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 Abstract 

 

The inverted pendulum represents a challenging problem in control and it has been 

widely used to investigate and develop new control strategies that can effectively deal 

with nonlinearities. The “Inverted Pendulum ECP model 505” which exist in the 

control lab at Palestine Polytechnic University (PPU), consists of a horizontal sliding 

rod and vertical ("pendulum") rod. The horizontal rod is connected to electrical motor 

through rack and pinion mechanism so it steers left or right to balance and control the 

position of the vertical rod. The controllers designed and simulated using MATLAB 

and Simulink. The aim of this project is to stabilize the Inverted Pendulum at its 

inverted position or to track any other position within the physical limits of the device, 

such that the position is controlled quickly and accurately so that the pendulum is 

always be at that position during such movements. However, Simulation of dynamics 

of a robotic arm and model of human standing still are some applications of an inverted 

pendulum. 
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1.1 An Overview 

  

  

The inverted pendulum (IP) represents a challenging problem in control and it has been 

widely used to investigate and develop new control strategies that can effectively deal 

with nonlinearities. The ECP model 505 Inverted Pendulum system consists of a 

horizontal sliding rod and vertical ("pendulum") rod. The horizontal rod is connected 

to electrical motor through rack and pinion mechanism so it steers left or right to 

balance and control the position of the vertical rod. The mechanism is open loop 

unstable (right half plane pole) and non-minimum phase (right half plane zero), with 

high nonlinear dynamics, and with some state that are not directly measurable. As a 

result feedback control is essential for stability, and the structure of the controller must 

be selected carefully due the non-minimum phase characteristics. 

 

The application of IP ranges widely like: 

• Simulation of dynamics of a ROBOTIC arm. The Inverted Pendulum 

problem resembles the control systems that exist in robotic arms.  

• Model of human standing still. The inverted pendulum is widely accepted 

as an adequate model of a human standing still (quiet standing). 

• Space rocket guidance systems. 

 

 

1.2 Recognition of the need  

 

 

To operate and control the ECP 505 model “Inverted pendulum”, which belong to 

Computer Control Lab at Palestine Polytechnic University (PPU), by applying several 

control theories. And to create some experiments that help students to apply what they 

learned in control courses, such as: 

 Root locus and frequency domain techniques. 
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 State feedback control. 

 Digital control methods. 

 Optimal control methods. 

 Nonlinear control methods. 

 Intelligent control techniques. 

 Embedded systems. 

 

Such control methods can be tested and compare via a set of performance 

specifications including: 

 Stabilization control. 

 Position tracking. 

 Disturbance rejection. 

 Robustness. 

 

 

1.3 Literature review 

 

 

There are many researches and papers studies the inverted pendulum, especially the 

inverted pendulum on a cart, which become a regular and simple problem in control 

engineering. These studies helps to understand the concept of an inverted pendulum 

systems in general. So it was able to start driving the mathematical model of “ECP 505 

model Inverted pendulum” and designing the controllers.  
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1.4 System Overview  

Figure 1.1: The Experimental control system 

 

 

1.4.1 Mechanical and electrical part 

 

The experimental control system is composed of the three subsystems shown in Figure 

1.1. The first of these is the electromechanical plant which consists of the inverted 

pendulum mechanism, its actuator and sensors. The design features are:  

 DC servo motor. 

 High resolution encoders.  

 A low friction sliding balance rod.  

 Adjustable balance weight.  

 

Next is the real-time controller unit which contains the digital signal processor (DSP) 

based real-time controller, servo/actuator interfaces, servo amplifier, and auxiliary 

power supplies. The DSP is capable of executing control laws at high sampling rates 

allowing the implementation to be modeled as continuous or discrete time. The 

controller also interprets trajectory commands and supports such functions as data 
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acquisition, trajectory generation, and system health and safety checks. A logic gate 

array performs encoder pulse decoding. Two optional auxiliary digital-to-analog 

converters (DAC's) provide for real-time analog signal measurement. This controller 

is representative of modern industrial control implementation [8]. 

 

 

1.4.2 Computer part 

 

With Inverted Pendulum, computers are used for two major purposes: 

1. Design, analysis, and simulate the control part of the system 

2. Running the real time controller 

 

To achieve the first requirement MATLAB and Simulink is used. MATLAB provide 

a wide verity of functions, numerical algorithms, and toolboxes that help significantly 

not only to design and simulate the control system, but also to build executable real 

time applications. The second requirement which is controlling the Inverted Pendulum 

system at real time is achieved by using xPC target technique or embedded system 

based on microcontroller.  

 

 

 

1.5 Control system 

 

 

Inverted pendulum, in general is used in control lab for testing various control theories, 

including the classical linear control theories, and can be extended to the modern non-

linear control fields.  

 

As stated earlier, IP presents a number of complications and challenges in terms of 

their control, due to the fact that they are under-actuated mechanical systems, 

inherently open-loop unstable, with highly nonlinear dynamics. 
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Any controller applied to an IP must guarantee first the closed loop stability at the 

unstable inverted position. Second, disturbance rejection and robustness are also to be 

achieved. The possibility for a controller to satisfy these requirements varies according 

to the control strategy behind it. Here is a brief description of the main control 

technique that may be used in this project: 

 

1. PID controller 

PID is a proportional-integral-derivative controller which creates a control loop 

feedback mechanism. A PID controller calculates an "error" (𝑒) value as the difference 

between a measured process variable and a desired set point. The desired closed loop 

dynamics is obtained by adjusting the three parameters 𝐾𝑃 (proportional gain), 

𝐾𝐼 (integral gain) and 𝐾𝐷 (derivative gain), based on the linear system transfer function 

[2]. 

 

2. State space control 

In control engineering, a state space representation is a mathematical model of a 

physical system as a set of input, output and state variables related by first-order 

differential equations. The state space representation (also known as the "time-domain 

approach") provides a convenient and compact way to model and analyze systems with 

multiple inputs and outputs. Unlike the frequency domain approach, the use of the state 

space representation is not limited to systems with linear components and zero initial 

conditions [9]. 

 

3. Optimal control 

The theory of optimal control is concerned with operating a dynamic system at 

minimum cost. Basically, a measure of the quality of a controller is formulated in terms 

of a performance index. This index is used to design the controller and depends on the 

control signal and the state vector. In this way the ‘best’ control signal is found that 

results in the minimum (or maximum) value of the index. The job of the control 

engineer in Linear Quadratic Regulator (LQR) design is therefore not to determine 

control parameters directly, but to define the appropriate measure for controller 

quality, the performance index, and to minimize or maximize it [1]. 



7 
 

4. Adaptive control 

That mean the controller must adapt with parameters. For example, as an IP, if one of 

the weights removed; a control law is needed that adapts itself to such changing 

conditions. Adaptive control is different from robust control in that it does not need a 

priori information about the bounds on these uncertain or time-varying parameters. 

 

5. Non-linear control 

Processes in reality like IP, robots and space craft typically have strong nonlinear 

dynamics. In control theory it sometimes possible to linearize such classes of systems 

and apply linear technique, but in many cases is desirable to expand the sight beyond 

linear theories, permitting the control of nonlinear system. These normally take 

advantage of results based on Lyapunove’s theory. 

 

6. Intelligent control  

Intelligent control is a class of control techniques that use various Artificial 

Intelligence computing approaches like neural networks, fuzzy logic and machine 

learning. 

 

 

 

1.6 Scope of Work 

 

 

1. Drive the mathematical model for the inverted pendulum (ECP model 505). 

2. Design different controllers using conventional technique, and in next semester 

we will use artificial intelligence technique (neural networks, fuzzy logic). 

3. Simulate the controllers using MATLAB and shows the simulation results. 

4. Apply these controllers on the device and shows the experimental results. 

5. Compare between simulated and experimental results. 
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1.7 Chapters overview 

 

 

This report consists of seven chapters including this chapter. The scope of each chapter 

is explained as stated below: 

 

Chapter 1: 

This chapter gives the introduction to the project report, recognition of the need, 

literature review, system overview, control system and scope of work.  

 

Chapter 2: 

This chapter discusses modeling of an inverted pendulum. It is contained the derivation 

in mathematical modeling for the dynamic of the inverted pendulum system, including 

the nonlinear and linearized equations. 

 

Chapter 3: 

This chapter discusses the linear controller’s used in this project, including the theory 

of these controllers, controller design, Simulink model of the controller and the 

simulated results.  

 

Chapter 4: 

This chapter discusses the x-pc target technique and shows the experimental results.  

 

Chapter 5: 

In this chapter, the embedded system is discussed and shown the designed circuit and 

the experimental results. 

 

Chapter 6: 

This chapter discusses one branch of nonlinear control which is feedback linearization. 

 

Chapter 7: 

Conclusion and suggestion for future work. 



 

 

 

 

 

 

 

 

 

 

2 Mathematical modeling 
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2.1 Introduction 

 

The plant shown in Fig 2.1 is the ECP model 505 Inverted pendulum Apparatus, which 

exists in the computer control lab at Palestine Polytechnic University (PPU). It consists 

of pendulum rod which supports the sliding balance rod. The mechanism itself is open-

loop unstable and non-minimum phase, thus closed-loop feedback control is essential 

for stability. The balance rod is driven via a belt and pulley which in turn is driven by 

a drive shaft connected to a dc servo motor below the pendulum rod. The pendulum 

rod angle is controlled by moving the sliding rod on the presence of gravity. The 

weights at the bottom may be adjusted to alter the inertia configurations of the 

pendulum rod, and as a result the dynamics of the system. A brushed dc motor and 

encoders are used to drive the sliding rod through measurements of the angular 

position of the pendulum rod and linear position of the sliding rod. Therefore, the only 

input on the plant is the force applied at the sliding rod. 

 

 Figure 2.1: ECP model 505 Inverted pendulum  
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Mathematical modeling of the ECP model 505 Inverted Pendulum represents all 

important features of the system and describes its behavior in terms of differential 

equations. However the purposes for the modeling is to predict the dynamic behavior 

of the system as accurately as possible, and to have a knowledge of stability margins, 

controllability, observability, and the sensitivity of response to parameter changes. 

  

Therefore two models will be derived for the system, linear one for controller design 

and analysis purposes, and nonlinear model for testing and simulating the dynamic 

system response as accurately as possible. In order to obtain the mathematical model, 

Lagrange’s approach is used to drive the basic differential equations that govern 

system dynamics. 

Lagrange differential equation: 

𝜕

𝜕𝑡
(

𝜕𝑇

𝜕�̇�𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
+

𝜕𝑅

𝜕𝑞�̇�
= 𝑄𝑖                                                                    (2 − 1)                                                                         

  

Where:   

 𝑇: The total kinetic energy of the system. 

 𝑈: The total potential energy of the system. 

 𝑅: The total energy loses from the system due to viscous damping. 

 𝑞𝑖: The generalized coordinates that describes system motion. 

 𝑄𝑖: Generalized forces and torques which acts in each generalized 

coordinate. 
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2.2 Dynamics Equations for the Inverted Pendulum 

 

In this section a nonlinear model for the inverted pendulum is derived. This model 

includes the viscous friction of ball bearing pivot and viscous friction between the 

sliding rod and pendulum rod. Also the effect of disturbances acting on the system is 

included too.  

 

 

2.2.1 Nonlinear expression 

 

The mathematical model of the system consists of two second order nonlinear 

differential equation; these equations are derived using langrage approach. Based on 

Figure 2.2, the total kinetic and potential energies of the system can be expressed as: 

 

Figure 2.2: Plant model descriptions 
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Where:  

 𝐹(𝑡): the force driving the slider is equivalent to the motor torque  divided  by the 

drive pulley/belt contact radius. 

 𝑃(𝑡): the distarbance force.  

 𝑓1: viscous friction on joint (𝑂). 

 𝑓2: viscous friction between slider and the joint A. 

 𝛼: the dynamic angle between pendulum rod an center of gravity of slider (cg1). 

 𝑙𝑚1: Position of center of gravity for 𝑚1.  

 𝑙𝑐: position of center of gravity for 𝑚2.    

 𝐿: position of disturbance force. 

 

Total kinetic energy: 

T =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 +
1

2
𝐽1Ө̇

2
+

1

2
𝐽2Ө̇

2
                                                                   (2 − 2)                             

Where 𝑣1 is the magnitude velocity of sliding rod at central of gravity and 𝑣2 is the 

magnitude velocity of pendulum rod at central gravity point. 𝐽1 And 𝐽2 are the polar 

moment of inertias around the center of gravities of links slider and pendulum rod 

respectively.  

