Palestine Polytechnic University

College of Engineering

Design Of Mechanical System For The Public Services Center In Ramallah Municipality

> By Ahmad Jarrar Ahmad Saabnah Mohammad Ammar

Supervisor: Dr. Ishaq Sider

Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Refrigeration & Air Conditioning Engineering

Hebron, June ۲۰۱۷

اهداء

الان تفتح الاشرعة وترفع المرساة لتنطلق السفينة في عرض بحر واسع مظلم هو بحر الحياة وفي هذه الظلمة لا يضيء الا قنديل الذكريات الى الذين احببتهم واحبوني اصدقائي.

شكر وتقدير

لا بد لنا ونحن نخطو خطواتنا الاخيرة في الحياة الجامعية من وقفة نعود الى اعوام قضيناها في رحاب الجامعة مع اساتذتنا الكرام الذين قدموا لنا الكثير باذلين بذلك جهود كبيرة في بناء جيل الغد لتبعث الامة من جديد....

وقبل ان نمضي نقدم اسمى ايات الشكر والامتنان والتقدير والمحبة الى الذين حملوا اقدس رسالة في الحياة

الى الذين مهدو لنا طريق العلم والمعرفة....

الى جميع اساتذتنا الافاضل...

ونخص بالذكر كل من الدكتور إسحاق سدر والمهندس كاظم إعسيلة والمهندس محمد عوض حيث كانو لنا خير عون واعطونا الزاد والوقود فكل الشكر والتقدير والاحترام لحضرتكم.

الى من زر عو التفائل في دربنا وقدمو لنا المساعدات والتسهيلات والافكار والمعلومات الزملاء الطلاب في الهندسة الميكانيكية

Abstract

يهدف هذا المشروع الى تصميم الخدمات الميكانيكية لمركز خدمات جمهور في مدينة رام الله . وتصميم هذا المشروع يشمل عمل حسابات وتجهيز رسومات واختيار المواد والمعدات لنظام تزويد المياه ونظام الصرف الصحي ونظام التكييف والتبريد وإطفاء الحريق .

This project aims to design the mechanical systems for Public Services Center In Ramallah Municipality. The design of this project include making the calculations, drawings, material selection for the water system, drainage system, air conditioning system and the firefighting system.

Table of Contents:

Chapter 1: Introduction:
1.1 Project objectives1
1.2 Time table:
1.3 Project content:
Chapter 2: Heating load:19
2.1 Heating load7
2.2 ASHRAE comfort chart:
2.3 Calculation of the overall heat transfer coefficient
2.3. 1 Overall heat transfer coefficient for external walls: 10
2.3.2 Overall heat transfer coefficient for internal walls:
2.3.3 Overall heat transfer coefficient for ceiling:
2.3.4 Overall heat transfer coefficient for floor, doors and windows:13
2.4 Outdoor and indoor design conditions:
2.4.1 Heat loss calculations:
2.4.2 Rate of heat transfer from the external walls:
2.4.3 Rate of heat transfer from the ceiling
2.4.4 Rate of heat transfer from the doors and windows:
2.4.6 Heat loss due to infiltration:
2.4.7 Heat gain due to ventilation:
Chapter 3: cooling load Calculation
3.1 Cooling load:
3.1.1 Data analysis:

3.2 Cooling load calculations:
3. 2.1 Heat gain from walls, ceiling and the sun
3. 2 Heat gain from solar transmitted through windows
3.2.1 Sensible & latent heat gain from the occupants:
3.2.2 Heat gain from the lights:
3.2.3 Heat loss due to infiltration:
3.2.4 Heat gain due to ventilation:
Chapter 4: VRF SYSTEM:
4-1: Introduction:
4-2: VRF System types:
4-2.1: Operating System:
4-2-2 Number of pipes:
4-3: VRF Components:
4-3-1: Outdoors units:
4-3-2 Indoor Units:
4-3-3: Piping Network:
4-3-4: Control Systems:
4-4: Design Process:
4-4-1: 1 Select preliminary Outdoor unit:
4-4-2: 2Select preliminary indoor unit for each zone:
4-5: Sizing the pipe network using the nominal capacity of the units:
Chapter 5: PLUMBING SYSTEM:
5-1: Insulation:
5-2: Water supply system:47
5-2-1: Calculations of hot and cold water supply systems
5-3: Pipe size calculations:
5-4: selections:
5-4-1: selection for cold water pump:53
5-4-2 Pump selection:

5-4-3: selection for tank:
5-4-3-1 selection for main water tank:
5-4-4: selection for boiler:
5-5: Sanitary Drainage System:
5-5-1: Drainage system components:
5-5-2: sanitary drainage Design procedure and pipe sizing:
5-5-3: Manhole design:61
5-5-3-1: Manhole calculation:
5-6: Storm drainage:
5-7: FIRE FIGHTING SYSTEM:
5-7-1: Introduction:
5-7-2: Types of firefighting system:65
5-7-2-1: Fire extinguishers:65
5-7-2-2: Fire hose reel:
5-7-2-3: Fire hydrate system:
5-7-2-4: Automatic sprinkler system:67
5.8: Select the most effective type:
5.9: Pipe size calculation:
5.10: Firefighting pumps:
5.11: Pump selection:

List of Tables

Table1-1: Time table for the first semester:	3
Table 1-2: Time table for the second semester:	4
Table 2-1: External wall constructions:	10
Table 2-2: Internal wall construction:	
Table 2-3: Ceiling construction:	12
Table 2-4: Outdoor design conditions:	13
Table 2-5: Indoor design conditions:	13
Table 2-6: Specification of fans:	21
Table 3-1: Data for outside and inside temperature:	
Table 3-2: (CLTD)corr for walls and roof:	
Table 3-3: parameters of (CLTD)corr for walls and roof:	25
Table 3-4: heat gain from sun:	25
Table 3-5: Heat gain from solar transmitted through the glass:	
Table 3-6: cooling load for each space building:	
Table 4-1: longest pipe allowed:	
Table 4-2: size the pipe connected to the outdoor unit:	45
Table 4-3: size the pipe between branch joints:	45
Table 5-1: WSFU for the restaurant:	48
Table 5-2: (WSFU) for the kitchen:	49
Table 5-3: (WSFU) for the first basement (A):	49
Table 5-4: WSFU for the first basement (B):	50
Table 5-5: WSFU for the ground floor (A):	50
Table 5-6: WSFU for the ground floor (B):	51
Table 5-7: The WSFU and gpm all floors:	51
Table 5-8: Properties of cold and hot water riser:	53
Table 5-9: Degree of risk:	56
Table 5-10: Sizing sample of stack1:	60
Table 5-11: Sizing of water stacks and building drain:	61
Table 5-12: Diameter of manhole according to their depth:	62
Table 5-13: Black water manholes:	63
Table 5.14: Pipe schedule - standpipes and supply piping:	68

List of Figures

Figure 2.1: ASHRAE Comfort Chart	
Figure 2.2: office sample	9
Figure 2.3: External wall:	10
Figure 2.4: Internal wall:	11
Figure 2.5: Ceiling construction:	12
Figure 4.1: 2Pipes systems:	
Figure 4.2: 3pipes systems:	
Figure 4.3: VRF system component:	
Figure 4.4: Different types for different applications:	
Figure 4.5: T-Joints:	
Figure 4.6: Refnits Joints:	
Figure 4.7: Distribution headers:	38
Figure 4.8: Insulation:	
Figure 5-1: sample bathroom:	47
Figure 5-2: static head:	52
Figure 5-3: Pump data:	54
Figure 5-4: Pump characteristic curves:	55
Figure 5-5: Drainage system components:	58
Figure 5-6: sample of stacks:	60
Figure 5-7: Manholes details:	63
Figure 5-8: Fire extinguishers:	65
Figure 5-9: Fire hose reel:	66
Figure 5-10: Fire hydrate system:	67
Figure 5-12: Pump data:	70
Figure 5-12: Pump characteristic curves:	

Chapter 1 Introduction

Introduction:

In business, industry, schools, hospitals, hotels, theaters, restaurants and homes air conditioning is no longer auxiliary but an essential part of modern living. There are four atmospheric conditions. True air conditioning implies that all four of these atmospheric conditions for human comfort are being met.

The Air conditioning system includes much more than the control of the inside temperature of a given space. It includes the controlling and maintaining of the following four atmospheric conditions that affect the human comfort:

- 1. Temperature of the inside space.
- 2. Humidity contents of the air.
- 3. Purity and quality of the inside air.
- 4. Air velocity and air circulation within the space.

The main goal of plumbing design for building is to safely and reliably provide domestic water and water for fire fitting. And also to get rid of the wastes.

1.1. Project objectives

The main objectives for project are:

- 1. To calculate and design air conditioning, heating and plumbing systems.
- 2. To prepare the required drawings for each system.
- 3. To select the required equipments and parts.
- 4. Design a suitable firefighting system that covers the requirements of the building.

1.2 Time table:

Task/week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Collecting information															
General study about the project															
Study the human comfort															
Study about VRF system															
Calculating the cooling and heating load															
Project documentation															

Table 1-1: Time table for the first semester:

Task/week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Collecting															
information															
Fire fighting															
calculations															
HVAC system															
Division															
equipments															
Planning by															
AutoCAD															
Project															
documentation															

Table 1-2: Time table for the second semester:

1.3. Project contents:

Chapter One: Introduction

Includes an overview, the project objectives and time table.

Chapter Two: Heating Load

Includes a sample calculation for one room in details, the other room's loads

Chapter Three: Cooling Load

Includes a sample calculation for one room in details, the other rooms loads and mechanical ventilation .

Chapter Four: VRF SYSTEM

Includes the calculation of VRF system to determine the total required amount of water and the drainage system.

Chapter Five: Firefighting System

Includes general introduction about each system, and the pipe size calculations for one branch.

Chapter Six: Bill of Quantity

This chapter includes the total number of quantity for each system and its cost.

Chapter 2

Heating load calculations

2.1 Heating load:

The main purpose of air conditioning is to provide a comfortable atmosphere for people inside a closed space. The parameters that govern this comfort are four parameters namely air temperature, humidity, air velocity and air purity.

Therefore, cooling decrease the temperature of the surrounding air, heating increase the temperature of the surrounding air, humidifying increas the moisture content in the surrounding air, and dehumidifying decreases the moisture content in the surrounding air. Ventilation renews and clean the air inside the space.

Human body temperature is normally 37° C. We are comfortable when the heat level in our body is transferring to the surrounding air at comfort rate. The rate of this heat transfer depends on the properties of surrounding air and other factors like the type of clothes the human put on .Therefore, to maintain the correct rate of heat transfer, the surrounding air must be conditioned (i.e. changing the properties of the air to suitable ones).

An air conditioner is an appliance or mechanism designed to extract heat from humanly occupied space air temperature using refrigeration cycle. When air conditioning is available it may be central air conditioning where all parts of the building including common areas are cooled or it may be provided only in the specific spaces. In general comfort occurs when body temperature is held within narrow ranges, skin moisture is low and physiological effort of regulation is minimized. Comfortable conditions result from a desirable combination of air temperature, humidity, air velocity, and air purity.

2.2 ASHRAE comfort chart:

The ASHRAE comfort chart of figure (1) indicate the acceptable zones of selecting the inside operative temperature and the inside relative humidity for winter heating summer cooling and year- round air conditioning application.

The inside operative temperature and the ordinate is the inside humidity ratio or the dew temperature. the acceptable operative temperature values and the inside humidity ratio are considered as standard comfort zones for summer operation , winter operation or year – round application , as indicated on figure (2.1) it can be observed that the minimum operating temperature for comfort winter is $(21.2^{\circ}C)$ (70 °F) drybulb temperature when the inside relative humidity is 50 % thus , the comfort zones figure (2.1) set the limits of both the operative in side temperature and the inside relative humidity of inside air for these zones .One can see from these zones that as the relative humidity increases the operative inside temperature must decrease to keep a desired comfortable environment.

The inside design conditions refer to temperature, humidity, air speed and cleanliness of inside air that will induce comfort to occupants of the space at minimum energy consumption. There are several factors that control of selection of the inside design conditions and expenditure of energy to maintain those conditions; The outside design condition, The period of occupancy of the conditional space, The level of activity of the occupants in conditional space. And the type of building and its use.

Usually the range of temperature difference between inside and outside is 12°C. The relative humidity range from the conditioned space varies from 30% - 60%. A dry environment will be felt when the relative humidity falls below 30%, and sickness will be felt at relative humidity above 60%.

2.3 Calculation of the overall heat transfer coefficient:

Figure 2.2: office sample

2.3.1 Overall heat transfer coefficient for external walls:

The constructions of the external walls are explained in details in the following figure:-

Table 2-1. External wan constructions.								
Material	Thickness(m)	R-value (m ² . °C /W)						
Outside air film		0.06						
Stone(1)	0.05	1.7						
Concrete(2)	0.15	1.75						
block(3)	0.07	0.9						
randoban(4)	0.03	0.042						
Plaster(5)	0.02	1.2						
Inside air film		0.12						

Table 2-1. External wall constructions:

Figure 2.3: External wall

$$U_{\text{walls,out}} = \frac{1}{R_{th}} = \frac{1}{\frac{1}{h_i} + \frac{\Delta x_1}{k_1} + \frac{\Delta x_2}{k_2} + \dots + \frac{1}{h_o}}$$
(2.1)

$$U_{\text{walls,out}} = \frac{1}{R_{th}} = \frac{1}{0.12 + \frac{.05}{1.7} + \frac{0.15}{1.75} + \frac{0.07}{0.9} + \frac{0.03}{0.042} + \frac{0.02}{1.2} + 0.06}$$

$$U_{\text{walls,out}} = \frac{1}{R_{th}} = 0.9059 \text{W/m}^2$$
. °C

2.3.2 Overall heat transfer coefficient for internal walls:

The constructions of the internal walls are explained in details in the following figure:-

Table 2-2: Internal wall constructions:							
Material	Thickness (m)	R-value (m ² . $^{\circ}C$ /W)					
Inside air film		0.12					
Plaster	0.02	1.2					
Brick	0.1	0.9					
plaster	0.02	1.2					
Inside air film		0.12					

Figure 2.4: Internal wall

$$U_{\text{walls,in}} = \frac{1}{R_{th}} = \frac{1}{\frac{1}{h_i} + \frac{\Delta x_1}{h_1} + \frac{\Delta x_2}{h_2} + \dots + \frac{1}{h_i}}$$
$$U_{\text{walls,in}} = \frac{1}{R_{th}} = \frac{1}{0.12 + \frac{0.02}{1.2} + \frac{0.1}{0.9} + \frac{0.02}{1.2} + 0.12}$$
$$U_{\text{walls,in}} = 2.6 \text{ W/m}^2. \text{°C}$$

2.3.3 Overall heat transfer coefficient for ceiling:

The constructions of the ceiling are explained in details in the following figure:-

Figure 2.5: Ceiling construction

Material	Thickness (m)	R-value (\mathbf{m}^2 .°C /W)
Outside air film		0.04
Water proof	0.02	0.7
plaster	0.02	1.2
block	0.17	0.95
Concrete	0.25	1.75
mortar	0.07	1.2
Inside air film		0.1

Table 2-3: Ceiling wall constructions:

Q Ceiling = $(U1 * A1 + U2 * A2)\Delta T$

Where:

U1 : U Ceiling With brick.

U2 : U Ceiling Without brick.

A1 = 4/5 * A Ceiling A2 = 1/5 * A Ceiling

Q' Ceiling = (1.016 * 4 5 * 54.7 + 1.194 * 1 5 * 54.7) * 6

Q[°] Ceiling = 345[W] = 0.345[kW]

2.3.4 Overall heat transfer coefficient for ceiling, doors and windows:

The doors are made from wood, and the windows are double glass Aluminum with a wind speed range from 0.5 to 5 m/s from (Appendix B) Table (B3).

 $U_{windows} = 3.2 \text{ W/m}^2. \degree C$ $U_{door} = 7 \text{ W/m}^2. \degree C$

2.4 Outdoor and indoor design conditions:

These conditions are include the dry temperature, relative humidity, and the average air speed. We obtain this value from The Palestinian Code.

Table 2-4: Outdoor design conditions:

Season	T _{out} (°C)	$\Phi_{out}\%$	v _{out} (m ³ /kg dry air)	h _{out} (kJ/kg)
Heating	2	67	0.805	19

Table 2-5: Indoor design conditions:

Season	T _{in} (°C)	[•] _{in} %	h _{out} (kJ/kg)
Heating	24	50	48

2.4.1 Heat loss calculations:

The main resources of heat losses come from the walls, floor, ceiling, doors, and Windows. to calculate each one of them we use the following equation:

$$Q = A \times U \times (T_{in} - T_{out})$$
(2.2)

Where:

Q: The heat transfer rate (W).

A: Area of the layer which heat flow through it (m²).

 Δ T: The difference between the inside and outside temperatures (°C).

