Palestine Polytechnic University

College of Engineering \& Technology

Civil and Architectural Engineering Department

Surveying and Geomatics Engineering

Graduation Project

GPS Height Integration

By
Fadi Najajrah
Fahid Tarayrah
Murad Talahmeh

Supervisor:
M.Sc. Ghadi Zakarneh

Hebron-Palestine
May-2007

Palestine Polytechnic University

College of Engineering \& Technology
Civil and Architectural Engineering Department

Graduation Project

GPS Height Integration

By

Fadi Najajrah
Fahid Tarayrah
Murad Talahmeh

Supervisor

M.Sc. Ghadi Zakarneh

Hebron-Palestine

May-2007

CERTIFICATION

Palestine polytechnic university

Hebron-Palestine

GPS Height Integration

Project Team

Fadi Najajrah
Fahid Tarayrah
Murad Talahmeh

By the guidance of our supervisor, and the approval of members of testing committee, this project is delivered to the department of civil and architectural engineering, in the college of engineering and technology to be as partial fulfillment of the requirements of the department for the degree of B.Sc in surveying and geomatics engineering.

Supervisor signature Head of dep. Signature:
Name: \qquad Name: \qquad

Committee member's signature:
Name: \qquad Name: \qquad Name: \qquad

Hebron- Palestine
May-2007

الإلداء

اللى روح الاب و المـلم و القائد الشهـيا ابو عمـار رحمه اللّه... إلى روح الأستـاذ كمـال غطاشـة رحمـه الله ... إلى الأين ساروا مـع الفجر ليخطوا لنـا طريق الحرية .
 إلى نبع الحنان و المحبة أمي الحبيبة إلى نبع البذلّ و العطاء ... أبي الحبيب

 إلى الأين حملو أرو احهم على اكفهم من اجل وطنهـم ... إلى حبييتي" "فلسطين"'... إلى كل الأوفياء و المخلصين... إلى طلاب جامعة بوليتكنيك فلسطين من إخوتنا و أخو اتنا ... من خالفنا منهم الر أي أو من اتفق معنا وانطلق لآفاق التجدد و الإبداع.

نهـيهم جمعيا هذا العمل المتواضع .
"قلّ إن صلاتـي ونسكي ومحياي وممـانـي الله رب العالمين"

Acknowledgment

$$
\begin{aligned}
& \text { بداية نـحمد الله العزيز القادر الأي بحمده تدوم النعم } \\
& \text { نتقّم بأرفع آيات الثشكر والامتنـان إلى جامعة بوليتكنك فلسطين } \\
& \text { و الى كلية الهندسة } \\
& \text { دائرة الهندسة المدنية و المعمـارية } \\
& \text { إلى هيئة التتريس في الجامعة } \\
& \text { إلى مدرسي هندسة المساحة } \\
& \text { ونخص بالأكر الاستتاذ مـاهر العويوي } \\
& \text { والمهندس اشرف زبن و المهندس معتز فقيشة } \\
& \text { وشكر خاص إلى رئيس الدائرة الاكتور نبيل ألجولاني } \\
& \text { و الى نبع العطاء المستمر ...الأستاذ المهندس } \\
& \text { غادي زكا رنـة } \\
& \text { والىى كل الذين قدمو النـا العون و المسـاعدة . }
\end{aligned}
$$

Abstract

 GPS Height Integration

 GPS Height Integration

 Project team

 Project team
 \author{ Fadi Najajrah

 Fahid Tarayrah
 Murad Talahmeh}

Project supervisor

M.Sc. Ghadi Zakarneh

This project aims to find a geoid model for $10 * 10 \mathrm{~km}$ area in Hebron city, using at least twenty reference point, with known ($\mathrm{E}, \mathrm{N}, \mathrm{H}$) coordinate from traditional survey to a polynomial estimation for the geoid.

The model using reference points will be built using polynomials of different degrees ($1^{\text {st }}, 2 \mathrm{~d}, 3 \mathrm{~d}, 4$ th) this model will be compared to the global geoid model (EGM 96) with spherical harmonics representing the equipotential surface (Gravimetric Geoid model).

TABLE OF CONTENT

Chapter Zero.	Subject	page no.

Title I
Certification II
Dedication III
Acknowledgment IV
Abstract (English) V
Table of content VI
List of tables IX
List of figures X
Chapter 1: Introduction
1.1 Back ground 1
1.2 Objective 2
1.3 Methodology 3
$1.4 \quad$ Study area 4
1.5 Previous studies 5
1.6 Problems and limitations 5
1.7 Equipment necessary to carryout a GPS survey 5
$1.8 \quad$ Schedule and time planning 6
Chapter 2: Global Positioning Systems
2.1 Introduction 9
2.2 Definition of the GPS 9
2.3 GPS Civil Applications 10
2.4 GPS Segments 11
2.4.1 The Control Segment 11
2.4.2 The Space Segment 12
2.4.3 User segment 13
2.5 The Principle of GPS positioning 14
2.6 GPS signals 16
2.7 GPS Error Budget 17
2.7.1 Satellite position and clock timing errors 17
2.7.2 Ionosphere and troposphere refraction 17
2.7.3 Mask Angle 19
2.7.4 Receiver noise or electronic noise 20
2.7.5 Multi-Path Errors 20
2.7.6 Selective Availability 21
2.7.7 Dilution of Precision(DOP) 21
2.8 GPS positioning modes 23
2.8.1 Absolute positioning 23
2.8.2 Differential GPS (Differential or relative GPS) 25
2.8.2.1 Static GPS Survey Techniques 27
2.8.2.2 Fast Static Surveying Techniques 27
2.8.2.3 RTK Surveying Techniques 28
2.9 GPS Reference system 28
2.10 Other Satellite Navigation Systems 32
2.10.1 GLONASS satellite system 32
2.10.2 Chinese regional satellite navigation system 34
2.10.3 Galileo system 35
Chapter 3: Physical Geodesy
3.1 Introduction 38
3.2 Gravitational Fields of Simple Mass Distributions 38
3.2.1 Newton's Law 38
3.3 Laplace's Equation 41
3.4 Gravity field of the earth 46
3.4.1 Introduction 46
3.4.2 Gravity measurements 48
3.4.3 Normal gravity of the earth 49
3.4.4 Gravity field anomalies 53
3.5 Harmonic expansion of the earth gravity field 55
3.5.1 Introduction 55
3.5.2 Normal potential 58
3.5.3 Anomalies 59
3.5.4 Methods for determining Harmonic coefficients 60
3.6 Global Gravitational Model (GGM) 61
Chapter 4: Geoid Model
4.1 Introduction 65
4.2 Geoid model 67
4.2.1 Introduction 67
4.2.2 Global Geoid Model 67
4.2.3 Gravimetric Geoid (stocks formula) 69
4.2.4 Polynomial representation 72
4.3 Area definition 75
Chapter 5: Introduction
5.1 Introduction 77
5.2 Artificial data 79
5.3 Results of artificial data 80
5.3.1 Artificial result for zero order 80
5.3.2 Artificial result for first order 82
5.3.3 Artificial result for second order 85
5.3.4 Artificial result for third order 88
5.4 Real data 94
5.5 Test of real data 96
5.5.1 Test of zero order 96
5.5.2 Test of first order 99
5.5.3 Test of second order 102
5.5.4 Test of third order 105
5.6 Accuracy testing 107
Chapter 6: conclusions and recommendations
6.1 Conclusions 109
6.2 Recommendations 110
References 111
Appendix

List of Tables

Table Page no
Table 1.1: \quad Time tabel 6
Table 2.1: WGS84 geometric parameter 29
Table 2.2: Shows a comparison between GPS and GLONASS 34
Table 3.1: Recursive formulas for Legendre functions 43
Table 3.2: Recursive formulas for normalized Legendre functions 44
Table 3.3: Explicit expressions of Legendre functions to degree and order3 45
Table 3.4: The defining parameters of the GRS80 ellipsoid 50
Table 3.5: Examples of existing Geoid model 62
Table 3.6: Explained symbols in table 3.5 65
Table 5.1: Artificial data 79
Table 5.2: Real data 95
Table 5.3: RMSE for zero order 98
Table 5.4: RMSE for first order 101
Table 5.5: RMSE for second order 104
Table 5.6: RMSE for third order 106
Table 5.7: Accuracy testing 107
Table A-1 EGM96 parameters A-1
IX

List of Figures

Figure no Page
Figure 1.1: \quad The relationship between H, h and N 2
Figure 1.2: Study area 4
Figure 1.3: Time planning 7
Figure 2.1: GPS segments 11
Figure 2.2: \quad Control Segment Station Locations 12
Figure 2.3: GPS satellite constellation 13
Figure 2.4: GPS satellite 13
Figure 2.5: Basic idea of GPS positioning 15
Figure 2.6 GPS Signal Structure 16
Figure 2.7: Ionosphere and Troposphere refraction 18
Figure 2.8: Mask Angle 20
Figure 2.9: Multi-Path Errors 21
Figure 2.10 Well spaced satellites Low uncertainty of position 22
Figure 2.11: Poorly spaced High uncertainty of position 22
Figure 2.12: Principle of GPS point positioning 24
Figure 2.13: Code observation using time measure 24
Figure 2.14: Phase Observation 25
Figure 2.15: Principle of GPS relative positioning 27
Figure 2.16: Translated and rotated 3D co-ordinate system 31
Figure 2.17: planed schedule for Galileo positioning system 36
Figure 3.1: Gravitational force of a point mass 39
Figure 3.2: Gravitational force, centrifugal force and gravity force 46
Figure 3.3: equipotential surface and plump line close to the earth 48
Figure 3.4: $\quad \phi$ the reduced latitude of $\bar{\phi}$ 52
Figure 3.5: Geoid versus the reference ellipsoid 53
Figure 3.6: The external gravitational potential of the earth 55
Figure 3.7: determining Harmonic coefficients using satellite altimeter 60
Figure 4.1: plump line perpendicular to the Geoid 65
Figure 4.2: the ellipsoid, Geoid, earth surface relationship 66
Figure 4.3: \quad spherical distance ψ 70
Figure 4.4: stocks formula (grid method) 71
Figure 5.1: The solution using the VB program for zero order 82
Figure 5.2: The solution using the VB program for first order 84
Figure 5.3: The solution using the VB program for second order 88
Figure 5.4: The solution using the VB program for third order 93
Figure 5.5: goid model for zero order 96
Figure 5.6: parameters for zero order 97
Figure 5.7: geoid model for first order 99
Figure 5.8: parameters for first order 100
Figure 5.9: geoid model for second order 102
Figure 5.10: parameters for first order 103
Figure 5.11: geoid model for third order 105
Figure 5.12: Accuracy testing 107
Figure C-1 Software Cods For HRS Parameters C-1
Figure C-2 Software Cods For N Calculations C-29

CHAPTER

1

INTRODUCTION

1.1 Background

1.2 Objectives

1.3 Methodology
1.4 Study area
1.5 Previous studies
1.6 Problems and limitations
1.7 Equipment necessary to carryout a GPS survey
1.8 Schedule and time planning

CHAPTER ONE

Introduction

1.1 Background

This project aims to find a geoid model for $10 * 10 \mathrm{~km}$ area in Hebron city, using at least twenty reference point, with known (E, N, H) coordinate from traditional survey to a polynomial estimation for the geoid.

Using GPS , $\lambda, \phi, h)$ will be measured for the reference points with respect to two different datum's, the first is the Palestine coordinate system with Clark ellipsoid, and the second is world geodetic system (WGS 84) or (GRS 80) .a height reference system nearly geoid is applied Using the ground surveying height H (orthometric height) and the GPS height that represent by heights above the ellipsoid.

The model using reference points will be built using polynomials of different degrees ($1^{\text {st }}, 2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{th}$) this model will be compared to the global geoid model (EGM 96) with spherical harmonics representing the equipotential surface (Gravimetric Geoid model).

1.2 Objectives

This project deals with visual basic program including data analysis to built a geoid model for $10 * 10 \mathrm{~km}$ area in Hebron city, this model depends on the difference between the oerthometric height and ellipsoidal height for the reference points.

The difference between the ellipsoid and the geoid at a point is called the geoidal separation or geoid undulation (N). Using Global Positioning System (GPS) measurements, the height of a point on the earth above the ellipsoid can be accurately measured. This height is called the ellipsoidal height or geodetic height (a geometric height) and it is normal to the ellipsoid. The elevation of a point on the earth is the height above the geoid; this height is the orthometric height. The relationship described in figure 1.1 and shown in equation 1.1:

$$
\begin{equation*}
\mathrm{H}=\mathrm{h}-\mathrm{N} \tag{1.1}
\end{equation*}
$$

Figure 1.1: The relationship between H, h and N

The project work will be achieved by the following steps:

1- Measurement of reference points coordinates for both systems, the Palestinian system (E, N, H) and the GPS system ($\lambda, \phi, \mathrm{h}$).
2- Modeling the geoid model as a polynomial estimation of the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ degree as required for the user of the software programmed in this project.
3- Applying the global geoid model (EGM) for the given area and it is comparison to the computed height reference system.

4- The end-user of the software will have the choice to select to use the computed height reference system or the global geoid model.
5- Two separate tools will be programmed; the first is the height reference system modeling tool, with ability to store results in different format like grid or polynomial parameters. The second tool is to calculate the height H for the newly GPS measured GPS point.

1.3 Methodology

This project has the following scope:
Chapter 1; Introduction to the project, objectives, and methodology.
Chapter 2; Introduction to GPS, Galileo, Glonass.
Chapter3; Introduction to local and gravity geoid model, global Geoid model and
Principle of gravity measurements, and height systems.
Chapter 4; modeling height reference surface.
Chapter 5; Results and testing.
Chapter 6; Conclusion and Recommendation.
Appendix; The EGM96 parameters up todegree 36.
Prove that the gravity potential satisfies Laplace equation.
Software code

1.4 Study area

The study area is definition by square that is one side is 10 KM in that contain Hebron city and a rounding area as shown in figure 1.2.

Figure 1.2: Study area

1.5 previous studies

In our university there is no previous study dealing with this project aims, there are many institutions in the world governmental or educational, ones that concern in producing Geoid models locally or globally for example EGM96. one of the previous study is the digital finite element height reference surface (DFHRS) research project of the hochschule karlsruhe university of applied sciences.

1.6 Problems and limitations

There is a problem present in this project due to:

- Lack of accurate coordinate for trig point, the accurate coordinate that covers this project doesn't available in the whole country, and the elevation of this trigs is not correct

1.7 Equipment necessary to carryout the survey

ß GPS Receiver with their accessories

The following list may be taken as a guide:

- GPS receiver, antenna and associated cabling.
- External batteries (including spares). Battery charger.
- Antenna tripod, tribrachs or adaptors for mounting antenna on pillars.
- Field books, access details, observation schedule instructions, etc.
- Useful ancillary equipment: camera, communications equipment.
ß Total Station

1.8 Schedule and time planning

Table 1.1: Timetable

Activities	Time(week)	Starting date (approximate)	Ending date (approximate)	Done (or not)
1- Problem definition	4	$20-9-2006$	$18-10-2006$	done
2- literature Review	2	$18-10-2006$	$2-11-2006$	done
3- data Collecting	6	$2-11-2006$	$17-12-2006$	done
4- data Editing	5	$17-12-2006$	$25-1-2007$	done
5-Preparing research plan	2	$25-1-2007$	$10-2-2007$	Not yet
6-Field work	3	$10-2-2007$	$1-3-2007$	Not yet
7-Formatting and editing	4	$1-3-2007$	$1-4-2007$	Not yet
8-Covering and printing	2	$1-4-2007$	$16-4-2007$	Not yet
9- Final report	29	$20-4-2007$	Final date	Not yet

Figure 1.3: Time planning

CHAPTER

1

INTRODUCTION

1.1 Background

1.2 Objectives

1.3 Methodology
1.4 Study area
1.5 Previous studies
1.6 Problems and limitations
1.7 Equipment necessary to carryout a GPS survey
1.8 Schedule and time planning

CHAPTER

2

GLOBAL POSITIONING SYSTEM (GPS)

2.1 Introduction

2.2 Definition of the GPS
2.3 GPS Civil Applications
2.4 GPS Segments
2.5 The Principle of GPS positioning
2.6 GPS signals
2.7 GPS Error Budget
2.8 GPS positioning modes
2.9 GPS Reference system
2.10 Other Satellite Navigation Systems

CHAPTER TWO

Global Positioning Systems
 GPS

2.1 Introduction

Since earliest times, man has concerned itself with where is he sat and where he is going. One of the earliest techniques that travelers used were simple rock cairns marking the trail, either for finding their way back, repeating their path, or for others to follow. A better method was the use of a clay tablet or piece of parchment which could be moved from one-person to another. These were the earliest maps. Today, we live in a world of precision. We expend great amounts of intellectual and monetary currency on ever-smaller units of measurement. Knowledge of where we are and where we are going has, for the past several thousand years, relied on highly trained and skilled surveyors. The science of surveying has achieved phenomenal levels of precision but, unfortunately, only for those very few whose needs have outweighed the ever-increasing cost necessary to achieve that precision.

2.2 Definition of the GPS

The Global Positioning System is a space-based navigation and positioning system that was designed by the U.S. Military to allow the soldiers to autonomously
determine their position within 10 to 20 meters accuracy without any other radio (or otherwise) communications.

The system provides worldwide coverage, and that the coverage be available 24 hours a day. At the same time, it had to be militarily safe, so that the U.S. Military had to have the ability to deny any hostiles' use of the system without degrading their own use.

The plane was that each soldier and each military vehicle will be equipped with a GPS receiver. Therefore, it was necessary that the receivers be sufficiently low in cost to meet this end.

2.3 GPS civil applications

Although GPS was originally envisioned for military use, it soon became obvious that there would be numerous civilian applications. Some of the civilian applications are:

1. Surveying,
2. Marine navigation,
3. Scientific,
4. Commercial,
5. Recreational uses,
6. Truck fleet management,
7. Control of construction, and
8. Monitoring of deformation.

2.4 GPS segments

The Global Positioning System consists of three major segments as follows:

1. Space Segment, the satellite or space vehicles.
2. Control Segment, ground station run by the DOD (Department Of Defense).
3. User segment, all users and there GPS receivers.

These three segments are illustrated in figure 2.1.

Figure 2.1: GPS segments. [2]

2.4.1 The control segment

The control segment of the Global Positioning System consists of one Master Control Station (MCS) in Colorado, and four unmanned monitor stations located strategically around the world, located more or less equidistant around the equator, as shown in figure 2.2.

Figure 2.2: Control Segment Station Locations [6]

The monitor stations passively track all GPS satellites visible to them at any given moment, collecting signal (ranging) data from each. This information is then passed on to the Master Control Station. The Master Control Station then periodically sends the corrected position and clock-timing data to the appropriate ground antennas which then upload those data to each of the satellites. Finally, the satellites use that corrected information in their data transmissions down to the end user. This sequence of events occurs every few hours for each of the satellites to help insure that any possibility of error creeping into the satellite positions or their clocks is minimized.

2.4.2 The Space Segment.

The space segment consists of the complete constellation of orbiting Navistar GPS satellites.

Facts about GPS:

- Each satellite weighs approximately 900 kilograms and is about five meters wide with the solar panels fully extended.
- The base size of the constellation includes 21 operational satellites with three orbiting backups, for a total of 24 .
- They are located in six orbit satellites approximately 20,200 kilometers altitude. Each of the six orbits is inclined 55 degrees up
from the equator, and is spaced 60 degrees apart, with four satellites located in each orbit.
- The orbital period is 12 hours, meaning that each satellite completes two full orbits each 24 -hour day. The space segments are shown in the following figures.

2.4.3 User Segment

The user segment includes all military and civilian users. With a GPS receiver connected to a GPS antenna, a user can receive the GPS signals, which can be used to determine his or her position anywhere in the world. GPS is currently available to all users worldwide for free.

2.5 The principle of GPS positioning

The concept of the GPS is very simple. The GPS is a distance (ranging) system. This means that the only thing that the user is trying to do is determine the distance to any given satellite. The GPS satellite sends signals in all directions, although there is an excellent orientation toward the Earth. The GPS operates on the principle of three dimension trilateration. In trilateration, the position of an unknown point is determined by measuring the lengths of the sides of a triangle between the unknown point and three or more known points (i.e., the satellites).

The satellites transmit radio signal code that is unique to each satellite. Receivers on the ground passively receive each visible satellite's radio signal and measures the time that it takes for the signal to travel to the receiver.

Distance is then simply computed according to equation:

$$
\begin{equation*}
\mathrm{R}=\mathrm{V} * \mathrm{~T} \tag{2.1}
\end{equation*}
$$

Where;
R: Distance.
T: Time in transit.
V: Velocity of transit (speed of light) fixed at 300,000 kilometers per second.

Therefore, the only thing needed by the user to calculate distance from any given satellite is a measurement of the time it took for a radio signal to travel from the satellite to the receiver. See Figure 2.5.

Figure 2.5: Basic idea of GPS positioning [2]

Because we measure the time it takes a radio signal to travel from a satellite transmitter down to our receiver. To acquire an accurate position, we have to make very precise time measurements. The signal needs about $1 / 15$ of a second from a satellite to reach our receiver on the ground. With radio waves traveling at some $300,000 \mathrm{Km} / \mathrm{s}$, only $1 / 1,000,000$ (one one-millionth) of a second of error in measuring the travel time translates into approximately 300 meters of error in our position.

To keep very accurate time, each satellite has four atomic clocks on, two rubidium and two cesium. These clocks are accurate to within billionths of a second per month. But they are not really practical for our ground-based receivers.

It is critical that the satellite and receiver both start counting time at exactly the same moment and continue to count time at the same rate since it's the time it takes for a signal to reach us that we're trying to measure. It turns out that we can insure this by adding a fourth satellite that acts as a time referee.

2.6 GPS signals

Each GPS satellite has several very accurate atomic clocks on broad. The clocks operate at a fundamental frequency of 10.23 MHz . This is use to generate the signal s that are broadcast from the satellite. The satellites broadcast two carrier waves constantly. These carrier waves are in the L-Band (used for radio), and travel to earth at the speed of light. These carrier waves are derived from the fundamental frequency, generated by a very precise atomic clock:

- The L1 carrier is broadcast at $1575.42 \mathrm{MHz}(10.23 \times 154)$
- The L2 carrier is broadcast at $1227.60 \mathrm{MHz}(10.23 \times 120)$.

The L1 carrier then has two codes modulated upon it. The C/A Code or Coarse/Acquisition Code is modulated at $1.023 \mathrm{MHz}(10.23 / 10)$ and the P -code or Precision Code is modulated at 10.23 MHz . The L2 carrier has just one code modulated upon it. The L2 P-code is modulated at 10.23 MHz .as shown in figure 2.6.

Figure 2.6: GPS Signal Structure [6]

2.7 GPS error budget

There are several sources of error that degrade the accuracy of all forms of GPS positioning. They include:

1. Satellite clock timing error,
2. Satellite position error (ephemeris error),
3. Ionosphere and troposphere refraction,
4. Receiver noise,
5. Multi path,
6. Selective Availability or SA,
7. Geometric arrangement of the satellites.

2.7.1 Satellite position and clock timing errors

These errors have typically low sense. The Air Force constantly monitors each satellite and sends up correction data every few hours. The accuracy of satellite position is about 1 meter. This uncertainty in position can introduce errors of similar magnitude in the final position calculation.

2.7.2 Ionospheric and tropospheric refraction

The ionosphere is a layer of electrically charged particles between around 50 and 200 kilometers altitude. The troposphere is simply what we usually think of as the atmosphere, extending from the surface up to between eight and 16 kilometers altitude. Both ionosphere and troposphere cause bending of the signals. This bending of radio waves is called refraction. The problem with the Ionosphere is the electrically charged particles that drag on the incoming signal. In the troposphere, the problem is with the water vapor content which does the same thing. These problems
are even further exacerbated when a satellite is low on the horizon. This is because a line tangent to the surface of the Earth (or nearly so) passes through a much thicker layer of atmosphere than if that line were pointing straight up.

