
I

Palestine Polytechnic University

College of Engineering

Object Locator Using RFID Technology for Blind People

By:

Hiba Qasrawi

 Yaman Awawdeh

Supervisor: Eng. Ayman Wazwaz

Hebron, May 2017

II

Palestine Polytechnic University

Hebron – Palestine

Collage of Engineering

Department of Electrical Engineering

Project:

Object Locator Using RFID Technology for Blind People

Team:

Hiba Qasrawi Yaman Awawdeh

By the guidance of our supervisor, and by the acceptance of all members in the testing

committee, this project is delivered to the Electrical Engineering Department in the College

of Engineering, to be as a fulfillment of the requirement of the department for the degree of

Bachelor’s.

Supervisor signature

The head of department signature

III

Abstract

 Object locator using RFID technology is a practical method aim to find lost things for

blind people. The focus is on resolving the situation that faces us almost every day. This is

forgetting where we put our things or misplaced things, so spending a lot of time to find it,

on average about 15 minutes each day searching for items like cell phones, keys and

remote control.

 Now what if this faces blind people you could imagine how much this will be hard for

them especially if there is no one to help them.

To overcome this irritating problem we built a system based on RFID (radio frequency

identification) .The RFID technology work on the principle of sending electromagnetic

wave from the reader to tags, this tags was attached to the objects that the blind person

want to find.

 The design of the system depends on the raspberry pi that used for processing and

controlling of the reader. Firstly, the blind will say the name of the wanted object.

Secondly, the reader will begin scanning the tags in its range. Finally when the selected tag

is detected a voice response indicates that the object is found will say to the blind.

 We installed another reader connected to raspberry pi in other place to detect the object

that placed out of the range of the first reader and the two readers will communicate to

each other.

 The system provided the blind an easy way to search through voice orders describe the

wanted object.

Keywords: RFID, reader, tag, raspberry pi

IV

V

VI

انزي عهًُب يب نى َعهى ٔانقهى، انهٕح خهقانزي انعبنًٍٍ سة لله انحًذ. سهطبَك ٔعظٍى ٔجٓك نجلال ٌُجغى كًب لله نحًذا

 انزي ْذاَب ٔٔفقُب إنى إتًبو يششٔع تخشجُب ْزا.

ثًب عُذْى، انزٌٍ ٔأحبطَٕب ثبنحت ٔانحُبٌ ٔنى ٌجخهٕا عهٍُب يٍ دعًَٕب ٔ ٔلا َُسى أٌ َشكش أْهُب يٍ ٔقفٕا يعُب ٔسبَذَٔب

 أٔصهَٕب إنى يب َحٍ عهٍّ.

ثٍئة تعهٍى يشٌحة، َٔشكش َٔتقذو ثجضٌم انشكش ٔانتقذٌش إنى جبيعتُب جبيعة ثٕنٍتكُك فهسطٍٍ انتً حضُتُب ٔٔفشت نُب

فً حم انًشبكم أسبتزتُب جًٍعٓى، َٔخص ثزنك الأستبر أًٌٍ ٔصٔص لإسشبدِ نُب ٔتشجٍعّ انًستًش، ٔالأْى يٍ رنك يسبعذتّ نُب

 انتً ٔاجٓتُب أثُبء ثُبء انًششٔع.

 َٔشكش شكشاً غٍش يقطٕع أصذقبئُب ٔصيلائُب يٍ سبعذَٔب ٔٔقفٕا ثجبَجُب عُذ حبجتُب نٓى.