U: The overall heat transfer coefficient (W/ m^2 . °C)

2.4.2 Rate of heat transfer from the external walls:

From Table (2-4) and Figure (2.3) we know the construction of the external walls, then by using equation (2.2), we can determine the rate of heat transfer for the manager office from the Walls. Out as follow:

$$Q_{walls.out} = U_{walls.out} \times A_{walls.out} \times (T_{in} - T_{out})$$
$$Q_{walls.out} = 0.9059 \times 10.5 \times (24 - 2)$$
$$Q_{walls.out} = 0.209 \text{ kW}$$

2.4.3 Rate of heat transfer from the ceiling:

From Table (2 - 6) and (Figure 4) we know the construction of the ceiling, then by using equation (3.1), we can determine the rate of heat transfer for the manager office from the ceiling as Follow:

 $Q_{Roof} = U_{Roof} \times A_{Roof} \times (T_{in} - T_{out})$ $Q_{Roof} = 2.25 \times 90 \times (24 - 2)$ $Q_{Roof} = 4.455 \text{ kW}$

2.4.4 Rate of heat transfer from the doors and windows:

By using the equation (3.1), we can determine the rate of heat transfer for the manager office from the doors and windows as follow:

Doors:

$$Q_{door} = U_{door} \times A_{door} \times (T_{in} - T_{out})$$
$$Q_{door} = 7 \times 2.64 \times (24 - 2)$$
$$Q_{door} = 0.407 \text{ kw}$$

Windows:

$$Q_{windows} = U_{windows} \times A_{windows} \times (T_{in} - T_{out})$$
$$Q_{windows} = 3.2 \times 73.5 \times (24 - 2)$$
$$Q_{windows} = 5.175 kw$$

2.4.5 Heat loss :

Infiltration is the leakage of the outside air through cracks or clearances around the windows and doors. The calculation method is as follows:

For windows:

$$Q_{\text{infiltration}} = m_{\text{inf}} \times (h_0 - h_i)$$
(2.3)

$$m_f = \frac{V_f}{v_f} \tag{2.4}$$

(2.5)

 $V_{\rm f} = {\rm crack \ length} \times {\rm Infiltration \ through \ windows}$

Where V_f is obtained from(Appendix B) Table (B4) at 8 km/h as $2m^3/h$ per meter of crack. The crack length of the five double hung metal windows is:

$$L = (21 \times 2) + (3.5 + 2) = 49 \text{ m}.$$

$$V_f = 49 \ \times 2 = 98 \frac{m^3}{h} = \frac{98}{3600} = 0.027222 \ \frac{m^3}{s} \, . \label{eq:Vf}$$

$$m_f = \frac{0.02722}{0.805} = 0.0338 \text{ kg/s}.$$

Also, from the psychometric chart, at the given outside conditions then the specific volume v_0 of outside air is:

$$v_0 = 0.805 \text{ m}^3/\text{kg}$$

Then total heat loss due to infiltration is:

 $Q_{infiltration} = 0.0338 \times 1 \times (48 - 19) = 1 \text{ kW}$

For Door:

$$Q_{infiltration} = m_f \times (h_o - h_i)$$

$$m_f = \frac{V_f}{v_0}$$

 $V_f = crack \ length \times Infiltration \ through \ doors$

$$\begin{split} L &= (2.2\times2) + (1.2+3) = \ 6.8\ m\ . \\ V_f &= 6.8\ \times 5.4\ = 36.72 \frac{m^3}{h} = \frac{36.72}{3600} = \ 0.0102\ \frac{m^3}{s} \ . \end{split}$$

Where V_f is obtained from table (Appendix B) Table (B2) at 8 km/h as 5.4 m³/h per meter of crack. The crack length of the tow poorly fitted for is:

$$m_f = \frac{0.0102}{0.805} = 0.0127 \text{ kg/s}.$$

Also, from the psychometric chart, at the given outside conditions then the specific volume v_0 of outside air is:

 $v_0 = 0.805 \text{ m}^3/\text{kg}$

Then total heat loss due to infiltration is:

$$Q_{infiltration} = 0.0126 \times 1 \times (48 - 19) = 0.37 \text{ kW}$$

2.4.6 Heat loss due to ventilation:

$$Q_{\text{ventilation}} = m_{\text{ventilation}} \times (h_{\text{out}} - h_{\text{in}})$$
(2.6)

$$m_{v} = \frac{V_{v}}{v_{o}}$$
(2.7)

 V_v = minimum outside air requirements ventilation × No. of persons (2.8)

Minimum outside air requirements ventilation from Table (4-5). Also, from the psychometric chart, at the given outside conditions then the specific volume

 v_0 Of outside air is: $v_0 = 0.805 \text{ m}^3/\text{kg}$ $m_v = \frac{10 \times 2}{0.805 \times (1000)} = 0.025 \text{ kg/s}$ Then total heat loss due to ventilation is: $Q_{\text{ventilation}} = 0.025 \times 1000 \times (48 - 19)$

 $Q_{\text{ventilation}} = 0.023 \times 1000 \times (40 - 19)$ $Q_{\text{ventilation}} = 0.725 \text{ kW}$

Finally, the total load for this manager office is the summation of all the heat Gain resources.

$$Q_{total} = 30 \text{ kw}$$

Name of space	Area (m ²)	Total heating load(kW)				
2st basement floor plan						
hall	43	6.2				
office	19.19	2.9				
	1st basement floor plan					
Restaurant	139.53	49				
Distributed lounge	176.37	36				
Grained floor plan						
reception hall	292	50				
Public hall	200	41.1				
1st floor plan						
Meeting hall	157.3	44				
2st floor plan						
Manager office	90	30				

Table 2-6: Total heating load for each space building:

Chapter 3

Cooling load calculations

3.1 Cooling load

3.1.1 Data analysis

$$(CLTD)_{corr} = (CLTD + LM) k + (25.5 - T_i) + (T_{o.m} - 29.4) f$$
 (3.1)

Where:

- CLTD: Is called cooling load temperature difference for medium wall construction.
- ◆ LM: Latitude correction factor for horizontal and vertical surfaces.
- K: Colors adjustment factor such that k = 1.0 for dark colored roofs, and k=0.83 for permanently medium colored walls.
- DR: The daily temperature range which equal to the difference between the average maximum and Average minimum temperature for warmest month of the summer season.
- ✤ f: The factor f is attic or roof fan factor such that f = 1 if there is no attic or roof fan, and the value of f = 0.75 if there is an attic or roof fan.
- * $T_{o.m}$: The outdoor main temperature

$$T_{o.m} = T_{out} - \frac{DR}{2}$$
(3.2)

The following table (3-1) contains all assumptions needed for the next calculations:-

Outdoor temperature (T _o)	35 °C From the Palestinian code
Indoor temperature (T _i)	24°C From Figure 1
Latitude(LM)	Apr/Aug @ latitude 32° North
Day of calculations	day of Apr/Aug
Color of surfaces	Permanent medium color wall

Table 3-1: Data for outside and inside temperature:

In the following table is the corrected CLTD for walls and roof and its tabulated as follow:

Wall	CLTD From table (9-1)	LM From table (9-2)	K	F	CLTD corr.
Ν	6	-1.1	0.83	1	11.167
NE	10	-0.5	0.83	1	14.985
Е	14	0	0.83	1	18.72
SE	13	0	0.83	1	87.89
S	9	0.5	0.83	1	14.985
SW	9	0	0.83	1	14.57
W	8	0	0.83	1	13.74
NW	7	-0.5	0.83	1	12.495
Roof	19	0.5	1	1	26.6

Table 3-2: (CLTD)_{corr} for walls and roof :

Parameters	Properties		
Roof	Without suspending ceiling type 2 @solar time 15h		
Wall	Group B @solar time 16h		
LM	Apr/Aug @Latitude 32c		
K	Permanent medium color wall		
F	The value of attic or roof fan factor		
Type of glass	Double, thickness 6*14*6mm, with interior shading		
CLF	Construction medium with inertia shading		

Table 3-3: Parameters of (CLTD)_{corr} for walls and roof :

3.2 Cooling load calculations:

We are did the calculations for office of manager in second floor which is an area of 90 m² and can accommodate 2 people. In the following subsections we determined the heat gain that comes from different resources. And these resources are the walls, sun, occupants, infiltration, ventilation, and windows.

3.2.1 Heat gain from walls, ceiling and the sun

In this step determined the heat gain from the direct contact with the sun, the sun is directly contact with the all walls and the ceiling for this room, the following table shows the total amount of heat gain from the sun using the cooling load temperature difference (CLTD) corr.

Surface	CLTD	LM	CLTD corr	Area(m ²)	U (W/m ² °C)	Q (kW)
SE wall	13	0	17.89	3.5	0.9059	0.0567
SW wall	9	0	14.57	3.5	0.9059	0.04619
N wall	7	-0.5	12.495	3.5	0.9059	0.0396
ceiling	19	0.5	26.6	90	2.25	5.3865
					Q _{total}	5.529

Table 3-4: heat gain from the sun:

3.2.2 Heat gain from the solar transmitted through windows:

In the selected office the all wall is exposed to the sun. heat gain due to solar transmission through glass window and glass door is estimated by using Table (9-7) to(9-11). The values of the variables are taken from the inserted tables in the appendix.

$$Q_{g} = A \times (SHG) \times (SC) \times (CLF)$$
(3.3)

Where:

- SHG : Solar heat gain factor
- SC : Shading coefficient
- ✤ CLF : Cooling load factor

Surface	Area	SHG	SC	CLF	Q(kW)
	(m^2)	From Table (9-7)	From Table (9-8)	From Table (9-10)	
SE-glass	22.7	571	0.53	0.44	3.022
SW-glass	18	571	0.53	0.3	1.634
NW-glass	22.8	445	0.53	0.19	1.021
				Q _{total}	5.678

Table 3-5: Heat gain from solar transmitted through the glass:

3.2.3 Sensible & latent heat gain from the occupants:

The heat gains from the occupants depend on the number of occupants inside the manager office.

$$Q_{oc} = Q_{oc,sens} + Q_{oc,latent}$$
(3.4)

$$Q_{oc,sens} = # \text{ Of Occupants } \times \text{ sensible heat}$$
 (3.5)

 CLF_{occ} cooling load factor due to occupants, for sensible heat gain, From (Appendix B) Table (B17) Sensible and Latent heat *from*(Appendix B) Table (B1).

$$Q_{oc,sens} = 2 \times \frac{71.5}{1000} \times 0.8 = 0.1144 \text{ kW}$$

 $Q_{oc,sens} = #$ Of Occupants \times latent heat

$$Q_{\text{oc,latent}} = 2 * \frac{71.5}{1000} = 0.143 \text{ kW}$$

3.2.4 Heat gain from the lights:

There are twenty lights through this manager office, so:

$$Q_{\text{lights}} = N \times P \times \text{CLF}_{\text{lights}} \times \text{Diversity factor}$$
(3.6)

Where:

N: The number of lights.

P: The power for the lights.

CLF lights: Cooling load factor for the lights, From Table (9 - 14).

 $CLF_{lights} = 0.84$

 $Q_{\text{lights}} = 20 \times 60 \times 0.84 \times 0.5 = 0.504 \text{ kW}$

3.2.5 Heat loss due to infiltration:

Infiltration is the leakage of the outside air through cracks or clearances around the windows and doors. We use the crack. Age method to calculate it as follows:

For Windows:

$$Q_{\text{infiltration}} = m_{f} \times (h_{o} - h_{i})$$
(3.7)

$$m_f = \frac{V_f}{v_0} \tag{3.8}$$

$$V_{\rm f} = {\rm crack \ length \ (L)} \times {\rm Infiltration \ through \ windows}$$
 (3.9)

Where V_f is obtained from (Appendix B) Table (B3) at 8 km/h as $2m^3/h$ per meter of crack. The crack length of the five double hung metal windows is:

$$L = 21 \times 2 + (3.5 \times 2) = 49 \text{ m}.$$

Therefore;

$$V_f = 49 \times 2 = 98 \frac{m^3}{h} = \frac{98}{3600} = 0.02722 \frac{m^3}{s}$$
.

Also, from the psychometric chart, at the given outside conditions then the specific volume v_0 of outside air is:

$$v_0 = 0.905 \text{ m}^3/\text{kg}$$

 $m_f = \frac{0.02722}{0.905} = 0.03 \text{ kg/s}.$

Then total heat loss due to infiltration is:

 $Q_{infiltration} = 0.03 \times 1 \times (88 - 48) = 1.2 \text{ kW}$

For Doors:

$$Q_{infiltration} = m_{inf} \times (h_o - h_i)$$

$$m_{inf} = \frac{V_f}{v_0}$$

 $V_f = crack \ length \times Infiltration \ through \ doors.$

Where V_f is obtained from Table (6-1) at 8 km/h as 5.4 m³/h per meter of crack. Length of the five double hung metal windows is:

$$L = (1.2 \times 2) + (2.2 \times 2) = 6.8 \text{ m}.$$

Also, from the psychometric chart, at the given outside conditions then the specific volume v_0 of outside air is:

$$v_0 = 0.905 \text{ m}^3/\text{kg}$$

$$V_f = 6.8 \times 5.4 = 36.72 \frac{\text{m}^3}{\text{h}} = \frac{36.72}{3600} = 0.0102 \frac{\text{m}^3}{\text{s}}.$$

$$m_f = \frac{0.0102}{0.905} = 0.0112 \text{ kg/s}.$$

Then total heat loss due to infiltration is:

 $Q_{infiltration} = 0.0112 \times 1 \times (88 - 48) = 0.45 \text{ kW}$

3.2.6 Heat gain due to ventilation:

$$Q_{\text{ventilation}} = m_{v} \times (h_{o} - h_{i})$$
(3.10)

$$m_{\nu} = \frac{v_{\nu}}{v_0} \tag{3.11}$$

 V_v = minimum outside air requirements ventilation× No. of persons (3.12)

Minimum outside air requirements ventilation from Table (4-5).

$$V_{v} = 10 \times 2 = 20 = 0.02 \ m^{3}/s.$$

Also, from the psychometric chart, at the given outside conditions then the specific volume v_0 of outside air is:

$$v_0 = 0.905 \text{ m}^3/\text{kg}$$

 $m_v = \frac{0.02}{0.905} = 0.0221 \text{ Kg/s}.$

Then total heat loss due to ventilation be:

 $Q_{ventilation} = 0.0221 \times 1000 \times (88 - 48) = 0.884 \text{ kW}.$

Finally, the total load for this office mangier is the summation of all the heat Gain resources.

$$Q_{total} = 32 \text{ kW}$$

Name of space	Area (m ²)	Total cooling load(kW)			
2st basement floor plan					
Hall	43	8.8			
Office	19.19	3.2			
1st basement floor plan					
Restaurant	139.53	56			
Distributed lounge	176.37	40.6			
Grained floor plan					
reception hall	292	56			
Public hall	200	45.2			
1st floor plan					
Meeting hall	157.3	49			
2st floor plan					
Manager office	90	32			

Table 3-6: cooling load for each space building:
3.3 Mechanical ventilation

3.3.1 Overview of ventilation:-

Ventilation is the process of supplying and removing air by natural or mechanical means to and from a building. The design of a building's ventilation system should meet the minimum requirements of the building (Ventilating Systems) regulations.

There are two ways for Ventilation:

• Natural ventilation: -

Covers uncontrolled inward air leakage through cracks, windows, doorways and vents (infiltration) as well as air leaving a room (exfiltration) through the same routes. Natural ventilation is strongly affected by weather conditions and is often unreliable.

• Mechanical: -

Forced ventilation is provided by air movers or fans in the wall, roof or air conditioning system of a building. It promotes the supply or exhaust airflow in a controllable manner.

The airflow rate into a room space, for general mechanical supply and extract systems, is usually expressed in:

- Air changes per hour.

An air change per hour (ACH) is the most frequently used basis for calculating the required airflow. Air changes per hour are the number of times in one hour an equivalent room volume of air will be introduced into, or extracted from the room space.

- Air flow rate per person.

Airflow rate per person are generally expressed as litters per person (L/P), and are usually used where fresh air ventilation is required within occupied spaces.

- Airflow rate per unit floor area.

Airflow rates per unit floor area are similar in effect to air changes per hour except that the height of the room is not taken into consideration.

Mechanical ventilation system in this project is just for bathrooms and kitchens & by first method air changes per hour.

3.3.2Objectives of ventilation

Ventilation in a building serves to provide fresh and clean air, to maintain a thermally comfortable work environment, and to remove or dilute airborne contaminants in order to prevent their accumulation in the air. Air conditioning is a common type of ventilation system in modern office buildings. It draws in outside air and after filtration, heating or cooling and humidification circulates it throughout the building. A small portion of the return air is expelled to the outside environment to control the level of indoor air contaminants.

3.3.3 How ventilation systems work:-

A variety of mechanical ventilation systems are available to select, based on local climate and the home's heating and cooling system. In addition to one of the primary systems described below, "spot" ventilation fans should also be provided for kitchens and baths to remove the concentrated moisture and odors that can occur in these rooms.

3.3.4 Benefits ventilation

• Better Indoor Air Quality. Indoor air can be many times more polluted than outdoor air. Ventilation systems can significantly improve a home's air quality by removing allergens, pollutants, and moisture that can cause mold problems.

• More Control. When homes rely on air flow through walls, roofs, and windows for ventilation, there is no control over the source or amount of air that comes into the house. In fact, air leaking into the house may come from undesirable areas such as the garage. Mechanical ventilation systems provide proper fresh air flow along with appropriate locations.

• Improved Comfort. Mechanical ventilation systems allow a constant flow of outside air into the home and can also provide filtration, dehumidification, and conditioning of the incoming outside air.

	Fans Schedule										
Fan	_	~		Flaw	Head]	Motor	Data	r	[
Label	Туре	System	Location	(CFM)	(IN)	RPM	kW	V	Ph.	ΗZ	QTY.
EXF#1	Centrifugal	Ventilation	1 st Basement	560	0.3	1450	0.10	220	1	50	1
EXF#2	Centrifugal	Ventilation	1 st Basement	140	0.25	1450	0.10	220	1	50	1
EXF#3	Centrifugal	Ventilation	1 st Basement	2734	0.3	1450	0.30	220	1	50	1
EXF#4	Centrifugal	Ventilation	Ground	630	0.3	1450	0.10	220	1	50	1
EXF#5	Centrifugal	Ventilation	Ground	340	0.25	1450	0.10	220	1	50	1
EXF#6	Centrifugal	Ventilation	Top roof	2500	0.45	1450	0.40	220	1	50	1
EXF#7	Centrifugal	Ventilation	1 st Basement	3000	0.3	1450	0.35	220	1	50	1
EXF#8	Centrifugal	Ventilation	Ground	300	-	1450	0.10	220	1	50	1
EXF#1	Axial wall	Fresh air	1 st Basement	2874	0.3	1450	0.30	220	1	50	1
EXF#2	Axial wall	Fresh air	Top roof	210	0.3	1450	0.10	220	1	50	1
EXF#3	Axial wall	Fresh air	2 nd Basement	690	0.3	1450	0.10	220	1	50	1
EXF#4	Axial wall	Fresh air	Ground	340	0.25	1450	0.10	220	1	50	1

Table 3.7:- Specifications of fans

CHAPTER 4

VRF SYSTEM

4.1 Introduction:

The primary function of all air-conditioning systems is to provide thermal comfort for building occupants. There are a wide range of air conditioning systems available, starting from the basic window-fitted units to the small split systems, to the medium scale package units, to the large chilled water systems, and currently to the variable refrigerant flow (VRF) systems.

Variable refrigerant flow (VRF) is an air-condition system configuration where there is outdoor condensing unit and multiple indoor units. The term variable refrigerant flow refers to the ability of the system to control the amount of refrigerant flowing to the multiple evaporators (indoor units), enabling the use of many evaporators of differing capacities and configurations connected to a single condensing unit. The arrangement provides an individualized comfort control, and simultaneous heating and cooling in different zones.

VRF systems operate on the direct expansion (DX) principle meaning that heat is transferred to or from the space directly by circulating refrigerant to evaporators located near or within the conditioned space. Refrigerant flow control is the key to many advantages as well as the major technical challenge of VRF systems.

4.2 VRF System types:-

4.2.1 Operating System:-

- 1- Cooling only systems.
- 2- Heat Pump systems.
- 3- Heat Recovery systems.

4.2.2 Number of pipes:

1) 2 Pipes Systems:

Figure 4.1: Two Pipes systems

2) 3 Pipes Systems:

Figure 4.2: Three pipes systems

4.3 VRF Components:

- 1- Outdoor Units.
- 2- Indoor Units.
- 3- Piping Network.
- 4- Control.

Figure 4.3: VRF system component

4.3.1 Outdoors units:-

The outdoor unit contains a heat pump, a heat pump is a machine that by reversing its refrigeration cycle can provide heating instead of cooling. Because a heat pump uses refrigerant it can upgrade the heat in air at even -10°C to a usable heat source to heat buildings.

Individual Outdoor Unit Capacity 8 HP, 10 HP and up to 20 HP.

Outdoor Module Up to 80 HP

4.3.2 Indoor Units:-

The indoor units were developed to be highly efficient, compact, low noise, and to have user friendly operation. Care was also taken with the design to make that go well with the interior decoration and tube easy to install and maintain. Further, a variety of options are available to achieve an air conditioning environment that is more desirable from the user's perspective.