Figure 2.7: Ionosphere and troposphere refraction [6]

To deal with refractions the satellite's NAV-massage includes an atmospheric refraction model that compensates for as much as $50-70 \%$ of the error and to use a dual-frequency receiver which simultaneously collects the signals on both the Ll and L2 carriers. Because the amount of refraction that a radio wave experiences is inversely proportional to its frequency, using two different frequencies transmitted through the same atmosphere at the same time makes it relatively easy to compute the amount of refraction taking place and compensate it.

$$
\begin{gather*}
d_{\text {TORP }}=\frac{K_{d}}{\sin \sqrt{E^{2}+1.5^{2}}}+\frac{K_{W}}{\sin \sqrt{E^{2}+1.5^{2}}} \tag{2.2}\\
K_{d}=77.6 \frac{P}{T}\left[40136+148.72((T-273.16)-h) 2.10^{-7}\right] \tag{2.3}\\
K_{d}=77.6 \frac{4810}{T^{2}}\left[(1100-h) 2 * 10^{-7}\right] \tag{2.4}
\end{gather*}
$$

HOPFIELD MODELL

E=Satellite Elevation
$\mathrm{h}=$ Satellite height
$\mathrm{P}=$ Pressure (mbar)
$\mathrm{e}=$ Partial vapour pressure (mbar)
$\mathrm{T}=$ Temperature (Kelvin)

The ionosphere is modeled for both code and phase observations as shown in equation 2.5 and 2.6

$$
\begin{align*}
& d_{\text {IONO }[m]}=-\frac{1}{\cos (Z)} * \frac{40.3 * V T E C}{f^{2}}-\text { PhaseOpservation } \tag{2.5}\\
& d_{\text {IONO }}[m]=+\frac{1}{\cos (Z)} * \frac{40.3 * V T E C}{f^{2}}-\text { CodeOpservation } \tag{2.6}
\end{align*}
$$

Where f: frequency
VTEC: Vertical total electron content in ionosphere given by maps from IGS (International GNSS Service)

2.7.3 Mask angle

This means that the receiver can be set to ignore any satellite signals that come from below a user-definable angle above the horizon, or mask them out. The most typical mask angle is usually somewhere between $10-15$ degrees. See figure 2.8

Figure 2.8: Mask Angle [2]

2.7.4 Receiver noise or electronic noise

Produced by the receiver itself that interferes with the very weak incoming signal, While this error is highly variable among receiver brands, most have some kind of internal filtering designed to minimize the problem some better than others.

2.7.5 Multi-path errors

Multi-Path is simply the reception of a reflected satellite signal. With multi-path reception, the receiver collects both the direct signal from the satellite and a fractionally delayed signal of some nearby reflective surface then reached the receiver. The problem is that the path of the signal that has reflected off some surface is longer than the direct line to the satellite. As shown in the figure 2.9.

Figure 2.9: Multi-Path Errors [6]

There are several ways to deal with this problem. Most receivers have some way of seeing and comparing the correct and incorrect incoming signal. Since the reflected multi-path signal has traveled a longer path, it will arrive a fraction of a second later, and a fraction weaker than the direct signal, or by using semi-directional, groundplane antennas to reduce the amount of multi-path that the receiver will have to deal with. Semi-directional antennas are designed to reject any signal below a tangent to the surface of the Earth

2.7.6 Selective availability

Selective Availability is a process applied by the U.S. Department of Defense to the GPS signal. This reduces civilian accuracy levels to a maximum of about 100 meters. Additionally, the ephemeris (or path that the satellite will follow) is broadcast as being slightly different from what it is in reality. Users of differential systems are not significantly affected by S/a.

2.7.7 Dilution of precision (DOP)

The effect of satellite geometry is quantified in the measure called dilution of precision, or DOP. When satellites are widely spaced the overlap area of the two zones of possible satellites range error is relatively small, this area called area of positional ambiguity. Figure 2.10 illustrates the low DOP, while figure 2.11 shows high DOP.

Figure 2.10: Well spaced satellites Low uncertainty of position

Figure 2.11: Poorly spaced High uncertainty of position [6]

The best way to minimize the effect of DOP is to observe as many satellites as possible. And these are the values of dilution of precision:

1. A DOP value less than 2 is considered excellent.
2. A DOP value between 2 and 3 is considered very good.
3. A DOP value between 3 and 5 is considered good.
4. A DOP value greater than 5 and less than 6 is considered fair.

Different types of Dilution of Precision or DOP can be calculated depending on the dimension; these values are calculated by the covariance matrix of the position generated from least squares adjustment:

1. VDOP. Vertical Dilution of Precision. Gives accuracy degradation in vertical direction.

$$
\begin{equation*}
\mathrm{VDOP}=\sqrt{q_{z z}} \tag{2.7}
\end{equation*}
$$

2. HDOP. Horizontal Dilution of Precision. Gives accuracy degradation in horizontal direction.

$$
\begin{equation*}
\mathrm{HDOP}=\sqrt{q_{x x}+q_{y y}} \tag{2.8}
\end{equation*}
$$

3. PDOP. Positional Dilution of Precision. Gives accuracy degradation in 3D position.

$$
\begin{equation*}
\mathrm{PDOP}=\sqrt{q_{x x}+q_{y y}+q_{z z}} \tag{2.9}
\end{equation*}
$$

4. GDOP. Geometric Dilution of Precision. Gives accuracy degradation in 3D position and time.

$$
\begin{equation*}
\mathrm{GDOP}=\sqrt{q_{x x}+q_{y y}+q_{z z}+q_{t t}} \tag{2.10}
\end{equation*}
$$

5. TDOP. Time dilution of precision. Gives accuracy in time.

$$
\begin{equation*}
\mathrm{TDOP}=\sqrt{q_{t t}} \tag{2.11}
\end{equation*}
$$

2.8 GPS positioning modes

2.8.1 Absolute positioning

Absolute positioning use only one receiver to collect data from satellites to determine user's position using a technique called trilateration. The user's measures the distance between satellites and the earth, so the position is determined by the intersection of the observed ranges to the satellites. At least three satellite ranges are required to compute a 3-D position. Using this method will not provide the accuracies needed by users.

Figure 2.12: Principle of GPS point positioning. [2]

Two type of measuring:

1. Code observation using time measure:

Figure 2.13: Code observation using time measure [12]

$$
\begin{equation*}
\rho R=\sqrt{\left(X-X_{S}\right)^{2}+\left(Y-Y_{S}\right)^{2}+\left(Z-Z_{S}\right)^{2}}+\Delta T_{S, R} . C+d_{i o n}+d_{t r o p} \tag{2.12}
\end{equation*}
$$

2. Phase observations (Relative Positioning Observation Equation):

Figure 2.14: Phase Observation [12]

$$
\begin{equation*}
\lambda R=\sqrt{\left(X-X_{S}\right)^{2}+\left(Y-Y_{S}\right)^{2}+\left(Z-Z_{S}\right)^{2}}-\mathrm{N} \cdot \lambda+d_{i o n}+d_{\text {trop }}+d_{t S-t R} \tag{2.13}
\end{equation*}
$$

Where:
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}:$ receiver position
$\mathrm{X}_{\mathrm{s}}, \mathrm{Y}_{\mathrm{s}}, \mathrm{Z}_{\mathrm{s}}$ satellites position
$\Delta \mathrm{T}:$ time difference between and receiver
$\mathrm{C}:$ light speed
$\mathrm{N}:$ number of ambiguity
$\lambda:$ wavelength

2.8.2 Differential GPS (Differential or relative GPS)

DGPS (Differential GPS) is achieved by using two receiver to have better accuracy, on of them called base receiver which places over a known point (National Geodetic Survey NGS). The second receiver is called a rover which collects data from the unknown points in the field. Both the base and a rover collect the same data at the
same time from the same satellites. The base receiver knows its exact location, it is also receives a position from satellites (with the same component of errors).

From the difference between the known position and the GPS derived position a vector displacement of errors can be applied to the rover's position data. The base line length which is the distance between the base and the rover are best kept below 20 Km to get the required accuracy because if the base line is greater than 20 Km , its possible that the two receivers might be observing one or more different satellite, also Ionospheric and tropospheric correction may be different.

The observation equations of the DGPS are:

$$
\begin{align*}
& \Delta \mathrm{X}=\mathrm{X}(\text { Rover })-\mathrm{X}(\text { Base }) \tag{2.14}\\
& \Delta \mathrm{Y}=\mathrm{Y}(\text { Rover })-\mathrm{Y}(\text { Base }) \tag{2.15}\\
& \Delta \mathrm{Z}=\mathrm{Z}(\text { Rover })-\mathrm{Z}(\text { Base }) \tag{2.16}
\end{align*}
$$

GPS elevation has less accuracy than the accuracy of the horizontal position. So height in GPS is the weakest component, this is due to the orbital geometry of the X , Y, Z positional determinations of satellite orbit. And the accuracy is:

$$
\sigma \text { plan }: \sigma \text { height }=1: 1.5
$$

Figure 2.15: Principle of GPS relative positioning. [2]

Differential GPS carrier phase surveying is used to obtain the highest precision from GPS and has direct application to most topographic and engineering survey activities. DGPS uses three Different GPS differential surveying techniques:

1. Static.
2. Fast Static.
3. Real Time Kinematics.

2.8.2.1 Static GPS survey techniques

In Static GPS surveying two GPS receivers are used to measure a GPS baseline distance. GPS receiver pairs are set up over stations of either known or unknown location.

Typically one of the receivers is positioned over a point whose coordinates are known, and the second is positioned over another point whose coordinates are unknown, but are desired. Both GPS receivers must receive signals from the same
four (or more) satellites for a period of time that can range from a few minutes to several hours, depending on the conditions of observation and precision required.

Accuracy of GPS static surveys is the most accurate and can be used for any order survey.

2.8.2.2 Fast Static Surveying Techniques

Fast static surveying is similar to static surveying methods. The rover receiver spends only a short time on each station, loss of lock is allowed between stations, and accuracy is similar to static.

Fast static surveying requires that one receiver be placed over a known control point. A rover receiver occupies each unknown station for 5-20 min, depending on the number of satellites and their geometry.

The accuracy of fast static surveys is similar to static surveys of 0.03 feet (1 centimeter) or less. This method can be used for medium-to high accuracy survey.

2.8.2.3 RTK surveying techniques

RTK surveying requires two receivers, recording observations simultaneously, and allows the rover receiver to be moving. RTK surveying techniques also use dualfrequency LI/L2 GPS observations and can handle loss of lock.

RTK surveying requires dual frequency LI/L2 GPS receivers. One of the GPS receivers is set over a known point, while the other receiver may be free to travel from point to point. If the survey is performed in real time, a radio link and a
processor or data collector are needed. The radio link is used to transfer the raw data from the reference station to the rover.

RTK surveys can be accurate to within 0.05 to 0.10 feet ($2-3$ centimeters), providing a good static network and calibration were performed prior to performing the RTK survey.

2.9 GPS reference system

The GPS satellite are referenced to the world geodetic system of 1984 (WGS 84) ellipsoid. For surveying purposes, this earth-centered WGS 84 coordinate system must be transformed to a user-defined ellipsoid and datum, such as Clarck ellipsoid that is used in Palestine as reference datum.

Table2.1: WGS84 and Clarck 1880 geometric parameter.

Ellipsoid name	Semi major axis (a in meters)	Reciprocal of flattening $(1 / \mathrm{f})$
WGS84	6378137	298.257223563
Clarck 1880	6378300.74	293.4669074

The other geometric parameters are computed using the following equations:

$$
\begin{align*}
& \mathrm{r}=a\left(1+n^{2} / 4\right) /(1+n) \tag{2.17}\\
& \mathrm{n}==f /(2-f) \tag{2.18}\\
& e^{2}=f(2-f) \tag{2.19}\\
& e^{\prime 2}=e^{2} /(1-f)^{2} \tag{2.20}\\
& \mathrm{~b}=\mathrm{a}(1-\mathrm{f})
\end{align*}
$$

The absolute positions obtained from GPS are based on the 3-D WGS84 ellipsoid. Coordinate outputs are on a Cartesian system(X-Y-Z) relative to WGS84 rectangular coordinate. These coordinate can be transformed to λ, ϕ, and h by an iterative solution where:

$$
\begin{gather*}
\lambda=\tan ^{-1} \frac{Y}{X} \tag{2.21}\\
\phi=\tan ^{-1}\left(\frac{Z}{\sqrt{X^{2}+Y^{2}}}\left(1-e^{2} \frac{N}{N+h}\right)^{-1}\right) \tag{2.22}\\
h=\frac{\sqrt{X^{2}+Y^{2}}}{\cos \phi}-N \tag{2.23}\\
N=\frac{a^{2}}{\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}} \tag{2.24}
\end{gather*}
$$

As initial value to start the iterative solution;

$$
\begin{gather*}
\phi=\tan ^{-1} \frac{Z}{\sqrt{X^{2}+Y^{2}}}\left(1-e^{2}\right)^{-1} \tag{2.25}\\
\mathrm{~h}=0
\end{gather*}
$$

The inverse problem to find the X, Y, and z , from λ, ϕ, and h ;

$$
\begin{align*}
X & =(N+h) \cos \phi \cos \lambda \tag{2.26}\\
Y & =(N+h) \cos \phi \sin \lambda \tag{2.27}\\
Z & =\left(\left(1-e^{2}\right) N+h\right) \sin \phi \tag{2.28}
\end{align*}
$$

These coordinates can be transformed to local datum system using 3D similarity transformation as shown in Fig 2.16:

Fig 2.16: Translated and rotated 3D co-ordinate system [7]

The 3D similarity has 7 parameters that are; scale factor, three rotation and three translations, the equations for the 3D similarity transformation are:

$$
\begin{gather*}
X=S\left(m_{11} x+m_{21} y+m_{31} z\right)+T_{x} \tag{2.29}\\
Y=S\left(m_{12} x+m_{22} y+m_{32} z\right)+T_{y} \tag{2.30}\\
Z=S\left(m_{13} x+m_{23} y+m_{33} z\right)+T_{z} \quad \text { Where: } \tag{2.31}\\
m_{11}=\cos (\phi) \cos (k) \\
m_{12}=\sin (\omega) \sin (\phi) \cos (k)+\cos (\omega) \sin (k) \tag{2.32}\\
m_{13}=-\cos (\omega) \sin (\phi) \cos (k)+\sin (\omega) \sin (k) \tag{2.33}\\
m_{21}=-\cos (\phi) \sin (k) \tag{2.34}\\
m_{22}=-\sin (\omega) \sin (\phi) \sin (k)+\sin (\omega) \cos (k) \tag{2.35}\\
m_{23}=\cos (\omega) \sin (\phi) \sin (k)+\sin (\omega) \cos (k) \tag{2.36}\\
m_{31}=\sin (\phi) \tag{2.37}
\end{gather*}
$$

$$
\begin{gather*}
m_{32}=-\sin (\omega) \cos (\phi) \tag{3.39}\\
m_{33}=\cos (\omega) \cos (\phi) \tag{3.40}
\end{gather*}
$$

In Palestine coordinate system, the transformation is defined by three translations.
The values of the translation are taken from Trimble geomatics office software.
According to the following equations:

$$
\begin{align*}
& \mathrm{X}_{\text {Palestine }}=\mathrm{X}_{\mathrm{WGS84}}+\Delta \mathrm{X} \tag{2.41}\\
& \mathrm{Y}_{\text {Palestine }}=\mathrm{Y}_{\mathrm{WGS} 84}+\Delta \mathrm{Y} \tag{2.42}\\
& \mathrm{Z}_{\text {Palestine }}=\mathrm{Z}_{\mathrm{WGS} 84}+\Delta \mathrm{Z} \tag{2.43}
\end{align*}
$$

Where;

$$
\Delta \mathrm{X}=230.00 \mathrm{~m}, \quad \Delta \mathrm{Y}=71.00 \mathrm{~m}, \quad \Delta \mathrm{Z}=-273 \mathrm{~m}
$$

Here it is assumed that the scale factor $=1$, and the three rotations are equal to zero.

2.10 Other satellite navigation systems

2.10.1 GLONASS satellite system

GLONASS is a global navigation satellite system developed by Russia. The GLONASS satellite system has much in common with the GPS system.

GLONASS can be described as follows:

- The constellation of the GLONASS system consists of 21operational satellites and three spares at a nominal altitude of $19,100 \mathrm{~km}$.
- Eight GLONASS satellites are arranged in each of three orbital planes.
- GLONASS orbits are approximately circular, with an orbital period of 11 hours and 15 minutes and an inclination of 64.8 Similar to GPS.
- Each GLONASS satellite transmits a signal that has a number of components: two L-band carriers, C/A-code on L1, P-code on both L1 and L2, and a navigation message. GLONASS codes are the same for all the satellites. As such, GLONASS receivers use the frequency channel rather than the code to distinguish the satellites.
- The signal of GLONASS system is not affected by either SA or ant spoofing.
- There are two problems with GPS/GLONASS integration. The first one is that both GPS and GLONASS systems use different coordinate frames to express the position of their satellites. GPS uses the WGS 84 system, while GLONASS uses the Earth Parameter System1990 (PZ-90) system. The second problem with the GPS/GLONASS integration is that both systems use different reference times.

Table 2.2 shows a comparison between GPS and GLONASS [3]

2.10.2 Chinese regional satellite navigation system (Beidou system)

China has recently launched two domestically built navigation satellites, which form the first generation of a satellite-based navigation system. It is an all-weather regional navigation system, which is known as the Beidou Navigation System. The
satellites are placed in geostationary orbits at an altitude of approximately $36,000 \mathrm{~km}$ above the Earths surface.

The primary use of the system is in land and marine transportation. China is also planning to build its second-generation satellite positioning and navigation system, which will have more satellites and more coverage area.

2.10.3 Galileo system

Galileo is a satellite-based global-navigation system proposed by Europe. Galileo is a civil-controlled satellite system to be delivered through a public-private partnership. Three different constellation types were investigated to ensure the optimum selection of the Galileo architecture, namely low Earth orbits (LEO), medium Earth orbits (MEO), and inclined geosynchronous orbits (IGSO). The Galileo decision makers adopted a constellation of 30 MEO satellites. The satellites will be evenly distributed over three orbital planes at an altitude of about $23,000 \mathrm{~km}$.

The Galileo system is now in the testing phase, and it is expected to start in 2008. Figure 2.16 shows the planned schedule for Galileo positioning system.

Figure 2.17: planed schedule for Galileo positioning system [12]

Galileo has three frequencies (Wavelength λ):

- $\lambda(\mathrm{L} 1)=19 \mathrm{~cm}$
- $\lambda(\mathrm{L} 2)=24 \mathrm{~cm}$
- $\lambda(\mathrm{L} 3)=25 \mathrm{~cm}$

CHAPTER

3

PHYSICAL GEODESY

3.1 Introduction

3.2 Gravitational fields of simple mass distributions

3.3 Laplace's equation

3.4 Gravity field of the earth
3.5 Harmonic expansion of the earth gravity field
3.6 Global gravitational model (GGM)

CHAPTER THREE

Physical Geodesy

3.1 Introduction

Physical geodesy concerns studies of the figure and the gravity field of the earth, using measurements of physical quantities (e.g. gravity). Most of geodetic measurements (except slope distances) are influenced by the gravity field of the earth.

3.2 Gravitational fields of simple mass distributions

3.2.1 Newton's law

Let m 1 and m 2 be two point masses at distance 1. According to Newton's gravitational law, the two masses will attract each other by the gravitational force F :

$$
\begin{equation*}
\mathrm{F}=\mathrm{G} \frac{m_{1} * m_{2}}{l^{2}} \tag{3.1}
\end{equation*}
$$

Where:

$$
\text { G: gravitational constant }\left(\mathrm{G} \approx 0.667 * 10^{-7} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{-2} \quad\right)
$$

$\mathrm{m}_{1}, \mathrm{~m}_{2}$: are the mass points.
1 : the distance between the two points.
$\mathrm{L}=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}$

Figure 3.1: Gravitational force of a point mass [4]

To study the gravitational field generated by a point mass M, the gravitational force of point mass M attracting a unit mass m ($\mathrm{m}=1$ unit mass), as shown in figure 3.1, will be:

$$
\begin{equation*}
\mathrm{F}=\frac{G M}{l^{2}} \tag{3.3}
\end{equation*}
$$

For the earth $\mathrm{GM} \approx 3.986005 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}$ and radius $\mathrm{R} \approx 6371 \mathrm{~km}$, the approximate gravitational force (gravitational acceleration) on the earth surface:

$$
\begin{equation*}
\mathrm{F}=\frac{G M}{R^{2}}=\frac{3.986005 * 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}}{6.371^{2} * 10^{12} m^{2}}=9.820251921 \mathrm{~m} / \mathrm{s}^{2} \tag{3.4}
\end{equation*}
$$

Other unit for the gravitational acceleration can be used that is called Gal, where:

$$
\mathrm{Gal}=1 \mathrm{~cm} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& =1000 \mathrm{mGal} \\
& =1000000 \mu \mathrm{Gal}
\end{aligned}
$$

Then: F calculated in equation 3.4 will be:

$$
\begin{aligned}
\mathrm{F} & =982.0251921 \mathrm{Gal} \\
& =982025.1921 \mathrm{mGal} \\
& =982025192.1 \mu \mathrm{Gal}
\end{aligned}
$$

The most accurate instruments (gravimeters) can measure the gravitational acceleration on the earth surface at accuracy of several $\mu \mathrm{Gal}$.

The vector of the gravitational force (acceleration) $\stackrel{\prime}{F}$ can be defined by it's magnitude F and 3 D component as follows:

$$
\vec{F}=\left[\begin{array}{l}
F x \tag{3.5}\\
F y \\
F z
\end{array}\right]=\mathrm{F}(-\overrightarrow{e l})=-\mathrm{F} *\left[\begin{array}{l}
(x-x 0) / l \\
(y-y 0) / l \\
(z-z 0) / l
\end{array}\right]=-\frac{G M}{l^{2}}\left[\begin{array}{c}
(x-x 0) / l \\
(y-y 0) / l \\
(z-z 0) / l
\end{array}\right]
$$

Where:

$$
\overrightarrow{e l} \text { Denotes the unit vector from } P_{\mathrm{o}} \text { to } \mathrm{P} \text {. }
$$

To avoid dealing with acceleration because it is a vector, we deal the gravitation potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ that is a scalar value, where V is define as follows:

$$
\vec{F}=\left[\begin{array}{l}
F x \tag{3.6}\\
F y \\
F z
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial v}{\partial z}
\end{array}\right]
$$

And the gradient vector of $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is the gravitation force.

$$
\begin{equation*}
\vec{F}=\operatorname{grad}(\mathrm{V}) \tag{3.7}
\end{equation*}
$$

V can be calculated as follows:

$$
\begin{equation*}
\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{G M}{l} \tag{3.8}
\end{equation*}
$$

If the point P is influenced by n mass points then:

$$
\begin{equation*}
\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum_{i=1}^{n} V i=\sum_{i=1}^{n} \frac{G m_{i}}{l_{i}} \tag{3.9}
\end{equation*}
$$

If the point P is influenced by a body with volume v, and density ρ. Using the mass element dm and the volume dv:

$$
\begin{equation*}
d V=\frac{G d m}{l}=\frac{G \rho d v}{l} \tag{3.10}
\end{equation*}
$$

And the total gravitational potential of the body is then:

$$
\begin{equation*}
\mathrm{V}=\int d V=G \iiint_{V} \frac{p d v}{l} \tag{3.11}
\end{equation*}
$$

3.3 Laplace's equation

For a function $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, the Laplace equation for this function is:

$$
\begin{equation*}
\Delta(V) \equiv \frac{\partial^{2} V}{\partial X^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 \tag{3.12}
\end{equation*}
$$

Where:

$$
\Delta(.)=\text { Laplace operator }
$$

Using spherical coordinates ($\mathrm{r}, \bar{\phi}, \lambda$), Laplace's equation can be transformed to:

$$
\begin{equation*}
r^{2} \frac{\partial^{2} V}{\partial r^{2}}+2 r \frac{\partial V}{\partial r}+\frac{\partial^{2} V}{\partial \bar{\phi}^{-2}}-\tan \bar{\phi} \frac{\partial V}{\partial \bar{\phi}}+\frac{1^{*} \partial^{2} V}{\cos ^{2} \bar{\phi} \partial \lambda^{2}}=0 \tag{3.13}
\end{equation*}
$$

For $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, the density ρ is constant, dv is the same for all elements, then only 1 is changing for each element. The Laplace operator for the gravitation:

$$
\begin{equation*}
\Delta(V)=\Delta\left(G \iiint_{v} \frac{\rho d v}{l}\right)=G \iiint_{v} \Delta\left(\frac{1}{l}\right) \rho d v=0 \tag{3.14}
\end{equation*}
$$

Then $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfies Laplace equation if:

$$
\begin{equation*}
\Delta\left(\frac{1}{l}\right)=0 \tag{3.15}
\end{equation*}
$$

Appendix-B shows the proof that V satisfies Laplace equation.