VII

Contents

Chapter One : Introduction

1.1 Overview .………………………………………………………………………………...…. 2

1.2 Project Motivation ………………………………………………………………………….. 2

1.3 Main Idea …………………………………………………………………………………… 2

1.4 Objectives ………………………………………………………………………..…………. 2

1.5 Idea and approach ... 3

1.6 Block diagram …………………………………………………………………………..…... 3

1.7 Requirements …………………………………………………………………………..…… 4

1.8 Challenges ………………………………………………………………………………...… 4

1.9 Related Work ……………………………………………………………………..………… 4

 1.9.1 Long Range UHF RFID Item Tracking System ……………………………….……… 5

 1.9.2 Design and implementation of library books search and management system using

RFID Technology ……………………………...………………………………………….……. 5

 1.9.3 An Indoor Localization System Based On Backscatter RFID Tag ………………...…. 6

1.10 Project Plan ……………………..…………………………………………………………. 6

1.11 Estimated Cost and Budget ……………………..…………………………………………. 8

1.12 Report Content ……………...…..…………………………………………………………. 9

Chapter Two : Theoretical Background

2.1 Overview ………………………………………………………………………………....... 11

2.2 RFID ………………………………………………………………………………………. 11

VIII

 2.2.1 Definition of RFID ………………………………………………………………..… 11

 2.2.2 RFID History …………………………………………………………………..……. 11

 2.2.3 RFID System Components…………………………………………………………… 12

 2.2.3.a RFID Tag ……………………………………………………………………… 12

 2.2.3.b RFID Reader …………………………………………………………………..… 15

 2.2.3.c Reader Antennas ……………………………………………………………..….. 16

 2.2.3.d Reader Control and Application Software ………………………………………. 17

 2.2.4 RFID standards ……………………………………………………………….……… 17

 2.2.5 RFID Frequencies…………………………………………………………………….. 19

 2.2.6 How RFID system works …………………………………………………………….. 21

 2.2.7 Why we chose low frequency (LF) Passive RFID technology?......................... 22

2.3 Raspberry Pi ………………………………………………………………………………. 22

 2.3.2 What are the differences between models? ………………………………………….. 23

 2.3.3 Raspberry Pi Basic Hardware Setup …………………………………………………. 24

 2.3.4 Interfacing Raspberry Pi ……………………………………………………………… 25

 2.3.5 Advantages and disadvantages ………………………………………………………. 26

2.4 Microphone ………………………………………………………………………….…….. 26

 2.4.1 Microphone ……………………………………………………………..…………..... 26

 2.4.2 How microphone works …………………………………………………………....… 26

2.5 Speaker ……………………………………………………………………………...……... 27

2.6 Wi-Fi communication ……………………………………………………………………... 27

2.7 Voice recognition ………………………………………………………….………………. 28

2.8 SQL database …………………...…………………………………………………………. 28

IX

Chapter Three : Design Concept
1.1 Overview .……………………………………………………………………...….............. 30

