

قسم الهندسة الميكانيكية

هندسة السيارات

ملحق رقم (1) لمشروع تخرج

تصميم نماذج تعليمية متطورة في مجال هندسة السيارات التي تعمل بالديزل وعمل دراسة نموذجية لمشاغل السيارات

فريق المشروع:

عبدالله شاهين

خالد الدويـــك

علاء زكارنىسە

مشرف المشروع : د. محمد غازي القواسمي

الخليل - فلسطين

2012

Common Rail Diesel Injection Model

Technical specification CITROEN Berlingo II 2.0 HDi 2007

Model:	Berlingo 2.0 HDi
Engine code: Tuned for:	RHY Siemens
Year:	2007
Car engine:	1997 ccm (121,25 cubic inches)
Car engine type:	Inline, 4 cyl
Car valves per cylinder:	2
Car max power:	90.00 PS (65,67 kW or 88,56 HP) at 4000 Rev. per min.
Car compression:	18.0:1
Car fuel:	Diesel
Car transmission:	Manual, 6-speed
VIN COOD::	VF7GJRHYB6J00265
RPON°:	10039

- 1 Accelerator pedal position (APP) sensor above pedal
- 2 Barometric pressure (BARO) sensor in ECM
- 3 Brake pedal position (BPP) switch above pedal
- 4 Camshaft position (CMP) sensor
- 5 Clutch pedal position (CPP) switch above pedal
- 6 Crankshaft position (CKP) sensor
- 7 Data link connector (DLC) near steering column, under trim panel
- 8 Engine control module (ECM)
- 9 Engine coolant temperature (ECT) sensor
- 10 Exhaust gas recirculation (EGR) solenoid
- 11 Fuel pressure regulator control solenoid
- 12 Fuel pressure sensor
- 13 Fuel temperature sensor
- 14 Glow plugs
- 15 Glow plug timer relay
- 16 High pressure fuel pump
- 17 Injectors
- 18 Intake air temperature (IAT) sensor in MAF sensor
- 19 Mass air flow (MAF) sensor
- 20 Vehicle speed sensor (VSS) transmission
- 21 3rd piston cut-off solenoid

Engine System type:	Experiment name:	Experiment #:
Common Rail system	pre-heating system	1

1.1 pre-heating system

Objectives :

- Recognize to components of the system.
- Learning how check this components.
- Learning skill uses different device.
- Process of measurement: measure the resistance.
- **Equipment needed**: Digital ohmmeter.

- 1) Make sure the ignition switch off
- 2) remove <u>Glow plug timer relay</u>; Fig1.1.
- 3) put Digital ohmmeter on Lower scale.
- in the *test Board* <u>Glow plug</u> socket's,
 (red socket and black socket for each plug)
 put red probe of Digital ohmmeter in red socket of <u>plug 1</u>,
 and black probe of Digital ohmmeter in black socket of <u>plug 1</u>.
- 5) Read the resistance value measured, And recorded in the table 1.1.
- 6) Do again the step 4 and 5 for each plug's.

Fig1.1

Engine System type: Experiment name:		Experiment #:
Common Rail system	pre-heating system	1

Table 1.1

#	Glow	Typical value	Measured	Notice
	plug		value	(good/bad)
1	Plug 1	0.4 Ω		
2	Plug 2	0.4 Ω		
3	Plug 3	0.4 Ω		
4	Plug 4	0.4 Ω		

**Note: test and Typical values at 20 °

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Common Rail Injectors test	2

1.2 Fuel System

Objectives :

- Recognize to component and sensors of the system.
- Learning how check this component.
- Notice the change of value when change engine operating.
- Learning skill uses different device.

1.2.1 Injectors

Note: piezo type injectors fitted, resistance cannot be checked

Process of measurement: Extract the signal injector, Fig 1.3.
Equipment needed: Oscilloscope (Sun LS2000), Fig 1.2.