To fined the general solution to Laplace's equation, the solution can be decomposed of three functions; $\mathrm{f}_{1}, \mathrm{f}_{2}$, and f_{3} :

$$
\begin{equation*}
\mathrm{V}(r, \phi, \lambda)=\mathrm{f}_{1}(\mathrm{r}) \cdot \mathrm{f}_{2}(\phi) \cdot \mathrm{f}_{3}(\lambda) \tag{3.16}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{f}_{1}(\mathrm{r})=\frac{1}{r^{n+1}} \text { or } \mathrm{r}^{n} & (\mathrm{n}=0,1,2, \ldots) \\
\mathrm{f}_{2}(\phi)=p_{n m}(\sin \phi) & (\mathrm{n}=0,1,2, \ldots, \mathrm{~m}=0,1,2 \ldots, \mathrm{n}-1, \mathrm{n}) \\
\mathrm{f}_{3}(\lambda)=\cos \mathrm{m} \lambda \text { or } \sin \mathrm{m} \lambda & (\mathrm{~m}=0,1,2, \ldots \mathrm{n}-1, \mathrm{n})
\end{array}
$$

Where:

$$
p_{n m}(\sin \phi): \text { Legendry functions of degree } \mathrm{n} \text { and order } \mathrm{m} .
$$

$\mathrm{f}_{1}(\mathrm{r})=\mathrm{r}^{n}$ can be neglected, and taking $\mathrm{f}_{1}(\mathrm{r})=\frac{1}{r^{n+1}}$ the general solution for v :

$$
\begin{equation*}
\mathrm{V}(r, \phi, \lambda)=\sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \sum_{m=-n}^{n} A_{n m} Y_{n m}(\phi, \lambda) \tag{3.20}
\end{equation*}
$$

Where:

$$
\begin{gather*}
\mathrm{Y}_{n m}(\phi, \lambda)=\left\{\begin{array}{ll}
\cos m \lambda P_{n|m|}(\sin \phi) & \text { for..... } m \leq 0 \\
\sin m \lambda P_{n m}(\sin \phi) & \text { for..... } m>0
\end{array}\right\} \tag{3.21}\\
\mathrm{A}_{n m}=\left\{\begin{array}{ll}
a_{n|m|} & \text { for. ... } m \leq 0 \\
b_{n m} & \text { for..... } m>0
\end{array}\right\} \tag{3.22}
\end{gather*}
$$

Then:

$$
\begin{equation*}
\mathrm{V}(\mathrm{r}, \phi, \lambda)=\sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \sum\left(a_{n m} \cos \mathrm{~m} \lambda+b_{n m} \sin \mathrm{~m} \lambda\right) p_{n m}(\sin \phi) \tag{3.23}
\end{equation*}
$$

For the Legendre function $\quad \mathrm{P}_{n m}(\mathrm{t})$:

$$
\begin{equation*}
\mathrm{P}_{n m}(\mathrm{t})=\left(1-\mathrm{t}^{2}\right)^{m / 2} \frac{d^{m} P_{n}(t)}{d t^{m}} \tag{3.24}
\end{equation*}
$$

This can be solved in a recursive formulas as shown in table 3.1.
Table 3.1: Recursive formulas for Legendre functions

$$
\begin{array}{ll}
\mathrm{P}_{n}(t)=-\frac{n-1}{n} P_{n-2}(t)+\frac{2 n-1}{n} t P_{n-1}(t) & (\mathrm{n} \geq 2 ; \mathrm{m}=0) \\
\mathrm{P}_{n m}(t)=-\frac{n+m-1}{n-m} P_{n-2, m}(t)+\frac{2 n-1}{n-m} t P_{n-1, m}(t) & (\mathrm{n} \geq 3 ; 1 \leq \mathrm{m} \leq n-2) \\
\mathrm{P}_{n, n-1}(t)=(2 n-1) t P_{n-1, n-1}(t) & (\mathrm{n} \geq 1 ; m=n-1) \\
\mathrm{P}_{n n}(t)=(2 n-1) \sqrt{1-t^{2}} P_{n-1, n-1}(t) & (\mathrm{n} \geq 2 ; \mathrm{m}=\mathrm{n})
\end{array}
$$

In a normalized form:

$$
\begin{gather*}
\bar{Y}_{n m}(\phi, \lambda)=f_{n m} Y_{n m}(\phi, \lambda) \tag{3.25}\\
\bar{P}_{n m}(t)=f_{n m} P_{n m}(t) \tag{3.26}\\
\mathrm{V}(\mathrm{r}, \phi, \lambda)=\sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \sum_{m=-n}^{n} \bar{A}_{n m} \bar{Y}_{n m}(\phi, \lambda) \tag{3.27}
\end{gather*}
$$

$$
\begin{equation*}
\bar{A}_{n m}=\frac{A_{n m}}{f_{n m}} \tag{3.28}
\end{equation*}
$$

Where:

$$
\mathrm{f}_{n m}=\left\{\begin{array}{ll}
\sqrt{2 n+1} & \text { for. } \ldots . . m=0 \tag{3.29}\\
\sqrt{2(2 n+1) \frac{(n-m)!}{(n+m)!}} & \text { for. } \ldots . . m \neq 0
\end{array}\right\}
$$

Table 3.2: Recursive formulas for normalized Legendre functions

$$
\begin{array}{ll}
\bar{P}_{n}(t)=-\frac{\sqrt{2 n+1}}{n} \frac{n-1}{\sqrt{2 n-3}} \bar{P}_{n-2}(t)+\frac{\sqrt{2 n+1}}{n} \sqrt{2 n-1} t \bar{P}_{n-1}(t) & (\mathrm{n} \geq 2 ; \mathrm{m}=0) \\
\bar{P}_{n m}(t)=\sqrt{\frac{(2 n+1)(n+m-1)(n-m-1)}{(2 n-3)(n+m)(n-m)}} \bar{P}_{n-2, m}(t)+\sqrt{\frac{(2 n+1)(2 n-1)}{(n+m)(n-m)}} t \bar{P}_{n-1, m}(t) \\
(\mathrm{n} \geq 3 ; 1 \leq m \leq n-2) & \\
\bar{P}_{n, n-1}(t)=\sqrt{2 n+1} t \bar{P}_{n-1, n-1}(t) & (\mathrm{n} \geq 1 ; \mathrm{m}=\mathrm{n}-1) \\
\bar{P}_{n n}(t)=\sqrt{\frac{2 n+1}{2 n}} \sqrt{1-t^{2}} \bar{P}_{n-1, n-1}(t) & (\mathrm{n} \geq 2 ; \mathrm{m}=\mathrm{n})
\end{array}
$$

Alternative method [1]:

$$
\begin{equation*}
\mathrm{V}(\mathrm{r}, \phi, \lambda)=\sum_{n=0}^{\infty}\left(\frac{R}{r}\right)^{n+1} \sum_{m=-n}^{n} \bar{A}_{n m} Y_{n m}(\phi, \lambda) \tag{3.30}
\end{equation*}
$$

$$
\begin{equation*}
\bar{A}_{n m}=\frac{\bar{A}_{n m}}{R^{n+1}} \tag{3.31}
\end{equation*}
$$

Explicit expressions of Legendre functions to degree and order 3 can be calculated as shown in table 3.3.

Table 3.3: Explicit expressions of Legendre functions to degree and order 3

n	m	$\mathrm{P}_{n m}(t)$	$\mathrm{f}_{n m}$	$\bar{P}_{n m}(t)$
0	0	1	1	1
1	0	t	$\sqrt{3}$	$\sqrt{3} \mathrm{t}$
1	1	$\sqrt{1-t^{2}}$	$\sqrt{3}$	$\sqrt{3} \sqrt{1-t^{2}}$
2	0	$(3 / 2) t^{2}-1 / 2$	$\sqrt{5}$	$\sqrt{5}\left((3 / 2) t^{2}-1 / 2\right)$
2	1	$3 \mathrm{t} \sqrt{1-t^{2}}$	$1 / 3 \sqrt{15}$	$\sqrt{15} \mathrm{t} \sqrt{1-t^{2}}$
2	2	$3\left(1-\mathrm{t}^{2}\right)$	$1 / 6 \sqrt{15}$	$1 / 2 \sqrt{15}\left(1-\mathrm{t}^{2}\right)$
3	0	$5 / 2 \mathrm{t}^{3}-3 / 2 \mathrm{t}$	$\sqrt{7}$	$\sqrt{7}\left(5 / 2 \mathrm{t}^{3}-3 / 2 \mathrm{t}\right)$
3	1	$\sqrt{1-t^{2}}\left(15 / 2 \mathrm{t}^{2}-3 / 2\right)$	$\sqrt{\frac{7}{6}}$	$\sqrt{\frac{7}{6} \sqrt{1-t^{2}}\left(15 / 2 \mathrm{t}^{2}-3 / 2\right)}$
3	2	$15 \mathrm{t}\left(1-\mathrm{t}^{2}\right)$	$1 / 30 \sqrt{105}$	$1 / 2 \sqrt{105}\left(1-\mathrm{t}^{2}\right)$
3	3	$15 \mathrm{t}\left(1-\mathrm{t}^{2}\right)^{3 / 2}$	$(1 / 4)(1 / 15) \sqrt{70}$	$\left(1-\mathrm{t}^{2}\right)^{3 / 2}$

3.4 Gravity field of the earth

3.4.1 Introduction

Figure 3.2: Gravitational force, centrifugal force and gravity force [1]

For the point P in the earth surface, two forces affect the point:

- Gravitational force $\stackrel{!}{g}_{1}$
- And centrifugal force $\stackrel{\stackrel{1}{g}}{2}$

The gravity vector is:

$$
\begin{equation*}
\stackrel{\prime}{g}=\stackrel{\prime}{g}_{1}+\stackrel{\prime}{g}_{2} \tag{3.32}
\end{equation*}
$$

This result gravitation potential W (geopotentential) that equals to sum of the gravitational potential V and the centrifugal potential Ω :

$$
\begin{equation*}
\mathrm{W}=\mathrm{V}+\Omega \tag{3.33}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\mathrm{V}=G \iiint_{V} \frac{p d v}{l} \tag{3.34}
\end{equation*}
$$

Centrifugal potential:

$$
\begin{equation*}
\Omega=\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right)=\frac{1}{2} \omega^{2} r^{2} \cos ^{2} \bar{\phi} \tag{3.35}
\end{equation*}
$$

Where, ω is angular velocity of earth rotation nearly $0.7292115^{*} 10^{-4} s^{-1}$.
And:

$$
\begin{gather*}
\stackrel{r}{g}_{2}=\operatorname{grad}(\Omega)=\left[\begin{array}{l}
\omega^{2} x \\
\omega^{2} y \\
0
\end{array}\right]=\left[\begin{array}{l}
\omega^{2} r \cos \bar{\phi} \cos \lambda \\
\omega^{2} r \cos \bar{\phi} \sin \lambda \\
0
\end{array}\right] \tag{3.36}\\
g_{2}=\left|r_{2}\right|=\sqrt{\left(\frac{\partial \Omega}{\partial x}\right)^{2}+\left(\frac{\partial \Omega}{\partial y}\right)^{2}+\left(\frac{\partial \Omega}{\partial z}\right)^{2}}=\omega \sqrt{x^{2}+y^{2}}=\omega^{2} \cdot r \cdot \cos \bar{\phi} \tag{3.37}
\end{gather*}
$$

The gravity vector ${ }^{\prime}$ is defined as the gradient of the potential W:

$$
g=\operatorname{grad}(\mathrm{W})=\left[\begin{array}{c}
\frac{\partial w}{\partial x} \tag{3.38}\\
\frac{\partial w}{\partial y} \\
\frac{\partial w}{\partial z}
\end{array}\right]
$$

The magnitude of g is:

$$
\begin{equation*}
\mathrm{g}=|\boldsymbol{r}|=\sqrt{\left(\frac{\partial W}{\partial x}\right)^{2}+\left(\frac{\partial W}{\partial y}\right)^{2}+\left(\frac{\partial W}{\partial z}\right)^{2}} \tag{3.39}
\end{equation*}
$$

Taking $\mathrm{W}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ constant C , this defines equipotential surface (Level surface), if the level surface coincides approximately with the global mean of the earth sea level, the surface is called Geoid. Figure 3.3 shows the equipotential surfaces that are
always perpendicular to the plump line, the equipotential surface not necessary to be parallel.

Figure 3.3: equipotential surface and plump line close to the earth [10]

3.4.2 Gravity measurements

It is necessary to measure the gravity field of the earth to define the heights. The gravity measurement has basically two types; first is the absolute gravity where we measure the gravity acceleration of a station directly by the gravimeter. And second is relative gravity, where we measure the difference in the gravity between two stations. Here we have two examples of the principal of the two types:

1. Absolute gravity by free-falling body.

Defined by the measurement in the change in the vertical distance h in a given time, depend on Newton motion equation:

$$
\begin{equation*}
h=h_{0}+v_{0} t+\frac{1}{2} g t^{2} \tag{3.40}
\end{equation*}
$$

If we observe different heights h_{1}, h_{2}, h_{3} and their times t_{1}, t_{2}, t_{3}, then g is calculated:

$$
\begin{gather*}
g=2 \frac{s_{2} / \Delta t_{2}-s_{1} / \Delta t_{1}}{\Delta t_{2}-\Delta t_{1}} \tag{3.41}\\
s_{1}=h_{2}-h_{1}, \quad s_{2}=h_{3}-h_{1} \quad \Delta t_{2}=t_{3}-t_{1} \tag{3.42}
\end{gather*}
$$

2. Relative gravity measurement by spring:

If a spring with constant k , and initial length s_{0}, a mass m is attached. The spring will have anew length s where:

$$
\begin{equation*}
\kappa\left(s-s_{0}\right)=m \cdot g \tag{3.43}
\end{equation*}
$$

If the spring has two lengths at two different points then:

$$
\begin{equation*}
g_{2}-g_{1}=\frac{k}{m}\left(s_{2}-s_{1}\right) \tag{3.44}
\end{equation*}
$$

This is called the relative gravity, and the instruments are called relative gravimeters.

3.4.3 Normal gravity of the earth

The normal gravity field of the earth is generated by an ellipsoid of revolution with semi-major axis (a) and semi-minor axis (b, such that:

- the total mass of the reference ellipsoid is equal to that of the Earth;
- the reference ellipsoid is rotating around its minor axis at the same angular velocity as the earth rotation;
- the surface of the reference ellipsoid is an equipotential surface. The normal potential U_{O} on the reference ellipsoid is equal to the geopotential W_{O} on the geoid.
Many ellipsoids were defined by physical definition depending on the principle of normal gravity. Examples of physically defined ellipsoids are GRS67, GRS80, and WGS84. The defining parameters for GRS80 ellipsoid are shown in table 3.4.

Table 3.4: The defining parameters of the GRS80 ellipsoid

Notation	Constant	Unit	Numerical value
a	Semi-major axis	m	6378137.000
GM	Product of G and total mass M	$m^{3} s^{-2}$	$0.3986005 .10^{15}$
J2	Dynamic from factor $\frac{C-A}{M a^{2}}$		0.00108263
ω	Angular velocity	s^{-1}	$0.72921151 .10^{-4}$
b	Semi-minor axis	meter	6356752.3141
f	Geometrical flattening		$\begin{aligned} & 0.003352810681 \\ & 1 / 298.257222101 \end{aligned}$
e^{2}	First eccentricity squared		0.006694380023
$\mathrm{e}^{\prime 2}$	second eccentricity squared	$\sec ^{-1}$	0.006739496775
U_{0}	Normal potential on the ellipsoid	$m^{2} \cdot \sec ^{2}$	62636860.850
γ_{p}	Normal gravity on the poles	Gal	983.21863685
γ_{e}	Normal gravity on the equator	Gal	978.03267715
${ }^{*}$	Gravity flattening		$\begin{aligned} & 0.005302440112 \\ & 1 / 188.592417552 \end{aligned}$
k	$\left(b \gamma_{p}-a \gamma_{e}\right) /\left(a \gamma_{e}\right)$		0.001931851353
m	$\omega^{2} a^{2} b /(G M)$		$\begin{aligned} & 0.003449786003 \\ & 1 / 289.873052743 \end{aligned}$
γ_{45}	Normal gravity at latitude 45°	Gal	980.6199203
γ		Gal	979.7644656

As the ellipsoid is defined as an equipotential surface, it has a potential U, that is a result of the ellipsoidal gravitational potential V^{\prime}, and the centrifugal potential Ω.

$$
\begin{equation*}
U=V^{\prime}+\Omega \tag{3.45}
\end{equation*}
$$

Where:

$$
V^{\prime}: \text { Gravitational potential [1] }
$$

$$
\begin{align*}
& V^{\prime}(r, \bar{\phi}, \lambda)=\frac{G M}{r}\left(1+\sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{2 n}{\overline{J_{2 n}}}_{P_{2 n}(\sin \bar{\phi})}\right) \tag{3.46}\\
& \bar{J}_{2 n}=(-1)^{n} \frac{3 . e^{2 n} \sqrt{4 n+1}}{(2 n+1)(2 n+3)}\left(1-n+\frac{5 n}{e^{2}} . J_{2}\right) \tag{3.47}
\end{align*}
$$

Ω : Centrifugal potential

$$
\begin{equation*}
\Omega=\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right) \tag{3.48}
\end{equation*}
$$

Approximate Calculation for U :

$$
\begin{array}{r}
\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{U}(\mathrm{u}, \beta)=\frac{G M}{E} \tan ^{-1} \frac{E}{u}+\frac{1}{2} \omega^{2} a^{2} \frac{q}{q_{0}}\left(\sin ^{2} \beta-\frac{1}{3}\right)+\frac{1}{2} \omega^{2}\left(u^{2}+E^{2}\right) \cos ^{2} \beta \\
\mathrm{E}^{2}=a^{2}-b^{2} \\
\mathrm{q}=\frac{1}{2}\left[\left(1+3 \frac{u^{2}}{E^{2}}\right) \tan ^{-1} \frac{E}{u}-\frac{1}{3} \frac{u}{E}\right] \\
q_{0}=\frac{1}{2}\left[\left(1+3 \frac{b^{2}}{E^{2}}\right) \tan ^{-1} \frac{E}{b}-\frac{1}{3} \frac{b}{E}\right]
\end{array}
$$

The Reference gravity potential U_{0}, can be calculated by assuming $\mathrm{u}=\mathrm{b}$:

$$
\begin{equation*}
U_{0}=U(b, \beta)=\frac{G M}{E} \tan ^{-1} \frac{E}{b}+\frac{1}{3} \omega^{2} a^{2} \tag{3.53}
\end{equation*}
$$

The normal gravity at the surface of the ellipsoid can be calculated as follows:

$$
\begin{gather*}
\gamma=\gamma_{e} \frac{1+K \sin ^{2} \phi}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{3.54}\\
K=\frac{b \gamma_{p}}{a \gamma_{e}}-1 \tag{3.55}
\end{gather*}
$$

The gravity at a given height h above the ellipsoid:

$$
\begin{gather*}
\gamma_{h}=\gamma\left[1-\frac{2}{a}\left(1+f+m-2 f \sin ^{2} \phi\right) h+\frac{3}{a^{2}} h^{2}\right] \tag{3.56}\\
m=\frac{\omega^{2} a^{2} b}{G M} \tag{3.57}
\end{gather*}
$$

Figure 3.4: $\bar{\phi}$ the reduced latitude of ϕ

$$
\begin{gather*}
\tan \bar{\phi}=\left(1-e^{2}\right) \tan \phi \tag{3.58}\\
\operatorname{ta} \beta=\frac{b}{a} \tan \phi \tag{3.59}
\end{gather*}
$$

3.4.4 Gravity field anomalies

To fined the difference between the two equipotential surfaces; the Geoid and the ellipsoid, that is called the Geoid undulation we define the following:

1. Disturbing potential T_{P} :

$$
\begin{gather*}
T_{P}=W_{P}-U_{P} \tag{3.60}\\
T_{P}=\left(V_{P}+\Omega_{P}\right)-\left(V_{P}^{\prime}+\Omega_{P}\right)=V_{P}-V_{P}^{\prime} \tag{3.61}
\end{gather*}
$$

2. Gravity disturbance:

$$
\begin{equation*}
\delta g_{p}=g_{p}-\gamma_{p} \tag{3.62}
\end{equation*}
$$

3. Gravity anomaly:

$$
\begin{equation*}
\Delta g_{p}=g_{p}-\gamma_{q} \tag{3.63}
\end{equation*}
$$

Figure 3.5: Geoid versus the reference ellipsoid [4]

If P is the point in the Geoid and Q is the same point in the ellipsoid in the ellipsoid, where $W_{P}=U_{q}$, then we can fined the normal potential of point P using the normal potential of point Q (can be calculated using equation 3.53).

$$
\begin{gather*}
U_{P}=U_{q}+\frac{\partial U}{\partial n^{\prime}} N+\frac{1}{2!} \frac{\partial^{2} U}{\partial n^{\prime 2}} N^{2}+\ldots \approx U_{q}+\frac{\partial U}{\partial n^{\prime}} N=U_{q}-\gamma_{q} \cdot N \tag{3.64}\\
U_{p}-U_{q}=-\gamma N \\
N=\frac{U_{q}-U_{p}}{\gamma} \\
N=\frac{W_{p}-U_{p}}{\gamma} \\
\mathrm{~N}=\frac{T_{p}}{\gamma_{q}} \tag{3.65}
\end{gather*}
$$

U_{q} is equal to U_{o} because Q is on the ellipsoid surface ($\mathrm{h}=0$), this can be done by the use of Tylor series:

Gravity disturbance:

$$
\begin{align*}
& \delta g_{p}=g_{p}-\gamma_{p}=\left(-\frac{\partial W_{P}}{\partial n}\right)-\left(-\frac{\partial U_{P}}{\partial n^{\prime}}\right) \approx\left(-\frac{\partial W_{p}}{\partial r}\right)-\left(-\frac{\partial U_{p}}{\partial r}\right)=-\frac{\partial\left(W_{p}-U_{P)}\right.}{\partial r} \\
& \delta g_{p}=-\frac{\partial T_{P}}{\partial r} \tag{3.66}
\end{align*}
$$

Gravity anomaly:

$$
\begin{align*}
& \Delta g_{p}=g_{p}-\gamma_{q}=\left(-\frac{\partial W_{p}}{\partial n}\right)-\left(-\frac{\partial U_{q}}{\partial n^{\prime}}\right) \approx\left(-\frac{\partial\left(T_{p}+U_{P}\right.}{\partial r}\right)-\left(-\frac{\partial U_{q}}{\partial r}\right)=-\frac{\partial T_{p}}{\partial r}-\frac{\partial}{\partial r}\left\{U_{q}-\gamma_{q} N\right\} \tag{3.67}\\
& +\frac{\partial U_{q}}{\partial r}=\frac{\partial T_{p}}{\partial r}+\frac{\partial \gamma_{q}}{\partial r} . N
\end{align*}
$$

$$
\begin{align*}
\frac{\partial \gamma_{q}}{\partial r} & \approx \frac{\partial}{\partial r}\left(\frac{G M}{r^{2}}\right)=-\frac{2}{r} \frac{G M}{r^{2}} \approx-\frac{2}{r} \gamma_{q} \tag{3.68}\\
\Delta g_{p} & =-\frac{\partial T_{p}}{\partial r}-\frac{2}{r} T_{p} \tag{3.69}
\end{align*}
$$

3.5 Harmonic expansion of the earth gravity field

3.5.1 Introduction

Figure 3.6: The external gravitational potential of the earth [4]

According to the graph above, the gravitational potential of the earth, V , at a point P with spherical coordinates ($r, \bar{\phi}, \lambda$), is given by the gravitational law:

$$
\begin{equation*}
V(r, \bar{\phi}, \lambda)=G \iiint_{v} \frac{p\left(r^{\prime}, \overline{\phi^{\prime}} \lambda^{\prime}\right) \cdot d v\left(r^{\prime}, \overline{\phi^{\prime}}, \lambda^{\prime}\right)}{\mathrm{I}} \tag{3.70}
\end{equation*}
$$

V can be written as in equation 3.71:

$$
\begin{equation*}
V(r, \bar{\phi}, \lambda)=\sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \sum_{m=0}^{n}\left(\bar{a}_{n m} \cos m \lambda+\bar{b}_{n m} \sin m \lambda\right) \bar{P}_{n m}(\sin \bar{\phi}) \tag{3.71}
\end{equation*}
$$

The value of $\bar{a}_{n m}$ and $\bar{b}_{n m}$ can written as:

$$
\begin{align*}
& \bar{a}_{n m}=\frac{G}{2 n+1} \iiint_{v}\left(r^{\prime}\right)^{n} \cdot \cos m \lambda^{\prime} \bar{P}_{n m}\left(\sin \overline{\phi^{\prime}}\right) \cdot P d v \tag{3.72}\\
& \bar{b}_{n m}=\frac{G}{2 n+1} \iiint_{v}\left(r^{\prime}\right)^{n} \cdot \sin m \lambda^{\prime} \bar{P}_{n m}\left(\sin \overline{\phi^{\prime}}\right) \cdot p d v \tag{3.73}
\end{align*}
$$

To find \bar{a}_{00} :

$$
\begin{equation*}
\bar{a}_{00}=G \iiint_{v} p d v=G M \tag{3.74}
\end{equation*}
$$

According to equation 3.71 we need it while $m=0$ then $\cos (m \lambda)=0$.
Then:

$$
\begin{equation*}
V_{00}=\frac{G M}{r} \tag{3.75}
\end{equation*}
$$

For $\bar{a}_{10}, \bar{a}_{11}, a n d \bar{b}_{11}$:

$$
\begin{align*}
& \bar{a}_{10}=\frac{G}{3} \iiint_{v} r^{\prime} \cdot \sqrt{3} \sin \overline{\phi^{\prime}} \cdot d m \tag{3.76}\\
& \quad \bar{a}_{11} \frac{G}{3} \iiint_{v} r^{\prime} \cdot \cos \lambda^{\prime} \cdot \sqrt{3} \cos \overline{\phi^{\prime}} \cdot d m \tag{3.77}\\
& \bar{b}_{11}=\frac{G}{3} \iiint_{v} r^{\prime} \cdot \sin \lambda^{\prime} \cdot \sqrt{3} \cos \overline{\phi^{\prime}} \cdot d m \tag{3.78}
\end{align*}
$$