Figure 4.4: Different types for different applications

4.3.3 Piping Network:-

1-Copper Pipes:

Connect between all indoor units and all outdoor units in the same system It may be 2 pipes or 3 pipes according to the type of VRF System.

2-T-Joints:

Used to connect the pipes between the outdoor units

Figure 4.5:T-Joints

3-Separation Tubes (or Refnits Joints)

Used to distribute refrigerants on two branches and have different dimensions according to use.

Figure 4.6: Refnits Joints

4. Distribution headers

Used to distribute refrigerants to more than two branches so that the units are identical in convection.

Figure 4.7: Distribution headers

5. Insulation

Epoxy foam-ethylene propylene dinenomer and foam PE polyethylene foam.

Figure 4.8: Insulation

4.3.4 Control Systems:-

- Individual control system.
 Wired controller, Wireless controller and Timer controller.
- 2- Centralized control systems.
 Used to control indoor units individually or as a group, and can connected 16 set of outdoor units and maximum 256 indoor units.
- 3- Integrated management system.

Built-in web server for PC-independent management and remote access control, weekly/ daily schedule control, power distribution function, emergency stop function with simple connection interface and data storage in non-volatile memory and plug-in memory.

- 4- Power distribution system.
- 5- External contact control system.

• Mainly used for accommodation facilities to control the internal units using the contact from the card holder.

• Guest room management is a smart way to save energy and money. When the key is in place, the air conditioner is activated. When the air conditioner switch is removed or turned off, you can avoid uninhabited room cooling and energy saving.

6- Building management system.
 Mainly used to control the air conditioning system with an open protocol for easy interface to third-party known companies.

4.4 Design Process:-

There are two methods to design VRV according to Daikin company system:-

1) By Xpress program.

"Xpress" is selection software for VRV systems and it can helps your quick selection for quotation with easy operation.

This program is made from Daikin Company; the program can help you to choose a lot of very important thing about VRV system.

2) By Tables.

We used the tables to design the VRV system for the building.

4.4.1 Select preliminary Outdoor unit:-

Select preliminary Outdoor unit or module for each zone Consider design temperature conditions to select larger Outdoor with nominal capacity > actual load

17) <mark>40HP</mark>	Cooling										TC :	Total Caj	oacity, F	PI : Pow	er Input
							Indo	or Tempe	rature (°C	,WB)					
Combination, %	Outdoor	14.0	0°C	16.0	0°C	18.0	O°C	19.0	0°C	20.0	0°C	22.0	0°C	24.0	<mark>) °C</mark>
(Capacity index)	Temperature(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
	10 °C	88.96	KWV 14.64	KW 105.24	18.51	KVV 110.81	21.75	KW 126.37	22.69	KWV 132.44	23.14	KWV	23.04	KW 152.12	23.42
	12 °C	88.96	15.01	105.24	18.97	119.81	22.29	126.37	23.26	132.44	23.72	143.14	23.62	152.12	24.00
	14 °C	88.96	15.26	105.24	19.29	119.81	22.67	126.37	23.65	132.44	24.12	143.14	24.02	152.12	24.41
	16°C	88.96	15.65	105.24	20.56	119.81	23.24	126.37	24.25	132.44	24.73	143.14	24.62	152.12	25.02
	20 °C	88.96	17.07	105.24	21.58	119.81	25.36	126.37	26.46	132.44	26.98	143.14	26.87	152.12	27.31
	21 °C	88.96	17.54	105.24	22.17	119.81	26.05	126.37	27.18	132.44	27.72	143.14	27.60	152.12	28.05
	23 °C 25 °C	88.96	18.57	105.24	23.47	119.81	27.58	126.37	30.51	132.44	31.12	143.14	30.98	152.12	31.49
130%	27 °C	88.96	20.85	105.24	26.35	119.81	30.97	126.37	32.31	132.44	32.95	143.14	32.81	152.12	33.35
	29 °C	88.96	22.00	105.24	27.80	119.81	32.68	126.37	34.09	132.44	34.76	143.14	34.62	152.12	35.18
	33 °C	86.88	23.44	102.78	29.63	117.00	34.82	126.37	37.20	129.34	37.04	139.79	36.88	148.56	37.49
	35 °C	85.40	23.75	101.03	30.02	115.01	35.28	126.37	38.34	127.14	37.53	137.41	37.37	146.04	37.98
	37 °C 39 °C	84.15	23.86	99.55	30.16	1113.33	35.45	119.54	36.98	125.28	37.71	135.40	37.55	143.90	38.16
	42 °C	81.48	23.00	96.39	29.07	109.73	34.16	115.74	35.64	121.30	36.35	131.10	36.19	139.33	36.78
	44 °C	80.25	22.06	94.94	27.89	108.07	32.78	113.99	34.19	119.47	34.87	129.12	34.72	137.23	35.29
	10 °C	86.93	14.50	102.83	18.32	117.07	21.53	123.48	22.46	129.41	22.91	139.87	22.81	148.65	23.13
	12 °C	86.93	14.86	102.83	18.78	117.07	22.07	123.48	23.03	129.41	23.48	139.87	23.38	148.65	23.77
	14 °C	86.93	15.11	102.83	19.10	117.07	22.45	123.48	23.42	129.41	23.88	139.87	23.78	148.65	24.17
	18 °C	86.93	16.10	102.83	20.35	117.07	23.92	123.48	24.95	129.41	25.45	139.87	25.34	148.65	25.75
	20 °C	86.93	16.91	102.83	21.37	117.07	25.11	123.48	26.20	129.41	26.72	139.87	26.60	148.65	27.04
	21 °C 23 °C	86.93	17.37	102.83	21.95	117.07	25.80	123.48	26.91	129.41	27.45	139.87	27.33	148.65	27.77
	25 °C	86.93	19.49	102.83	24.64	117.07	28.96	123.48	30.21	129.41	30.81	139.87	30.68	148.65	31.18
120%	27 °C	86.93	20.65	102.83	26.09	117.07	30.67	123.48	31.99	129.41	32.63	139.87	32.49	148.65	33.02
	29°C 31°C	86.93	21.78	102.83	27.53	117.07	32.35	123.48	35.40	129.41	34.42	139.87	34.27	148.65	34.83
	33 °C	86.66	23.69	102.52	29.94	116.71	35.19	123.48	36.83	129.01	37.44	139.44	37.28	148.19	37.89
	35 °C	85.19	24.00	100.78	30.34	114.72	35.66	123.48	37.96	126.82	37.93	137.07	37.77	145.67	38.39
-	39 °C	83.94	23.99	99.30	30.33	111.58	35.64	117.69	37.38	123.34	37.92	133.31	37.96	143.54	38.37
	42 °C	81.27	23.25	96.15	29.38	109.45	34.53	115.45	36.02	121.00	36.74	130.77	36.58	138.98	37.18
	44 °C	80.05	22.30	94.70	28.19	107.80	33.13	113.71	34.56	119.17	35.24	128.80	35.09	136.88	35.67
	10 °C	83.61	13.96	98.91	17.65	112.60	20.74	118.77	21.64	124.47	22.06	134.53	21.97	142.97	22.33
	12 °C	83.61	14.31	98.91	18.09	112.60	21.26	118.77	22.18	124.47	22.62	134.53	22.52	142.97	22.89
	14 °C 16 °C	83.61	14.55	98.91	18.39	112.60	21.62	118.77	22.55	124.47	23.00	134.53	22.90	142.97	23.27
	18 °C	83.61	15.51	98.91	19.60	112.60	23.04	118.77	24.03	124.47	24.51	134.53	24.40	142.97	24.80
	20 °C	83.61	16.28	98.91	20.58	112.60	24.18	118.77	25.23	124.47	25.73	134.53	25.62	142.97	26.04
	23 °C	83.61	17.71	98.91	22.38	112.60	26.30	118.77	27.44	124.47	27.98	134.53	27.86	142.97	28.32
	25 °C	83.61	18.78	98.91	23.73	112.60	27.89	118.77	29.10	124.47	29.67	134.53	29.54	142.97	30.03
110%	27 °C	83.61	19.88	98.91 09.01	25.13	112.60	29.53	118.77	30.81	124.47	31.42	134.53	31.29	142.97	31.80
	31 °C	83.61	22.00	98.91	27.80	112.60	32.67	118.77	34.09	124.47	34.76	134.53	34.62	142.97	35.18
	33 °C	83.61	22.89	98.91	28.93	112.60	34.00	118.77	35.47	124.47	36.17	134.53	36.02	142.97	36.60
	35 °C	82.30	23.24	96.00	29.37	109.29	34.51	115.27	36,18	122.61	36.90	132.51	36.74	138.77	37.16
	39 °C	80.10	23.23	94.75	29.36	107.87	34.50	113.78	35.99	119.24	36.70	128.88	36.55	136.97	37.14
	42 °C	78.57	22.50	92.95	28.44	105.82	33.42	111.61	34.87	116.97	35.56	126.43	35.41	134.36	35.99
	46 °C	75.86	20.27	89.74	25.62	102.16	30.11	107.75	31.41	112.93	32.03	122.06	31.90	129.72	32.42
	10 °C	78.84	12.98	93.28	16.41	106.18	19.29	112.00	20.12	117.38	20.52	126.87	20.43	134.83	20.77
	12 °C 14 °C	78.84	13.31	93.28	16.82	106.18	20.11	112.00	20.63	117.38	21.04	126.87	20.95	134.83	21.29
	16 °C	78.84	13.88	93.28	17.54	106.18	20.61	112.00	21.50	117.38	21.93	126.87	21.84	134.83	22.19
	18 °C	78.84	14.42	93.28	18.23	106.18	21.42	112.00	22.35	117.38	22.79	126.87	22.70	134.83	23.07
	21 °C	78.84	15.56	93.28	19.66	106.18	23.11	112.00	24.11	117.38	24.58	126.87	23.03	134.83	24.88
	23 °C	78.84	16.47	93.28	20.82	106.18	24.46	112.00	25.52	117.38	26.03	126.87	25.92	134.83	26.34
100%	25 °C	78.84	17.46	93.28	22.07	106.18	25.94	112.00	27.06	117.38	27.60	126.87	27.48	134.83	27.93
100/0	29 °C	78.84	19.51	93.28	24.66	106.18	28.98	112.00	30.23	117.38	30.83	126.87	30.70	134.83	31.20
	31 °C	78.84	20.46	93.28	25.86	106.18	30.39	112.00	31.71	117.38	32.33	126.87	32.19	134.83	32.72
	33 °C 35 °C	78.84	21.29	93.28	20.90	106.18	32.59	112.00	32.99	117.38	34.67	126.87	34.53	134.83	35.09
	37 °C	77.69	22.05	91.91	27.86	104.63	32.75	110.36	34.16	115.66	34.84	125.01	34.69	132.85	35.26
	39 °C	76.68	21.93	90.72	27.72	103.27	32.58	108.93	33.99	114.16	34.66	123.39	34.51	131.13	35.07
	44 °C	74.09	20.38	87.65	25.76	99.78	30.28	105.24	31.59	110.30	32.21	119.21	32.08	126.69	32.60
	46 °C	72.62	19.14	85.91	24.19	97.80	28.43	103.16	29.66	108.12	30.24	116.85	30.12	124.19	30.61

17) 40HP (Heating)

TC : Total Capacity, PI : Power Input

	Out	door				lr Ir	ndoor Tempe	erature (°C,D	B)			
Combination, %	T		16.0	O°C	18.0	O°C	20.0	O°C	22.	O°C	24.0	O°C
(Capacity index)	Temper	ature(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
(expand) moony	DB	WB	kW/	kW/	kW/	kW/	kW	kW/	kW/	kW/	kW/	kW/
	-20	-01	110.26	40.47	111.60	30.10	105.20	37.94	100.02	36.10	06.02	35.40
	-20	-21	110.20	40.47	111.00	39.10	100.29	01.24	100.02	30.12	90.02	30.40
	-17	-18	118.88	39.96	114.31	38.61	107.84	36.77	102.45	35.67	98.35	34.96
	-15	-16	123.19	41.20	118.46	39.81	111.75	37.91	106.16	36.78	101.92	36.04
	-12	-13	131.41	42.99	126.36	41.54	119.21	39.56	113.25	38.37	108.72	37.60
	10	44	141.00	42.01	125.60	40.40	107.00	40.40	101.50	20.10	110.00	20.44
	-10	-11	141.02	43.91	133.00	42.42	127.92	40.40	121.02	39.19	110.00	30.41
	-7	-8	145.11	44.60	139.53	43.09	131.63	41.04	125.05	39.81	120.05	39.01
	-5	-6	149.50	44.51	143.75	43.00	135.61	40.95	128.83	39.73	123.68	38.93
	-3	-4	153.00	43.94	147.11	42.46	138.78	40.43	131.85	39.22	126.57	38.44
130%	0	4	156.57	40.05	150.55	40.92	142.02	20.00	124.02	27.71	100.52	26.06
	0	-1	100.07	42.20	100.00	40.02	142.02	30.00	104.02	57.71	128.00	30.30
	3	2.2	158.62	39.75	152.52	38.40	143.89	36.57	136.69	35.48	131.22	34.77
	5	4.1	159.67	37.81	153.53	36.53	144.84	34.79	137.60	33.75	132.09	33.07
	7	6	161.03	35.83	154.83	34.62	152.16	33.67	138.77	31.98	133.22	31.34
	0	7.0	162.20	24.02	157.02	20.07	1/0 12	21.21	140.72	20.27	125.10	20.76
	9	7.9	103.30	34.02	107.02	32.07	140.13	31.31	140.72	30.37	135.10	29.70
	11	9.8	167.23	32.61	160.80	31.50	151.70	30.00	144.11	29.10	138.35	28.52
	13	12	167.74	30.76	161.28	29.72	152.16	28.30	144.55	27.45	138.77	26.91
	15	14	167.74	29.28	161.28	28.29	152.16	26.94	144.55	26.14	138.77	25.61
	20	01	115.02	40.09	111 47	20.50	105.16	27.71	00.01	26.59	05.01	25.94
	-20	-21	110.93	40.98	111.47	39.39	103.10	31.11	99.91	30.38	90.91	30.84
	-17	-18	118.74	40.47	114.17	39.10	107.71	37.24	102.33	36.12	98.23	35.40
	-15	-16	123.05	41.72	118.32	40.31	111.62	38.39	106.04	37.24	101.80	36.49
1	-12	-13	131.26	43.53	126.21	42.06	119.07	40.05	113.11	38.85	108.59	38.08
-	10	44	140.99	44.40	105.44	42.00	107.77	40.00	101.00	20.00	110.00	20.00
	-10	-11	140.86	44.40	133.44	42.90	121.11	40.91	121.38	39.68	110.53	30.89
	-7	-8	144.94	45.16	139.37	43.63	131.48	41.55	124.90	40.31	119.91	39.50
	-5	-6	149.33	45.07	143.58	43.54	135.46	41.47	128.68	40.22	123.54	39.42
	-3	-4	152.82	44.49	146.94	42.99	138.62	40.94	131.69	39.71	126.42	38.92
120%	0		102.02	40.70	450.07	44.00	100.02	40.04	404.77	00.11	120.42	07.40
	0	-1	156.39	42.78	150.37	41.33	141.80	39.37	134.77	38.19	129.38	37.42
	3	2.2	158.43	40.24	152.34	38.88	143.72	37.03	136.53	35.92	131.07	35.20
	5	4.1	159,49	38.28	153.35	36.99	144.67	35.23	137.44	34.17	131.94	33.49
	7	6	160.84	36.28	154.65	35.06	148.88	33.40	138.60	32.39	133.06	31.74
		7.0	100.04	00.20	450.04	00.00	140.00	00.40	100.00	02.00	100.00	00.40
	9	7.9	163.11	34.45	156.84	33.28	148.88	31.26	140.56	30.75	134.94	30.13
	11	9.8	164.12	32.44	157.81	31.34	148.88	29.85	141.43	28.95	135.78	28.37
Ī	13	12	164.12	30.51	157.81	29.48	148.88	28.07	141.43	27.23	135.78	26.69
	15	14	164.12	20.04	157.91	28.06	1/19 99	26.72	1/1/3	25.02	135.79	25.40
	10	14	104.12	20.04	107.01	20.00	140.00	20.72	141.40	20.02	100.70	20.40
	-20	-21	110.43	38.77	106.18	37.45	100.17	35.67	95.16	34.60	91.36	33.91
	-17	-18	113.10	39.05	108.75	37.73	102.60	35.93	97.47	34.85	93.57	34.15
	-15	-16	117.21	40.26	112.70	38.89	106.32	37.04	101.00	35.93	96,96	35.21
	10	12	105.02	42.00	100.00	40.59	112.40	20.65	107.74	27.40	102.42	26.74
	-12	-13	120.00	42.00	120.22	40.00	110.42	30.00	107.74	37.49	103.43	30.74
	-10	-11	134.17	42.90	129.01	41.45	121./1	39.47	115.62	38.29	111.00	37.52
	-7	-8	138.06	43.57	132.75	42.10	125.23	40.10	118.97	38.89	114.21	38.12
	-5	-6	142.24	43.48	136.77	42.01	129.02	40.01	122.57	38.81	117.67	38.04
	0	4	145.50	40.00	100.00	41.40	120.04	20.50	105.44	20.00	100.40	07.55
110%	-3	-4	145.55	42.93	139.90	41.48	132.04	39.50	125.44	38.32	120.42	37.55
	0	-1	148.96	41.28	143.23	39.88	135.12	37.99	128.37	36.85	123.23	36.11
	3	2.2	150.91	38.83	145.11	37.52	136.89	35.73	130.05	34.66	124.85	33.97
	5	4.1	151.91	36.94	146.07	35.69	137.80	33.99	130.91	32.97	125.68	32.31
1	7	6	153.20	35.01	147.91	22.92	129.07	30.00	132.02	31.05	126.74	20.62
	1		100.20	00.01	147.01	00.00	100.97	02.22	102.02	01.20	120.14	00.02
	9	7.9	153.20	32.78	147.31	31.67	138.97	30.16	132.02	29.26	126.74	28.67
	11	9.8	153.20	30.67	147.31	29.64	138.97	28.23	132.02	27.38	126.74	26.83
	13	12	153.20	28.85	147.31	27.87	138.97	26.55	132.02	25.75	126.74	25.24
1	15	14	153.20	27.46	147.31	26.54	138.97	25.27	132.02	24.51	126 74	24.02
	00	04	101.20	20.40	07.74	25.04	00.40	20.04	07.57	20.00	04.07	20.00
	-20	-21	101.62	30.85	97.71	30.60	92.18	33.91	87.57	32.89	84.07	32.23
	-17	-18	104.08	36.39	100.08	35.16	94.42	33.48	89.70	32.48	86.11	31.83
	-15	-16	107.86	37.52	103.71	36.25	97.84	34.52	92.95	33.49	89.23	32.82
1	-12	-13	115.06	39.14	110.63	37.82	10/ 37	36.02	99.15	34.94	95.10	34.24
	-12	-10	400.47	00.14	440.70	00.02	440.00	00.02	400.10	05.00	400.14	04.07
	-10	-11	123.47	39.98	118.72	38.63	112.00	30.79	106.40	30.69	102.14	34.97
	-7	-8	127.05	40.61	122.16	39.24	115.25	37.37	109.49	36.25	105.11	35.52
	-5	-6	130.89	40.53	125.86	39.16	118.74	37.29	112.80	36.17	108.29	35.45
1	-3	_1	133.05	40.01	128.80	38.66	121.51	36.82	115.44	35.71	110.82	35.00
100%	-0		100.00	40.01	120.00	07.47	121.01	00.02	110.44	04.04	110.02	00.00
	0	-1	137.08	38.47	131.81	37.17	124.35	35.40	118.13	34.34	113.41	33.65
	3	2.2	138.88	36.19	133.54	34.97	125.98	33.30	119.68	32.30	114.89	31.66
	5	4.1	138.90	34.20	133.56	33.05	126.00	31.47	119.70	30.53	114.91	29.92
1	7	e	122.00	20.45	122.50	21.00	126.00	20.00	110.70	20.60	11/ 01	00.10
	(0	138.90	32.10	103.00	31.00	120.00	29.00	119.70	20.09	114.91	20.12
.	9	7.9	138.90	30.10	133.56	29.08	126.00	27.69	119.70	26.86	114.91	26.33
	11	9.8	138.90	28.16	133.56	27.21	126.00	25.92	119.70	25.14	114.91	24.64
1	13	12	138.90	26.49	133.56	25.59	126.00	24.37	119.70	23.64	114.91	23.17
1	45	44	100.00	05.00	100.50	04.00	100.00	02.00	110.70	00.54	114.04	00.00
1	10	14	138.90	20.22	133.00	24.30	126.00	23.20	119.70	22.51	114.91	22.00