Fig1.2

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Common Rail Injectors test	2

✤ Steps

- 1) Make sure of the engine is ready to run.
- 2) Start the engine.
- 3) Engine in idle mode.
- 4) in the test Board Injectors socket's,

(red socket and black socket for each <u>Injectors</u>) put red probe of Oscilloscope in red socket

of <u>Injector</u> 1, and black probe of Oscilloscope in black socket of <u>Injector</u> 1.

- 5) See the waveform of <u>Injector</u> 1 signal.
- 6) Do again the step 3 and 4 for each Injectors.
- 7) Compare this signal's with standard signal's, Fig 1.4.

	Table 1.2			
#	Waveform	Status		
	of	(good/pad)		
<u>1</u>	Injector 1			
<u>2</u>	Injector 2			
<u>3</u>	Injector 3			
<u>4</u>	Injector 4			

Fig1.4

Engine System type:	e System type: Experiment name:	
Common Rail system	Fuel Temperature Sensor test	3

1.2.2 Fuel Temperature Sensor

- Process of measurement: measure the resistance.
- **Equipment needed**: Digital ohmmeter.

Steps

Fig1.5: Fuel Temperature Sensor

- 1) Make sure the ignition switch off.
- 2) Remove the wires connection between (1 & 2), and (3 & 4) on the *test* Board.
- 3) Connect Digital Ohmmeter on socket 2 & 4.
- 4) Measure the resistance value of the sensor at different temperatures as in table 1.3.

	1 able 1.3					
#	socket	Condition	Typical	Measured	Notice (good/bad)	
			value	value		
1	2&4	25 °c	2392 Ω			
2	2&4	40 °c	1236 Ω			
3	2&4	60 °c	557 Ω			
4	2&4	80 °c	273 Ω			
5	2&4	100 °c	144 Ω			

Engine System type:	Experiment name:	Experiment #:
Common Rail	Fuel Pressure Regulator Control	4
system	Solenoid test	

1.2.3 Fuel Pressure Regulator Control Solenoid, Fig 1.6.

First Test

- Process of measurement: measure the resistance.
- **Equipment needed**: Digital ohmmeter.

Fig1.6: Fuel Pressure Regulator

✤ Steps

- **1)** Make sure the ignition switch off.
- 2) Remove the wires connection between (5 & 6), and (7& 8) on the *test Board*.
- 3) Connect Digital Ohmmeter on socket 6 & 8.
- 4) Measure the resistance value of the Pressure regulator solenoid.

#	object	socket	Typical	Measured	Notice
			value	value	(good/bad)
1	Pressure	6 & 8	2-3 Ω		
	Regulator				

	Та	bl	е	1.	4
--	----	----	---	----	---

Engine System type:	Experiment name:	Experiment #:
Common Rail	Fuel Pressure Regulator Control	4
system	Solenoid test	

1.2.3 Fuel Pressure Regulator Control Solenoid .

Second Test

***** Process of measurement: Extract the signal *Pressure Regulator*.

Equipment needed: Oscilloscope (Sun LS2000), Fig 1.7.

Steps

Fig1.7

- 1) Make sure of the engine is ready to run.
- 2) Reconnect the wires connection between (5 & 6), and (7 & 8) on the *test Board*.
- connect the Oscilloscope probe on socket (6 & 8) on the *test Board*.
- 4) Start the engine.
- 5) Engine in idle mode.
- 6) See the waveform of *Pressure Regulator* signal.
- 7) Compare this signal's with standard signal's, Fig 1.8.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Fuel Pressure Regulator Control	4
	Solenoid test	

Fig 1.8: Fuel Pressure Regulator- Idle.

	lable 1.5					
<u>#</u>	Waveform of	Status (good/pad)				
<u>1</u>	Pressure Regulator					

Questions

- 1. can check the Pressure Regulator By Digital voltmeter? How?
- 2. What happens to the Waveform when the engine speed increase?
- 3. If the Pressure Regulator failure, what affects the engine?