3.2 Basic operation ……………………………………………………………………..……... 30

3.3 Main block diagram ……………………………………………………………………….. 31

3.4 The main components of this project ……………………………………………………… 31

 3.4.1 RFID reader ………………………………………………………………………...... 31

 3.4.2 RFID tag ………………………………………………………………………..……. 32

 3.4.3 Raspberry Pi ……………………………………………………………….…………. 33

 3.4.4 Microphone ………………………………………………………………….……….. 34

 3.4.5 Speaker …………………………………………………………………………….…. 34

 3.4.6 Wireless adapter …………………………………………………………………..….. 34

 3.4.7 Voice recognition ……………………………………………………………….……. 35

3.5 The generic process ………………………………………………………...………….….. 36

 3.5.1 System setup process ………………………………………………………………… 37

 3.5.1.1 Explanation of system setup process …………………………………………….……. 37

 3.5.2 Voice recording process ……………………………………………………………… 38

 3.5.3 Searching & replying process ……………………………………………………..…. 39

 3.5.3.1 Explanation of voice searching & replying process …………………………….. 40

 3.5.4. Add process ……………………………………………………………..…………… 40

3.6 Wi-Fi communication ……………………………….…………………………………….. 41

Chapter Four : Hardware and software Implementation

4.1 Overview …………………………………………………………………………………... 43

4.2 Hardware design …………………………………………………………………………... 43

 4.2.1 Setting up Raspberry Pi ………………………………………..………….………….. 43

 4.2.2 Circuits description ……………………………….………………………………….. 43

X

 4.2.2.a Raspberry Pi with RC522 RFID reader …………………………………….……. 43

 4.2.2.b Raspberry Pi with microphone and speaker ……………………………….…….. 45

 4.2.2.c Raspberry Pi with Wi-Fi ………………………………...………………….……. 45

4.3 Software design ……………………………………………………………………...…….. 46

 4.3.1 Voice recognition …………..…………………………………..……………….…….. 46

 4.3.2 Speech Synthesis …………..…………………………………..………………..…….. 48

 4.3.3 Socket programming …………..……………………………..…………………....….. 48

 4.3.4 SQL database …………..…………………………………..………………..………... 50

 4.3.5 RFID-RC522 …………..…………………………………...…..…………… ……….. 52

4.4 Initial version of the project ……………………………………………………………….. 52

Chapter Five : Testing and Results

5.1 Overview ……………………………………………………………………………...…… 57

5.2 Testing and results……………………………………………………………………..…… 57

 5.2.1 RFID reader testing …………………………………………………………………… 57

 5.2.2 Voice recognition testing ………………………………………………………...…… 61

5.3 Performance evaluation and analysis ……………………………………………………… 64

 5.3.1 Select the wanted process ………………………………..…………………………… 64

 5.3.2 Searching process ………………………………………………………….…………. 64

 5.3.3 adding process ……………………………………………………………..………….. 68

XI

Chapter Six : Recommendations and Conclusion

6.1 Overview ………………………………………………………………………...………… 72

6.2 System achievements ……………………………………………………………………… 72

6.3 Real learning outcomes ……………………………………………………………….…… 72

6.4 Recommendations …………………………………………………………………….…… 73

6.5 Conclusion ………………………………………………………………………………… 73

References …………………………………………………………………………………… 74

Appendix A …...………………………………………………………………….…………. 76

Appendix B ……………………………………………………………………….…………. 79

XII

List of figures

Figure page

Figure 1.1 : Main block diagram 3

Figure 2.1 : Tag parts 12

Figure 2.2 : Comparison between passive and active RFID 14

Figure 2.3 : System overview 21

Figure 2.4 : Raspberry Pi 2 model B 24

Figure 2.5 : Connecting Raspberry Pi 25

Figure 3.1 : structure of the system 30

Figure 3.2 : Main block diagram 31

Figure 3.3 : RFID Access Control ID Card Reader 125 KHz 31

Figure 3.4 : key fop tag 32

Figure 3.5 : Card tag 32

Figure 3.6 : Raspberry Pi 2 model B 33

Figure 3.7: Wireless Adapter 35

Figure 3.8 : The generic process 36

Figure 3.9 : System setup process 37

Figure 3.10 : Voice recording process 38

Figure 3.11 : Searching & replying process 39

Figure 3.12 : Adding process 40

Figure 3.13 : RPi with Wi-Fi adapter 41

Figure 4.1 : Setting up raspberry pi 43

Figure 4.2 : RC522 reader connection 44

Figure 4.3 : RC522 RFID reader 44

Figure 4.4 : Microphone and speaker connection 45

Figure 4.5 : Wi-Fi adapter connection 45

Figure 4.6 : Voice recognition program 47

Figure 4.7 : The result of voice recognition 47

Figure 4.8 : Text to speech code 48

Figure 4.9 : Server code 49

Figure 4.10 : Running server code 49

XIII

Figure 4.11 : Received file 50

Figure 4.12 : Client code 50

Figure 4.13 : Hardware setup 53

Figure 4.14 : The process of the initial version of the project 54

Figure 5.1 : Reading range 57

Figure 5.2 : Card and key fob tags 60

Figure 5.3 : Two key fob tags 60

Figure 5.4 : Card detected 61

Figure 5.5 : Key detected 61

Figure 5.6 : Sample of testing voice recognition 62

Figure 5.7 : Recognition error ' Find my book' 63

Figure 5.8 : Recognition error ' Find my phone' 63

Figure 5.9 : Button 1 pressed 64

Figure 5.10 : Button 2 pressed 64

Figure 5.11 : Searching in place 1 65

Figure 5.12 : Searching in place 2 (server side) 66

Figure 5.13 : Searching in place 2 (client side) 66

Figure5.14 : Out of range mobile reader 67

Figure5.15 : Out of range fixed reader (Server side) 67

Figure5.16 : Out of range fixed reader (Client side) 68

Figure5.17: Database before adding 68

Figure 5.18: Adding steps 69

Figure5.19: Database after adding 69

Figure5.20 : The steps for adding 70

Figure5.21 : Before adding 70

Figure5.22 : After adding 70

XIV

List of tables

Table page

Table 1.1 : Timing plan for the first semester 7

Table 1.2 : Timing plan for the second semester 8

Table 1.3 : Estimated cost and budget 8

Table 2.1 : The decade of RFID 11