 

𝑣1 can be written as 𝑣1= 𝑣1TRANS + 𝑣1ROT. Therefore if follows                    

𝑣1 = (𝑙𝑚1�̇� cos 𝛼 𝑢1) + �̇�𝑢1 + (-𝑙𝑚1�̇� sin 𝛼 𝑢2) 

Where 𝑢1 and 𝑢2 are unit vectors in the direction of the sliding rod and pendulum rod 

respectively. Therefore, we can write 

𝑣1 = (𝑙𝑚1�̇� cos 𝛼 + �̇�)𝑢1 + (-𝑙𝑚1�̇� sin 𝛼)𝑢2 

And 𝑣2 can be written as 

𝑣2 = 𝑙𝑐Ө̇𝑢1 
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Combining the relationship for 𝑢1and 𝑢2 into kinetic energy yields 

T =
1

2
𝑚1 {(𝑙𝑚1�̇� cos 𝛼 + �̇�)

2
+ (-𝑙𝑚1�̇� sin 𝛼)2} +

1

2
𝑚2(𝑙𝑐�̇�)

2
+

1

2
𝐽1Ө̇

2
+

1

2
𝐽2Ө̇

2
   

Rearranging the terms into the above relationship yields 

T =
1

2
𝑚1 { �̇�2 + (𝑙𝑚1Ө̇ )

2
+ 2𝑙𝑚1�̇�Ө̇ cos 𝛼} +

1

2
𝑚2(𝑙𝑐�̇�)

2
+

1

2
𝐽1Ө̇

2
+

1

2
𝐽2Ө̇

2
   

Since the system is constrained by 

𝑙0 = 𝑙𝑚1 cos ∝ 

𝑙𝑚1
2 = 𝑥2 + 𝑙0

2 

We can write the total kinetic energy of the system as: 

𝑇 =
1

2
�̇�2[𝐽1 + 𝐽2 + (𝑥2 + 𝑙0

2) 𝑚1 + 𝑚2𝑙𝑐
2] +

1

2
𝑚1�̇�2 + 𝑚1𝑙0�̇� �̇�                           (2-3) 

 

Now consider the potential energy. Taking the reference point as 𝜃 = 0°and 𝑥 = 0, we 

have 

𝑈 = 𝑚1𝑔𝑙𝑚1 cos(𝜃 + 𝛼) +𝑚2𝑙𝑐𝑔 cos 𝜃 

Or the above equation can be extended to become: 

𝑈 = 𝑚1𝑔𝑙𝑚1 cos 𝛼 cos 𝜃 − 𝑚1𝑔𝑙𝑚1 sin 𝜃 sin 𝛼 +𝑚2𝑙𝑐𝑔 cos 𝜃 

Since 𝑙0 = 𝑙𝑚1 cos 𝛼  𝑎𝑛𝑑 𝑥 = 𝑙𝑚1 sin 𝛼 we have the potential energy relationship 

𝑈 = 𝑚1𝑔𝑙0 cos 𝜃 − 𝑚1𝑔𝑥 sin 𝜃 +𝑚2𝑙𝑐𝑔 cos 𝜃                                                       (2-4) 

 

From the Fig 2.2 we have that the system loss energy, R (t) is: 

𝑅 =
1

2
𝑓1�̇�2 +

1

2
𝑓2�̇�2                                                                                                 (2-5) 

 



01 
 

From figure 2.2 the total work equals to: 

𝜕𝑤 = 𝑃𝐿𝜕𝜃 − 𝐹𝑙𝑂𝜕𝜃 + 𝐹(𝑙𝑂𝜕𝜃 + 𝜕𝑥) 

Or the above equation can be simplified to be: 

𝜕𝑤 = 𝑃𝐿𝜕𝜃 + 𝐹𝜕𝑥                                                                                                  (2-6) 

 

Appling Lagrange’s equation for each generalized coordinate 𝑥 𝑎𝑛𝑑 𝜃, yields: 

1) In 𝑥 direction:  

The Lagrange’s equation in 𝑥 direction given as follows:  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�
) −

𝜕𝑇

𝜕𝑥
+

𝜕𝑈

𝜕𝑥
+

𝜕𝑅

𝜕�̇�
= 𝑄1                                                                                  (2-7)        

Where: 

   
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�
) = 𝑚1�̈� + 𝑚1𝑙𝑜�̈� 

   
𝜕𝑇

𝜕𝑥
= 𝑚1𝑥�̇�2  

             
𝜕𝑈

𝜕𝑥
= −𝑚1𝑔 sin 𝜃 

  
𝜕𝑅

𝜕�̇�
= 𝑓2�̇� 

              𝑄1 =
𝜕𝑤

𝜕𝑥
=

𝑃𝐿𝜕𝜃 + 𝐹𝜕𝑥

𝜕𝑥
= 𝐹 

              

 

Applying Eq.(2-7) and simplifying it yields: 

𝑚1�̈� + 𝑚1𝑙0�̈� − 𝑚1𝑥�̇�2 − 𝑚1𝑔 sin 𝜃 + 𝑓2�̇� = 𝐹                                                   (2-8) 
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2) In θ direction: 

The Lagrange’s equation in 𝜃 direction given as follows:  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�
) −

𝜕𝑇

𝜕𝜃
+

𝜕𝑈

𝜕𝜃
+

𝜕𝑅

𝜕�̇�
= 𝑄2                                                                                   (2-9) 

Where: 

  
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�
) = [𝐽1 + 𝐽2 + (𝑥2 + 𝑙0

2) 𝑚1 + 𝑚2𝑙𝑐
2]�̈� + 2𝑚1𝑥�̇��̇� + 𝑚1𝑙0�̈� 

  
𝜕𝑇

𝜕𝜃
= 0  

  
𝜕𝑈

𝜕𝜃
= −𝑚1𝑔𝑙0 sin 𝜃 − 𝑚1𝑔𝑥 cos 𝜃 − 𝑚2𝑙𝑐𝑔 sin 𝜃 

  
𝜕𝑅

𝜕�̇�
= 𝑓1�̇� 

           𝑄2 =
𝜕𝑤

𝜕𝜃
=

𝑃𝐿𝜕𝜃+𝐹𝜕𝑥

𝜕𝜃
= 𝑃𝐿 

                 

Applying Eq.(2-9) and simplifying it yields: 

[𝐽1 + 𝐽2 + (𝑥2 + 𝑙0
2) 𝑚1 + 𝑚2𝑙𝑐

2]�̈� + 2𝑚1𝑥�̇��̇� + 𝑚1𝑙0�̈� − (𝑚1𝑙0 + 𝑚2𝑙𝑐)𝑔 sin 𝜃 −

𝑚1𝑔𝑥 cos 𝜃 + 𝑓1�̇�  =  𝑃𝐿                (2-10) 

                                                                

 

2.2.2 Linearization about Equilibrium point: 

 

From equations 2-8 and 2-10 we have equilibrium points for a motionless system, that 

(ẋ = �̈� = �̇� = �̈� = 0) and F(t) = 0. Linearizing the equations with respect to 

equilibrium points 𝑥 = 𝑥𝑒 , 𝜃 = 𝜃𝑒 , we have: 

𝜃
𝑒

= 0, 𝑥𝑒 = 0. 
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Using Taylor series expansions, about a small angle, we can neglect second order 

terms and write sin 𝜃  = 𝜃, cos 𝜃 = 1 , cos 𝛼 = 1 𝑎𝑛𝑑 𝑙0 = 𝑙𝑚 cos 𝛼 ≅ 𝑙𝑚, so the 

linearized equations of motion can be written as: 

𝑚1�̈� + 𝑚1𝑙0�̈� − 𝑚1𝑔𝜃 + 𝑓2�̇� = 𝐹                                                                         (2-11) 

[𝐽1 + 𝐽2 + (𝑥2 + 𝑙0
2) 𝑚1 + 𝑚2𝑙𝑐

2]  �̈� + 𝑚1𝑙0�̈� − (𝑚1𝑙0 + 𝑚2𝑙𝑐)𝑔𝜃 − 𝑚1𝑔𝑥 +

 𝑓2�̇� = 𝑃𝐿                                                                                                               (2-12) 

 

Simplifying equation 2-11 in terms of �̈� yields: 

�̈� =
𝐹

𝑚1
− 𝑙0�̈� + 𝑔𝜃 −

 𝑓2�̇�

𝑚1
                                                                               (2-13) 

Simplifying equation 2-12 in terms of �̈� yields: 

�̈� =
1

𝐽0
𝑃𝐿 −

𝑚1

𝐽0
𝑙0�̈� + (𝑚1𝑙0 + 𝑚2𝑙𝑐)𝑔𝜃 −

𝑚1

𝐽0
𝑔𝑥 −

 𝑓2�̇�

𝐽0
                                       (2-14) 

Where  𝐽𝑜 = [𝐽1 + 𝐽2 + (𝑥2 + 𝑙0
2) 𝑚1 + 𝑚2𝑙𝑐

2]   

 

Substitute (2-13) in (2-11) and (2-14) in (2-12) 

𝐽∗�̈� − 𝑚2𝑙𝑐𝑔𝜃 − 𝑚1𝑔𝑥 − 𝑚1𝑙0𝑓2�̇� = 𝑃𝐿 − 𝑙0𝐹                                                   (2-15) 

𝐽∗�̈� − (𝐽∗ − 𝑚2𝑙𝑐𝑙0)𝑔𝜃 + 𝑚1𝑙0𝑔𝑥 − 𝐽1𝑙0𝑓1�̇� =
𝐽0

𝑚1
𝐹 − 𝑙0𝑃𝐿                                (2-16) 

Where    𝐽∗ = 𝐽0 − 𝑚1𝑙2
0 

 

Equations (2-15) and (2-16) can be described in matrix form: 

[
𝐽∗ 0
0 𝐽∗] [�̈�

𝑥
] + [

0 −𝑚1𝑙0𝑓2

−𝐽0𝑙0𝑓1 0
] [�̇�

�̇�
] + [

−𝑚2𝑙0𝑔 −𝑚1𝑔

−(𝐽∗ − 𝑚2𝑙𝑐𝑙0)𝑔 𝑚1𝑙0𝑔
] [

𝜃
𝑥

] =

[
−𝑙0

𝐽0

𝑚1

] 𝐹 + [
1

−𝑙0
] 𝑃𝐿                                                                                              (2-17) 
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2.3 State Space Model: 

 

Using the linearized model and neglecting viscous friction, equations (2-15) and (2-

16) become: 

 

 

 

 

Furthermore to yield the state space representation for the linear system, four state are 

needed to discribe the system. These are chosen to be 𝑥, �̇�, 𝜃 𝑎𝑛𝑑 �̇�. The input to the 

system is F. the state space model of the system is expressed as follows: 

�̇� = 𝐴𝒙 + 𝐵𝒖 + 𝐸𝑷 

𝒚 = 𝐶𝒙 + 𝐷𝒖 

Let 

𝑥1 = 𝜃                                �̇�1 = 𝑥2               

𝑥2 = �̇�                       �̇�2 = �̈� =
1

𝐽∗ 𝑃𝐿 −
𝑙0

𝐽∗ 𝐹 +
𝑚2

𝐽∗ 𝑙𝑐𝑔𝑥1 +
𝑚1

𝐽∗ 𝑔𝑥3                                 

𝑥3 = 𝑥                                     �̇�3 = 𝑥4  

𝑥4 = �̇�                                   �̇�4 = �̈� =
𝐽0

𝐽∗𝑚1
𝐹 −

𝑙0

𝐽∗
𝑃𝐿 −

𝑚1𝑙0

𝐽∗
𝑔𝑥3 +

(𝐽∗ − 𝑚2𝑙𝑐𝑙0)𝑔

𝐽∗ 
𝑥1 

 

Thus the state space model for IP: 

[

�̇�
�̈�
�̇�
�̈�

] = [

0
𝑚2𝑙𝑐𝑔/𝐽∗

0
(𝐽∗ − 𝑚2𝑙𝑜𝑙𝑐)𝑔/𝐽∗

   

1
0
0
0

   

0
𝑚1𝑔 𝐽∗⁄

0
−𝑚1𝑙𝑜𝑔/𝐽∗

   

0
0
1
0

] [

𝜃
�̇�
𝑥
�̇�

] + [

0
−𝑙𝑜/𝐽∗

0
𝐽𝑜/𝑚1𝐽∗

] 𝐹 + [

0
1/𝐽∗

0
−𝑙𝑜/𝐽∗

] 𝑃𝐿 

𝐽∗�̈� − 𝑚2𝑙𝑐𝑔𝜃 − 𝑚1𝑔𝑥 = 𝑃𝐿 − 𝑙0𝐹 … … … (2 − 18) 

𝐽∗�̈� − (𝐽∗ − 𝑚2𝑙𝑐𝑙0)𝑔𝜃 + 𝑚1𝑙0𝑔𝑥 =
𝐽0

𝑚1
𝐹 − 𝑙0𝑃𝐿 … … (2 − 19) 

𝐽∗ = 𝐽0 − 𝑚1𝑙2
0 
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𝑦(𝑡) = [ 1  0  0  0 ] [

𝜃
�̇�
𝑥
�̇�

] 

         (2-20) 

System parameters are defined in Table 2.1 

Table 2.1 System parameters 

Value Description Symbol 

0.330(m) Length of pendulum rod from pivot to the sliding rod T 

section 

𝑙𝑜 

0.213(kg) Mass of the complete sliding rod including all attached 

elements. 

