Palestine Polytechnic University

College of Engineering \& Technology
Mechanical Engineering Department

Project
 Modeling and Control of Articulated Hydraulic Manipulator

Project Team

Shadi Daana Saed Hirbawi Khalid Asha

Project Supervisor
Dr.Yousif Swati

Hebron-Palestine

PROJECT NAME

Modeling and Control of Articulated Hydraulic Manipulator

Project Team

Saed S A Hirbawi

Shadi A Y Da'ana

Khalid H M Asha

According to the directions of the project supervisor and by the agreement of all examination committee members, this project is presented to the department of Mechanical Engineering at College of Engineering and Technology, for partial fulfillment Bachelor of engineering degree requirements.

Supervisor Signature

Committee Member Signature

Department Head Signature

Acknowledgment

We would to acknowledge and extend our heartfelt gratitude to the following persons who have made the completion of this project possible:

To God, who made all things possible
To our advisor, Dr. Yousif Swati, for his vital encouragement and support
To Mr. Majdi Zalloum for the help and inspiration he extended
To Mr. Sadi Hirbawi, for his understanding and assistance
To all mechanical department members and staff
Most especially to our families and friends

Abstract

The articulated hydraulic manipulator is a vertical articulated robot with three revolute joints with gripper attached; the robot has three degree of freedom. Each joint in this robot is driven by hydraulic actuator, this work concerns modeling and control of it, this robot belongs to mechatronics laboratory in Palestine Polytechnic University (PPU), it is a dead robot, and making it alive is the aim of this project.

In order to make this robot alive, many challenging problem will be covered in this project, these problems are kinematics, dynamics, actuation, sensing, motion planning, control, programming, and task planning problems.

Table of Content

Title I
Acknowledgment II
Abstract III
Table of Contents IV
List of Tables VI
List of figures VII
Chapter one: Introduction 1
1.1 Robotics overview 1
1.2 Robot Mechanical Structure 1
1.3 Robotic system 1
1.4 Classification of robots 2
1.5 Project Overview 3
Chapter Two: Kinematics 5
2.1 Overview 5
2.2 Position and Orientation Representation 5
2.2.1 Position and displacement 6
2.2.2 Orientation and Rotation 6
2.2.3 Homogeneous Transformation 7
2.3 Forward Kinematics 8
2.4 Inverse Kinematics 11
2.5 The workspace 14
Chapter Three: Trajectory generation 15
3.1 Introduction 15
3.2 Joint Space Trajectories 16
3.3 Point-to-point motion 16
3.3.1 Cubic Polynomials 17
3.3.2 Linear Segment with Parabolic Blends (LSPB) 21
Chapter Four : Dynamic modeling 27
4.1 Introduction 27
4.2 Equation of motion 27
4.3 Testing model 33
Chapter Five: Control Design 39
5.1 Introduction 39
5.2 System Architecture 39
5.2.1 Physical description 39
5.2.2 Functional description 40
5.2.3 Hydraulic description 41
5.2.4 Electrical description 42
5.2.5 Electrical circuit for open-loop control 42
5.3 Closed-loop control 44
5.3.1 Feedback sensors 46
5.3.2 Potentiometer Calibration 46
5.3.3 xPC Target 49
5.3.4 Controllers and software 50
5.3.4.1 Joint space control 50
5.3.4.2 Independent joint control 50
5.3.4.3 Least norm solution 51
Chapter Six: Experimentations and Results 55
6.1 Introduction 55
6.2 Response testing of control system 55
6.3 Accuracy and Repeatability Testing 57
6.4 Conclusion 58
6.5 Future work 59
References 60
Appendices 61

List of Tables

Table (2.1) DH parameter of the articulated manipulator 10
Table (2.2) The axis range for each joint 14
Table (6.1) The error for each measured values 57

List of Figures

Figure 1.1 Robotic system 2
Figure 1.2 Articulated manipulator 3
Figure 1.3 Articulated hydraulic manipulator at PPU lab 4
Figure 2.1 Locating an object in position and orientation 6
Figure 2.2 The symbolic representation of articulated manipulator 8
Figure 2.3 Coordunate frame satisfying assumption DH1 and DH2 9
Figure 2.4 Coordinate frames attached to articulated manipulator 10
Figure 2.5 Represent point Oc in the base frame 12
Figure 2.6 Projection of Oc onto $\mathrm{xO}-\mathrm{yO}$ plane 12
Figure 2.7 Projection of Oc onto the plane Formed by links 2 and 3 13
Figure 2.8 Elbow-down and elbow-up position 14
Figure 2.9 workspace of articulated manipulator 14
Figure 3.1 (a) Cubic polynomial trajectory
(b) Velocity profile for cubic polynomial trajectory 18
(c) Acceleration profile Cubic polynomial
Figure 3.2 End-effector path of cubic polynomial trajectory for 19 articulated manipulator
Figure 3.3 Cubic polynomial trajectory for articulated manipulator 19
Figure 3.4 Velocity profile for cubic polynomial trajectory for 20 articulated manipulator
Figure 3.5 Acceleration profile for cubic polynomial trajectory for 20 articulated manipulator
Figure 3.6 Torque curves for each joint for cubic polynomial 20 trajectory
Figure 3.7 Linear segment with parabolic blends 21
Figure 3.8 (a) LSPB trajectory
(b) Velocity profile for LSPB trajectory 23(c) Acceleration profile for LSPB trajectory
Figure 3.9 End-effector path of LSPB trajectory for articulated 24 manipulator
Figure 3.10 LSPB for articulated manipulator 24
Figure 3.11 Velocity profile for LSPB trajectory for articulated 25 manipulator
Figure 3.12 Acceleration profile for LSPB trajectory for articulated 25 manipulator
Figure 3.13 Torque curves for each joint for LSPB trajectory 25
Figure 4.1 3DOF Articulated Manipulator 28
Figure 4.2 Simulation for case 1 (a) Joint 1 (b) Joint 2 (c) Joint 3 34
Figure 4.3 Simulation for case 2 (a) Joint 1 (b) Joint 2 (c) Joint 3 35
Figure 4.4 Simulation for case 3(a) Joint 1 (b) Joint 2 (c) Joint 3 36
Figure 4.5 The corresponding torque for case 4 37
(c) Joint 3
Figure 4.6 The torque for each joint for case 4 38
Figure 5.1 The robot control system 39
Figure 5.2 Hydraulic rotary actuator 40
Figure 5.3 Hydraulic schematic of the work circuit 41
Figure 5.4 A simplified electrical circuit for 220 volt AC power 42 supply
Figure 5.5 Electrical circuit for open-loop control. 43
Figure 5.6 Regulator circuit 44
Figure 5.7 National Instrument 6024E DAQ Card 45
Figure 5.8 The interfacing circuit between digital outputs from the 45 DAQ card and the solenoid valve relays
Figure 5.9 Manually and automatically control circuit of the 46 proportional valve
Figure 5.10 Relation between voltage and angle for the first link 47
Figure 5.11 Relation between voltage and angle for the second link 48
Figure 5.12 Relation between voltage and angle for the third link 49
Figure 5.13 Generic concept of joint space control 50
Figure 5.14 Independent joint control scheme 51
Figure 5.15 The principle of norm controller 52
Figure 5.16 Simulink model for the robot 53
Figure 6.1 Step response for the first joint 55
Figure 6.2 Step response for the second joint 56
Figure 6.3 Step response for the third joint 56
Figure 6.4 Repeatability and Accuracy Test for the robot 58

Chapter 1
 Introduction

1.1 Robotics overview

Robotics is concerned with the study of those machines that can replace human beings in the execution of a task, as regards both physical activity and decision making.

At the present time, the industrial robots have a significant impact on the modern industry, such that the robot can improve the quality of life by freeing workers from dirty, boring, dangerous and heavy labor.

In this text the term robot will mean a computer controlled industrial manipulator. This type of robot is essentially a mechanical arm operating under computer control.

An official definition of such a robot comes from the Robot Institute of America (RIA): A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.

1.2 Robot Mechanical Structure

The key feature of robot is its mechanical structure. Robots can be classified as those with a fixed base "Robot manipulators", and those with a mobile base "mobile robots", in our case we have a robot with a fixed base.

The mechanical structure of a robot manipulator consist of rigid link connect by joint to form kinematic chain, the joint can be (rotary) revolute or (linear) prismatic. In the case of revolute joint, this joint allows relative rotation between two links, these displacement are called joint angles. While prismatic joint allows a linear relative motion between two links, which called the joint offset.

To construct a manipulator, the first link in a chain is connected base and the last link is connected to the end-effector, this end-effector can be anything from a welding device to a mechanical hand used to manipulate the environment. The kinematic chain of manipulator is characterized by number of degree of freedom (DOF).

1.3 Robotic system

A robot manipulator should be viewed as more than just a series of mechanical linkages. The mechanical arm is just one component in an overall Robotic System, illustrated in Figure (1.1), which consists of the arm, external power source, end-of-
arm tooling, external and internal sensors, computer interface, and control computer. Even the programmed software should be considered as an integral part of the overall system, since the manner in which the robot is programmed and controlled can have a major impact on its performance and subsequent range of applications. [1]

Figure 1.1: Robotic system

1.4 Classification of robots

Robotic manipulators can be classified by several criteria, such as their power source, geometry, application area, or their method of control. Such classification is useful primarily in order to determine which robot is right for a given task. For example, a hydraulic robot would not be suitable for food handling or clean room applications. [1]

Power Source: Most robots are electrically, hydraulically, or pneumatically powered. The advantage of use hydraulic power is that the hydraulic actuators are unrivaled in their speed of response and torque producing capability. Therefore hydraulic robots are used primarily for lifting heavy loads.

Application Area: Robots are often classified by application into assembly and non-assembly robots.

Method of Control: Robots are classified by control method into servo and nonservo robots.

Geometry: Robot manipulators are usually classified kinematically on the basis of the first three joints of the arm. The majority of these manipulators fall into one of five geometric types: articulated (RRR), spherical (RRP), SCARA (RRP), cylindrical (RPP), or Cartesian (PPP).

The structure of articulated manipulator is very flexible and has the ability to reach over obstructions. It can generally achieve any position and orientation within the working envelope. As such articulate robots are used for a wide range of applications including paint spraying, arc and spot welding, machine tending, etc. For examples, the articulate robot allows the welding torch to be manipulated in almost the same fashion as a human being would manipulate it. The torch angle and travel angle can be changed to make good quality welds in all positions. Articulated robots also allow the arc to weld in areas that are difficult to reach. In addition, articulate robots are compact and provide the largest work envelope relative to their size. The articulated manipulator is shown in Figure 1.2.

Figure 1.2: Articulated manipulator

1.5 Project Overview

This work concerns modeling and control of an articulated hydraulic manipulator that has three degree of freedom. (Figure 1.3). Each joint in this robot is driven by hydraulic actuator. This robot belongs to mechatronics laboratory in Palestine Polytechnic University (PPU), it is a dead robot, and making it alive is the aim of this project.

In order to make this robot alive, many challenging problem will be covered in this project, these problems are kinematics, dynamics, actuation, sensing, motion planning, control, programming, and task planning problems.

Figure 1.3: Articulated hydraulic manipulator at PPU Lab.

We now provide a brief synopsis of each chapter; Chapter 2 presents solutions to the forward kinematics problem using Denevativ-Haetenberg convention and to the inverse kinematics problem using the geometric approach.

Chapter 3 is concerned with describing motion of the manipulator in terms of trajectories through space.

Chapter 4 presents the dynamic equations of motion which provide the relationships between actuation and contact forces acting on robot mechanisms.

In chapter 5 we study methods of controlling a manipulator (usually with a digital computer) so that it will faithfully track a desired position trajectory through space.

And the remaining chapters concern about experimentation and simulation of the project.

Chapter 2
 Kinematics

2.1 Overview

The problem of kinematics is to describe motion without regard to the force which causes it. Within the science of kinematics one studies the position, velocity, acceleration, and all higher order derivatives of the position variables (with respect time or any other variables(s)). Hence, the study of the kinematics of manipulators refers to all the geometrical and time-based properties of the motion. [2]

In this chapter we consider the forward and inverse kinematics for the articulated manipulator, first we consider the forward kinematics problem which is to determine the position and orientation of the end-effector by given the values of joint variables of the robot. Then we solve the inverse kinematics problem which is to determine the values of the joint variables given the end-effector's position and orientation.

To perform the kinematics analysis, we must establish various coordinate frames to represent the positions and orientations of rigid body objects, and with transformations among these coordinate frames.

2.2 Position and Orientation Representation

A rigid body (robot link) is completely described in space by its position and orientation with respect to a reference frame. A coordinate reference frame i consists of an origin, denoted $O i$, and a triad of mutually orthogonal basis vectors, denoted (\boldsymbol{x}_{i} $y_{i} z_{i}$), that are all fixed within a particular body. The pose of a body will always be expressed relative to some other body, so it can be expressed as the pose of one coordinate frame relative to another. Similarly, rigid-body displacements can be expressed as displacements between two coordinate frames, one of which may be referred to as moving, while the other may be referred to as fixed. This indicates that the observer is located in a stationary position within the fixed reference frame, not that there exists any absolutely fixed frame. [3]

2.2.1 Position and displacement

The position of the origin of coordinate frame i relative to coordinate frame j can be denoted by the 3×1 vector

$$
{ }^{j} p_{i}=\left(\begin{array}{l}
{ }^{j} p_{i} \tag{2.1}\\
{ }_{i}{ }^{j} p_{i}^{y} \\
{ }^{j} p_{i}^{z}
\end{array}\right)
$$

The components of this vector are the Cartesian coordinates of O_{i} in the j frame, which are the projections of the vector ${ }^{j} \boldsymbol{p}_{i}$ onto the corresponding axes. Figure (2.1)

A translation is a displacement in which no point in the rigid body remains in its initial position and all straight lines in the rigid body remain parallel to their initial orientations. The translation of a body in space can be represented by the combination of its positions prior to and following the translation. Conversely, the position of a body can be represented as a translation that takes the body from a position in which the coordinate frame fixed to the body coincides with the fixed coordinate frame to the current position in which the two fames are not coincident. Thus, any representation of position can be used to create a representation of displacement, and vice versa. [3]

2.2.2 Orientation and Rotation

In order to describe the orientation of a body we will attach a coordinate frame to the body and then give a description of this coordinate system relative to the reference frame. In Figure 2.1 coordinate frame $\left\{x_{i} y_{i} z_{i}\right\}$ has been attached to the body in a known way. A description of frame $\left\{x_{i} y_{i} z_{i}\right\}$ relative to frame $\left\{x_{j} y_{j} z_{j}\right\}$ now suffices to give the orientation of the body. Thus, positions of points are described with vectors and orientations of bodies are described with an attached coordinate frame. One way to describe the body-attached coordinate frame, $\left\{x_{i} y_{i} z_{i}\right\}$, is to write the unit vectors of its three principal axes in terms of the coordinate frame $\left\{x_{j} y_{j} z_{j}\right\}$. [4]

Figure 2.1: Locating an object in position and orientation

Rotation Matrix

The orientation of coordinate frame i relative to coordinate frame j can be denoted by expressing the basis vectors $\left(x_{i} y_{i} z_{i}\right)$ in terms of the basis vectors $\left(x_{j} y_{j} z_{j}\right)$. This yields (${ }^{j} x_{i}{ }^{j} y_{i}{ }^{j} z_{i}$), which when written together as a 3×3 matrix is known as the rotation matrix. The components of ${ }^{j} R_{i}$ are the dot products of basis vectors of the two coordinate frames.

$$
{ }^{j} R_{i}=\left(\begin{array}{ccc}
x_{i} \cdot x_{j} & y_{i} \cdot x_{j} & z_{i} \cdot x_{j} \tag{2.2}\\
x_{i} \cdot y_{j} & y_{i} \cdot y_{j} & z_{i} \cdot y_{j} \\
x_{i} \cdot z_{j} & y_{i} \cdot z_{j} & z_{i} \cdot z_{j}
\end{array}\right)
$$

Because the basis vectors are unit vectors and the dot product of any two unit vectors is the cosine of the angle between them, the components are commonly referred to as direction cosines. Thus, the columns of ${ }^{j} \boldsymbol{R}_{i}$ specify the direction cosines of the coordinate axis of $\left(x_{i} y_{i} z_{i}\right)$ relative to coordinate axis of $\left(x_{j} y_{j} z_{j}\right)$. [3]

The set of $n \times n$ rotation matrices is known as the special orthogonal of order n, and is denoted by $S O(n)$.for any $R \in S O(3)$ the following properties hold

- $R^{T}=R^{-1}$
- The columns (and therefore the rows) of R are mutually orthogonal
- Each column (and therefore each row) of R is a unit vector
- $\operatorname{det} R=1$

This explains why rotation matrix ${ }^{j} R_{i}$ contains nine elements, while only three parameters are required to define the orientation of a body in space.

Rotation matrices are combined through simple matrix multiplication such that the orientation of frame i relative to frame k can be expressed as
${ }^{k} R_{i}={ }^{k} R_{j}{ }^{j} R_{i}$

2.2.3 Homogeneous Transformation

Homogeneous transformations combine rotation and translation onto one matrix. A homogeneous transformation has the form

$$
\mathrm{H}=\left(\begin{array}{cc}
R & d \tag{2.4}\\
0 & 1
\end{array}\right), R \in S O(3), d \epsilon R^{3}
$$

Homogeneous transformation matrices can be used to perform coordinate transformations between frames that differ in orientation and translation. [1]

2.3 Forward Kinematics

Before we begin to solve the forward kinematics problem, the numbers must be assigned to joints and links of robot manipulator. Thus, a robot manipulator with n joint will have $n+l$ links, since each joint connects two links. We number the joints from 1 to n , and we number the links from 0 to n, starting from the base. By this convention, joint i connect link $i-1$ to link i. We will consider the location of joint i to be fixed with respect link $i-1$. When joint I is actuated, link i moves. Therefore, in the articulated robot which we study, link 0 (the first link) is fixed, and does not move when the joints are actuated. Joint 1 called waist, joint 2 called shoulder, and joint 3 called elbow as shown in Figure 2.2.

Figure 2.2: The symbolic representation of articulated manipulator
To perform kinematic analysis, we attach a coordinate frame rigidly to each link, we attach $o_{i} x_{i} y_{i} z_{i}$ to link i, this mean that, whatever motion the robot executes, the coordinate of each point on link i are constant when expressed in $i^{\text {th }}$ coordinate frame. We will assign coordinate frame that satisfy the constraints of DenativeHarternberg convention.

The Denative-Hartenberg Convention

A commonly used convention for selecting frames of reference in robotic is the Denative-Hartenberg Convention. In this convention, each homogeneous transformation A_{i} is represented as a product of four basic transformations
$A_{i}=$ Rot $_{z, \theta i}$ Trans $_{z, d i}$ Trans $_{x, a i}$ Rot $_{x, a i}$

$$
A_{i}=\left(\begin{array}{cccc}
c_{\theta i} & -s_{\theta i} c_{\alpha i} & s_{\theta i} s_{\alpha i} & a_{i} c_{\theta i} \tag{2.5}\\
s_{\theta i} & c_{\theta i} c_{a i} & -c_{\theta i} s_{a i} & a_{i} s_{\theta i} \\
0 & s_{\alpha i} & c_{\alpha i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Where the four quantities $\theta_{i}, a_{i}, d_{i}, \alpha_{i}$ are parameters associated with link i and joint i. This shown in Figure 2.3. [1]

The attach frames according to Denative-Hartenberg Convention having the following feature.
(DH1) The axis x_{i} is perpendicular to the axis z_{i-1}.
(DH2) The axis x_{i} intersects the axis z_{i-1}.
These two properties are illustrated in Figure 2.3

Figure 2.3: Coordinate frames satisfying assumptions DH1 and DH2
The transformation is then described by the following four parameters known as DH Parameters:
a. is the distance between the axes z_{i} and z_{i+1}, and its measured along the axis x_{i+1}. $\alpha_{\text {. }}$ is the angel between the axes z_{i} and z_{i+1}, measured in a plane normal to x_{i+1}.
d. is the distance from the origin o_{i} to the intersection of the x_{i+1} axis with z_{i} measured along the z_{i} axis.
θ - is the angel from x_{i} to x_{i+1} measured in a plane normal to z_{i}.

We use the shorthand notation $s_{\theta i}=\sin \theta_{i}, c_{\theta i}=\cos \theta_{i}, s_{\alpha i}=\sin \alpha_{i}, s_{\alpha i}=\sin \alpha_{i}$ where $i=1,2,3, .$.