4.4.2Select preliminary indoor unit for each zone:-

Consider design temperature conditions to select larger Indoor types than actual load

1) Cooling

TC : Total Capacity(kW), SHC : Sensible Heat Capacity(kW)

		Indoor temperature (°C, WB)													
	Outdoor temperature	20 (°C	C, DB)	23 (%	C, DB)	26 (°C	C, DB)	27 (%	C, DB)	28(°C	C, DB)	30 (°C	C, DB)	32 (°	C, DB)
Model	(°C, DB)	14 (°C	C, WB)	16 (°C	C, WB)	18 (°C	C, WB)	19 (°C	C, WB)	20 (%	C, WB)	22 (°C	C, WB)	24 (%	C, WB)
		TC	SHC	TC	SHC	TC	SHC	TC	SHC	тс	SHC	TC	SHC	TC	SHC
	10	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.5	8.3	13.6	8.4
	12	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.5	8.3	13.6	8.4
	14	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.5	8.3	13.5	8.3
	16	85	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.5	8.3	13.5	83
	18	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
	20	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
	21	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
	23	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
	25	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
112	27	8.5	7.0	9.3	7.5	10.7	8.3	11.2	85	11.7	8.6	12.4	8.2	13.4	8.3
	29	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
	31	8.5	7.0	93	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	82	13.4	8.3
	33	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	8.2	13.4	8.3
	35	8.5	7.0	93	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.4	82	13.4	8.3
	37	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.7	8.6	12.3	8.2	13.2	8.2
	39	8.5	7.0	9.3	7.5	10.7	8.3	11.2	8.5	11.6	8.5	12.1	8.0	13.0	8.0
	42	8.5	7.0	9.3	7.5	10.7	8.3	10.9	8.3	11.3	8.3	11.6	7.7	12.6	7.8
	44	8.5	7.0	93	7.5	10.7	83	10.9	8.3	11.3	8.3	11.6	7.7	12.4	7.7
	10	9.7	8.0	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.3	9.8	15.4	9.8
	12	9.7	8.0	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.3	9.8	15.3	9.7
	14	9.7	8.0	10.4	8.3	12.0	8.9	128	10.0	13.3	10.0	14.3	9.8	15.3	9.7
	16	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.2	9.6
	18	97	8.2	10.4	8.3	12.0	8.9	12.0	10.0	13.3	10.0	14.2	97	15.1	9.6
	20	9.7	8.2	10.4	8.3	12.0	8.9	12.0	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	21	97	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	97	15.1	9.6
	23	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	25	9.7	82	10.4	83	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
128	27	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	29	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	31	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	33	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	35	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.3	10.0	14.2	9.7	15.1	9.6
	37	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.2	9.9	14.0	9.6	14.9	9.4
	39	9.7	8.2	10.4	8.3	12.0	8.9	12.8	10.0	13.1	9.8	13.8	9.4	14.5	9.2
	42	9.7	8.2	10.4	8.3	12.0	8.9	12.4	9.7	12.7	9.5	13.2	9.0	13.7	8.7
	44	9.7	8.2	10.4	8.3	12.0	8.9	12.4	9.7	12.7	9.5	13.2	9.0	13.7	8.7
	10	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.7	11.3	15.7	11.0	16.8	10.9
	12	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.6	10.9	16.7	10.9
	14	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.6	10.9	16.7	10.9
	16	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.6	10.9	16.6	10.8
	18	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.6	10.8
	20	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	21	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	23	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	25	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
140	27	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	29	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	31	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	33	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	35	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.5	10.9	16.5	10.7
	37	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.6	11.2	15.4	10.8	16.3	10.6
	39	10.5	9.1	11.6	9.9	13.3	10.9	14.0	11.2	14.5	11.2	15.1	10.6	15.9	10.3
	42	10.5	9.1	11.6	9.9	13.3	10.9	13.6	10.9	14.1	10.9	14.4	10.1	15.0	9.8
	44	10.5	9.1	11.6	9.9	13.3	10.9	13.6	10.9	14.1	10.9	14.4	10.1	15.0	9.8

2) Heating

TC:Total Capacity(kW)

	Outdoor tomporaturo			Indoor temperature (°C, DB)		
Mandal	Outdoor te	emperature	16.0	18.0	20.0	22.0	24.0
Model	(0,	DDJ	TC	TC	TC	TC	TC
	DB	WB	kW	kW	kW	kW	kW
	-20	-21	7.2	6.9	6.6	6.5	6.5
	-17	-18	8.0	7.6	7.4	7.3	7.3
	-15	-16	8.4	8.1	7.9	7.7	7.5
	-12	-13	8.8	8.6	8.4	8.2	8.1
	-10	-11	9.2	9.0	8.9	8.8	8.7
	-7	-8	9.7	9.6	9.4	9.2	9.0
	-5	-6	10.2	10.1	9.9	9.6	9.3
	-3	-4	10.7	10.6	10.5	10.1	9.7
112	0	-1	11.3	11.1	11.1	10.5	10.0
	3	2.2	11.8	11.6	11.5	11.0	10.6
	5	4.1	12.3	12.2	12.0	11.3	10.6
	7	6	12.9	12.7	12.5	11.5	10.6
	9	7.9	13.3	12.9	12.5	11.5	10.6
	11	9.8	13.7	13.1	12.5	11.5	10.6
	13	12	14.0	13.3	12.5	11.5	10.6
	15	14	14.4	13.5	12.5	11.5	10.6
	-20	-21	7.9	7.7	7.3	7.2	7.2
	-17	-18	8.8	8.5	8.1	8.0	8.0
	-15	-16	9.2	9.0	8.7	8.5	8.2
	-12	-13	9.7	9.5	9.3	9.1	8.9
	-10	-11	10.1	10.0	9.9	9.7	9.6
	-7	-8	10.7	10.6	10.4	10.2	10.0
	-5	-6	11.3	11.1	11.0	10.7	10.3
108	-3	-4	11.9	11.7	11.5	11.1	10.7
120	0	-1	12.4	12.3	12.1	11.6	11.0
	3	2.2	13.0	12.9	12.7	12.2	11.7
	5	4.1	13.6	13.4	13.2	12.4	11.7
	7	6	14.2	14.0	13.8	12.7	11.7
	9	7.9	14.6	14.2	13.8	12.7	11.7
	11	9.8	15.1	14.4	13.8	12.7	11.7
	13	12	15.5	14.7	13.8	12.7	11.7
	15	14	15.9	14.9	13.8	12.7	11.7
	-20	-21	9.2	8.9	8.5	8.4	8.4
	-17	-18	10.2	9.8	9.4	9.3	9.3
	-15	-16	10.7	10.4	10.1	9.8	9.5
	-12	-13	11.2	11.0	10.8	10.6	10.3
	-10	-11	11.7	11.6	11.4	11.3	11.1
	-7	-8	12.4	12.2	12.1	11.8	11.5
	-5	-6	13.1	12.9	12.7	12.3	12.0
140	-3	-4	13.8	13.6	13.4	12.9	12.4
	0	-1	14.4	14.2	14.0	13.4	12.8
	3	2.2	15.1	14.9	14./	14.1	13.5
	5	4.1	15.8	15.6	15.3	14.4	13.5
	(6	16.5	16.2	16.0	14.8	13.5
	9	1.9	1/.0	16.5	16.0	14.8	13.5
	11	9.8	17.5	10./	10.0	14.8	13.5
	13	12	18.0	17.0	16.0	14.8	13.5
	15	14	18.5	17.2	16.0	14.8	13.5

4.5 Sizing the pipe network using the nominal capacity of the units.

Table 4.1: longest pipe allowed

			Permitted value
	Total piping	length (Actual)	1000m
Piping length	Longost nining (L)	Actual length	175m
	Longest piping (L)	Equivalent length	200m
	Piping (The farthest IDU fro equival	40m/90m	
I 1.1.00	Level difference between	Outdoor unit up	70m
Level difference	IDU-ODU	Outdoor unit down	110m
	Level difference	30m	

Outdoor unit capacity(kW)	Main pipe len	gth within 90 m	Size up (Main pipe length within 90 m)			
	Liquid pipe(mm) Θ	Gas pipe (mm) Θ	Liquid pipe(mm) Ə	Gas pipe (mm) Ə		
22.4kW	0.52	19.05	12 70	22.22		
28.0kW	9.52	22.22	12.70	25.40		
33.6kW				70 E0		
40.0kW	12.70	28.58	15.88	20.38		
45.0kW				31.75		

Table 4.2 size the pipe connected to the outdoor unit

Table 4.3 size the pipe between branch joints

Indoor unit	Branch pipe leng	th within 45 m	Branch pipe length	n within 45-90 m
capacity(kW)	Liquid pipe(mm) O	Gas pipe (mm) O	Liquid pipe(mm) O	Gas pipe (mm) O
15.0kW and below		15.88		19.05
Over15.0kW- 22.4kWand below	9.52	19.05	12.70	22.22
Over22.4kW- 28.1kWand below		22.22		25.48
Over28.1kW- 40.0kWand below	12.70		15 00	28.58
Over40.0 kW- 45.0kWand below	12.70	28.58	15.88	21.75
Over45.0kW- 70.3kWand below	15.88		19.05	31./5

CHAPTER 5

PLUMBING SYSTEM

5.1 Introduction

The most basic human is reliable table supply of potable water and getting rid of human waste product's, so the goal of modern plumbing design for building is to safely and reliable, provide domestic water, cold water and remove sanitary waste.

In this chapter the designs of the water supply and sanitary drainage system will be discuss as following:

5.2 Water supply system

5.2.1 Calculations of hot and cold water supply systems

To determine the pipe size for cold and hot water supply system the water supply fixture unit (WSFU) for each fixture unit must be determined and total fixture unit on each piping run out be calculated, the minimum floor pressure required at the critical fixture unit must be determined.

Example: calculation of water supply unit (WSFU) in the Bathroom in restaurant.

As follow:

Figure 5.1: sample bathroom

1- Lavatory: is a fixture unit needs cold and hot water supplies as the demand of the lavatory for general use is 2WSFU (for both cold and hot water), while if

cold or hot water only was needed then this value should be multiplied by (3/4), so the demand of the lavatory will be as follow:

- a. 1WSFU for both hot and cold water demand.
- b. (3/4)*2 WSFU for hot or cold water only.
- 2- Water closet: is a fixture unit needs cold supplies as shown (Appendix B) Table (B20) the

demand of the water closet for private use is 5 WSFU $\,$

Based on the above information the following table can performed:

Fixture unit	No. Of	WSFU	Total no. Of	Total no. Of	Total no. of				
	Units		WSFU for	WSFU for	WSFU for				
			cold water	hot water	hot & cold				
					water				
	T	he (WSFU) fo	or the restauran	t					
Lavatory	2	2	3	3	4				
(general)	2	2	5	5	+				
Water closet									
flush tank	2	5	10		10				
(general)									
The (WSFU) for the kitchen									
Lavatory (General)	1	2	1.5	1.5	2				
Kitchen sink (General)	2	4	6	6	8				
	The (WSFU)for th	e first basemer	nt(A)					
Lavatory	4	2			0				
(General)	4	2	0	0	8				
Water closet									
flush tank	4	5	20		20				
(General)									
The (WSFU) for the first basement(B)									
Lavatory	3	2	4.5	4.5	6				

Table 5.1: The WSFU for Building

(General)					
Urinal					
Flushometer	3	5	15		15
(General)					
Water closet					
flush	3	5	15		15
tank(General)					
	The (WSFU)for th	e ground floor	(A).	
Lavatory	3	2	15	15	6
(General)	5	2	4.5	4.5	0
Urinal					
Flushometer	3	5	15		15
(General)					
Water closet					
flush	2	5	10		10
tank(General)					
	The (WSFU)for th	e ground floor	(B).	
Lavatory	4	2	6	6	8
(General)	т	2	0	0	0
Water closet					
flush tank	5	5	25		25
(General)					
			$\sum = \overline{141.5}$	$\sum = \overline{31.5}$	$\sum \overline{154}$
			WSFU	WSFU	WSFU

No. Of Floor	Total no. Of WSFU For cold water	Total no. Of WSFU for hot water	Total no. Of WSFU for hot & cold water	Total no. Of gpm for cold water	Total no. Of gpm for hot water	Total no. Of gpm for hot & cold water
Restaurant+ kitchen	20.5	10.5	26	14	8	17.5
basement(A+B)	60.5	10.5	64	33	8	34.5
ground floor(A+B).	60.5	10.5	64	33	8	34.5
				∑=80 gpm	∑=24 gpm	∑=86.5 Gpm

Table 5.7: The WSFU and gpm all floors

5.3 Pipe size calculations:

By using the down feed distribution system in which the water is supplied to the building from water tank in basement floor to roof tank to feed the building.

Before we calculations should now some information's:

- By using appendix B the minimum flow pressure can be determined for the fixture unit lavatory by 8 psi.
- The pressure pump equal 37 psi from water well to roof tank .
- by equation The friction loss through the water meter equal 5psi.
- The total equivalent length from the roof tank to critically fixture unit is 65 meter & equal 213 feet.
- The static pressure equal 20.75meter equal 68 feet & equal 30 psi.

Static pressure = Friction head loss + minimum flow pressure
$$(5.1)$$

Static pressure =
$$20.75 \times \frac{0.433}{0.305} = 30$$
psi

30 = Friction head loss + 8

Then: Friction head loss = 22 psi

Equivalent length
$$=$$
 $\frac{65 \times 1.5}{0.305} = 320$ ft.
Uniform design friction loss $=$ $\frac{Available headloss}{Equivalent length}$ (5.2)

Uniform design friction
$$loss = \frac{22 \times 100}{320} = 6.9 \text{ psi}/100 \text{ ft}$$

No. of Riser	Total WSFU	Total gpm	Diameter (inch)	Velocity (fps)
First riser	26	18	1.25	4
Second	128	69	2	4
Σ	154WSFU	87gpm		

Table 1:Properties of cold and hot water riser

5.4 selections

5.4.1 selection for coldwater pump

In order to choose the details of the required water pump we have to determine two main conditions, the amount of total flow rate of demand water and the total head:-

1. Flow rate determination

According to the previews calculation and equation estimation, the total flow rate for the(1.2) risers is 87gpm, so by converting 87gpm equal to 16 m^{3}/h.

2. Head estimation

According to the previews calculation and equation estimation the head is 37 psi & equal 2.5Bar, Adding 1 bar for fittings losses the value is almost 3.5bar

5.4.2 Pump selection

Using (dp-select) software and with filling data into brackets as follow:-

dp pumps

Figure 5.3: Pump data

The pump model selected "DPV 40/2-2B".

The characteristic curves of this pump as follow:

Figure 5.4: Pump characteristic curves

5.4.3 selection for tank

5.4.3.1 selection for main water tank

To calculate the size of the water tank which is to be in accordance with the degree of risk depending on the type of threat that we own.

Hazard	Time
Light Hazard	min 03 : 03
Ordinary Hazard	min 023 : 03
Extra Hazard	min 023

Table:5-9:	Degree	of risk
------------	--------	---------

.It is time that the network must work until the arrival of firefighters and civil defence

If we assume that the need of hydraulic calculations to 87gpm and an average degree of seriousness of Ordinary Hazard, we find that the size of the reservoir as follows

V = 87gpm X 60 min X (3.785 / 1000)

Tank volume equal to $= 20 \text{ m}^3$

5.4.4 selection for boiler

Where electric power is more economically available than fossil fuels, or where fossil fuel combustion and the handling of combustion by-products are unacceptable, electric boilers offer a viable alternative.

Designed for heating applications Electric boilers are able to withstand virtually any return water temperature. With combustion by-products and High temperature differentials eliminated, condensation and thermal shock do not limit return water

Temperatures.

Because of the design characteristics, the electric boiler is well suited for applications utilizing indoor/outdoor, Reset controls, radiant floor heating, snow melt systems, and ground source heat pump systems.

For potable water applications, the IWH can be used with the optional epoxy lining or with the optional Stainless steel trim.

According to the previews calculation and equation estimation, the total flow rate for the(1.) risers is 98gpm, so by

 $Q = Cp \times m \times \Delta T \tag{5.3}$

kW = gph (gallons per hour) x delta T (as expressed in °F) divided by 410

Where:

Q: boiler capacity. [kW]

m: mass flow rate from data sheet [g/h]

 ΔT :-hot water temperature [°F]

kW= g/h x delta T/410

 $kW = (8*60) \ge 20/410$

kW =9600/410

kW = 23.4

5.5 Sanitary Drainage System

The main objective of drainage system is to carry the waste water from the fixture unit to manhole and from the manhole to the septic tank or to the municipal sewage system.

The provision of drainage systems:

• Sanitary drainage

5.5.1 Drainage system components

The main components of drainage system are:

Figure 5.5: Drainage system components

- Fixture units
- Trap
- Clean out
- Drainage pipe
- Stack and vent pipes
- Manholes
- Septic tank or municipal sewage system
- Accessories

This project deals with two types of wastewater which is gray and black water, the separation of waste water will rationalize consumption of water and reuse it in irrigation and in flushing water closet.