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Fuel Pressure Sensor test	5

1.2.4 Fuel Pressure Sensor , Fig 1.9.

Process of measurement: Measuring the voltage.

& Equipment needed: Digital voltmeter.

Fig1.9 :Fuel Pressure Sensor.

- 1) Make sure of the engine is ready to run.
- 2) Start the engine.
- 3) Engine in idle mode.
- 4) connect the Digital voltmeter probe on socket (9 & 10) on the *test Board*.
- 5) Read the voltage value measured, And recorded in the table 1.6.
- 6) Increase the Engine speed at 3000 RPM.
- 7) Read the voltage value measured, And recorded in the table 1.6.
- 8) Compare Measured value with Typical value.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Fuel Pressure Sensor test	5

Table 1.6

#	object	socket	Typical	Measured	Notice
			value	value	(good/bad)
1	Fuel Pressure	9 & 10	1.3 v		
	Sensor				
2	Fuel Pressure	9 & 10	1.7 v		
	Sensor				

Questions

- 1. can check the Fuel Pressure Sensor By Other devices? How?
- 2. If the Fuel Pressure Sensor, what affects the engine?

Engine System type:	Experiment name:	Experiment #:
Common Rail system	3rd Piston Cut-off Solenoid	6

1.2.5 3rd Piston Cut-off Solenoid.

Process of measurement: measure the resistance.

Equipment needed: Digital ohmmeter.

- 1) Make sure the ignition switch off.
- 2) Remove the wires connection between (11 & 12), and (13 & 14) on the *test Board*.
- 3) Connect Digital Ohmmeter on socket 12& 14.
- 4) Measure the resistance value of the 3rd Piston Cut-off Solenoid.

Table 1.7			
	socket	Typical	Μ

#	object	socket	Typical value	Measured value	Notice (good/bad)
1	3rd Piston Cut-	12 & 14	25-50 Ω	Value	(8000/500)
	off Solenoid				

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Mass Air Flow (MAF) Sensor test	7

1.3 Intake System

Objectives :

- Recognize to components and sensors of the system.
- Learning how check this components.
- Notice the change of value when change engine operating.
- Learning skill uses different device.

1.3.1 Mass Air Flow (MAF) Sensor , Fig 1.10.

- Process of measurement: Measuring the voltage.
- **Equipment needed**: Digital voltmeter.

Fig1.10_: (MAF) Sensor

- 1) Extracted the Typical values to check **MAF** sensor from <u>Autodata</u> program, And recorded in the table 1.8.
- 2) Make sure of the engine is ready to run.
- 3) Ignition switch on.
- 4) connect the Digital voltmeter probe on socket (38 & 39) on the *test Board*.
- 5) Read the voltage value measured, And recorded in the table 1.8.
- 6) Start the engine.
- 7) Engine in idle mode.
- 8) Read the voltage value measured, And recorded in the table 1.8.
- 9) Compare Measured value with Typical value.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Mass Air Flow (MAF) Sensor test	7

Tabl	e 1	6
------	-----	---

#	object	socket	Condition	Typical	Measured	Notice
				value	value	(good/bad)
1	MAF	38 & 39	Ignition On			
2	MAF	38 & 39	Engine idling			

 By using Oscilloscope device connect the Oscilloscope probe on socket (6 & 8) on the *test Board*, when engine is running, see the waveform in engine idling and when Increase engine speed.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Intake Air Temperature (IAT)	8
	Sensor test	

1.3.2 Intake Air Temperature (IAT) Sensor

Process of measurement: measure the resistance.

Equipment needed: Digital ohmmeter.

- 1) Make sure the ignition switch off.
- 2) Remove the wires connection between (40& 41), and (42 & 43) on the *test Board*.
- 3) Connect Digital Ohmmeter on socket 41 & 43.
- 4) Measure the resistance value of the sensor at different temperatures as in table 1.7.

