
Palestine Polytechnic University

College of Information Technology and

Computer Engineering

Computer System Engineering

Monitoring the Health status of the plants using a

Computerized system

Team Members:

Ahmad Tebakhi

Amjad Ibrahim Abdeen

Mohammed Sameh Nasereddin

Supervisor:

Dr.Mazen Zalloum

January 4, 2018

I

Acknowledgement

Firstly, we thanks Allah for helping us to work in this project, We also want to

thanks our supervisor Dr.Mazen Zalloum ,he gave us a golden opportunity to work

in this project and for his support which helped us to improve our knowledge and

performance.

We also want to express our special thanks to our teachers in the collage, they give us

their time to help, learn and support us.

We are also thankful to our family, especially our parents to help and support us

at every time and with each step in our life. And we thankful to our friends and to

Palestine Polytechnic University.

II

Abstract

Recently, the plants exposed to many serious diseases that may destroy them

completely, impacting negatively on the annual production of agricultural crops. It is

very difficult to monitor the health of agricultural crops manually specially at night.

For this reason, we need to build a system to monitor and examine the state of health

of plants and protect them from possible risks.

As we know that plants needs several factors to grow properly, and most important

of these factors: the availability of adequate light, the appropriate temperature, the

ratio of adequate humidity, in addition to provide the amount of oxygen needed by the

plants, so the health status of the plant will be the main idea of our project.

The system that we have built based on the idea of monitoring the health status of the

plant by taking a pictures for the plant’s leaf periodically, and if a defect was detected

on it, the disease will be identified, in addition it will determine the proportion of the

disease.

III

Contents

Table of Figures . V

Chapter 1: Introduction .1

1.1 Overview of the project .1

1.2 Motivation .1

1.3 Goals and Objectives .2

1.4 Short description of the project .2

1.5 Problem analysis . 2

1.6 List of requirements .3

1.7 Expected results .3

1.9 Literature review .4

Chapter 2 : Background .7

2.1 Overview .7

2.2 Theoretical background .7

2.3 Methodology .7

2.4 Hardware components .12

2.4.1 Laptop .12

2.4.2 Camera .13

2.4.3 Arduino uno microcontroller .13

2.4.4 Humidity and Temperature sensor .14

2.4.5 Servo motor. .14

2.4.6 LCD 16x2 .15

Chapter 3: System Design .16

IV

3.1 Overview .16

3.2 Brief description of the system .16

3.3 System Diagrams .17

3.3.1 Block diagram .17

3.3.2 Description diagram .18

3.4 System Flowchart .19

3.5 Software design .20

Chapter 4 : Implementation .21

4.1 Hardware implementation .21

4.2 Software implementation .22

Chapter 5 : Testing (Results) .30

5.1 Results .30

5.2 Drawbacks .33

 5.3 Design option .34

Chapter 6 : Conclusion & Recommendations 36

6.1 Conclusion .36

6.2 Recommendations .36

References .38

V

List of Figures

Figure 1.1 Powdery mildew disease that infects cucumber leaf4

Figure 2.1 Neural Network example .8

Figure 2.2 Convolutional Neural Network .9

Figure 2.3 Faster rcnn . 11

Figure 2.4 Dell Inspiron 7567 .12

Figure 2.5 Webcam .13

Figure 2.7 Humidity sensor .14

Figure 2.8 Servo motor .15

Figure 2.9 LCD 16x2 .15

Figure 3.1 Shows block diagram of the system .17

Figure 3.2 Description diagram of the system .18

Figure 3.3 Flow chart of the system. .19

Figure 4.1 Hardware Circuit .21

Figure 4.2 Sample of the images .22

Figure 4.3 Labelling images process “LabelImg” .23

Figure 4.4 xml_to_csv script .24

Figure 4.5 Denerate_tfrecord script .25

Figure 4.6 Batch_size .26

Figure 4.7 Memory error .26

Figure 4.8 Configuration file .27

Figure 4.9 Object-detect.pbtxt file .27

Figure 4.10 Training steps . 28

Figure 4.11 Total Loss .29

VI

Figure 4.12 Plant_diseases_model folder .29

Figure 5.1 Jupyter notebook while processing .31

Figure 5.2 Jupyter notebook after processing .31

Figure 5.3 3 Leaves with 3 different classes after processing32

Figure 5.4 Misclassifications image .33

Figure 5.5 Usage of laptop resources while Training the module35

Figure 6.1 Drone with camera .37

1

Chapter 1
Introduction

1.1 Overview of the project

Expert systems are one of the most important new technologies that have been used in

many fields in our life. Scientists are trying to develop expert systems to understand

the environment then navigate with the capability of avoiding obstacles and move to

the target in a less time.