The articulated manipulator is represented symbolically with attached frames by Figure 2.4. We choose the coordinate frames that satisfy DH convention.

Figure 2.4 Coordinate frames attached to articulated manipulator
The DH parameters for the articulated manipulator are shown in Table2.1.

Link	a_{i}	α_{i}	α_{i}	θ_{i}
1	0	$\pi / 2$	α_{1}	θ_{l}
2	a_{2}	0	0	θ_{2}
3	a_{3}	0	0	θ_{3}

Table 2.1: DH parameter of the articulated manipulator
The A-matrices are determined from Equation (2.5) as
$A_{I}=\left(\begin{array}{cccc}c_{1} & 0 & s_{l} & 0 \\ s_{l} & 0 & -c_{l} & 0 \\ 0 & 1 & 0 & d_{l} \\ 0 & 0 & 0 & 1\end{array}\right)$
$A_{2}=\left(\begin{array}{cccc}c_{2} & -s_{2} & 0 & a_{2} c_{2} \\ s_{2} & c_{2} & 0 & a_{2} s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$A_{3}=\left(\begin{array}{cccc}c_{3} & -s_{3} & 0 & a_{3} c_{3} \\ S_{3} & c_{3} & 0 & a_{3} s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

The homogeneous transformation "T-matrices" are thus given by

$$
\begin{align*}
& T_{1}^{o}=A_{l} \\
& T_{2}^{o}=A_{1} A_{2}=\left(\begin{array}{cccc}
c_{1} c_{2} & -c_{1} s_{2} & s_{1} & a_{2} c_{1} c_{2} \\
s_{1} c_{2} & s_{1} s_{2} & -c_{1} & a_{2} s_{1} c_{2} \\
s_{2} & c_{1} & 0 & a_{2} s_{2}+d_{1} \\
0 & 0 & 0 & 1
\end{array}\right) \tag{2.7}\\
& T_{3}^{o}=A_{1} A_{2} A_{3}=\left(\begin{array}{cccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} & a_{3} c_{1} c_{23}+a_{2} c_{1} c_{2} \\
s_{1} c_{23} & s_{1} s_{23} & -c_{1} & a_{3} s_{1} c_{23}+a_{2} s_{1} c_{2} \\
s_{12} & c_{23} & 0 & a_{3} s_{23}+a_{2} s_{2}+d_{1} \\
0 & 0 & 0 & 1
\end{array}\right)
\end{align*}
$$

Notice that the first two entries of the last column of $T_{3}{ }^{o}$ are the x, y, and z components of the origin O_{3} in the base frame; that is,

$$
\begin{align*}
& x=a_{3} c_{1} c_{23}+a_{2} c_{1} c_{2} \\
& y=a_{33} s_{1} c_{23}+a_{2} s_{1} c_{2} \tag{2.8}\\
& z=a_{3} s_{23}+a_{2} s_{2}+d_{1}
\end{align*}
$$

are the coordinate of the end effector in the base frame. The rotational part of $T_{3}{ }^{\circ}$ gives the orientation of the frame O_{3} relative to the base frame.

2.4 Inverse Kinematics

The problem of inverse kinematics is to determine the end effector's position and orientation in terms of joint variables. We used a geometric approach to find $\theta_{1}, \theta_{2}, \theta_{3}$ corresponding to given position of the end effector "which represent by point O_{c} ". The components of O_{c} denoted by $\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}$, as shown in Figure 2.5.

We use the shorthand notation $s_{k}=\sin \theta_{k}, c_{k}=\cos \theta_{k}, s_{i j}=\sin \left(\theta_{i+} \theta_{j}\right), c_{i j}=\cos \left(\theta_{i+} \theta_{j}\right)$ where: $k, i, j=1,2,3$ for trigonometric function.

Figure 2.5: Represent point O_{c} in the base frame
To find θ_{1}, we project O_{c} in the $x_{0}-y_{0}$ plane as shown in Figure2.6. We see from this projection that

$$
\begin{equation*}
\theta_{1}=\operatorname{Atan} 2\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}\right) * \tag{2.9}
\end{equation*}
$$

Figure 2.6: Projection of O_{c} onto $\mathrm{x}_{0}-\mathrm{y}_{0}$ plane

Atan2 (x,y) denotes the two argument arctangent function

To find the angels θ_{2}, θ_{3} for the articulated manipulator given θ_{1}, we consider the plane formed by second and third links as shown in Figure2.7. Since the motion of second and third link is planer.

Figure 2.7: Projection of O_{c} onto the plane formed by links 2 and 3
θ_{2} is given as

$$
\begin{align*}
\theta_{2} & =\operatorname{Atan} 2(\gamma, s)-\operatorname{Atan} 2\left(a_{2}+a_{3} c_{3}, a 3 s 3\right) \tag{2.10}\\
& =\operatorname{Atan} 2\left(\sqrt{x_{c}^{2}+y_{c}^{2}-d^{2}},\left(z_{c}-d_{1}\right)\right)-\operatorname{Atan} 2\left(a_{2}+a_{3} c_{3}, a 3 s 3\right)
\end{align*}
$$

Using the law of cosines we see that the angle θ_{3} is given by

$$
\begin{align*}
& \operatorname{Cos} \theta_{3}=\frac{r^{2}+s^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}} \\
& =\frac{x_{c}^{2}+y_{c}^{2}-d^{2}+\left(z_{c}-d_{1}\right)-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}=D \tag{2.11}
\end{align*}
$$

Since $\gamma^{2}=x_{c}^{2}+y_{c}^{2}-d^{2}$ and $s=\left(z_{c}-d_{1}\right)$. Hence, θ_{3} is given by

$$
\theta_{3}=\operatorname{Atan} 2\left(\mathrm{D}, \pm \sqrt{1-D^{2}}\right)
$$

The two solutions for θ_{3} correspond to the elbow-down position and elbow-up position, respectively, as shown in Figure 2.8.

Figure 2.8: Elbow-down and elbow-up position

2.5 The Workspace

The workspace of manipulator is the total volume swept out by the end effector as the manipulator executes all possible motions. The workspace is constrained by the geometry of the manipulator as well as mechanical constrains on the joints.[1] The mechanical limits in the articulated robot limit the motion of revolute joint to the value that appears in Table2.2. These values are measured experimentally.

Axis Movement	Axis Range
Axis1: Base rotation	$-67<\theta_{1}<113$
Axis2: Shoulder rotation	$-45<\theta_{2}<45$
Axis: Elbow rotation	$-135<\theta_{3}<-45$

Table 2.2: The axis range for each joint
The workspace of articulated manipulator is shown in Figure 2.9.

Figure 2.9: workspace of articulated manipulator

Chapter 3 Trajectory generation

3.1 Introduction

The basic problem of this chapter is to move the manipulator arm from an initial position to some desired final position with respect to reference frame. So what we want to plan in this chapter is the trajectory; the trajectory refers to a time history of position, velocity and acceleration for each of the DOF; Planning each of the DOF independently and then assume that the motion is realizable as hole.

This problem includes the human interface problem of how we wish to specify a trajectory or path through space. Thus the user should not write down complicated functions of space and time to specify the task. Rather, we must allow the capability of specifying trajectories with simple descriptions of the desired motion. [2]

When we dealing with trajectory there are many constrains we expect to see in solving this problem, these constrains could be:

1. Spatial constrains, if we have an obstacle in the environment that we don't want to collide with. We will neglected this constrain in our project and assume that there is no obstacle in the workspace of the robot arm.
2. Time constrain, if the motion has to be done in particular time.
3. Smoothness, we want the manipulator to have a smooth motion because that uses less energy and easy to control.

The solution of trajectory problem can be considered in two main spaces, joint space and Cartesian space. In joint space schemes it's easy to go through point, there is no problem with singularity, and need less calculation. In other hand, the actual endeffector path in this approach can't be predicted, and can't follow straight line.

The trajectory planning in Cartesian space may involve problems difficult to solve. However, Cartesian schemes are more computationally expensive to execute since at run time, inverse kinematics must be solved at the path update rate. Other major problem that we may face in Cartesian space scheme is singularity; if there are some points on the path that the manipulator should follow are in singular configuration. But in this scheme we can specify the shape of the path between path points.

In our approach we will use joint space schemes to solve the trajectory planning problem of articulated manipulator; we will do that to avoid dealing with the complexity of Cartesian space schemes, because we just want to move the endeffector from initial position to final position in smooth way without regard to the path that going on.

3.2 Joint Space Trajectories

The joint space scheme is a method of path generation in which the path shapes (in space and in time) are describe in terms of function of joint angles.

Each path joint is usually specified in terms of a desired position and orientation of the tool frame, relative to the base frame, each of these points is converted into a set of desired joint angles by application of the inverse kinematics. Then a smooth function is found for each of the n joints to describe the motion between the initial and final point.

Through the remaining of this chapter we interest in establishing formulas for the angles for each DOF as a function of time in the case that the initial and final points on the path and traveling time are specified (point-to-point).

3.3 Point-to-point motion

In point-to-point motion, the manipulator has to move from an initial to final configuration in a given time t_{f}. In this case, the actual end-effector path is of no concern. In some cases, there may be constrains on the trajectory. Nevertheless, it is easy to realize that there are infinitely many trajectories that will satisfy a finite number of constrains on the end points. It is common practice therefore to choose trajectories from a finitely parameterizable family, for example, polynomials of degree n, where n depends on the number of constrains to be satisfied. [1] This is the approach that we will take in this project.

In our approach we consider two functions to create a trajectory for point-to-point motion, Cubic Polynomial and Linear Segment with Parabolic Blend, these smooth functions then substitute onto the dynamics equation of the robot to see which the function produces less torque and thus less power consumption.

3.3.1 Cubic Polynomials

Consider the problem of moving the end-effector from its initial position to final position in a particular time. The set of goal joint angles can be calculated using the inverse kinematics. The initial position of the manipulator is also known in the form of a set of joint angles. To make a smooth motion between the initial and final position of manipulator, we wish first to generate a polynomial joint trajectory between two configurations, and we wish specify the start and end velocities for the trajectory. This gives four constrains that the trajectory must satisfy. Two constrains on the function's value come from the selection of initial and final values:

$$
\begin{align*}
& \theta(0)=\theta_{0} \tag{3.1}\\
& \theta\left(t_{f}\right)=\theta_{f}
\end{align*}
$$

The other constrains come from the velocity. If we need the function to be continuous in velocity, the initial and final velocity must be zero:

$$
\begin{align*}
\dot{\theta}(0) & =0 \tag{3.2}\\
\dot{\theta}\left(t_{f}\right) & =0
\end{align*}
$$

These four constrains can be satisfied by a polynomial of at least third degree. Since a cubic polynomial has four independent coefficients, it can be made to satisfy these constrains. A cubic has the form

$$
\begin{equation*}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \tag{3.3}
\end{equation*}
$$

and so the joint velocity and acceleration is given as

$$
\begin{align*}
& \dot{\theta}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \tag{3.4}\\
& \ddot{\theta}(t)=2 a_{2}+6 a_{3} t
\end{align*}
$$

Combine the equation (3.3) and (3.4) with the four constraints yields four equation in four unknowns:

$$
\begin{align*}
& \theta_{0}=a_{0} \\
& \theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \tag{3.5}
\end{align*}
$$

$$
\begin{aligned}
& 0=a_{0} \\
& 0=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{aligned}
$$

Solving these equations for the a_{i} we obtain

$$
\begin{align*}
& a_{0}=\theta_{0} \\
& a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right) \tag{3.6}\\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
\end{align*}
$$

Using (3.6) we can calculate the cubic polynomial that connects any initial joint angle position with any desired final position. This solution is for the case when the joint starts and finishes at zero velocity. Figures 3.1 Show cubic polynomial trajectory.

Figure 3.1: (a) Cubic polynomial trajectory. (b) Velocity profile for cubic polynomial trajectory. (c) Acceleration profile for cubic polynomial trajectory.

When we apply this method to the articulated manipulator; the end-effector is moving in a smooth path as shown in Figure 3.2. This is a special case when we move the end-effector from point $(0,0,0)$ to point $(20,15,20)$ in 5 sec , this shape will be appeared when we moving the manipulator in various points in space. The corresponding trajectory for each joint is shown in Figure 3.3. While Figure 3.4 and

Figure 3.5 show the velocity profile and acceleration profile for cubic polynomial trajectory for each joint. Figure 3.6 shows the corresponding torque for each joint.*

Figure 3.2: End-effector path for cubic polynomial trajectory for articulated manipulator

Figure 3.3: Cubic polynomial trajectory for articulated manipulator

These Figures come from the execution of Matlab script for LSPB trajectory and Dynamics for LSPB for articulated manipulator in Appendix A

Figure 3.4: Velocity profile for cubic polynomial trajectory for articulated manipulator

Joint 1

Joint 3

Figure 3.5: Acceleration profile for cubic polynomial trajectory for articulated manipulator

Figure 3.6: Torque curves for each joint for cubic polynomial trajectory

3.3.2 Linear Segment with Parabolic Blends (LSPB)

Another way to generate suitable joint space trajectories is by using so called Linear Segment with Parabolic Blends (LSPB). This type of trajectory has a Trapezoidal Velocity Profile.

This is a linear function but we add a parabolic blend region at the beginning and end of the path. These blend regions create a smooth path with continuous position and velocity. Thus, during the blend portion of the trajectory, constant acceleration is used to change velocity smoothly. Figure 3.3 shows a simple path constructed in this way.

In order to construct this single segment we will assume that the parabolic blends both have the same duration, and therefore the same constant acceleration is used during both blends.

Figure 3.7: Linear segment with parabolic blends
In order to construct this single segment we will assume that the parabolic blends have the same duration, and therefore the same constant acceleration is used during both blends. As indicated in Figure 3.7, there are many solutions to the problem, but note that the answer is always symmetric about the halfway point in time, t_{h}, and about the halfway point in position, θ_{h}. The velocity at the end of the blend region must equal the velocity of the linear section, and so we have

$$
\begin{equation*}
\ddot{\theta}=\frac{\theta_{h}-\theta_{b}}{t_{h}-t_{b}} \tag{3.7}
\end{equation*}
$$

Where θ_{b} is the value of θ at the end of the blend region, and $\ddot{\theta}$ is the acceleration acting during the blend region. The value of θ_{b} is given by

$$
\begin{equation*}
\theta_{b}=\theta_{0}+\frac{1}{2} \ddot{\theta} t_{b}^{2} \tag{3.8}
\end{equation*}
$$

Combining (3.7) and (3.8) and $t=2 t_{h}$, we get

$$
\begin{equation*}
\ddot{\theta} t_{b}^{2}-\ddot{\theta} t t_{b}+\left(\theta_{f}-\theta_{0}\right)=0 \tag{3.9}
\end{equation*}
$$

where t is the desired duration of the motion. Given any θ_{f}, θ_{0}, and t. Usually, (3.9) solved for the corresponding t_{b}, and the acceleration $\ddot{\theta}$ is chosen. The choice of acceleration must be sufficiently high, or a solution will not exist. Solving (3.9) for t_{b}, we obtain

$$
\begin{equation*}
t_{b}=\frac{t}{2}-\frac{\sqrt{\ddot{\theta}^{2} t^{2}-4 \ddot{\theta}\left(\theta_{f}-\theta_{0}\right)}}{2 \ddot{\theta}} \tag{3.10}
\end{equation*}
$$

The constraint on the acceleration used in the blend is

$$
\begin{equation*}
\ddot{\theta} \geq \frac{4\left(\theta_{f}-\theta_{0}\right)}{t^{2}} \tag{3.11}
\end{equation*}
$$

The complete LSPB trajectory is given by

$$
\theta(t)=\left\{\begin{array}{cc}
\theta_{0}+\frac{1}{2} \ddot{\theta} t^{2}, & 0 \leq t \leq t_{b} \tag{3.12}\\
\theta_{0}+\ddot{\theta} t_{b}\left(t-\frac{t_{b}}{2}\right), & t_{b}<t \leq t_{f}-t_{b} \\
\theta_{f}-\frac{1}{2} \ddot{\theta}\left(t_{f}-t\right)^{2}, & t_{f}-t_{b}<t \leq t_{f}
\end{array}\right.
$$

and so the joint velocity and acceleration is given as

$$
\dot{\theta}(t)=\left\{\begin{array}{cc}
\ddot{\theta} t, & 0 \leq t \leq t_{b} \tag{3.13}\\
\ddot{\theta} t_{b} t, & t_{b}<t \leq t_{f}-t_{b} \\
\ddot{\theta}\left(t_{f}-t\right), & t_{f}-t_{b}<t \leq t_{f}
\end{array}\right.
$$

$$
\ddot{\theta}(t)=\left\{\begin{array}{lr}
\ddot{\theta}, & 0 \leq t \leq t_{b} \tag{3.14}\\
\ddot{\theta} t_{b}, & t_{b}<t \leq t_{f}-t_{b} \\
\ddot{\theta}, & t_{f}-t_{b}<t \leq t_{f}
\end{array}\right.
$$

Using (3.12) we can calculate the LSPB trajectory that connects any initial joint angle position with any desired final position. Figure 3.8 shows a LSPB trajectory and the velocity and acceleration curves.

Figure 3.8: (a) LSPB trajectory (b) Velocity profile for LSPB trajectory (c) Acceleration profile for LSPB trajectory

When we apply LSPB method to the articulated manipulator; the end-effector is moving in a smooth path as shown in Figure 3.8. We choose the acceleration $\ddot{\theta}=0.7$ $\left(\mathrm{rad} / \mathrm{sec}^{2}\right)$ to move the end-effector from point $(0,0,0)$ to point $(20,15,20)$ in 5 second. The corresponding trajectories for each joint are shown in Figure 3.9. While Figure 3.10 and Figure 3.11 show the velocity profile and acceleration profile for LSPB trajectory for each joint. Figure 3.13 shows the corresponding torque for each joint.*

These Figures come from the execution of Matlab script for LSPB trajectory and Dynamics for LSPB for articulated manipulator in Appendix A

Figure 3.9: End-effector path of LSPB trajectory for articulated manipulator

Figure 3.10: LSPB for articulated manipulator

Figure 3.11: Velocity profile for LSPB trajectory for articulated manipulator

Figure 3.12: Acceleration profile for LSBP trajectory for articulated manipulator

Figure 3.13: Torque curves for each joint for LSPB trajectory

We see from the torque curve for cubic polynomial and LSPB trajectories that the maximum torque produced by these methods approximately equal. Which means approximately same power consumption, so, our choice between these methods according to power consumption will not be the best choice. Thus, we will choose the cubic polynomial method since it easier to program and need less user specification than LSPB method.

Chapter 4 Dynamic modeling

4.1 Introduction

In this chapter we will construct the dynamic modeling of the articulated manipulator. Whereas the kinematic equation derive in previous chapters describe the motion without regard of the forces and torque producing the motion, the dynamic equations describe the relationship between force and motion. The equations of motion play an important rule for simulation of motion, analysis, and design of control algorithms.

In order to construct the dynamic modeling and find the equations of motion of articulated robot we will use the Euler-Lagrange equations.

4.2 Equation of motion

In this section we apply the Euler-Lagrange equations to the articulated manipulator and derive the corresponding equations of motion. We can write Euler-Lagrange equations as
$D(\theta) \ddot{\theta}+c(\theta, \dot{\theta}) \dot{\theta}+g(\theta)=\tau$
Where $D(\theta)$ is the inertia matrix, and its symmetric and positive definite for any manipulator.
$D(\theta)=\left[\sum_{i=1}^{n}\left\{m_{i} J_{v i}(\theta)^{T} J_{v i}(\theta)+j_{w i}(\theta)^{T} R_{i}(\theta) I_{i} R_{i}(\theta)^{T} J_{w i}(\theta)\right\}\right]$
Where $J_{v i}(\theta)$ is the Jacobian of linear velocity, $J_{w i}(\theta)$ is the Jacobian of angular velocity, R_{i} is the rotation matrix, and I_{i} is the inertia tensor.