#	socket	Condition	Typical	Measured	Notice (good/bad)
			value	value	
1	41 & 43	15 °c	2874-3300 Ω		
2	41 & 43	20°c	2346-2672 Ω		
3	41 & 43	25°c	1928-2174 Ω		
4	41 & 43	30 °c	1585-1787 Ω		
5	41 & 43	40°c	1089-1225 Ω		

Tal	ble	1.	7

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Engine coolant Temperature (ECT)	9
	Sensor test	

1.4 Engine Sensors

Objectives :

- Recognize to components and sensors of the system.
- Learning how check this components.
- Notice the change of value when change engine operating.
- Learning skill uses different device.

1.4.1 Engine coolant Temperature (ECT) Sensor, Fig 1.11.

Process of measurement: measure the resistance.

Equipment needed: Digital ohmmeter.

Steps

Fig1.11_: (ECT) Sensor

2) Remove the wires connection between (15& 16), and (17& 18) on the *test Board*.

1) Make sure the ignition switch off.

- 3) Connect Digital Ohmmeter on socket 16 & 18.
- 4) Measure the resistance value of the sensor at different temperatures as in table 1.8.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Engine coolant Temperature (ECT)	9
	Sensor test	

#	socket	Condition	Typical	Measured	Notice (good/bad)
			value	value	
1	16 & 18	20 °c	6080-6400 Ω		
2	16 & 18	30 °c	3930-4210 Ω		
3	16 & 18	40°c	2600-2710 Ω		
4	16 & 18	60°c	1220-1270 Ω		
5	16 & 18	80°c	620-636 Ω		

Table 1.8

Questions

- 1. What type of ECT sensor?
- 2. What is the effect of ECT sensor on the performance of the engine?
- 3. In the event of sensor failure, what is the value imposed by the ECU?

Engine System type:	Experiment name:	Experiment #:
Common Rail	Crankshaft Position (CKP) Sensor	10
system	test	

1.4.2 Crankshaft Position (CKP) Sensor. Fig 1.12.

First Test

- Process of measurement: measure the resistance.
- **Equipment needed**: Digital ohmmeter.

Fig1.12: CKP sensor

- 1) Extracted the Typical values to check **CKP** sensor from <u>Autodata</u> program, And recorded in the table 1.9.
- 2) Make sure the ignition switch off.
- Remove the wires connection between (19 & 20), and (21& 22) on the *test Board*.
- 4) Connect Digital Ohmmeter on socket 20 & 22.
- 5) Measure the resistance value of the CKP sensor.

#	object	socket	Typical value	Measured value	Notice (good/bad)
1	СКР	20 & 22			

Table 1.9

Engine System type:	Experiment name:	Experiment #:
Common Rail	Crankshaft Position (CKP) Sensor	11
system	test	

1.4.2 Crankshaft Position (CKP) Sensor.

Second Test

***** Process of measurement: Extract the signal *CKP sensor*.

Equipment needed: Oscilloscope (Sun LS2000).

- 1) Make sure of the engine is ready to run.
- 2) Reconnect the wires connection between (19 & 20), and (21 & 22) on the *test Board*.
- 3) connect the Oscilloscope probe on socket (20 & 22) on the *test Board*.
- 4) Start the engine.
- 5) Engine in idle mode.
- 6) See the waveform of *CKP sensor* signal.
- 7) Compare this signal with standard signal, Fig 1.13

Fig 1.13: Woveform of CKP sensor -idle

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Crankshaft Position (CKP) Sensor	11
	test	

- 8) Increase the Engine speed at 3000 RPM.
- 9) See the waveform of *CKP sensor* signal.
- 10) Compare this signal with signal at idle.
- 11) Fill the following table 1.10

Table 1.10

#	object	socket	Condition	Voltage	Notice
				(peak to peak)	(good/bad)
1	СКР	20 & 22	Idling		
2	СКР	20 & 22	3000 RPM		

Questions

- 1. What happens to the Waveform when the engine speed increase?
- 2. If the **CKP** sensor failure, what affects the engine?
- 3. Locate the sensor on the engine
- 4. What type of **CKP** sensor?