The main problem in our project is to check the environmental conditions surrounding

plants, like temperature and humidity, in addition the changes that happened upon the

leaves .

Our project depends on deep learning using Tensorflow api. So the main idea of

project is to build a system to detect any disease that will effect on the plants.

1.2 Motivation

Intelligent systems have become dramatically required in recent times, some examples

of smart device systems, fire detection and theft detection device and many other

devices important in our lives. Because of agriculture is important in our society the

farmers need a device to protect the products from any damage or defect.

It is very difficult to farmers in pursuing agricultural crops continuously. That’s why we

want to build a project that saves farmers time and effort. The project pursuing health

status of the plants and provide a detailed report to farmers contain state of health of

plants, and to provide a system that provides all appropriate climatic conditions of the

plants automatically.

2

1.3 Goals and Objectives

The goal of this system is to detect the disease that affects plant leaves constantly

using a dedicated camera.

Project objectives :

1.	 Detect any possible disease that affecting plant leaves, and giving a certain

percentage of the type of the disease affected by the leaf.

2.	 The system will check the humidity, if the amount of moisture is reached a certain

percentage, the system gives a warning alarm.

3.	 The system will check the temperature, if the available heat of the plant is reached

a certain percentage, the system gives a warning alarm.

1.4 Short description of the project

The project consists of two parts, the first one, which depends on the image of the

leaves that have been taken, the image will be processed and classified as one of

the three classes which are powdery mildew, downy mildew, healthy plant, and the

system will give an approximate proportion of the type of the disease.

The second section depend the environment conditions that may affect the crop, so the

system examines both the humidity and temperature for the crop environment using a

sensor that measure and compare if it is normal degree for the crop or not.

1.5 Problem analysis

The main problem is how the system can reveal the disease and how to deal with it

and the most important in this system that will reveal the disease before it’s too late,

to protect it from damage.

Our system wants to take picture of the plant to be analyzed by “Deep learning” and

revealed that the disease is present or not, and if the disease is detected, the system

3

will classify the disease according to the images entered into the system on which the

system was trained , and to provide adequate health for plants we needed sensors like

as humidity sensor and temperature sensor in our project.

1.6 List of requirements

The most important requirement that we need in our project:

1.	 High performance Laptop.

2.	 Humidity, and temperature sensor.

3.	 Microcontroller “Arduino”: To deal with motors, and sensors.

4.	 Camera: To take a picture for the plant’s leaves.

1.7 Expected results

We expected to produce a complete system that classify the images according to many

types of leaves diseases using deep learning (through tensorflow api) and giving us

an approximate percentage of the disease , in addition to measure the temperature and

humidity of the environment of the plant to stay in healthy state.

1.8 Limitations
1.	 Accuracy : The accuracy of the detecting have many problems like it detect

something not belong to the leaves as if it is a leaf.

2.	 Number of diseases : The number of classes that we classify the leaf to is 3 classes

which are (powdery mildew, downy mildew, healthy plant) so in our project we

can check the existence of 2 diseases and if the diseases are not exist the plant will

be healthy.

3.	 We collected almost 1500 image for the classes that we have , 500 image for each

class , and this number is not that big because if we want to detect more accuracy

we should collect more images.

4

4.	 the gpu that we used (1050Ti) is kind of good but if we used a better gpu the

performance will be faster in training process and in detecting process because we

are limited in 4 GB Vram.

1.9 Literature review

In previous studies, we saw the cultivation of the plant in terms of spraying water,

looking about the temperature of the plant, but the care of the plant in terms of disease

was usually done manually through the farmer.

In our project we would like to add a new one, which is to check the plant using a

computer system to protect it from exposure to diseases. Our work will be about the

some types of plant, where we will examine it from a number of diseases such as

powdery mildew and downy mildew. The following is a picture showing the powdery

mildew disease that affects the cucumber, which causes the appearance of white spots

on the paper, leading to poisoning of the plant.