𝑚1 

1.785(kg) Mass of the complete moving assembly minus 𝑚1 𝑚2 

0.0594 

(kg.m2) 

Inertia  evaluated at equilibrium point 𝐽𝑜 

0.0362 

(kg.m2) 

𝐽∗ = 𝐽𝑜 − 𝑚1𝑙𝑜
2 𝐽∗ 

0.0281(m) position of center of gravity for m2. 𝑙𝐶 

 

Substituting the values of Table 2.1 into state space model matrices yields 

[

�̇�
�̈�
�̇�
�̈�

] = [

0
−14.23

0
14.5

   

1
0
0
0

   

0
57.562

0
−19

   

0
0
1
0

] [

𝜃
�̇�
𝑥
�̇�

] + [

0
−9.116

0
7.706

] 𝐹 + [

0
27.8

0
−9.2

] 𝑃𝐿 

 

𝑦(𝑡) = [ 1  0  0  0 ] [

𝜃
�̇�
𝑥
�̇�

] 

   (2-21) 

 



 

 

 

 

 

 

 

 

3 Control system design  
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3.1 Introduction 

 

 

ECP model 505 Inverted Pendulum is used in control lab for testing various control 

theories, including the classical linear control theories, and can be extended to the 

modern non-linear control fields. The main challenge is to build a controller that 

stabilizes the inverted pendulum at its inverted position, or to track any other positions. 

Further-more such a controller should reject disturbances acting on the slider or on the 

vertical rod, but within physical limits of the device. However IP presents a number of 

challenges in term of its control, due to the following facts: 

 Its open-loop unstable at the desired operating point. 

 External disturbances that act on the system are not directly measurable. 

 All of the states are dynamically coupled, that means the change in any state 

will affect all other states. 

 Some states are not measured like velocities which should be accurately 

estimated. 

Moreover to make the challenge more interesting, the designed controller should not 

exceed the limits of the device, i.e. displacement, speed and torque, which comes from 

the length of the sliding rod and the limited torque generated by the motor. 

 

In the upcoming sections, linear control theories and strategies will be tested and 

discussed, including: 

 PID controller for the slider. 

 State feedback controllers (regulator, tracker, observer and discrete controller). 

 

3.2 Controller design 

 

In this section every linear control strategy used is discussed in details, after that a 

Simulink model built for the controller, and then shown the simulated results. 
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3.2.1 PID controller for the slider 

 

In this section the PID controller is design only for the slider, to check if the encoders, 

motor and the driver working properly. So the PID is a proportional-integral-derivative 

controller which creates a control loop feedback mechanism. A PID controller 

calculates an "error" (𝑒) value as the difference between a measured process variable 

and a desired set point. The desired closed loop dynamics is obtained by adjusting the 

three parameters 𝐾𝑃 (proportional gain), 𝐾𝐼 (integral gain) and 𝐾𝐷 (derivative gain), 

based on the linear system transfer function. 

 

  

1. Principle  

 

The pendulum rod is fixed at its inverted position, so the sliding rod can be simply 

modeled as a mass, and the differential equation is: 

𝑚1�̈� = 𝐹                                                                                                                  (3-1)  

The transfers function of the mass: 

𝐺(𝑠) =
1

𝑚1𝑠2
                                                                                                          (3-2)                                                               

Where

𝑚1: Mass of the complete sliding rod including all attached elements (0.213 𝑘𝑔).   

 

Figure 3.1: PID controller 
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2. Controller  

 

As design requirement, let the settling time of the system equals to 0.15 𝑠𝑒𝑐 and the 

percent over shoot (%𝑂𝑆) to be 10%. For designing the controller it’s preferred to use 

MATLAB SISOTOOL, because it’s simple and easy function. So the controller gains 

are: 

 𝐾𝑃 = 422.1  

 𝐾𝐼 = 86.17 

 𝐾𝐷 = 11.25 

 

3. Simulink model  

 

 

The Simulink model is shown in the figure 3.2, as noticed it was preferred to use the 

D-element in reveres path, because the zero does not appear when obtaining the closed 

loop transfer function1.  

 

                                                           
1 The transfer function of the inner loop  𝐺1(𝑠) = 1/(𝑚1𝑠2 + 𝐾𝐷𝑠), and the closed loop transfer 
function of the outer loop 𝑇(𝑠) = (𝐾𝑃𝑠 + 𝐾𝐼)/(𝑚1𝑠3 + 𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼). This discussed in details 
in [2] chapter 9, page 495. 

Figure 3.2: PID controller with D-element in reveres path 
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4. Simulation results  

The slider commanded to move 5 𝑐𝑚, so the input force and the response as follow: 

 

 

 

Figure 3.3 shows the input force needed to move the mass 5 𝑐𝑚, and Figure 3.4 shows 

response of the mass with 10.22% over shoot and settling equal to 0.138 sec which 

approximately meets the design requirement. 

 

Figure: 3.3: Input force (PID) 

Figure 3.4: Response (PID) 
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3.2.2 State feedback controller  

 

In control engineering, a state space representation is a mathematical model of a 

physical system as a set of input, output and state variables related by first-order 

differential equations. The state space representation (also known as the "time-domain 

approach") provides a convenient and compact way to model and analyze systems with 

multiple inputs and outputs. Unlike the frequency domain approach, the use of the state 

space representation is not limited to systems with linear components and zero initial 

conditions. However in state feedback method you can place the eigenvalues anywhere 

in the S-plane to get the desired response.  

 

 

Figure 3.5: Block diagram representation of the state space equations 

 

In order to obtain the state-space representation for any system, you need to know 

system inputs, outputs, in addition to the states. The general linear time invariant state 

space model that is used throughout this chapter: 

 

�̇� = 𝐴𝒙 + 𝐵𝒖 + 𝐸𝑑𝒑 

𝒚 = 𝐶𝒙 + 𝐷𝒖                                                                                                           (3-3)  

 

Where:  

 𝒙 ∈ 𝑅𝑛             ∶ The state vector. 

 𝒖 ∈ 𝑅𝑚            ∶ The input vector. Where 𝑚 equals 1 in the IP. 

 𝒚 ∈ 𝑅𝑟             ∶ The output vector. 

 𝒑 ∈ 𝑅𝑚          ∶ The disturbance vector. 
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 𝑨 ∈ 𝑅𝑛×𝑛        ∶ The system matrix. 

 𝑩 ∈ 𝑅𝑛×𝑚       ∶ The input matrix. 

 𝑬𝒅 ∈ 𝑅𝑛×𝑚     ∶ The disturbance matrix. 

 𝑪 ∈ 𝑅𝑟×𝑛        ∶ The output matrix. 

 𝑫 ∈ 𝑅𝑟×𝑚       ∶ The feed-forward matrix. In this case 𝐷 matrix equals 

zero, since the transfer functions are strictly proper. 

 

 

Previously from chapter two, the state space representation for the IP (ECP 505 model) 

is: 

 

[

�̇�
�̈�
�̇�
�̈�

] = [

0
−14.23

0
14.5

        

1
0
0
0

        

0
57.562

0
−19

        

0
0
1
0

] [

𝜃
�̇�
𝑥
�̇�

] + [

0
−9.116

0
7.706

] 𝐹 + [

0
27.8

0
−9.2

] 𝑃𝐿 

                                          𝑦(𝑡) = [ 1  0  0  0 ] [

𝜃
�̇�
𝑥
�̇�

]                                      (2-21) 

 

To be able to design a state feedback controller, the controllability of the system must 

be checked. If an input to a system can be found that takes every state variable from a 

desired initial state to a desired final state, the system is said to be controllable; 

otherwise, the system is uncontrollable, as explained in [2]. 

 

To check the possibility for the closed loop poles of the system; as to achieve stability 

and desired transient response, the controllability of the system is checked. This can 

be done by Hautus method by finding rank [𝜆𝐼 − 𝐴 𝐵] for every eigenvalues (𝜆𝑖) of 
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the system. Alternatively, the controllability of the pair (𝐴, 𝐵) is checked by 

calculating the controllability matrix (𝐶𝑀), such that: 

𝐶𝑀 = [𝐵 𝐴𝐵    ⋯ 𝐴𝑛−1𝐵]𝑛×𝑚 

If 𝐶𝑀 has a rank 𝑛 (full row rank), then the system is controllable, and it’s possible to 

find a gain vector [𝐾]. To find a gain vector, two methods are shown in this chapter, 

which are pole placement and optimal control methods; however pole placement 

method is used in this chapter. 

 

a) Pole placement method: 

In this method the gains are calculated as to place the eigenvalues of the system matrix, 

which are the closed-loop poles, in the desired location. After determining the desired 

poles location, MATLAB function (𝑝𝑙𝑎𝑐𝑒) can be used to calculate the necessary gain 

values. 

 

b) Optimal control method: 

The theory of optimal control is concerned with operating a dynamic system at 

minimum cost. That means the gains [𝐾] are determined to minimize the quadratic 

performance index [1]. 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0

 

Where: 

 𝑄: It’s a positive semi-definite matrix that represents the importance of the 

states relative to each other. 

 𝑅: It’s a positive definite matrix that represents the relative importance of 

control inputs. Since there is only one control input this matrix is (1 × 1) 

matrix. 
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After determining the 𝑄 𝑎𝑛𝑑 𝑅 matrices, MATLAB function (𝑙𝑞𝑟) is used to obtain the 

optimal gains value and the corresponding eigenvalues of the system. 

 

3.2.2.1 Regulator design 

 

The problem in this section is to design a state feedback controller that stabilized the 

inverted pendulum at its inverted position, which is the desired operating position, 

were the system is linearized. This requires overcoming the effects of disturbances and 

non-zero initial conditions. 

 

 

 

 

 

 

 

 

 

 

1. Principle: 

 

The inverted pendulum open loop system dynamics are given by: 

�̇� = 𝐴𝒙 + 𝐵𝒖                                                                                                         (3-4a) 

𝒚 = 𝐶𝒙                                                                                                                   (3-4b) 

                                                                                                                            

Recall that the system poles are given by the eigenvalues of 𝐴. Want to use the input 

𝒖 to modify the eigenvalues of  𝐴 to change the system dynamics. Assume a full-state 

feedback of the form:  

𝒖 =  𝒓 –  𝐾𝒙                                                                                                            (3-5) 

 

K 

Figure 3.6: Regulator schematic  
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Where: 

 𝒓   : is some reference input, in the case of regulator 𝒓 = 0 . 

 𝑲: is a gain where 𝑲 ∈ 𝑅𝑚×n 

 

 Find the closed-loop dynamics:  

�̇� = 𝑨𝒙 + 𝑩(𝒓 –  𝑲𝒙)                                  

�̇� = (𝑨 − 𝑩𝑲)𝒙 + 𝑩𝒓  

�̇� =  𝑨𝒌𝒙 + 𝑩𝒓  

𝒚 =  𝑪𝒙                                                                                                                  (3-6) 

Where 𝑨𝒌: the closed loop system matrix. 

 

So the eigenvalues of  𝐴𝑘 (the closed loop poles) could be placed anywhere in the S-

plane to get the desired response just by playing with matrix 𝑲. But to be able to do 

that, the open loop system must be controllable. 