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Camshaft Position (CMP) Sensor	12
	test	

1.4.3 Camshaft Position (CMP) Sensor.

Process of measurement: Measuring the voltage.

Equipment needed: Digital voltmeter.

➢ First Test

- 1) Extracted the Typical values to check **CMP** sensor from <u>Autodata</u> program, And recorded in the table 1.12.
- 2) Make sure of the engine is ready to run.
- 3) Start the engine.
- 4) Engine in idle mode.
- 5) connect the **Digital voltmeter** probe on socket (24 & 26) on the **test Board**.
- 6) Read the voltage value measured, And recorded in the table 1.12.
- 7) Compare Measured value with Typical value.
- 8) Increase the Engine speed at 3000 RPM.
- 9) Read the voltage value measured, And recorded in the table 1.12.

#	object	socket	Condition	Typical value	Measured value	Notice (good/bad)		
1	CMP	24 & 26	Idling					
2	CMP	24& 26	3000 RPM					

Table 1.112

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Camshaft Position (CMP) Sensor	12
	test	

1.4.3 Camshaft Position (CMP) Sensor.

Second Test

- ***** Process of measurement: Extract the signal *CMP sensor*.
- Equipment needed: Oscilloscope (Sun LS2000).

- 1) Make sure of the engine is ready to run.
- 2) Reconnect the wires connection between (23 & 24), and (25 & 26) on the *test Board*.
- 3) connect the Oscilloscope probe on socket (27 & 26) on the *test Board*.
- 4) Start the engine.
- 5) Engine in idle mode.
- 6) See the waveform of *CMP sensor* signal.
- 7) Compare this signal with standard signal, Fig 1.14

Fig:1.14 woveform of CMP signal_idlilig

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Camshaft Position (CMP) Sensor	12
	test	

- 8) Increase the Engine speed at 3000 RPM.
- 9) See the waveform of *CMP sensor* signal.
- 10) Compare this signal with signal at idle.
- 11) Fill the following table 1.13

Table 1.13

#	object	socket	Condition	Voltage	Notice
				(peak to peak)	(good/bad)
1	CMP	27 & 26	Idling		
2	CMP	27 & 26	3000 RPM		

Questions

- 1. What happens to the Waveform when the engine speed increase?
- 2. If the CMP sensor failure, what affects the engine?
- 3. Locate the sensor on the engine
- 4. What type of **CMP** sensor?

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Exhaust Gas Recirculation EGR	13
	test	

1.5 Emission Control System

- Objectives :
 - Recognize to component and sensors of the system.
 - Learning how check this component.
 - Notice the change of value when change engine operating.
 - Learning skill uses different device.

Exhaust Gas Recirculation (EGR), Fig 1.15.

First Test

Process of measurement: measure the resistance.

Equipment needed: Digital ohmmeter.

Steps

- 1) Extracted the Typical values to check **EGR** valve from <u>Autodata</u> program, And recorded in the table 1.14.
- 2) Make sure the ignition switch off.
- 3) Remove the wires connection between (44 & 45), and (46& 47) on the *test Board*.
- 4) Connect Digital Ohmmeter on socket 45 & 47.
- 5) Measure the resistance value of the EGR valve .

#	object	socket	Typical value	Measured value	Notice (good/bad)				
1	СКР	20 & 22							

Table 1.14

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Exhaust Gas Recirculation EGR	13
	test	

1.5 Exhaust Gas Recirculation (EGR),

Second Test

- **Process of measurement:** Measuring the voltage.
- **& Equipment needed**: Digital voltmeter.

Steps

- 1) Extracted the Typical values to check **EGR** valve from <u>Autodata</u> program, And recorded in the table 1.15.
- 2) Make sure of the engine is ready to run.
- 3) Ignition switch on.
- 4) connect the Digital voltmeter probe on socket (45 & 47) on the *test Board*.
- 5) Read the voltage value measured, And recorded in the table 1.15.
- 6) Compare Measured value with Typical value.