Figure 1.1 Powdery mildew disease that infects cucumber leaf

5

1: Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image

Classification

The latest generation of convolutional neural networks (CNNs) has achieved

impressive results in the field of image classification. This project is concerned with

a new approach to the development of plant disease recognition model, based on

leaf image classification, by the use of deep convolutional networks. Novel way of

training and the methodology used facilitate a quick and easy system implementation

in practice. The developed model is able to recognize 13 different types of plant

diseases out of healthy leaves, with the ability to distinguish plant leaves from their

surroundings. According to our knowledge, this method for plant disease recognition

has been proposed for the first time. All essential steps required for implementing

this disease recognition model are fully described throughout the paper, starting from

gathering images in order to create a database, assessed by agricultural experts.[1]

2: Using drones to detect crop diseases

For as long as bananas have been grown, banana growers in Southeast Asia have

had to struggle with fungal diseases such as the dreaded Panama disease. The loss

is enormous and fungicides do not help. Through early detection, the disease can be

prevented from spreading. However this is a very labor intensive process.

The use of remote sensing to detect diseases could be an efficient way to identify bad

spots. The remote sensing system being developed by Wageningen-based consultancy

Triple20 could be used to detect diseases like Panama disease. Growers could use the

information gathered to take proactive measures at an early stage [2]

3: Monitoring and Detection of Agricultural Disease using Wireless Sensor

Network

 Existing systems for forecasting the disease mostly depends on image processing

technologies. Drawback of the existing system is that they wait till symptoms appear

and then only the disease can be detected. That’s why such type of systems is unable

6

to help treating the disease at an early stage. Grape diseases like downy mildew is

mostly dependent upon weather based parameter like humidity, temperature and

wind speed. When any favorable weather condition occurs zoospores in downy start

generating spores that enters into the leaves of grape via stomata of the leaves. If

favorable weather condition and the probability of disease is detected then it it very

helpful for farmers to prevent infection of disease and reduce the cost of production.

[3]

1.10 Summery

The system will take pictures from period to period for the plant, then analyze them

based on the algorithms used and give the result of the state of health of the plant.

In addition, it will monitor the health status of the plant through reading humidity and

temperature.

7

Chapter 2
Background

2.1 Overview

This chapter introduces the theoretical background of the project, provides a description

of the disease that affects the plant and how it will be treated, and some description

of hardware and software component used in the system, finally some description of

design specification and constrains.

2.2 Theoretical background

The problem with greenhouse is that it is possible for the plant to infects a disease

that would damage the crop, resulting in significant financial loss [5]. Therefore, the

device must detect the type of disease through the work of Deep learning with neural

networks (image processing) of the leaf. In addition, plant care in terms of humidity

and heat suitable for the plant using the sensors.

2.3 Methodology

2.3.1 Convolutional Neural Network

 One of these is neural networks – the algorithms that underpin deep learning and play

a central part in image recognition and robotic vision.

A single neuron in the brain, receives signals – as many as 100,000 – from other

neurons. When those other neurons fire, they exert either an excitatory or inhibitory

effect on the neurons they connect to. And if our first neuron’s inputs add up to a

8

certain threshold voltage, it will fire too.

In an artificial neural network, signals also travel between ’neurons‘. But instead of

firing an electrical signal, a neural network assigns weights to various neurons. A

neuron weighted more heavily than another will exert more of an effect on the next

layer of neurons. The final layer puts together these weighted inputs to come up with

an answer.

Figure 2.1 Neural Network example

Let’s say we want a neural network to recognise photos that contain at least one leaf.

But leaves don’t all look exactly alike – consider The leaves come in different shapes

and sizes. Nor do photos necessarily show them in the same light, at the same angle

and at the same size.

So we need to compile a training set of images – thousands of examples of leaves,

which we (humans) label “leaf”, and pictures of objects that aren’t leaves, labelled

(you guessed it) “not leaf”.

9

These images are fed into the neural network , an image is converted into data which

moves through the network and various neurons assign weights to different elements.

At the end, the final output layer puts together all the pieces of information – pointed

Cuticle, Guard cell, Stoma, Phloem, itc… – and spits out an answer: leaf.