The $(k, j)^{t h}$ element of the matrix $C(\theta, \theta)$ is defined as

$$
\begin{align*}
c_{k j} & =\sum_{i=1}^{n} c_{i j k}(\theta) \dot{\theta}_{i} \\
& =\sum_{i=1}^{n}\left\{\frac{\partial d_{k j}}{\partial \theta_{i}}+\frac{\partial d_{k i}}{\partial \theta_{j}}-\frac{\partial d_{i j}}{\partial \theta_{k}}\right\} \dot{\theta}_{i} \tag{4.3}
\end{align*}
$$

And the gravity vector $g(\theta)$ is given by
$g(\theta)=\left\{\theta_{1}(\theta), \ldots \ldots, \theta_{n}(\theta)\right\}^{T}$

To apply the Euler-Lagrange equation on our robot, let us fix notation as follow. For $i=1,2,3, \theta_{i}$ denotes the joint angle which also serves as a generalized coordinate; m_{i} denotes the mass of link $i ; d_{1}, a_{1}$, and a_{2} denotes the length of links 1,2 and 3 respectively ; $l_{c i}$ denotes the distance from the previous joint to the center of mass of link i; and I_{i} denotes the moment of inertia of link i about the z-axis, passing through the center of mass of link i. (See Figure 4.1)

We will use the Denavit-Hartenberg joint variables as generalized coordinates, which allow us to make effective use of the Jacobian expressions in computing inertia matrix.

Figure 4.1: 3DOF Articulated Manipulator

The Jacobian of linear velocity for i links are

$$
\begin{align*}
& J_{v c 1}=\left[\begin{array}{lll}
z_{0} x\left(o_{c 1}-o_{0}\right) & 0 & 0
\end{array}\right] \tag{4.5}\\
& J_{v c 2}=\left[\begin{array}{ll}
z_{0} x\left(o_{c 2}-o_{0}\right) & z_{1} x\left(o_{c 2}-o_{1}\right) 0
\end{array}\right] \\
& J_{v c 2}=\left[\begin{array}{ll}
z_{0} x\left(o_{c 3}-o_{0}\right) & z_{1} x\left(o_{c 3}-o_{1}\right) z_{2} x\left(o_{c 3}-o_{2}\right)
\end{array}\right]
\end{align*}
$$

The Jacobian of angular velocity for i links are
$J_{w 1}=\left[\begin{array}{lll}z_{0} & 0 & 0\end{array}\right]$
$J_{w 2}=\left[\begin{array}{lll}z_{0} & z_{1} & 0\end{array}\right]$
$J_{w 3}=\left[\begin{array}{lll}z_{0} & z_{1} & z_{2}\end{array}\right]$
The origin of the DH frames are given by
$o_{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \quad o_{1}=\left[\begin{array}{l}0 \\ 0 \\ d_{1}\end{array}\right] \quad o_{2}=\left[\begin{array}{c}a_{2} \cos \theta_{1} \cos \theta_{2} \\ a_{2} \sin \theta_{1} \cos \theta_{2} \\ a_{2} \sin \theta_{2}+d_{1}\end{array}\right]$
And the origins at the center of mass for each link are given by
$o_{c 1}=\left[\begin{array}{c}0 \\ 0 \\ l_{c 1}\end{array}\right] \quad o_{c 2}=\left[\begin{array}{c}l_{c 2} \cos \theta_{1} \cos \theta_{2} \\ l_{c 2} \sin \theta_{1} \cos \theta_{2} \\ l_{c 2} \sin \theta_{2}+d_{1}\end{array}\right]$
$o_{c 3}=\left[\begin{array}{c}l_{c 3} \cos \theta_{1} \cos \left(\theta_{2}+\theta_{3}\right)+a_{2} \cos \theta_{1} \cos \theta_{2} \\ l_{c 3} \sin \theta_{1} \cos \left(\theta_{2}+\theta_{3}\right)+a_{2} \sin \theta_{1} \cos \theta_{2} \\ l_{c 3} \sin \left(\theta_{2}+\theta_{3}\right)+a_{2} \sin \theta_{2}+d_{1}\end{array}\right]$
And the axis of rotation $\mathrm{z}_{\mathrm{i}-1}$ given by
$z_{0}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \quad z_{1}=\left[\begin{array}{c}\sin \theta_{1} \\ -\cos \theta_{1} \\ 0\end{array}\right] \quad z_{2}=\left[\begin{array}{c}\sin \theta_{1} \\ -\cos \theta_{1} \\ 0\end{array}\right]$
Performing the required calculations then yields
$J_{v c 1}=[0]$
$J_{v c 2}=\left[\begin{array}{ccc}-l_{c 2} \cos \theta_{2} \sin \theta_{1} & -l_{c 2} \cos \theta_{1} \sin \theta_{2} & 0 \\ l_{c 2} \cos \theta_{1} \cos \theta_{2} & -l_{c 2} \sin \theta_{1} \sin \theta_{2} & 0 \\ 0 & l_{c 2} \cos \theta_{2} & 0\end{array}\right]$
$J_{v c 3}$
$=\left[\begin{array}{ccc}-l_{c 3} \sin \theta_{1} \cos \left(\theta_{2}+\theta_{3}\right)-a_{2} \sin \theta_{1} \cos \theta_{2} & -l_{c 3} \cos \theta_{1} \sin \left(\theta_{2}+\theta_{3}\right)-a_{2} \cos \theta_{1} \sin \theta_{2} & -l_{c 3} \cos \theta_{1} \sin \left(\theta_{2}+\theta_{3}\right) \\ l_{c 3} \cos \theta_{1} \cos \left(\theta_{2}+\theta_{3}\right)+a_{2} \cos \theta_{1} \cos \theta_{2} & -l_{c 3} \sin \theta_{1} \sin \left(\theta_{2}+\theta_{3}\right)-a_{2} \sin \theta_{1} \sin \theta_{2} & -l_{c 3} \sin \theta_{1} \sin \left(\theta_{2}+\theta_{3}\right) \\ 0 & a_{2} \cos \theta_{2}+l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right) & l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right)\end{array}\right]$
$J_{w 1}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
$J_{w 2}=\left[\begin{array}{ccc}0 & \sin \theta_{1} & 0 \\ 0 & -\cos \theta_{1} & 0 \\ 1 & 0 & 0\end{array}\right]$
$J_{w 3}=\left[\begin{array}{ccc}0 & \sin \theta_{1} & \sin \theta_{1} \\ 0 & -\cos \theta_{1} & -\cos \theta_{1} \\ 1 & 0 & 0\end{array}\right]$

By substitute in Equation (4.2) this yield

$$
D(\theta)=\left[\begin{array}{lll}
d_{11} & d_{12} & d_{13} \tag{4.12}\\
d_{21} & d_{23} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right]
$$

Where

$$
\begin{aligned}
d_{11}= & I_{y y 1}+I_{z z 2}+I_{z z 3}+m_{3}\left(l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right)+a_{2} \cos \theta_{2}\right)+l_{c 2}^{2} m_{2} \cos ^{2} \theta_{2} \\
d_{12}= & d_{21}=0 \quad ; d_{13}=d_{31}=0
\end{aligned} \quad \begin{aligned}
& d_{22}= m_{2} l_{c 2}^{2}+ \\
& \quad I_{y y 2} \cos ^{2}\left(\theta_{1}-\theta_{2}\right)+I_{y y 3} \cos ^{2}\left(\theta_{1}-\theta_{3}\right)+I_{y y 2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right) \\
& \quad+I_{y y 3} \sin ^{2}\left(\theta_{1}-\theta_{3}\right) \\
& \quad+m_{3}\left[a_{2}^{2}+l_{c 3}^{2}+2 a_{2} l_{c 3}\left(\sin \left(\theta_{2}+\theta_{3}\right) \sin \theta_{2}+\cos \left(\theta_{2}+\theta_{3}\right) \cos \theta_{2}\right)\right] \\
& \\
& d_{23}= d_{32}= \\
& I_{y y 3} \cos ^{2}\left(\theta_{1}-\theta_{3}\right)+I_{x x 3} \sin ^{2}\left(\theta_{1}-\theta_{3}\right)+m_{3}\left(l_{c 3}^{2}+a_{2} l_{c 3} \cos \theta_{3}\right)
\end{aligned}
$$

Now, we can compute the Christoffel symbols using Equation (4.3). This gives

$$
\begin{aligned}
& c_{111}=0 \\
& c_{121}=c_{211}=\frac{1}{2} \frac{\partial d_{11}}{\partial \theta_{2}}=\frac{1}{2}\left(-m_{3} l_{c 3} \sin \left(\theta_{2}+\theta_{3}\right)-m_{3} a_{2} \sin \theta_{2}-2 m_{2} l_{c 2}^{2} \cos \Theta_{2} \sin \theta_{2}\right) \\
& c_{131}=c_{311}=\frac{1}{2} \frac{\partial d_{11}}{\partial \theta_{3}}=-\frac{1}{2} m_{3} l_{c 3} \sin \left(\theta_{2}+\theta_{3}\right) \\
& c_{221}=-\frac{1}{2} \frac{\partial d_{22}}{\partial \theta_{1}}=\left(I_{y y 2}-I_{x x 2}\right) \sin \left(\theta_{1}-\theta_{2}\right) \cos \left(\theta_{1}-\theta_{2}\right)+\left(I_{y y 3}-I_{x x 2}\right) \sin \left(\theta_{1}-\right. \\
& \theta 3) \cos (\theta 1-\theta 3)
\end{aligned}
$$

$$
c_{231}=c_{321}=-\frac{1}{2} \frac{\partial d_{23}}{\partial \theta_{1}}=\left(I_{y y 3}-I_{x x 3}\right) \sin \left(\theta_{1}-\Theta_{3}\right) \cos \left(\theta_{1}-\Theta_{3}\right)
$$

$$
c_{331}=-\frac{1}{2} \frac{\partial d_{33}}{\partial \theta_{1}}=\left(I_{y y 3}-I_{x x 3}\right) \sin \left(\theta_{1}-\theta_{3}\right) \cos \left(\theta_{1}-\theta_{3}\right)
$$

$$
c_{112}=-\frac{1}{2} \frac{\partial d_{11}}{\partial \theta_{2}}=\frac{1}{2}\left(m_{3} l_{c 3} \sin \left(\theta_{2}+\Theta_{3}\right)+m_{3} a_{2} \sin \theta_{2}+2 m_{2} l_{c 2}^{2} \cos \Theta_{2} \sin \theta_{2}\right)
$$

$$
c_{122}=c_{212}=\frac{1}{2} \frac{\partial d_{22}}{\partial \theta_{1}}=\left(I_{x x 2}-I_{y y 2}\right) \sin \left(\theta_{1}-\theta_{2}\right) \cos \left(\theta_{1}-\theta_{2}\right)+\left(I_{x x 2}-I_{y y 3}\right) \sin \left(\Theta_{1}-\right.
$$

$$
\theta 3) \cos (\theta 1-\theta 3)
$$

$$
c_{132}=c_{312}=\frac{1}{2} \frac{\partial d_{23}}{\partial \theta_{1}}=\left(I_{x x 3}-I_{y y 3}\right) \sin \left(\theta_{1}-\Theta_{3}\right) \cos \left(\theta_{1}-\Theta_{3}\right)
$$

$$
c_{222}=\frac{1}{2} \frac{\partial d_{22}}{\partial \theta_{2}}=\left(I_{y y 2}-I_{x x 2}\right) \sin \left(\theta_{1}-\theta_{2}\right) \cos \left(\theta_{1}-\theta_{2}\right)
$$

$$
c_{232}=c_{322}=\frac{1}{2} \frac{\partial d_{22}}{\partial \theta_{3}}=\left(I_{y y 3}-I_{x x 3}\right) \sin \left(\theta_{1}-\theta_{3}\right) \cos \left(\theta_{1}-\theta_{3}\right)-m_{3} a_{2} l_{c 3} \sin \theta_{3}
$$

$$
c_{332}=\frac{\partial d_{23}}{\partial \theta_{3}}-\frac{1}{2} \frac{\partial d_{33}}{\partial \theta_{2}}=2\left(I_{y y 3}-I_{x x 3}\right) \sin \left(\theta_{1}-\theta_{3}\right) \cos \left(\theta_{1}-\theta_{3}\right)-m_{3} a_{2} l_{c 3} \sin \theta_{3}+
$$

$$
I_{x x} \sin \left(\theta_{1}-\theta_{2}\right) \cos \left(\theta_{1}-\theta_{2}\right)
$$

$$
c_{113}=-\frac{1}{2} \frac{\partial d_{11}}{\partial \theta_{3}}=\frac{1}{2} m_{3} l_{c 3} \sin \left(\theta_{2}+\Theta_{3}\right)
$$

$$
c_{123}=c_{213}=\frac{1}{2} \frac{\partial d_{32}}{\partial \theta_{1}}=\left(I_{x x 3}-I_{y y 3}\right) \sin \left(\Theta_{1}-\Theta_{3}\right) \cos \left(\Theta_{1}-\Theta_{3}\right)
$$

$$
c_{133}=c_{313}=\frac{1}{2} \frac{\partial d_{33}}{\partial \theta_{1}}=\left(I_{x x 3}-I_{y y 3}\right) \sin \left(\Theta_{1}-\Theta_{3}\right) \cos \left(\Theta_{1}-\Theta_{3}\right)
$$

$c_{223}=-\frac{1}{2} \frac{\partial d_{22}}{\partial \theta_{3}}=\left(I_{x x 3}-I_{y y 3}\right) \sin \left(\theta_{1}-\Theta_{3}\right) \cos \left(\theta_{1}-\Theta_{3}\right)+m_{3} a_{2} l_{c 3} \sin \theta_{3}$
$c_{233}=c_{323}=-I_{x x 3} \sin \left(\theta_{1}-\theta_{3}\right) \cos \left(\theta_{1}-\theta_{3}\right)$
Next, the potential energy of the manipulator is just the sum of those of the three links. For each, the potential energy is just its mass multiplied by the gravitational acceleration and the height of its center of mass. Thus
$P_{1}=m_{1} g l_{c 1}$
$P_{2}=m_{2} \mathrm{~g}\left(d_{1}+l_{c 2} \sin \theta_{2}\right)$
$P_{3}=m_{3} \mathrm{~g}\left(d_{1}+a_{2} \sin \theta_{2}+l_{c 3} \sin \left(\theta_{2}+\theta_{3}\right)\right)$
And so the total potential energy is
$P=P_{1}+P_{2}+P_{3}$
$P=m_{1} \mathrm{~g} l_{c 1}+m_{2} \mathrm{~g}\left(d_{1}+l_{c 2} \sin \Theta_{2}\right)+m_{3} \mathrm{~g}\left(d_{1}+a_{2} \sin \theta_{2}+l_{c 3} \sin \left(\theta_{2}+\theta_{3}\right)\right)$
Therefore, the function g_{k} defined in Equation (4.4) become
$g_{1}=\frac{\partial p}{\partial \theta_{1}}=0$
$g_{2}=\frac{\partial p}{\partial \theta_{2}}=m_{2} g l_{c 2} \cos \theta_{2}+m_{3} \mathrm{~g}\left(a_{2} \cos \theta_{2}+l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right)\right)$
$g_{3}=\frac{\partial p}{\partial \theta_{3}}=m_{3} \mathrm{~g} l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right)$
Finally we can write down the dynamical equations of the system as in Equation (4.1), Substituting for the various quantities in this equation and omitting zero terms leads to
$\tau_{1}=\ddot{\theta}_{1}+\left(c_{121}+c_{211}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\left(c_{131}+c_{311}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\left(c_{231}+c_{321}\right) \dot{\theta}_{2} \dot{\theta}_{3}+c_{212} \dot{\theta}_{2}^{2}+$ $c_{331} \dot{\theta}_{3}^{2}+b_{1} \dot{\theta}_{1}$
$\tau_{2}=d_{22} \ddot{\theta}_{2}+d_{23} \ddot{\theta}_{3}+\left(c_{122}+c_{212}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\left(c_{132}+c_{312}\right) \dot{\theta}_{1} \dot{\theta}_{3}+\left(c_{232}+c_{322}\right) \dot{\theta}_{2} \dot{\theta}_{3}+$ $c_{112} \dot{\theta}_{1}^{2}+c_{222} \dot{\theta}_{2}^{2}+c_{332} \dot{\theta}_{3}^{2}+m_{2} g l_{c 2} \cos \theta_{2}+m_{3} g\left(a_{2} \cos \theta_{2}+l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right)\right)+b_{2} \dot{\theta}_{2}$

$$
\begin{align*}
& \tau_{3}=d_{32} \ddot{\theta}_{2}+d_{33} \ddot{\theta}_{3}+\left(c_{123}+c_{213}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\left(c_{133}+c_{313}\right) \dot{\theta}_{1} \dot{\theta}_{3}+\left(c_{233}+c_{323}\right) \dot{\theta}_{2} \dot{\theta}_{3}+ \\
& c_{113} \dot{\theta}_{1}^{2}+c_{223} \dot{\theta}_{2}^{2}+c_{333} \dot{\theta}_{3}^{2}+m_{3} g l_{c 3} \cos \left(\theta_{2}+\theta_{3}\right)+b_{3} \dot{\theta}_{3} \tag{4.22}
\end{align*}
$$

Where b_{i} is the coefficient of viscous damping for each joint, and $\ddot{\theta}_{i}, \dot{\theta}_{i}$, and θ_{i}, comes from the trajectory equation which derive in chapter 3.

4.3 Testing model

In this section we introduce a testing of a model we constructed in a previous section to make sure that we are probably modeling it. This testing will depend on Matlab software to simulate the equations of motion with cubic polynomial trajectories for four cases.*

First case

When the manipulator at home position and it doesn't move, thus, we calculate the torque at each joint that make the robot in static equilibrium.

The torque produced by joint 1

$$
\begin{equation*}
T_{1}=0 \tag{4.23}
\end{equation*}
$$

torque produced by joint 2

$$
\begin{equation*}
T_{2}=m_{2} g l_{c 2} \cos \theta_{2}+m_{2} g\left(a_{2}+l_{c 3} \cos \theta_{3}\right)=3.5 \mathrm{~N} . \mathrm{m} \tag{4.24}
\end{equation*}
$$

torque produced by joint 3

$$
T_{3}=m_{3} g l_{c 3} \cos \Theta_{3}=0.7 \mathrm{~N} . \mathrm{m}
$$

(4.25)

The torques produced on joint 1,2 , and 3 according to simulation are shown in Figure(4.2), and they are matching with the torques we calculated in Equations (4.23), (4.24), and (4.25)

The Matlab script for the dynamic equations is shown in Appendex A.

Figure 4.2: Simulation for case one (a) joint 1 (b) joint2 (c) joint 3

Second case

Link 1 is moving from $0-90^{\circ}$ while the remaining links are not moving, thus, there is no torque acting on joint 2 and joint 3 unless the torque due to static equilibrium, the torque produced by joint 1 is shown in Figure (4.3) and it's like acceleration profile for cubic polynomial trajectory.

Figure 4.3: Simulation for case two (a) joint 1 (b) joint2 (c) joint 3

Third case

Link 2 is moving from $0-60^{\circ}$, while link 1 and link 3 are not moving, in this case the torque produced by joint 3 is starting from high level and end at low level, this happened because the force due gravity become closer to joint 2 ,thus, the torque become less, and this what happened in joint 3 . The only force acting on joint 1 is the Coriolis force. This case is shown in Figure (4.4) for each joint.

Figure 4.4: Simulation for case three (a) joint 1 (b) joint2 (c) joint 3

Fourth case

When all joints move to cover the full range of there domain, the resultant torque for each joint is shown in Figure 4.5, these torques are used to select the actuator for each joint.

Figure 4.5: The corresponding torque for case 4 (a) Joint1 (b) Joint2 (c) Joint3

The torques for the joints can be plot in a single graph as illustrated in figure 4.6

Figure 4.5: The torque for each joint for case 4

Chapter 5
 Control Design

5.1 Introduction

Robot control is the spine of robotics. It consists in studying how to make a robot manipulator execute the desired tasks automatically. Typically, robot controller take the form of an equation or an algorithm which is realized via specialized computer programs (Matlab in our case).[5] Robot controllers form part so-called robot control system which is physically constituted of a computer, a data acquisition unit, actuators, the robot itself and some extra "electronics" as illustrated in Figure 5.1. In this chapter we will go deep in these details and explain how the overall system works.

Figure 5.1: The robot control system

5.2 System Architecture

The following subsections consider the system architecture concerning physical description, functional description, hydraulic description, electrical description, and electrical circuit for manual control.

5.2.1 Physical description

The primary function of this robot is to pick an object, moves it to another location, and release it. The construction of the hydraulic arm resembles a typical three-link, articulated robot arm with three revolute joint and gripper end effector. Each arm link is fitted with a hydraulic rotary actuator with limited rotation. Figure 5.2 shows this type of rotary actuator.