 

2. Controller 

 

The open loop poles and zero for the system are found to be: 

 Open loop poles:        3.5360     − 3.5360      6.7530𝑖      − 6.7530i 

 Open loop zeros:        5.4643     − 5.4643 

The open loop system is unstable; because there is one pole at right half plan, as 

appeared in the root locus figure 3.7. 
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Figure 3.7: Root locus for the plant 

 

To check the controllability of the pair (𝐴, 𝐵), first the controllability matrix is 

calculated, and then its rank is found. This is performed using MATLAB as follows: 

𝐶𝑚 = 𝑐𝑡𝑟𝑏(𝐴, 𝐵)   

𝑅𝑐 = 𝑟𝑎𝑛𝑘(𝐶𝑚) 

 

Which is found to be 4, full rank, meaning that the system is fully controllable, and the 

gain [𝐾] can be calculated to achieve the desired response. The gain 𝑲 can be found 

either by pole placement or optimal control methods. Assuming the natural frequency 

(𝜔𝑛) and the damping ratio (𝜁) of the desired closed loop poles rang between 

(10 𝑡𝑜 12)  rad/s and (0.8 to 0.9) respectively.  
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The figure below shows the design region in S-plan. 

 

 

So let the closed loop poles be at: 

Poles = [−9 + 4.36𝑖    − 9 − 4.36𝑖     − 13.33 + 5.23𝑖        − 13.33 − 5.23𝑖  ] 

 

With MATLAB, the gains required to achieve the desired closed loop poles are found 

as follows: 

𝐾𝑅𝑒𝑔 = 𝑝𝑙𝑎𝑐𝑒(𝐴, 𝐵, 𝑃𝑜𝑙𝑒𝑠) 

𝐾𝑅𝑒𝑔 = [ 95.6892   26.6820  210.9835   37.3700]  

 

 

3. Simulink model  

 

The regulator is built and simulated using MATLAB SIMULINC, figure 3.9 shows the 

Simulink model. 

Figure 3.8: Design regions for the 

regulator locus 
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4. Simulation results  

 

The simulation results used to check if the system response meets the requirement or 

not. The initial conditions supposed to be 0.1 rad for pendulum rod angle and 0.0 m 

for the slider displacement. These results show the controller response with initial 

condition and the input force to the plant. 

 

K 

Figure 3.9: Regulator Simulink model  

Figure 3.10: Pendulum rod response (Regulator) 
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3.2.2.2 Tracker design  

 

In this section it is desired to design a state feedback controller that able to track a 

desired reference input of the pendulum rod, that means to stabilize the inverted 

pendulum at any angle within the physical limits of the device (±20°) and to 

overcoming the effects of disturbances. 

 

 

Figure 3.12: Integrator control for steady state error design  

 

Figure 3.11: Input force (Regulator) 
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1. Principle: 

 

From figure 3.12, the controller shown inside the dashed box is a Regulator which 

discussed in Section I. In order to to make the output follows the input; a feedback 

path from the output has been added to form the error, e, which is fed forward to the 

controlled plant via an integrator. 

 

Since the integrator increases the system type; we were able to make the output track 

a step input with zero steady-state error and with desired transient response 

specifications. 

 

To drive the state equations for the Tracker consider Figure 3.12: 

 

𝑥�̇� = 𝑟 −  𝑪𝒙                                                                                                           (3-7a) 

Where 𝑥�̇� : error signal 

 

Writing the state equations from Figure 3.12, gives: 

�̇� = 𝑨𝒙 + 𝑩𝑢                                                                                                                           

𝑦 = 𝑪𝒙                                                                                                                    (3-7b)       

 

Equations 3.7 a, b can be written in compact form as: 

 

[
�̇�

�̇�𝑛
] = ⌈

𝑨 𝟎
−𝑪 0

⌉ [
𝒙

𝑥𝑛
] + [

𝑩
0

] 𝑢 + [
𝟎
1

] 𝑟 

                                                                𝑦 = [𝑪 0] [
𝒙

𝑥𝑛
]                                       (3-8) 

But, 

                                                          𝑢 = −[𝑲 −𝐾𝑒] [
𝒙

𝑥𝑛
]                                   (3-9) 
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Substituting Eq. (3-9) into (3-8) and simplifying, we obtain 

 

[
�̇�

�̇�𝑛
] = ⌈

𝑨 − 𝑩𝑲 𝑩𝐾𝑒

−𝑪 0
⌉ [

𝒙
𝑥𝑛

] + [
𝟎
1

] 𝑟 

𝑦 = [𝑪 0] [
𝒙

𝑥𝑛
] 

 (3-10) 

 

 

 

2. Controller 

 

The extended matrices of the system are given as follows: 

𝑨𝒆 = ⌈
𝑨 𝟎

−𝑪 0
⌉                                                                                                       (3-11a) 

𝑩𝒆 = [
𝑩
0

]                                                                                                               (3-11b) 

𝑪𝒆 = [𝑪 0]                                                                                                          (3-11c) 

 

Now to check the controllability of the pair (𝐴𝑒 , 𝐵𝑒), it is performed using MATLAB 

as follows: 

𝐶𝑚𝑒 = 𝑐𝑡𝑟𝑏(𝐴𝑒 , 𝐵𝑒) 

𝑅𝑐𝑒 = 𝑟𝑎𝑛𝑘(𝐶𝑚𝑒) 

Which is found to be 5, full rank, meaning that the system is fully controllable, and the 

gains [𝐾 −𝐾𝑒] vector can be calculated to achieve the desired response. As in Section 

I the gains found by pole placement method. Then let the natural frequency (𝜔𝑛) rang 

between (10 𝑎𝑛𝑑 12)  rad/s and the damping ratio (𝜁) rang between (0.8 and 1). Figure 

3.13 shows the design region in S-plane. 
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Then a possible selection of the closed loop poles, taking into account the desired 

transient response, and motor saturation limits, is: 

Poles = [−9 + 4.36𝑖   − 9 − 4.36𝑖     − 13.33 + 5.23𝑖     − 13.33 − 5.23𝑖    − 10 ] 

With MATLAB the gains required to achieve the desired closed loop poles are found 

as follows: 

𝐾𝑡𝑟𝑎𝑐𝑘 = 𝑝𝑙𝑎𝑐𝑒(𝐴𝑒 , 𝐵𝑒 , 𝑃𝑜𝑙𝑒𝑠) 

 𝐾𝑡𝑟𝑎𝑐𝑘 = [362.5092     87.5148     584.6835      110.6239     − 760.3618] 

𝐾 = 𝐾𝑡𝑟𝑎𝑐𝑘(1: 4) 

𝐾𝑒 = −𝐾𝑡𝑟𝑎𝑐𝑘(5) 

 

3. Simulink model  

 

The model used in simulation process is shown in figure 3.14, this model includes a 

robust tracking state feedback. 

Figure 3.13: Design region for the tracker in S-plane   
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Figure 3.14: Simulink model for tracker 

 

4. Simulation results  

 

The initial pendulum rod angle = 0.0 rad and the desired angle of the pendulum rod = 

0.2 rad; so the simulation results as follows:  

 

 

Figure 3.15: Pendulum response (Tracker) 
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Figure 3.16: Slider displacement (Tracker)

 

Figure 3.17: Input force (Tracker) 

 

From figure 3.15 the percent overshoot equals to 6.9% and the settling time equals to 

0.9 seconds, figure 3.16 shows the displacement needed by the slider to make 

pendulum angle 0.2 rad, however the inverted pendulum at this position is stable, and 

figure 3.17 shows the force needed to hold the slider from slipping. 
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3.2.2.3    Observer design 

 

The observer (model of the plant), is used to calculate state variables that are not 

directly measured. Figure 3.18 shows the basic concept of observer design, where the 

measured outputs from the system are compared to those estimated, and then error 

signal is fed back to the observer. However, the dynamics of the observer should be 

made much faster than the dynamics of control system; to pick 𝑥 out from the hat. 

 

 

 

 

1. Principle 

 

From the above figure, the state equation of the observer is found as follows: 

�̇̂� = 𝑨�̂� + 𝑩𝒖 + 𝑳(𝒚 − �̂�)                                                                                  (3-12a) 

�̂�  =  𝑪𝒙                                                                                                               (3-12b) 

That it is assumed no disturbances acting on the rod (𝑝 = 0). The error signal between 

the measured output and observer output is: 

�̂� = 𝒙 − 𝒙                                                                                                        (3-13) 

Subtract Eq.3-12 from Eq.3-4 and Substituting the output equation into the state 

equation 

 (�̇� − �̇̂�)  =  (𝑨 − 𝑳𝑪)(𝒙 − �̂�)                                                                             (3-14) 

Figure 3.18: Observer design process 
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Now the error dynamic equation is: 

�̇̂� = (𝑨 − 𝑳𝑪)�̂�                                                                                                     (3-15) 

 

So to achieve the desired speed of the observer, the poles of the error characteristic 

equation must be place faraway from poles of the controlled system; this can be 

achieved by choosing appropriate gain vector (L). To obtain the gain vector (L); pole 

placement or optimal control methods can be used in a similar way to the feedback 

gain, where observer poles are selected to be 5 to 10 times faster than the system. 

 

To be able to design an observer, the system must be checked if it observable or not. 

If the knowledge of the output 𝑦(𝑡) and the input 𝑢(𝑡) over a finite interval of time 

suffices to determine the initial states the system is said to be observable, otherwise 

the system is said to be unobservable. This can be done by check the observability of 

the pair (𝐴, 𝐶) through calculating the observability matrix (𝑂𝑀), such that: 

𝑂𝑀 = [

𝐶
𝐶𝐴

⋮
𝐶𝐴𝑛−1

] 

If 𝑂𝑀 has a full column rank, then the system is observable, and it’s possible to find a 

gain vector [𝐿]. This matrix can be calculated with (𝑜𝑏𝑠𝑣) MATLAB function. 

 

2. Controller 

 

Checking the observability of the system based on the two direct measurements 

𝑥 𝑎𝑛𝑑 𝜃, the rank of the observability matrix is found as follows: 

𝑂𝑚 = 𝑜𝑏𝑠𝑣(𝐴, 𝐶𝑚) 

𝑅𝑜 = 𝑟𝑎𝑛𝑘(𝑂𝑚) 

Where 𝐶𝑚 is the measurement matrix,  𝐶𝑚 = [  
1
0

     
0
0

     
0
1

     
0
0

  ]  
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Which is found to be 4, full rank, meaning that the system is observable, and the gain 

vector [𝐿] can be calculated.  

Then let observer poles 10 times faster than the poles of the controller, so 

𝑂𝑏𝑠_𝑃𝑜𝑙𝑒𝑠 = [−19 + 4.36𝑖 − 19 − 4.36𝑖  − 23.33 + 5.23𝑖   − 23.33 − 5.23𝑖  ] 

 

With MATLAB the gains required to achieve this are found as follows: 

𝐿 = 𝑝𝑙𝑎𝑐𝑒(𝐴′, 𝐶𝑒′, 𝑂𝑏𝑠_𝑃𝑜𝑙𝑒𝑠)′ 

𝐿 = [

42.64
459.17
−0.68

−20.66

 

 1.0447
−58.83
42.02

439.88

] 

 

 

3. Simulink model 

 

The model used in simulation process is shown in figure 3.18, this model includes a 

robust tracking state feedback and an extended observer for states estimation. 

 

 

 

Figure 3.19: Simulink model Tracker with an observer 
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4. Simulation results  

 

The initial pendulum rod angle = 0.0 rad and the desired angle of the pendulum 

rod equals to 0.2 rad; so the simulation results as follows: 

 

 

 

Figure 3.20: Pendulum response (Observer) 

Figure 3.21: Slider displacement (Observer) 
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As noticed from the results the observer works correctly, because the results are the 

same as tracker controller. 

 

 

 

3.2.2.4 Discrete controller 

 

 

 

Figure 3.22: Input force (Observer) 

Figure 3.23: Discrete controller 
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The challenge here is to build a discrete controller that stabilizes the Inverted 

Pendulum, so the Digital (Discrete) control is a branch of control theory that uses 

computers to act as the controllers. Since the computer is a discrete system, the Laplace 

transform is replaced with the Z-transform. However, the main advantages of digital 

control are there flexibility, adaptability (parameters of the program can change with 

time). 