The neural network compares this answer to the real, human-generated label. If it

matches, great ! If not , the neural network makes note of the error and goes back and

adjusts its neurons’ weightings . The neural network then takes another image and

repeats the process, thousands of times, adjusting its weightings and improving its

cat-recognition skills – all this despite never being explicitly told what “makes” a leaf.

Unsupervised learning, on the other hand, uses unlabelled data. Neural networks

must recognise patterns in data to teach themselves what parts of any photo might be

relevant

Powerful graphics processing units, or GPUs, burst onto the scene, meaning

researchers could run, manipulate and process images on desktop computers rather

than supercomputers.

As with traditional neural networks, convolutional counterparts are made of layers of

weighted neurons. But they’re not just modelled on the workings of the brain; they,

appropriately enough, take inspiration from the visual system itself.

Every layer within a convolutional neural network applies a filter across the image to

pick up specific patterns or features. The first few layers detect larger features, such as

diagonal lines, while later layers pick up finer details and organise them into complex

features such as an Phloem.

Figure 2.2 convolutional neural network

10

The final output layer, like an ordinary neural network, is fully connected (that is,

all neurons in that layer are connected to all neurons in the previous layer). It puts

together highly specific features –to produce an ultra-precise classification: leaf.[4]

2.3.2 Faster R-CNN

State-of-the-art object detection networks depend on region proposal algorithms to

hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced

the running time of these detection networks, exposing region proposal computation

as a bottleneck. In this work, Region Proposal was introduced as Network (RPN) that

shares full-image convolutional features with the detection network, thus enabling

nearly cost-free region proposals. An RPN is a fully-convolutional network that

simultaneously predicts object bounds and objectness scores at each position. RPNs

are trained end-to-end to generate high quality region proposals, which are used by

Fast R-CNN for detection. With a simple alternating optimization, RPN and Fast

R-CNN can be trained to share convolutional features.

Recent advances in object detection are driven by the success of region proposal

methods) and region-based convolutional neural networks (R-CNNs) . Although

region-based CNNs were computationally expensive as originally developed in , their

cost has been drastically reduced thanks to sharing convolutions across proposals.

The latest incarnation, Fast R-CNN , achieves near real-time rates using very deep

networks, when ignoring the time spent on region proposals. Now, proposals are the

computational bottleneck in state-of-the-art detection systems.

Region proposal methods typically rely on inexpensive features and economical

inference schemes. Selective Search (SS), one of the most popular methods, greedily

merges superpixels based on engineered low-level features. Yet when compared to

efficient detection networks, Selective Search is an order of magnitude slower, at 2s

11

per image in a CPU implementation. EdgeBoxes currently provides the best tradeoff

between proposal quality and speed, at 0.2s per image. Nevertheless, the region

proposal step still consumes as much running time as the detection network.

One may note that fast region-based CNNs take advantage of GPUs, while the

region proposal methods used in situation are implemented on the CPU, making such

runtime comparisons inequitable. An obvious way to accelerate proposal computation

is to re-implement it for the GPU. This may be an effective engineering solution, but

re-implementation ignores the down-stream detection network and therefore misses

important opportunities for sharing computation.

Figure 2.3 Faster rcnn

For training RPNs, its assigned a binary class label (of being an object or not) to each

anchor. Its assigned a positive label to two kinds of anchors: (i) the anchor/anchors

with the highest Intersectionover- Union (IoU) overlap with a ground-truth box, or (ii)

an anchor that has an IoU overlap higher than 0.7 with any ground-truth box. Note that

a single ground-truth box may assign positive labels to multiple anchors.its assigned a

negative label to a non-positive anchor if its IoU ratio is lower than 0.3 for all ground-

truth boxes. Anchors that are neither positive nor negative do not contribute to the

training objective.[5]

12

2.4 Hardware components

2.4.1 Laptop

We will use the laptop to analyze the images that were captured by the camera through

(Tensorflow API) using a dedicated video card (1050 Ti) and showing the results of

the plant, and their classification.

The laptop that we is Dell Inspiron 7567 and it has the following specification that

help us in training images and image recognition process.

•	 7th Generation Intel® Core™ i7-7700HQ Quad Core

•	 16GB RAM

•	 NVIDIA® GeForce® GTX 1050 Ti with 4GB GDDR5

•	 Windows 10 Home 64-bit English [6]

Figure 2.4 Dell Inspiron 7567

13

2.4.2 Camera

We will connect a high-resolution camera to the laptop, which will capture images

of the plant’s leaf during certain predetermined periods using Webcam Surveyor

application that will do the job for us.