- The first revolute joint affects hydraulic arm rotation about an axis that is perpendicular to the table (east-west base rotation). The angle of rotation of this link is 180°, from -67° to $+113^{\circ}$ relative to the base frame.
- The second revolute joint affects overall angle of the arm relative to the reference coordinates (north-south shoulder rotation). The angle of rotation of this link is 90°, from -45° to $+45^{\circ}$ relative to the shoulder frame.
- The third revolute joint affects the amount of arm extension (elbow movement). The angle of rotation of this link is 90°, from 0° to -90° relative to the elbow frame.

Figure 5.2: Hydraulic rotary actuator

5.2.2 Functional description

The user can operate the machine manually or by using computer in order to achieve the desired functionality. The user may select from two distinct modes of operation: manual control or closed-loop computer control. Manual control refers to user input
routed directly to the valve system for joints control (manual control). The user input is directly related to the flow demand that is routed to the valve system, and therefore the user has direct control over movement of the system. The term closed-loop control refers to the system managing the flow demand routed to the valve system to achieve the desired movement or desired position. This operation can be done by using computer.

5.2.3 Hydraulic description

The system uses a vented hydraulic reservoir at atmospheric pressure. Hydraulic flow is generated by a fixed displacement hydraulic pump driven by electric motor. A pressure relief valve is fitted to the output side of the hydraulic pump in order to control maximum system pressure by providing a regulated flow path back to the reservoir. The primary hydraulic flow path is from the pump to the proportional control valve that controls the overall flow of the system. The electrically actuated solenoid valves are using for control the direction of rotation of each joint (on\ off control). A hydraulic schematic of the system is shown in Figure 5.3.

Figure 5.3: Hydraulic schematic of the work circuit

5.2.4 Electrical description

The machine is powered by 220 volt AC power. Incoming AC power is routed in parallel to the hydraulic pump electric motor, main valve and to the DC power supply. The power supply ensures that system voltage is regulated to 24 volts DC. The system voltage is routed through an emergency power shutoff switch to DC power supply, toggle switches and system electronic unit. A simplified electrical circuit for 220 volt AC power supply is shown in Figure 5.4.

Figure5.4: A simplified electrical circuit for 220 volt AC power supply

5.2.5 Electrical circuit for manual control

As we said before, there are two modes of operation; in manual control mode the user has direct control over movement of the system. In order to do that, two electrically actuated solenoid valves are using for each rotary actuator; one solenoid
used for clockwise (CW) direction and the other is used for counter clockwise (CCW) direction. Each solenoid is powered by 24 volt DC power supply. In order to activate each direction with one signal by toggle switch we used two normally open relays for each solenoid. Figure 5.5 shows the electrical circuit for open-loop control.

Figure5.5: Electrical circuit for open-loop control.

The main valve will be activated if any solenoids activate, which allow the oil to flow to the system and active the actuators.

The mode of operation can be selected through a switch which indeed gives a signal to a normally closed relay; if the switch open then the manual control mode will
activate, and if it closes then the closed loop control mode will activate as illustrated in Figure5.5.

The amount of overall flow can be controlled by proportional valve, and we can control it through analog signal, this signal is a voltage signal ($0-10$ volt), it can be controlled manually or by using computer, in manually controlled signal we used 10 k ' Ω potentiometer to change the analog voltage signal from ($0-10$ volt), this 10 volt signal can be taken from 24 DC voltage source by using regulator (TS 7810). As illustrated in Figure5.6. The computer controlled signal will be discussed in the following sections.

Figure 5.6: Regulator circuit

5.3 Closed-loop control

The term closed-loop control refers to the robot system managing the flow demand routed to the valve system to achieve the desired movement or desired position with smooth motion, and using sensors that give a feedback read for the final position for each link angle. We used the computer for this operation; in order to interface this robot with the computer we use Data Acquisition Card (DAQ Card) with the following features:

1. One Analog output to control the flow through proportional valve
2. Three analog input to read the position for each link through potentiometer
3. Seven digital output; each output is connected to each solenoid to give a signal for desired motion.

To achieve these specification we used for this job the" National Instrument 6024E DAQ Card". Figure 5.7 shows this type of DAQ card.

Copyright © 1999-2009 Artisan Scientific
Figure 5.7: National Instrument 6024E DAQ Card
The DAQ digital output signal used for each solenoid is 5 volt signal; this signal can't activate the 24 v relays directly, we used optocoupler to active the relay with 5 volt and low current signal, the choice of optocoupler has an advantage in isolated the reverse signal come back to the DAQ card. The optocoupler we use is (CNY17).

The interfacing circuit between digital outputs from the DAQ card and the solenoid valve relays is shown in Figure 5.8. The resistances in this figure used to make sure that the maximum current from the DAQ not exceed 100 mA , we used 80Ω resistance to achieve this purpose. The diodes shown in the circuit are used to prevent reverse current to come back to the optocoupler in manual mode, the numbers appear at the end of each diodes are related to the relays as illustrated in Figure 5.5.

Figure 5.8: The interfacing circuit between digital outputs from the DAQ card and the solenoid valve relays

As we said before, the amount of overall flow can be controlled by proportional valve through analog signal ($0-10$ volt), this signal can be change manually as we discussed before, or by using computer. The signal from computer come from the Analog output port from the DAQ Card, the analog output voltage from the DAQ card is (from - 10 to 10 volt), this signal can be used to control the flow through the proportional valve. Figure 5.9 shows the circuit that controls the proportional valve manually or from the analog signal from the DAQ Card.

Figure 5.9: Manually and automatically control circuit of the proportional valve

5.3.1 Feedback sensors

In a closed-loop control system, three sensors monitor the system output (Joint angles) and feed the data to a controller which adjusts the control (the joint angle) as necessary to maintain the desired system output (match the desired position which is x, y, and z coordinate of the end-effecter). This robot uses potentiometers to determine where it is and then controls their joints to match the desired position. The output from the potentiometer is an analog voltage that is proportional to the angle of rotation for each joint. These analog signals are connecting to the analog input of the DAQ card.

5.3.2 Potentiometer Calibration

In order to represent the angle for each link with a voltage signal, we calibrated the potentiometers attach to each link. The potentiometer output voltage for each joint represent the angle of that joint, our purpose in this section is to find the formula that represent the joint angle with analog voltage.

For the first link, we found that the angle $\left(\theta_{1}\right)$ change (from -67° to 113°) and the voltage change (from 3.5 to 9 volt), we construct a linear relation between them as shown in Figure 5.10.

Figure5.10: Relation between voltage and angle for the first link
From this figure we found the formula for angle to voltage representation using Matlab software, the corresponding formula is:

$$
V_{1}=0.03056 \Theta_{1}+5.547
$$

For the second link, we found that the angle $\left(\theta_{2}\right)$ change (from 45° to -450) and the voltage change (from 9 to 1 volt), We construct a linear relation between them as shown in Figure 5.11.

Figure5.11: Relation between voltage and angle for the second link

From this figure we found the formula for angle to voltage representation using Matlab software, the corresponding formula is:

$$
V_{2}=0.08889 \Theta_{2}+5
$$

For the third link, we found that the angle $\left(\theta_{3}\right)$ change (from -45° to -135°) and the voltage change (from 1 to 9 volt), We construct a linear relation between them as shown in Figure 5.12.

Figure5.12: Relation between voltage and angle for the third link
From this figure we found the formula for angle to voltage representation using Matlab software, the corresponding formula is:

$$
\mathrm{V}_{3}=-0.08889 \Theta_{3}-3
$$

5.3.3 xPC Target

We mount the DAQ card on the xPC Target which allows the target PC system to work independently of a host PC. This independence is achieved by automatically loading and running the real-time kernel and application on power up.

Why we use xPC Target?
xPC Target is a high performance host-target prototyping environment that enables you to connect your Simulink ${ }^{\circledR}$ and Stateflow ${ }^{\circledR}$ models to physical systems and execute them in real time on PC-compatible hardware. xPC Target is ideal for rapid controller prototyping and hardware-in-the-loop simulation of control and data processing systems. It enables you to add I/O blocks to your models, automatically generate code with Real-Time Workshop ${ }^{\circledR}$, and download the code to a second PC running the xPC Target real-time kernel.
xPC Target lets you use your Simulink and Stateflow models further into your design process by:

- Providing real-time target and I/O capabilities on any PC-compatible system
- Eliminating the need to customize or write any code

5.3.4 Controllers and software

After we prepare all electrical connections and interfacing circuits for the robot, we interested in solving motion control problem. In motion control problem, the manipulator moves to a position to pick up an object, transports that object to another location, and deposits it. We treat this problem in the joint space.

5.3.4.1 Joint space control

The main goal of the joint space control is to design a feedback controller such that the joint coordinates track the desired motion as closely as possible. The control of robot manipulators is naturally achieved in the joint space, since the control inputs are the joint torques.

Figure 5.13 shows the basic outline of the joint space control methods. Firstly, the desired motion, which is described in terms of end-effector coordinates, is converted to a corresponding joint trajectory using the inverse kinematics of the manipulator. Then the feedback controller determines the joint torque necessary to move the manipulator along the desired trajectory specified in joint coordinates starting from measurements of the current joint states.

Figure 5.13: Generic concept of joint space control

5.3.4.2 Independent joint control

We adapt independent joint control to control the robot manipulator. By independent-joint control (i.e., decentralized control), we mean that the control inputs of each joint only depends on the measurement of the corresponding joint displacement and velocity. Due to its simple structure, this kind of control schemes offers many advantages. For example, by using independent-joint control,
communication among different joints is saved. Moreover, since the computational load of controllers may be reduced, only low-cost hardware is required in actual implementations. Finally, independent-joint control has the feature of scalability, since the controllers on all the joints have the same formulation.[6]

The simplest independent-joint control strategy is to control each joint axis as a single-input single-output (SISO) system; this type of control appears in Figure 5.14. This figure is common for all links.

Figure 5.14: Independent joint control scheme
Because the electrically actuated solenoid valves which using for control the actuators is (on\off control). Then we can't control the velocity for each joint independently by this method, as mentioned before, there is one proportional valve to control the overall flow and thus the velocity for all links, this leads to seek for a method to control all links velocity with a common controller, this controller principle depends on the control of the norm of the error.

5.3.4.3 Least norm solution

The norm controller depends on weighted the error goes to each link, and allow the system to control the flow and therefore the velocity of all joints, the idea of norm controller of the error relies that if there is an error command on at least one joint, then the norm weighted it and allow the controller to control the amount of flow through the proportional valve, this operation emphasized that the velocity of the joints will decrease when the robot closes to its target position. Figure5.15 shows the principle of norm controller.

Figure 5.15: The principle of norm controller

The signal out from the norm block enters to the controller block, out from it, and then goes to the proportional valve. In order to find the controller, and since we don't know the transfer function for the proportional valve, we used the experiments depend on Hardware-in-Loop simulation to find the formulation of the controllers.

We assume PD controller, and changing the parameters until we achieve a smooth response. The PD controller we achieved with a smooth response has the following formulation:

PD Controller: $\quad G_{c}(s)=2+s$

The Matlab Simulink model for the Robot is shown in Figure 5.16.

Figure5.16: Simulink model for the robot

From Figure 5.16. the signal that's go to the proportional valve is added to some constant value to insure that the flow will not reach to zero. The filter used in this model is a low pass filter, aimed to eliminate the undesired signal(noise) comes from the feedback sensors.

In Simulink model shown in Figure 5.16 we compare the error signal goes to each link with the value close to zero(because the error signal cant reach exactly to zero)
to select the direction of motion(CCW or CW). If the error more than zero then the joint rotate in CCW direction, and if it is less than zero then the joint rotate in CW direction.

Chapter 6
 Experimentations and Results

6.1 Introduction

This chapter contains the results that are obtained from the experiments which are done to verify the theoretical results reached in the previous chapters, where the mechanical, electrical, and control designs are to be applied in this practical side. The practical results and modifications that are to the theoretical results are discussed.

6.2 Response testing of control system

MATLAB and SIMULINK in addition to xPC Target are used to simulate and evaluate the performance of the proposed controller that applied on the robot. The type of controller is PD controller applied to the norm of the error to control the robot arm using an independent joint control mechanism. The purpose of this controller is to improve the performance of the robot arm to acquire the desired tasks.

In order to assess the efficacy of the proposed controller, simulation studies have been conducted to check the efficiency of the system PD controller, this test depend on check the response of each joint to step reference independently.

Figure 6.1, Figure 6.2 and Figure 6.3 show the output response of the joints of the robot using PD controller.

Figure 6.1: Step response for the first joint

Figure 6.2: Step response for the second joint

Figure 6.3: Step response for the third joint

We note from the previous figures that the response for each link to a step reference is fine. For the first link, the response has approximately negligible steady state error,
there is no overshoot and the settling time is acceptable. While in the second and third links the steady state error is close to zero, no overshoot appeared, and the settling time is also acceptable.

6.3 Accuracy and Repeatability Testing

One of the most important specifications associated with a robot manipulator is repeatability; it described the closeness of the agreement occurring between the results obtained for quantity when it is measured several times under the same conditions. While the accuracy is the measure of how close the manipulator can come to a given point within its workspace.

We test the repeatability and accuracy of the robot, this test depend on measured the actual value for specific point for 10 times, this point is $(-30,30,15)$, the measured values are listed in the following Table:

Test No.	Measured values			Error in each coordinate			$\frac{\text { Error (cm) }}{\sqrt{d_{x}^{2}+d_{y}^{2}+d_{z}^{2}}}$
	$\boldsymbol{x}_{\text {m }}$	$\boldsymbol{y}_{\boldsymbol{m}}$	z_{m}	$d_{x}=x-x_{m}$	$d_{y}=y^{\prime}-y_{m}$	$d_{z}=z-z_{m}$	
1	-30.5	29.5	14.8	0.5	0.5	0.2	0.73
2	-30.7	29.2	15	0.7	0.8	0	1.06
3	-30.5	29.7	16	0.5	0.3	-1	1.15
4	-29	30	15.5	-1	0	-0.5	1.11
5	-30	29	15.5	0	1	-0.5	1.11
6	-29.5	28.8	15	-0.5	1.2	0	1.30
7	-29.8	31	15	-0.2	-1	0	1.019
8	-30	30.5	16	0	-0.5	-1	1.12
9	-30.6	29	15	0.6	1	0	1.166
10	-30.6	29.5	15.2	0.6	0.5	-0.2	0.8

Table 6.1: The error for each measured values
The graph in Figure 6.4 shows the error for each test according to the values in Table6.2. This graph shows the repeatability and accuracy test for this robot and show how the error is changed when the robot return to the same point.

Figure6.4: Repeatability and Accuracy Test for the robot
Form the results we obtained from the repeatability and accuracy test, we conclude that the system is repeatable within a circle of 0.5 cm diameter, and there is a constant error (bias error) in each experiment, this constant error is 1.1 cm , as a result we can say that the system has a repeatability of 0.5 cm and accuracy within 1.1 cm .

6.4 Conclusion

Robotics has become recently an interesting area of research. In this project, we study the robot manipulator from two sides: modeling and control. Modeling process includes kinematic and dynamic. This process is important before controlling the robot to save the robot from being damaged. Appling a control technique is important to guarantee high efficiency and lower error for the motion of the robot.

The desired tasks were accomplished using three stages: the first stage was to provide systematic rules for analyzing forward and inverse kinematics solutions for the robot manipulator using DH convention, then analyzing the mathematical model for this robot by using Eular-Lagrange equation. In the third stage, we discussed the problem of control techniques. PD controller was applied to the norm of the error, to control the robot manipulator, this method of control used for the first time to control a hydraulic robot manipulator.

The objective of this controller was to control the robot arm to reach the specified location with minimum error while meeting certain specification. The tracking path from the initial position to the final position which discussed in chapter three was not considered in control problem because the control of the joints is (on/off control).

All simulations and experiments were presented using MATLAB, SIMULINK and xPC Target, which are used widely in control applications.

6.5 Future work

The results of this work can be basic point for future studies. The dynamic model for the robot introduced in chapter 4 can be used to design control algorithm with different hardware and servo system to produce high performance robot arm. Another subject that could be of interest is the method of control; it may be controlled by PLC or microcontroller.

References

[1] M. W. Song, S.Hutchinsons, and M. Vidyasagar, "Robot modeling and control", John Wiley \& Sons, Inc, 2006
[2] J.J. Craig, "Introduction to robotics mechanics and control", second edition, Silma, Inc, 1989
[3] B. Siciliano, and O. Khatib, "Springer handbook of robotics", springerVerlag Berlin Heidlberg, 2008
[4] B. Siciliana, L. Sciavicoo, L. Villani, and G. Oriolo, "Robotics modeling, planning and control", Springer- Verlag London Limited, 2009
[5] R. Kelly, V. Santibáñez and A. Loría "Control of Robot Manipulators in Joint Space", Springer-Verlag London Limited 2005
[6] Andrew J. Smith and Brian Van Batavia, "Electronic Control for Hydraulic Applications", Eaton Corporation, 2008
[7] Ahmed Z. Alassar, "Modeling and Control of 5DOF Robot Arm Using Supervisory Control", The Islamic University of Gaza, 2010

Appendices

1000-8000

HEAVY DUTY
HIGH TORQUE

OUTPUT TORQUES TO 31,800 in-lb [3595 Nm]

Major Benefits

- Heavy duty
- Wide variety of options and accessories
- Versatile design
- High torque

Industry Uses

- Automotive
- General machine builders

UNTS WITH IMPERIAL SHAFTS AND KEYWAY

TOORDER SPECIFY:

Type, Design No., Series, Angle of Rotation, and Options.

DESIGN NO.

1- Imperial
5 - Metric - Ports and mounting are metric. Pinion shafts and keyway are imperial.

6 - Metric Complete

PORT CONTROL ${ }^{\circ}$

BUILT-IN MEIER OUT FLOW CONIROL VALVE P - How control both directions P1 - Row control clockwise P2 - How control counterclockwise

ANGLE ADJUSTMENT

A - Angle adjustment both ends
A1 - Angle adjustment clockwise 30°
A2 - Angle adjustment counterclockwise 30° (20° for Series 8000)

NOTES:

1) Sensor must be used with a PHD Set Point Module See Switches and Sensors section for information and ordering data.
2) Mounting flanges must be ordered separately.
3) SAE Ports available. Consult PHD for sizes.
ptions may affect unit length.
unit dimension and options pages for adders.

UNIQUE ROTARY ACTUATORS
ARE AVAILABLE SEIUNIQUE PRODUCTS
AT THEEND OF THIS SECTION.

PROXIMITY SWITCH

 MOUNTING BRACKETS| SERIES | SIZENO. |
| :---: | :---: |
| $1000 \& 2000$ | 32 |
| $3000 \& 4000$ | 34 |
| $5000 \& 6000$ | 38 |
| $7000 \& 8000$ | 39 |

See Switches and Sensors section for complete ordering information

CUSHION OR SHOCK PAD

D - Oushions both directions
D1 - Oushion clockwise
D2 - Cushion counterclockwise B - Shock Pads both directions B1 - Shock Pad clockwise B2 - Shock Pad counterclockwise (Cushions and Shock Pads are not available on the same end of actuator. Shock Pads are not available for Hydraulic use.)