We have:

$$
\begin{gather*}
r^{\prime} \sin \phi^{\prime}=z^{\prime} \tag{3.79}\\
r^{\prime} \cos \phi^{\prime} \cos \lambda^{\prime}=x^{\prime} \tag{3.80}\\
r^{\prime} \cos \phi^{\prime} \sin \lambda^{\prime}=y^{\prime} \tag{3.81}
\end{gather*}
$$

Then:

$$
\begin{align*}
& \bar{a}_{10}=\frac{G}{\sqrt{3}} \iiint z^{\prime} \cdot d m \tag{3.82}\\
& \bar{a}_{11}=\frac{G}{\sqrt{3}} \iiint x^{\prime} \cdot d m \tag{3.83}\\
& \bar{b}_{11}=\frac{G}{\sqrt{3}} \iiint y^{\prime} \cdot d m \tag{3.84}
\end{align*}
$$

In mechanics:

$$
\begin{align*}
& x_{0}=\frac{1}{M} \iiint_{V} x^{\prime} \cdot d m \tag{3.85}\\
& y_{0}=\frac{1}{M} \iiint_{V} y^{\prime} \cdot d m \tag{3.86}\\
& z_{0}=\frac{1}{M} \iiint_{V} z^{\prime} \cdot d m \tag{3.87}
\end{align*}
$$

By referring to equations 3.85 to 3.87 , and multiplying the three equations M / M we get:

$$
\begin{gather*}
\bar{a}_{10}=\frac{G M}{\sqrt{3}} z_{0} \tag{3.88}\\
\bar{a}_{11}=\frac{G M}{\sqrt{3}} x_{0} \tag{3.89}\\
\bar{b}_{11}=\frac{G M}{\sqrt{3}} y_{0} \tag{3.90}
\end{gather*}
$$

For the earth $\quad \mathrm{x}_{0}=y_{0}=z_{0}=0$; the values of $\bar{a}_{10}, \bar{a}_{11}, b_{10}, b_{11}$. This leads to:

$$
\mathrm{v}_{10}=v_{11}=0
$$

For V, the values $\bar{a}_{n m}$ and $\bar{b}_{n m}$ have and they can be very large number, then instead of equation:

$$
\begin{equation*}
V(r, \bar{\phi}, \lambda)=\sum_{s=2}^{\infty} \frac{1}{r^{n+1}} \sum_{m=0}^{n}\left(\bar{a}_{n m} \cos m \lambda+\bar{b}_{n m} \sin m \lambda\right) \bar{P}_{n m}(\sin \bar{\phi}) \tag{3.91}
\end{equation*}
$$

We can use:

$$
\begin{gather*}
\mathrm{V}\left((r, \bar{\phi}, \lambda)=\frac{G M}{r}+\frac{G M}{a} \sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n+1} \sum_{m=0}^{n}\left(\bar{A}_{n m} \cos m \lambda+\bar{B}_{n m} \sin m \lambda\right) \bar{P}_{n m}(\sin \bar{\phi})\right. \tag{3.92}\\
\bar{A}_{n m}=\frac{1}{a^{n \cdot G M}} \cdot \bar{a}_{n m} \\
\bar{B}_{n m}=\frac{1}{a^{n \cdot G M}} \cdot \bar{b}_{n m}
\end{gather*}
$$

3.5.2 Normal potential

As described previously the normal gravitational potential can be written as:

$$
\begin{gather*}
V^{\prime}(r, \bar{\phi}, \lambda)=\frac{G M}{r}\left(1+\sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{2 n} \bar{J}_{2 n} \bar{P}_{n m}(\sin \bar{\phi})\right) \tag{3.94}\\
\bar{J}_{2 n}=(-1)^{n} \frac{3 . e^{2 n} \sqrt{4 n+1}}{(2 n+1)(2 n+3)}\left(1-n+\frac{5 n}{e^{2}} . J_{2}\right) \tag{3.95}
\end{gather*}
$$

This can be written in other way:

$$
\begin{equation*}
\mathrm{V}(r, \bar{\phi}, \lambda)=\frac{G M}{r}\left(1+\sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n}\left(\bar{J}_{n m} \cos m \lambda+\bar{K}_{n m} \sin m \lambda\right) \bar{P}_{n m}(\sin \bar{\phi})\right. \tag{3.96}
\end{equation*}
$$

Where:

$$
\begin{gathered}
\bar{J}_{n m}=0 \text { If } \mathrm{n} \text { is odd or } \mathrm{m} \neq o \\
\bar{J}_{n m}=\bar{J}_{n} \text { If } \mathrm{n} \text { is even and } \mathrm{m}=0 \\
\bar{K}_{n m}=0 \text { For all } \mathrm{n}, \mathrm{~m}
\end{gathered}
$$

3.5.3 Anomalies

According to equations 3.92 and 3.96, the anomalies in section 3.4.4 can be written in the following forms:

1. Disturbing potential T_{p} :
$\mathrm{T}(r, \bar{\phi}, \lambda)=W-U=V-V^{\prime}=\frac{G M}{a} \sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n+1} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi})$

Where:

$$
\begin{array}{ll}
\bar{C}_{n m}=\bar{A}_{n m}-\bar{J}_{n m} & (\mathrm{n} \geq 2,0 \leq m \leq n) \tag{3.98}\\
\bar{S}_{n m}=\bar{B}_{n m} \quad(\mathrm{n} \geq 2,0 \leq m \leq n)
\end{array}
$$

(3.99)
2. The Geoid Undulation N :

$$
\begin{equation*}
\mathrm{N}(r, \bar{\phi}, \lambda)=\frac{T}{\gamma}=\frac{G M}{a \gamma} \sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n+1} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi}) \tag{3.100}
\end{equation*}
$$

3. Gravity distance $\delta g_{p}=g_{p}-\gamma_{p}$:

$$
\begin{equation*}
\text { 4. } \gamma g(r, \bar{\phi}, \lambda)=-\frac{\partial T}{\partial r}=\frac{G M}{a^{2}} \sum_{n=2}^{\infty}(n+1)\left(\frac{a}{r}\right)^{n+2} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi}) \tag{3.101}
\end{equation*}
$$

5. The Gravity Anomaly $\Delta g_{p}=g_{p}-\gamma_{q}$:
$\Delta g(r, \bar{\phi}, \lambda)=-\frac{\partial T}{\partial r}-\frac{2}{r} T=\frac{G M}{a^{2}} \sum_{n=2}^{\infty}(n+1)\left(\frac{a}{r}\right)^{n+2} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi})$

3.5.4 Methods for determining harmonic coefficients

1. satellite altimeter:

Figure 3.7: determining Harmonic coefficients using satellite altimeter [4]

The satellite send the waves to the sea surface and receive them back, the model described in the above graph can be written as:

$$
\begin{equation*}
\mathrm{h}=\mathrm{N}+\mathrm{H}+\Delta \mathrm{H}+\mathrm{a}+\mathrm{d} \tag{3.103}
\end{equation*}
$$

h : ellipsoidal height of the altimeter satellite, based on orbit computation,
N : geoidal height,
H : sea surface topography,
$\Delta \mathrm{H}$: instantaneoue tidal effects,
a : altimeter measurement,
b : discrepancy between the computed orbit and the actual orbit.

For the mean sea surface it has difference $1-2 \mathrm{~m}$ from the geoid, but as initial approximations it can be used as geoid undulations.

The coefficients can be calculated as:

$$
\begin{equation*}
\bar{C}_{n m}=\frac{a \gamma}{4 \pi G M} \iint_{\sigma} N\left(a, \bar{\phi}^{`}, \lambda^{\prime}\right) \bar{Y}_{n m}\left(\bar{\phi}^{\prime}, \lambda^{\prime}\right) d \sigma\left(\bar{\phi}^{\prime}, \lambda^{\prime}\right) \tag{3.104}
\end{equation*}
$$

2. Gravity data:

Using measured gravity data g and theoretical γ we can fined the gravity anomaly $\Delta g=g_{p}-\gamma_{q}$, we can fined the harmonic coefficients:

$$
\begin{equation*}
\bar{C}_{n m}=\frac{a^{2}}{4 \pi G M(n-1)} \iint_{\sigma} \Delta g\left(a, \bar{\phi}^{\prime}, \lambda^{\prime}\right) \bar{Y}_{n m}\left(\bar{\phi}^{\prime}, \lambda^{\prime}\right) d \sigma\left(\bar{\phi}^{\prime}, \lambda^{\prime}\right) \tag{3.105}
\end{equation*}
$$

3. Combination methods:

Both data from satellite and terrestrial gravity can be used in combination.

3.6 Global gravitational model (GGM)

By GGM we mean a set of normalized spherical harmonic coefficients ($C_{n m}, S_{n m}$) representing the earth's gravitational potential.

Today EGM96 is regarded as the most common global gravitational model and it is available for free, it also was used for defining WGS84. Table 3.5 lists sum of GGM.

Table 3.5: examples of existing Geoid model

Name	$\mathrm{N}_{\max }$	Authors	year	Remarks
GEM 9	20	GSFC	1977	Satellite data only
GEM 10C	180	GSFC	1978	Combination solution
GEM T1	36	GSFC	1988	Satellite data only
GEM T2	36	GSFC	1990	Satellite data only
GEM T3	50	GSFC	1993	Satellite data only
JGM 3	70	GSFC,UTA,O SU,CNES	1994	Combination solution
Rapp 81	180	Rapp, OSU	1981	Combination solution
OSU86C	250	Rapp, OSU	1986	Combination solution
OSU89A	360	Rapp, OSU	1989	Combination solution
OSU91A	360	Rapp, OSU	1991	Combination solution
WGS84	42	DOD,USA	1984	For GPS ephemeris
GFZ93A	360	Gruber,GFZ,Po	1993	
WDM94	360	Ning,WTUSM	1994	Combination, with Chinese data
EGM96	360	NASA,NIMA, OSU,etc	1996	Combination solution
GPM				
GPM98C	1800	Wenzel,Hanno	1998	Combination solution
EIGEN-3P	65	GFZ	2003	Using 3-year CHAMP data
EIGEN- GRACE01S	120	GFZ	2003	Using 39-days GRACE data
GGM01S	120	CSR	2003	Using 111-days GRACE data

The appreciations of the authors names are explained in table 3.5

Table 3.6: explained symbols in table 3.5

\begin{tabular}{|l|l|}
\hline CNES \& Center national d`Etudes spatiales,france

\hline DOD \& Department of defence, USA

\hline GFZ \& GeoForschungsZentrum,Potsdam,Germany

\hline GRIM \& Geodetic Research Institute munich, Germany

\hline GSFC \& Goddard Space Flight Center ,NASA, Greenbe,Maryland,USA

\hline OSU \& | Ohio State University, Department of Geodetic science and |
| :--- |
| Surveying,USA |

\hline CSR \& Center for Space Research, Univercity of Texas

\hline UTA \& Univercity of Texas in Austin, USA

\hline WTUSM \& Wuhan Technical University of Surveying and Mapping, China

\hline
\end{tabular}

CHAPTER

GEOID MODELING

4.1 Introduction

4.2 Geoid model
4.3 Area definition

CHAPTER FOUR

Geoid Modeling

4.1 Introduction

The geoid is a surface of constant potential energy that coincides with mean sea level over the oceans. This definition is not very rigorous. First, mean sea level is not quite a surface of constant potential due to dynamic processes within the ocean. Second, the actual equipotential surface under continents is affected by the gravitational attraction of the overlying mass. In geodesy we define the geoid as though that mass were below the Geoid instead of above it. The main function of the geoid in geodesy is to serve as a reference surface for leveling. The elevation measured by surveying is relative to the Geoid.

Figure4.1: plump line perpendicular to the Geoid

Geodetic applications require three different surfaces to be clearly defined as shown in Figure 4.2 they are:

Figure 4.2: the ellipsoid, Geoid, earth surface relationship [4]

- the highly irregular topographic surface (the landmass topography as well as the ocean bathymetry),
- a geometric or mathematical reference surface called the ellipsoid,
- And the geoid, the equipotential surface that mean sea level follows.

The difference between the surfaces at a point defines the different heights:

- The difference between the topographic surface and the Geoid is called the orthometric height, normally measured by leveling.
- The difference between the topographic surface and the ellipsoid is called the ellipsoid. The height in absolute GPS is ellipsoidal height.
- The difference between the Geoid and the ellipsoid is called the Geoid undulation.

4.2 Geoid model

4.2.1 Introduction

Equation (4.1) connects h (the ellipsoid height relative to the ellipsoid), N (the geoid undulation relative to the ellipsoid), and H (the elevation relative to the geoid). See Figure 4.2.

$$
\begin{equation*}
\mathrm{h}=\mathrm{H}+\mathrm{N} \tag{4.1}
\end{equation*}
$$

The Geoid undulations range worldwide from -107 m to 85 m relative to the WGS 84 ellipsoid. The primary goal of physical geodesy is to develop a geoid model, which is then used to connect the three values. Given N , we can compute H or h from the other.

In general, the global or large-scale features of the geoid are expressed by a spherical harmonic expansion of the gravitational potential. Its higher terms are well defined by the ground gravity data, and the lower terms by the satellite tracking data. The Earth Gravitational Model 1996 (EGM96) is one of the most common global models. It is complete through degree and order 360. And have an error range of ± 0.5 to $\pm 1.0 \mathrm{~m}$ worldwide.

4.2.2 Global geoid model

The Global Geoid Models are represented by using the combination of satellite altimeter and the gravity data that described in chapter 3 .

Gravity field quantities (e.g. $\mathrm{N}, \Delta \mathrm{g}, \gamma \mathrm{g}$) are related to the disturbing potential T and thus their harmonic expansions can be derived from that for T , where:

The Geoid Undulation N :

$$
\begin{equation*}
\mathrm{N}(r, \bar{\phi}, \lambda)=\frac{T}{\gamma}=\frac{G M}{a \gamma} \sum_{n=2}^{\infty}\left(\frac{a}{r}\right)^{n+1} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi}) \tag{4.2}
\end{equation*}
$$

And the Gravity distance $\delta g_{p}=g_{p}-\gamma_{p}$:

$$
\begin{equation*}
\gamma g(r, \bar{\phi}, \lambda)=-\frac{\partial T}{\partial r}=\frac{G M}{a^{2}} \sum_{n=2}^{\infty}(n+1)\left(\frac{a}{r}\right)^{n+2} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi}) \tag{4.3}
\end{equation*}
$$

And The Gravity Anomaly $\Delta g_{p}=g_{p}-\gamma_{q}$:

$$
\begin{equation*}
\Delta g(r, \bar{\phi}, \lambda)=-\frac{\partial T}{\partial r}-\frac{2}{r} T=\frac{G M}{a^{2}} \sum_{n=2}^{\infty}(n+1)\left(\frac{a}{r}\right)^{n+2} \sum_{m=0}^{n}\left\{\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right\} \bar{P}_{n m}(\sin \bar{\phi}) \tag{4.4}
\end{equation*}
$$

The degree of the geoid is defined by the number n . The higher n is more details the global gravitational model contains about the geoid and the gravity field of the earth.

In our project we use EGM96 up to degree36 ($\mathrm{n}=36$). So the total number of coefficients for a global gravitational model of degree n will be:

$$
n^{2}+2 n-3
$$

This mean we are dealing with $\left(36^{2}+2 * 36-3=1365\right)$ parameters. These parameters are stored in an ASCII file. We have made visual basic program to read these parameters ($\bar{C}_{n m}, \bar{S}_{n m}$), and calculating the geoid undulation with respect to the GRS80 datum and converting these undulation geometrically to the Palestinian datum, where Clarck 1880 ellipsoid is used. the parameters of EGM96 are shown in the appendix-A.

4.2.3 Gravimetric geoid (local) (stocks formula)

Stocks formula is one of the most fundamental formulas in physical geodesy. it gives us the possibility to determine the geoid height N from terrestrial gravity measurements.

Stocks assumptions:
1- No mass outside the geoid.
2- Gravity measurements all over the world.

The disturbing potential $T(r, \phi, \lambda)$ and the gravity anomaly $\Delta g(r, \phi, \lambda)$ have the following harmonic expansion over the unit sphere:

$$
\begin{gather*}
T(r, \phi, \lambda)=\sum_{n=2}^{\infty}\left(\frac{R}{r}\right)^{n+1} \sum_{m=-n}^{n} \bar{C}_{n m} \bar{Y}_{n m}(\phi, \lambda) \tag{4.5}\\
\Delta g(r, \phi, \lambda)=-\frac{\partial T}{\partial r}-\frac{2}{r} T=\sum_{n=2}^{\infty} \frac{n-1}{R}\left(\frac{R}{r}\right)^{n+2} \sum_{m=-n}^{n} \bar{C}_{n m} \bar{y}_{n m}(\phi, \lambda) \tag{4.6}
\end{gather*}
$$

The geopotential coefficients $\bar{C}_{n m}$ can be estimated from the boundary data $\Delta g(R, \phi, \lambda)$:

$$
\begin{equation*}
\bar{C}_{n m}=\frac{R}{4 \pi(n-1)} \iint_{\sigma}\left(\Delta g\left(R, \phi^{\prime}, \lambda^{\prime}\right) \bar{y}_{n m}\left(\phi^{\prime}, \lambda^{\prime}\right) d \sigma\left(\phi^{\prime}, \lambda^{\prime}\right)\right. \tag{4.7}
\end{equation*}
$$

Inserting $\bar{C}_{n m}$ into the harmonic expansions of $T(r, \phi, \lambda)$ leads to:

$$
\begin{equation*}
T(r, \phi, \lambda)=\frac{R}{4 \pi} \iint_{\sigma} S(r, \psi) \cdot \Delta g\left(R, \phi^{\prime}, \lambda^{\prime}\right) \cdot d \sigma\left(\phi^{\prime}, \lambda^{\prime}\right) \tag{4.8}
\end{equation*}
$$

Where $S(r, \psi)$ is called the extended Stokes function.

Figure4.3: spherical distance ψ [10]

The stock's function is defined as a weighting function, and it depends on the spherical distance ψ between the point P and th.

When $r \rightarrow R$, we get the disturbing potential on the geoid:

$$
\begin{equation*}
T(R, \phi, \lambda)=\frac{R}{4 \pi} \iint_{\sigma} S(\psi) \cdot \Delta g \tag{4.9}
\end{equation*}
$$

The geoid height N is then obtained by the famous stocks formula:

$$
\begin{equation*}
N=\frac{T(R, \phi, \lambda)}{\gamma}=\frac{R}{4 \pi \gamma} \iint_{\sigma} S(\psi) \cdot \Delta g \tag{4.10}
\end{equation*}
$$

Where γ denotes the normal gravity and $S \psi$ is called stokes function:

$$
\begin{equation*}
S \psi=[S(r, \psi)]_{r \rightarrow R}=\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}(\cos \psi) \tag{4.11}
\end{equation*}
$$

Also:

$$
\begin{equation*}
S(\psi)=\frac{1}{\sin \frac{\psi}{2}}-6 \sin \frac{\psi}{2}+1-5 \cos \psi-3 \cos \psi \operatorname{Ln}\left(\sin \frac{\psi}{2}+\sin ^{2} \frac{\psi}{2}\right) \tag{4.12}
\end{equation*}
$$

If we introduce a new variable $t=\cos \psi$, stokes function can also be written as:

$$
\begin{equation*}
S(t)=\sqrt{\frac{2}{1-t}}-6 \sqrt{\frac{1-t}{2}}+1-5 t-3 t \operatorname{Ln}\left(\sqrt{\frac{1-t}{2}}+\frac{1-t}{2}\right) \tag{4.13}
\end{equation*}
$$

Stokes' formula may be numerically evaluated by the grid method in the following way, see figure4.5:

Figure4.4: stocks formula (grid method)

$$
\begin{gather*}
N=\frac{R}{4 \pi \gamma} \iint_{\sigma 0} \Delta g S(\psi) d \sigma=\frac{R}{4 \pi \gamma} \sum_{I} \sum_{J} \iint_{\sigma I J} \Delta g S(\psi) \cdot d \sigma_{i j} \\
\approx \frac{R}{4 \pi \gamma} \sum_{I} \sum_{I} \iint_{\sigma I J} \Delta \bar{g}_{i j} S\left(\psi_{I J}\right) \cdot d \sigma_{i j}=\frac{R}{4 \pi \gamma} \sum_{I} \sum_{I} \Delta \bar{g}_{i j} S\left(\psi_{I J}\right) \iint_{\sigma I J} d \sigma \\
\frac{R}{4 \pi \gamma} \sum_{I} \sum_{I} \Delta \bar{g}_{i j} S\left(\psi_{I J}\right) \iint_{\sigma J} d \sigma_{i j}=\frac{R}{4 \pi \gamma} \sum_{I} \sum_{I}\left(\Delta \bar{g}_{i j} S\left(\psi_{i j}\right) A_{i j}\right) \tag{4.14}
\end{gather*}
$$

Where:

$$
\mathrm{R}=\text { mean radius of the earth }
$$

$\gamma=$ normal gravity of the reference ellipsoid
$\Delta \bar{g}_{i j}=$ mean gravity anomaly for block $\sigma_{i j}$
$\psi_{i j}=$ spherical distance from the computation point (ϕ, λ) to the block center of $\sigma_{i j}$
$\phi_{\text {min }}, \lambda_{\text {min }}=$ the minimum latitude and minimum longitude of the integration area
$\Delta \phi, \Delta \lambda=$ block sizes (latitude/longitude difference of a block)
$\mathrm{A}_{i j}=$ area of block $\sigma_{i j}$

Some of the above quantities can be computed as follows:

$$
\begin{gather*}
\cos \psi_{i j}=\sin \phi \sin \phi_{i}+\cos \phi \cos \phi_{i} \cos \left(\lambda-\lambda_{j}\right) \\
\phi_{i}=\phi_{\min }+\left(i-\frac{1}{2}\right) \Delta \phi \tag{4.15}\\
\lambda_{j}=\lambda_{\min }+\left(j-\frac{1}{2}\right) \Delta \lambda \tag{4.16}\\
A_{i j}=\iint_{\sigma i j} d \sigma=2 \cdot \Delta \lambda \cdot \sin \frac{\Delta \phi}{2} \cos \theta_{i} \tag{4.17}
\end{gather*}
$$

4.2.4 Polynomial representation

Using total station, we will measure ($\mathrm{E}, \mathrm{N}, \mathrm{H}$) for really the twenty references point that chosen in the study area. After that using GPS, (λ, ϕ, h) will be measured for the reference points.

From the difference between the ellipsoidal height or geodetic height, and the orthometric height or the height above the geoid, geoid undulation (N) will be calculated from equation (4.23):

$$
\begin{equation*}
\mathrm{N}=\mathrm{h}-\mathrm{H} \tag{4.18}
\end{equation*}
$$

The model using reference points will be built using polynomials of different degrees (1st' $2 \mathrm{~d}, 3 \mathrm{~d}$, and 4th), using least square solution.

$$
X=\left(A^{T} \cdot A\right)^{-1} \cdot A^{T} \cdot W \cdot L
$$

1. Constant, where the geoid is assumed to be flat surface parallel to the ellipsoid.

$$
\begin{equation*}
\mathrm{N}=a_{0} \tag{4.19}
\end{equation*}
$$

The matrices for the least square solution are:

$$
\mathrm{A}=\left[\begin{array}{c}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right] \quad \mathrm{X}=\left[a_{0}\right] \quad \mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
$$

2. Linear, where the geoid is in first order surface

$$
\begin{equation*}
N=a_{0}+a_{1} x+b_{1} y \tag{4.20}
\end{equation*}
$$

The matrices for the least square solution are:

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & x_{20} & y_{20}
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{1}
\end{array}\right] \quad \mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
$$

3. Quadratic, where the geoid is in second order surface.

$$
\begin{equation*}
N=a_{0}+a_{1} x+b_{1} y+a_{2} x^{2}+b_{2} y^{2}+c_{1} x y \tag{4.21}
\end{equation*}
$$

The matrices for the least square solution are:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cccccc}
1 & x_{1} & y_{1} & x_{1}^{2} & y_{1}^{2} & x_{1} y_{1} \\
1 & x_{2} & y_{2} & x_{2}^{2} & y_{2}^{2} & x_{2} y_{2} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & x_{20} & y_{20} & x_{20}^{2} & y_{20}^{2} & x_{20} y_{20}
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
c_{1}
\end{array}\right] \\
& \mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
\end{aligned}
$$

4. Cubic

$$
\begin{equation*}
N=a_{0}+a_{1} x+b_{1} y+a_{2} x^{2}+b_{2} y^{2}+c_{1} x y+a_{3} x^{3}+b_{3} y^{3}+c_{2} x^{2} y+c_{3} x y^{2} \tag{4.22}
\end{equation*}
$$

The matrices for the least square solution are:
$\mathrm{A}=$
$\left[\begin{array}{cccccccccc}1 & x_{1} & y_{1} & x_{1}^{2} & y_{1}^{2} & x_{1} y_{1} & x_{1}^{3} & y_{1}^{3} & x_{1}^{2} y_{1} & x_{1} y_{1}^{2} \\ 1 & x_{2} & y_{2} & x_{2}^{2} & y_{2}^{2} & x_{2} y_{2} & x_{2}^{3} & y_{2}^{3} & x_{2}^{2} y_{2} & x_{2} y_{2}^{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & x_{20} & y_{20} & x_{20}^{2} & y_{20}^{2} & x_{20} y_{20} & x_{20}^{3} & y_{20}^{3} & x_{20}^{2} y_{20} & x_{20} y_{20}^{2}\end{array}\right]$

$$
\mathrm{X}=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
c_{1} \\
a_{3} \\
b_{3} \\
c_{2} \\
c_{3}
\end{array}\right] \quad \mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
$$

4.3 Area definition

We chose an area equal to $\left(10^{*} 10\right)\left(15^{*}\right) 15 \mathrm{Km}$ and it is relatively small area, because in this area we assume the ellipsoid is flat, if the area is more than $15 * 15 \mathrm{Km}$ this assumption is wrong. And the area is divided into meshes.