The photos that have been taken will be send to the system and checked if the plant

affected by the disease or not.

Figure 2.5 Webcam

2.4.3 Arduino uno microcontroller

 Is an open source computer hardware and software company, project, and user com-

munity that designs and manufactures single-board microcontrollers and microcon-

troller kits for building digital devices and interactive objects that can sense and con-

trol objects in the physical world.[7]

In this microcontroller We have linked some of the sensors, one of these sensors is

humidity and temperature sensor .In addition, we connected servo motor for controlling

the camera to move in many directions.

Figure 2.6 Arduino uno microcontroller

14

2.4.4 Humidity and Temperature sensor

A humidity sensor (or hygrometer) senses, measures and reports the relative humidity

in the air. It therefore measures both moisture and air temperature. Relative humidity

is the ratio of actual moisture in the air to the highest amount of moisture that can be

held at that air temperature. The warmer the air temperature is, the more moisture it can

hold. Humidity / dew sensors use capacitive measurement, which relies on electrical

capacitance. Electrical capacity is the ability of two nearby electrical conductors to

create an electrical field between them. The sensor is composed of two metal plates

and contains a non-conductive polymer film between them. This film collects moisture

from the air, which causes the voltage between the two plates to change. These voltage

changes are converted into digital readings showing the level of moisture in the air. [8]

And the purpose of humidity and temperature sensor in our project is to check the

humidity and temperature in the air and according to its output we will decide to make

some steps to decrease it because some diseases of the plants are appeared because of

the high ratio of humidity and temperature.

Figure 2.7 Humidity sensor

2.4.5 Servo motor.

A servomotor is a rotary actuator or linear actuator that allows for precise control of

angular or linear position, velocity and acceleration. It consists of a suitable motor

15

coupled to a sensor for position feedback. It also requires a relatively sophisticated

controller, often a dedicated module designed specifically for use with servomotors.

[9]

We used Servo motor In order to place the camera on it, to control the angles through

a program installed on the phone (Android platform) or by programming it to move is

a certain directions without using a phone.

Figure 2.8 Servo motor

2.4.6 LCD 16x2

LCD (Liquid Crystal Display) screen is an electronic display module and find a wide

range of applications [10], and in our project we used it to display humidity and

temperature degree.

Figure 2.9 LCD 16x2

16

Chapter 3
System Design

3.1 Overview

This chapter illustrates the conceptual design of the system, it also shows a block

diagram and all of its components, flowchart of the system and finally software

requirements.

3.2 Brief description of the system

We have done a shape that contains the plant and tools used in a smooth and flexible,

so that it is easy for the user to work without difficulties. The camera will take a

picture of the plant and give it to the Laptop for analysis.

The Arduino will take the readings from the sensors, and control the temperature and

humidity operations. Also, control the servo motor rotation.

The Arduino display the sensor’s readings on the LCD and when the temp. and

humidity are abnormal the lcd will warn us.

17

3.3 System Diagrams

3.3.1 Block diagram

It shows the principal parts or functions used and performed by the device.

Figure 3.1 shows block diagram of the system

18

3.3.2 Description diagram

It shows the hardware components and how they will work together.

Figure 3.2 description diagram of the system

19

3.4 System Flowchart

It shows the sequential steps that the system performs.

20

Figure 3.3 Flow chart of the system.

3.5 Software design

In this section we will briefly mention the software that we used to implement our

system. The software includes the following:

Python: The language that we used to build the project.

Tensorflow API: Is an open-source software library for dataflow programming

across a range of tasks. It is a symbolic math library, and also used for machine

learning applications such as neural networks.

Android app.: To control the servo motor.[11]

Webcam Surveyor: Program to take a pictures from time to time using webcam.

Jupyter Notebook : A web-based notebook environment for interactive computing

[12] which contain both computer code (e.g. python) and rich text elements

(paragraph, equations, figures, links). Notebook documents are both human-readable

documents containing the analysis description and the results (figures, tables, etc..)

as well as executable documents which can be run to perform data analysis, The

Jupyter Notebook App is a server-client application that allows editing and running

notebook documents via a web browser. The Jupyter Notebook App can be executed

on a local desktop requiring no internet access or can be installed on a remote server

and accessed through the internet , In addition to displaying/editing/running notebook

documents, the Jupyter Notebook App has a “Dashboard” (Notebook Dashboard),

a “control panel” showing local files and allowing to open notebook documents or

shutting down their kernels.[13]

Fritzing: To move from physical prototyping to actual product.