ENGINEERING DATA:' sERIES 1000-8000 ROTARY ACTUATORS

SPECIFICATIONS	SERIES 1000-8000
PNEUMATIC OPGRATING PRESSURE	20 to 150 psi [1.4 to 10 bar]
HYDRAULIC OPERATINGPRESSURE**	40 to 1500 psi [2.8 to 103 bar]
OPERATING TEMPERATURE	-20° to $180^{\circ} \mathrm{F}\left[-29^{\circ}\right.$ to $\left.82^{\circ} \mathrm{C}\right]$
ROTATIONAL TOLERANCE	Nominal rotation $+10^{\circ}$ to -0°
BACKLASH AT ANY MID-ROTATION POINT AND AT END OF ROTATION WITHOUT -A (DOUBLE RACK)	$1^{\circ}(2000), 0^{\circ} 30^{\prime}(4000,6000), 0^{\circ} 15^{\prime}(8000)$
BACKLASH AT END OF ROTATION WITH-A* (DOUBLERACK)	$0^{\circ}(2000,4000,6000,8000)$
BACKLASH ON ALL SINGLE RACK UNITS (END AND ANY MID-ROTATION)	$1^{\circ}(1000), 0^{\circ} 30^{\prime}(3000,5000), 0^{\circ} 15{ }^{\prime}(7000)$
LUBRICATION	Factory lubricated for rated life
MAINTENANCE	Feld reparable

NOTE: *-A angle adjustment screw must be engaged or adjusted to achieve 0° backlash

	WEGHT				BORE DIAMETER		DISPLACEMENT VOLUME/DEG		THEORETICAL TORQUE OUTPUT		ROTATIONAL VELOCITY MAX deg/sec	MAX AXIAL BEARING LOAD		MAX RADIAL BEARING LOAD		DISTANCEBETWEEN SHAFTBEARINGSin $\quad \mathrm{mm}$	
SIZE	lb	kg	$\mathrm{lb} /^{\circ}$	$\mathrm{kg} /^{\circ}$	in	mm	$\mathrm{in}^{3} /{ }^{\circ}$	$\mathrm{cm}^{3}{ }^{\circ}$	in-lb/psi	Nm/bar		1 l	N	lb	N		
1(000)	2.3	1.0	. 0022	. 0010	1.000	25.4	. 007	. 115	. 39	. 64	180°	120	534	300	1334	1.375	34.9
$2(000)$	3.3	1.5	. 0043	. 0020	1.000	25.4	. 014	. 229	. 78	1.28	180°						
3(000)	6.9	3.1	. 0064	. 0029	1.375	34.9	. 019	. 312	1.11	1.21	180°	240	1068	600	2669	2.188	55.6
4(000)	9.7	4.4	. 0127	. 0058	1.375	34.9	. 038	. 623	2.22	3.64	180°						
5(000)	10.7	4.8	. 0093	. 0042	2.000	50.8	. 041	. 672	2.36	3.87	180°	370	1646	925	4114	2.235	56.8
6(000)	15.7	7.1	. 0185	. 0084	2.000	50.8	. 082	1.344	4.72	7.74	180°						
7(000)	34.4	15.6	. 0289	. 0131	3.000	76.2	. 185	3.032	10.60	17.37	180°	800	3558	2000	8896	3.750	95.3
8(000)	42.2	19.1	. 0578	. 0262	3.000	76.2	. 370	6.064	21.20	34.75	180°						

PRESSURE RATINGS FOR OPTIONS

All pneumatic rotary actuators have a maximum pressure rating of 150 psi [10 bar] air. Most hydraulic rotary actuators have a maximum pressure rating of 1500 psi [100 bar], except as noted in the chart. Minimum factor of safety at maximum rated hydraulic pressure for output shaft is $2: 1$, and for hydraulic chambers is $3: 1$. Consult PHD for proof pressure data. Hydraulic ratings based on non-shock, hydraulic service.

HYD SERIES	OPTION psi [bar]			
	PLAIN	-P	-D	-E OR -M
1000	- -	- -	- -	- -
2000	1000 [69]	750 [52]	750 [52]	- -
3000	- -	- -	-	- -
4000	- -	750 [52]	750 [52]	- -
5000	- -	- -	- -	750 [52]
6000	- -	750 [52]	750 [52]	750 [52]
7000	- -	- -	- -	500 [35]
8000	-	750 [52]	750 [52]	500 [35]

[^0]
SIZING AND APPLICATION ASSISTANCE

See PHD Product Sizing Catalog for specific and complete sizing information. Online sizing assistance is available at: www. phdinc. com/apps/sizing

DIMENSIONS: SERIES 1000-8000 ROTARY ACTUATORS

DIMENSIONS: SERIES 1000-8000 ROTARY ACTUATORS

PORT CONTROL®

 COUNTERCLOCKWISEThe exclusive PHD Port Control ${ }^{\oplus}$, "built-in" speed control valve based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the rotary actuator end cap and are used to control the speed of the actuator over its entire rotation.

The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume only of the actuator proper. The separate ball check is closed while fluid is exhausting from the actuator, but opens to permit full flow of incoming fluids. The PHD Port Control ${ }^{\circledR}$ provides the optimum in speed control for rotary actuators. It saves space and eliminates the cost of fittings and installation for external flow control valves.

ADJUSTABLE CUSHIONS BOTH DIRECTIONS

ADJUSTABLE CUSHIONS CLOCKWISE

PHD Cushions are designed for smooth deceleration at the end of rotation. When the cushion is activated, the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration. Effective cushion length is approximately 30° of rotation.

Oushions on Series 2000, 4000, 6000, and 8000 are furnished on one of two racks only.

1/2000
Oushion Block Style Poppet Style

ANGLE ADJUSTMENT BOTH DIRECTIONS

A1
ANGLE ADJUSTMENT CLOCKWISE

A2

Adjusting screw(s) for reducing angle of rotation in either or both directions for use where exact degree of desired rotation cannot be predetermined or where requirements may vary during operation. Standard adjusting screw will reduce angle of rotation up to 30°. Available in conjunction with all other optional features.

Oushions are normally engaged over the last 30° of angle. The use of angle adjusting screws to reduce angle of rotation has a direct effect on the length of cushion engagement. Example: 10° angle reduction will reduce cushion engagement by 10°.

NUMBERS IN [] AREFOR METRICUNITS AND ARE IN mm.

SHOCK PADS
BOTH DIRECTIONS

B1 SHOCK PADS CLOCKWISE

B2
 SHOCK PADS COUNTERCLOCKWISE

Polyurethane pads for absorption of shock and noise are available on each end of Series 1000-8000 Rotary Actuators. Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for
 increased productivity. Pads eliminate metal-to-metal contact between piston and end caps. NOTE: Air application only.

G
 SHAFT SEAL COVERS
 Not available on Rx6x models

Fits all PHD Series 1000-8000, except when ordering hollow shafts. Isolates internal or external pressures. Maximum pressure differential is 500 psi [34.4 bar]. Furnished installed on actuator only (both sides). Covers are made of hard anodized aluminum. Not to be used as a pilot.

SERIES	LETTER	
	A	B
2000	1.875	.688
	$[47.63]$	$[17.5]$
4000	3.000	1.688
	$[76.20]$	$[42.9]$
6000	3.250	1.688
	$[82.55]$	$[42.9]$
8000	4.480	3.312
	$[113.79]$	$[84.1]$

NUMBERS IN [] ARE FOR MEIRIC UNITS AND ARE IN mm.

OPTIONS: SERIES 1000-8000 ROTARY ACTUATORS

BASIC SHAFT DIMENSIONS: R1xx and R2xx

SERIES	LEITER DIMENSION				
	PA	IMPERIAL*		METRIC**	
		V	W	V	W
1000 \& 2000	$\begin{aligned} & \hline .875 \\ & {[22]} \end{aligned}$	$\begin{gathered} .4998 / .5003 \\ {[12.69 / 12.71]} \end{gathered}$	$\begin{array}{r} 1 / 8 \times 1 / 16 \times .625 \\ {[3.18 \times 1.56 \times 16]} \\ \hline \end{array}$	[12.00/11.97]	$[4 \times \overline{2.5} \times 15]$
3000 \& 4000	$\begin{aligned} & 1.875 \\ & {[48]} \end{aligned}$	$\begin{gathered} .8748 / .8753 \\ {[22.22 / 22.23]} \end{gathered}$	$\begin{gathered} 3 / 16 \times 3 / 32 \times 1.500 \\ {[4.75 \times 2.36 \times 38]} \\ \hline \end{gathered}$	[22.00/21.96]	$[6 \times 3.5 \times 32]$
5000 \& 6000	$\begin{aligned} & 1.875 \\ & {[48]} \end{aligned}$	$\begin{gathered} 1.124 / 1.125 \\ {[28.55 / 28.58]} \end{gathered}$	$\begin{aligned} & 1 / 4 \times 1 / 8 \times 1.500 \\ & {[6.35 \times 3.18 \times 38]} \end{aligned}$	[28.00/27.96]	$[8 \times 5 \times 40]$
7000 \& 8000	$\begin{gathered} 3.500 \\ {[89]} \end{gathered}$	$\begin{gathered} 1.749 / 1.750 \\ {[44.42 / 44.45]} \end{gathered}$	$\begin{aligned} & 3 / 8 \times 3 / 16 \times 3.000 \\ & {[9.53 \times 2.36 \times 76]} \end{aligned}$	[44.00/43.96]	$\frac{-}{\overline{5} \times 56]}$
NOTES: 1) SHAFT KEY 2) *IMPERIAL 3) ** METRIC	WAY: SHAFT SHAFT	HOWN AT MIDUNITS (Rx1x, UNITS (Rx6x)	ROTATION $R x 5 x)$		

Required when use with hub adaptor is desired.
(
SHAFT KEYWAY: SHOWN AT MID-ROTATION
R2xx UNITS: WHEN ORDERING SPECIFY -K-K FOR PREOAD ON BOTH SHAFT EXTENSIONS. PREOAD WILL BE ON OPPOSITE SIDES OF SHAFT.
SET SCREW: INCLUDED WITH UNIT

C
 CROSS KEY SHAFT

 Not available on Rx6x

 Not available on Rx6x}

SERIES	LEITER DIMENSION					
	A	B	C	D	E	F
	.250	.215	.230	.500	.118	.250
	$[6.4]$	$[5.5]$	$[5.8]$	$[12.7]$	$[3]$	$[6.3]$
$3000 \& 4000$.250	.265	.248	.875	.120	.248
	$[6.4]$	$[6.7]$	$[6.3]$	$[22.2]$	$[3]$	$[6.3]$
$5000 \& 6000$.437	.485	.500	1.125	.150	.5002
	$[11]$	$[12.3]$	$[12.7]$	$[28.6]$	$[3.8]$	$[12.7]$
$7000 \& 8000$.437	.805	.875	1.750	.245	.8752
	$[11]$	$[20.4]$	$[22.2]$	$[44.5]$	$[6.2]$	$[22.2]$

SHAFT KEYWAY: SHOWN AT MID-ROTATION
R2xx UNITS: WHEN ORDERING SPECIFY -C-CFOR CROSSKEY ON BOTH SHAFT EXTENSIONS CROSSKEY: INCLUDED WTH UNIT

SERIES	LEITER DIMENSION			
	A	PB	VA	WA
$1000 \& 2000$.042	1.920	.250	-
	$[1.1]$	$[48.76]$	$[6.35]$	-
$3000 \& 4000$.042	2.917	.500	$1 / 8 \times 1 / 16$
	$[1.1]$	$[74.09]$	$[12.7]$	$[3.18 \times 1.58]$
$5000 \& 6000$.135	2.730	.687	$3 / 16 \times 3 / 32$
	$[3.4]$	$[69.34]$	$[17.46]$	$[4.76 \times 2.38]$
$7000 \& 8000$.240	4.520	1.125	$1 / 4 \times 1 / 8$
	$[6.1]$	$[114.80]$	$[28.57]$	$[6.35 \times 3.18]$
SHAFT KEYWAY: SHOWN AT MID-ROTATION				

MAGNETIC PISTON FOR USE WITH PHD PROXIMITY SWITCHES

See engineering data page for Hydraulic Pressure Ratings with these options. See ordering data for magnetic piston ordering information. Switches and brackets must be ordered separately. See Switches and Sensors section for complete switch information.

Series 1000-8000 Rotary Actuators may be equipped with a magnetic band (specify -E) on the pistons which activates externally mounted Solid State Switches. These switches allow the interfacing of the PHD Actuators to various logic systems. This option is for use with the following switches.

SERIES 1750 SOLID STATE SWITCHES

PART NO.	COLOR	DESCRIPTION
17503-2-06	Yellow	NPN (Sink) Type 4.5-24 VDC, 6 foot cable
17504-2-06	Red	PNP (Source) Type 4.5-24 VDC, 6 foot cable
$17523-2$	Yellow	NPN (Sink) Type 4.5-24 VDC, Quick Connect
$17524-2$	Red	PNP (Source) Type 4.5-24 VDC, Quick Connect

SWITCH BRACKETS
PART NO.

	PART NO.
SERIES	SERIES 1750 SWITCH
$1000 \& 2000$	$17000-32-5$
$3000 \& 4000$	$17000-34-5$
$5000 \& 6000$	$17000-38-0$
$7000 \& 8000$	$17000-39-0$

REED SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the Solid State Switches are not applicable. As with the Solid State Switches, a magnetic band (specify -M) on the pistons activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

SERIES 1750 REED SWITCHES

PART NO.	DESCRIPTION	
$17502-2-06$	White	NPN (Sink) or PNP (Source) 4.5-24 VDC, 6 foot cable
$17509-3-06$	GreenAC Type 110-120 VAC with Current Limit, 6 foot cable	
$17522-2$	WhiteNPN (Sink) or PNP (Source) 4.5-24 VDC, 17529-3GreenQuick ConnectAC Type 110-120 VAC, Quick Connect with Qurrent Limit	

SENSOR/SET POINT MODULE

Not available on Rx6x

PHD offers a solid state sensor transducer along with a Set Point Module which provides up to four adjustable sensing positions throughout the 180° maximum sensing range. These signals can be used as inputs to a programmable controller to signal ends of rotation in addition to multiple signals during rotation for indication of arc traveled.

The Set Point Module allows independent adjustment of each sensing position and is available for 4.5 to 24 VDC current sinking or current sourcing.

SET POINT MODULE

PART NO.	DESCRIPTION
9800-01-0300	NPN (Sink) 4.5-24 VDC
9800-01-0400	PNP (Source) 4.5-24 VDC

See Switches and Sensors section for information.

OPTIONS:

COUNTERCLOCKWISE UNIDIRECTIONAL CLUTCH
Not available on Rx6x or 7/8000 units Output hub will only rotate in counterclockwise direction at specific rotation ordered.

R

CLOCKWISE UNIDIRECTIONAL CLUTCH

Not available on Rx6x or 7/8000 units
Output hub will only rotate in clockwise
direction at specific rotation ordered.

Output hub rotates in one direction only. It remains motionless while rack and pinion reverse. Qutch repeats within $\pm 1 / 2^{\circ}$.

Assembly features a Torrington roller clutch. Spring loaded brake shoes limit output shaft free wheeling, but are not intended for stopping external loads.

CAUTION: Any angular error will accumulate; therefore, shot pins or similar locators are necessary on index applications. Maintain shot pin location during reversal of Rotary Actuator to guarantee that clutch shaft does not move due to external forces or slight internal friction in clutch.

Overrun clutch for intermittent unidirectional shaft output, available for Series 1000 through 6000.

N PILOT VALVE ACTUATOR

Not available on Rx 6 x

The PVA functions as a built-in pneumatic limit switch. An air pressure signal is provided at the end-of-piston travel as the piston seal uncovers an orifice in the block. Upon reversal of piston travel, the pilot pressure is shut off and the pilot line is vented through the rotary actuator housing.

Air pilot signal is provided approximately . 03 inch [1 mm] prior to end of piston travel (or 10 to 15 degrees prior to end of rotation). For pneumatic use only.

PVA ports are located in position 1 unless otherwise specified.

Not available in conjunction with angle adjustment -A option.

PORT \& PORT CONTROL® LOCATIONS

Standard port location on all Series 1000-8000 Actuators is position 2. Standard PVA (-N) Locations are tubes I and II in position 1. Standard Port Control ${ }^{\circledR}$ and cushion adjustment needles are located in end caps I and II in position 1. Other port and adjusting needle locations are available as specified.

Needles may not be located in same position as ports.

PORT POSITION 1 TOP RACK

 PORT POSITION 3 BOTTOM RACKThis option positions the ports in position 1 on tubes I and II and in position 3 on tubes III and IV. This allows access to the ports on the "Top" and "Bottom" sides of the actuator.

This option positions the ports in position 1.

V

 FLUORO-ELASTOMER SEALS
W CLOSE TOLERANCE ROTATION

Z1 ELECTROLESS NICKEL PLATING

Q PORTS POSITION 3
 (N / A on 2, 4, 6, and 8000 units)

This option positions the ports in position 3 on tubes I and II.

T PORTS POSITION 4

This option positions the ports in position 4. This allows access to ports from the back.

Auoro-Eastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application.

This option may be specified when a precise rotation is required and angle adjustment (see page 5-62) is not acceptable. By specifying this option, rotation will be within a tolerance of $+30,-0$ minutes. Standard tolerance is $-0^{\circ},+10^{\circ}$ of rotation.

Bectroless nickel plating is done on all externally exposed ferrous parts except the pinion shaft. This optional plating treatment gives an alternative method of protecting the unit from severe environments.

NOTE: Standard plating is Znc and Black Oxide.

MOUNTING FLANGE (HARDWARE INCLUDED)

BOTTOM MOUNTING FLANGE

	KIT NO.		LETTER DIMENSION					
SERIES	IMPERIAL METRIC	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	E	F	
$1000 \& 2000$	13756	14320	$4.250[108]$	$2.000[51]$	$1.625[41.3]$	$2.625[66.7]$	$.281[7.1]$	$.250[6.3]$
$3000 \& 4000$	13757	14321	$4.500[114]$	$3.000[76]$	$2.375[60.3]$	$3.875[98.4]$	$.406[10.3] .437[11.1]$	
$5000 \& 6000$	13758	14322	$4.500[114]$	$4.000[102]$	$3.375[85.7]$	$3.875[98.4]$	$.406[10.3] .437[11.1]$	

SIDE MOUNTING FLANGE

SERIES	KIT NO.IMPERIAL METRIC		LETTER DIMENSION							
			A	A	B	C	D	E	F	G
1000 \& 2000	13759	14316	4.250	[108]	2.000 [51]	1.375 [34.9]	3.625 [92.1]	. 281 [7.1]	. 250 [6.3]	. 625 [15.9]
3000 \& 4000	13760	14317	5.750	[146]	3.000 [76]	2.125 [54.0]	5.125 [130.2]	. 406 [10.3]	. 437 [11.1]	1.000 [25.4]
5000 \& 6000	13761	14318	6.500	[165]	4.000 [102]	3.375 [85.7]	5.875 [149.2]	. 406 [10.3]	. 437 [11.1]	1.250 [31.8]
7000 \& 8000	13762	14319	12.000	[305]	5.000 [127]	3.000 [76.2]	10.000[254.0]	. 781 [19.8]	. 750 [19.1]	1.875 [47.6]

www.phdinc.com/18000r • (800) 624-8511

OPTIONS: SERIES 1000-8000 ROTARY ACTUATORS

S

SAE PORTS FOR HYDRAULIC FLUID
Not available on Rx6x or RxxA

SAE Ports are available on most PHD hydraulic Rotary Actuators. The Series 1000 and 2000 Rotary Actuators require a boss which is brazed to the caps.

Dimensions for this boss are shown below. Consult PHD for optional port position or units with Port Controls.

2000-8000

air/oil tandem

SMOOTH ROTATION AND CONTROLLED VELOCITY

OUTPUT TORQUES TO 1,590 in-lb [179 Nm]

Major Benefits

- Smooth rotation throughout rotation
- Controlled velocity

Industry Uses

- Automotive
- General industrial machines

ORDERING DATA: air/oll tandem rotary actuators

SPECIFICATIONS	TANDEM SERIES 2000-8000
PNEUMATIC OPERATING PRESSURE OPERATING TEMPERATURE FULL (TOTAL) ROTATIONAL TOLERANCE MID-ROTATIONAL TOLERANCES (3-POSITION UNIT)	20 to $150 \mathrm{psi}[1.4$ to 10 bar$]$ -20° to $180^{\circ} \mathrm{F}\left[-29^{\circ}\right.$ to $\left.82^{\circ} \mathrm{C}\right]$ Nominal rotation $+10^{\circ} \%-0^{\circ}$ (see chart below for mid-position tolerance)
BACKLASH AT ANY MID-ROTATION POINT AND AT END OF ROTATION WITHOUT -A OPTION	$1^{\circ}(2000), 0^{\circ} 30^{\prime}(4000,6000) 0^{\circ} 15^{\prime}(8000)$
AT END OF ROTATION WITH -A OPTION* (DOUBLE RACK)	$0^{\circ}(2000,4000,6000,8000)$
AT MID-POSITION LOCATION (3 POSITION UNIT)	(see chart below for mid-position backlash)
LUBRICATION MAINTENANCE	Factory lubricated for rated life Field repairable

NOTE: *Angle adjustment screw must be engaged or adjusted to achieve 0° backlash. (-A standard on 3-position units)

SIZE	WEIGHT				BORE DIAMETER		DISPLA VOLU	CEMENT ME/DEG	THEOR TOR OUT	TICAL QUE UT	MAX SPEED AT 80 psi	MAX AXIAL BEARING LOAD		MAX RADIAL BEARING LOAD		DISTANCEBETWEEN SHAFTBEARINGS	
	Ib	kg	lb/ ${ }^{\circ}$	kg ${ }^{\circ}$	in	mm	$\mathrm{in}^{3}{ }^{\circ}$	$\mathrm{cm}^{3} /{ }^{\circ}$	in-lb/psi	Nm/bar	deg/sec	lb	N	lb	N	in	mm
2(000)	4.5	2.0	. 0059	. 0027	1.000	25.4	. 007	. 115	. 39	. 64	$366{ }^{\circ}$	120	534	300	1334	1.375	34.9
$4(000)$	11.5	5.2	. 0161	. 0073	1.375	34.9	. 019	. 312	1.11	1.82	348°	240	1068	600	2669	2.188	55.6
6(000)	18.1	8.2	. 0244	. 0111	2.000	50.8	. 041	. 672	2.36	3.87	216°	370	1646	925	4114	2.235	56.8
8(000)	41.0	18.6	. 0581	. 0264	3.000	76.2	. 185	3.032	10.60	17.37	156°	800	3558	2000	8896	3.750	95.3

3-POSITION MID-POSITION TOLERANCES \& BACKLASH

SERIES	TOLERANCE	BACKLASH
2000	$\pm 1^{\circ}$	$\pm 1^{\circ} 30^{\prime}$
$4000 \& 6000$	$\pm 0^{\circ} 30^{\prime}$	$\pm 1^{\circ} 15^{\prime}$
8000	$\pm 0^{\circ} 15^{\prime}$	1°

OPERATING PRINCIPLE

This feature is available on Series 2000, 4000, 6000, and 8000. One end functions as a control member only, reducing the effective output torque to match $1000,3000,5000$, and 7000 respectively.