The meshes can be connected to each others by common control points to satisfy the continuity of the surface.

If the area is larger than we deal with patches, where each patch has a group of meshes with special datum transformation parameters for high accuracy applications.

CHAPTER

5

DATA ANALYSIS

5.1 Introduction

5.2 Artificial data
5.3 Results of artificial data
5.4 Real data
5.5 Test of real data
5.6 Accuracy testing

CHAPTER FIVE

Data Analysis

5.1 Introduction

This chapter includes the analysis of the results of geoid representation using Polynomials, by finding the parameters for the geoid model using least square solution depending on a visual basic program. The results using different polynomial degrees were compared.

The model was built using polynomial of different degrees using visual basic program, the difference between the ellipsoidal height and the height above geoid is used, and then geoid undulation (N) obtained from the equation 5.1. This undulation is used as the observation equation for the least squares solution.

$$
\begin{equation*}
\mathrm{N}=\mathrm{h}-\mathrm{H} \tag{5.1}
\end{equation*}
$$

The parameters of the HRS are calculated by EXCEL using least square solution and by VB6 program, these parameters are then used to calculate the geoid undulation and height above geoid for the degrees representing the polynomial using a separate program.

5.2 Artificial data

Before using real data, the program was tested using artificial data; these data were created in the study area. These data were used to compute the HRS parameters for different degrees in EXCEL, and then these points were computed by using visual basic program.

The results using these points were used to determine whether the program runs properly or not. The artificial data are listed in table 5.1.

Table 5.1: Artificial data coordinates and ellipsoidal and geoidal heights

Point	X	Y	H (Clark ellips.)	H (Geoid)
1	157864.100	104755.110	997.320	995.680
2	157721.120	104648.210	975.650	974.130
3	157630.310	104102.650	943.560	941.460
4	157666.580	103859.710	901.250	899.260
5	157213.640	103422.530	894.620	892.630
6	157011.960	102215.120	880.520	878.530
7	156889.560	101999.820	871.560	869.570
8	156765.430	101522.230	854.230	852.240
9	156421.210	100799.540	830.650	828.660
10	156157.840	100445.650	812.450	810.460
11	155955.960	100122.565	799.360	797.370
12	155487.320	99985.556	783.120	781.130
13	154921.000	99241.560	765.520	763.530
14	154001.031	99003.540	685.210	683.220
15	153654.580	98456.120	642.520	640.530
16	153213.021	98994.510	623.150	621.160
17	152898.720	98621.350	595.320	593.330
18	152212.540	97256.910	560.120	558.130
19	151684.790	97100.310	526.350	524.360
20	149654.315	96585.610	489.320	487.330

5.3 Results of artificial data

The HRS parameters were computed for artificial data using excel and VB6 to find the parameters of the least square solution. Then the results are compared. The same results were got by both methods; the visual basic program was used for the real data.

5.3.1 Artificial result for zero order

In this method, the geoid is assumed to be flat surface parallel to the ellipsoid, and the parameters are obtained using equation (5.2). This solution is no more than the average separation between the ellipsoid and the geoid for the control point used.

$$
\begin{equation*}
\mathrm{N}=a_{0} \tag{5.2}
\end{equation*}
$$

The matrices for the least square solution built by EXCEL are:

$$
\mathrm{A}=\left[\begin{array}{c}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right] \quad \mathrm{X}=\left[a_{0}\right] \quad \mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
$$

$\mathrm{L}=$| 1.640 |
| :--- |
| 1.520 |
| 2.100 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |

$$
\begin{array}{lc}
\mathrm{A}^{\mathrm{T} *} \mathrm{~A}= & 20 \\
\left(\mathrm{~A}^{\mathrm{T} *} *\right) \mathrm{INV}= & 0.05 \\
\mathrm{~A}^{\mathrm{T}} * \mathrm{~L}= & 39.09 \\
\text { Parameters: } & \\
\mathrm{X}= & 1.9545 \\
\hline
\end{array}
$$

The solution using the VB program is shown in figure 5.1.

Figure 5.1: The solution using the VB program for zero order

We can clearly see that the parameter is the same as in EXCEL solution.

5.3.2 Artificial result for first order

The geoid is in first order surface (linear), in this method the geoid is assumed to be flat, but inclined little from horizontal. And the parameters are obtained using equation (5.3).

$$
\begin{equation*}
N=a_{0}+a_{1} x+b_{1} y \tag{5.3}
\end{equation*}
$$

The matrices for the least square solution are:

$$
\mathrm{A}^{\mathrm{T}} * \mathrm{~L}=\begin{array}{c|}
39.09 \\
6066957.776 \\
3931748.16 \\
\hline
\end{array}
$$

Parameters:

$$
X=\begin{array}{|c|}
\hline 0.856179189 \\
5.00086 \mathrm{E}-05 \\
-6.62208 \mathrm{E}-05 \\
\hline
\end{array}
$$

The solution using the VB program is shown in figure 5.2:

Figure 5.2: The solution using the VB program for first order.

We can clearly see that the parameters are the same as in EXCEL solution.

5.3.3 Artificial result for second order

In this method, the geoid is assumed to be a second order surface. And the parameters are obtained using equation (5.4).

$$
\begin{equation*}
N=a_{0}+a_{1} x+b_{1} y+a_{2} x^{2}+b_{2} y^{2}+c_{1} x y \tag{5.4}
\end{equation*}
$$

The matrices for the least square solution are:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cccccc}
1 & x_{1} & y_{1} & x_{1}^{2} & y_{1}^{2} & x_{1} y_{1} \\
1 & x_{2} & y_{2} & x_{2}^{2} & y_{2}^{2} & x_{2} y_{2} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & x_{20} & y_{20} & x_{20}^{2} & y_{20}^{2} & x_{20} y_{20}
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
c_{1}
\end{array}\right] \\
& \mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
\end{aligned}
$$

Note: both X and Y is divided by 1000 .

$\mathrm{A}=$| 1 | 157.864 | 104.755 | 24921.07 | 10973.6331 | 16537.07116 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 157.721 | 104.648 | 24875.95 | 10951.2479 | 16505.23289 |
| 1 | 157.630 | 104.103 | 24847.31 | 10837.3617 | 16409.73299 |
| 1 | 157.667 | 103.860 | 24858.75 | 10786.8394 | 16375.2528 |
| 1 | 157.214 | 103.423 | 24716.13 | 10696.2197 | 16259.4324 |
| 1 | 157.012 | 102.215 | 24652.76 | 10447.9308 | 16048.99633 |
| 1 | 156.890 | 102.000 | 24614.33 | 10403.9633 | 16002.70688 |
| 1 | 156.765 | 101.522 | 24575.40 | 10306.7632 | 15915.17604 |
| 1 | 156.421 | 100.800 | 24467.59 | 10160.5473 | 15767.18601 |
| 1 | 156.158 | 100.446 | 24385.27 | 10089.3286 | 15685.37574 |
| 1 | 155.956 | 100.123 | 24322.26 | 10024.5280 | 15614.71074 |
| 1 | 155.487 | 99.986 | 24176.31 | 9997.1114 | 15546.48614 |
| 1 | 154.921 | 99.242 | 24000.52 | 9848.8872 | 15374.60172 |
| 1 | 154.001 | 99.004 | 23716.32 | 9801.7009 | 15246.64723 |
| 1 | 153.655 | 98.456 | 23609.73 | 9693.6076 | 15128.23377 |
| 1 | 153.213 | 98.995 | 23474.23 | 9799.9130 | 15167.24794 |
| 1 | 152.899 | 98.621 | 23378.02 | 9726.1707 | 15079.07818 |
| 1 | 155.213 | 97.257 | 23168.66 | 9458.9065 | 14803.7213 |
| 1 | 151.685 | 97.100 | 23008.28 | 9428.4702 | 14728.64013 |
| 1 | 149.654 | 96.586 | 22396.41 | 9328.7801 | 14454.4533 |

$\mathrm{L}=$| 1.640 |
| :--- |
| 1.520 |
| 2.100 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |
| 1.990 |

$\mathrm{A}^{\mathrm{T}} * \mathrm{~A}=$

20	3105.025027	2013.138601	482165.3022	202761.9105	312649.9362
3105.025027	482165.3022	312649.9362	74889574.86	31500671.4	48566585.06
2013.138601	312649.9362	202761.9105	48566585.06	20434719.13	31500671.4
482165.3022	74889574.86	48566585.06	11634297221	4894930911	7545884370
202761.9105	31500671.4	20434719.13	4894930911	2060729369	3175776897
312649.9362	48566585.06	31500671.4	7545884370	3175776897	4894930911

$$
\left(\mathrm{A}^{\mathrm{T}} * \mathrm{~A}\right) \mathrm{INV}=
$$

2636336.107	-37391.1260	4701.767498	173.0341211	93.52885666	-155.0833122
-37391.1238	1507.382422	-1582.366749	-12.76640138	-10.9665243	24.41067228
4701.764142	-1582.36670	2359.647218	16.30257129	15.11418729	-34.72305095
173.0340955	-12.7664009	16.30257112	0.127303808	0.124604723	-0.266389287
93.52882886	-10.9665235	15.11418656	0.124604719	0.137776599	-0.275906396
-155.083254	24.41067092	-34.72305	-0.266389282	-0.27590640	0.580825998

$$
A^{T^{T}} * \mathrm{~L}=\begin{array}{|c|}
\hline 39.09 \\
6066.957776 \\
3931.74816 \\
941828.0827 \\
395700.4536 \\
610433.0093 \\
\hline
\end{array}
$$

Parameters:

$$
X=\begin{array}{|c|}
\hline-6.052808657 \\
5.049531119 \\
-7.672683571 \\
-0.075676634 \\
-0.103881515 \\
0.183845433 \\
\hline
\end{array}
$$

The solution using the VB program is shown in figure 5.3.

Figure 5.3: The solution using the VB program for second order.

We can clearly see that the parameters are the same as in EXCEL solution.

5.3.4 Artificial result for third order

In this method the geoid is assumed to be a third order surface, and the parameters are obtained using equation (5.5).

$$
\begin{equation*}
N=a_{0}+a_{1} x+b_{1} y+a_{2} x^{2}+b_{2} y^{2}+c_{1} x y+a_{3} x^{3}+b_{3} y^{3}+c_{2} x^{2} y+c_{3} x y^{2} \tag{5.5}
\end{equation*}
$$

The matrices for the least square solution are:
$\mathrm{A}=$
$\left[\begin{array}{cccccccccc}1 & x_{1} & y_{1} & x_{1}^{2} & y_{1}^{2} & x_{1} y_{1} & x_{1}^{3} & y_{1}^{3} & x_{1}^{2} y_{1} & x_{1} y_{1}^{2} \\ 1 & x_{2} & y_{2} & x_{2}^{2} & y_{2}^{2} & x_{2} y_{2} & x_{2}^{3} & y_{2}^{3} & x_{2}^{2} y_{2} & x_{2} y_{2}^{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & x_{20} & y_{20} & x_{20}^{2} & y_{20}^{2} & x_{20} y_{20} & x_{20}^{3} & y_{20}^{3} & x_{20}^{2} y_{20} & x_{20} y_{20}^{2}\end{array}\right]$

$$
\mathrm{X}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
c_{1} \\
a_{3} \\
b_{3} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

$$
\mathrm{L}=\left[\begin{array}{c}
N_{1} \\
N_{2} \\
\cdot \\
\cdot \\
\cdot \\
N_{20}
\end{array}\right]
$$

Note: both X and Y is divided by 1000 .

Parameters:

$$
X=\begin{array}{|c|}
\hline 3813.585938 \\
502.6385498 \\
-895.1818848 \\
-17.29336166 \\
-24.81369019 \\
43.57383728 \\
0.129324853 \\
-0.147514388 \\
-0.428333521 \\
0.445812106 \\
\hline
\end{array}
$$

The solution using the VB program is shown in figure 5.4.

Figure 5.4: The solution using the VB program for third order.

We can clearly see that there is a difference between the parameters related to the technical differences between VB and excel.

5.4 Real data

After the program was tested using artificial data in the study area, in order to examine whether the program runs properly. It was found that it runs properly. According to this result the program was applied to real data, were the GPS height and the geoid height were measured for the control points.

The real data were used to compute the HRS parameters for different degrees, and then these parameters were saved and used to compute the geoid undulation and height above geoid in another VB program for new points. The real data point's observations and coordinates are listed in table 5.2.

Table 5.2: Real data coordinates and ellipsoidal and geoidal heights

Point	X	Y	H(ellipsoid)	H(geoid)
1	155960.356	104235.580	897.910	895.799
2	158266.343	106672.048	960.010	957.715
3	155917.432	107507.029	845.300	843.145
4	158239.302	104210.633	961.221	958.980
5	160833.893	107388.752	972.520	970.210
6	151356.277	104384.964	783.490	781.310
7	162095.515	101693.583	883.330	881.130
8	161812.411	103627.078	935.525	933.180
9	153446.000	101673.541	856.050	853.880
10	157174.690	101676.372	879.176	876.900
11	161818.411	106095.212	947.437	945.180
12	159105.846	100355.835	954.030	951.870
13	155872.637	108642.889	821.863	819.600
14	159602.147	108749.722	975.399	973.130
15	158546.092	101692.212	892.409	890.155
16	158465.322	101512.331	900.189	897.973
17	158817.726	101265.672	901.002	898.805
18	159114.346	101345.795	866.491	864.245
19	158993.973	101694.213	889.669	887.430
20	158555.128	106885.354	985.234	982.990

5.5 Test of real data

The real data were tested for different polynomials, and we get different values of geoid undulation according to the degree of the polynomial we use. The results for geoid undulation are shown below using surfer program.

5.5.1 Testing for zero order

Figure 5.5 shows the shape for the geoid model in the study area, using the polynomial of zero order. The geoid is flat and parallel to the horizontal plane (in small area the ellipsoid is assumed to be flat).

Figure 5.5: goid model for zero order

The parameters are shown in figure 5.6.

Figure 5.6: parameters for zero order

The results were tested using points with known geoidal height (H), the ellipsoidal height (h) for these points were measured using GPS. Using equation (5.6), H was calculated and the 95% RMSE was found in table 5.3.

$$
\begin{equation*}
\mathrm{H}=\mathrm{h}-\mathrm{N} \tag{5.6}
\end{equation*}
$$

Table 5.3: RMSE for zero order

point	H(fixed)	H (cal.)	dH
1	895.799	895.6786	0.120
2	957.715	957.7786	-0.064
3	843.145	843.0686	0.076
4	958.980	958.9896	-0.010
5	970.210	970.2886	-0.079
6	781.310	781.2586	0.051
7	881.130	881.0986	0.031
8	933.180	933.2936	-0.114
9	853.880	853.8186	0.061
10	876.900	876.9446	-0.045
11	945.180	945.2056	-0.026
12	951.870	951.7986	0.071
13	819.600	819.6316	-0.032
14	973.130	973.1676	-0.038
15	890.155	890.1776	-0.023
16	897.973	897.9576	0.015
17	898.805	898.7706	0.034
18	864.245	864.2596	-0.015
19	887.430	887.4376	-0.008
20	982.990	983.0026	-0.013

$R M S E=\sqrt{\frac{\sum\left(H_{\text {fixed }}-H_{\text {cal. }}\right)^{2}}{n}}= \pm 0.0563324 \mathrm{~m}$

So we can say that the geoid undulation (N) has accuracy of $\underline{\mathbf{6 c m}}$.

5.5.2 Testing for first order

Figure 5.7 shows the scape of the geoid model in the study area. Where the geoid is assumed to a flat surface inclined little from the horizontal plane.

Figure 5.7: geoid model for first order

The parameters are shown in figure 5.8.

Figure 5.8: parameters for first order

RMSE was found in table 5.4.

Table 5.4: RMSE for first order

point	H(fixed)	H(cal.)	dH
1	895.799	895.703	0.096
2	957.715	957.7612	-0.046
3	843.145	843.0726	0.072
4	958.980	958.9882	-0.008
5	970.210	970.2374	-0.027
6	781.310	781.3346	-0.025
7	881.130	881.0693	0.061
8	933.180	933.2552	-0.075
9	853.880	853.8881	-0.008
10	876.900	876.9715	-0.072
11	945.180	945.1514	0.029
12	951.870	951.812	0.058
13	819.600	819.6289	-0.029
14	973.130	973.1217	0.008
15	890.155	890.1888	-0.034
16	897.973	897.9709	0.002
17	898.805	898.7814	0.024
18	864.245	864.2665	-0.021
19	887.430	887.4437	-0.014
20	982.990	982.9805	0.010

$R M S E=\sqrt{\frac{\sum\left(H_{\text {fixed }}-H_{\text {cal. }}\right)^{2}}{n}}= \pm 0.0447565 \mathrm{~m}$

So we can say that the geoid undulation (N) has accuracy of $\underline{4 \mathrm{~cm}}$.

5.5.3 Testing for second order

Figure 5.9 shows the shape for the geoid model in the study area. Where the geoid is assumed to be in second order surface.

Figure 5.9: geoid model for second order

The parameters are shown in figure 5.10.

Figure 5.10: parameters for first order

RMSE was found in table 5.6.

Table 5.5: RMSE for second order

point	H(fixed)	H(cal.)	dH
1	895.799	895.7002	0.099
2	957.715	957.7602	-0.045
3	843.145	843.0872	0.058
4	958.980	958.9849	-0.005
5	970.210	970.2229	-0.013
6	781.310	781.3317	-0.022
7	881.130	881.0828	0.047
8	933.180	933.2531	-0.073
9	853.880	853.8675	0.013
10	876.900	876.9673	-0.067
11	945.180	945.1357	0.044
12	951.870	951.8213	0.049
13	819.600	819.6522	-0.052
14	973.130	973.1164	0.014
15	890.155	890.1899	-0.035
16	897.973	897.9722	0.001
17	898.805	898.7851	0.020
18	864.245	864.2712	-0.026
19	887.430	887.4465	-0.017
20	982.990	982.9786	0.011
$\sqrt{\frac{\sum\left(H_{\text {fixed }}-H_{\text {cal }}\right)^{2}}{n}}= \pm 0.0435952 \mathrm{~m}$			

So we can say that the geoid undulation (N) has accuracy of $\underline{\mathbf{4 c m}}$.

5.5.4 Testing for third order

Figure 5.8 shows the shape for the geoid model in the study area.

Figure 5.11: geoid model for third order

RMSE was found in table 5.5.

Table 5.6: RMSE for third order

point	H (fixed)	H (cal.)	dH
1	895.799	895.7864	0.013
2	957.715	957.7597	-0.045
3	843.145	843.131	0.014
4	958.980	958.9577	0.022
5	970.210	970.2434	-0.033
6	781.310	781.316	-0.006
7	881.130	881.1363	-0.006
8	933.180	933.1986	-0.019
9	853.880	853.8659	0.014
10	876.900	876.9739	-0.074
11	945.180	945.1463	0.034
12	951.870	951.8706	-0.001
13	819.600	819.6056	-0.006
14	973.130	973.1162	0.014
15	890.155	890.1629	-0.008
16	897.973	897.9526	0.020
17	898.805	898.7713	0.034
18	864.245	864.2514	-0.006
19	887.430	887.412	0.018
20	982.990	982.9711	0.019

$R M S E=\sqrt{\frac{\sum\left(H_{\text {fixed }}-H_{\text {cal }}\right)^{2}}{n}}= \pm 0.0262123 \mathrm{~m}$

Therefore, we can say that the geoid undulation (N) has accuracy of $\mathbf{3 c m}$.

5.6 Accuracy testing

According to the results shown in tables (5.3, 5.4, 5.5, 5.6), the curve was drawn to the accuracy for the different polynomial degrees for calculating height reference surface.

Table 5.7: Tested Accuracy and the polynomial order

Order	Order0	Order1	Order2	Order3
Accuracy (cm)	5.6	4.4	4.3	2.5

Figure 5.12: Accuracy testing

CHAPTER

6

CONCLUSIONS \& RECOMMENDATIONS

6.1 Conclusions

6.2 Recommendations

CHAPTER SIX

Conclusions and Recommendations

6.1 Conclusions

According to the different tests and results of this project shown in chapter five, we get the following conclusions:

1. The project calculates the height reference system (HRS) using polynomials of the degrees: zero order, first order, second order and third order.
2. The software of this project could calculate the HRS parameters properly. As tested using EXCEL solutions, as well it uses the calculated parameters to find H using measured h .
3. In this project, it was assumed that the ellipsoid for the area to be flat, and we could get good results that support this assumption.
4. The project runs using projected coordinates system, but not the longitude and latitude. And it does not matter if the system real or auxiliary.
5. EGM96 geoid model has shown very bad results, because of in our area little number of gravity data was used for that model.
6. The results have shown that the accuracy is always getting higher as the degree of the polynomial gets higher. as shown in chapter 5.6.

6.2 Recommendations

According to the work done in this project, we recommend the following to be considered in HRS representation:

1. The test of results using higher polynomial degrees (fourth order, fifth order, ...).
2. this project can only be applied for small areas $10 * 10 \mathrm{~km}$ or maximum $15 * 15 \mathrm{~km}$, for larger areas (national level or regional levels), the model can be divided into small areas $(10 * 10 \mathrm{~km})$, but the continuity condition has to bf applied, and the region can be divided to patches (e.g. $50 * 50 \mathrm{~km}$), so each patch has separate datum transformation parameters.
3. In the adjustment, it is recommended gravity and astronomical data (deflection of vertical), so that the HRS model can be more realistic, because these data originally depend on the geoid.
4. For the people of surveying in Palestine, it is recommended to inform these people about the difference between different types of heights and coordinate systems.