#	object	socket	Condition	Typical value	Measured value	Notice (good/bad)
				Value	Value	
1	EGR	45 & 47	Ignition On			

Table 1.15

 By using Oscilloscope device connect the Oscilloscope probe on socket (45 & 47) on the *test Board*, when engine is running, see the waveform in engine idling and when Increase engine speed.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Control System test	14

1.6 Control System Fig:1.16.

Objectives :

- Learning how check this component.
- Notice the change of value when change engine operating.
- Learning skill uses different device.

First Test

Process of measurement: Measuring the voltage.

Equipment needed: Digital voltmeter.

Fig1.16: ECU

- 1) Extracted the Typical values to check **ECU**.
- from <u>Autodata</u> program, And recorded in the table 1.16.
- 2) Use Digital voltmeter to check **ECU** As following table 1.16.

#	object	socket	Condition	Typical	Measured	Notice
				value	value	(good/bad)
1	ECU	Bg4 & earth	Ignition Off			
2	ECU	Ae3 & earth	Ignition On			
3	ECU	Af2 & earth	Ignition On			
4	ECU	Af3 & earth	Ignition On			
5	ECU	Cc3 & earth	Ignition On			

Та	b	le	1.	16	5
10			- .	Ξ,	

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Control System test	14

1.6 Control System

Second Test

Process of measurement: measure the resistance.

Equipment needed: Digital ohmmeter.

- 1) Make sure the ignition switch off.
- 2) Disconnect the positive battery cable
- 3) Remove the wires connection between (Ah2 red & Ah2 black),
 - (Bk2 red & Bk2 black) ,(Cg4 red & Cg4 black) , and (Ch4 red & Ch4black) on the *test Board* .
- 4) Extracted the Typical values to check **ECU.** from <u>Autodata program</u>, And recorded in the table 1.17.
- 5) Use Digital ohmmeter to check **ECU** As following table 1.17.

#	object	socket	Typical	Measured	Notice
			value	value	(good/bad)
1	ECU	Ah2 black & earth			
2	ECU	Bk2 black & earth			
3	ECU	Cg4 black & earth			
4	ECU	Ch4 black & earth			

Table 1.17

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Accelerator Pedal Position (APP)	15
	Sensor test	

1.7 Vehicle Sensors

- Objectives :
 - Recognize to components and sensors of the system.
 - Learning how check this components.
 - Notice the change of value when change engine operating.
 - Learning skill uses different device.
- 1.7.1 Accelerator Pedal Position (APP) Sensor.

Process of measurement: Measure the resistance & Measuring the voltage.

Equipment needed: Digital ohmmeter& Digital voltmeter.

- 1) Make sure the ignition switch off.
- 2) Remove the wires connection between (28 & 29) on the *test Board* .
- 3) Connect Digital Ohmmeter on socket 29 & Earth.
- 4) Measure the resistance value, And recorded in the table 1.18.
- 5) Make sure of the engine is ready to run.
- 6) Ignition switch on.
- 7) Remove the wires connection between (30 & 31) on the *test Board*.
- 8) connect the **Digital voltmeter** probe on socket (31 & Earth) on the **test Board**.
- 9) Read the voltage value measured, And recorded in the table 1.18.
- 10) Compare Measured value with Typical value.
- 11) Reconnect the wires connection between (28 & 29), and (30 & 31) on the *test Board*.
- 12) connect the **Digital voltmeter** probe on socket (32 & 29) on the **test Board**.
- 13) make APPS in released mode.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Accelerator Pedal Position (APP)	15
	Sensor test	

- 14) Read the voltage value measured, And recorded in the table 1.18.
- 15) Compare Measured value with Typical value.
- 16) make APPS in fully pressed mode.
- 17) Read the voltage value measured, And recorded in the table 1.18.
- 18) Compare Measured value with Typical value.
- 19) connect the Digital voltmeter probe on socket (33 & 29) on the *testBoard*.
- 20) make APPS in released mode.
- 21) Read the voltage value measured, And recorded in the table 1.18.
- 22) Compare Measured value with Typical value.
- 23) make APPS in fully pressed mode.
- 24) Read the voltage value measured, And recorded in the table 1.18.
- 25) Compare Measured value with Typical value.