Table 2.2 : ISO 18000 standard 19

Table 2.3 : Comparison between different models of Raspberry Pi 23

Table 4.1 : RC522 reader wiring 44

Table 5.1 : Wiring w26 reader with raspberry pi 58

Table 5.2 : The range of w26 reader 58

XV

Abbreviations

C

CPU Central Processing Unit

D

DVI Digital Visual Interface

E

EPCglobal Electronics Product Code Global Incorporated

F

FTDI Future Technology Devices International

G

Gen Generation

H

HDMI High-Definition Multimedia Interface

HF High Frequency

I

ID Identification/Identity/Identifier

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of things

ISO International Standards Organization

IT Information Technology

L

LAN Local Area Network

LF Low Frequency

XVI

M

M2M Machine-to-Machine

MIT Massachusetts Institute of Technology

N

NOOBS New Out Of the Box Software

O

OTG On-The-Go ports

P

PC Personal Computer

R

RAM Random Access Memory

RPi Raspberry Pi

RF Radio Frequency

S

SD Secure Digital

SoC System on a Chip

SCART Solent Club for Amateur Radio and Television

U

UART Universal Asynchronous Receiver/Transmitter

UHF Ultra High Frequency

UPC Universal Product Code

USB Universal Serial Bus

V

VSWR Voltage Standing Wave Ratio

XVII

W

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

[1]

Chapter 1

Introduction

1.1 Overview

1.2 Project Motivation

1.3 Main Idea

1.4 Objectives

1.5 Idea and approach

1.6 Block diagram

1.7 Requirements

1.8 Challenges

1.9 Related Work

1.10 Project Plan

1.11 Estimated Cost and Budget

1.12 Report Content

[2]

1.1 Overview

 In this chapter, we provided general information to understand our project. This includes an

explanation of main idea, motivations, and the project objectives. After that a look at some

related work was given.

1.2 Project motivation

 What inspired us for doing this project, was that we almost every day forget where we put

our things or misplaced things, so spending a lot of time to find it, on average about 15 minutes

each day searching for items like cell phones, keys and remote control, according to an online

survey of 3,000 people published in 2012 by a British insurance company.
 (1)

 Now what if this faces blind people you could imagine how much this will be hard for them

especially if there is no one to help them.

 To overcome this irritating problem we started searching on things can help us doing that, so

we read about the RFID technology and this was the first time we hear about it.

1.3 Main Idea

 We intended to build a system that can help blind people to find their lost thing using RFID

technology; this technology can locate any object attached with a tag, to achieve simplicity in

use the blind will use voice order for searching.

1.4 Objectives

 We aimed in our project to achieve several objectives:

1) We would like to build a system makes the life of blind people easier.

2) Blind self-confidence development, through finding their things by themselves without

assistance from others.

3) Reduce the time and the effort required to identify the position of the lost objects.

[3]

1.5 Idea and approach:

 The object idea is standing on finding a location of an object using radio frequency

identification (RFID) technology to help blind people, and this idea will be achieved as follow:

 The system provided the blind an easy way to search through voice orders describe the

wanted object, using voice recognition that performed at Raspberry Pi connected to RFID reader.

When Raspberry Pi determine the RFID tag that is attached with required object it gives the

reader ID for this tag.

 The reader uses electromagnetic waves to automatically identify and track tags attached to

objects. These waves will reach all tag exist in its range, after the tags response and give the

reader the information that it carry, the Raspberry Pi will select the ID value for the wanted

object, then the result will convert to voice to be audible for the blind.

1.6 Block diagram

 Here is the main block diagram of the project as shown in figure1.1. It includes all

components used in this project. We used microphone and speaker to in and out the voice,

raspberry pi for processing and reader to scan the tags.

Figure1.1: Main block diagram

https://en.wikipedia.org/wiki/Electromagnetic_field

[4]

1.7 Requirements

 In order to design and implement the targeted system, the following hardware and software

requirements were needed:

Hardware:

 RFID readers.

 RFID tags.

 RFID antennas.

 Speaker.

 Microphone.

 Raspberry Pi‟s.

 Wi-Fi adapter.

Software:

 Programming software by using python language to program the raspberry pi which

responsible for many task.

1.8 Challenges:

 We faced many challenges in this project and we summarized them below:

1) Availability of components, where we couldn‟t bring the Cottonwood RFID reader

whose reading range is 6 m.

2) Dealing with new technology (RFID technology).

3) Make a RFID network.

1.9 literature review (Related Work):

 Radio Frequency Identification (RFID) becomes an extremely powerful enabling technology

in many fields like electronic passport, animal tracking, supply chains, industrial automation,

mining securities, hospital, asset management and pharmaceuticals. This widely using of it is due

to its ease and efficiency in communication. Some related project and papers were studied and

summarized to shown that.