APPENDIX A

EGM 96 Parameters Up To 36 Degree

APPENDIX A

EGM 96 Parameters Up To 36 Degree

Table A-1: EGM96 parameters

n	m	$\mathrm{C}_{\text {nm }}$	s_{nm}
2	0	$0.15548961 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
2	1	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$
2	2	$0.24390067 \mathrm{E}-05$	-0.14000870E-05
3	0	$0.95703311 \mathrm{E}-06$	$0.00000000 \mathrm{E}+00$
3	1	$0.20307524 \mathrm{E}-05$	$0.24960266 \mathrm{E}-06$
3	2	$0.90353915 \mathrm{E}-06$	-0.61898576E-06
3	3	$0.72150732 \mathrm{E}-06$	$0.14137252 \mathrm{E}-05$
4	0	-0.25039630E-06	$0.00000000 \mathrm{E}+00$
4	1	-0.53525575E-06	-0.47413322E-06
4	2	$0.34825956 \mathrm{E}-06$	0.66402365E-06
4	3	$0.99131081 \mathrm{E}-06$	-0.20142885E-06
4	4	-0.18936775E-06	$0.30896802 \mathrm{E}-06$
5	0	0.68688331E-07	$0.0000000 \mathrm{E}+00$
5	1	-0.60759526E-07	-0.95025830E-07
5	2	$0.65608000 \mathrm{E}-06$	-0.32412978E-06
5	3	-0.45185048E-06	-0.21707107E-06
5	4	-0.29504971E-06	0.51356076E-07
5	5	$0.17190752 \mathrm{E}-06$	-0.66905926E-06
6	0	-0.14792196E-06	$0.00000000 \mathrm{E}+00$
6	1	-0.77140451E-07	$0.25319721 \mathrm{E}-07$
6	2	$0.52446631 \mathrm{E}-07$	-0.37524337E-06
6	3	0.58415398E-07	$0.68782457 \mathrm{E}-08$
6	4	-0.88826681E-07	$-0.47112551 \mathrm{E}-06$

A-1

6	5	$-0.26608318 \mathrm{E}-06$	$-0.53688302 \mathrm{E}-06$
6	6	$0.96977647 \mathrm{E}-08$	$-0.23696573 \mathrm{E}-06$
7	0	$0.90084749 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$
7	1	$0.28185033 \mathrm{E}-06$	$0.96226629 \mathrm{E}-07$
7	2	$0.32097572 \mathrm{E}-06$	$0.95694116 \mathrm{E}-07$
7	3	$0.25239511 \mathrm{E}-06$	$-0.20959979 \mathrm{E}-06$
7	4	$-0.27424825 \mathrm{E}-06$	$-0.12419677 \mathrm{E}-06$
7	5	$-0.10203298 \mathrm{E}-09$	$0.19694196 \mathrm{E}-07$
7	6	$-0.35855234 \mathrm{E}-06$	$0.15158761 \mathrm{E}-06$
7	7	$-0.14861559 \mathrm{E}-08$	$0.25282302 \mathrm{E}-07$
8	0	$0.48380019 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$
8	1	$0.24572133 \mathrm{E}-07$	$0.58448181 \mathrm{E}-07$
8	2	$0.69506807 \mathrm{E}-07$	$0.67298789 \mathrm{E}-07$
8	3	$-0.16565131 \mathrm{E}-07$	$-0.87073521 \mathrm{E}-07$
8	4	$-0.24310439 \mathrm{E}-06$	$0.67017055 \mathrm{E}-07$
8	5	$-0.23643946 \mathrm{E}-07$	$0.87145479 \mathrm{E}-07$
8	6	$-0.64860212 \mathrm{E}-07$	$0.31015485 \mathrm{E}-06$
8	7	$0.68906444 \mathrm{E}-07$	$0.74722875 \mathrm{E}-07$
8	8	$-0.12143992 \mathrm{E}-06$	$0.12066191 \mathrm{E}-06$
9	0	$0.28440334 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$
9	1	$0.14211255 \mathrm{E}-06$	$0.25365458 \mathrm{E}-07$
9	2	$0.28492603 \mathrm{E}-07$	$-0.34982892 \mathrm{E}-07$
9	3	$-0.16130770 \mathrm{E}-06$	$-0.85673561 \mathrm{E}-07$
9	4	$-0.12181511 \mathrm{E}-07$	$0.25861246 \mathrm{E}-07$
9	5	$-0.24086651 \mathrm{E}-07$	$-0.57528523 \mathrm{E}-07$
9	6	$0.66747223 \mathrm{E}-07$	$0.22336337 \mathrm{E}-06$
9	7	$-0.12292539 \mathrm{E}-06$	$-0.95140873 \mathrm{E}-07$
9	8	$0.18819537 \mathrm{E}-06$	$-0.37058420 \mathrm{E}-08$
9	9	$-0.61348629 \mathrm{E}-07$	$0.97042530 \mathrm{E}-07$
10	0	$0.54967314 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$

A-2

10	1	$0.83155949 \mathrm{E}-07$	$-0.13561995 \mathrm{E}-06$
10	2	$-0.81935873 \mathrm{E}-07$	$-0.50106549 \mathrm{E}-07$
10	3	$-0.40960213 \mathrm{E}-08$	$-0.16041175 \mathrm{E}-06$
10	4	$-0.93942739 \mathrm{E}-07$	$-0.68807042 \mathrm{E}-07$
10	5	$-0.48920380 \mathrm{E}-07$	$-0.45803528 \mathrm{E}-07$
10	6	$-0.34483699 \mathrm{E}-07$	$-0.78375345 \mathrm{E}-07$
10	7	$0.90179229 \mathrm{E}-08$	$-0.22191507 \mathrm{E}-08$
10	8	$0.42160554 \mathrm{E}-07$	$-0.92853576 \mathrm{E}-07$
10	9	$0.12438558 \mathrm{E}-06$	$-0.38941169 \mathrm{E}-07$
10	10	$0.96639411 \mathrm{E}-07$	$-0.18940944 \mathrm{E}-07$
11	0	$-0.51937400 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$
11	1	$0.18789966 \mathrm{E}-07$	$-0.30238895 \mathrm{E}-07$
11	2	$0.12580638 \mathrm{E}-07$	$-0.91994434 \mathrm{E}-07$
11	3	$-0.31030480 \mathrm{E}-07$	$-0.13177790 \mathrm{E}-06$
11	4	$-0.36318793 \mathrm{E}-07$	$-0.70227447 \mathrm{E}-07$
11	5	$0.40492533 \mathrm{E}-07$	$0.58378070 \mathrm{E}-07$
11	6	$-0.22096118 \mathrm{E}-08$	$0.28007585 \mathrm{E}-07$
11	7	$0.32534717 \mathrm{E}-08$	$-0.87447075 \mathrm{E}-07$
11	8	$-0.59488520 \mathrm{E}-08$	$0.23754140 \mathrm{E}-07$
11	9	$-0.40130795 \mathrm{E}-07$	$0.43269605 \mathrm{E}-07$
11	10	$-0.52991922 \mathrm{E}-07$	$-0.21362210 \mathrm{E}-07$
11	11	$0.45505963 \mathrm{E}-07$	$-0.64589547 \mathrm{E}-07$
12	0	$0.34091827 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$
12	1	$-0.54252561 \mathrm{E}-07$	$-0.44203534 \mathrm{E}-07$
12	2	$0.67317039 \mathrm{E}-08$	$0.31802951 \mathrm{E}-07$
12	3	$0.40396775 \mathrm{E}-07$	$0.17586390 \mathrm{E}-07$
12	4	$-0.63292441 \mathrm{E}-07$	$-0.45521470 \mathrm{E}-08$
12	5	$0.37269665 \mathrm{E}-07$	$0.44109379 \mathrm{E}-08$
12	6	$-0.21614079 \mathrm{E}-08$	$0.42793605 \mathrm{E}-07$
12	7	$-0.15995328 \mathrm{E}-07$	$0.34851984 \mathrm{E}-07$

A-3

12	$8-0.23372086 \mathrm{E}-07$	$0.14836903 \mathrm{E}-07$
12	$9 \quad 0.42181160 \mathrm{E}-07$	0.23658502E-07
12	$10-0.84005909 \mathrm{E}-08$	0.31990145E-07
12	$11 \quad 0.97893862 \mathrm{E}-08$	-0.84029464E-08
12	$12-0.51824553 \mathrm{E}-08$	-0.11107629E-07
13	$00.42987279 \mathrm{E}-07$	$0.0000000 \mathrm{E}+00$
13	$1-0.57834903 \mathrm{E}-07$	0.45047532E-07
13	$20.53154463 \mathrm{E}-07$	-0.63139706E-07
13	$3-0.16896080 \mathrm{E}-07$	$0.83374341 \mathrm{E}-07$
13	$4-0.89250536 \mathrm{E}-08$	-0.17502520E-08
13	$5 \quad 0.48617903 \mathrm{E}-07$	0.54172922E-07
13	$6-0.23195715 \mathrm{E}-07$	$0.10615923 \mathrm{E}-08$
13	$7-0.31865755 \mathrm{E}-08$	-0.56731814E-08
13	$8-0.10158126 \mathrm{E}-07$	-0.99146240E-08
13	$9 \quad 0.18299923 \mathrm{E}-07$	$0.46225214 \mathrm{E}-07$
13	$10 \quad 0.40034144 \mathrm{E}-07$	-0.41474931E-07
13	$11-0.43036318 \mathrm{E}-07$	-0.29798284E-10
13	$12-0.31032309 \mathrm{E}-07$	$0.84030873 \mathrm{E}-07$
13	$13-0.62529956 \mathrm{E}-07$	$0.68046019 \mathrm{E}-07$
14	$0-0.20874614 \mathrm{E}-07$	$0.0000000 \mathrm{E}+00$
14	$1-0.16546828 \mathrm{E}-07$	$0.27125379 \mathrm{E}-07$
14	$2-0.38492401 \mathrm{E}-07$	-0.43780286E-10
14	$3 \quad 0.39164418 \mathrm{E}-07$	$0.20310608 \mathrm{E}-07$
14	4-0.79895326E-08	-0.59321157E-09
14	$50.24567479 \mathrm{E}-07$	-0.14832612E-07
14	6-0.95222536E-08	0.72856795E-08
14	$7 \quad 0.36671119 \mathrm{E}-07$	-0.26792336E-08
14	$8-0.34592625 \mathrm{E}-07$	-0.19095498E-07
14	$90.34550116 \mathrm{E}-07$	0.29056740E-07
14	$10 \quad 0.36478662 \mathrm{E}-07$	-0.31315939E-08

A-4

14	$110.13804735 \mathrm{E}-07$	-0.40430631E-07
14	$12 \quad 0.78663794 \mathrm{E}-08$	-0.32021215E-07
14	$13 \quad 0.32021299 \mathrm{E}-07$	$0.45438329 \mathrm{E}-07$
14	$14-0.51267444 \mathrm{E}-07$	-0.50594096E-08
15	$0 \quad 0.80777815 \mathrm{E}-09$	$0.00000000 \mathrm{E}+00$
15	$1 \quad 0.12217677 \mathrm{E}-07$	$0.11128027 \mathrm{E}-07$
15	$2-0.25156244 \mathrm{E}-07$	-0.28812382E-07
15	$30.40168575 \mathrm{E}-07$	$0.26259721 \mathrm{E}-07$
15	$4-0.43516908 \mathrm{E}-07$	$0.75970620 \mathrm{E}-08$
15	$50.10001336 \mathrm{E}-07$	$0.17570483 \mathrm{E}-07$
15	$6 \quad 0.25691563 \mathrm{E}-07$	-0.51539931E-07
15	$7 \quad 0.60775338 \mathrm{E}-07$	$0.15287728 \mathrm{E}-07$
15	$8-0.33107615 \mathrm{E}-07$	$0.23560736 \mathrm{E}-07$
15	$9 \quad 0.11337024 \mathrm{E}-07$	$0.44530058 \mathrm{E}-07$
15	$10 \quad 0.90272628 \mathrm{E}-08$	$0.11380171 \mathrm{E}-07$
15	$110.21578428 \mathrm{E}-08$	$0.23386649 \mathrm{E}-07$
15	12-0.32173283E-07	$0.87246056 \mathrm{E}-08$
15	$13-0.29069917 \mathrm{E}-07$	-0.41929657E-08
15	$14 \quad 0.67593124 \mathrm{E}-08$	-0.24725886E-07
15	$15-0.18982400 \mathrm{E}-07$	-0.57180203E-08
16	$0-0.69674419 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
16	$10.29762444 \mathrm{E}-07$	$0.24056477 \mathrm{E}-07$
16	$2-0.14090720 \mathrm{E}-07$	0.24868930E-07
16	$3-0.32614384 \mathrm{E}-07$	-0.43991617E-07
16	$40.39603946 \mathrm{E}-07$	$0.47384625 \mathrm{E}-07$
16	$5-0.67955599 \mathrm{E}-08$	$0.18427955 \mathrm{E}-08$
16	$6 \quad 0.63436101 \mathrm{E}-08$	-0.28497461E-07
16	$7-0.95300107 \mathrm{E}-09$	-0.12637220E-07
16	$8-0.18206427 \mathrm{E}-07$	$0.30948957 \mathrm{E}-08$
16	9-0.18818589E-07	-0.38217071E-07

A-5

18	$5 \quad 0.49920121 \mathrm{E}-08$	$0.22495036 \mathrm{E}-07$
18	$6 \quad 0.25084784 \mathrm{E}-07$	-0.72579493E-08
18	$7-0.25169809 \mathrm{E}-08$	$0.86472717 \mathrm{E}-08$
18	$8 \quad 0.37515392 \mathrm{E}-07$	-0.47905269E-08
18	9-0.15001756E-07	$0.30465143 \mathrm{E}-07$
18	$10 \quad 0.20478341 \mathrm{E}-08$	-0.10903887E-07
18	$11-0.93049877 \mathrm{E}-08$	$0.31534440 \mathrm{E}-08$
18	$12-0.27122210 \mathrm{E}-07$	-0.18672469E-07
18	$13-0.63144883 \mathrm{E}-08$	-0.35028415E-07
18	$14-0.89799709 \mathrm{E}-08$	-0.12465734E-07
18	$15-0.41720138 \mathrm{E}-07$	-0.18162769E-07
18	$160.82039262 \mathrm{E}-08$	$0.32907359 \mathrm{E}-08$
18	$17 \quad 0.48941841 \mathrm{E}-08$	$0.43880077 \mathrm{E}-08$
18	$18-0.34131452 \mathrm{E}-09$	-0.84223304E-08
19	$0-0.48119880 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
19	$1-0.13213044 \mathrm{E}-07$	$0.96527776 \mathrm{E}-09$
19	$20.72921760 \mathrm{E}-08$	-0.39027955E-08
19	$3-0.27785512 \mathrm{E}-08$	$0.12157320 \mathrm{E}-07$
19	$4 \quad 0.47232727 \mathrm{E}-08$	$0.75195496 \mathrm{E}-08$
19	$5-0.21981033 \mathrm{E}-08$	$0.31676830 \mathrm{E}-07$
19	6-0.69907328E-08	$0.66876695 \mathrm{E}-08$
19	$7 \quad 0.32117098 \mathrm{E}-08$	$0.75083181 \mathrm{E}-08$
19	$8 \quad 0.26618106 \mathrm{E}-07$	-0.14246715E-07
19	$90.34732155 \mathrm{E}-08$	$0.16727392 \mathrm{E}-07$
19	$10-0.36466277 \mathrm{E}-07$	-0.85932870E-08
19	$11 \quad 0.20363064 \mathrm{E}-07$	$0.12015152 \mathrm{E}-07$
19	$12-0.24038447 \mathrm{E}-08$	-0.64408272E-09
19	$13-0.60661368 \mathrm{E}-08$	-0.28243230E-07
19	$14-0.45297581 \mathrm{E}-08$	-0.13030821E-07
19	$15-0.17204300 \mathrm{E}-07$	-0.12754490E-07

A-7

21	$5 \quad 0.11886262 \mathrm{E}-07$	-0.35429753E-08
21	$6-0.72366582 \mathrm{E}-08$	$0.19953299 \mathrm{E}-08$
21	$7-0.1232222 \mathrm{E}-07$	$0.11353253 \mathrm{E}-09$
21	$8-0.14949821 \mathrm{E}-07$	$0.41740142 \mathrm{E}-08$
21	$9 \quad 0.21343182 \mathrm{E}-07$	-0.17645566E-08
21	$10-0.70501056 \mathrm{E}-08$	-0.18894385E-08
21	$110.13904536 \mathrm{E}-07$	-0.35028162E-07
21	$12-0.27052792 \mathrm{E}-08$	$0.11322332 \mathrm{E}-07$
21	$13-0.17479634 \mathrm{E}-07$	$0.13139450 \mathrm{E}-07$
21	$14 \quad 0.19616056 \mathrm{E}-07$	$0.94325221 \mathrm{E}-08$
21	$15 \quad 0.17871844 \mathrm{E}-07$	$0.13623579 \mathrm{E}-07$
21	$160.80496891 \mathrm{E}-08$	-0.76514646E-08
21	$17-0.69161846 \mathrm{E}-08$	-0.22420271E-08
21	$18 \quad 0.23251696 \mathrm{E}-07$	-0.88069202E-08
21	$19-0.23822477 \mathrm{E}-07$	$0.13590813 \mathrm{E}-07$
21	$20-0.20085521 \mathrm{E}-07$	$0.19849993 \mathrm{E}-07$
21	$210.75325382 \mathrm{E}-08$	-0.82326651E-08
22	$0-0.10158062 \mathrm{E}-07$	$0.00000000 \mathrm{E}+00$
22	$10.99264005 \mathrm{E}-08$	-0.73878776E-09
22	$2-0.20025161 \mathrm{E}-07$	$0.82418434 \mathrm{E}-08$
22	$30.71928024 \mathrm{E}-08$	-0.58209660E-08
22	$4-0.10139221 \mathrm{E}-07$	$0.10559479 \mathrm{E}-07$
22	$50.35062583 \mathrm{E}-08$	$0.14636723 \mathrm{E}-08$
22	$60.91119536 \mathrm{E}-08$	$0.66547227 \mathrm{E}-08$
22	$7 \quad 0.10169420 \mathrm{E}-07$	-0.25100648E-09
22	$8-0.95378686 \mathrm{E}-08$	-0.90097471E-08
22	$9 \quad 0.16685785 \mathrm{E}-07$	-0.77709629E-08
22	$10 \quad 0.22397182 \mathrm{E}-08$	$0.17863617 \mathrm{E}-07$
22	$11-0.50223135 \mathrm{E}-08$	-0.13049248E-07
22	$120.67411072 \mathrm{E}-08$	-0.10705344E-07

A-9

23	20	$0.13380923 \mathrm{E}-07$	$-0.56003403 \mathrm{E}-08$
23	21	$0.12582297 \mathrm{E}-07$	$0.95772631 \mathrm{E}-08$
23	22	$-0.71855325 \mathrm{E}-08$	$-0.41003816 \mathrm{E}-08$
23	23	$-0.52198162 \mathrm{E}-08$	$-0.55010969 \mathrm{E}-08$
24	0	$0.10846534 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
24	1	$0.51627587 \mathrm{E}-08$	$-0.18089284 \mathrm{E}-07$
24	2	$-0.90488064 \mathrm{E}-08$	$0.10411457 \mathrm{E}-07$
24	3	$0.10970272 \mathrm{E}-07$	$-0.13446224 \mathrm{E}-07$
24	4	$0.61442765 \mathrm{E}-08$	$0.12886955 \mathrm{E}-07$
24	5	$-0.36824589 \mathrm{E}-08$	$-0.10370842 \mathrm{E}-07$
24	6	$-0.44244705 \mathrm{E}-08$	$-0.82754584 \mathrm{E}-09$
24	7	$-0.66586601 \mathrm{E}-08$	$0.83403679 \mathrm{E}-09$
24	8	$0.36226393 \mathrm{E}-08$	$-0.48054370 \mathrm{E}-09$
24	9	$0.35548816 \mathrm{E}-09$	$0.83615749 \mathrm{E}-09$
24	10	$0.14902199 \mathrm{E}-07$	$0.90421325 \mathrm{E}-08$
24	11	$0.16604156 \mathrm{E}-07$	$0.17805973 \mathrm{E}-07$
24	12	$0.13155140 \mathrm{E}-07$	$-0.98125222 \mathrm{E}-08$
24	13	$-0.26082275 \mathrm{E}-08$	$0.20559496 \mathrm{E}-08$
24	14	$-0.18413457 \mathrm{E}-07$	$0.17131829 \mathrm{E}-09$
24	15	$0.68974568 \mathrm{E}-08$	$-0.13414408 \mathrm{E}-07$
24	16	$0.65560364 \mathrm{E}-10$	$0.60941292 \mathrm{E}-08$
24	17	$-0.94172765 \mathrm{E}-08$	$-0.61764358 \mathrm{E}-08$
24	18	$-0.90030744 \mathrm{E}-09$	$-0.87191815 \mathrm{E}-08$
24	19	$-0.64920098 \mathrm{E}-08$	$-0.16059045 \mathrm{E}-07$
24	20	$-0.41906875 \mathrm{E}-08$	$0.41637838 \mathrm{E}-08$
24	21	$0.95449063 \mathrm{E}-08$	$0.83696586 \mathrm{E}-08$
24	22	$0.39263724 \mathrm{E}-08$	$0.29011456 \mathrm{E}-08$
24	23	$-0.39448719 \mathrm{E}-08$	$-0.10211766 \mathrm{E}-07$
24	24	$0.69433053 \mathrm{E}-08$	$-0.58543387 \mathrm{E}-08$
25	0	$0.69648343 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$

A-11

25	$1-0.12134755 \mathrm{E}-09$	$0.24822316 \mathrm{E}-08$
25	$20.29767798 \mathrm{E}-08$	0.64225442E-08
25	$3-0.76282446 \mathrm{E}-08$	-0.53571425E-09
25	$40.48725875 \mathrm{E}-09$	$0.12827429 \mathrm{E}-08$
25	$50.72793816 \mathrm{E}-09$	-0.10420682E-08
25	$60.97998222 \mathrm{E}-08$	-0.32113122E-08
25	$7-0.30746751 \mathrm{E}-08$	-0.15638884E-08
25	$80.12752141 \mathrm{E}-08$	-0.60005681E-08
25	9-0.11039404E-07	$0.17983214 \mathrm{E}-07$
25	$10 \quad 0.34928302 \mathrm{E}-08$	-0.46031099E-08
25	$110.11360813 \mathrm{E}-07$	$0.11630427 \mathrm{E}-08$
25	$12-0.11614855 \mathrm{E}-07$	$0.11066581 \mathrm{E}-07$
25	$130.85694145 \mathrm{E}-08$	-0.13384553E-07
25	$14-0.22769087 \mathrm{E}-07$	0.14688826E-07
25	$15-0.22238387 \mathrm{E}-08$	-0.62647082E-09
25	$16 \quad 0.49544647 \mathrm{E}-08$	-0.12992344E-07
25	$17-0.12260732 \mathrm{E}-07$	-0.22734175E-08
25	$18-0.25332524 \mathrm{E}-09$	-0.15215480E-07
25	$19 \quad 0.57873464 \mathrm{E}-08$	0.67874049E-08
25	$20-0.40458650 \mathrm{E}-08$	-0.44318585E-08
25	$21 \quad 0.79851997 \mathrm{E}-08$	0.50917354E-08
25	$22-0.35323001 \mathrm{E}-08$	-0.43516147E-09
25	$230.46536584 \mathrm{E}-08$	-0.61790209E-08
25	$240.29132954 \mathrm{E}-08$	-0.10778678E-07
25	$250.60244936 \mathrm{E}-08$	0.71521943E-08
26	$0 \quad 0.94839024 \mathrm{E}-09$	$0.0000000 \mathrm{E}+00$
26	$1-0.28069933 \mathrm{E}-08$	-0.73703432E-08
26	$2-0.56504246 \mathrm{E}-08$	$0.97048022 \mathrm{E}-08$
26	$3 \quad 0.40399609 \mathrm{E}-08$	-0.10200855E-07
26	$40.78712632 \mathrm{E}-08$	-0.76572199E-10

26	5	$0.94198347 \mathrm{E}-08$	$0.69131921 \mathrm{E}-08$
26	6	$0.50750955 \mathrm{E}-08$	0.59711990E-08
26	7	$0.49869000 \mathrm{E}-08$	0.52968690E-09
26	8	$0.93342056 \mathrm{E}-08$	-0.76946004E-08
26	9	$0.57272391 \mathrm{E}-08$	-0.29598117E-08
26	10	-0.92304307E-08	$0.38226138 \mathrm{E}-08$
26	11	$0.88411226 \mathrm{E}-09$	$0.45248688 \mathrm{E}-08$
26	12	-0.21248607E-07	$0.49014250 \mathrm{E}-08$
26	13	$0.10963142 \mathrm{E}-08$	$0.32696874 \mathrm{E}-08$
26	14	$0.57684003 \mathrm{E}-08$	$0.47963560 \mathrm{E}-08$
26	15	-0.12596475E-07	0.54078202E-08
26	16	$0.34253619 \mathrm{E}-08$	-0.83706236E-08
26	17	-0.47596893E-08	$0.75930571 \mathrm{E}-08$
26	18	-0.13773764E-07	$0.10681940 \mathrm{E}-07$
26	19	$0.60762043 \mathrm{E}-09$	-0.41765283E-09
26	20	$0.86623946 \mathrm{E}-08$	-0.12869672E-07
26	21	-0.48840261E-08	-0.30597844E-08
26	22	$0.15920042 \mathrm{E}-07$	$0.69691127 \mathrm{E}-08$
26	23	-0.27308858E-09	$0.12746831 \mathrm{E}-07$
26	24	-0.78262903E-09	$0.14866561 \mathrm{E}-07$
26	25	-0.26732545E-08	$0.69747507 \mathrm{E}-08$
26	26	$0.52707939 \mathrm{E}-08$	-0.98509852E-10
27	0	$0.27590934 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
27	1	-0.35303435E-08	$0.29610418 \mathrm{E}-08$
27	2	$0.13258377 \mathrm{E}-07$	-0.27798882E-08
27	3	$0.10332760 \mathrm{E}-08$	-0.46858418E-08
27	4	-0.41245439E-08	$0.99744251 \mathrm{E}-09$
27	5	$0.54595020 \mathrm{E}-08$	$0.11611230 \mathrm{E}-08$
27	6	0.11243679E-07	0.32302225E-08
27	7	$0.30112601 \mathrm{E}-09$	-0.39259731E-08