21

Chapter 4
Implementation

4.1 Hardware implementation

We connected dht sensor with the Arduino in order to measure the humidity and

temperature and the readings displayed on the lcd , in addition we connected servor

motor in order to control the direction of the camera which is mounted upon it , and

this circuit showing us how all of the component connected with the Arduino.

Figure 4.1 Hardware Circuit

22

4.2 Software implementation

We used Google Images, Bing, and ImageNet sites to collect our images dataset of

plant’s leaves and these leaves contain 3 classes which is two classes of diseased

leaves (powdery mildew and downy mildew) and one class for healthy leaves . In

general, the images that we collected are around 1500 image, 500 image for each class

, the images contain many kinds of plant’s leaves like cucumbers, squashes (including

pumpkins), melons, watermelons, lemon, grape, furthermore the images have a large

variations in scale, pose and lighting and the dimensions of the images ranging from

144x151px to 5456x3632px , which means that we collect (low - medium - high)

resolutions.

Figure 4.2 Sample of the images

, and then we annotate the images manually using ‘LabelImg’ app (LabelImg is a

graphical image annotation tool that is written in Python und uses Qt for the graphical

interface. It supports Python 2 and 3. It’s easy to use and the annotations are saved

as XML files in the PASCAL VOC format[14]) by Drawing a boxes on the objects

(plant’s leaves in our case),and then we add a title or name to each box and we

repeated this process until we had a bunch of labeled images.

23

The below figure describes labelling process using LabelImg app.

Figure 4.3 Labelling images process “LabelImg”

Mentioning that XML files contains some details about the image and the labels that

we annotated to like width ,height ,xmin , ymin , xmax , ymax , and after labeling the

images we collected all of these images and their XML’s together.

 In order to convert them to a singular CSV file (which is a big database contains the

details of images and their label’s name, dimensions) ,

 ,mentioning that most of images contains many leaves , which means we drew many

labels for almost every single image , and after counting number of labels we have

had 4758 label for 1453 image , all of them contained in two CSV file (test_labels.

csv) and (train_labels.csv).

24

And we convert the xml files to csv files using xml_to_csv script ,the below figure

contains a script that gathers xml details in CSV files.

Figure 4.4 xml_to_csv script

, then csv files can be converted to TFRecord files that the Tensorflow api can deal

with, so we used 1360 images for training (train.records) and 75 images for testing

(test.records) and we used generate_tfrecord.py script to do the job.

25

Figure 4.5 generate_tfrecord script

After we created the required input file for the tensorflow API (TFRecord files), we

now can train our model so we starting by setup the configuration of the model

Anyway we have two options to start. First one We can use a pre-trained model, and

then use transfer learning to learn a new object , or we could learn new objects entirely

from scratch. The benefit of transfer learning is that training can be much quicker,

and the required data that we might need is much less. For this reason,it is always

recommended to use a checkpoint pre-trained model to start from rather than training

from scratch because training from scratch process could take days before we get

good results, so we have used transfer learning in our project.

By the way TensorFlow has a few pre-trained models with checkpoint files available,

along with configuration files,some of them have high speed with low accuracy and

others have low speed with high accuracy, so we used faster_rcnn_resnet101_coco

model because it’s more accuracy than others like ssd_mobilenet_v1_coco but its

26

speed of detecting is less, and in our project we focused at accuracy of detecting objects

more than the speed , and before start training ,we used faster_rcnn_resnet101_coco.

config as a configuration file that is suited with our pre-trained model, and

 in the configuration file, we modify batch size , it is set to 24 by default. Other models

may have different batch sizes.

Figure 4.6 batch_size

In our case we faced a lot of memory errors which is resolved by decreasing the batch

size to 1 to get the model to fit in our VRAM.