5.5.2 sanitary drainage Design procedure and pipe sizing

Pipe size is calculated by using a concept of fixture units (DFU) instead of using gpm of drainage water. This unit takes into account not only the fixtures water use but also its frequency of use, which is the DFU has a built–in diversity factor. This enables us, exactly as for water supply to add DFU of various fixtures to obtain the maximum expected drainage flow. Drainage pipes sized for a particular number of drainage fixture units, according to Tables (10.1), (10.2) (10.4). 10.5). These tables are built into the fill factors, which are:

- 50% fill in branches (horizontal pipes)
- (25-33)% fills in stack (vertical pipes)
- 50% fill in building and swear drains

The recommended velocity for drainage piping:

- For branches the recommended velocity is 2 ft/s
- For building pipes the recommended velocity is 3 ft/s
- For greasy flow the recommended velocity is 4 ft/s

Velocity of water flow through drainage piping depends on:

- Pipe diameter
- Slope

Minimum slope requirements for horizontal drainage piping:

- For pipes of diameter \leq 3" the minimum slope is 1/4"/ft (2%)
- For pipes of diameter ≥ 4 " the minimum slope is 1/8"/ft (4%)

Design procedure:

- 1. Calculation of the number of DFU for each branch by using Table (10.2)
- 2. Calculation of the number of DFU for each stack
- 3. Choosing the branch pipe diameter by using Table (10.4)
- 4. Choosing the stack pipe diameter by using Table (10.4)
- 5. Comparing the stack pipe diameter with branch diameter
- 6. Choosing the building drain pipe diameter by using Table (10.5)

To achieve the recommended velocities which are 3 fps in building drain, it will be chosen the slope and flow velocity in building drain by using Table A(10.1).

The following figure and tables shows the sizing of stacks:

Figure 5.6: sample of stacks

Stack 1	Total dfu value	Diameter (inch)
From ground floor (branch)	34	3.5 (4)
From ground floor to first basement floor	34	4
From first basement floor to building drain	34	4
(Stack)		

#of stack	Total Dfu	Diameter (in)	Diameter of building drain	Slope %	Velocity ft/s
Stack 1	34	4	3(4)	1/4	2.25
Stack 2	33	4	3(4)	1/4	2.25
Stack 3	39	4	3(4)	1/4	2.25
Stack 4	28	4	3(4)	1/4	2.25
Stack 5	7	2.5(4)	2(4)	1/4	1.99
Stack 6	7	2.5(4)	2(4)	1/4	1.99

Table5.11:Sizing of water stacks and building drain

5.5.3 Manhole design

The main purpose of the manholes is to carry the water from stacks to various drainage points. This project contains three types of manhole, which is:

- Sanitary manhole for black water
- Sanitary manhole for gray water

The design of the manholes depend on the ground and its nature around the building, and so as the first manhole height should not be less than 50 cm, and the depth of the other manholes will depend on the distance between the manholes and the slope of the pipe that connecting them.

According to the table below, it will be estimated the diameter of the manhole according to their depth. [11]

Depth (cm)	Diameter (cm)
70-80	60
80-140	80
140-250	100
250-∞	125

Table 2: Diameter of manhole according to their depth

5.5.3.1 Manhole calculation

The depth of the first manhole is 50 cm, the calculation of the second manhole done according to the first manhole and so on. Using these equations does the calculations:

- Depth (x manholes) = Depth (manholesx-1) + (Slope × Distance) + 5 + Level Difference) in cm
- Top level: Manholes face level on the ground
- Invert level = outlet level of manholes +5 (m)
- Outlet level = top level- depth manholes (m)

The figure below shows the details of the manholes:

Figure 5.7 Manholes details

The result calculation of the gray water and black water manholes is listed in the tables below:

Manhole No.	Top level (m)	Invert level (m)	Outlet level (m)	Depth (cm)	Dia. Size (cm)	Cover Type
M01	+0.0	-390	-385	390	150	Concrete
M02	-3.50	-4.10	-4.05	60	60	Concrete
M03	-3.50	-4.27	-4.22	82	60	Concrete
M04	-3.40	-4.61	-4.56	121	80	Concrete
M05	-3.40	-4.77	-4.72	137	80	Concrete
M06	-3.50	-5.09	-5.04	159	80	Concrete
M07	-3.55	-5.31	-5.26	176	80	Concrete
M08	-4.21	-5.48	-5.43	127	80	Concrete
M09	-4.52	-5.70	-5.65	117	80	Concrete
M10	-4.84	-5.90	-5.85	106	80	Concrete
M11	-4.11	-5.47	-5.42	136	80	Concrete
M12	-5.32	-5.92	-5.87	60	60	Concrete
M13	-5.32	-6.18	-6.1	86	60	Concrete

Table 3:Black water manholes

5.6 Storm drainage

The design of the rain collection piping, whether exterior gutters, and leaders, or interior conductors and drain depends upon three factors:

- The amount of rain fall in a specified period of time
- The size of the area being drained
- The degree of pipe fill, that is whether a pipe or gutter runs 50%, 33% or 100% fill

The general rule for the distribution of floor drains (FD):

Every 100 m² from roof area needs one 4" FD.

The roof area of this building is 1620 m², and therefore needs Sixteenth 4" FD.

To see all drainage systems go to drawings from (M08).
5.7FIRE FIGHTING SYSTEM

5.7.1 Introduction

A firefighting system is probably the most important of the building services, as its aim is to protect human life and property, strictly in that order. Firefighting systems and equipment vary depending on the age, size, use and type of building construction.

5.7.2 Types of firefighting system

- Fire extinguishers.
- Fire hose reels.
- Fire hydrant systems.
- Automatic sprinkler systems.

5.7.2.1 Fire extinguishers

Fire extinguishers are provided for a 'first attack' firefighting measure generally undertaken by the occupants of the building before the fire service arrives. It is important that occupants are familiar with which extinguisher type to use on which fire.

Most fires start as a small fire and may be extinguished if the correct type and amount of extinguishing agent is applied whilst the fire is small and controllable.

The principle fire extinguisher types currently available include:

Figure 5.8: Fire extinguishers

5.7.2.2 Fire hose reel

Fire hose reel systems consist of pumps, pipes, water supply and hose reels located strategically in a building, ensuring proper coverage of water to combat a fire.

The system is manually operated and activated by opening a valve enabling the water to flow into the hose that is typically 30 meters away. The usual working pressure of a firehouse can vary between 8 and 20 (116 and 290 psi).

Fire hose reels are provided for use by occupants as a first attack firefighting measure but may, in some instances, also be used by firefighters. When stowing a fire hose reel, it is important to first attach the nozzle end to the hose reel valve, then close the hose reel valve, then open the nozzle to relieve any pressure in the wound hose, then close the nozzle.

Figure 5.9: Fire hose reel

5.7.2.3 Fire hydrate system

Fire hydrant systems are installed in buildings to help fire fighters quickly attack the fire. Essentially, a hydrant system is a water reticulation system used to transport water in order to limit the amount of hose that fire fighters have to lay; thus speeding up the firefighting process.

Fire hydrants are for the sole use of trained fire fighters (which includes factory firefighting teams). Because of the high pressures available serious injury can occur if untrained persons attempt to operate the equipment connected to such installations. Fire hydrant systems sometimes include ancillary parts essential to their effective operation such as pumps, tanks and fire service booster connections. These systems must be maintained and regularly tested if they are to be effective when needed.

Figure 5.10: Fire hydrate system

5.7.2.4 Automatic sprinkler system

Time is essential in the control of fire. Automatic sprinkler systems are one of the most reliable methods available for controlling fires. Today's automatic fire sprinkler systems offer state of the art protection of life and property from the effects of fire. Sprinkler heads are now available which are twenty times more sensitive to fire than they were ten years ago.

A sprinkler head is really an automatic (open once only) tap. The sprinkler head is connected to a pressurized water system. When the fire heats up the sprinkler head, it opens at a preset temperature, thus allowing pressurized water to be sprayed both down onto the fire and also up to cool the hot smoky layer and the building structure above the fire. This spray also wets combustible material in the vicinity of the fire, making it difficult to ignite, thereby slowing down or preventing fire spread and growth.

When a sprinkler head operates, the water pressure in the system drops, activating an alarm, which often automatically calls the fire brigade via a telephone connection.

5.8 Select the most effective type

After the identification of the fire systems now the best performance for the building is hose reel & extinguisher.

The number of hose reels to be used in hotel is 30 fire hose reel for all floors most fire hose is designed to be stored flat to minimize the storage space required.

5.9 Pipe size calculation:

The fire hose reel system is to be used, so the pipe size for this system will be calculated as follows:

The minimum flow rate for single cabinet = 30 (l/min).

Then:

The total flow rate = min. flow rate
$$\times$$
 No. of cabinet

Total Accu	mulated Flow	Total Distance of Piping from Farthest Outlet				
L/min	gpm	<15.2 m (<50 ft)	15.2–30.5 m (50–100 ft)	>30.5 m (>100 ft)		
379	100	2	21/2	3		
382-1893	101-500	4	4	6		
1896–283 9	501-750	5	5	6		
2843–473 1	751-1250	6	6	6		
4735	1251 and over	8	8	8		

Table 5.14: Pipe schedule - standpipes and supply piping

Note: For SI units, 3.785 L/min = 1 gpm; 0.3048 m = 1 ft.

Then the table 42 is to be used to calculate the pipe size by follow the next procedure. First, the total flow rate is determined which is 450 l/min for our calculation sample. Then the total distance of piping from farthest outlet is to be chosen. Finally, the intersection between the two values in table42 will give the size of pipe supply, which is equal to 3".

Then to determine the outlet pipe size from pipe supply to hose connection For this building. The selection diameter is (2.5 in.) hose stations to supply water for use primarily by the building occupants or by the fire department during initial response.

5.10 Firefighting pumps

Continuous water and pumping station supply should always be available and ready to fight fire, the following three pumps should be connected to a suction header (from water tank), and discharge header (to firefighting network).

Pumping should be included: -

1. Electrical fire fighting pump.

2. Jockey Pump: Work to make up the system pressure in case of leakage or during the first seconds of fire.

5.11 Pump selection:-

Using (d p-select) software and with filling data into brackets as follow:

Figure 5.11: Pump data

The pump model selected "DPV 10/4B"

Figure 5.12: Pump characteristic curves

References

1. Ronald L.Howell, Principles of Heating Ventilating and Air Conditioning 6th edition, ASHRAE, USA, 2009.

2. Health Technical Memorandum, Medical gas pipeline systems The Design, installation, validation and verification, USA, 2002.

3. M. A. A. M. Ashamed, Heating and Air Conditioning for Residential Buildings, National Library Department, Jordan, 2007.

4. J. F. Krieger, Handbook of Heating, Ventilation, and Air Conditioning, Boca Raton, CRC.Press LLC, Florida, 2001.

5. Mohammad A. Hammed, Heating and Air conditioning 3rd edition, Jordan, 1996.

6. Brain L.Olsen, Plumbing System 2nd edition, Missouri Group, USA, 1982.

7. Dennis Kubicki, FIRE PROTECTION DESIGN CRITERIA 3rd edition, Washington, D.C, 1982.

8. https://rcwapp.xyleminc.com/fpselect.asp.

9. https://engineeringtoolbox.com .

10. http : //www.healthyheating.com/Def initions/Operative-temperature.htm.W Hx-C1MrLIU.

Appendix A

Quantities Table

Item	Description	Unit	Qt.	Rate \$	Total \$
	PLUMBING, SANITARY AND			Ŷ	Ψ
	MECH WORKS Preamble All				
	Meshwork items mentioned				
	hereinafter for all project facilities				
	and units shall include supply				
	delivery installation adjustment				
	testing commissioning and all				
	required materials equipment and				
	workmanshin to execute the items				
	of construction in accordance with				
	the drawings specifications and				
	supervising engineer's instructions				
	complete in place and ready for				
	handing over Measurements and				
	navments shall be described in the				
	relevant documents Radiator				
	section sanitary fixture and water				
	distribution cabinet Prices must				
	include supply & install cross				
	linked nolvethylene nevgol nines				
	PFX 16mm 25mm nines with				
	nrotection sleeve Working				
	drawings for all mechanical works				
	that should be submitted by the				
	contractor should be approved by				
	the supervisor engineer before				
	starting works. The contractor				
	shall submit shon drawings				
	coordinate drawings and as-built				
	drawings and as-built				
	Internal Drainage System				
	Supply and install of SN4 JIPVC				
	Vent and drainage nines to floor				
	drains or down to manholes with				
	all required fittings 'V'' "T" etc				
	The price includes diaging and				
1	nlastering hangers and supports				
1	also incasing with concrete cover				

	for underground pipes and roof				
	vent caps, including connections as				
	shown in drawings, specifications				
	and approval of supervisor				
	engineer.				
1.1	size 2 inch diameter	m	60	1	60
1.2	size 4 inch diameter	m	200	3	600
1.3	size 6 inch diameter	m	500	6	3000
1.4	Ditto but HDPE 2''	m	50	2	100
1.5	Ditto but HDPE 4"	m	75	6	450
1.6	Ditto but HDPE6''	m	100	10	1000
	Rain Water pipes				
	Supply and install SN4 UPVC rain				
	water pipes down to the rain				
	manholes with wired mesh above				
	ground level, with all required				
2	fittings and vent caps, all as shown				
2	in drawings, specifications, and				
	approval of supervisor engineer				
	includes all pipes and fittings from				
	roof inlet till ground outlet, all				
	necessary digging and plastering				
	work.				
2.1	size 4 inch diameter	m	150	3	600
3	Water well(underground)				
	Supply and install all needed for				
	the water well. The price includes				
31	flanged water supply, flanged	lc	1		
3.1	water outlet, flanged overflow and	15	1		
	vent, Floats and all needed to				
	complete the job.				
4	Water tank				
	Supply and install all needed for				
	the water tank 2000L. The price				
41	includes flanged water supply,	ls	10	150	1500
	flanged water outlet, flanged	1.5	10	100	1000
	overflow and vent, valves, floats				
	and all needed to complete the job.				
5	Floor Drains				
	Supply and install 4'' floor trap				
5.1	UPVC include stainless steel one	no	10	15	150
	closed cover & one grating cover				

	type (15*15 cm) completed with				
	connections including 2" UPVC				
	pipes) to 4" UPVC drain pipes as				
	located in drawings, specifications				
	and approval of supervisor				
	engineer.				
5.2	Ditto but suspended HDPE	no	2	10	20
5.2	Ditto but floor drain size 4''/2''		-	_	25
5.5	Dia30 x 30 cm	по	/	5	35
	Supply and install gully drain with				
	medium duty cast iron grating				
5.4	cover complete with frame and	no	2	50	100
	anchor for boiler room of the				
	following size:30 x 30 cm				
6	Water Grills				
	Supply and install, and				
	commissioning of stainless steel				
	grills , and of 15-30cm and width				
	25-40cm. located in cafeteria and				
	Ablution .Price includes UPVC				
6.1	pipes connected it to the manhole	mr	3	50	150
	or riser, painting, and smooth				
	sloped concrete bedding in				
	drawing the length is as shown in				
	drawing .All as shown in drawings				
	and specifications.				
7	Clean Out				
	Supply and install Floor Clean Out				
	4" UPVC including stainless				
	steel(sealed type) cover (15*15 cm)				
7.1	complete with connection to drain	no	15	10	150
	pipes as located in drawings ,				
	specifications and approval of				
	supervisor engineer.				
7.2	Ditto but suspended HDPE	no	5	20	100
	Roof Drains				
	Supply and install 4" UPVC (Type				
8	Reid) rain water roof drain				
o	including connections all as shown				
	in drawings, specifications and				
	approval of supervisor engineer.				

8.1	Rain water drain size 4" with cover of 20*20 cm.(4" outlet) SANITARY FIXTURES Supply and install where shown on drawings the following sanitary fixtures with the required fittings and accessories complete as described. The price includes the supply and installation of all fittings e.g. elbow, T, valve, union, etc.	no	8	8	64
9	wash dashi &Lavatories				
9.1	Supply and install of virtuosi china wall hung type wash basin, size 550*400 mm complete with chrome plated lever tap, chrome plated 13mm angle valves. The price includes 2'' PVC pipes from wash basin to floor drain, with plastic plated P-trap connected to floor drain, stainless steel soap dispenser, stainless steel paper dispenser, mirror size 700*500mm with stainless steel frame, The price shall also include supply of 10 units handle and mechanism spare parts as shown in drawings, specifications and approval of supervisor engineer.	no	12	100	1200
9.2	Ditto, but wash basin for Handicapped, with all accessories needed as per engineer's approval.	no	3	150	450
10	Water closet				
10.1	Supply and install of virtuous china close couple water closets, Floor mounted ,p trap .complete with6-Lt.capacity cistern, valves , fittings, solid seat and cover ,toilet stainless steel roll paper holder, chrome plated 13 mm stop angle valve, chrome plated 13mm hose and all accessories for complete	no	13	100	1300

	installation, Price includes supply				
	of 4 units flushing tank mechanism				
	spare parts. All is according to				
	drawings, specifications and				
	approval of supervisor engineer.				
	Ditto, but floor mounted WC for				
10.2	Handicapped, including grab bar,	no	3	150	450
	etc. As per engineer's approval.				
	Urinal				
	Supply and install and commission				
	white virtuous china wall mounted				
	urinal bowel complete with the				
	following accessories:- pair bowl				
	supports 40 mm diameter, plastic				
	plated outlet grating, 2" PVC				
	connection to floor drain, 40 mm				
11	diameter plastic plated p-trap with	no	9	100	900
	extension tube to wall and wall				
	flange, 20 mm diameter chrome				
	plated flush valve with regulator				
	and spreader, Price includes				
	supply of 6 units spare parts				
	flushing valve. all is according to				
	drawings, specifications and				
	engineer approval.				
12	Sink				
	Supply and install vitreous china				
	single bowel of size 60X50cm,				
	complete with chrome plated Tap				
	, chrome plated 13mm stop valve,				
	supports, 2" PVC waste outlet				
12.1	connected to floor drain, P- trap,	no	8	50	400
	chrome plated 13mm hose and all				
	required parts for water supply				
	line , as shown in drawings ,				
	specifications and approval of				
	supervisor engineer.				
12.2	Ditto but double bowl 80cm*50cm	no	2	60	120
13	Water Tap				
	Supply and install water tap and				
13.1	all required parts for water supply	no	15	5	75
13.1	line, as shown in drawings,	110	15	5	15
	specifications and approval of				

14 Shower Head Supply and install all necessary fittings and accessories for	
14 Shower Head Supply and install all necessary fittings and accessories for	
I4 Shower fread Supply and install all necessary fittings and accessories for	
fittings and accessories for	
Plane *90 and accessor The purioe	
sucm*sucm snower. The price	
includes shower mixer that	
includes shower arm and shower	
14.1 head. The price includes shower no 1 300	300
floor trap to be connected to the	
main trap. The price also includes	
PEX pipes between the shower and	
the collector, elbows and all other	
fittings needed to comply with the	
drawings and specifications.	
15 External Drainage System	
Supply and install of SN8 UPVC	
drainage pipes and fittings,	
including connections, excavation,	
covering with a layer of 20 cm	
sand around the pipe and back	1400
15.1 filling and cutting asphalt for M 280 5	1400
connection to the existing sewage	
manhole as shown in drawings and	
specifications and approval of	
supervisor engineer.6''diam.	
Sewer, Rain and water Manholes	
Supply and install and commission	
of reinforced precast concrete	
Manholes of 15cm thickness for	
walls and 20 cm thickness	
readymade base with all necessary	
excavation, back filling as specified	
16 to the required depth complete	
with iron steps, with medium duty	
C I (25 Ton cover and frame	
benching and plastering Price	
includes supply of nortable water	
turbidity meter as testing	
equinment	
equipment.	
16.1 Manhole of 60 cm internal diam. no 6 20	120

16.2	Ditto but Manhole of 80 cm	no	2	25	50
16.3	Ditto but Manhole of 100 cm	no	5	40	200
10.3	internal diameter.	110	3	40	200
16.4	Ditto but Manhole of 120 cm	no	1	100	100
10.4	internal diameter. (25 ton cover)	по	1	100	100
17	WATER SUPPLY				
	Main water connection				
	Supply and install galvanized steel				
	main W.P. 3"(schedule 40 type) of				
	wall thickness 3.65 mm wrapping				
	from outside with layer of PE high				
	density polyethylene insulated				
	protection factory covered laid				
	underground cement inside with				
	asphalt protection with all				
	necessary fittings e.g. elbow, union,				
	stop valves, no return valve, auto.				
	Air vent and all are approved				
17.1	quality. The price shall include	job	1		
	constructing, supplying and				
	installing of pressure reducing				
	station, as per details shown in				
	drawings. The price shall also				
	include piping connections with all				
	needed fittings and accessories, 3"				
	water meter,3/4" water meter for				
	cafeteria ,excavation, back filling,				
	disposal of remained exacted soil.				
	All is according to drawings,				
	specifications, and approval of				
	supervisor engineer.				