 

 

1. Principle: 

 

Figure 3.24: Discrete time state feedback with integration 

 

To drive the state equations for the discrete integral controller consider Figure (3.24), 

thus the set of equations for the overall system as follows: 

𝒙(𝑘 + 1) = 𝑭𝒙(𝑘) + 𝑮𝒖(𝑘)                                                                               (3-16a) 

𝑦(𝑘) = 𝑪𝒙(𝑘)                                                                                                     (3-16b) 

Where:   𝐹 = 𝐼 + 𝑇𝐴 

  𝐺 = 𝑇𝐵 

  𝑇: 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (0.004 𝑠) 

 

Control low for integral controller  

𝒖(𝑡) = −𝒌𝒙(𝑡) + 𝑘𝐼𝑥𝑛(𝑡)                                (3-17) 

Rewrite equation 3-17 discrete form, becomes 

𝒖(𝑘) = −𝒌𝒙(𝑘) + 𝑘𝐼𝑥𝑛(𝑘)                                   (3-18) 

𝑥�̇� = [0]𝑥𝑛 + 𝑟(𝑡) − 𝑦(𝑡)            (3-19a) 
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Now convert the equation 3-19a into discrete form 

𝑥𝑛(𝑘 + 1) = 𝑥𝑛(𝑘) + 𝑟(𝑘) − 𝑦(𝑘)              (3-19b) 

Where 𝑦(𝑘) = 𝑪𝒙(𝑘), so equation 3-19b become 

𝑥𝑛(𝑘 + 1) = 𝑥𝑛(𝑘) + 𝑟(𝑘) − 𝑪𝒙(𝑘)                                                                 (3-19c) 

Equations 3.16a and 3-19c can be written in compact form as:  

[
𝒙(𝑘 + 1)

𝑥𝑛(𝑘 + 1)
] = [

𝑭 𝟎
−𝑪 𝑰

] [
𝒙(𝑘)

𝑥𝑛(𝑘)
] + [

𝑮
𝟎

] 𝒖(𝑘) + [
𝟎
𝑰

] 𝒓(𝑘)                                   (3-20a) 

Or 

𝒙𝒆(𝑘 + 1) = 𝑭𝒆𝒙𝒆(𝑘) + 𝑮𝒆𝒖(𝑘) + 𝑬𝒓(𝑘)                                                         (3-20b) 

Where: 𝑭𝒆 = [
𝑭 𝟎

−𝑪 𝑰
], 𝑮𝒆 = [

𝑮
𝟎

], 𝑬 = [
𝟎
𝑰

] 

 

Inserting the feedback law 

 

𝒖(𝑘) = −[𝒌 − 𝑘𝑖] [
𝒙(𝑘)

𝑥𝑛(𝑘)
] = −𝑲𝒆𝒙𝒆(𝑘) 

 

Gives finally, 

𝒙𝒆(𝑘 + 1) = (𝑭𝒆 − 𝑮𝒆𝒌𝒆)𝒙𝒆(𝑘) + 𝑬𝑟(𝑘)                                                             (3-21) 

Where (𝑭𝒆 − 𝑮𝒆𝒌𝒆) : system matrix of the closed loop system. 

 

 

2. Controller 

In analog controllers, the poles are put in the left half of S-plane to stabilize the system, 

but when dealing with discrete controllers the poles are placed inside a circle at the 

origin of Z-plane with radius equals to one. 
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Figure 3.25: Natural frequency and damping loci in z-plane 

 

 However to be able to design the controller the controllability of the pair (𝐹𝑒 , 𝐺𝑒) must 

checked, this could be performed using MATLAB as follows: 

𝐶𝑚𝑒𝑑 = 𝑐𝑡𝑟𝑏(𝐹𝑒 , 𝐺𝑒) 

𝑅𝑐𝑒𝑑 = 𝑟𝑎𝑛𝑘(𝐶𝑚𝑒𝑑) 

 

Which is found to be 5, full rank, meaning that the system is fully controllable, the 

gains [𝐾 −𝐾𝐼] vector is found by using place command as follows: 

 Select the location of the poles in the z-plane 

𝑑𝑒𝑠𝑝𝑜𝑙𝑒𝑠 = [0.62     0.958     0.998     0.984 + 0.0047𝑖     0.984 − 0.0047𝑖] 

 Thus 𝑘𝑒 = 𝑝𝑙𝑎𝑐𝑒(𝐹𝑒 , 𝐺𝑒 , 𝑑𝑒𝑠𝑝𝑜𝑙𝑒𝑠) = [110    45    371    68    − 0.099] 

              𝑘 = 𝑘𝑒(1: 4) 

             𝑘𝑖 = −𝑘𝑒(5)  
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3. Simulink model  

 

The model used in simulation process is shown in figure 3.26, this model includes a 

robust tracking state feedback. 

 

Figure 3.26: Simulink model for discreet tracker 

 

4. Simulation results  

 

The initial pendulum rod angle = 0.0 rad and the desired angle of the pendulum rod = 

0.4 rad; so the simulation results as follows: 

 

Figure 3.27: Pendulum response (Discreet Tracker) 
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Figure 3.28: Slider displacement (Discreet Tracker) 

 

Figure 3.29: Input force (Discreet Tracker) 

 

Figure 3.27 shows pendulum response and the percent overshoot and settling time 

equals to 12.3% and 3.9 seconds respectively.  From the same figure it noticed that as 

the response slow down the negative overshoot decreases.  

 

 



 

 

 

 

 

 

4 Experimental results 
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4.1 Introduction  

     

PID and state feedback controllers which discussed in the previous chapter, are applied 

and tested on ECP model 505 Inverted Pendulum. The PID controller applied only on 

the slider when the pendulum rod fixed at its inverted position, just to check the devise 

encoders and the dc servo motor, it was impossible to apply this controller at the whole 

system; because of its nonlinearities. On the other hand state feedback controllers have 

the ability to stabilize such a system on its inverted position, even more to track any 

position within the limits. The effects of poles locations, gain values, input saturation 

and disturbances are studied and experimented on the device. 

 

In this chapter, xPC target technology is demonstrated, and then PID controller, robust 

tracking and disturbance rejection state feedback controllers are applied to the IP, and 

the experimental results are demonstrated and discussed for each case. 

 

 

4.2 xPC Target Technology 

  

The inverted pendulum is usually used for educational and research purposes for 

testing the controllers and different control techniques since the system is unstable and 

has a fast dynamic behavior it is difficult to achieve real time control by using ordinary 

PCs, so the x-PC target technology is used to accomplish the real time control. The 

xPC target is a solution for prototyping, testing, and deploying real-time systems using 

standard PC hardware. In this technique two PCs are used, host and target, with the 

host PC, one can design the controller, simulate it, and download it to the target 

computer for hardware-in-the-loop (HIL) simulation. The target PC, which is 

connected to the controlled plant, is just used to run control functions in real-time and 

monitor the controlled application [7]. 
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With the help of MATLAB, Simulink and xPC target technique, one can design, 

simulate and easily modify the controller for target application, and run the controller 

in real time. The two PCs (host and target) and there peripheral such as DAQ cards 

(PCI-6024E DA and PCI-6602 ENC) are already exists in control lab, so we used them 

to apply and test the controllers on the plant “ECP model 505”. 

 

 

4.3 Controller design methodology 

 

The design steps of the controller could be summarized as: 

1. Design the controller using MATLAB and Simulink. 

2. Simulate the model to check its response to apply any necessary improvements 

before applying the controller to the plant. 

3. Create the target application by combining the real time workshop, xPC target 

and C-compiler. 

4. Execute the target application in real time. 

Figure 4.1: xPC target technology 
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5. Monitor the target application using the xPC target scope and save the signals 

to a file for later use. 

6. Tune parameters, after the controller has been built and re-download to the 

target PC, xPC target technique permits an online modification for some 

controller’s parameters, such as gain values and sampling time. 

 

 

4.4 Experimental results 

  

As state before, one of the challenges that face the control problem of inverted 

pendulum is that the controller effort must not exceed the limits of the device, 

moreover some of system states are not directly measured, like velocities of the slider 

and pendulum rod. However in order to be able to implement the state feedback 

controller practically, the unmeasured states should be estimated. This can be achieved 

by using either state observers or by numerical differentiation methods. 

  

4.4.1 Hardware Gain  

 

Since the controller output is a force (Newton) and the motor which drives the sliding 

rod needs voltage, the IP will not work as desired. To achieve the desired response; 

the output force must convert to voltage. So the Hardwar gain is the voltage potential 

generated from effecting of 1 Newton force.  

There are a lot of methods to calculate the hardware gain, one of them is to make the 

sliding rod perpendicular to the ground, Give the system electrical potential to move 

the slider, when the slider begins to move we take the voltage and calculate the 

Hardware Gain. The voltage in this case is the critical voltage, which equals to 

0.6 𝑣 and the total mass of the slider is 0.213 𝑘𝑔; so the hardware gain is equals 
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to 3.4825 𝑁/𝑣. This result we found is near the actual value (actual value 

equal 4.2 𝑁/𝑣). Thus we use the actual value.  

  

4.4.2 PID controller (Experimentally)  

 

In this experiment, it is desired to design PID controller for the sliding rod only using 

theories in chapter three.  

Control system specifications  

 Uncompensated system poles         [  0    0  ] 

 System zeros                                      None 

 Desired response                                     %𝑂𝑆 = 10%, 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 0.15 𝑠 

 Gain values                                        𝐾𝑑 = 11.25   𝐾𝑝 = 422    𝐾𝑖 = 86  

   

Here, the closed-loop is selected to obtain under damped transient response, with 

performance specification as shown in table 4.1. The m-file used for this experiment 

is available at appendix A.1. 

Table 4.1 Performance specifications 

 Design Simulated Actual 

%Over Shoot  10 10.22 0 

Settling time (sec) 0.15 0.138 0.148 

Steady stat error 0.0 0.0 0.0 

 

Experimental results are shown in the following figures, including the Simulink model, 

the input force command and final response. 
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Figure 4.2: Slider controller Simulink model 

Figure 4.3: Input force (PID experimentally) 
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From the previous results it could be noted that: 

 The deviation between the actual and desired results comes from the dry 

friction force that acts on the slider. Anyway this damping type is nonlinear, 

and it was ignored when the system was linearized. 

 The oscillation that occur at steady state (clearly appeared in position signals) 

are a result of the steady state error that near to zero; due to the encoder's 

resolution. 

       

    

4.4.3 Regulator controller (Experimentally) 

  

In this experimental, it is desired to stabilize the inverted pendulum at its inverted 

position (𝜃 = 0) using state feedback control theories discussed in chapter three. 

�̇� = (𝑨 − 𝑩𝑲)𝒙 + 𝑩𝒓             𝒚 = 𝑪𝒙            𝒙 = [ θ    θ̇    x    ẋ  ]T 

 

Figure 4.4: Slider response (experimentally)  
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Control system specifications: 

 Uncompensated system poles        3.5360     − 3.5360      6.7530𝑖      − 6.7530i 

 System zeros                                  5.4643     − 5.4643 

 Controlled system poles                 [−9 ± 4.36𝑖     − 13.33 ± 5.23𝑖 ] 

 Feedback gains                               𝑲 = [158.3   28.6   68.1   19.8] 

    

Here, the closed-loop is selected to obtain under damped transient response. The m-

file used for this experiment is available at appendix A.2. Experimental results are 

shown the response of IP to disturbances in the following figures, including the 

Simulink model, pendulum response, slider response and the input force command. 

  

 

 

 

Figure 4.5: Regulator controller Simulink model 



05 
 

 

Figure 4.6: Actual pendulum response to disturbances  

 

 

Figure 4.7: Slider position output 
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Figure 4.8: Experiment output force to the motor. 

 

From the results, it could be noted that: 

 The maximum input force to the inverted pendulum about 50N experimental.  

 The controller rejects disturbances and manage to stabilize the IP at its inverted 

position. 

 By increasing the gain value it’s possible to obtain faster response but this will 

require more force to use and may be exceed the limits of the motor and the 

system become unstable! 

 As noticed from figure 4.6 there is a steady state error approximately equal 0.2 

degree due to frictions which were neglect able when driving the model. 

 The oscillations in the response because the system is under damped. 

 Figure 4.7 shows the slider movement to stabilize the pendulum. 
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4.4.4 Robust Tracing controller (Experimentally) 

 

In this experiment a robust controller is design to track a step position command for 

the pendulum rod and reject disturbances acting on the system.  