Figure 4.7 memory error

 Finally, we made some changes on the configuration file first we change the

checkpoint name/path according to pre-trained model that we used which is faster_

rcnn_resnet101_coco model and num_classes to 3 because we have three classes

as we mentioned before (powdery mildew , downy mildew, Healthy plant) and we

changed label_map_path: “training/object-detect.pbtxt” and also TFRecord files path

to make tf_record_input_reader read them correctly

27

Figure 4.8 configuration file

Then we modify object-detect.pbtxt file, this file contains the name of the labels that

we used in our project.

Figure 4.9 object-detect.pbtxt file

28

 Training process can be either done locally or on the cloud (AWS, Google Cloud

etc.).in our case we done the training process locally through DELL Inspiron 7567

Laptop using a dedicated GPU (1050ti) which is using Pascal Architecture and Frame

Buffer of 4 GB GDDR5 and 768 of CUDA Cores , which helped us a lot to make

the training process as fast as possible , in other word the training process walking

through number of iterations , every single iteration taking more or less 1 second

(depending on the dedicated gpu used and the batch size) in our case every iteration

take almost ~0.9s and we continue in training process until we reached 200k iterations

which make the error rate number decreasing over time and make the detection more

accuracy, and this process took almost 3 days or more until it finished , and this

picture describing what happened in training process.

Figure 4.10 Training steps

29

We can check the total loss rate by open Tensorboard ,and this figure describes how

loss rate decreasing by time and if we see the loss rate at the beginning it was very

high (more than 1) which means that the error rate will high also so if we try to detect

a leaf or anything else the system will detect it randomly so the accuracy is very low ,

but when the total loss rate decreased to (0.01245 or less) after 200k steps which is 3

days and 10 hours in time the system will be more accuracy to detect leaves and their

diseases.

Figure 4.11 Total Loss

So after finishing with training, we exported the trained model and now we are

ready to start taking photos for the leaves diseases and check whenever the leaf has

a disease or not , and this figure showing the folder for the final model for leave’s

diseases detection.

Figure 4.12 Plant_diseases_model folder

30

Chapter 5
Testing (Results)

5.1 Results

Our system made to detect just leaves and their diseases so we used Jupyter notebook

to produces and shows the results ,When the notebook is executed (either cell-by-cell

or with menu Cell -> Run All), the kernel performs the computation and produces the

results. Depending on the type of computations (image recognition for plant’s leaf

disease in our case), the kernel may consume significant CPU and RAM[15]. Note

that the RAM is not released until the kernel is shut-down.

So we tried to classify 100 images for many leaves to recognize diseases on them after

processing them through “Jupyter notebook” using our trained model (Plant_diseases_

model) and we have 73% accuracy in predict these images and figure showing us how

much the system consume of laptop resources (using task manager), like it takes 2-5

GB Ram and the dedicated gpu keep running along with the cpu until it processed all

of the input images.

31

Figure 5.1 Jupyter notebook while processing

and after about 4 minutes the system finished image-processing for 100 image and it

starts to produce labeled images like the below figure.

Figure 5.2 Jupyter notebook after processing

32

in the following figure we have 3 leaves with 3 different classes and the system predect

them correctly mensioning that this image is not one of the trained images and the

system classify it according to the trained images.

Figure 5.3 3 leaves with 3 different classes after processing

33

5.2 Drawbacks

There are some misclassifications while detecting images other than leaves. This is

logical as we only trained the model on a small dataset which is almost 1500 image

with three classes. To create a more generalized and robust leaves diseases detector,

we just need much more data and classes to make the system more intelligence. That’s

just one of the limitations of AI right now , so our system is effective if it is used only

in the field of plants. If another scope is used it will show us inaccurate (meaningless)

results. for example the following image is not a plant leaf but the system recognize it

as if it is a leaves, because of this the system will have many misclassifications if we

make it try to recognize something else.

Figure 5.4 misclassifications image

34

5.3 Design option

We used laptop instead of Raspberry pi. This is because the specifications of the best

Raspberry pi currently available are not sufficient to complete the process of training

our module and it can’t run the project efficiently.