[5]

1.9.1 Long Range UHF RFID Item Tracking System
 (2)

 This project aims to provide a method for tracking tools and other valuable items in

workspaces, dens and garages or other places. By using Long Range Ultra High Frequency RFID

technology to tag and monitor items.

 Their system used Raspberry Pi 2, UHF RFID reader and Long Range UHF RFID antenna

with passive RFID stickers jointly with Web Api service to make a tracking system by allow the

consumer to register their RFID readers (Monitors) and Tags, also view the last known location

of an item.

Differences from our projects:

 This project used a long range UHF RFID reader and we used a complete deferent reader

whose range about 10 cm due to unavailability of UHF RFID reader, which mean dealing

with it in a deferent way.

1.9.2 Design and implementation of library books search and management system using

RFID Technology
 (3)

 Their system suggest an intelligent book search and management system based on RFID and

Wi-Fi technology, using this system the location of the book precisely can be shown by a clear

route guide picture promptly and accurately.

 The system consists of books with HF passive RFID e-book tags, HF passive RFID readers,

Wi-Fi networks, system server and customer devices. The HF passive RFID e-book tags are

attached to every book recording relevant information like name, author and publishing date, and

recorded data can be sent to RFID reader; HF passive RFID readers attached to each layer or

case of the bookshelf can read the information sent through RFID e- tags, and pass the read

information and bookshelf position to system server via Wi-Fi; the system server, RFID readers

and terminal devices should be in the same Wi-Fi network range.

Differences from our projects:

 We used almost the same idea but in other field through employ this to help blind people

and add voice order for searching, and changing the whole process.

[6]

 1.9.3 An Indoor Localization System Based On Backscatter RFID Tag
 (4)

 The purpose of this paper is to introduce a prototype indoor localization system with high

precision achieved at low cost (both in system price and computational price), by combining the

angle of arrival (AOA) and phase of arrival (POA) methods to achieve the passive tag‟s

localization by using trigonometry.

 The system use one reader and consists of an antenna, RFID tags and a pan-tilt unit, and

achieves mean accuracy of 23 cm but all their experiments are based on the assumption that the

reader and the tag are on the same height. Therefore, the position estimation is in 2-dimensional.

Rather than applying an antenna array or a virtual antenna array to estimate the AOA.

Differences from our projects:

 Because we have used a short range RFID reader we couldn‟t use neither of AOA or

POA, so we depended on the data in the database to locate the tag place.

1.10 Project plan

 The project contains following stages:

Stage 1: Preparing the project

 The idea of the project is selected. Then required information has been collected. Discussion

with supervisor and dividing task between the group members will happen.

Stage 2: Analysis and overview

 Here, a deep and complete study for all point of the project had made and a study of all

possible design option to determine our own design.

Stage 3: Determine the project requirement

 After determine our design scheme we specify the entire needed requirement for the system,

software and hardware.

Stage 4: Study of the principle

 In this stage, we studied how RFID system work, principle of Raspberry Pi and any other

technologies or information needed.

[7]

Stage 5: Documentation and writing

 Writing and preparing the documentation of the project was start from the first stage, and

continue until the end of the project.

Stage 6: Raspberry pi programming

 Run the raspberry pi and learn the python language for programming it.

Stage 7: Software and hardware implementation

 Install the required software on the raspberry pi and run them.

Stage 8: System measurement

 Here we built the project and made some testing.

Stage 9: System testing

 Here the system tested to conclude the system performance.

Stage 10: Writing documentation

 The documentation continued from the first phase till the end in parallel.

Table 1.1 Timing plane for the first semester

Test/week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1

S2

S3

S4

S5

[8]

Table 1.2 Timing plane for the second semester

1.11 Estimated cost and budget

 The whole estimated cost will be approximately 180 JD, and the table below shows the cost

of each hardware component.

Table 1.3: Estimated cost and budget

Category Number of pieces Price per piece Total price

RFID reader 2 50 100

RFID tag 10 3 30

USB microphone 1 5 5

USB speaker 1 5 5

Power bank 2 20 40

Total = 180 JD

Test/week 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S6

S7

S8

S9

S10

[9]

1.12 Report contents

 This project introduction is mainly divided into six chapters; each of them describes specific

part of the project as following:

Chapter One: Includes the introduction, provides a general overview about the project, its

objectives, importance, related works, challenges, time planning, estimated coast at the end the

report content.