From chapter three: 

[
�̇�

�̇�𝑛
] = ⌈

𝑨 − 𝑩𝑲 𝑩𝐾𝑒

−𝑪 0
⌉ [

𝒙
𝑥𝑛

] + [
𝟎
1

] 𝑟 

𝑦 = [𝑪 0] [
𝒙

𝑥𝑛
] 

 

Control system specifications 

 Controlled system poles         [−9 ± 4.36𝑖    − 13.33 ± 5.23𝑖    − 12] 

 Feedback gains                       𝐾𝑡𝑟𝑎𝑐𝑘 = [501   94.7  305   74 − 629]   

                      𝐾 = 𝐾𝑡𝑟𝑎𝑐𝑘(1: 4)                            𝐾𝑒 = 𝐾𝑡𝑟𝑎𝑐𝑘(5) 

 

 

Figure 4.9: Experiment Simulink model for the tracker 
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Experimental results are shown in following figures: 

Figure 4.10: Pendulum response for the tracker (experimentally) 

 

 

Figure 4.11: Slider response for the tracker (experimentally) 
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Figure 4.12: Input force (Tracker experimentally) 

 

From the results, it could be noted that: 

 The controller was able to track our desired position, but as noticed from figure 

4.10 the response is slow (slower than the simulation); because of tuning the 

value of 𝐾𝑒 to 53, since the old value was too large and tend to make the system 

unstable.  

 As notices from figure 4.10 there is a negative over shoot, because of non-

minimum phase (right half plan zero) 

 The force is larger than the simulation due to dry friction and when the system 

tracked its position the force goes to zero because of friction force which can 

hold the slider from slipping. So the IP is statically stable at that position. 

 Figure 4.11 shows the response of the slider in meters. 
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4.4.5 Discreet Tracing controller (Experimentally) 

 

After applying robust tracking analog controller, it is time to digitalize it in the z-

plane, and design the controller to track a step position. 

Recalling from chapter three:  

[
𝒙(𝑘 + 1)

𝑥𝑛(𝑘 + 1)
] = [

𝑭 𝟎
−𝑪 𝑰

] [
𝒙(𝑘)

𝑥𝑛(𝑘)
] + [

𝑮
𝟎

] 𝒖(𝑘) + [
𝟎
𝑰

] 𝒓(𝑘) 

 

Control system specifications 

 Controlled system poles in Z-plane         

[0.62     0.958     0.998     0.984 + 0.0047𝑖     0.984 − 0.0047𝑖] 
these locations are found by using the optimal method. 

 Feedback gains                       𝐾𝑒 = [110    45    371    68    − 0.099]   

                      𝑘 = 𝐾𝑒(1: 4)                            𝑘𝑖 = 𝐾𝑒(5) 

 

 

Figure 4.13: Experiment Simulink model for the discrete tracker 
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Experimental results are shown in following figures: 

Figure 4.14: Pendulum response for the discreet tracker (experimentally) 

 

Figure 4.15: Slider response for the discreet tracker (experimentally) 

 

From the results, it could be noted that:  

 As noticed from figure 4.14 the percent overshoot and settling time 0.0% and 

7 seconds respectively. 

 To achieve 0.4 rad for the pendulum rod, the slider must move 0.8 centimeter. 

 In final response of the pendulum rod there is a small error because of 

nonlinearities of the IP.   

 The response is slower than simulation due to the tuned value of 𝑘𝑖 = 0.095. 



 
 

 

 

 

 

 

 

 

5 Embedded system, Design and 

control 
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5.1 Introduction 

 

The next step of the project is to replace the x-pc target technology with a 

microcontroller. Microcontrollers are designed for embedded applications, so it is a 

small computer on a single integrated circuit containing a processor core, memory, and 

programmable input/output peripherals.  

 

5.2 Microcontroller 

 

There were many choices to use, like PIC micro controller from microchip or Atmel 

microcontrollers, but in this project Arduino board based on Atmel is used; because its 

open source and one can deal with it easily, thus the Arduino Mega 2560 has been 

chosen to control the inverted pendulum. 

 

Figure 5.1: Arduino Mega 2560 
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The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It has 

54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analog 

inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB 

connection, a power jack, an ICSP header, and a reset button. It contains everything 

needed to support the microcontroller; simply connect it to a computer with a USB 

cable to get started [6]. 

 

For the software environment, the Arduino 1.5.6-r2 software used to verify and 

download the code on Arduino board.   

 

 

 

5.3 Controller  

 

In this section, the discreet controller that applied on the IP using X-pc target technique 

is converted to c-code and applied on the microcontroller and the same gain used. 

Figure 5.2: Arduino 1.5.6-r2 
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1) Reading the encoders 

Since Arduino is open source and it had a very large community of people using it for 

all kind of projects, you can easily find and download library for reading encoders and 

include it in the code. 

#𝑖𝑛𝑐𝑙𝑢𝑑𝑒 < 𝐸𝑛𝑐𝑜𝑑𝑒𝑟. ℎ > 

However, there is many choices to connect the channels of the encoder on the Arduino 

board, but to get the best performance, you must connect the channels to pins have 

interrupt capability, which are pin number 2, 3, 18, 19, 20 and 21 on Arduino mega. 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑆𝑙𝑖𝑑𝑒𝑟(18, 19); 

 

So what is interrupt? 

Interrupt is an event that forced the microcontroller to suspend processing the current 

instruction sequence and to begin an interrupt service routine. Which helps the 

microcontroller to provide real time response to events in the embedded system they 

are controlling.  

Possible interrupt sources are device dependent, and often include events such as an 

internal timer overflow, completing an analog to digital conversion, a logic level 

change on an input such as from a button being pressed or from encoder, and data 

received on a communication link. 

 

For example, to read the slider encoder you can use this function 

𝑆𝑙𝑖𝑑𝑒𝑟. 𝑟𝑒𝑎𝑑 (); 
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2) Calculating the speed 

The challenge here is to have an accurate measurement for both pendulum and slider 

speeds. Therefore, the best solution was to use timer interrupt and make the interrupt 

time equals to 0.004 seconds, which is the sampling time. However to calculate the 

speed you can do as follows:  

 You should store the position before one sampling time (old position) 

 Subtract the current position from the old one 

 Divide the subtracted vale with sampling time. 

 

𝑛𝑒𝑤𝑅𝑜𝑑 =  ((𝑓𝑙𝑜𝑎𝑡)(𝑅𝑜𝑑. 𝑟𝑒𝑎𝑑()))/2546.0; 

𝑛𝑒𝑤𝑆𝑙𝑖𝑑𝑒𝑟 =  ((𝑓𝑙𝑜𝑎𝑡)(𝑆𝑙𝑖𝑑𝑒𝑟. 𝑟𝑒𝑎𝑑()))/50200.0; 

𝑅𝑜𝑑_𝑆𝑝𝑒𝑒𝑑 = (𝑛𝑒𝑤𝑅𝑜𝑑 − 𝑜𝑙𝑑𝑅𝑜𝑑)/(0.004); 

𝑆𝑙𝑖𝑑𝑒𝑟_𝑆𝑝𝑒𝑒𝑑 = (𝑛𝑒𝑤𝑆𝑙𝑖𝑑𝑒𝑟 − 𝑜𝑙𝑑𝑆𝑙𝑖𝑑𝑒𝑟)/(0.004); 

𝑜𝑙𝑑𝑅𝑜𝑑 = 𝑛𝑒𝑤𝑅𝑜𝑑; 

𝑜𝑙𝑑𝑆𝑙𝑖𝑑𝑒𝑟 = 𝑛𝑒𝑤𝑆𝑙𝑖𝑑𝑒𝑟; 

Where 50200 and 2546 are constants that convert the encoder pulses to distance. 

 

 

3) Controller code: 

After reading the position and calculating the speed for both pendulum and slider, it is 

time to start design the controller. 
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Recalling from discreet controller section 

 

 

From figure 5.3: 

𝑢 = 𝐾𝑖𝑥𝑛(𝑘) − 𝑲𝒙(𝑘), (input force to the inverted pendulum)                             (5-1) 

𝑥𝑛(𝑘 + 1) = 𝑟(𝑘) − 𝑦(𝑘) + 𝑥𝑛(𝑘)                                                                         (5-2) 

 

Now the gain 𝑲 must be evaluated at sampling time equals to 0.004 second, so Matlab 

used and 𝑲 found by using 𝑝𝑙𝑎𝑐𝑒 command as follows: 

 Select a desired location of the system poles in 𝑍 domain 

𝒑𝒐𝒍𝒆𝒔 = [0.62     0.958     0.998     0.984 + 0.0047𝑖     0.984 − 0.0047𝑖] 

 Evaluate the system extended matrix in discreet form 

 𝑭𝒆 = [
𝑭 𝟎

−𝑪 𝑰
], 𝑮𝒆 = [

𝑮
𝟎

] when sampling time equals to 0.004 second. 

 Use 𝑝𝑙𝑎𝑐𝑒 command to find the gains 

𝑲𝒆 = 𝑝𝑙𝑎𝑐𝑒(𝐹𝑒, 𝐺𝑒, 𝑝𝑜𝑙𝑒𝑠) 

𝑲𝒆 = [110    45    371    68    − 0.099] 

𝑲 = 𝑲𝒆(1: 4) 

𝐾𝑖 = −𝑲𝒆(5) 

The goal here is to make the IP track some reference input ( r ) , which choose to be a 

potentiometer.  

𝑟 =  (((𝑓𝑙𝑜𝑎𝑡) (𝑎𝑛𝑎𝑙𝑜𝑔𝑅𝑒𝑎𝑑 (𝐴10))) − 512.0) ∗ (0.4363/512.0); 

Figure 5.3: Discreet tracker 
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The potentiometer is on channel ten of the microcontroller and the above code used to 

convert input voltage into radians from −0.4363 𝑡𝑜 0.4363 𝑟𝑎𝑑 (±25°). 

 

Equation 5-1 and 5-2 can be written in the microcontroller as shown below: 

𝑥𝑛 = 𝑟 − 𝑛𝑒𝑤𝑅𝑜𝑑 + 𝑥𝑛𝑝 

𝐹 = 𝑥𝑛𝑝 ∗ 0.095 − 𝑛𝑒𝑤𝑆𝑙𝑖𝑑𝑒𝑟 ∗ 371.0 − 𝑆𝑙𝑖𝑑𝑒𝑟𝑆𝑝𝑒𝑒𝑑 ∗ 68.0 − 𝑛𝑒𝑤𝑅𝑜𝑑 ∗ 110.0 

         −𝑅𝑜𝑑𝑆𝑝𝑒𝑒𝑑 ∗ 45.0 

𝑢 = (𝐹/4.2) ∗ (255/5) 

𝑥𝑛𝑝 = 𝑥𝑛 

Where 255/5 is a constant that converts the 𝑃𝑊𝑀 duty cycle into output voltage. 

 

However, the output signal (𝑢) could be positive or negative value, so two pulse width 

modulation (PWM) pins were used. If 𝑢 is positive number then pin 9 is activated, else 

pin 10 will be activated. The full code in appendix A. But the driver only receive 

analog signals not PWM and the microcontroller gives only positive voltage so an 

interfacing circuit needed to connect between the microcontroller and the driver, which 

explained in the coming section. 

Furthermore, the Imposed direction should be the same as the real direction of the 

inverter pendulum or the system will surely be unstable and fails down. 

 

4) Simulation results 

The simulation results are shown in chapter three, figures 3.27 and 3.28 for the 

pendulum and slider respectively. 
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5.4 Interfacing circuit 

 

1) Low pass filter 

The low pass filter take the average of PWM, so the output is analog signal. The basic 

component of low pass filter are resistor and capacitor as shown in the figure below 

 

 

 

Calculations

 

Where 𝜔𝐵 the breakpoint frequency.  

Figure: 5.4 Low pass filter 

Figure: 5.5 Filter calculations 
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𝜔𝐵 =
1

𝑅𝐶
=

1

1000×10𝜇×2𝜋
= 16 𝐻𝑧  

The output frequency of PWM is approximately 500 𝐻𝑧, as mentioned low pass filter 

take the average of input, however the filter is tested at these values and gave good 

results.  

 

2) Differential amplifier 

A differential amplifier is a type of electronic amplifier that 

amplifies the difference between two voltages but does not 

amplify the particular voltages. Thus, it used here to subtract 

the signals that comes from pin 9 and 10 after the filter. The 

output of a differential amplifier is given by: 

𝑉𝑜𝑢𝑡 = 𝑘(𝑉𝑖𝑛
+ − 𝑉𝑖𝑛

−) 

Where 𝑉𝑖𝑛
+𝑎𝑛𝑑 𝑉𝑖𝑛

− the input voltages and k are is the differential gain. Figure 5.7 shows 

the designed circuit with gain equal to one for differential amplifier. 