	Main fire connection				
	Supply and install galvanized steel				
	main F.P. (schedule 40 type) of				
	wall thickness 3.65 mm wrapping				
	from outside with layer of PE high				
	density polyethylene insulated				
	protection factory covered laid				
	underground cement inside with				
	asphalt protection with all				
10	necessary fittings e.g. elbow, T.				
18	union. stop valves. no return valve				
	. auto. Air vent and all are				
	approved quality. The price shall				
	also include piping connections				
	with all needed fittings and				
	accessories, excavation, back				
	filling, disposal of remained				
	exacted soil. All is according to				
	drawings, specifications, and				
	approval of supervisor engineer.				
18 1	size 3" G S P	mr	50	10	500
10.1		111.01	50	10	200
	Galvanized Steel Fire Fighting				
	Galvanized Steel Fire Fighting Pipes				
	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized				
	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for				
	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure				
	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets				
	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves,				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing in addition to apphalt				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and approval of supervisor engineer				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and approval of supervisor engineer, and as follows:				
19	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and approval of supervisor engineer, and as follows: Size2.5" diameter	m.r	90	10	900
19 19.1 19.2	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and approval of supervisor engineer, and as follows: Size2.5'' diameter	m.r m.r	<u>90</u> 180	<u>10</u> 15	<u>900</u> 2700
19 19.1 19.2	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and approval of supervisor engineer, and as follows: Size2.5'' diameter Size 3'' diameter Feed and Domestic Galvanized	m.r m.r	<u>90</u> 180	<u>10</u> 15	<u>900</u> 2700
19 19.1 19.2 20	Galvanized Steel Fire Fighting Pipes Supply and install of galvanized steel SCH40 (Seamless type) for firefighting system from pressure reducing station up to fire cabinets distributed in floors, with all YT necessary fittings like valves, elbow ,T, vent, of approved quality. The price includes supports, hangers as shown on drawing, in addition to asphalt insulation of underground pipes, all according to specifications and approval of supervisor engineer, and as follows: Size2.5'' diameter Size 3'' diameter Feed and Domestic Galvanized Steel Water Pipes	m.r m.r	<u>90</u> 180	<u>10</u> 15	<u>900</u> 2700

20.2	size 1" G.S.P	m.r	130	5	650
20.3	size 1 1/4" G.S.P	m.r	170	7	1190
20.4	size 1 1/2" G.S.P	m.r	60	10	600
20.5	size 2" G.S.P	m.r	90	12	1080
20.6	size 2" G.S.P insulated)	m.r	80	15	1200
20.7	size 3" G.S.P	m.r	20	15	300
20.8	size 4" G.S.P	m.r	10	20	200
	Domestic and flush Water				
	Collectors				
	Supply and install copper				
	collectors for domestic cold water				
	and Flush systems, of approved				
	quality, with all necessary fittings,				
	nipples, nuts, unions, quick shut				
	off valves, branch valves,				
	thermometer gauge, brass fittings				
	adapter, automatic ventsEtc. of				
	approved quality. Rate includes				
21	hardwood architecture frame with				
	ceramic tiles inside and Formica				
	on sandwich wood cover with				
	double doors for collectors. The				
	price should also supplying and				
	installing 16mm PEX plastic pipes				
	with its 25mm plastic conduits				
	with 5cm thick concrete layer to				
	fixture units outlets, copper elbows				
	recessed in walls and all civil				
	works needed, all according to				
	plans and engineer's instructions:				
21.1	3/4" Domestic Cold Water	no	12	8	96
01.0			10	10	100
21.2	1 Domestic Cold Water Collector	no	10	10	100
21.3	Collector	no	6	15	90
22	Electric Water Heater				
	Supply and install hot water				
	storage cylinder of 60 Liters				
22.1	capacity (1.5kW electric power), of		4	100	400
22.1	approved quality. The price	no	4	100	400
	includes galvanized pipes to				
	collectors, all accessories needed to				

	complete the job, fixing the				
	cylinder on ceiling, with all related				
	necessary fittings, i.e. air vent,				
	valves, pressure relief valve, check				
	valve, all according to drawings				
	and engineer's instructions				
23	Fire Cabinets				
	Supply and install 120*80*30 cm				
	steel fire hose reel cabinet, of				
	thickness 2mm red color paint,				
	25mm diam., 30m length, mounted				
	on swinging reel, an angle isolation				
	valve inside the cabinet, a jet				
	nozzle, and 25m long textile hose,				
00.1	an angle globe valve of size 2" with		_	200	1000
23.1	2.5 hose adapter ,1" ball valve	no	5	200	
	hose roll each 15 m length with 2"				
	jet nozzle inside cabinet. Each				
	cabinet should be supplied with				
	two 2kg Co2 fire extinguisher, and				
	approved sticker (FIRE CABINET				
	in Arabic and English) from				
	outside. As shown in drawings.				
24	Fire Extinguisher				
	Supply and install 4 kg Capacity				
	Co2 gas manual fire extinguishers,				
24.1	The price includes all accessories	no	17	20	340
	and fittings needed for installation				
	and fixing wall.				
25	Electrical water cooler				
	Supply and install electrical water				
	cooler of capacity 40 L/h with				
	drinking chrome plated fountain				
	of approved quality with hermetic				
25.1	type compressor complete with all	m 0	2	6 0	160
23.1	required fixing connection, water	по	<i>L</i>	ov	100
	supply and 2''PVC drainage pipe				
	to the nearest floor trap. as shown				
	in drawings, specifications and				
	approval of supervisor engineer.				
	Submersible Pump For Elevator				
26	Pit				

26.1	Supply and install submersible pump for sump pit complete with all needed accessories and valves like gate valves, check valves, controls and electrical board and electrical connections wherever shown on drawings and to the approval of the Engineer, Submersible pump`s specification: 2m3/hr. at 5 m head .	no	1	500	500
27	Duct				
27.1	Supply and install galvanized metal sheet duct, with thickness according to ASHREA Standards. The price includes all joints, sealant compound, and all necessary accessories, galvanized hangers, hooks, penetration in walls as per drawings , all according to plans and engineer's instructions	N2	500	10	5000
28	Exhaust Air Fans Supply and install ducted exhaust air fan of low noise sound level. The price includes vibration isolators, flexible connection between the fan and duct, in addition to installing galvanized steel duct from the outdoor grille till the fan outlet and all accessories needed for installation. The price shall also include control and electrical connections, according to drawings & engineer's instructions:				
28 1	560CFM air flow, 0.2" wg static	no	2	50	100
	pressure		-		
28.2	140CFM air flow	no	1	150	150
28.3	2734CFM air flow, 0.2" wg static pressure	no	1	500	500
28.4	630CFM air flow, 0.2" wg static pressure	no	1	300	300
28.5	340CFM air flow, 0.2" wg static	no	1	200	200

	pressure				
28.6	2500cfm air flow, 0.2" wg static pressure		1	150	150
28.7	3000cfm air flow0.2" wg static pressure	no	1	200	200
28.8	300cfm centrifugal fan on roof for Cafeteria	no	1	250	250
28.9	2874cfm air flow	no	1	400	400
28.10	210cfm air flow, 0.2" wg static pressure	no	1	100	100
29	Exhaust Air Grilles (EAG) Supply and install white anodized Aluminum, ventilation air grilles of two opposed blades with registers, including openings in gypsum boards or false ceiling. The price includes galvanized box, and connections to grilles through flexible duct connection, complete as per specifications				
29.1	6''*6''	no	27	20	440
29.2	9''*9''	no	4	40	160
29.3	14''*8''	no	2	50	100
30	Split Units Supply, install, and commission high wall mounted air conditioning DX split unit, with low temperature kit and automatic restart. The price includes all accessories and fittings needed for installation and commissioning, insulated copper pipes, connection of drain pipe, galvanized steel base for the outdoor units vibration isolators, hangers and supports, high performance washable filters. In addition to control &electrical				
	connections. Rate shall also include openings in wall (for pipes)				

	to engineer's instructions and as				
	follows:				
30.1	2.9 kW Cooling Capacity	no	1	400	400
30.2	8.8 kW Cooling Capacity	no	1	800	800
30.3	14 kW Cooling Capacity	no	4	1000	4000
30.4	24.5 kW Cooling Capacity	no	2	2000	4000
	16 kW Cooling Capacity				
30 5		no	2	1500	3000
30.5		по	4	1300	3000
	VRF Units				
	Supply, install, test and				
	commission heat pump VRF				
	(variable refrigerant				
	volume)system. Refrigerant R410A				
	Complete with the outdoor and				
	indoor units system, thermostat,				
	drain pipes pn16 from the indoor				
	unit to the riser, Flexible				
	connection from the indoor unit to				
	the main duct, return box behind				
	the VRF indoor units and all the				
	needed necessary parts according				
	to the drawings and specifications.				
	As for the following:				
	The Agent or authorized dealer				
31	should be representing the				
	manufacturer for not less than				
	Five years, and should have not				
	less than 5 years' experience in				
	selling, installing and maintaining				
	VRF systems in Palestine. And the				
	VRF System has been in				
	satisfactory use in similar projects				
	in Palestine of the same size or				
	larger.				
	Guarantee: Air conditioning units				
	shall include a three (3) years				
	warranty on compressor and one				
	(1) year on all parts and labor				
	after acceptance by the Engineer.				
	 Condensing Unit: Factory 				

	assembled and tested air cooled.				
	Comprising full inverter				
	compressor / compressors,				
	condenser coil, condenser fan and				
	motor, refrigerant receiver,				
	charging valve and controls,				
	assembled in a common casing.				
	Unit to be tested at factory and				
	supplied complete with refrigerant				
	and dehydrated compressor oil.				
	Condensing Unit and indoor units				
	shall be equipped with a serial				
	communication that provide a				
	non-Stop operation for any				
	numbers of indoor units when				
	indoor unit needs maintenance				
	(Electrical power cutoff),				
	condensing unit and related indoor				
	units can keep operating , also if				
	only one indoor unit needed to be				
	running for long period alone and				
	Electrical power cutoff from the				
	remaining indoor units the system				
	should keep running without any				
	risk on the compressors from				
	damage(a written guarantee will				
	be requested from the agent or				
	authorized dealer for the safety of				
	the compressors).				
	The price includes the control				
	panel on roof with cables from				
	outdoor units to the main panel on				
	root including panels for each				
	system. Centralized controller in				
	control room in ground floor.				
31.1	Indoor units				
31.1.1	SP-B01(10.12kw)	no	6	1500	9000
31.1.2	SP-B02 (11.02kw)	no	6	2000	12000
31.2	outdoor units				
31.2.1	40.5TR	no	1	10000	10000
31.2.2	36.3TR	no	1	8000	8000

32	Air grills				
32.1	Supply and install white anodized Aluminum, air grilles of two opposed blades with registers, including openings in gypsum boards or false ceiling. The price includes galvanized box, and connections to grilles through flexible duct connection, complete as per specifications				
32.1.1	12"*12"SD	no	43	10	430
32.1.2	Linear two slots	mr	16	10	160
32.2	Ditto but return grills without register				
32.2.1	60''*60''RG	no	15	10	150
32.2.2	24''*24'' RG	no	4	20	800
32.2.3	Linear two slots	mr	4	15	600
33	Supply and install and test Kitchen hood of stainless steel 1.25mm size (115cm *90cm*50cm) including stainless steel filters also price includes 12 inch round duct to roof level with all accessories needed to complete the job. Price includes fume hood controller as testing equipment.	no	1	500	500

APPENDIX (B)

HUMAN COMFORT

Type of Activity	Typical Application	Total Heat Dissipation Adult Male	Total Adjusted ^(#) Heat Dissipation	Sensible Heat, W	Latent Heat, W
Seated at rest	Theater :				
	Matinee	111.5	94.0	64.0	30.0
	Evening	111.5	100.0	70.0	30.0
Seated, very	Offices, hotels,				
light work	apartments,				
	restaurants	128.5	114.0	70.0	44.0
Moderately					
active office	Offices, hotels,	125.5	100 5	71 5	57.0
WORK	apartments	135.5	128.5	/1.5	57.0
	Department		,		
Standing, light	store.				
work, walking	supermarkets	157.0	143.0	71.5	71.5
Walking, seated	Drug store	157.0	143.0	71.5	71.5
Standing.					
walking					
slowly	Bank	157.0	143.0	71.5	71.5
Sedentary work	Restaurant	168.5	157.0	78.5	78.5
Light bench					
work	Factory	238.0	214.0	78.0	136.0
	Small-Parts				
Moderate work	assembly	257.0	243.0	87.0	156.0
Moderate					
dancing	Dance halls	257.0	243.0	87.0	156.0
Walking at 1.5					
m/s	Factory	286.0	285.0	107.0	178.0
Bowling					
(participant)	Bowling alley	428.5	414.0	166.0	248.0
Heavy work	Factory	428.5	414.0	166.0	248.0

(a) Adjusted heat dissipation is based on the percentage of men, women and children for the application.

HUMAN COMFORT

	Maximum Occupancy Per	Ventilation Air Requirements	
Application	100 m ²	L/s/Person	L/s/n
Offices:			
Office space	7	10.0	2.5-10.
Reception areas	60	8.0	3.5-7.5
Telecomm. Centers	60	10.0	
Conference rooms	50	10.0	
Public spaces:			
Corridors			0.25
Public restrooms	100	25.0	
Locker and dressing rooms	50	7.5-17.5	5-2.5
Smoking lounge	70	30.0	
Elevators:		7.5	5.00
Laundries:			2.00
Commercial laundry	10	13.0	
Commercial dry cleaner	30	15.0	
Coin-operated laundries	20	80	
Coin operated dry cleaner	20	8.0	
Food and heverage services.	20	0.0	
Dining rooms	70	10.0	
Cafeteria	100	10.0	
Bars	100	10.0	
Kitchens	100	15.0	
Garages service stations.	20	8.0	
Enclosed parking garage		FT / /	7.50
Auto repair rooma		5L/S/Car	7.50
Factorics			7.50
Patail stores.			0.80
Return stores:	20		
Line on floores	30	2.5-12.5	1.50
Store as a source	20	2.5-12.5	1.00
Distorage rooms	15	2.5-12.5	0.75
Dressing rooms		3.5-12.5	1.00
Mails	20	2.5-5.0	1.00
vv arenouses	5	2.5-5.0	0.25
Smoking lounge	70	30.0	
specialty shops:			
Barbers	25	8.0	
Beauty saloons	25	13.0	
Reducing saloons	20	8.0	
Florist	8	8.0	
Supermarkets	8	8.0	
Hardware, drugs, fabrics	8	8.0	
Pet shops	—		5.00
Furniture stores			1.50
Sports:			
Spectator areas	70-150	3.5-17.5	

HUMAN COMFORT

	Maximum Occupancy Per	Ventila Requir	tion Air rements
Application	100 m ²	L/s/Person	L/s/m ²
Bath, toilets ⁽³⁾		10.0	
Hotels and motels:			
Bedrooms			7.5-15
			L/s/room
Living rooms	_		5-10
			L/s/room
Bathes			15-25
			L/s/room
Lobbies	30	2.5-7.5	
Conference rooms	50	3.5-17.5	
Assembly rooms	120	3.5-17.5	-
Dormitory sleeping areas	20	8.0	
Gambling casinos	120	15.0	

⁽¹⁾ or 0.35 air change/hour ⁽²⁾ or 50 L/s intermittent or openable window. ⁽³⁾ or 25 L/s intermittent or openable window.

.

TABLE B3 Overall Heat Transfer Coefficient for Windows, W/m ^{2.o} C						
	Wind Speed, m/s					
Material				Doub	le Glass, 6m	m air
Type and		Single Glass			gap	
Frames	< 0.5	0.5 - 5.0	> 5.0	< 0.5	0.5 - 5.0	> 5.0
Wood	3.8	4.3	5.0	2.3	2.5	2.7
Aluminum	5.0	5.6	6.7	3.0	3.2	3.5
Steel	5.0	5.6	6.7	3.0	3.2	3.5
PVC	3.8	4.3	5.0	2.3	2.5	2.7

Door Type	Without Storm Door	With Wood Storm Door	With Meta Storm Doo
25 mm-wood	3.6	1.7	2.2
35 mm-wood	3.1	1.6	1.9
40 mm-wood	2.8	1.5	1.8
45 mm-wood	2.7	1.5	1.8
50 mm-wood	2.4	1.4	1.7
Aluminum	7.0		-
Steel	5.8		
Steel with:			
Fiber core	3.3	1712/10.000	
Polystyrene core	2.7	-	
Polyurethane core	2.3		

· • •

TABLE ^{B5} Values of infiltration air coefficient $K^{(2)}$ for windows.						
	Infiltration Air Coefficient K					
Window Type	Average	Minimum	Maximum			
Sliding						
Iron	0.36	0.25	0.40			
Aluminum	0.43	0.25	0.70			
Hung						
Iron	0.25	0.10	0.60			
Aluminum (side pivoted)	0.36	0.07	0.70			
Aluminum (horizontal pivoted)	0.30	0.07	0.50			
PVC	0.10	0.03	0.15			

TA	BLE	B6 Values of the factor S_1 of Eq. (6–7).	
	№	Topography of Location	Value of S ₁
	1	Protected locations by hills or buildings (wind speed = 0.5 m/s)	0.9
	2	Unprotected locations such as sea shores, hill tops, etc.	1.1
	3	Locations other than that listed in item (1) or (2) of this table.	1.0

⁽²⁾ Tables 6–2 through 6–4 are abridged from BS 6375. Values of infiltration air coefficients for doors are taken to be equal to that of windows of the same type.