The illustration shows a tandem actuator with built-in Port Controls ${ }^{\circledR}$, crossover manifold and oil reservoir. The latter serves as an accumulator to compensate for oil volume changes due to temperature variation.

NOTE: The reservoir should have 20 psi [1.4 bar] pressure at all times to ensure the system remains purged.

DIMENSIONS: AIR/OIL tandem rotary actuators

*Dimensions calculated using plain cap style. Add .250 to dimension for each -A style cap used on Series 2000 only.

DIMENSIONS: alr/oll tandem rotary actuators

METRIC

* BOTH IMPERIAL AND METRIC SHAFT OPTIONS AVAILABLE ON METRIC BODY
(IMPERIAL SHAF = DESIGN 8, AND METRIC SHAFT = DESIGN 9).
NUMBERS FOR METRIC UNITS AND ARE IN mm.

OPTION LOCATION REFERENCE

QUICK REFERENCE FOR: $\mathrm{A}+\left(\mathrm{T}^{\circ} \times \mathrm{B}\right)$						
	DEGREE OF ROTATION					
SERIES	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 8 0}$	$\mathbf{2 7 0}$	$\mathbf{3 6 0}$	$\mathbf{4 5 0}$

	SERIES					
	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 8 0}$	$\mathbf{2 7 0}$	$\mathbf{3 6 0}$	$\mathbf{4 5 0}$
**2000	177.7	197.6	237.4	277.2	317.0	356.7

6000	263.1	292.9	352.3	411.7	471.2	530.9
8000	342.1	401.5	520.4	639.3	758.1	877.0

 ED-C2

DIMENSIONS: 3-position air/OIL tandem

DIMENSIONS: 3-Position air/oll tandem

METRIC

OPTION LOCATION REFERENCE

SHAFT KEYWAY: SHOWN AT MID-ROTATION
PORT POSITIONS: INDICATED BY CIRCLED NUMBERS
PLUMBING SCHEMATIC: LOCATED IN ENGINEERING DATA SECTION

OPTIONS: AIR/OIL tandem rotary actuators

D

ADJUSTABLE CUSHIONS BOTH DIRECTIONS

D1

ADJUSTABLE CUSHIONS CLOCKWISE

ADJUSTABLE CUSHIONS COUNTERCLOCKWISE

PHD Cushions are designed for smooth deceleration at the end of rotation. When the cushion is activated, the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration. Effective cushion length is approximately 30° of rotation, except on the 8000 Tandem which has 20° of cushion length.

Cushions on Series 2000, 4000, 6000, and 8000 are furnished on one of two racks only.

ANGLE ADJUSTMENT
BOTH DIRECTIONS
(Standard on 3-position units)

A1

ANGLE ADJUSTMENT CLOCKWISE

A2 ANGLE ADJUSTMENT COUNTERCLOCKWISE

Adjusting screw(s) for reducing angle of rotation in either or both directions for use where exact degree of desired rotation cannot be predetermined or where requirements may vary during operation. Standard adjusting screw will reduce angle of rotation up to 30°. Available in conjunction with all other optional features.

Cushions are normally engaged over the last 30° of angle. The use of angle adjusting screws to reduce angle of rotation has a direct effect on the length of cushion engagement. Example: 10° angle reduction will reduce cushion engagement by 10°.

SERIES	LETTER DIMENSION				
	H	ZA	ZB	ZC	ZD
2000	0.00	1.125	.312	$3 / 16$ HEX	.875
	$[0]$	$[29]$	$[8]$	-	$[22]$
4000	.250	1.500	.375	$1 / 4$ HEX	1.250
	$[6]$	$[38]$	$[10]$	-	$[32]$
6000	.203	1.875	.750	$1 / 4$ HEX	1.250
	$[5]$	$[48]$	$[19]$	-	$[32]$
8000	.437	2.875	.937	$3 / 4$ FLAT	1.750
	$[11]$	$[73]$	$[24]$	$[19 \mathrm{~mm}]$	$[45]$

NUMBERS IN [] ARE FOR METRIC UNITS AND ARE IN mm.

G SHAFT SEAL COVERS
 Not available on Rx9R

Fits all PHD Series 2000-8000, except when ordering hollow shafts. Isolates internal or external pressures. Maximum pressure differential is 500 psi [34.4 bar]. Furnished installed on actuator only (both sides). Covers are made of hard anodized aluminum. Not to be used as a pilot.

OPTIONS: AIR/OIL tandem rotary actuators

BASIC SHAFT DIMENSIONS: R1xR and R2xR

SERIES	LETTER DIMENSION				
	PA	IMPERIAL*		METRIC**	
		V	W	V	W
2000	. 875	.4998/.5003	$1 / 8 \times 1 / 16 \times .625$	-	-
	[22]	[12.69/12.71]	[$3.18 \times 1.56 \times 16$]	[12.00/11.97]	[$4 \times 2.5 \times 15$]
4000	1.875	.8748/.8753	$3 / 16 \times 3 / 32 \times 1.500$	-	-
	[48]	[22.22/22.23]	[$4.75 \times 2.36 \times 38$]	[22.00/21.96]	[$6 \times 3.5 \times 32$]
6000	1.875	1.124/1.125	$1 / 4 \times 1 / 8 \times 1.500$	-	-
	[48]	[28.55/28.58]	[$6.35 \times 3.18 \times 38$]	[28.00/27.96]	[$8 \times 5 \times 40$]
8000	3.500	1.749/1.750	$3 / 8 \times 3 / 16 \times 3.000$	-	-
	[89]	[44.42/44.45]	[$9.53 \times 2.36 \times 76$]	[44.00/43.96]	[$12 \times 5 \times 56$]

NOTES:

1) SHAFT KEYWAY: SHOWN AT MID-ROTATION
2) *IMPERIAL SHAFT UNITS (Rx3R, Rx8R)
3) ${ }^{* * \text { METRIC SHAFT UNITS (Rx9R) }}$

SET SCREW: INCLUDED WITH UNIT

C CROSS KEY SHAFT
 Not available on Rx9R

H HOLLOW SHAFT

Not available on Rx9R

SERIES	LETTER DIMENSION			
	A	PB	VA	WA
	.042	1.920	.250	-
	$[1.1]$	$[48.76]$	$[6.35]$	-
4000	.042	2.917	.500	$1 / 8 \times 1 / 16$
	$[1.1]$	$[74.09]$	$[12.7]$	$[3.18 \times 1.58]$
6000	.135	2.730	.687	$3 / 16 \times 3 / 32$
	$[3.4]$	$[69.34]$	$[17.46]$	$[4.76 \times 2.38]$
8000	.240	4.520	1.125	$1 / 4 \times 1 / 8$
	$[6.1]$	$[114.80]$	$[28.57]$	$[6.35 \times 3.18]$

SHAFT KEYWAY: SHOWN AT MID-ROTATION

OPTIONS: AIR/OIL tandem rotary actuators

MAGNETIC PISTON FOR USE WITH PHD PROXIMITY SWITCHES

See each data for magnetic piston ordering information.
Switches and brackets must be ordered separately.
See Switches and Sensors section for complete switch information.

E SOLID STATE SWITCHES

Series 2000-8000 Rotary Actuators may be equipped with a magnetic band (specify -E) on the pistons which activates externally mounted PHD Solid State Switches. These switches allow the interfacing of the PHD Actuators to various logic systems. This option is for use with the following switches.

SERIES 1750 SOLID STATE SWITCHES

PART NO.	COLOR	DESCRIPTION
$17503-2-06$	Yellow	NPN (Sink) Type 4.5-24 VDC, 6 foot cable
$17504-2-06$	Red	PNP (Source) Type 4.5-24 VDC, 6 foot cable
$17523-2$	Yellow	NPN (Sink) Type 4.5-24 VDC, Quick Connect
$17524-2$	Red	PNP (Source) Type 4.5-24 VDC, Quick Connect

SWITCH BRACKETS

	PART NO.
SERIES	SERIES 1750 SWITCH
2000	$17000-32-5$
4000	$17000-34-5$
6000	$17000-38-0$
8000	$17000-39-0$

M

REED SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the Solid State Switches are not applicable. As with the Solid State Switches, a magnetic band (specify -M) on the pistons activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

SERIES 1750 REED SWITCHES

PART NO.	DESCRIPTION	
$17502-2-06$	White	NPN (Sink) or PNP (Source) 4.5-24 VDC, 6 foot cable
$17509-3-06$	Green	AC Type 110-120 VAC with Current Limit, 6 foot cable
$17522-2$	White	NPN (Sink) or PNP (Source) 4.5-24 VDC, Quick Connect
$17529-3$	GreenAC Type 110-120 VAC, Quick Connect with Current Limit	

J SENSOR/SET POINT MODULE
 Not available on Rx9R

PHD offers a solid state sensor transducer along with a Set Point Module which provides up to four adjustable sensing positions throughout the 180° maximum sensing range. These signals can be used as inputs to a programmable controller to signal ends of rotation in addition to multiple signals during rotation for indication of arc traveled.

The Set Point Module allows independent adjustment of each sensing position and is available for 4.5 to 24 VDC current sinking or current sourcing.

SET POINT MODULE

PART NO.	DESCRIPTION
$9800-01-0300$	NPN (Sink) 4.5-24 VDC
$9800-01-0400$	PNP (Source) 4.5-24 VDC

See Switches and Sensors section for information.

OPTIONS: AIR/OIL tandem rotary actuators

COUNTERCLOCKWISE UNIDIRECTIONAL CLUTCH
Not available on Rx9R or 7/8000 Output hub will only rotate in counterclockwise direction at specific rotation ordered.

CLOCKWISE UNIDIRECTIONAL CLUTCH

Not available on Rx9R or 7/8000 Output hub will only rotate in clockwise direction at specific rotation ordered.

Output hub rotates in one direction only. It remains motionless while rack and pinion reverse. Clutch repeats within $\pm 1 / 2^{\circ}$.

Assembly features a Torrington roller clutch. Spring loaded brake shoes limit output shaft free wheeling, but are not intended for stopping external loads.

CAUTION: Any angular error will accumulate; therefore, shot pins or similar locators are necessary on index applications. Maintain shot pin location during reversal of Rotary Actuator to guarantee that clutch shaft does not move due to external forces or slight internal friction in clutch.

Overrun clutch for intermittent unidirectional shaft output, available for Series 2000 through 6000.

SERIES	LETTER DIMENSION				
	A	C	D	E	\mathbf{Q}
	.281	2.938	2.000	1.500	2.000
	$[7.2]$	$[74.6]$	$[51]$	$[38]$	$[50.8]$
4000	344 4.188	3.000	2.000	3.000	
	$[8.7]$	$[106.3]$	$[76]$	$[50.8]$	$[76.2]$
6000	.406	4.938	4.000	2.500	3.500
	$[10.3]$	$[125.4]$	$[102]$	$[63.5]$	$[88.9]$

	LIMITING FACTORS			
SERIES	MAX. INLET	MAX. RADIAL OR		
	PRESSURE(psi)[bar]	AXIAL LOAD (lb) [N]		
2000	526	$[36]$	5	$[22]$
4000	186	$[13]$	10	$[44]$
6000	87	$[6]$	15	$[66]$

ABOVE INLET PRESSURES PROVIDE A MAXIMUM TORQUE OF $414 \mathrm{in}-\mathrm{Ib}$ [46.8 Nm] ALLOWED BY THE CLUTCH

OPTIONS: AIR/OIL tandem rotary actuators

PORT \& PORT CONTROL® LOCATIONS

Standard port location on all Series 2000-8000 Actuators is position 2. Standard Port Control ${ }^{\oplus}$ and cushion adjustment needles are located in position 4.

1

 PORT POSITION 1 TOP RACK PORT POSITION 3 BOTTOM RACKThis option positions the ports in position 1 on tube I and in position 3 on rack III. This allows access to the ports on the "Top" and "Bottom" sides of the actuator.

T PORT POSIIION 4

This option positions the ports in position 4 on tubes I and III.

Y
 TANDEM CAP ROTATED 180°

This option rotates the cap of an Air/Oil Tandem Rotary Actuator 180°. This places the Port Control ${ }^{\circledR}$ (and Cushion) needles and the Tandem fitting in position 2. Standard position for these is position 4.

Fluoro-Elastomer seals are available for seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application. Consult PHD for high temperature applications.

This option may be specified when a precise rotation is required and angle adjustment (see page 5-76) is not acceptable. By specifying this option, rotation will be within a tolerance of $+30,-0$ minutes. Standard tolerance is $-0^{\circ},+10^{\circ}$ of rotation.

Electroless nickel plating is done on all externally exposed ferrous parts except the pinion shaft. This optional plating treatment gives an alternative method of protecting the unit from severe environments.

NOTE: Standard plating is Zinc and Black Oxide.

MOUNTING FLANGE (HARDWARE INCLUDED)

BOTTOM MOUNTING FLANGE

	$\begin{gathered} \text { KIT NO. } \\ \text { IMPERIAL METRIC } \end{gathered}$		LETTER DIMENSION					
SERIES			A	B	C	D	E	F
2000	13756	14320	4.250 [108]	2.000 [51]	1.625 [41.3]	2.625 [66.7]	. 281 [7.1]	. 250 [6.3]
4000	13757	14321	4.500 [114]	3.000 [76]	2.375 [60.3]	3.875 [98.4]	. 406 [10.3]	. 437 [11.1]
6000	13758	14322	4.500 [114]	4.000 [102]	3.375 [85.7]	3.875 [98.4]	. 406 [10.3]	. 437 [11.1]

SIDE MOUNTING FLANGE

2000-8000

 Multioposition
THREE, FOUR, OR FIVE ROTARY POSITIONS

4 POSITION UNIT

Major Benefits

- Three, four, or five rotary positions

Industry Uses

- Automotive
- General industrial machines

ORDERING DATA: mult--Position rotary actuators

ENGINEERING DATA:
 MULIT-POSITION ROTARY ACTUATORS

SPECIFICATIONS	MULTI-POSITION SERIES 2000-8000
PNEUMATIC OPERATING PRESSURE HYDRAULIC OPERATING PRESSURE* OPERATING TEMPERATURE	$\begin{aligned} & 20 \text { to } 150 \mathrm{psi}[1.4 \text { to } 10 \mathrm{bar}] \\ & 40 \text { to } 1500 \mathrm{psi}[2.8 \text { to } 103 \mathrm{bar}] \text { (see option table below) } \\ & -20^{\circ} \text { to } 180^{\circ} \mathrm{F}\left[-29^{\circ} \text { to } 82^{\circ} \mathrm{C}\right] \\ & \hline \end{aligned}$
FULL (TOTAL) ROTATIONAL TOLERANCE MID-POSITION ROTATIONAL TOLERANCES (ALL MID-POSITIONS 2, 3, 4)	Nominal rotation $+10^{\circ} /-0^{\circ}$ (see chart below for mid-position tolerance)
BACKLASH AT ANY MID-ROTATION POINT, ALL UNITS AND 4 POSITION, END OF ROTATIONS	$1^{\circ}(2000), 0^{\circ} 30 '(4000,6000), 0^{\circ} 15^{\prime}(8000)$
AT END OF ROTATIONS ON 3 AND 5 POSITIONS*	$0^{\circ}(2000,4000,6000,8000)$
AT MID-POSITION LOCATIONS (ALL MID-POSITIONS 2, 3, 4)	(see chart below for mid-position backlash)
LUBRICATION MAINTENANCE	Factory lubricated for rated life Field repairable

NOTE: *Angle adjustment screw must be engaged or adjusted to achieve 0° backlash.

SIZE	BORE DIAMETER		DISPLACEMENT VOLUME/DEG		THEORETICAL TORQUE OUTPUT		MAX AXIAL BEARING LOAD		MAX RADIAL BEARING LOAD		DISTANCE BETWEEN SHAFT BEARINGS	
	in	mm	$\mathrm{in}^{3} \mathrm{l}^{\circ}$	$\mathrm{cm}^{3} /{ }^{\circ}$	in-lb/psi	Nm/bar	lb	N	lb	N	in	m
2000	1.000	25.4	. 014	. 229	. 39	. 64	120	534	300	1334	1.375	34.9
4000	1.375	34.9	. 038	. 623	1.11	1.82	240	1068	600	2669	2.188	55.6
6000	2.000	50.8	. 082	13.44	2.36	3.87	370	1646	925	4114	2.235	56.8
8000	3.000	76.2	. 370	6.06	10.60	17.37	800	3558	2000	8896	3.750	95.3

PRESSURE RATINGS FOR OPTIONS

All pneumatic rotary actuators have a maximum pressure rating of 150 psi [10 bar] air. Most hydraulic rotary actuators have a maximum pressure rating of 1500 psi [100 bar], except as noted in chart below.

HYD	OPTION psi [bar]					
SERIES	-P		-D	-E OR -M		
2000	-	-	-	-	-	-
4000	-	-	-	-	-	-
6000	-	-	-	-	750	$[52]$
8000	-	-	-	-	500	$[35]$

NOTE: All hydraulic ratings are based on non-shock hydraulic service.

Minimum factor of safety at maximum rated hydraulic pressure for output shaft is $2: 1$, and for hydraulic chambers is $3: 1$. Consult PHD for proof of pressure data. All ratings based on non-shock hydraulic service and with full rotation tubes not being double powered.

BACKLASH \& INTERMEDIATE POSITION TOLERANCES

SERIES	ROTATIONAL TOLERANCE**	BACKLASH
2000	$\pm 1^{\circ}$	$1^{\circ} 30^{\prime}$
$4000 \& 6000$	$\pm 0^{\circ} 30^{\prime}$	$1^{\circ} 15^{\prime}$
8000	$\pm 0^{\circ} 15^{\prime}$	1°

**Rotational position from one intermediate position to another (measured at centers of backlash).

SIZING AND APPLICATION ASSISTANCE

See PHD Product Sizing Catalog for specific and complete sizing information. Online sizing assistance is available at: www.phdinc.com/apps/sizing

DIMENSIONS: з POSIIION Rotary actuators

IMPERIAL

dimension for

SHAFT KEYWAY: SHOWN AT MID-ROTATION
PORT POSITIONS: INDICATED BY CIRCLED NUMBERS

[^1]
DIMENSIONS: з position rotary actuators

METRIC

ADD 13.0 mm TO RESPECTIVE "A" AND " Y " DIMENSION FOR EACH CUSHION
MTG. HOLES: CENTERED ON CENTERLINE OF ACTUATOR BODY
PLUMBING SCHEMATIC: LOCATED IN PHD PRODUCT SIZING CATALOG.

DIMENSIONS: 4 position rotary actuators

IMPERIAL

PORTS PRESSURIZED
PORTS PRESSURIZED-E
FULL CCW POSITION

DIMENSIONS: 4 position rotary actuators

METRIC

MTG. HOLES: CENTERED ON CENTERLINE OF ACTUATOR BODY
STOP TUBES: LOCATED IN TUBES I \& II
PLUMBING SCHEMATIC: LOCATED IN PH
PLUMBING SCHEMATIC: LOCATED IN PHD PRODUCT SIZING CATALOG.