 

 

Figure 5.6: Differential amplifier 

Figure 5.7: Circuit wiring diagram 
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5.5 Results  

 

The complete circuit is designed as a shield, just plug it over the Arduino board and 

start controlling the inverted pendulum. The main advantages of this design were no 

missy wires and easy for diagnosing and fixing errors. 

 

 

 

First the shield is tested as a regulator and shows it response to disturbances, after that 

a tracker controller applied and gave it a step command to rotate the pendulum 0.2 rad 

which equals to 22.92 degrees. 

 

 

Figure 5.8: Full circuit practical 
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1) Regulator 

 

 

 

 

Figure 5.9: pendulum response to disturbances 

Figure 5.10: Slider response to disturbances 
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From the results, it could be concluded that: 

 The percent over shoote is approximatly 7.75% and the setlling time is 0.372 

second. 

 The ocillations were less than the analog regulator which applied using x-pc 

target, because of the selection of poles. 

 From figure 5.10 there is a steady state error approximately equal 0.135 degree 

due to frictions which were neglectable when driving the model. 

 The controller rejects disturbances and manage to stabilize the IP. 

 

 

2) Tracker  

 

 

 

 

Figure 5.11: Pendulum response for the tracker  
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From the results, it could be concluded that: 

 The microcontroller was able to stabilized the IP and track a step input. 

 The results is similar to results which obtained by using x-pc target. 

Table 5.1 show a comparison between simulated results and experimental results for 

both x-pc target and embedded system. 

 

Table 5.1: Discrete controller’s comparison 

 %𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

[𝑠𝑒𝑐] 

𝑅𝑖𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

[𝑠𝑒𝑐] 

%𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒  

𝐸𝑟𝑟𝑜𝑟 

Simulation  12.3 3.9 1.4 0.0 

x-pc target 0.0 7 4.8 2.0 

embedded 

system 
0.0 6.76 5.2 3.0 

 

The results for the embedded system were similar to x-pc target, so the embedded 

system works correctly and in effective way. 

Figure 5.12: slider response for the tracker  



 

 

 

 

 

 

 

 

 

 

 

6 Feedback linearization 
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6.1 Introduction 

 

Feedback linearization is an approach to control nonlinear process. The main idea is 

to algebraically transform nonlinear systems dynamics into linear ones in view of the 

control input, so that linear control techniques can be applied. This differs entirely 

from conventional (Jacobean) linearization, because feedback linearization is achieved 

by exact state transformation and feedback, rather than by linear approximations of the 

dynamics. However to be able to apply this method of control, all of the states must be 

measured [3]. 

 

6.2 Principle 

 

Consider the following nonlinear system 

�̇� = 𝒇(𝒙) + 𝑮(𝒙)𝒗                                                                                                  (6-1a) 

𝒚 = 𝒉(𝒙)                                                                                                                 (6-1b) 

Where: 

 𝒇 ∈ 𝑅𝑛 : Nonlinear vector function. 

 𝑮 ∈  𝑅𝑛×𝑚 : Nonlinear vector function. 

 𝒗 ∈ 𝑅𝑚 : Input vector. 

Let 𝑣 = 𝛼𝑢(𝑡) + 𝛽, then select 𝛼 𝑎𝑛𝑑 𝛽 such that the resulted model linear for the 

input 𝑢. 

 

Recalling the nonlinear differential equations for the IP from chapter 2 

𝑚1�̈� + 𝑚1𝑙0�̈� − 𝑚1𝑥�̇�
2 −𝑚1𝑔 sin 𝜃 + 𝑓2�̇� = 𝐹(𝑡)                                              (2-8) 

[𝐽1 + 𝐽2 + (𝑥
2 + 𝑙0

2) 𝑚1 +𝑚2𝑙𝑐
2]�̈� + 2𝑚1𝑥�̇��̇� + 𝑚1𝑙0�̈� − (𝑚1𝑙0 +𝑚2𝑙𝑐)𝑔 sin 𝜃 −

𝑚1𝑔𝑥 cos 𝜃 + 𝑓1�̇�  =  𝑃𝐿                                                                                       (2-10) 
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Let sin(𝜃) = 𝜃 , cos(𝜃) = 1 about operation point (because the operation angle is 

small due to physical limits of the device) and niggling friction in equations 2-8 and 

2-10 

𝑚1�̈� + 𝑚1𝑙0�̈� − 𝑚1𝑥�̇�
2 −𝑚1𝑔𝜃 = 𝐹(𝑡)                                                              (6-2a) 

[𝐽1 + 𝐽2 + (𝑥
2 + 𝑙0

2) 𝑚1 +𝑚2𝑙𝑐
2]�̈� + 2𝑚1𝑥�̇��̇� + 𝑚1𝑙0�̈� − (𝑚1𝑙0 +𝑚2𝑙𝑐)𝑔𝜃 −

𝑚1𝑔𝑥 =  𝑃𝐿                                                                                                           (6-2b) 

 

If the control chosen to be   

𝐹(𝑡) = 𝛼1𝑢(𝑡) + 𝛽1                                                                                                (6-3a) 

Where 𝛼1 = 1 𝑎𝑛𝑑 𝛽1 = −𝑚1𝑥𝜃2̇ 

And  

𝑃𝐿 = 𝛼2𝑁 + 𝛽2                                                                                                     (6-3b) 

𝛼2 = 1 𝑎𝑛𝑑 𝛽2 = 2𝑚1𝑥�̇��̇�     

Thus, the nonlinear term could be canceled. This cancellation results in the system 

𝑚1�̈� + 𝑚1𝑙0�̈� − 𝑚1𝑔𝜃 = 𝑢(𝑡)                                                                               (6-4a) 

𝐽(𝑥)�̈� + 𝑚1𝑙0�̈� − 𝑚𝑜𝑔𝜃 −𝑚1𝑔𝑥 =  𝑁                                                                 (6-4b) 

Where 

 𝐽(𝑥) = 𝐽1 + 𝐽2 + (𝑥
2 + 𝑙0

2) 𝑚1 +𝑚2𝑙𝑐
2 

 𝑚𝑜 = 𝑚1𝑙𝑜 +𝑚2𝑙𝑐 

Simplifying equations 6-4a and 6-4b in terms of �̈� 𝑎𝑛𝑑 �̈� yields: 

�̈� =
𝑢(𝑡)

𝑚1
− 𝑙𝑜�̈� + 𝑔𝜃                                                                                    (6-5a)   

�̈� =
[𝑁+𝑚𝑜𝑔𝜃+𝑚1𝑔𝑥−𝑚1𝑙0�̈�]

𝐽(𝑥)
                                                     (6-5b) 
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Substitute (6-5a) in (6-4b) and (6-5b) in (6-4a), this results 

𝐽�̈� − 𝑚2𝑙𝑐𝑔𝜃 −𝑚1𝑔𝑥 = 𝑁 − 𝑙0𝑢(𝑡)                                                                     (6-6a) 

𝐽�̈� − (𝐽 − 𝑚2𝑙𝑐𝑙0)𝑔𝜃 + 𝑚1𝑙0𝑔𝑥 =
𝐽0

𝑚1
𝑢(𝑡) − 𝑙0𝑁                                                (6-6b) 

Where    𝐽 = 𝐽(𝑥) −𝑚1𝑙𝑜
2                                                                                      (6-6c) 

But    𝐽(𝑥) = [𝐽1 + 𝐽2 + (𝑥
2 + 𝑙0

2) 𝑚1 +𝑚2𝑙𝑐
2]  

Where 𝐽1 and 𝐽2 are the polar moment of inertias around joint (𝑂) for the slider and 

pendulum respectively. However the value of 𝑥 is small so it can be neglected, 

thus 𝐽(𝑥) = 𝐽𝑜 𝑎𝑛𝑑 𝐽 = 𝐽
∗ which there values found in table 2-1. 

Convert equations 6-6a and 6-6b to state space model by choosing the states to 

be 𝑥, �̇�, 𝜃 𝑎𝑛𝑑 �̇� respectively 

 

𝑞1 = 𝑥               �̇�1 = 𝑞2               

𝑞2 = �̇�               �̇�2 =
𝐽(𝑥)

𝐽𝑚1
𝑢(𝑡) −

𝑙0

𝐽
𝑁 −

𝑚1𝑙0𝑔

𝐽
𝑞1 +

(𝐽−𝑚2𝑙𝑐𝑙0)𝑔

𝐽
𝑞3        

𝑞3 = 𝜃                 �̇�3 = 𝑞4  

𝑞4 = �̇�                 �̇�4 =
1

𝐽
𝑁 −

𝑙0

𝐽
𝑢(𝑡) +

𝑚1𝑔

𝐽
𝑞1 +

𝑚2𝑙𝑐𝑔

𝐽
𝑞3  

 

So the state space model is: 

 

�̇� = [

0
𝑚1𝑙𝑜𝑔/𝐽

0
𝑚1𝑔/𝐽

   

1
0
0
0

   

0
𝑔 − 𝑚2𝑙𝑐𝑙𝑜𝑔/𝐽

0
𝑚2𝑙𝑐𝑔/𝐽

   

0
0
1
0

] 𝒒 + [

0
𝐽(𝑥)/𝐽𝑚1

0
−𝑙𝑜/𝐽

] 𝑢 + [

0
−𝑙0/𝐽
0
1/𝐽

]𝑁 
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Substituting the values of Table 2.1 into state space model matrices yields 

�̇� = [

0
−19
0

57.56

   

1
0
0
0

   

0
14.5
0

−14.23

   

0
0
1
0

]

⏟              
𝐴

𝒒 + [

0
7.7
0

−9.1

]

⏟  
𝐵

𝑢 + [

0
−9.2
0
27.8

]

⏟  
𝐸

𝑁 

𝑦(𝑡) = [ 1  0  0  0 ]⏟      
𝐶

𝒒 

 

6.3 Controller 

 

The stabilization problem for the nonlinear system has been reduced to a stabilization 

problem for a controllable linear system. Thus, the designed controller proceed to 

stabilizing linear state feedback control. The controller applied here is discrete tracker, 

which explained early in chapter three.  

 

First, the system matrices are found in the z-plane at sampling time equals one 

millisecond: 

𝐹𝑛 = 𝐼 + 𝑇𝑠𝐴 = [

1
−0.019
0

0.058

   

0.001
1
0
0

   

0
0.0144
1

−0.0141

   

0
0

0.001
1

]  

𝐺𝑛 = 𝑇𝑠𝐵 = [

0
0.0077
0

−0.0091

]  

The extended matrices found as follows: 

 𝑭𝒏𝒆 = [
𝑭𝒏 𝟎
−𝑪 𝑰

] =

[
 
 
 
 

1
−0.019
0

0.058
0

   

0.001
1
0
0
0

   

0
0.0144
1

−0.0141
−1

   

0
0

0.001
1
0

   

0
0
0
0
1]
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 𝑮𝒏𝒆 = [
𝑮𝒏
𝟎
] =

[
 
 
 
 

0
0.0077
0

−0.0091
0 ]

 
 
 
 

 

 

Controller gains were found by using place command as follows: 

 Select locations of the poles in z-plane inside unity circuit to achieve stability 

𝑃𝑛 = [0.8876      0.9884      0.9952      0.9986 + 0.0016𝑖      0.9986 − 0.0016𝑖] 

 𝐾 = 𝑝𝑙𝑎𝑐𝑒(𝐹𝑒 , 𝐺𝑒 , 𝑃𝑛) 

𝐾 = [ 447.7   81.8  134.3   54.6 ⏟                  
𝑘

−0.1⏟
𝑘𝑛

]  

 

6.4 Simulink model  

 

Figure 6.1 shows the Simulink model for the feedback linearization with discrete 

tracker controller, as noticed the input force equals to 𝑢 − 𝑚1𝑥𝜃2̇. 

 

Figure 6.1: Feedback linearization Simulink model 
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6.5 Simulation results 

 

The pendulum rod commanded to rotate 0.4 rad with zero initial conditions, so the 

results for pendulum, slider and input force as follows: 

 

Figure 6.2 Pendulum response (Feedback linearization) 

 

Figure 6.3 Slider response (Feedback linearization) 
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Figure 6.4 Input force (Feedback linearization) 

 

From the simulated results, it could be noted that: 

 In figure 6.2 the percent overshoot and the stilling time is 5.95 % and 

3.183 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 respectively. 

