);
cum_1 = cumsum(n_1);
bar(x_bar,cum_1,'BarWidth',1);
title('Cumulative histogram of clear speech')
subplot(232);rng(0,'twister');
hist(noisy_speech,x_bar);
title('Histogram of noisy speech')
subplot(235);
n_2 = histc(noisy_speech,x_bar);
cum_2 = cumsum(n_2);
bar(x_bar,cum_2,'BarWidth',1);
title('Cumulative histogram of noisy speech')
subplot(233);rng(0,'twister');
hist(denoised_speech,x_bar);
title('Histogram of denoised speech')
subplot(236);
n_3 = histc(denoised_speech,x_bar);
cum_3 = cumsum(n_3);
bar(x_bar,cum_3,'BarWidth',1);
title('Cumulative histogram of denoised speech')

%----------



fig17 = figure('name' , 'Statistics of residual
signal','Color','w');

%----------

%struct_statistic =
struct('mean',mean(residual),'median',median(residual),'s
td',std(residual),'var',var(residual),'L1_norm',sum(abs(r
esidual)),'L2_norm',sum(abs(residual).^2));
data_colm =
{'mean','median','std','var','L1_norm','L2_norm'};
data_statistic =
[mean(residual),median(residual),std(residual),var(residu
al),sum(abs(residual)),sum(abs(residual).^2)];
x_bar = -1:0.005:1;
subplot(4,2,1:2);
plot(residual); axis tight;
subplot(4,2,3);
hist(residual,x_bar);
title('Histogram of residual signal')
subplot(4,2,4);
n_4 = histc(residual,x_bar);
cum_4 = cumsum(n_4);
bar(x_bar,cum_4);
title('Cumulative histogram of residual signal')
subplot(4,2,5);
[auto_cor,lag_auto] = xcorr(residual,'coeff');
plot(lag_auto,auto_cor);
title('Auto-correlation of residuals')
subplot(4,2,6);
residual_pad = fftshift(fft(residual , Npow2));
plot(freq_range , residual_pad);
title('FFT of residual signal')
subplot(4,2,7:8);
axis off
tab =
uitable(fig17,'Data',data_statistic,'ColumnName',data_col
m,'RowName','Res.','Position',[40 40 650 70]);

case 2

%----------
fig18 = figure('name' ,'Noisy and Denoised recorded

speech signals','Color','w');
%----------

subplot(211); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech,'r');
xlabel('Time(s)'); ylabel('Amplitude');
title('noisy recorded speech signals');
legend('noisy recorded speech');



subplot(212); axis tight;
plot([1:length(noisy_speech)]/Fs , noisy_speech,'r');
xlabel('Time(s)'); ylabel('Amplitude');
title('Noisy and De-noised speech signal');
hold on;
plot([1:length(denoised_speech)]/Fs ,
denoised_speech,'k');
legend('noisy speech' , 'denoised speech');

%----------
fig19 = figure('name' , 'power

distribution','Color','w');
%----------

Npow2 = pow2(nextpow2(length(denoised_speech)));
denoised_speech_pad = fft(denoised_speech , Npow2);
noisy_speech_pad = fft(noisy_speech , Npow2);

freq_range = (0:(Npow2 - 1))*(Fs/Npow2);

power_denoised_speech =
denoised_speech_pad.*conj(denoised_speech_pad)/Npow2;
power_noisy_speech =
noisy_speech_pad.*conj(noisy_speech_pad)/Npow2;

subplot(121); axis tight;
plot(freq_range , power_denoised_speech);
xlabel('frequency Hz'); ylabel('power');
title('power distribution of denoised speech signal');

subplot(122); axis tight;
plot(freq_range , power_noisy_speech);
xlabel('frequency Hz'); ylabel('power');
title('power distribution of noisy recorded speech
signal');
end

%----------
%4.7.a - Playing denoised speech
switch c

case 1
sound(clear_speech , Fs); pause((length(clear_speech)/Fs)
+ 2 )
sound(noisy_speech , Fs); pause((length(clear_speech)/Fs)
+ 2 )
sound(denoised_speech , Fs);

case 2
sound(noisy_speech , Fs); pause((length(noisy_speech)/Fs)
+ 2 )
sound(denoised_speech , Fs);



end

tilefigs
%----------
%% Stage 4:
% 5.1.a - Performance measurements
% 5.1.a.1 - Mean Square Error (MSE)
% 5.1.a.2 - Signal to Noise Ratio (SNR)
% 5.2.a - Plotting of curve measurements

%----------
%5.1.a - Performance measurements

%----------
%5.1.a.1 - Mean Square Error (MSE)
if ~(c-1)
MSE_in = mean(sum((clear_speech - noisy_speech).^2));
MSE_out = mean(sum((clear_speech - denoised_speech).^2));
%----------
%5.1.a.2 - Signal to Noise Ratio (SNR)
SNR_out =
10*log(mean(abs(clear_speech.^2))/mean(abs((clear_speech-
denoised_speech).^2)));
%----------
msg3 = msgbox({strcat('MSE_in is ',num2str(MSE_in),'  and
MSE_out is ',num2str(MSE_out)),'',strcat('SNR_in is
',num2str(snrval),'  and  SNR_out
is',num2str(SNR_out))});
end
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Appendix C

Wiener Filtering

The goal of the Wiener filter is to compute a statistical estimate of an unknown

signal using a related signal as an input and filtering that known signal to produce the

estimate as an output. For example, the known signal might consist of an unknown

signal of interest that has been corrupted by additive noise. The Wiener filter can be

used to filter out the noise from the corrupted signal to provide an estimate of the

underlying signal of interest.

The design of the Wiener filter takes a different approach. One is assumed to have

knowledge of the spectral properties of the original signal and the noise, and one

seeks the linear time-invariant filter whose output would come as close to the original

signal as possible. The assumption is that the signal and additive noise are stationary

linear stochastic processes with known spectral characteristics or known

autocorrelation and cross-correlation. The requirement is that the filter must be

physically realizable/causal (this requirement can be dropped, resulting in a non-

causal solution). The performance criterion is the minimum mean-square

error (MMSE).[29]

Block diagram of Wiener filtering

From the above block diagram, the equation that describe the wiener filtering as
follows

 1̃ 2̃ 3

+ Wiener Filter
h(n)s(n)

y(n) ̃
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Where is the clear speech signal,  is the additive noise, is the noisy
speech signal, is the impulse response of wiener filter, ̃ is the de-noised
speech signal and is the error signal.

Based on the assumption that the speech signal  and the additive noise signal are
uncorrelated stationary random process then the wiener filter frequency response is4
Where is the transfer function of the wiener filter, is the clear speech
power spectrum and is the noise power spectrum.

For the additive white gaussian noisy signal with length equal to L and variance noise
equal to  then.  5

. 6
To estimate the variance of the noise, the following estimation can be used based on
wavelet transform

,.
where , is the details wavelet coefficient sequence of the noisy signal on first level.

Matlab code for wiener filtering:

[Cad,L] = wavedec(y,1,'db8');
sigma = median(abs(detcoef(Cad,L,1)))/0.6745;

FFT_s = fft(s);% FFT of clear speech signal
FFT_y = fft(y);% FFT of noisy speech signal

Power_s = abs(FFT_s.*FFT_s);% Power density of clear
speech signal

H = Power_s./(Power_s+ sp_len*sigma^2);% Wiener filter

FFT_den = FFT_y.*H;% FFT of de-noised speech signal

Power_err = abs((FFT_s - FFT_y).*(FFT_s - FFT_y));%
Estimate of noise power density

denoised_speech = real(ifft(FFT_den));% denoised speech
signal
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