			Table 1.16			
#	object	socket	Condition	Typical	Measured	Notice
				value	value	(good/bad)
1	APPS	29 & Earth	Switch off	0 Ω		
2	APPS	31 & Earth	Switch on	5 v		
3	APPS	32 & 29	Switch on & Pedal is released	0.4 v		
4	APPS	32 & 29	Switch on & Pedal is fully pressed	3.7 v		
5	APPS	33 & 29	Switch on & Pedal is released	0.2 v		
6	APPS	33 & 29	Switch on & Pedal is fully pressed	1.85 v		

Table 1.18

Palestine Polytechnic University College Of Engineering and Technology Department Of Mechanical Engineering Diesel Fuel Injection System

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Vehicle Speed Sensors (VSS) test	16

1.7.2 Vehicle Speed Sensors (VSS).

Process of measurement: Measure the resistance & Measuring the voltage.

Equipment needed: Digital ohmmeter& Digital voltmeter.

- 1) Make sure the ignition switch off.
- 2) Remove the wires connection between (34 & 35) on the *test Board* .
- 3) Connect Digital Ohmmeter on socket 35 & Earth.
- 4) Measure the resistance value, And recorded in the table 1.19.
- 5) Reconnect the wires connection between (34 & 35), on the *test Board*.
- 6) Make sure of the engine is ready to run.
- 7) Ignition switch on.
- 8) Remove the wires connection between (36 & 37) on the *test Board* .
- 9) connect the **Digital voltmeter** probe on socket (37 & Earth) on the *test Board*.
- 10) Read the voltage value measured, And recorded in the table 1.19.
- 11) Compare Measured value with Typical value.

#	object	socket	Condition	Typical value	Measured value	Notice (good/bad)
1	VSS	35 & Earth	Switch off	0 Ω		
2	VSS	37& Earth	Switch on	11-14 v		

Tabl	le	1.	19

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Diagnosis of engine	17

1.8 Diagnosis of engine

Objectives :

- Learning how extract the measure and typical value.
- Notice the change of value when change engine operating.
- Ability to describe condition of engine sensors and actuator.
- Learning skill uses different device.
- Equipment needed: Digital ohmmeter, Digital voltmeter, Oscilloscope & <u>Lexia</u> Device, fig 1.17.

- Extract all the engine faults through the process of diagnosis Lexia device.
- Record of these faults.
- ✤ Analyzed these faults and mention the reasons.
- Then Extract readings of the engine and record in a table 1.20.

Engine System type:	Experiment name:	Experiment #:
Common Rail system	Diagnosis of engine	17

#	Name of component	unit	Switch	Idle	3000	Note
			on	speed	RPM	
1	Engine speed					
2	Crankshaft-camshaft synchronizing					
3	Fuel pressure reference					
4	Fuel pressure measured					
5	Pressure regulator OCR					
6	Fuel flow regulator					
7	Output injected					
8	Injector flow correction, cylinder 1					
9	Injector flow correction, cylinder 2					
10	Injector flow correction, cylinder 3					
11	Injector flow correction, cylinder 4					
12	Injector voltage					
13	Air flow reference value					
14	Measured air flow					
15	EGR valve OCR					
16	EGR throttle electro valve OCR					
17	Pre-injection advance					
18	Main- injection advance					
19	Injection time					
20	Engine coolant temperature					
21	Fuel temperature					
22	Corrected air temperature					
23	Atmospheric pressure					
24	Battery voltage					
25	Sensor supply voltage					
26	Power relay control					
27	Ignition on voltage					
28	Status of the ECU					
29	Engine immobilizer programming st	tatus				

Table 1.20

Manual control panel

Specially just for teacher