Class (1)	Locations having very high and close obstacles such as capital cities, down
	town of large cities, etc.
Class (2)	Locations having numerous and close obstacles such as small cities,
	suburbs of large cities, etc.
Class (3)	Locations having obstacles whose height less than 10 m such as airports,
	villages, etc.
Class (4)	Locations with obstacles whose height is less than 1.5 m such as desert
	areas, plains without trees, etc.
Catagory A	Structures and buildings whose maximum horizontal or vertical
	dimension is more than 50 m.
Catagory H	Structures and buildings whose maximum dimension (horizontal or
	vertical) is less than 50 m.

٨ .

Catagory C Individual structures.

TABLE B7 Values of the factor S_2 of Eq. (6–7).

Location Class	Class 1				Class 2			Class	3		Class	4
Building Height,	Α	B	С	A	В	С	Α	В	С	Α	В	С
m												
3	0.47	0.52	0.56	0.55	0.60	0.64	0.63	0.67	0.72	0.73	0.78	0.83
5	0.50	0.55	0.60	0.60	0.65	0.70	0.70	0.74	0.79	0.78	0.83	0.88
10	0.58	0.62	0.67	0.69	0.74	0.78	0.83	0.88	0.93	0.90	0.95	1.00
15	0.64	0.69	0.74	0.78	0.83	0.88	0.91	0.95	1.00	0.94	0.99	1.03
20	0.70	0.75	0.79	0.85	0.90	0.95	0.94	0.98	1.03	0.96	1.01	1.06
30	0.79	0.85	0.90	0.92	0.97	1.01	0.98	1.03	1.07	1.00	1.05	1.09
40	0.89	0.93	0.97	0.95	1.00	1.05	1.01	1.06	1.10	1.03	1.08	1.12
50	0.94	0.98	1.02	1.00	1.04	1.08	1.04	1.08	1.12	1.06	1.10	1.14
60	0.98	1.02	1.05	1.0Ż	1.06	1.10	1.06	1.10	1.14	1.08	1.12	1.15
80	1.03	1.07	1.10	1.06	1.10	1.13	1.09	1.13	1.17	1.11	1.15	1.18
100	1.07	1.10	1.13	1.09	1.12	1.16	1.12	1.16	1.19	1.13	1.17	1.20
120	1.10	1.13	1.15	1.11	1.15	1.18	1.14	1.18	1.21	1.15	1.19	1.22
140	1.12	1.15	1.17	1.13	1.17	1.12	1.16	1.19	1.22	1.17	1.20	1.24
160	1.14	1.17	1.19	1.15	1.18	1.21	1.18	1.21	1.24	1.19	1.22	1.25
180	1.16	1.19	1.20	1.17	1.20	1.23	1.19	1.22	1.25	1.20	1.23	1.26
200	1.18	1.21	1.22	1.18	1.21	1.24	1.21	1.24	1.26	1.21	1.24	1.27

COOLING LOAD CALCULATIONS

Lat	Month	N	NNE NNW	NE NW	ENE WNW	E W	ESE WSW	SE SW	SSE SSW	S	Horizonta
16	December	_22	_3 3			22	0.5	22	50	72	5.0
10	Jan /Nov	_2.2	_3.3	-3.8		-2.2	-0.5	2.2	J.0 A A	6.6	-5.0
	Feb /Oct	-1.6	-3.5	-2.7	-2.8	-2.2	-0.5	1 1	4.4	2.0	-3.8
	Mar/Sept.	-1.6	-1.6	1 1	_1 1	-0.5	-0.5	0.0	2.7	0.0	-2.2
	Apr./Aug.	_0.5	-1.0	-0.5	-0.5	-0.5	-0.5	-1.6	27	3.3	-0.5
	May/July	2.2	1.6	-0.5	-0.5	-0.5	-1.0	-1.0	-2.7	-3.5	0.0
	June	3.3	2.2	2.2	0.5	-0.5	-2.2	-3.3		-3.8	0.0
24	December	-27	_38	-55	-61	-4.4	27	1 1	5.0	6.6	-0.4
41	Ian /Nov	-2.7	-3.8	-5.5	-0.1	-4.4	-2.7	1.1	5.0	0.0	-9.4
	Feb /Oct	-2.2	-3.5	-4.4	-5.0	-5.5	-1.0	-1.0	5.0	1.2	0.1
	Mar/Sent	-2.2	-2.7	-5.5	-5.5	-1.0	-0.5	1.0	3.8 1.1	3.5	-5.8
	Apr / Aug	-1.0	-2.2	-1.0	-1.0	-0.5	-0.5	0.5	1.1	2.2	-1.0
	Mar / July	-1.1	-0.5	0.0	-0.5	-0.5	-1.1	-0.5	-1.1	-1.0	0.0
	Tuno	0.5	1.1	1.1	0.0	0.0	-1.6	-1.6	-2.7	-3.3	0.5
	June.	1.0	1.0	1.0	0.5	0.0	-1.6	-2.2	-3.3	-3.3	0.5
32	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	-9.4
	Jan./Nov.	-2.7	-3.8	-5.0	-6.1	-4.4	-2.2	1.1	5.0	6.6	-8.3
	Feb./Oct.	-2.2	-3.3	-3.8	-4.4	-2.2	-1.1	2.2	4.4	6.1	-5.5
	Mar/Sept.	-1.6	-2.2	-2.2	-2.2	-1.1	-0.5	1.6	2.7	3.8	-2.7
	Apr./Aug.	-1.1	-1.1	-0.5	-1.1	0.0	-0.5	0.0	5.0	0.5	-0.5
	May/July	0.5	0.5	0.5	0.0	0.0	-0.5	-0.5	-1.6	-1.6	0.5
	June	0.5	1.1	1.1	0.5	0.0	-1.1	-1.1	-2.2	-2.2	1.1
40	December	-3.3	-4.4	-5.5	-7.2	-5.5	-3.8	0.0	3.8	5.5	-11.6
	Jan./Nov.	-2.7	-3.8	-5.5	-6.6	-5.0	-3.3	0.5	4.4	6.1	-10.5
	Feb./Oct.	-2.7	-3.8	-4.4	-5.0	-3.3	-1.6	1.6	4.4	6.6	-7.7
	Mar/Sept.	-2.2	-2.7	-2.7	-3.3	-1.6	0.5	2.2	3.8	5.5	-4.4
	Apr./Aug.	-1.1	-1.6	-1.6	-1.1	0.0	0.0	1.1	1.6	2.2	1.6
	May/July	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5
	June	0.5	0.5	0.5	0.5	0.0	0.5	0.0	0.0	-0.5	1.1
48	December	-3.3	-4.4	-6.1	7.7	-7.2	-5.5	-1.6	1.1	3.3	-13.8
	Jan./Nov.	-3.3	-4.4	-6.1	-7.2	-6.1	-4.4	-0.5	2.7	44	-13.3
	Feb./Oct.	-2.7	-3.8	-5.5	-61	_4 4	-2.7	0.5	44	61	-10.0
	Mar/Sept.	-2.2	-3.3	-33	-3.8	-22	0.5	22	44	6.1	
	Apr./Aug.	-16	-1.6	-16	-1.6	-0.5	0.5	2.2	2.2	3.0	-0.1
	May/July	0.0	0.5	0.0	0.0	0.5	0.0	2.2 1.6	5.5 1 4	2.0	-2.7
	June	0.0	0.5	1 1	0.0	1 1	0.5	1.0	1.0	2.2	0.0

COOLING LOAD CALCULATIONS

TABLE B9 Appro	ximate CLTD valu	ies for sunlit roo	fs, ⁰C.							
· · ·	Ro	Roof Construction								
Solar Time	Light	Medium	Heavy							
10:00	5									
11:00	12									
12:00	19	3	0							
13:00	25	8	2							
14:00	29	14	ана 5 с							
15:00	31	19	8							
16:00	31	23	10							
17:00	29	25	12							
18:00	24	26	14							
19:00	19	25	15							
 20:00	11	22	. 16							

					Wa	all cons	structi	on					
Solar		Lig	,ht			Medi	ium		Heavy				
Time	N	E	S	W	N	Е	S	w	N	Е	S	W	
8:00		16											
9:00		20				6	-			-			
10:00		21	2			11				No contra			
11:00		18	. 7	·	. <u> </u>	14	·	······		3.			
12:00	-	12	12			15				5			
13:00	2	9	15	5		14	5			7			
14:00	3	7	16	13		12	9	1		8			
15:00	3	7	14	21	1	10	11	6		8	1	-	
16:00	4	6	11	27	2	9	12	12		8	3		
17:00	4	5	7	30	2	8	11	17	and the second sec	8	5	3	
18:00	5	3	4	27	3	7	.9.	22	,	8	6	7	
19:00	2	1	1	17	3	5	7	23		7	6	10	
20:00				6	3	3	5	20	1	7	6	12	

nata tang Ang tang Ang tang

COOLING LOAD CALCULATIONS

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec
Ν	76	85	101	114	120	139	126	117	104	88	76	69
NNE/NNW	76	85	117	252	350	385	350	249	110	88	76	69
NE/NW	91	205	338	461	536	555	527	445	325	199	91	69
ENE/WNW	331	470	577	631	656	656	643	615	546	451	325	265
E/W	552	647	716	716	694	675	678	691	678	615	546	511
ESE/WSW	722	764	748	691	628	596	612	663	716	738	710	688
SE/SW	786	782	716	590	489	439	473	571	688	754	773	776
SSE/SSW	789	732	615	445	213	262	303	429	596	710	776	795
S	776	697	555	363	233	189	227	350	540	678	767	795
Horizontal	555	685	795	855	874	871	861	836	770	672	552	498

.

TABLE	g coefficient (SC)	Type of Interior Shading												
	Nominal	Venetia	n Blinds		Roller Sh	ade								
	Thickness,			Opa	aque	Translucent								
Type of Glass	mm	Medium	Light	Dark	White	Light								
		Single	Glass											
Clear, regular	2.5-6.0													
Clear, plate	0.0-12.0 3.0.12.0	0.64	0.55	0.50	0.25	0.30								
Heat Absorbing	3.0-12.0	0.04	0.55	0.59	0.25	0.59								
Pattern or	5.0-5.5													
Tinted(gray														
sheet)														
Heat	5060	0.57	0.53	0.45	0.20	0.36								
Absorbing	5.0-0.0	0.57	0.55	0.45	0.30	0.36								
plate														
Pattern or	3.0-5.5													
Tinted, gray	*		•			-								
sheet														
Heat Absorbing	10	0.54	0.52	0.40	0.82	0.32								
Plate or Pattern	10	0.0 1	0.02	0.10	0.02	0.02								
Heat Absorbing			- <u>1</u>											
TTant Alas 1.		0.40	0.40	0.26	0.20	0.21								
or Pattern		0.42	0.40	0.30	0.28	0.31								
or r uttern														
Reflective		0.30	0.25	0.23										
Coated Glass														
	—	0.40	0.33	0.29										
		0.50	0.42	0.38										
		Doubl	e Glass	0.44										
Regular	3	0.57	0.51	0.60	0.25									
Plate	6	0.57	0.51	0.60	0.25									
Reflective	6	0.20-												
		0.40	or Class											
Clear	2,5-6.0	0.57	0.51	0.60	0.25	0.37								
Heat Absorbing	5.0-6.0	0.39	0.36	0.40	0.22	0.30								
Reflective		0.20	0.19	0.18										
Coated														
		0.30	0.27	0.26										
		0.40	0.34	0.33										

TABLE B12 Shading coefficient (SC) for glass windows with interior shading.

Note: Shading coefficient SC, for other shading types and shading devices that are not included in Table 9–9 are as follows:

Dark venetian blinds	0.72
Canva awning	0.25
Roof overhang	0.25
Outside shading screen	0.30
Wood sash	0.85

		ig Loa	id fact	ors (C	LF) 10	r glass	s wind	ows w	itn int	erior s	nadin	g, Nor	th latit	ude.			
Fenestration								Sola	ar Tin	1e, h							
Facing	1	2	3	4	5	6	7	. 8	9	10	11	12	13	14	15	16	17
Ν	0.08	0.07	0.06	0.06	0.07	0.73	0.66	0.65	0.73	0.80	0.86	0.89	0.89	0.86	0.82	0.75	0.78
NNE	0.03	0.03	0.02	0.02	0.03	0.64	0.77	0.62	0.42	0.37	0.37	0.37	0.36	0.35	0.32	0.28	0.23
NE	0.03	0.02	0.02	0.02	0.02	0.56	0.76	0.74	0.58	0.37	0.29	0.27	0.26	0.24	0.22	0.20	0.16
ENE	0.03	0.02	0.02	0.02	0.02	0.52	0.76	0.80	0.71	0.52	0.31	0.26	0.24	0.22	0.20	0.18	0.15
Е	0.03	0.02	0.02	0.02	0.02	0.47	0.72	0.80	0.76	0.62	0.41	0.27	0.24	0.22	0.20	0.17	0.14
ESE	0.03	0.03	0.02	0.02	0.02	0.41	0.67	0.79	0.80	0.72	0.54	0.34	0.27	0.24	0.21	0.19	0.15
SE	0.03	0.03	0.02	0.02	0.02	0.30	0.57	-0.74	0.81	0.79	0.68	0.49	0.33	0.28	0.25	0.22	0.18
SSE	0.04	0.03	0.03	0.03	0.02	0.12	0.31	0.54	0.72	0.81	0:81	0.71	0.54	0.38	0.32	0.27	0.22
S	0.04	0.04	0.03	0.03	0.03	0.09	0.16	0.23	0.38	0.58	0.75	0.83	0.80	0.68	0.50	0.35	0.27
SSW	0.05	0.04	0.04	0.03	0.03	0.09	0.14	0.18	0.22	0.27	0.43	0.63	0.78	0.84	0.80	0.66	0.46
SW	0.05	0.05	0.04	0.04	0.03	0.07	0.11	0.14	0.16	0.19	0.22	0.38	0.59	0.75	0.83	0.81	0.69
WSW	0.05	0.05	0.04	0.04	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0.23	0.44	0.64	0.78	0.84	0.78
W	0.05	0.05	0.04	0.04	0.03	0.06	0.09	0.11	0.13	0.15	0.16	0.17	0.31	0.53	0.72	0.82	0.81
WNW	0.05	0.05	0.04	0.03	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0.18	0.22	0.43	0.65	0.80	0.84
NW	0.05	0.04	0.04	0.03	0.03	0.07	0.11	0.14	0.17	0.19	0.20	0.21	0.22	0.30	0.52	0.73	0.82
NNW	0.05	0.05	0.04	0.03	0.03	0.11	0.17	0.22	0.26	0.30	0.32	0.33	0.34	0.34	0.39	0.61	0.82
HORIZ.	0.06	0.05	0.04	0.04	0.03	0.12	0.27	0.44	0.59	0.72	0.81	0.85	0.85	0.81	0.71	0.58	0.42

TABLE DIO 1 6 الم ما the testants . - 1-...

Note: Values of the cooling load factors (CLF) of Tables 9-10 and 9-11 for the hours 18:00 to 24:00 may be obtained from McQuiston and Parker, 1994, "Heating, Ventilating, and Air Conditioning", 4th ed., Wiley.
COOLING LOAD CALCULATIONS

TABLE	313	Co	olir	ng	loa	d te	mpe	ratu	re c	liffe	enc	es (CLT	D) f	or c	onve	ectio	n he	eat g	jain	for (glas	s wi	ndo	WS.	
Solar Time	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
CLTD °C	1	0]	[-	-1	-1	-1	-1	0	1	2	4	5	7	7	8	8	7	7	6	4	3	2	2	1	-

- ,

COOLING LOAD CALCULATIONS

	V	Vithout Hoo	Without Hood					
Appliances	Sensible	Latent	Total	All Sensible				
Hair dryers (Blower type)	675	120	795					
Hair dryers (Helmet type)	550	100	650	·				
Coffee brewer (electrical)	225	65	290	95				
Coffee brewer (gas)	490	210	700	415				
Water heater	1,130	335	1,465					
Coffee urn (electrical)	1,075	350	1,425	440				
Coffee urn (gas)	1,460	625	2,085	415				
Deep fat fryer (electrical)	820	1,930	2,750	730				
Deep fat fryer (gas)	2,080	2,080	4,160	830				
Toaster	1,055	705	1,760	440				
Domestic gas oven	2,430	1200	3,630					
Roasting oven	500	320	820					
Food warmer (gas)	1,550	400	1,950	400				
Egg boiler	335	220	555					
Frying griddle	13,600	7,200	20,800	4,150				
Hotplate	1,550	1,060	2,610	780				
Neon sign, per meter length	56		56					
Sterilizer	190	350	540					
Laboratory burner	470	120	590					
Small copy machine	1,760		1,760					
Large copy machine	3,515		3,515					
Motors:								
400–2,000 W	1,100		1,100					
2,000–15,000 W	2,430	warmher	2,430					

Number of hours	Fixtu hours of	ure X [©] operation	Fixtu hours of c	re Y [©] operation
turned On	10	16	10	16
0	0.08	0.19	0.01	0.05
1	0.62	0.72	0.76	0.79
2	0.66	0.75	0.81	0.83
3	0.69	0.77	0.84	0.87
4	0.73	0.80	0.88	0.89
5	0.75	0.82	0.90	0.91
6	0.78	0.84	0.92	0.93
7	0.80	0.85	0.93	0.94
8	0.82	0.87	0.95	0.95
9	0.84	0.88	0.96	0.96
10	0.85	0.89	0.97	0.97
11	0.32	0.90	0.22	0.98
12	0.29	0.91	0.18	0.98
13	0.26	0.92	0.14	0.98
14	0.23	0.93	0.12	0.99
15	0.21	0.94	0.09	0.99
16	0.19	0.94	0.08	0.99
17	0.17	0.40	0.06	0.24
18	0.15	0.36	0.05	0.20

TABLE B15 Cooling load factor (CLF) $_{Lt}$, for lights ³

TABLEB16 Diversity factor for selected applications.4		
	Diversity	Factor
Application	Lights	People
Peripheral aras of offices with glazing area of 20%-50%	0.70-0.85	0.7-0.8
Core areas of offices and peripheral areas with less than	0.90-1.00	0.7-0.8
20% glazing		
Apartments and hotel bedrooms	0.30-0.50	0.4-0.6
Public rooms in hotels	0.90-1.00	0.4-0.6
Department stores and supermarkets	0.90-1.00	0.8-1.0

Hours after	-		Г	otal hou	irs in spa	ce		
each entry into space	2	4	6	8	10	12	14	16
1	0.49	0.49	0.50	0.51	0.53	0.55	0.58	0.62
2	0.58	0.59	0.60	0.61	0.62	0.64	0.66	0.70
3	0.17	0.66	0.67	0.67	0.69	0.70	0.72	0.75
4	0.13	0.71	0.72	0.72	0.74	0.75	0.77	0.79
5	0.10	0.27	0.76	0.76	0.77	0.79	0.80	0.82
6	0.08	0.21	0.79	0.80	0.80	0.81	0.83	0.85
7	0.07	0.16	0.34	0.82	0.83	0.84	0.85	0.87
8	0.06	0.14	0.26	0.84	0.85	0.86	0.87	0.88
9	0.05	0.11	0.21	0.38	0.87	0.88	0.89	0.90
10 .	0.04	0.10	0.18	0.30	0.89	0.89	0.9	0.91
11	0.04	0.08	0.15	0.25	0.42	0.91	0.91	0.92
12	0.03	0.07	0.13	0.21	0.34	0.92	0.92	0.93
13	0.03	0.06	0.11	0.18	0.28	0.45	0.93	0.94
14	0.02	0.06	0.10	0.15	0.23	0.36	0.94	0.95
15	0.02	0.05	0.08	0.13	0.20	0.30	0.47	0.95
16	0.02	0.04	0.07	0.12	0.17	0.25	0.38	0.96
17	0.02	0.04	0.06	0.10	0.15	0.21	0.31	0.49
18	0.01	0.03	0.06	0.09	0.13	0.19	0.26	0.39

.