 Figure 6.4 shows the input force and because of neglecting the friction in the 

model the IP needs 0.8 newton’s to hold the slider from slipping.   

 

6.6 Experimental results  

 

Figure 6.5 x-pc target model (Feedback linearization) 
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The controller applied to the IP by using x-pc target technique and the Simulink model 

is shown in figure 6.5, and the experimental results as follows: 

 

Figure 6.6 Experimental pendulum response 

 

 

Figure 6.7 Experimental Slider response 
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 Figure 6.8 Input force experimentally  

 

From the previous results, it could be noted that: 

 From figure 6.6 the settling time equals to 4.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 which is slower than 

simulation result. 

 The negative overshoot in pendulum response (figure 6.6) is due to right half 

plane zero. 

 The real input force (figure 6.8) is greater than force expected in simulation 

because of friction, moreover when the pendulum reaches its position the input 

force goes to zero due to friction that holds the slider from slipping. 

 In figure 6.8, the input force is noisy, but the driver tacks the average and drive 

the motor smoothly. 

 The main advantage of this controller it was able to achieve the desired 

pendulum angle with less force than previous controllers.  



 
 

 

 

 

 

 

 

 

 

 

 

 

7 Conclusion & Suggestion 
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7.1 Conclusion 

 

Different control technique were applied to the inverted pendulum, and it could be 

concluded that all of state feedback controllers were able to stabilize the IP, 

furthermore tracking some reference angle for the pendulum rod. However it was 

difficult to have the same results as simulation, because of the pendulum rod cannot 

be controlled directly, just by controlling the slider position you were able to control 

the pendulum rod. 

 

In general, the designed controllers were limited by the physical limits of the device, 

like the length of the slider, so the speed of the response cannot be increased so far or 

the system will be unstable. 

 

Embedded system based on micro controller was able to control the IP and gave results 

similar to discrete controller which applied by using x-pc target technique.  

 

The feedback linearization controller helps to deal effectively with the nonlinearity of 

the IP, and that appears in the input force to the system that is less than other 

controllers. 

 

 

7.2 Suggestion for the Future Work  

 

Although the controllers has been successfully stabilized the system, controller 

technique should be improved so that a robust controller and a better response can be 

achieved. More control theories can be applied and tested, like fuzzy logic control and 

neural networks.  

 

On the other-hand embedded controller need more development and to tests more 

controllers. 
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Appendix A 

Controller design (m-file) 

 

A.1 PID controller 

%=================================================================% 

%=======       Inverted Pendulum ECP 505 model              ======% 

%=======                     PID                            ======% 

%=================================================================% 

                            clc; clear; 

                             

%% definitions of the basic parameters: 

Ts=0.001;       % Sampling time 

Kx=1.9920e-005; % sliding rod encoder          m / increment 

Ka=3.9277e-004; % pendulum angular encoder     rad/increment 

Kv_f=1/4.2;     % Hardware gain                v/N 

  

%% Controller Gains: (using sisotool function) 

Kd=11.25;    

Kp=422;     

Ki=86; 
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A.2 Regulator controller 

%=================================================================% 

%=======       Inverted Pendulum ECP 505 model              ======% 

%=======                  Regulator                         ======% 

%=================================================================% 

                            clc; clear; 

                             

%% definitions of the basic parameters: 

Ts=0.001;       % Sampling time 

Kx=1.9920e-005; % sliding rod encoder          m / increment 

Ka=3.9277e-004; % pendulum angular encoder     rad/increment 

Kv_f=1/4.2;     % Hardware gain                v/N 

%% System [ theta theta. x  x.]’ 

  

A=[0 1 0 0;-14.23 0 57.562 0;0 0 0 1;14.5 0 -19 0];%system matrix 

B=[0 -9.2 0 7.75]';                                %input matrix 

C=[1 0 0 0];                                       %output matrix 

D=0; 

Cm=ctrb(A,B); 

Rc=rank(Cm); 

  

%% Regulator Controller    

Wn1 = 10;     

z1 = 0.9;     

Wn2 = 14.32;     

z2 = 0.93; 

  

p1 =-z1*Wn1+1i*Wn1*sqrt(1-z1^2); 

p2 =-z1*Wn1-1i*Wn1*sqrt(1-z1^2); 

p3 =-z2*Wn2+1i*Wn2*sqrt(1-z2^2); 

p4 =-z2*Wn2-1i*Wn2*sqrt(1-z2^2); 

  

poles=[p1 p2 p3 p4];  

  

K_Reg=place(A,B,poles); 
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A.3 Tracker controller 

%=================================================================% 

%=======       Inverted Pendulum ECP 505 model              ======% 

%=======               Tracker & Observer                   ======% 

%=================================================================% 

                            clc; clear;                             

%% definitions of the basic parameters: 

Ts=0.001;       % Sampling time 

Kx=1.9920e-005; % sliding rod encoder          m / increment 

Ka=3.9277e-004; % pendulum angular encoder     rad/increment 

Kv_f=1/4.2;     % Hardware gain                v/N 

 

%% System [ theta theta. x  x.]’ 

A=[0 1 0 0;-14.23 0 57.562 0;0 0 0 1;14.5 0 -19 0];%system matrix 

B=[0 -9.2 0 7.75]';                                %input matrix 

C=[1 0 0 0];                                       %output matrix 

D=0; 

 

%% Tracker Controller    

Wn1 = 10;     

z1 = 0.9;     

Wn2 = 14.32;     

z2 = 0.93; 

p1 =-z1*Wn1+1i*Wn1*sqrt(1-z1^2); 

p2 =-z1*Wn1-1i*Wn1*sqrt(1-z1^2); 

p3 =-z2*Wn2+1i*Wn2*sqrt(1-z2^2); 

p4 =-z2*Wn2-1i*Wn2*sqrt(1-z2^2); 

 

Ae=[A zeros(4,1);-C 0]; 

Be=[B;0]; 

Ce=[C 0]; 

Cme=ctrb(An,Bn) 

Rce=rank(Cme); 

 

poles=[p1 p2 p3 p4 -10]; 

k_Trac=place(Ae,Be,poles); 

K=k_Trac(1:4); 

Ke=-k_Trac(5); 



93 
 

  

%% Observer Controller (faster 10 times than controller) 

Observer=[p1 p2 p3 p4]-10;  

Cm=[1 0 0 0;0 0 1 0]; %output matrix 

Om=rank(obsv(A,Cm)); 

L=place(A',Cm',Observer)'; 
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A.4 Discrete controller 

%=================================================================% 

%=======       Inverted Pendulum ECP 505 model              ======% 

%=======                     Discrete                       ======% 

%=================================================================% 

                            clc; clear;                             

%% definitions of the basic parameters: 

Ts=0.004;       % Sampling time 

Kx=1.9920e-005; % sliding rod encoder          m / increment 

Ka=3.9277e-004; % pendulum angular encoder     rad/increment 

Kv_f=1/4.2;     % Hardware gain                v/N 

 

%% System [ theta theta. x  x.]’ 

A=[0 1 0 0;-14.23 0 57.562 0;0 0 0 1;14.5 0 -19 0];%system matrix 

B=[0 -9.2 0 7.75]';                                %input matrix 

C=[1 0 0 0];                                       %output matrix 

D=0; 

 

%% Discrete Controller    

F=eye(4)+Ts*A;                                                              
G=Ts*B;                                                                     
Fe=[F zeros(4,1);-C eye(1)];                                                
Ge=[G;0];                                                                   
Q=eye(4)*100;                                                               
R=1;                                                                        
Q(1,1)=10000;                                                               
Q(3,3)=10000;     
k_d=dlqr(F,G,Q,R)                                                          
Pe=eig(Fe-Ge*[k_d -0.099])  

            
ke=place(Fe,Ge,Pe) 

  
k=ke(1:4) 
ki=ke(5) 
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A.5 Feedback linearization 

%=================================================================% 

%=======       Inverted Pendulum ECP 505 model              ======% 

%=======            Feedback linearization                  ======% 

%=================================================================% 

                            clc; clear;                             

%% definitions of the basic parameters: 

Ts=0.001;       % Sampling time 

Kx=1.9920e-005; % sliding rod encoder          m / increment 

Ka=3.9277e-004; % pendulum angular encoder     rad/increment 

Kv_f=1/4.2;     % Hardware gain                v/N 

m1=0.213; 
m2=1.785; 
m0=0.1204; 
lo=0.33; 
lc=0.028; 
g=9.81; 

 

%% System [x  x. theta theta.]’ 

A=[0 1 0 0;-19 0 14.45 0;0 0 0 1;58 0 -14.1 0]; %system matrix 
B=[0 7.75 0 -9.2]';                             %input matrix 
C=[0 0 1 0]; 
 

 

%% Controller 
F=eye(4)+Ts*A;                                                              
G=Ts*B;                                                                     
Fe=[F zeros(4,1);-C eye(1)];                                                
Ge=[G;0];                                                                   
Q=eye(4)*100;                                                               
R=1;                                                                        
Q(1,1)=10000;                                                               
Q(3,3)=10000;                                                               

                                                             
kk=dlqr(F,G,Q,R)                                                          
Pe=eig(Fe-Ge*[kk -0.1])    

  
K=place(Fe,Ge,Pe') 
k=K(1,:,4) 

kn=K(5)  
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A.6 microcontroller c code 

/*LCD CONNECTION  

LCD 1- ARDU GND + POTENTIOMETER 

LCD 2- ARDU 5V + POTENTIOMETER 

LCD 3- POTENTIOMETER MIDDLE 

LCD 4- ARDU PIN 34 

LCD 5- ARDU GND  + POTENTIOMETER 

LCD 6- ARDU PIN 36 

LCD 7/8/9/10 - NOT USED 

LCD 11- ARDU PIN 44 

LCD 12- ARDU PIN 42 

LCD 13- ARDU PIN 40 

LCD 14- ARDU PIN 38 

LCD 15- ARDU 5V 

LCD 16- ARDU GND 

*/ 

#include <LiquidCrystal.h> 

#include <Encoder.h> 

#include <TimerOne.h> 

// Red +5v 

// Black Gnd 

Encoder Rod(2, 3); 

// A1: white 

// B1: yellow 

Encoder Slider(18, 19); 

// A2: blue 

// B2: green 

 

LiquidCrystal lcd(34, 36, 44, 42, 40, 38); 

 

int cw=9;      //   + |\ 

int ccw=10;    //   - |/ 

 

int Ts = 4000;  

 

 

void setup() {  

 

  pinMode(cw, OUTPUT); 

  pinMode(ccw , OUTPUT); 

   

  Timer1.initialize(Ts); // set a timer of length 100000     

microseconds (or 0.1 sec - or 10Hz => the led will blink 5 times, 5 

cycles of on-and-off, per second) 

  Timer1.attachInterrupt( timerIsr ); // attach the service routine 

here 

 

  // set up the LCD's number of columns and rows:  

  lcd.begin(16, 2);  

  lcd.print("InvertedPendulum"); 

 

} 

 

float oldRod  = 0.0; 

float oldSlider = 0.0; 

float Rod_Speed=0.0; 

float Slider_Speed=0.0; 
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float u=0.0,F=0.0; 

float newRod=0.0, newSlider=0.0; 

float sensorValue = analogRead(A0); 

float r=0.0 n=0.0, np=0.0; 

 

 

void loop() { 

   

   

  if(u >= 0.0){ 

  analogWrite(ccw, 0); 

  analogWrite(cw, u); 

   

  } 

  if(u < 0.0) { 

  analogWrite(cw, 0); 

  analogWrite(ccw, 0.0-u); 

   

  } 

  lcd.setCursor(0, 1); 

  lcd.print(r*180*7/22); 

   

  lcd.setCursor(10, 1); 

  lcd.print(newRod*180*7/22); 

  } 

              

              

              

 void timerIsr() 

{ 

  r = (((float)(analogRead(A10)))-512.0)*( 0.4363/512.0); 

  newRod = ((float)(Rod.read()))/2546.0; 

  newSlider = ((float)(Slider.read()))/50200.0; 

  Rod_Speed=(newRod-oldRod)/(0.004); 

  Slider_Speed=(newSlider-oldSlider)/(0.004); 

  oldRod=newRod; 

  oldSlider=newSlider; 

   

  n=r-newRod+np; 

  F=np*0.095-newSlider*390.7318-Slider_Speed*75.4469-newRod*56.181-    

Rod_Speed*35.896; 

  u=(F/4.2)*(255/5); 

  np=n; 

} 
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