A-13

27	8	-0.29322931E-08	-0.70659098E-08
27	9	-0.77664809E-09	$0.68107568 \mathrm{E}-08$
27	10	-0.62129211E-08	$0.14086464 \mathrm{E}-08$
27	11	$0.30758672 \mathrm{E}-08$	-0.26178891E-08
27	12	-0.60020933E-08	-0.82350198E-08
27	13	-0.48427322E-08	-0.44872340E-08
27	14	$0.11747618 \mathrm{E}-07$	0.39195328E-08
27	15	-0.39799826E-08	0.18040332E-08
27	16	$0.74675272 \mathrm{E}-08$	-0.24579877E-08
27	17	$0.88336877 \mathrm{E}-09$	$0.15530396 \mathrm{E}-08$
27	18	-0.32587986E-08	$0.82894907 \mathrm{E}-08$
27	19	$0.33211715 \mathrm{E}-08$	-0.64471590E-08
27	20	$0.36407345 \mathrm{E}-08$	-0.30399518E-08
27	21	$0.16848003 \mathrm{E}-08$	-0.95695478E-08
27	22	$0.25137682 \mathrm{E}-08$	$0.72864594 \mathrm{E}-08$
27	23	-0.47462094E-08	-0.19622852E-08
27	24	-0.12729748E-08	-0.11154519E-08
27	25	$0.14634375 \mathrm{E}-07$	$0.43650834 \mathrm{E}-08$
27	26	-0.58948762E-08	$0.62189702 \mathrm{E}-08$
27	27	$0.69876682 \mathrm{E}-08$	$0.52109520 \mathrm{E}-08$
28	0	-0.64181804E-08	$0.0000000 \mathrm{E}+00$
28	1	$0.79845012 \mathrm{E}-09$	-0.17619700E-09
28	2	-0.10810298E-07	-0.35345291E-08
28	3	$0.32027107 \mathrm{E}-08$	-0.37991262E-08
28	4	$0.60300873 \mathrm{E}-08$	-0.43043842E-08
28	5	$0.32983901 \mathrm{E}-08$	-0.49938804E-08
28	6	-0.12128028E-07	$0.47573820 \mathrm{E}-08$
28	7	-0.43292688E-08	$0.11700110 \mathrm{E}-09$
28	8	$0.26980287 \mathrm{E}-08$	-0.36584153E-08
28	9	0.55538198E-08	-0.57418866E-08

A-14

A-15

30	$11-0.64772437 \mathrm{E}-08$	$0.46730467 \mathrm{E}-08$
30	$12-0.96213229 \mathrm{E}-09$	-0.25128378E-08
30	$13 \quad 0.13915439 \mathrm{E}-07$	$0.21559418 \mathrm{E}-08$
30	$14 \quad 0.23110867 \mathrm{E}-08$	-0.14278791E-08
30	$150.15724093 \mathrm{E}-08$	-0.94383819E-08
30	$16-0.10942744 \mathrm{E}-08$	$0.17714132 \mathrm{E}-08$
30	$17 \quad 0.10170832 \mathrm{E}-08$	0.53292523E-09
30	$18-0.71912599 \mathrm{E}-09$	-0.76170867E-09
30	$19-0.56279331 \mathrm{E}-08$	-0.21905613E-08
30	$20-0.41996988 \mathrm{E}-08$	$0.55677192 \mathrm{E}-08$
30	$21-0.11771006 \mathrm{E}-07$	-0.59538518E-08
30	$22-0.33342773 \mathrm{E}-08$	-0.28411420E-08
30	23-0.32034038E-08	-0.12062012E-08
30	$24-0.39236997 \mathrm{E}-08$	-0.49783238E-09
30	$250.54745310 \mathrm{E}-08$	-0.48252642E-08
30	26-0.35853392E-08	$0.91820446 \mathrm{E}-08$
30	27-0.60250856E-08	$0.11270688 \mathrm{E}-07$
30	$28-0.12152854 \mathrm{E}-08$	-0.15663863E-08
30	29 0.10563570E-08	$0.55391012 \mathrm{E}-08$
30	$30 \quad 0.13675204 \mathrm{E}-08$	0.46966008E-09
31	0 0.76192595E-08	$0.00000000 \mathrm{E}+00$
31	$10.16403745 \mathrm{E}-08$	-0.18644011E-08
31	$20.48821085 \mathrm{E}-08$	$0.17028426 \mathrm{E}-08$
31	$30.26006006 \mathrm{E}-08$	$-0.30160639 \mathrm{E}-08$
31	4-0.27794109E-08	-0.89986332E-09
31	5-0.29226564E-08	-0.20584988E-08
31	6-0.22216409E-09	-0.41377404E-09
31	$7-0.13590974 \mathrm{E}-08$	-0.91873345E-09
31	$8-0.18442681 \mathrm{E}-08$	-0.23340156E-08
31	9 0.14198109E-08	-0.18379699E-08

A-17

31	10	$0.36988335 \mathrm{E}-08$	$-0.48314042 \mathrm{E}-08$
31	11	$0.28309241 \mathrm{E}-09$	$0.84056410 \mathrm{E}-08$
31	12	$0.21424623 \mathrm{E}-09$	$0.23222394 \mathrm{E}-08$
31	13	$0.88911339 \mathrm{E}-08$	$0.28272096 \mathrm{E}-08$
31	14	$-0.11537941 \mathrm{E}-07$	$0.25878382 \mathrm{E}-08$
31	15	$-0.49724582 \mathrm{E}-09$	$-0.36711081 \mathrm{E}-08$
31	16	$-0.38187234 \mathrm{E}-08$	$0.15217096 \mathrm{E}-09$
31	17	$-0.82264316 \mathrm{E}-08$	$0.61006394 \mathrm{E}-08$
31	18	$0.58082460 \mathrm{E}-09$	$-0.10289827 \mathrm{E}-08$
31	19	$0.25790851 \mathrm{E}-08$	$0.21631482 \mathrm{E}-08$
31	20	$-0.26252502 \mathrm{E}-09$	$0.26803430 \mathrm{E}-08$
31	21	$-0.27361157 \mathrm{E}-08$	$0.55944573 \mathrm{E}-08$
31	22	$-0.72539614 \mathrm{E}-08$	$-0.79895124 \mathrm{E}-08$
31	23	$0.96422250 \mathrm{E}-08$	$0.94387292 \mathrm{E}-08$
31	24	$-0.38311754 \mathrm{E}-08$	$0.14092951 \mathrm{E}-08$
31	25	$-0.12019741 \mathrm{E}-07$	$-0.31623143 \mathrm{E}-08$
31	26	$-0.13746385 \mathrm{E}-07$	$-0.39036675 \mathrm{E}-08$
31	27	$-0.16460855 \mathrm{E}-08$	$0.66679623 \mathrm{E}-08$
31	28	$0.56474009 \mathrm{E}-08$	$0.34776765 \mathrm{E}-08$
31	29	$-0.27889768 \mathrm{E}-08$	$-0.44736234 \mathrm{E}-08$
31	30	$0.22103028 \mathrm{E}-08$	$0.35575482 \mathrm{E}-08$
31	31	$-0.33367360 \mathrm{E}-08$	$-0.27472820 \mathrm{E}-08$
32	0	$-0.27771389 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
32	1	$-0.90313940 \mathrm{E}-08$	$-0.12788546 \mathrm{E}-08$
32	2	$-0.29572566 \mathrm{E}-08$	$0.40290672 \mathrm{E}-08$
32	3	$0.47848309 \mathrm{E}-09$	$0.23345913 \mathrm{E}-08$
32	4	$0.24109664 \mathrm{E}-08$	$-0.40055677 \mathrm{E}-08$
32	5	$-0.31226603 \mathrm{E}-09$	$-0.31440438 \mathrm{E}-08$
32	6	$-0.45792557 \mathrm{E}-08$	$0.13562585 \mathrm{E}-08$
32	7	$-0.25447419 \mathrm{E}-08$	$0.43308093 \mathrm{E}-08$

A-18

32	8	$0.13931823 \mathrm{E}-08$	$0.28456157 \mathrm{E}-08$
32	9	$-0.99747191 \mathrm{E}-09$	$0.64412499 \mathrm{E}-10$
32	10	$0.10293338 \mathrm{E}-08$	$-0.31557064 \mathrm{E}-08$
32	11	$-0.46493344 \mathrm{E}-08$	$-0.24289795 \mathrm{E}-08$
32	12	$-0.43837438 \mathrm{E}-08$	$0.61777853 \mathrm{E}-08$
32	13	$0.94404856 \mathrm{E}-08$	$0.23561402 \mathrm{E}-08$
32	14	$0.43713497 \mathrm{E}-08$	$0.94319682 \mathrm{E}-08$
32	15	$0.50396041 \mathrm{E}-08$	$-0.40358629 \mathrm{E}-08$
32	16	$0.46017953 \mathrm{E}-08$	$0.36466599 \mathrm{E}-08$
32	17	$-0.10429059 \mathrm{E}-07$	$0.39701515 \mathrm{E}-08$
32	18	$0.48077086 \mathrm{E}-08$	$-0.18534929 \mathrm{E}-08$
32	19	$0.51994923 \mathrm{E}-08$	$-0.33663340 \mathrm{E}-08$
32	20	$0.73649603 \mathrm{E}-09$	$-0.32606590 \mathrm{E}-09$
32	21	$-0.17671937 \mathrm{E}-08$	$0.87412552 \mathrm{E}-08$
32	22	$-0.32033107 \mathrm{E}-08$	$-0.21634488 \mathrm{E}-08$
32	23	$0.17026247 \mathrm{E}-08$	$-0.29883533 \mathrm{E}-09$
32	24	$-0.38089947 \mathrm{E}-08$	$0.14151100 \mathrm{E}-08$
32	25	$-0.15137520 \mathrm{E}-07$	$0.49203186 \mathrm{E}-08$
32	26	$-0.11721419 \mathrm{E}-08$	$-0.24841620 \mathrm{E}-08$
32	27	$-0.34561919 \mathrm{E}-08$	$-0.45753379 \mathrm{E}-08$
32	28	$0.61368102 \mathrm{E}-08$	$0.13247260 \mathrm{E}-08$
32	29	$-0.55609110 \mathrm{E}-09$	$0.48120177 \mathrm{E}-08$
32	30	$0.44685775 \mathrm{E}-08$	$-0.95183284 \mathrm{E}-09$
32	31	$-0.74715979 \mathrm{E}-09$	$0.64653561 \mathrm{E}-09$
32	32	$0.84059624 \mathrm{E}-09$	$-0.93473786 \mathrm{E}-09$
33	0	$0.51093253 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
33	1	$-0.12149713 \mathrm{E}-08$	$0.43943928 \mathrm{E}-09$
33	2	$-0.47376262 \mathrm{E}-08$	$0.25501496 \mathrm{E}-08$
33	3	$-0.33878721 \mathrm{E}-08$	$-0.80388230 \mathrm{E}-09$
33	4	$0.25399097 \mathrm{E}-08$	$0.34818242 \mathrm{E}-09$

33	5	$-0.26538144 \mathrm{E}-08$	$0.28220750 \mathrm{E}-08$
33	6	$-0.26597001 \mathrm{E}-09$	$-0.40241622 \mathrm{E}-08$
33	7	$-0.10350151 \mathrm{E}-08$	$0.13572287 \mathrm{E}-09$
33	8	$-0.23213274 \mathrm{E}-08$	$0.12361935 \mathrm{E}-08$
33	9	$-0.79210705 \mathrm{E}-10$	$0.19664622 \mathrm{E}-08$
33	10	$0.66245034 \mathrm{E}-10$	$0.64304550 \mathrm{E}-10$
33	11	$0.38344470 \mathrm{E}-08$	$-0.14330538 \mathrm{E}-08$
33	12	$0.34476303 \mathrm{E}-08$	$0.37404590 \mathrm{E}-08$
33	13	$0.31546646 \mathrm{E}-08$	$0.65764483 \mathrm{E}-08$
33	14	$0.33425248 \mathrm{E}-08$	$0.46783306 \mathrm{E}-09$
33	15	$-0.35965693 \mathrm{E}-08$	$0.20240954 \mathrm{E}-08$
33	16	$0.14492704 \mathrm{E}-08$	$0.12667778 \mathrm{E}-08$
33	17	$-0.40567620 \mathrm{E}-09$	$0.55681226 \mathrm{E}-08$
33	18	$-0.47096180 \mathrm{E}-08$	$-0.22672311 \mathrm{E}-08$
33	19	$0.61747179 \mathrm{E}-08$	$-0.56761134 \mathrm{E}-09$
33	20	$0.21108563 \mathrm{E}-08$	$-0.11466619 \mathrm{E}-08$
33	21	$0.14492665 \mathrm{E}-08$	$0.70413395 \mathrm{E}-09$
33	22	$-0.11824474 \mathrm{E}-07$	$-0.33280060 \mathrm{E}-08$
33	23	$0.19180993 \mathrm{E}-08$	$-0.33511996 \mathrm{E}-08$
33	24	$0.61512096 \mathrm{E}-08$	$-0.84360721 \mathrm{E}-09$
33	25	$0.11943460 \mathrm{E}-08$	$-0.10979681 \mathrm{E}-07$
33	26	$0.92989975 \mathrm{E}-08$	$-0.14859889 \mathrm{E}-08$
33	27	$-0.27449912 \mathrm{E}-08$	$0.21797197 \mathrm{E}-08$
33	28	$-0.27311200 \mathrm{E}-08$	$0.12972504 \mathrm{E}-08$
33	29	$-0.15760081 \mathrm{E}-07$	$0.30203015 \mathrm{E}-08$
33	30	$0.49395445 \mathrm{E}-08$	$-0.20281755 \mathrm{E}-07$
33	31	$0.25623402 \mathrm{E}-08$	$-0.47244740 \mathrm{E}-09$
33	32	$0.42550616 \mathrm{E}-08$	$0.41997068 \mathrm{E}-08$
33	33	$-0.12968597 \mathrm{E}-08$	$-0.10797466 \mathrm{E}-08$
34	0	$-0.57588303 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$

34	1	$-0.33414485 \mathrm{E}-08$	$0.56753685 \mathrm{E}-09$
34	2	$0.37065126 \mathrm{E}-08$	$0.38544022 \mathrm{E}-08$
34	3	$-0.13019276 \mathrm{E}-08$	$0.35500052 \mathrm{E}-08$
34	4	$0.42592905 \mathrm{E}-08$	$-0.33682532 \mathrm{E}-08$
34	5	$-0.64546460 \mathrm{E}-09$	$0.17484852 \mathrm{E}-08$
34	6	$0.21435602 \mathrm{E}-09$	$-0.12583338 \mathrm{E}-08$
34	7	$0.34242762 \mathrm{E}-08$	$0.11937261 \mathrm{E}-08$
34	8	$0.44469619 \mathrm{E}-09$	$-0.71688027 \mathrm{E}-09$
34	9	$-0.10896647 \mathrm{E}-09$	$0.12859885 \mathrm{E}-09$
34	10	$-0.40002376 \mathrm{E}-08$	$-0.18077981 \mathrm{E}-08$
34	11	$0.19072761 \mathrm{E}-08$	$-0.29263704 \mathrm{E}-08$
34	12	$0.67673277 \mathrm{E}-09$	$0.46956808 \mathrm{E}-08$
34	13	$-0.61985707 \mathrm{E}-08$	$0.42769731 \mathrm{E}-08$
34	14	$-0.34999592 \mathrm{E}-08$	$0.25978189 \mathrm{E}-08$
34	15	$0.36656651 \mathrm{E}-08$	$0.20311531 \mathrm{E}-08$
34	16	$0.53231482 \mathrm{E}-08$	$-0.11762108 \mathrm{E}-08$
34	17	$-0.36912981 \mathrm{E}-08$	$0.53904652 \mathrm{E}-08$
34	18	$-0.23261398 \mathrm{E}-08$	$-0.21200182 \mathrm{E}-08$
34	19	$0.21380683 \mathrm{E}-08$	$-0.15243883 \mathrm{E}-08$
34	20	$0.44075446 \mathrm{E}-08$	$-0.23144000 \mathrm{E}-08$
34	21	$0.26418229 \mathrm{E}-08$	$-0.13922496 \mathrm{E}-08$
34	22	$0.31804205 \mathrm{E}-08$	$0.29674538 \mathrm{E}-08$
34	23	$-0.14496844 \mathrm{E}-08$	$-0.41273873 \mathrm{E}-08$
34	24	$0.73031171 \mathrm{E}-08$	$0.38279677 \mathrm{E}-08$
34	25	$0.87043354 \mathrm{E}-08$	$-0.46267863 \mathrm{E}-08$
34	26	$0.10342814 \mathrm{E}-08$	$-0.11663136 \mathrm{E}-07$
34	27	$0.11370770 \mathrm{E}-07$	$-0.23310682 \mathrm{E}-08$
34	28	$0.26300672 \mathrm{E}-08$	$-0.15192068 \mathrm{E}-07$
34	29	$0.15414895 \mathrm{E}-08$	$-0.50391923 \mathrm{E}-08$
34	30	$-0.99882783 \mathrm{E}-08$	$-0.22579711 \mathrm{E}-08$

34	31	$0.24132580 \mathrm{E}-08$	$0.11637732 \mathrm{E}-08$
34	32	-0.16884916E-08	-0.15230092E-08
34	33	$0.31091915 \mathrm{E}-08$	0.31186708E-08
34	34	-0.42763338E-10	-0.37042016E-09
35	0	$0.78140709 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
35	1	-0.36385091E-08	$0.22889240 \mathrm{E}-08$
35	2	-0.37194650E-08	$0.18562674 \mathrm{E}-08$
35	3	-0.68583570E-10	$0.21049570 \mathrm{E}-08$
35	4	$0.32155058 \mathrm{E}-08$	$0.37217157 \mathrm{E}-09$
35	5	$0.11993433 \mathrm{E}-08$	-0.40829291E-09
35	6	-0.49340501E-09	-0.18727810E-08
35	7	$0.38916829 \mathrm{E}-09$	-0.10328130E-08
35	8	-0.39349558E-09	$0.21223159 \mathrm{E}-09$
35	9	-0.14617120E-08	-0.22985099E-08
35	10	-0.12013829E-08	$0.68667386 \mathrm{E}-09$
35	11	-0.13492819E-08	-0.58743271E-08
35	12	$0.87059592 \mathrm{E}-09$	-0.36949735E-08
35	13	-0.14376756E-08	$0.50513549 \mathrm{E}-08$
35	14	-0.67126612E-08	-0.71066687E-09
35	15	-0.24510852E-08	$0.53901362 \mathrm{E}-08$
35	16	$0.21675012 \mathrm{E}-08$	$0.22862779 \mathrm{E}-08$
35	17	$0.64255214 \mathrm{E}-08$	-0.48058960E-08
35	18	$0.36589693 \mathrm{E}-09$	-0.20174921E-08
35	19	-0.31480773E-08	$0.14427499 \mathrm{E}-09$
35	20	-0.52647288E-09	-0.66312429E-09
35	21	$0.57826433 \mathrm{E}-08$	$0.22280867 \mathrm{E}-08$
35	22	$0.13101644 \mathrm{E}-08$	$0.42641191 \mathrm{E}-08$
35	23	-0.52468531E-08	-0.24676198E-08
35	24	$0.36354954 \mathrm{E}-08$	$0.30476082 \mathrm{E}-08$
35	25	0.28269199E-08	$0.24094585 \mathrm{E}-08$

35	26	$-0.59897058 \mathrm{E}-08$	$-0.10138420 \mathrm{E}-08$
35	27	$0.12339753 \mathrm{E}-07$	$-0.11902514 \mathrm{E}-07$
35	28	$0.26951940 \mathrm{E}-08$	$-0.14395718 \mathrm{E}-07$
35	29	$0.87215303 \mathrm{E}-08$	$0.14403586 \mathrm{E}-10$
35	30	$-0.10179106 \mathrm{E}-08$	$0.77066029 \mathrm{E}-09$
35	31	$0.31634884 \mathrm{E}-08$	$0.58545933 \mathrm{E}-08$
35	32	$-0.85880053 \mathrm{E}-08$	$-0.66387592 \mathrm{E}-08$
35	33	$0.35673813 \mathrm{E}-08$	$0.74216103 \mathrm{E}-08$
35	34	$-0.23872702 \mathrm{E}-08$	$-0.20956762 \mathrm{E}-08$
35	35	$0.42637983 \mathrm{E}-09$	$0.29389224 \mathrm{E}-09$
36	0	$-0.47918308 \mathrm{E}-08$	$0.00000000 \mathrm{E}+00$
36	1	$-0.99445727 \mathrm{E}-10$	$0.30538768 \mathrm{E}-08$
36	2	$0.19970045 \mathrm{E}-08$	$-0.58078790 \mathrm{E}-09$
36	3	$-0.33624318 \mathrm{E}-08$	$0.44238665 \mathrm{E}-09$
36	4	$0.21730027 \mathrm{E}-08$	$-0.58078917 \mathrm{E}-09$
36	5	$-0.81620587 \mathrm{E}-09$	$0.17293874 \mathrm{E}-08$
36	6	$-0.52218190 \mathrm{E}-09$	$-0.25178137 \mathrm{E}-08$
36	7	$0.31298424 \mathrm{E}-09$	$-0.73549557 \mathrm{E}-09$
36	8	$-0.17376981 \mathrm{E}-08$	$0.60802581 \mathrm{E}-09$
36	9	$-0.29007396 \mathrm{E}-09$	$-0.39043954 \mathrm{E}-09$
36	10	$-0.16218821 \mathrm{E}-08$	$-0.19381700 \mathrm{E}-08$
36	11	$0.59042928 \mathrm{E}-09$	$0.13283648 \mathrm{E}-08$
36	12	$-0.12515391 \mathrm{E}-08$	$0.27424158 \mathrm{E}-09$
36	13	$-0.14462633 \mathrm{E}-08$	$0.37767969 \mathrm{E}-08$
36	14	$-0.34693609 \mathrm{E}-08$	$-0.34282737 \mathrm{E}-08$
36	15	$0.21794520 \mathrm{E}-08$	$-0.13811280 \mathrm{E}-08$
36	16	$0.17441111 \mathrm{E}-08$	$-0.23831942 \mathrm{E}-09$
36	17	$0.29224034 \mathrm{E}-08$	$-0.13638775 \mathrm{E}-08$
36	18	$0.30582160 \mathrm{E}-10$	$0.16655299 \mathrm{E}-09$
36	19	$-0.69952820 \mathrm{E}-09$	$0.77208428 \mathrm{E}-09$

36	20	$-0.19394269 \mathrm{E}-08$	$-0.20748737 \mathrm{E}-09$
36	21	$0.23105800 \mathrm{E}-08$	$-0.43550635 \mathrm{E}-08$
36	22	$-0.45541772 \mathrm{E}-09$	$0.16395183 \mathrm{E}-08$
36	23	$-0.20414901 \mathrm{E}-08$	$-0.15927978 \mathrm{E}-08$
36	24	$0.34765079 \mathrm{E}-09$	$-0.29341497 \mathrm{E}-08$
36	25	$0.91178048 \mathrm{E}-09$	$0.90987939 \mathrm{E}-08$
36	26	$0.30418097 \mathrm{E}-08$	$0.64559344 \mathrm{E}-08$
36	27	$-0.84166488 \mathrm{E}-08$	$0.53536590 \mathrm{E}-08$
36	28	$0.14082796 \mathrm{E}-08$	$-0.17119633 \mathrm{E}-08$
36	29	$0.13412224 \mathrm{E}-08$	$-0.91713750 \mathrm{E}-09$
36	30	$-0.64072900 \mathrm{E}-08$	$0.12875954 \mathrm{E}-08$
36	31	$-0.21613715 \mathrm{E}-08$	$-0.87760559 \mathrm{E}-09$
36	32	$0.19452455 \mathrm{E}-09$	$0.28940299 \mathrm{E}-08$
36	33	$-0.40936686 \mathrm{E}-08$	$-0.58626914 \mathrm{E}-08$
36	34	$-0.21684159 \mathrm{E}-08$	$0.18188953 \mathrm{E}-08$
36	35	$0.46852355 \mathrm{E}-09$	$-0.22694319 \mathrm{E}-08$
36	36	$0.38624235 \mathrm{E}-09$	$0.36811811 \mathrm{E}-09$

A-24

APPENDIX B

Proof That V Satisfies Laplace Equation

APPENDIX B

Proof that V satisfies Laplace equation

This is the proof that V satisfies Laplace equation (see section 3.3)

$$
\begin{gathered}
F=\frac{1}{l}=\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)}} \\
\frac{\partial F}{\partial x}=\frac{-\left(x-x_{0}\right)}{\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)\right)^{3 / 2}} \\
\frac{\partial^{2} F}{\partial x^{2}}=\frac{3\left(x-x_{0}\right)^{2}-\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right)}{\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right)^{5 / 2}} \\
=\frac{3\left(x-x_{0}\right)^{2}-l^{2}}{l^{5}} \\
\frac{\partial^{2} F}{\partial y^{2}}=\frac{3\left(y-y_{0}\right)^{2}-l^{2}}{l^{5}} \\
\frac{\partial^{2} F}{\partial z^{2}}=\frac{3\left(z-z_{0}\right)^{2}-l^{2}}{l^{5}} \\
\frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}+\frac{\partial^{2} F}{\partial z^{2}}=0 \\
\Rightarrow \frac{3\left(x-x_{0}\right)^{2}-l^{2}+3\left(y-y_{0}\right)^{2}-l^{2}+3\left(z-z_{0}\right)^{2}-l}{l^{5}}=\frac{3 l^{2}-3 l^{2}}{l^{5}}=0
\end{gathered}
$$