TABLE	B18Circular equivalent diameters of rectangular	r ducts for equal pressure drop and flow rate ³ .

												ut.								
Lgth. Adj.	100	125	150	175	200	225	Len 250	igth of 275	One Si 300	de of 1 350	Rectang 400	ular D 450	uct , 500	mm 550	600	650	700	750	800	900
100	109	150	164																	
200 250	152	172	189	204 228	219 244	259	273													
300	183	207	229	248	266	283	299	314	328											
400 500	207 227	235 258	260 287	283 313	305 337	325 360	343 381	361 401	378 420	409 455	437 488	518	547							
600 700	245 261	279 298	310 331	339 362	365 391	390 418	414 443	436 467	457 490	496 533	533 573	567 610	598 644	628 677	656 708	737	765			
800 900	275 289	314 330	350 367	383 -402	414 435	442 465	470 494	496 522	520 548	567 597	609 643	649 686	687 726	722 763	755 799	787 833	818 866	847 897	875 927	984
1000	301	344	384	420	454	486	517	546	574 620	626	674	719	762	802	840	876	911	944	976	1037
1400	344	394	439	482	522	559	595	629	662	724	781	835	886	934	914 980	1024	1066	1030	1000	1220
1800	362 379	415	463 485	508 533	551 577	619	629 660	698	735	766 804	827 869	885 930	939 988	991 1043	1041 1096	1088 1146	1133 1195	1177 1241	1219 1286	1298 1371
2000 2200	395 410	453 470	506 525	555 577	602 625	646 671	688	728	767 797	840 874	908 945	973	1034	1092	1147	1200	1252	1301	1348	1438
2400	424	486	543 560	597 616	647 668	695 717	740	784 810	826 853	905	980 1012	1050	1116	1180	1241	1299	1355	1409	1461	1561
2800	450	516	577	634	688	738	787	834	879	964	1043	1119	1190	1259	1324	1387	1447	1506	1562	1670

Loth .		Length of One Side of Rectangular Duct (a), mm																		
Adj.b	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900
1000	1093																			
1100	1146	1202																		
1200	1196	1256	1312																	
1300	1244	1306	1365	1421										-						
1400	1289	1354	1416	1475	1530															
1500	1332	1400	1464	1526	1584	1640														
1600	1373	1444	1511	1574	1635	1693	1749													
1700	1413	1486	1555	1621	1684	1745	1803	1858												
1800	1451	1527	1598	1667	1732	1794	1854	1912	1968											
1900	1488	1566	1640	1710	1778	1842	1904	1964	2021	2077										
2000	1523	1604	1680	1753	1822	1889	1952	2014	2073	2131	2186									
2100	1558	1640	1719	1793	1865	1933	1999	2063	2124	2183	2240	2296								
2200	1591	1676	1756	1833	1906	1977	2044	2110	2173	2233	2292	2350	2405							
2300	1623	1710	1793	1871	1947	2019	2088	2155	2220	2283	2343	2402	2459	2514						
2400	1655	1744	1828	1909	1986	2060	2131	2200	2266	2330	2393	2453	2511	2568	2624					
2500	1685	1776	1862	1945	2024	2100	2173	2243	2311	2377	2441	2502	2562	2621	2678	2733				
2600	1715	1808	1896	1980	2061	2139	2213	2285	2355	2422	2487	2551	2612	2672	2730	2787	2842			
2700	1744	1839	1929	2015	2097	2177	2253	2327	2398	2466	2533	2598	2661	2722	2782	2840	2896	2952		
2800	1772	1869	1961	2048	2133	2214	2292	2367	2439	2510	2578	2644	2708	2771	2832	2891	2949	3006	3061	
2900	1800	1898	1992	2081	2167	2250	2329	2406	2480	2552	2621	2689	2755	2819	2881	2941	3001	3058	3115	3170

Table based on $D_e = 1.30(ab)^{0.623}/(a + b)^{0.23}$. ^b Length of adjacent side of rectangular duct , mm.

Fixture*	Use	Type of Supply Control	Fixture Units ^b	Min. Size of Fixture Branch ^d in.
Bathroom group ^e	Private	Flushometer	8	
Bathroom group ^c	Private	Flush tank for closet	6	_
Bathtub	Private	Faucet	2	1/2
Bathtub	General	Faucet	4	1/2
Clothes washer	Private	Faucet	2	1/2
Clothes washer	General	Faucet	4	1/2
Combination fixture	Private	Faucet	3	1/2
Dishwasher	Private	Automatic	1	1/2
Drinking fountain	Offices, etc.	Faucet ¾ in.	0.25	1/2
Kitchen sink	Private	Faucet	2	1/2
Kitchen sink	General	Faucet	4	1/2
Laundry trays (1-3)	Private	Faucet	3	1/2
Lavatory	Private	Faucet	1	3/8
Lavatory	General	Faucet	2	1/2
Separate shower	Private	Mixing valve	2	1/2
Service sink	General	Faucet	3	1/2
Shower head	Private	Mixing valve	2	1/2
Shower head	General	Mixing valve	4	1/2
Urinal	General	Flushometer	5	3/4*
Urinal	General	Flush tank	3	1/2
Water closet	Private	Flushometer	6	1
Water closet	Private	Flushometer/tank	3	1/2
Water closet	Private	Flush tank	3	1/2
Water closet	General	Flushometer	10	1
Water closet	General	Flushometer/tank	5	1/2
Water closet	General	Flush tank	5	1/2

Table B18 Water Supply Fixture Units and Fixture Branch Sizes

Water supply outlets not listed above shall be computed at their maximum demand, but in no case less than the following values:

Supply Predomi Flush	Systems nantly for Tanks	Supply Systems Predominantly for Flushometers						
Load, WSFU*	Demand, gpm	Load, WSFU*	Demand gpm					
6	5	-	-					
10	8	10	27					
15	11	15	31					
20	14	20	35					
25	17	25	38					
30	20	30	41					
40	25	40	47					
50	29	50	51					
60	33	60	55					
80	39	80	62					
100	44	100	68					
120	49	120	74					
140	53	140	78					
160	57	160	83					
180	61	180	87					
200	65	200	91					
225	70	225	95					
250	75	250	100					
300	85	300	110					
400	105	400	125					
500	125	500	140					
750	170	750	175					
1000	210	1000	218					
1250	240	1250	240					
1500	270	1500	270					
1750	300	1750	300					
2000	325	2000	325					
2500	380	2500	380					
3000	435	3000	435					
4000	525	4000	525					
5000	600	5000	600					
6000	650	6000	650					
7000	700	7000	700					
8000	730	8000	730					
9000	760	.9000	760					
10.000	700	10.000	700					

Table B19	Table	for	Estimating	Demand
-----------	-------	-----	------------	--------

Fixture Type	Minimum Pressure, ps
tink and tub faucets	
spower	8
water closet-tank flush	Ø
usn valve-urinal	B.
usn valve-siphon jet bow	1
floor-mounted	15
wall-mounted	20
ush valve-blowout bowl	
floor-mounted	20
wall-mounted	25
rden hose	
M-in, sill cock	15
hin sill cock	30
ichian fauntain	15

Source. EPA Manual of Individual Water Supply System, 75 and manufacturers' data.

Actual Inside Diameter of Pipe, in.	¹ /16 in./ft Slope		¹ /s in./ft Slope		¼ in./ft Slope		1/2 in./ft Slope	
	Discharge, gpm	Velocity, fps	Discharge, gpm	Velocity, fps	Discharge, gpm	Velocity, fps	Discharge, gpm	Velocity, fps
11/4							3.40	1.78
1-1/8					3.13	1.54	4.44	1.90
1 1/2					3.91	1.42	5.53	2.01
1%					4.81	1.50	6.80	2.12
2					8.42	1.72	11.9	2.43
21/2			10.8	1.41	15.3	1.99	21.6	2.82
3			17.6	1.59	24.8	2.25	35.1	3.19
4	26.70	1.36	37.8	1.93	53.4	2.73	75.5	3.86
5	48.3	1.58	68.3	2.23	96.6	3.16	137.	4.47
6	78.5	1.78	111.	2.52	157.	3.57	222.	5.04
8	170.	2.17	240.	3.07	340.	4.34	480.	6.13
10	308	2.52	436	3.56	616	5.04	872	7.12
12	500	2.83	707	4.01	999	5.67	1413	8.02
12	500.	2.05	101.	4.01	,,,,	5.07	1415	0.02

Table B21 Approximate Discharge Rates and Velocities^a in Sloping Drains Flowing Half Full^b

"Computed from the Manning Formula for $\frac{1}{2}$ -full pipe, n = 0.015.

^bHalf full means filled to a depth equal to one-half the inside diameter.

Note: For $\frac{1}{4}$ full, multiply discharge by 0.274 and multiply velocity by 0.701. For $\frac{1}{3}$ full, multiply discharge by 0.44 and multiply velocity by 0.80. For $\frac{3}{4}$ full, multiply discharge by 1.82 and multiply velocity by 1.13. For full, multiply discharge by 2.00 and multiply velocity by 1.00. For smoother pipe, multiply discharge and velocity by 0.015 and divide by *n* value of smoother pipe.

Type of Fixture or Group of Fixtures	Drainage Fixtur Unit Value, dfu
utometical at a	
2-in standaire and the standaire	
Connection)	3
athtub group consisting of a site saleset	3
avatory and bathtub or chower stall:	6 .
athtub (with or without overhead shower)"	2
idet	1
linic sink	6
lothes washer	2
ombination sink and tray with food waste	
erinder-	. 4 .
ombination sink-and-tray with one 1-in.	and the second sec
trap	. 2
combination sink-and-tray with separate 1-	all states the second
in trap	
ental unit of cuspidor	. 1 .
Cental lavatory	1
rinking fountain .	1/2
Dishwasher, domestic	2
Toor drains with 2-in. waste	
Citchen sink, domestic, with one	2
1-in. trap	
Atchen sink, domestic, with food waste	7
grinder	States and a state of the state
Kitchen sink, domestic, with food waste	
grinder and dishwasher	. 3
1-in. trap	1
Kitchen sink, domestic, with dishwasher	3
trap	1
Lavatory with 1-in. waste	2
Laundry tray (1 or 2 compartment)	. 2
Shower stall, domestic	· 2
Showers (group) per nead	
Sinks	3
surgeon's	6 -
flushing rim (with varie)	3 .
service (trap standard)	2
service (P trap)	4
pot, scullery, etc.	6
Urinal, syphon jet biother	4
Urinal, wall inp	
Wash sink (circular of meet	. 2
faucets	. 4
Water closet, private	6
Water closet, general use	
Fixtures not already listed	- 1
tran eize 11/1 to an locs	2
trap size 11/2 in.	. 3
map size 2 in.	.4
man size 21/2 In.	5
top size 3 in.	. 6

Source. Reprinted with permission from the National Standard Plumbing Code. Published by The National Association of Plumbing Heating Cooling Contractors. "A shower head over

	Maximum Number of Fixture Units That May Be Connected to					
Diameter of Pipe, in.		One Stack of Three Branch Intervals or Less, dfu	Stacks with More Than Three Branch Intervals			
	Any Horizontal Fixture Branch, ^a dfu		Total for Stack, dfu	Total at One Branch Interval, dfu		
11/2	3	4	8	2		
2	6	10	24	6		
21/2	12	20	42	9		
3	20*	48*	72*	20*		
4	160	240	500	90		
5	360	540	1100	200		
6	620	960	1900	350		
8	1400	2200	3600	600		
10	2500	3800	5600	1000		
12	3900	6000	8400	1500		
15	7000					

Table B22 Horizontal Fixture Branches and Stacks

"Does not include branches of the building drain.

^bNot more than two water closets or bathroom groups within each branch interval nor more than six water closets or bathroom groups on the stack.

Note: Stacks shall be sized according to the total accumulated connected load at each story or branch interval and may be reduced in size as this load decreases to a minimum diameter of half of the largest size required.

Source. Reprinted with permission of The National Standard Plumbing Code, published by The National Association of Plumbing Heating Cooling Contractors.

	to Any Portio	n of the Building Slope p	g Drain or the Bu er Foot	ilding Sewer
Diameter of Pipe, in.	4/16 in.	1/s in.	1/4 in.	4/2 in.
2			21	26
21/2			24	31
3			42 ^b	50 ^b
4		180	216	250
5		390	480	575
6		700	840	1000
8	1400	1600	1920	2300
10	2500	2900	3500	4200
12	2900	4600	5600	6700
15	7000	8300	10,000	12,000

Table B23 Building Drains and Sewers^a

"On site sewers that serve more than one building may be sized according to the current standards and specifications of the Administrative Authority for public sewers. ^bNot over two water closets or two bathroom groups, except that in single family dwellings, not over three water closets or three bathroom groups may be installed.

Source. Reprinted with permission from The National Standard Plumbing Code, published by The National Association of Plumbing Heating Cooling Contractors.

Figure (1)

Friction Head Loss for Water in Commercial Steel Pipe (Schedule 40)

Flow rate, U.S. gal/min (water @ 60°F)

Figure 9.5 Chart of friction head loss in Schedule 40 black iron or steel pipe, for water at 60°F, in feet of water and psi per 100 ft of equivalent pipe length. Pipe sizes are nominal. (Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia, from the 1993 ASHRAE Handbook—Fundamentals.)

Technical specifications sheet

Part number 290102251040C

Description

ion DPV 10/4 B~Oval G 6/4~1,5kW 230/400V~50Hz 2P~IEC 90S~IE2~Fixed Ca Sic EPDM

Vertical centrifugal pump, suction and discharge connections in-line.

Quotation details			
Quotation number			
Project			
Position			
Search criteria		Hydraulic efficiency	
Medium to be pumped	Water	Minimum efficiency index according:	MEI ≥ 0.70
Flow	150.00 l/min	Commission Regulation (EU) No 547/2	012
Pressure	3.0 bar		
Actual duty point		Best efficiency point	
Flow	149.44 l/min	Flow	158.4 l/min
Pressure	3 bar	Pressure	3.3 bar
NPSH	0.9 m	NPSH	1 m
Efficiency	66.6 %	Efficiency	67 %
Motor power	1.11 kW	Motor power	1.3 kW
Frequency	47.5Hz	Frequency	50Hz
Connection base		Seal data	
Connection type	Oval	Shaft diameter	ø 16mm
DIN connection standard	DIN-ISO 228-1	Seal diameter	ø 16mm
ASME connection standard		Construction shaft seal	Fixed
JIS connection standard		Seal code	11
DIN connection size	G 6/4	Shaft seal type	MG12-G60
ASME connection size		Material mechanical seal	B Q1 E GG
JIS connection size		Material shaft seal rotor	Ca
DIN connection pressure class	PN16	Material shaft seal stator	Sic
ASME connection pressure class		Material shaft seal elastomer	EPDM
JIS connection pressure class		Material pump elastomer	EPDM
Material S/D casing	AISI304	Material seal cover	
Material flanges	Cast Iron JL1040	Pressure class shaft seal	PN10
Material baseplate	Cast Iron JL1040	Temperature range shaft seal	-20/+100°C
Basic hydraulic data		Plug	
Maximum working pressure	PN25+100°C	Air relieve construction	Vent. plug
Maximum liquid temperature	140°C+PN16	Material plug	AISI304
Minimum liquid temperature	-20°C		
Material hydraulic	AISI304		

For details contact DP Pumps PO Box 28 2400AA Alphen a/d Rijn The Netherlands

NL

Hydraulic performance sheet

Part number 290102251040C

Description DPV 10/4 B~Oval G 6/4~1,5kW 230/400V~50Hz 2P~IEC 90S~IE2~Fixed Ca Sic EPDM

Vertical centrifugal pump, suction and discharge connections in-line.

Dimensions sheet

Part number 290102251040C

Description DPV 10/4 B~Oval G 6/4~1,5kW 230/400V~50Hz 2P~IEC 90S~IE2~Fixed Ca Sic EPDM

Vertical centrifugal pump, suction and discharge connections in-line.

Motor width (E1) Motor width (E2) Total height (F1) Total height (F2) Total net weight 176mm 141mm 690mm 409mm 41kg

Motor specifications

3710011015 Part number

Description

Motor DMC 1,5kW 230/400V 2P IE2 90S IP55 No Pos. 800

Electric Data

Rated power output	1,5kW
Maximum power output	2,4kW
Rated voltage	230/400V
Phases	3ph
Frequency	50/60Hz
Voltage range	207-253/360-440V
Motor poles	2P
ATEX class	
Duty class	S1
Insulation class	F (rise-B)
Moment of inertia	0,0014kgm2
Motor standard	IEC
Capacitor	
Motor efficiency	81,8/81,9%
Motor efficiency class	IE2

50Hz

Tolerance rated voltage	±10%
Rated speed	2880rpm
Starting current factor (Ia/In)	7.6
Rated current (In)	5,7/3,3A
Maximum current (Imax)	8,0/4,6A
Rated Cos phi	0.81
Sound pressure	56dB(A)
Rated nominal torque	5,0Nm
Rated starting torque	16,5Nm
60Hz	
Tolerance rated voltage	+20%,-10%

Tolerance rated voltage Rated speed Starting current factor (la/ln) Rated current (In) Maximum current (Imax) Rated Cos phi Sound pressure Rated nominal torque Rated starting torque

Motor protection

Motor protection class
Temperature sensor
Rain cover
Anti condensation heater

Mechanical data

Shaft execution	smooth shaft
Maximum starts per hour	50
Cable gland	1xM20x1,5
VFD allowance	VFD allowed

Dimensions

3450rpm

Diameter shaft A1	24mm
Length shaft A2	50mm
Diameter motor E1	176mm
Terminal box height E2	141mm
Diameter flange P	140mm
L. motor (without shaft) LB	281mm
Frame size	90S
Motor construction type	IM V18
Motor face	IEC 60034-7 Form FT 115

Bearings / lubrication

7.2	Bearings / lubrication	
5,2/3,0A	Grease nipple	
8,0/4,6A	Bearing fixation pos	D-end
0.88	D-end bearing type	6305-2Z-C3
59dB(A)	Bearing grease	Lithium based -20°/+160
4,2Nm		
11,2Nm	Details	
	Motor label	DMC
	Weight	17,2kg
IP55	Lifting lugs	No
No	Motor finish	RAL5002
	Rated max. amb. temp.	40°C
	Material housing	Aluminium