DIMENSIONS: 5 position rotary actuators

IMPERIAL

DIMENSIONS: 5 POSIIION Rotary actuators

METRIC

OPTIONS: multi-POSition rotary actuators

P
 PORT CONTROL ${ }^{\circledR}$

The exclusive PHD Port Control ${ }^{\oplus}$, "built-in" speed control valve, based on the "meter-out" principle, features an adjustable needle and a separate ball check. Both are built into the rotary actuator end cap and are used to control the speed of the actuator over its entire rotation.

The self-locking needle has micrometer threads and is adjustable under pressure. It determines the orifice size which controls the exhaust volume only of the actuator proper. The separate ball check is closed while fluid is exhausting from the actuator, but opens to permit full flow of incoming fluids. The PHD Port Control ${ }^{\circledR}$ provides the optimum in speed control for rotary actuators. It saves space and eliminates the cost of fittings and installation for external flow control valves.

D ADJUSTABLE CUSHIONS

PHD Cushions are designed for smooth deceleration at the end of rotation. When the cushion is activated, the remaining volume in the cylinder must exhaust past an adjustable needle which controls the amount of deceleration. Effective cushion length is approximately 30° of rotation.

Cushions on Series 2000, 4000, 6000 and 8000 are furnished on one of two racks only.

B SHOCK PADS

Polyurethane pads for absorption of shock and noise are available on each end of Series 2000-8000 Rotary Actuators. Reducing shock permits higher piston velocities for shorter cycle times. Reducing noise levels provides improved environment for increased productivity. Pads eliminate metal-to-metal contact between piston and end caps. NOTE: Air application only.

G SHAFT SEAL COVERS
 Not available on Rx6x

Fits all PHD Series 2000-8000, except when ordering hollow shafts. Isolates internal or external pressures. Maximum pressure differential is 500 psi [34.4 bar]. Furnished installed on actuator only (both sides). Covers are made of hard anodized aluminum. Not to be used as a pilot.

SERIES	LETTER	
	A	B
2000	1.875	. 688
	[47.63]	[17.5]
4000	3.000	1.688
	[76.20]	[42.9]
6000	3.250	1.688
	[82.55]	[42.9]
8000	4.480	3.312
	[113.79]	[84.1]

NUMBERS IN [] ARE FOR METRIC UNITS AND ARE IN mm.

OPTIONS: multi-pOSition rotary actuators

SHAFT KEYWAY: SHOWN AT MID-ROTATION
R2xx UNITS: WHEN ORDERING SPECIFY -K-K FOR PRELOAD ON BOTH SHAFT EXTENSIONS. PRELOAD WILL BE ON OPPOSITE SIDES OF SHAFT.

SERIES	LETTER DIMENSION					
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
	.375	1.500	.250	$3 / 8-24$	$10-32 \times .312 \mathrm{DP}$.156
	$[9.5]$	$[38.1]$	$[6.35]$	$[\mathrm{M} 10]$	$[\mathrm{M} 5 \times 8]$	$[4]$
4000	.812	2.000	.437	$1 / 2-20$	$5 / 16-24 \times .440 \mathrm{DP}$.220
	$[20.6]$	$[50.8]$	$[11.11]$	$[\mathrm{M} 12]$	$[\mathrm{M} 8 \times 11]$	$[6]$
6000	.812	3.000	.563	$5 / 8-11$	$3 / 8-24 \times .560$ DP	.251
	$[20.6]$	$[76.2]$	$[14.28]$	$[\mathrm{M} 16]$	$[\mathrm{M} 10 \times 14]$	$[6]$
8000	1.500	4.000	.875	$1-8$	$1 / 2-20 \times .687 \mathrm{DP}$.438
	$[38.1]$	$[101.6]$	$[22.22]$	$[\mathrm{M} 24]$	$[\mathrm{M} 12 \times 17.5]$	$[11]$

SET SCREW: INCLUDED WITH UNIT

C CROSS KEY SHAFT
 Not available on Rx6x

SERIES	LETTER DIMENSION					
	A	B	C	D	E	F
	.250	.215	.230	.500	.118	.250
	$[6.4]$	$[5.5]$	$[5.8]$	$[12.7]$	$[3]$	$[6.3]$
4000	.250	.265	.248	.875	.120	.248
	$[6.4]$	$[6.7]$	$[6.3]$	$[22.2]$	$[3]$	$[6.3]$
6000	.437	.485	.500	1.125	.150	.5002
	$[11]$	$[12.3]$	$[12.7]$	$[28.6]$	$[3.8]$	$[12.7]$
8000	.437	.805	.875	1.750	.245	.8752
	$[11]$	$[20.4]$	$[22.2]$	$[44.5]$	$[6.2]$	$[22.2]$

SHAFT KEYWAY: SHOWN AT MID-ROTATION R2xx UNITS: WHEN ORDERING SPECIFY -C-C FOR CROSSKEY ON BOTH SHAFT EXTENSIONS CROSSKEY: INCLUDED WITH UNIT

H HOLLOW SHAFT

Not available on Rx6x

SERIES	LETTER DIMENSION			
	A	PB	VA	WA
2000	.042	1.920	.250	-
	$[1.1]$	$[48.76]$	$[6.35]$	-
4000	.042	2.917	.500	$1 / 8 \times 1 / 16$
	$[1.1]$	$[74.09]$	$[12.7]$	$[3.18 \times 1.58]$
6000	.135	2.730	.687	$3 / 16 \times 3 / 32$
	$[3.4]$	$[69.34]$	$[17.46]$	$[4.76 \times 2.38]$
8000	.240	4.520	1.125	$1 / 4 \times 1 / 8$
	$[6.1]$	$[114.80]$	$[28.57]$	$[6.35 \times 3.18]$

SHAFT KEYWAY: SHOWN AT MID-ROTATION

OPTIONS: multi-position rotary actuators

MAGNETIC PISTON FOR USE WITH PHD PROXIMITY SWITCHES

See engineering page for Hydraulic Pressure Ratings with these options. See each ordering data for magnetic piston ordering information. Switches and brackets must be ordered separately. See Switches and Sensors section for complete switch information.

E SOLID STATE SWITCHES

Series 1000-8000 Rotary Actuators may be equipped with a magnetic band (specify -E) on the pistons which activates externally mounted PHD Solid State Switches. These switches allow the interfacing of the PHD Actuators to various logic systems. This option is for use with the following switches.

SERIES 1750 SOLID STATE SWITCHES

PART NO.	COLOR

DESCRIPTION
17503-2-06 17504-2-06 Red PNP (Source) Type 4.5-24 VDC, 6 foot cable 17523-2 Yellow NPN (Sink) Type 4.5-24 VDC, Quick Connect 17524-2 \quad Red PNP (Source) Type 4.5-24 VDC, Quick Connect

SERIES 1750 SOLID STATE SWITCHES			
PART N0.	COLOR	DESCRIPTION	
$17503-2-06$	Yellow	NPN (Sink) Type 4.5-24 VDC, 6 foot cable	
17504-2-06	Red	PNP (Source) Type 4.5-24 VDC, 6 foot cable	
$17523-2$	Yellow	NPN (Sink) Type 4.5-24 VDC, Quick Connect	
$17524-2$	Red	PNP (Source) Type 4.5-24 VDC, Quick Connect	

SWITCH BRACKETS

SERIES	PART NO.
	SERIES 1750
4000	$17000-32-5$
6000	$17000-34-5$
8000	$17000-38-0$

M

REED SWITCHES

The PHD Magnetic Reed Switches may be used in situations where the Solid State Switches are not applicable. As with the Solid State Switches, a magnetic band (specify -M) on the pistons activates the externally mounted PHD Reed Switches. The Reed Switches may be used to signal a programmable controller, sequencer, relay, or in some cases, a valve solenoid. This option is for use with the following switches.

SERIES 1750 REED SWITCHES

PART NO.	DESCRIPTION	
17502-2-06	White	NPN (Sink) or PNP (Source) 4.5-24 VDC, 6 foot cable
$17509-3-06$	Green	AC Type 110-120 VAC with Current Limit, 6 foot cable
$17522-2$	White	NPN (Sink) or PNP (Source) 4.5-24 VDC, Quick Connect
$17529-3$	GreenAC Type 110-120 VAC, Quick Connect with Current Limit	

J SENSOR/SET POINT MODULE
 Not available on Rx6x

PHD offers a solid state sensor transducer along with a Set Point Module which provides up to four adjustable sensing positions throughout the 180° maximum sensing range. These signals can be used as inputs to a programmable controller to signal ends of rotation in addition to multiple signals during rotation for indication of arc traveled.

The Set Point Module allows independent adjustment of each sensing position and is available for 4.5 to 24 VDC current sinking or current sourcing.

SET POINT MODULE

PART NO.	DESCRIPTION
9800-01-0300	NPN (Sink) 4.5-24 VDC
$9800-01-0400$	PNP (Source) 4.5-24 VDC

See Switches and Sensors section for information.

OPTIONS: multi-POSItIon rotary actuators

PORT \& PORT CONTROL ${ }^{\circledR}$ LOCATIONS

Standard port location on all Multi-Position Actuators is position 2. Standard Port Control ${ }^{\circledR}$ and cushion adjustment needles are located in position 1 and 3. Other port and adjusting needle locations are available as specified.

Needles may not be located in same position as ports.

This option positions the ports in position 1 on tubes I, II, V, and VII and in position 3 on tubes III, IV, VI, and VIII. This allows access to the ports on the "Top" and "Bottom" sides of the actuator.

T PORT POSITION 4

This option positions the ports in position 4 on all tubes.

V FLUORO-ELASTOMER SEALS

Fluoro-Elastomer seals are available to achieve seal compatibility with certain fluids. Seal compatibility should be checked with the fluid manufacturer for proper application.

Z1 ELECTROLESS NICKEL PLATING

Electroless nickel plating is done on all externally exposed ferrous parts except the pinion shaft. This optional plating treatment gives an alternative method of protecting the unit from severe environments.

NOTE: Standard plating is Zinc and Black Oxide.

MOUNTING FLANGE (HARDWARE INCLUDED)

BOTTOM MOUNTING FLANGE

	$\begin{gathered} \text { KIT NO. } \\ \text { IMPERIAL METRIC } \\ \hline \end{gathered}$		LETTER DIMENSION					
SERIES			A	B	C	D	E	F
2000	13756	14320	4.250 [108]	2.000 [51]	1.625 [41.3]	2.625 [66.7]	. 281 [7.1]	. 250 [6.3]
4000	13757	14321	4.500 [114]	3.000 [76]	2.375 [60.3]	3.875 [98.4]	. 406 [10.3]	. 437 [11.1]
6000	13758	14322	4.500 [114]	4.000 [102]	3.375 [85.7]	3.875 [98.4]	. 406 [10.3]	. 437 [11.1]

SIDE MOUNTING FLANGE

Low-Cost E Series Multifunction DAO 12 or 16-Bit, 200 kS/s, 16 Analog Inputs

NI E Series - Low-Cost

- 16 analog inputs at up to $200 \mathrm{kS} / \mathrm{s}$, 12 or 16-bit resolution
- Up to 2 analog outputs at $10 \mathrm{kS} / \mathrm{s}$, 12 or 16-bit resolution
- 8 digital I/O lines (TTL/CMOS); two 24-bit counter/timers
- Digital triggering
- 4 analog input signal ranges
- NI-DAO driver that simplifies configuration and measurements

Families

- NI 6036E
- NI 6034E
- NI 6025E
- NI 6024E
- NI 6023E

Operating Systems

- Windows 2000/NT/XP
- Real-time performance with LabVIEW
- Others such as Linux ${ }^{\circledR}$ and Mac OS X

Recommended Software

- LabVIEW
- LabWindows/CVI
- Measurement Studio
- VI Logger

Other Compatible Software

- Visual Basic, C/C++, and C\#

Driver Software (included)

- NI-DAO 7

Family	Bus	Analog Inputs	Input Resolution	Max Sampling Rate	Input Range	Analog Outputs	Output Resolution	Output Rate	Output Range	Digital I/O	Counter/Timers	Triggers
NI 6036E	PCI, PCMCIA	16 SE/8 DI	16 bits	$200 \mathrm{kS} / \mathrm{s}$	± 0.05 to $\pm 10 \mathrm{~V}$	2	16 bits	$10 \mathrm{kS} / \mathrm{s}^{1}$	$\pm 10 \mathrm{~V}$	8	2,24-bit	Digital
NI 6034E	PCl	16 SE/8 DI	16 bits	$200 \mathrm{kS} / \mathrm{s}$	± 0.05 to $\pm 10 \mathrm{~V}$	0	-	-	-	8	2, 24-bit	Digital
NI 6025E	PCI, PXI	16 SE/8 DI	12 bits	$200 \mathrm{kS} / \mathrm{s}$	± 0.05 to $\pm 10 \mathrm{~V}$	2	12 bits	$10 \mathrm{kS} / \mathrm{s}^{1}$	$\pm 10 \mathrm{~V}$	8	2, 24-bit	Digital
NI 6024E	PCI, PCMCIA	16 SE/8 DI	12 bits	$200 \mathrm{kS} / \mathrm{s}$	± 0.05 to $\pm 10 \mathrm{~V}$	2	12 bits	$10 \mathrm{kS} / \mathrm{s}^{1}$	$\pm 10 \mathrm{~V}$	8	2, 24-bit	Digital
NI 6023E	PCl	16 SE/8 DI	12 bits	$200 \mathrm{kS} / \mathrm{s}$	± 0.05 to $\pm 10 \mathrm{~V}$	0	-	-	-	8	2, 24-bit	Digital

Table 1. Low-Cost E Series Model Guide

Overview and Applications

National Instruments low-cost E Series multifunction data acquisition devices provide full functionality at a price to meet the needs of the budget-conscious user. They are ideal for applications ranging from continuous high-speed data logging to control applications to high-voltage signal or sensor measurements when used with NI signal conditioning. Synchronize the operations of multiple devices using the RTSI bus or PXI trigger bus to easily integrate other hardware such as motion control and machine vision to create an entire measurement and control system.

Highly Accurate Hardware Design

NI low-cost E Series DAO devices include the following features and technologies:
Temperature Drift Protection Circuitry - Designed with components that minimize the effect of temperature changes on measurements to less than 0.0010% of reading $/{ }^{\circ} \mathrm{C}$.
Resolution-Improvement Technologies - Carefully designed noise floor maximizes the resolution.
Onboard Self-Calibration - Precise voltage reference included for calibration and measurement accuracy. Self-calibration is completely software controlled, with no potentiometers to adjust.

NI DAQ-STC - Timing and control ASIC designed to provide more flexibility, lower power consumption, and a higher immunity to noise and jitter than off-the-shelf counter/timer chips.

NI MITE - ASIC designed to optimize data transfer for multiple simultaneous operations using bus mastering with one DMA channel, interrupts, or programmed I/O.
NI PGIA - Measurement and instrument class amplifier that guarantees settling times at all gains. Typical commercial off-the-shelf amplifier components do not meet the settling time requirements for high-gain measurement applications.
PFI Lines - Eight programmable function input (PFI) lines that you can use for software-controlled routing of interboard and intraboard digital and timing signals.
RTSI or PXI Trigger Bus - Bus used to share timing and control signals between two or more PCI or PXI devices to synchronize operations.
RSE Mode - In addition to differential and nonreferenced single-ended modes, Nl low-cost E Series devices offer the referenced single-ended (RSE) mode for use with floating-signal sources in applications with channel counts higher than eight.
Onboard Temperature Sensor - Included for monitoring the operating temperature of the device to ensure that it is operating within the specified range.

Low-Cost E Series Multifunction DAO - 12 or 16-Bit, 200 kS/s, 16 Analog Inputs

Models		Full-Featured E Series				Low-Cost E Series		Basic
		NI 6030E, NI 6031E, NI 6032E, NI 6033E	NI 6052E	NI 6070E, NI 6071E	NI 6040E	NI 6034E, NI 6036E	NI 6023E, NI 6024E, NI 6025E	PCI-6013, PCI-6014
Measurement Sensitivity ${ }^{(1 m V}$)		0.0023	0.0025	0.009	0.008	0.0036	0.008	0.004
Nominal Range (V)		Absolute Accuracy (mV)						
Positive FS	Negative FS							
10	-10	1.147	4.747	14.369	15.373	7.560	16.504	8.984
5	-5	2.077	0.876	5.193	5.697	1.790	5.263	2.003
2.5	-2.5	-	1.190	3.605	3.859	-	-	-
2	-2	0.836	-	-	-	-	-	-
1	-1	0.422	0.479	1.452	1.556	-	-	-
0.5	-0.5	0.215	0.243	0.735	0.789	0.399	0.846	0.471
0.25	-0.25	-	0.137	0.379	0.405	-	-	-
0.2	-0.2	0.102	-	-	-	-	-	-
0.1	-0.1	0.061	0.064	0.163	0.176	-	-	-
0.05	-0.05	-	0.035	0.091	0.100	0.0611	0.106	0.069
10	0	0.976	1.232	6.765	7.269	-	-	-
5	0	1.992	2.119	5.391	5.645	-	-	-
2	0	0.802	0.850	2.167	2.271	-	-	-
1	0	0.405	0.428	1.092	1.146	-	-	-
0.5	0	0.207	0.242	0.558	0.583	-	-	-
0.2	0	0.098	0.111	0.235	0.247	-	-	-
0.1	0	0.059	0.059	0.127	0.135	-	-	-
Note: Accuracies are valid for measurements following an internal calibration. Measurement accuracies are listed for operational temperatures within $\pm 1^{\circ} \mathrm{C}$ of internal calibration temperature and $\pm 10^{\circ} \mathrm{C}$ of external or factorycalibration temperature. One-year calibration interval recommended. The Absolute Accuracy at Full Scale calculations were performed for a maximum range input voltage (for example, 10 V for the $\pm 10 \mathrm{~V}$ range) after one year, assuming 100 pt averaging of data. ${ }^{1}$ Smallest detectable voltage change in the input signal at the smallest input range.								

Table 2. E Series Analog Input Absolute Accuracy Specifications

		Full-Featured E Series				Low-Cost E Series		Basic
Models		NI 6030E, NI 6031E, NI 6032E, NI 6033E	NI 6052E	NI 6070E, NI 6071E	N N 6040E	NI 6034E, NI 6036E	NI 6023E, NI 6024E, NI 6025E	PCI-6013, PCI-6014
Nominal Range (V)		Absolute Accuracy (mV)						
Positive FS	Negative FS							
10	-10	1.430	1.405	8.127	8.127	2.417	8.127	3.835
10	0	1.201	1.176	5.685	5.685	-	-	-

Table 3. E Series Analog Output Absolute Accuracy Specifications

High-Performance, Easy-to-Use Driver Software

$\mathrm{NI}-\mathrm{DAQ}$ is the robust driver software that makes it easy to access the functionality of your data acquisition hardware, whether you are a beginning or advanced user. Helpful features include:
Automatic Code Generation - DAO Assistant is an interactive guide that steps you through configuring, testing, and programming measurement tasks and generates the necessary code automatically for NI LabVIEW, LabWindows/CVI, or Measurement Studio.
Cleaner Code Development - Basic and advanced software functions have been combined into one easy-to-use yet powerful set to help you build cleaner code and move from basic to advanced applications without replacing functions.
High-Performance Driver Engine - Software-timed single-point input (typically used in control loops) with NI-DAQ achieves rates of up to 50 kHz . NI-DAO also delivers maximum I/O system throughput with a multithreaded driver.

Test Panels - With NI-DAQ, you can test all of your device functionality before you begin development.
Scaled Channels - Easily scale your voltage data into the proper engineering units using the NI-DAQ Measurement Ready virtual channels by choosing from a list of common sensors and signals or creating your own custom scale.
LabVIEW Integration - All NI-DAQ functions create the waveform data type, which carries acquired data and timing information directly into more than 400 LabVIEW built-in analysis routines for display of results in engineering units on a graph.
For information on applicable hardware for NI-DAQ 7,
visit ni.com/dataacquisition.

Visit ni.com/oem for quantity discount information.