APPENDIX C

Software Code

C. 1 Software Cods For HRS Parameters:

Figure C-1: Software Cods For HRS Parameters

C-1

```
Dim A(), Xv() As Double
Dim order As Integer
Dim x(0 To 1000), y(0 To 1000), he(0 To 1000), H(0 To
1000) As Double
Dim L(), T(), TA(), TAT() As Double
Dim ptnr As Integer
Dim cnt, m, n, j, k As Integer
Private Sub Command1_Click()
Form2.Text1.Visible = False
Form2.Text2.Visible = False
Form2.Text3.Visible = False
Form2.Text4.Visible = False
Form2.Text5.Visible = False
Form2.Text6.Visible = False
Form2.Text7.Visible = False
Form2.Text8.Visible = False
Form2.Text9.Visible = False
Form2.Text10.Visible = False
Form2.Label2.Visible = False
Form2.Label3.Visible = False
Form2.Label4.Visible = False
Form2.Label5.Visible = False
Form2.Label6.Visible = False
Form2.Label7.Visible = False
Form2.Label8.Visible = False
Form2.Label9.Visible = False
Form2.Label10.Visible = False
Form2.Label11.Visible = False
```

```
If order = 0 Then 'zero order start
    m = cnt
    n}=
    ReDim A(1 To m, 0 To 1)
    ReDim L(0 To 2, 0 To m)
    ReDim T(0 To 1, 0 To m)
    ReDim TA(0 To 1, 0 To 1)
    ReDim TAT(0 To 1, 0 To m)
    ReDim Xv(0 To 1, 0 To 1)
    For i = 1 To m ' make A= zeros
    For j = 1 To 1
    A(i, j) = 0
    Next j
    Next i
    For i = 1 To m ' assign value to A
        A(i, 1) = 1
    Next i
' L matrix
        For i = 1 To m
            L(1, i) = he(i) - H(i)
        Next i
        A transpose
        For i = 1 To 1
        For j = 1 To m
        T(i, j) = A(j, i)
            Next j
```


C-3

Next i

- A transpose * A

For i $=1$ To 1
For j $=1$ To 1
TA(i, j) $=\# 0$
For $k=1$ To m
TA $(i, j)=T A(i, j)+T(i, k) \star A(k, j)$
Next k
Next j
Next i
' At*A inverse
For $k=1$ To 1
For j $=1$ To 1
If $j<>k \operatorname{Then} \operatorname{TA}(k, j)=\operatorname{TA}(k, j) / \operatorname{TA}(k, k)$
Next j
$\operatorname{TA}(k, k)=1 / T A(k, k)$
For i $=1$ To 1
If i <> k Then
For j $=1$ To 1
If $j<>k$ Then TA(i, j) $=$ TA(i, j) - TA(i, k) *
TA (k, j)
Next j
TA (i, k) $=$-TA (i, k) * TA (k,)
End If
Next i
Next k

For i $=1$ To 1

C-4

```
    For j = 1 To m
    TAT(i, j) = 0
    For k = 1 To 1
    TAT(i, j) = TAT(i, j) + TA(i, k) * T(k, j)
    Next k
    Next j
    Next i
'' inv(A transpose * A) *L
    For i = 1 To 1
        Xv(1, i) = 0
            For k = 1 To m
        Xv(1, i) = Xv(1, i) + TAT(i, k) * L(1, k)
        Next k
    Next i
End If ' zero order end
If order = 1 Then 'First order start
    m = cnt
    n = 3
    ReDim A(1 To m, 0 To 3)
    ReDim L(0 To 2, 0 To m)
    ReDim T(0 To 3, 0 To m)
    ReDim TA(0 To 3, 0 To 3)
    ReDim TAT(0 To 3, 0 To m)
    ReDim Xv(0 To 1, 0 To 3)
    For i = 1 To m ' make A= zeros
```

C-5

```
For j = 1 To n
A(i, j) = 0
Next j
Next i
For i = 1 To m ' assign value to A
    A(i, 1) = 1
    A(i, 2) = x(i)
    A(i, 3) = y(i)
Next i
' L matrix
    For i = 1 To m
    L(1, i) = he(i) - H(i)
    Next i
```

' A transpose
For i $=1$ To n
For j $=1$ To m
$T(i, j)=A(j, i)$
Next j
Next i
' A transpose * A
For i $=1$ To n
For $j=1$ To n
TA(i, j) $=\# 0$
For $k=1$ To m
TA (i, j) $=T A(i, j)+T(i, k) * A(k, j)$
Next k

Next j
Next i

- At*A inverse

For k = 1 To n
For $j=1$ To n
If $j<>k$ Then TA $(k, j)=T A(k, j) / T A(k, k)$
Next j
$\mathrm{TA}(\mathrm{k}, \mathrm{k})=1 / \mathrm{TA}(\mathrm{k}, \mathrm{k})$
For i = 1 To n
If i <> k Then
For $j=1$ To n
If $j<>k$ Then TA(i, j) $=T A(i, j)-T A(i, k)$ *
TA (k, j)
Next j
$T A(i, k)=-T A(i, k) * T A(k, k)$
End If
Next i
Next k

For i = 1 To n
For j $=1$ To m
TAT(i, j) = 0
For k = 1 To n
TAT(i, j) = TAT(i, j) + TA(i, k) * T(k, j)
Next k
Next j
Next i
'' inv(A transpose * A) *L
C-7

```
For i = 1 To n
    Xv(1, i) = 0
            For k = 1 To m
        Xv(1, i) = Xv(1, i) + TAT(i, k) * L(1, k)
        Next k
    Next i
End If ' First order end
If order = 2 Then '2nd order start
        m = cnt
        n=6
        ReDim A(1 To m, 0 To n)
        ReDim L(0 To 2, 0 To m)
        ReDim T(0 To n, 0 To m)
        ReDim TA(0 To n, 0 To n)
        ReDim TAT(0 To n, 0 To m)
        ReDim Xv(0 To 1, 0 To n)
    For i = 1 To m ' make A= zeros
    For j = 1 To n
    A(i, j) = 0
    Next j
    Next i
    For i = 1 To m ' assign value to A
        A(i, 1) = 1
        A(i, 2) = x(i) / 1000
        A(i, 3) = y(i) / 1000
        A(i, 4) = (x(i) ^ 2) / 1000000
```


C-8

```
A(i, 5) = (y(i) ^ 2) / 1000000
A(i, 6) = (x(i) * y(i)) / 1000000
```

Next i
' L matrix

$$
\text { For } i=1 \text { To m }
$$

$\mathrm{L}(1, i)=$ he(i) - H(i)
Next i
'
A transpose
For i $=1$ To n
For j $=1$ To m
$T(i, j)=A(j, i)$
Next j
Next i

- A transpose * A

For $i=1$ To n
For $j=1$ To n
$T A(i, j)=\# 0$
For $k=1$ To m
$T A(i, j)=T A(i, j)+T(i, k) * A(k, j)$
Next k
Next j
Next i

- At*A inverse

For $k=1$ To n
For $j=1$ Ton
If $j<>k$ Then $\operatorname{TA}(k, j)=\operatorname{TA}(k, j) / \operatorname{TA}(k, k)$
Next j

C-9

```
TA(k, k) = 1 / TA(k, k)
For i = 1 To n
If i <> k Then
            For j = 1 To n
            If j <> k Then TA(i, j) = TA(i, j) - TA(i, k) *
TA(k, j)
            Next j
            TA(i, k) = -TA(i, k) * TA(k, k)
            End If
        Next i
            Next k
            For i = 1 To n
            For j = 1 To m
            TAT(i, j) = 0
            For k = 1 To n
            TAT(i, j) = TAT(i, j) + TA(i, k) * T(k, j)
            Next k
            Next j
    Next i
    '' inv(A transpose * A) *L
    For i = 1 To n
        Xv(1, i) = 0
            For k = 1 To m
        Xv(1, i) = Xv(1, i) + TAT(i, k) * L(1, k)
        Next k
    Next i
End If ' 2nd order end
```

```
If order = 3 Then '3d order start
    m = cnt
    n = 10
    ReDim A(1 To m, 0 To n)
    ReDim L(0 To 2, 0 To m)
    ReDim T(0 To n, 0 To m)
    ReDim TA(0 To n, 0 To n)
    ReDim TAT(0 To n, 0 To m)
    ReDim Xv(0 To 1, 0 To n)
    For i = 1 To m ' make A= zeros
    For j = 1 To n
    A(i, j) = 0
    Next j
    Next i
    For i = 1 To m ' assign value to A
        A(i, 1) = 1
        A(i, 2) = x(i) / 1000
        A(i, 3) = y(i) / 1000
        A(i, 4) = (x(i) ^ 2) / 1000000
        A(i, 5) = (y(i) ^ 2) / 1000000
        A(i, 6) = (x(i) * y(i)) / 1000000
        A(i, 7) = (x(i) ^ 3) / 1000000000
        A(i, 8) = (y(i) ^ 3) / 1000000000
        A(i, 9) = ((x(i) ^ 2) * y(i)) / 1000000000
        A(i, 10) = ((x(i) * (y(i) ^ 2))) / 1000000000
    Next i
```


C-11

' L matrix

```
For i = 1 To m
    L(1, i) = he(i) - H(i)
```

 Next i
 ' A transpose
For i = 1 To n
For j $=1$ To m
T(i, j) = A(j, i)
Next j
Next i
' A transpose * A
For i $=1$ To n
For $\mathrm{j}=1$ To n
TA (i, j) = \#0
For k = 1 To m
TA (i, j) $=T A(i, j)+T(i, k) * A(k, j)$
Next k
Next j
Next i
' At*A inverse
For k = 1 To n
For $\mathrm{j}=1$ To n
If j <> k Then TA(k, j) = TA(k, j) / TA(k, k)
Next j
$\mathrm{TA}(\mathrm{k}, \mathrm{k})=1 / \mathrm{TA}(\mathrm{k}, \mathrm{k})$
For i $=1$ To n
If i <> k Then

```
For j = 1 To n
    If j <> k Then TA(i, j) = TA(i, j) - TA(i, k) *
TA(k, j)
    Next j
    TA(i, k) = -TA(i, k) * TA(k, k)
            End If
        Next i
        Next k
        For i = 1 To n
            For j = 1 To m
            TAT(i, j) = 0
            For k = 1 To n
            TAT(i, j) = TAT(i, j) + TA(i, k) * T(k, j)
            Next k
            Next j
        Next i
    '' inv(A transpose * A) *L
        For i = 1 To n
            Xv(1, i) = 0
            For k = 1 To m
        Xv(1, i) = Xv(1, i) + TAT(i, k) * L(1, k)
        Next k
    Next i
End If ' 3d order end
Form2.Show
```

```
If order = 0 Then
    Form2.Text1.Text = Xv(1, 1)
    Form2.Text1.Visible = True
    Form2.Label2.Visible = True
    Form2.Label12.Visible = True
    Form2.Label13.Visible = False
    Form2.Label14.Visible = False
    Form2.Label15.Visible = False
    End If
If order = 1 Then
    Form2.Text1.Text = Xv(1, 1)
    Form2.Text1.Visible = True
    Form2.Text2.Text = Xv(1, 2)
    Form2.Text2.Visible = True
    Form2.Text3.Text = Xv(1, 3)
    Form2.Text3.Visible = True
    Form2.Label2.Visible = True
    Form2.Label3.Visible = True
    Form2.Label4.Visible = True
    Form2.Label12.Visible = False
    Form2.Label13.Visible = True
    Form2.Label14.Visible = False
    Form2.Label15.Visible = False
End If
If order = 2 Then
    Form2.Text1.Text = Xv(1, 1)
```

Form2.Text1.Visible = True
Form2.Text2.Text $=\mathrm{Xv}(1,2)$
Form2.Text2.Visible $=$ True
Form2.Text3.Text $=\mathrm{Xv}(1,3)$
Form2.Text3.Visible $=$ True
Form2.Text4.Text $=\mathrm{Xv}(1,4)$
Form2.Text4.Visible = True
Form2.Text5.Text $=\mathrm{Xv}(1,5)$
Form2.Text5.Visible $=$ True
Form2.Text6.Text $=\mathrm{Xv}(1,6)$
Form2.Text6.Visible = True
Form2.Label2.Visible = True
Form2.Label3.Visible = True
Form2.Label4.Visible = True
Form2.Label5.Visible = True
Form2.Label6.Visible = True Form2.Label7.Visible = True

Form2.Label12.Visible = False
Form2.Label13.Visible $=$ False
Form2.Label14.Visible = True
Form2.Label15.Visible = False
End If

If order $=3$ Then

```
Form2.Text1.Text = Xv(1, 1)
```

Form2.Text1.Visible = True
Form2.Text2.Text $=\mathrm{Xv}(1,2)$
Form2.Text2.Visible $=$ True
Form2.Text3.Text $=\mathrm{Xv}(1,3)$
Form2.Text3.Visible = True

```
    Form2.Text4.Text \(=\operatorname{Xv}(1,4)\)
    Form2.Text4.Visible \(=\) True
    Form2. Text5.Text \(=X v(1,5)\)
    Form2.Text5.Visible \(=\) True
    Form2. Text6.Text \(=X v(1,6)\)
    Form2.Text6.Visible \(=\) True
    Form2. Text7.Text \(=X v(1,7)\)
    Form2.Text7.Visible \(=\) True
    Form2. Text8. Text \(=X v(1,8)\)
    Form2.Text8.Visible \(=\) True
    Form2. Text9.Text \(=X v(1,9)\)
    Form2.Text9.Visible \(=\) True
    Form2.Text10.Text \(=X v(1,10)\)
    Form2.Text10.Visible \(=\) True
    Form2.Label2.Visible \(=\) True
    Form2.Label3.Visible \(=\) True
    Form2.Label4.Visible \(=\) True
    Form2.Label5.Visible \(=\) True
    Form2.Label6.Visible \(=\) True
    Form2.Label7.Visible \(=\) True
    Form2.Label8.Visible = True
    Form2.Label9.Visible = True
    Form2.Label10.Visible \(=\) True
    Form2.Label11.Visible \(=\) True
    Form2.Label12.Visible \(=\) False
    Form2.Label13.Visible \(=\) False
    Form2.Label14.Visible = False
    Form2.Label15.Visible \(=\) True
```

End If

```
parsave.Enabled = True
End Sub
Private Sub ex_Click()
End
End Sub
Private Sub Form_Load()
order = 0
Option1.Value = True
Command1.Enabled = False
Form2.Text1.Visible = False
Form2.Text2.Visible = False
Form2.Text3.Visible = False
Form2.Text4.Visible = False
Form2.Text5.Visible = False
Form2.Text6.Visible = False
Form2.Text7.Visible = False
Form2.Text8.Visible = False
Form2.Text9.Visible = False
Form2.Text10.Visible = False
```

```
Option1.Enabled = False
```

Option1.Enabled = False
Option2.Enabled = False
Option2.Enabled = False
Option3.Enabled = False
Option3.Enabled = False
Option4.Enabled = False

```
Option4.Enabled = False
```

End Sub

```
Private Sub Option1_Click()
If Option1.Value = True Then
order = 0
    If cnt < 3 Then
        Option1.Enabled = True
        Option2.Enabled = False
        Option3.Enabled = False
        Option4.Enabled = False
        End If
        If cnt < 1 Then
        Option1.Enabled = False
        Option2.Enabled = False
        Option3.Enabled = False
        Option4.Enabled = False
        End If
```

End If
End Sub
Private Sub Option2_Click()
If Option2.Value $=$ True Then
order = 1
If cnt < 6 Then
Option1.Enabled $=$ True
Option2.Enabled $=$ True
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 3 Then

```
Option1.Enabled = True
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 1 Then
Option1.Enabled = False
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
```

End If

End Sub
Private Sub Option3_Click()
If Option3.Value $=$ True Then
order $=2$

```
If cnt < 10 Then
Option1.Enabled = True
Option2.Enabled = True
Option3.Enabled = True
Option4.Enabled = False
End If
If cnt < 6 Then
Option1.Enabled = True
Option2.Enabled = True
Option3.Enabled = False
```

```
Option4.Enabled = False
End If
If cnt < 3 Then
Option1.Enabled = True
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 1 Then
Option1.Enabled = False
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
```

End If

End Sub
Private Sub Option4_Click()
If Option4.Value $=$ True Then
order $=3$
If cnt $>=10$ Then
Option1.Enabled $=$ True Option2.Enabled $=$ True Option3.Enabled $=$ True Option4.Enabled $=$ True End If

```
If cnt < 10 Then
Option1.Enabled = True
Option2.Enabled = True
Option3.Enabled = True
Option4.Enabled = False
End If
If cnt < 6 Then
Option1.Enabled = True
Option2.Enabled = True
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 3 Then
Option1.Enabled = True
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 1 Then
Option1.Enabled = False
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
```

End If

End Sub

```
Private Sub osf_Click()
```

CommonDialog1.Filter $=$ "Geoid Data Source File
" ${ }^{*}$ *. * ${ }^{(* . *)}$
CommonDialog1. ShowOpen
If CommonDialog1.FileName <> "" Then
Open CommonDialog1.FileName For Input As \#1
Command1.Enabled $=$ True
cnt $=0$
Do Until EOF(1)
cnt $=$ cnt +1
Input \#1, ptnr, $x(c n t), y(c n t), h e(c n t), H(c n t)$
Loop
Close \#1
If cnt $>=10$ Then
Option1.Enabled = True
Option2.Enabled $=$ True
Option3.Enabled $=$ True
Option4.Enabled = True
End If
If cnt < 10 Then
Option1.Enabled $=$ True
Option2.Enabled $=$ True
Option3.Enabled = True

```
Option4.Enabled = False
End If
If cnt < 6 Then
Option1.Enabled = True
Option2.Enabled = True
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 3 Then
Option1.Enabled = True
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
If cnt < 1 Then
Option1.Enabled = False
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
End If
```

End If
End Sub
Private Sub parsave_Click()
CommonDialog2.Filter $=$ "Geoid Parameters (*.HRS)|*.HRS"|
CommonDialog2.ShowSave

```
If CommonDialog2.FileName <> "" Then
    Open CommonDialog2.FileName For Output As #2
    If order = 0 Then
Print #2, order, Xv(1, 1)
    End If
    If order = 1 Then
    Print #2, order, Xv(1, 1), Xv(1, 2), Xv(1, 3)
    End If
    If order = 2 Then
    Print #2, order, Xv(1, 1), Xv(1, 2), Xv(1, 3), Xv(1, 4),
Xv(1, 5), Xv(1, 6)
    End If
    If order = 3 Then
Print #2, order, Xv(1, 1), Xv(1, 2), Xv(1, 3), Xv(1, 4),
Xv(1, 5), Xv(1, 6), Xv(1, 7), Xv(1, 8), Xv(1, 9), Xv(1,
10)
End If
Close #2
End If
End Sub
```


C. 2 Software Cods For N Calculations:

Figure C-2: Software Cods For N Calculations

```
Dim order As Integer
Dim Xv() As Double
Dim x(0 To 10000), y(0 To 10000), he(0 To 10000), ptnr(1
To 10000) As Double
Dim cnt As Integer
Private Sub Command1_Click()
Dim N, Hi, hh, xi, yi As Double
xi = Val(Text1)
yi = Val(Text2)
hh = Val(Text3)
If order = 0 Then
    N = Xv(1, 1)
    Hi = hh - N
    Text4.Text = Hi
    Text5.Text = N
End If
If order = 1 Then
    N = Xv(1, 1) + Xv(1, 2) * xi + Xv(1, 3) * yi
    Hi = hh - N
    Text4.Text = Hi
    Text5.Text = N
End If
If order = 2 Then
```

```
    N = Xv(1, 1) + Xv(1, 2) * xi / 1000 + Xv(1, 3) * yi /
1000 + (Xv(1, 4) * xi ^ 2) / 1000000 + (Xv(1, 5) * yi^^
2) / 1000000 + (Xv(1, 6) * xi * yi) / 1000000
    Hi}=hh-
    Text4.Text = Hi
    Text5.Text = N
End If
If order = 3 Then
    N = Xv(1, 1) + Xv(1, 2) * xi / 1000 + Xv(1, 3) * yi /
1000 + (Xv(1, 4) * xi ^ 2) / 1000000 + (Xv(1, 5) * yi ^
2) / 1000000 + (Xv(1, 6) * xi * yi) / 1000000 + (Xv(1, 7)
* xi ^ 3) / 1000000000 + (Xv(1, 8) * yi ^ 3) / 1000000000
+(Xv(1, 9) * xi ^ 2 * yi) / 1000000000 + (Xv(1, 10) * xi
* yi ^ 2) / 1000000000
    Hi}=hh-
    Text4.Text = Hi
    Text5.Text = N
End If
End Sub
Private Sub Command2_Click()
CommonDialog2.Filter = "Pt# X Y h"|*.*|(*.*)
CommonDialog2. ShowOpen
If CommonDialog2.FileName <> "" Then
    Open CommonDialog2.FileName For Input As #2
    Command3.Enabled = True
    cnt = 0
    Do Until EOF(2)
```

```
cnt = cnt + 1
```

Input \#2, ptnr(cnt), $x(c n t), y(c n t)$, he (cnt)

Loop
Close \#2

End If

End Sub

Private Sub Command3_Click()
Dim N, Hi, hh, xi, yi As Double
Dim i As Integer

CommonDialog3.Filter = "Pt\# X Y h (*.txt)|*.txt"| CommonDialog3.ShowSave

If CommonDialog3.FileName <> "" Then

```
Open CommonDialog3.FileName For Output As #3
For i = 1 To cnt
    xi = x(i)
    yi = y(i)
    hh = he(i)
    If order = 0 Then
        N = Xv(1, 1)
        Hi = hh - N
```

End If
If order = 1 Then

$$
\mathrm{N}=\mathrm{Xv}(1,1)+\mathrm{Xv}(1,2) \text { * } \mathrm{xi}+\mathrm{Xv}(1,
$$

3) * yi

$$
\mathrm{Hi}=\mathrm{hh}-\mathrm{N}
$$

End If

If order = 2 Then

$$
\mathrm{N}=\mathrm{Xv}(1,1)+\mathrm{Xv}(1,2) \text { * xi / } 1000 \text { + }
$$

Xv(1, 3) * yi / $1000+(X v(1,4)$ * xi ^ 2) / $1000000+$ (Xv(1, 5) * yi ^ 2) / 1000000 + (Xv(1, 6) * xi * yi) / 1000000

$$
\mathrm{Hi}=\mathrm{hh}-\mathrm{N}
$$

End If

```
            If order = 3 Then
```

 \(\mathrm{N}=\mathrm{Xv}(1,1)+\mathrm{Xv}(1,2)\) * \(\mathrm{xi} / 1000+\)
 Xv(1, 3) * yi / $1000+(X v(1,4)$ * xi ^ 2) / $1000000+$
(Xv(1, 5) * yi ^ 2) / $1000000+(X v(1,6)$ * xi * yi) /
$1000000+(X v(1,7)$ * xi ^ 3) / $1000000000+(X v(1,8)$ *
yi ^ 3) / $1000000000+(X v(1,9)$ * xi ^ 2 * yi) /
100000000 + (Xv(1, 10) * xi * yi ^ 2) / 100000000
$\mathrm{Hi}=\mathrm{hh}-\mathrm{N}$
End If
Print \#3, ptnr(i), xi, yi, Hi
Next i

End If
Close \#3

End Sub

Private Sub Form_Load()
Command2.Enabled = False
Command3.Enabled = False
End Sub

Private Sub Option1_Click()
If Option1.Value $=$ True Then
Text1.Enabled $=$ True
Text2.Enabled $=$ True
Text3.Enabled = True
Text4.Enabled = True
Text5.Enabled $=$ True
Command1.Enabled $=$ True
Command2.Enabled = False
Command3.Enabled = False
End If
If Option1.Value = False Then
Text1.Enabled = False
Text2.Enabled = False
Text3.Enabled = False
Text4.Enabled = False
Text5.Enabled = False
Command1.Enabled = False
End If

End Sub

Private Sub Option2_Click()
If Option2.Value $=$ True Then
Text1.Enabled = False
Text2.Enabled = False
Text3.Enabled = False
Text4.Enabled = False
Text5.Enabled = False
Command1.Enabled = False
Command2.Enabled $=$ True

End If
End Sub

Private Sub paropen_Click()
CommonDialog1.Filter $=$ "Geoid Parameters (*.HRS)|*.HRS"| CommonDialog1. ShowOpen

If CommonDialog1.FileName <> "" Then Open CommonDialog1.FileName For Input As \#1

Input \#1, order

If order $=0$ Then
ReDim Xv(0 To 1, 0 To 1)
Input \#1, Xv(1, 1)

End If

$$
\mathrm{C}-31
$$

```
If order = 1 Then
    ReDim Xv(0 To 1, 0 To 3)
    Input #1, Xv(1, 1), Xv (1, 2), Xv(1,
```

3) End If
If order $=2$ Then
ReDim Xv(0 To 1, 0 To 6)
Input \#1, $\mathrm{Xv}(1,1), \mathrm{Xv}(1,2), \mathrm{Xv}(1$,
3), $X v(1,4), X v(1,5), X v(1,6)$
End If
If order $=3$ Then
ReDim Xv(0 To 1, 0 To 10)
Input \#1, $\mathrm{Xv}(1,1), \mathrm{Xv}(1,2), \mathrm{Xv}(1$,
3), $X v(1,4), X v(1,5), X v(1,6), X v(1,7), X v(1,8)$,
$X v(1,9), X v(1,10)$

End If

```
Close #1
```

End If
End Sub