The table below showing us the comparison between Raspberry pi 3 model B and

Laptop (Dell Inspiron 7567) which is the laptop that we used in training and image-

processing and detection.[16]

Comparison/

Device

Laptop (Dell Inspiron 7567) Raspberry pi 3 model B

CPU 7th Generation Intel® Core™

i7-7700HQ Quad Core (6MB

Cache, up to 3.8 GHz)

Quad Cortex A53 @ 1.2

GHz

Memoryi 16GB, 2400MHz, DDR4 1GB SDRAM

Video Card NVIDIA® GeForce® GTX

1050Ti with 4GB GDDR5

400MHZ VideoCore IV

Our system requires high specifications laptop to do the training process using the gpu

, and because tensorflow api uses cuda while processing so it needs just an NVIDIA

GPU because it’s the only gpus that supports cuda , in addition when we use better

gpu the training and detection process will be faster and will take much less time and

also we can use multiple gpus to give a very fast performance and this is used when

we have a huge dataset(millions of images).

We can run this project using raspberry pi but of course the result that we will have

will be as a percentage. for example, powdery mildew (score=0.96091) downy

mildew(score=0.00091), Healthy plant(score=000063) without labelling the images

35

that we used as an input and this method will not be clear enough for us because the

system is mainly used for farmers which means that in every image we will take will

contain 10s of leaves and by labelling method every leaf will have a label according

to its situation , not like the percentage method that is used for only an image with

one leaf , mentioning that training images will be impossible in raspberry pi and this

figure showing us the steps of the training and how much the system consuming

resources while training ,for example the memory sometimes reaches 7 GB which is

impossible to be handled by raspberry pi.

Figure 5.5 usage of laptop resources while Training the module

36

Chapter 6

Conclusion & Recommendations

6.1 Conclusion

After testing the results, we conclude that our system gives a good results when we

test it on leaves images.But if we test it other types of images like cars, humans, etc...

it may give us imprecise results.

In the future, We could add more classes of images to make the system more intelli-

gence to have more accurate results.

6.2 Recommendations

1- In the case of a disease detection on the plant, it is possible to add an insecticide

spraying device to ensure that the crop is not spoiled.

2- We can use a Drone (small remote controlled plane), so that it is linked with a

high quality camera to check all of the harvest, in addition to a small container that

containing insecticide.

Where a real-time video streaming checks the situation of the leaf and If the disease

is detected, the insecticide is sprayed, then the drone will continue to another leaf to

check it.

37

Figure 6.1 Drone with camera

38

References

[1] PMC, “ Deep Neural Networks Based Recognition of Plant Diseases by Leaf

Image Classification “, 2016 Jun 22.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934169/

[2] Foodvalleyupdate, “ Using drones to detect crop diseases “, 2014 Dec 19.

http://www.foodvalleyupdate.com/news/using-drones-to-detect-crop-diseases/

[3] Sarika Datir K.J.College of Engineering and Management Research ,Pune(University

of Pune) Sanjeev Wagh,Ph.D K.J.College of Engineering and Management Research

,Pune(University of Pune) , “ Monitoring and Detection of Agricultural Disease using

Wireless Sensor Network”, India, 2014 Fe 4.

[4] Cosmosmagazine, “ What is Deep Learning and how does it work?“, 2017 Aug 24.

https://cosmosmagazine.com/technology/what-is-deep-learning-and-how-does-it-

work/

[5] Shaoqing Ren�, Kaiming He, Ross Girshick, Jian Sun, “ Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks “, Microsoft Research,

2015 Jun 4.

[6] Dell , “ Dell-Inspiron7567 “.

http://laptops.reviewed.com/content/dell-inspiron-7567-laptop-review.

[7] Wikipedia, “ Arduino”.

 https://en.wikipedia.org/wiki/Arduino

[8] Futureelectronics, “ Humidity and temperature sensor “.

 http://www.futureelectronics.com/en/sensors/humidity-dew.aspx

[9]Wikipedia, “ Servomotor”.

https://en.wikipedia.org/wiki/Servomotor

[10] engineersgarage, 16x2-lcd

https://www.engineersgarage.com/electronic-components/16x2-lcd-module-

datasheet

[11] wikipedia, TensorFlow

https://en.wikipedia.org/wiki/TensorFlow

39

[12] github, jupyter notebook

https://github.com/jupyter/notebook

[13] jupyter-notebook-beginner-guide, jupyter notebook

http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

[14] github , labelImg

https://github.com/tzutalin/labelImg

[15] jupyter-notebook-beginner-guide, jupyter notebook

http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

[16] dell, inspiron-15-7567-laptop

 http://www.dell.com/en-us/shop/cty/pdp/spd/inspiron-15-7567-laptop