Low-Cost E Series Multifunction DAO - 12 or 16-Bit, 200 kS/s, 16 Analog Inputs

Recommended Accessories

Signal conditioning is required for sensor measurements or voltage inputs greater than 10 V . National Instruments SCXI is a versatile, high-performance signal conditioning platform, intended for high-channel-count applications. NI SCC products provide portable, flexible signal conditioning options on a per-channel basis. Both signal conditioning platforms are designed to increase the performance and reliability of your DAQ system, and are up to 10 times more accurate than terminal blocks (please visit ni.com/sigcon for more details). Refer to the table below for more information:

Sensor/Signals (>10 V)		
System Description	DAQ Device	Signal Conditioning
High-performance	PCI-60xxE, PXI-60xxE, DAQCard-60xxE	SCXI
Low-cost, portable	PCI-60xxE, PXI-60xxE, DAQCard-60xxE	SCC

Signals (<10 V) ${ }^{1}$

System Description	DAQ Device	Terminal Block	Cable
Shielded	PCI-60xxE	SCB-68	SH6868-EP
Shielded	PXI-60xxE	TB-2705	SH6868-EP
Shielded	DAQCard-60xxE	SCB-68	SHC6868-EP
Low-cost	PCI-6025E/PXI-6025E	Two TBX-68s	SH1006868
Low-cost	PCI-60xxE/PXI-60xxE	CB-68LP	R6868
Low-cost	DAQCard-60xxE	CB-68LP	RC6868

${ }^{1}$ Terminal blocks do not provide signal conditioning (i.e., filtering, amplification, isolation, and so on), which may be necessary to increase the accuracy of your measurements.

Table 4. Recommended Accessories

Ordering Information	
PCI	
NI PCI-6036E	..778465-01
NI PCI-6034E.	. $778075-01$
NI PCI-6025E.	.777744-01
NI PCI-6024E.	.777743-01
NI PCI-6023E.	..777742-01
PCMCIA	
NI DAQCard-6036E..	..778561-01
NI DAQCard-6024E..	..778269-01
PXI	
NI PXI-6025E..7798-01 Includes NI-DAO driver software.	
BUY NOW!	
For complete product specifications, pricing, and accessory information, call (800) 8133693 (U.S.) or go to ni.com/dataacquisition.	

NI Services and Support

NI has the services and support to meet your needs around the globe and through the application life cycle - from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services.

Training and Certification

NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training.

Professional Services

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Partner program of more than 600 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

OEM Support

We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Local Sales and Technical Support

In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support.
We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp.

Hardware Services

NI Factory Installation Services

NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor.

Calibration Services

NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration.

Repair and Extended Warranty

NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services.

FAIROHILD

SEMICONDபСTOR ${ }_{\text {тм }}$

1N4001-1N4007

Features

- Low forward voltage drop.
- High surge current capability.

DO-41
COLOR BAND DENOTES CATHODE

1.0 Ampere General Purpose Rectifiers

Absolute Maximum Ratings* $\quad T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average Rectified Current .375 " lead length @ $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	1.0	A
$\mathrm{I}_{\text {FSM }}$	Non-repetitive Peak Forward Surge Current 8.3 ms single half-sine-wave Superimposed on rated load (JEDEC method)	30	A
P_{D}	Total Device Dissipation Derate above $25^{\circ} \mathrm{C}$	2.5	
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient	20	W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Operating Junction Temperature	-55 to +175	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Device							Units
		4001	4002	4003	400	400	4006	4007	
$\mathrm{V}_{\text {RRM }}$	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
$\mathrm{V}_{\text {RMS }}$	Maximum RMS Voltage	35	70	140	280	420	560	700	V
V_{R}	DC Reverse Voltage (Rated V_{R})	50	100	200	400	600	800	1000	V
$\mathrm{I}_{\text {RM }}$	Maximum Instantaneous Reverse Current @ rated V_{R} $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 500 \end{aligned}$							$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {FM }}$	Maximum Instantaneous Forward Voltage @ 1.0 A	1.1							V
$I_{\text {rr }}$	Maximum Full Load Reverse Current, Full Cycle $T_{A}=75^{\circ} \mathrm{C}$	30							$\mu \mathrm{A}$
C	Typical Junction Capacitance $\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	15							pF

Typical Characteristics

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	SyncFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	QFET ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
Coolfet ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	QS ${ }^{\text {TM }}$	UHC'M
CROSSVOLT ${ }^{\text {TM }}$	HiSeCm	QT Optoelectronics ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
DOME ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	SILENT SWITCHER ${ }^{\circledR}$	
EnSigna ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	
FACT ${ }^{\text {m }}$	OPTOPLANAR ${ }^{\text {TM }}$	SuperSOTTM-3	
FACT Quiet Series ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	SuperSOT™-6	
FAST ${ }^{\text {® }}$	POP ${ }^{\text {TM }}$	SuperSOT™-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

TOSHIBA Photocoupler GaAs Ired \& Photo-Transistor

CNY17-2,CNY17-3,CNY17-4

AC Line / Digital Logic Isolator
Digital Logic / Digital Logic Isolator
Telephone Line Receiver
Twisted Pair Line Receiver
High Frequency Power Supply Feedback Control
Relay Contact Monitor

The TOSHIBA Corporation CNY17 consist of a gallium arsenide infrared emitting diode coupled with a silicon photo transistor in a dual in-line package.

- Small package size and low cost
- Fast switching speeds: $5 \mu \mathrm{~s}$ (typ.)
- High DC current transfer ratio: $\operatorname{CTR}\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$

$$
\begin{aligned}
& \text { CNY17-2: 63~125\% } \\
& \text { CNY17-3: 100~200\% } \\
& \text { CNY17-4: 160~320\% }
\end{aligned}
$$

- High isolation resistance: $10^{11} \Omega$ (typ.)
- High isolation voltage: 4400 V (min.)

Weight: 0.4 g
Pin Configuration

[^2]Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic			Symbol	Rating	Unit
\bigcirc	Forward current		I_{F}	60	mA
	Forward current derating		$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	0.8 *	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
	Peak forward current	(Note)	IPF	3	A
	Power dissipation		P_{D}	100	mW
	Power dissipation derating		$\Delta \mathrm{P}_{\mathrm{D}} /{ }^{\circ} \mathrm{C}$	1.33 *	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Reverse voltage		V_{R}	6	V
	Collector-emitter voltage		BV ${ }_{\text {CEO }}$	70	V
	Collector-base voltage		$\mathrm{BV}_{\mathrm{CBO}}$	70	V
	Emitter-collector voltage		BVECO	7	V
	Collector current		I_{C}	100	mA
	Power dissipation		P_{C}	150	mW
	Power dissipation derating		$\Delta \mathrm{PC} /{ }^{\circ} \mathrm{C}$	2.0 *	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { D} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Storage temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$
	Operating temperature		Topr	-55~100	${ }^{\circ} \mathrm{C}$
	Lead soldering temperature (10 s)		Tsol	260	${ }^{\circ} \mathrm{C}$
	Total package dissipation		P_{T}	200	mW
	Total package power dissipation derating		$\Delta \mathrm{P}_{\mathrm{T}} /{ }^{\circ} \mathrm{C}$	2.6 *	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

(Note)Pulse width $1 \mu \mathrm{~s}, 300 \mathrm{pps}$.

* Above $25^{\circ} \mathrm{C}$ ambient.

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristic			Symbol	Test Condition	Min.	Typ.	Max.	Unit
بــ	Forward voltage		V_{F}	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	-	1.35	1.65	V
	Reverse current		I_{R}	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	Capacitance		C_{D}	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-	30	-	pF
	DC forward current gain		$h_{\text {FE }}$	$\mathrm{V}_{\mathrm{CE}}=5, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	100	200	-	
	Collector-emitter breakdown voltage		V (BR) CEO	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$	70	-	-	V
	Collector-base breakdown voltage		V (BR) CBO	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	70	-	-	V
	Emitter-collector breakdown voltage		V (BR) ECO	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	7	-	-	V
	Collector dark current		ICEO	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	-	1	50	nA
	Collector dark current		ICBO	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	-	0.1	20	nA
	Collector-emitter capacitance		$\mathrm{C}_{\text {CE }}$	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF
$\begin{aligned} & \text { 이 } \\ & \frac{0}{3} \\ & \text { O} \end{aligned}$	Current transfer ratio	CNY17-2	CTR	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	63	-	125	
		CNY17-3			100	-	200	\%
		CNY17-4			160	-	320	
	Saturation voltage		$\mathrm{V}_{\text {CE (sat) }}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$	-	-	0.4	V
	Capacitance input to output		C_{S}	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-	0.8	-	pF
	Isolation resistance		R_{S}	$\mathrm{V}=500 \mathrm{~V}$	-	10^{11}	-	Ω
	DC isolation voltage		BV_{S}	DC 1 minute	4400	-	-	V
	Rise fall time		$\mathrm{tr}_{\mathrm{r}} / \mathrm{tf}_{\mathrm{f}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	-	5	10	$\mu \mathrm{s}$
	Rise / fall time photo diode		$\mathrm{tr}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{CB}}=50 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	-	200	-	ns

$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{Ta}-\mathrm{I}_{\mathrm{F}}$

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

TS7805 Electrical Characteristics
(Vin $=10 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}, \mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout= $0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	4.80	5	5.20	V
		7V Vin 20V, 5mA lout 1.5A, PD 15W	4.75	5	5.25	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C} 7.5 \mathrm{~V}$ Vin 25 V	--	3	100	mV
		8V Vin 12V	--	1	50	mV
Load Regulation	REGload	$\mathrm{Tj}=25^{\circ} \mathrm{C} 5 \mathrm{~mA}$ lout 1.5 A	--	15	100	mV
		250mA lout 750 mA	--	5	50	mV
Quiescent Current	Iq	lout $=0, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	4.2	8	mA
Quiescent Current Change	Iq	7 V Vin 25 V	--	--	1.3	mA
		5 mA lout 1.5A	--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	40	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}$, 8V Vin 18V	62	78	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$	--	17	--	m
Output Short Circuit Current	los	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	750	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2.2	--	A
Temperature Coefficient Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C}$ Tj $125^{\circ} \mathrm{C}$	--	-0.6	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

TS7806 Electrical Characteristics

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	5.75	6	6.25	V
		8 V Vin $21 \mathrm{~V}, 5 \mathrm{~mA}$ lout 1.5 A , PD 15W	6.3	6	6.3	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C} 8 \mathrm{~V}$ Vin 25 V	--	5	120	mV
		9 V Vin 13V	--	1.5	60	mV
Load Regulation	REGload	$\mathrm{Tj}=25^{\circ} \mathrm{C} 5 \mathrm{~mA}$ lout 1.5 A	--	14	120	mV
		250mA lout 750 mA	--	4	60	mV
Quiescent Current	19	lout $=0, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	4.3	8	mA
Quiescent Current Change	19	8V Vin 25V	--	--	1.3	mA
		5 mA lout 1.5A	--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	45	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}$, 9V Vin 19V	59	75	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$	--	19	--	m
Output Short Circuit Current	los	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	550	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2.2	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}$	--	-0.7	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Pulse testing techniques are used to maintain the junction temperature as close to the Rev. 1 03/2003 ambient temperature as possible, and thermal effects must be taken into account separately. This specification applies only for DC power dissipation permitted by absolute maximum ratings.

TS7808 Electrical Characteristics
(Vin $=14 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}, \mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout= $0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions		Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		7.69	8	8.32	V
		10.5V Vin 23V, 5mA lout 1.5A, PD 15W		7.61	8	8.40	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	10.5V Vin 25 V	--	6	160	mV
			11V Vin 17V	--	2	80	mV
Load Regulation	REGIoad	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	10 mA lout 1.5A	--	12	160	mV
			250 mA lout 750 mA	--	4	80	mV
Quiescent Current	Iq	lout $=0, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	4.3	8	mA
Quiescent Current Change	19	10.5V Vin 25 V		--	--	1	mA
		5 mA lout 1.5A		--	--	0.5	mA
Output Noise Voltage	Vn	10 Hz f $100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	52	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}, 11 \mathrm{~V}$ Vin 21 V		56	72	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$		--	16	--	m
Output Short Circuit Current	Ios	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	450	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2.2	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}$		--	-0.8	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

TS7809 Electrical Characteristics

(Vin $=15 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}, \mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout= $0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions		Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		8.65	9	9.36	V
		11.5V Vin 24 V , 5 mA lout 1.5 A , PD 15W		8.57	9	9.45	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	11.5V Vin 26V	--	6	180	mV
			11.5V Vin 17V	--	2	90	mV
Load Regulation	REGload	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	5 mA lout 1.5A	--	12	180	mV
			250mA lout 750mA	--	4	90	mV
Quiescent Current	19	lout=0, Tj	$=25^{\circ} \mathrm{C}$	--	4.3	8	mA
Quiescent Current Change	19	11.5V Vin 26 V		--	--	1	mA
		5 mA lout 1.5A		--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	52	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}, 11.5 \mathrm{~V}$ Vin 21.5 V		55	72	--	dB
Voltage Drop	Vdrop	lout $=1.0 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$		--	16	--	m
Output Short Circuit Current	los	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	450	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2.2	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}$		--	-1	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Pulse testing techniques are used to maintain the junction temperature as close to the
Rev. 1 03/2003 ambient temperature as possible, and thermal effects must be taken into account separately.
This specification applies only for DC power dissipation permitted by absolute maximum ratings.

TS7810 Electrical Characteristics
(Vin $=16 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}, \mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout= $0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions		Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		9.6	10	10.4	V
		12.5V Vin $25 \mathrm{~V}, 5 \mathrm{~mA}$ lout 1.5 A , PD 15W		9.5	10	10.5	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	12.5V Vin 28 V	--	7	200	mV
			13 V Vin 17V	--	2	100	mV
Load Regulation	REGload	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	10mA lout 1.5A	--	12	200	mV
			250mA lout 750 mA	--	4	100	mV
Quiescent Current	19	lout $=0, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	4.3	8	mA
Quiescent Current Change	19	12.5V Vin 28V		--	--	1	mA
		5 mA lout 1.5A		--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	70	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}, 13 \mathrm{~V}$ Vin 23 V		55	71	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$		--	18	--	m
Output Short Circuit Current	los	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	400	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2.2	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C}$ Tj $125^{\circ} \mathrm{C}$		--	-1	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

TS7812 Electrical Characteristics

(Vin $=19 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}, \mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout= $=.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions		Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		11.53	12	12.48	V
		14.5V Vin 27V, 5mA lout 1.5A, PD 15W		11.42	12	12.60	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	14V Vin 30V	--	10	240	mV
			15V Vin 19V	--	3	120	mV
Load Regulation	REGload	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	10 mA lout 1.5A	--	12	240	mV
			250 mA lout 750 mA	--	4	120	mV
Quiescent Current	Iq	$\mathrm{Tj}=25^{\circ} \mathrm{C}$,	lout=0	--	4.3	8	mA
Quiescent Current Change	19	14.5V Vin 30V		--	--	1	mA
		5 mA lout 1.5A		--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	75	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}, 15 \mathrm{~V}$ Vin 25 V		55	71	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	20	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$		--	18	--	m
Output Short Circuit Current	Ios	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	350	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2.2	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C}$ Tj $125^{\circ} \mathrm{C}$		--	-1	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Pulse testing techniques are used to maintain the junction temperature as close to the Rev. 1 03/2003 ambient temperature as possible, and thermal effects must be taken into account separately. This specification applies only for DC power dissipation permitted by absolute maximum ratings.

TS7815 Electrical Characteristics

(Vin $=23 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}$ Tj $125^{\circ} \mathrm{C}$, $\mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout $=0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions		Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		14.42	15	15.60	V
		17.5V Vin 30V, 5mA lout 1.5A, PD 15W		14.28	15	15.75	V
Line Regulation	REGline	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	17.5V Vin 30V	--	12	300	mV
			18 V Vin 22 V	--	3	150	mV
Load Regulation	REGload	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	10 mA lout 1.5A	--	12	300	mV
			250 mA lout 750 mA	--	4	150	mV
Quiescent Current	Iq	$\mathrm{Tj}=25^{\circ} \mathrm{C}$, lout=0		--	4.3	8	mA
Quiescent Current Change	Iq	17.5V Vin 30V		--	--	1	mA
		5mA lout 1.5A		--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$		--	90	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}, 18 \mathrm{~V}$ Vin 28 V		54	70	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}^{2}=25^{\circ} \mathrm{C}$		--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$		--	19	--	m
Output Short Circuit Current	Ios	$\mathrm{T}=25^{\circ} \mathrm{C}$		--	230	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		--	2.1	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}$		--	-1	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

TS7818 Electrical Characteristics
(Vin $=27 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \operatorname{Tj} 125^{\circ} \mathrm{C}$, Cin $=0.33 \mu \mathrm{~F}$, Cout $=0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	17.30	18	18.72	V
		```21V Vin 33V, 5mA lout 1.5A, PD 15W```	17.14	18	18.90	V
Line Regulation	REGline	21V Vin 33V	--	15	360	mV
		$\mathrm{Tj}=25^{\circ} \mathrm{C} 22 \mathrm{~V}$ Vin 26 V	--	5	180	mV
Load Regulation	REGload	10 mA lout 1.5A	--	12	360	mV
		$\mathrm{Tj}=25^{\circ} \mathrm{C}$ 250mA lout 750 mA	--	4	180	mV
Quiescent Current	Iq	$\mathrm{Tj}=25^{\circ} \mathrm{C}$, lout $=0$	--	4.5	8	mA
Quiescent Current Change	Iq	21V Vin 33V	--	--	1	mA
		5 mA lout 1.5A	--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	110	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}$, 21V Vin 31V	54	70	--	dB
Voltage Drop	Vdrop	lout $=1.0 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$	--	22	--	m
Output Short Circuit Current	los	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	200	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2.1	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}$	--	-1	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Pulse testing techniques are used to maintain the junction temperature as close to the
Rev. 1 03/2003 ambient temperature as possible, and thermal effects must be taken into account separately. This specification applies only for DC power dissipation permitted by absolute maximum ratings.

## TS7824 Electrical Characteristics

(Vin $=33 \mathrm{~V}$, lout $=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}, \mathrm{Cin}=0.33 \mu \mathrm{~F}$, Cout $=0.1 \mu \mathrm{~F}$; unless otherwise specified.)

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Output Voltage	Vout	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	23.07	24	24.96	V
		```26V Vin 38V,5mA lout 1.5A, PD 15W```	22.85	24	25.20	V
Line Regulation	REGline	26V Vin 38V	--	18	480	mV
		$\mathrm{Tj}=25^{\circ} \mathrm{C} 27 \mathrm{~V}$ Vin 32V	--	6	240	mV
Load Regulation	REGload	10 mA lout 1.5A	--	12	480	mV
		$\mathrm{Tj}=25^{\circ} \mathrm{C}$ 250mA lout 750 mA	--	4	240	mV
Quiescent Current	19	lout $=0, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	4.6	8	mA
Quiescent Current Change	19	26 V Vin 38V	--	--	1	mA
		5 mA lout 1.5A	--	--	0.5	mA
Output Noise Voltage	Vn	$10 \mathrm{~Hz} \mathrm{f} 100 \mathrm{KHz}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	--	170	--	$\mu \mathrm{V}$
Ripple Rejection Ratio	RR	$\mathrm{f}=120 \mathrm{~Hz}$, 26V Vin 36V	54	70	--	dB
Voltage Drop	Vdrop	lout=1.0A, $\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2	--	V
Output Resistance	Rout	$\mathrm{f}=1 \mathrm{KHz}$	--	28	--	m
Output Short Circuit Current	los	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	150	--	mA
Peak Output Current	lo peak	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	--	2.1	--	A
Temperature Coefficient of Output Voltage	Vout/ Tj	lout $=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \mathrm{Tj} 125^{\circ} \mathrm{C}$	--	-1.5	--	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.
This specification applies only for DC power dissipation permitted by absolute maximum ratings.

FIG. 1 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE

FIG. 2 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

FIG. 3 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

FIG. 4 - INPUT OUTPUT DIFFERENTIAL AS A FUNCTION OF JUNCTION TEMPERATURE

FIG. 6 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE

FIG. 8 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

f, FREQUENCY (kHz)

FIG. 7 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGE

FIG. 5 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

Rev. 1 03/2003

Rev. 1 03/2003

[^0]: NOTE: * * All hydraulic ratings are based on non-shock hydraulic service.

[^1]: CUSHIONS: SERIES 2000 ACTUATORS:

 ADD 1/2" TO RESPECTIVE "A" AND " Y " DIMENSION FOR EACH CUSHION
 MTG. HOLES: CENTERED ON CENTERLINE OF ACTUATOR BODY
 STOP TUBES: LOCATED IN TUBES I \& II
 PLUMBING SCHEMATIC: LOCATED IN PHD PRODUCT SIZING CATALOG

[^2]: 1 : Anode
 2 : Cathode
 3 : N.C.
 4 : Emitter
 5 : Collector
 6 : Base