Chapter Two: Discusses the theoretical background. It starts with general information about the

project, the main component and types of RFID system, Wi-Fi adapter, speaker, and microphone

and then discusses the important aspect of the system including Raspberry Pi microcontroller.

Chapter Three: Presents the general system design concept. It includes system objectives,

general system block diagram, description of system design ' component and operation'.

Chapter Four: Show the system design in detail. It includes all system hardware and software

installation and their role in the project.

Chapter Five: It contains the result of searching and replying processes, testing to the whole

system, and performance.

Chapter Six: This chapter will consider system achievement, real outcome, conclusion, and

recommendation for developing the system in future.

[11]

Chapter 2

Theoretical Background

 2.1 Overview

 2.2 RFID

2.3 Raspberry Pi

 2.4 Microphone

2.5 Speaker

2.6 Wi-Fi communication

2.7 Voice recognition

2.8 SQL database

[11]

2.1 Overview

 In this chapter various technologies were discussed that used in our project, where each

technology briefly explained and viewed in terms of advantages and disadvantages.

 First RFID technology is discussed showing its importance, positives and negatives. Then

Raspberry Pi will take its place in discussion, where it features will be mentioned, also its

drawbacks.

2.2 RFID technology:

2.2.1 Definition of RFID

 Radio frequency identification (RFID) is a form of wireless communication that uses

electromagnetic waves to identify object carrying tags when they in the reader range. An RFID

system has readers and tags that communicate with each other by radio waves. Tags are small

and need little power so they don‟t require a battery to store information and exchange data with

readers, this make applying tag to all kinds of thing that people would like to identify or track

easy and cheap.

2.2.2 RFID History:

 Radio frequency identification has been around for decades. It developed from its roots in

World War II radar systems to today's hottest supply chain technology.

Table 2.1
 (5)

: The decade of RFID

[12]

2.2.3 RFID System Components:

 The basic components of an RFID system are:

a. Tags

b. Reader

c. Antenna

d. Reader Control and Application Software

2.2.3. a RFID Tag

 The tag is designed to be a transmitter and receiver. It is made up of two main parts: a

microchip which is a small silicon chip with embedded circuit for storage and processing

information, and an antenna to receive and transmit signals. Each tag is distinguished by specific

serial number. Tags have many different forms depending on the application. RFID tags can be

active, passive or semi-passive.

 Figure 2.1: Tag parts

 Tags Types

 Active, semi-passive and passive are the three main tags types. Tags made up with

few characteristics that may vary depending on type of tag, the selection of tags depends

on the functional need of RFID application.

1. Passive Tag
(6)

 A passive tag is an RFID tag that does not contain a battery; the power is supplied by

the reader. When radio waves from the reader are encountered by a passive RFID tag, the

coiled antenna within the tag forms a magnetic field. The tag draws power from it,

energizing the circuits in the tag. The tag then sends the information encoded in the tag's

memory.

http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=50

[13]

 The major disadvantages of a passive RFID tag are:

 The tag can be read only at very short distances, typically a few feet at most.

 It may not be possible to include sensors that can use electricity for power.

 The advantages of a passive tag are:

 The tag functions without a battery; these tags have a useful life of twenty years or

more.

 The tag is typically much less expensive to manufacture.

 The tag is much smaller (some tags are the size of a grain of rice).

2. Active tag:
(6)

 An RFID tag is an active tag when it is equipped with a battery that can be used as a partial

or complete source of power for the tag's circuitry and antenna. Some active tags contain

replaceable batteries for years of use; others are sealed units.

 The major advantages of an active RFID tag are:

 It can be read at distances of one hundred feet or more, greatly improving the utility of

the device

 It may have other sensors that can use electricity for power.

 The problems and disadvantages of an active RFID tag are:

 The tag cannot function without battery power, which limits the lifetime of the tag.

 The tag is typically more expensive.

 The tag is physically larger, which may limit applications.

 Battery outages in an active tag can result in expensive misreads.

 Active RFID tags may have all or some of the following features:

 Longest communication range of any tag.

 The capability to perform independent monitoring and control.

 The capability of initiating communications.

 The capability of performing diagnostics.

 The highest data bandwidth.

http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=50

[14]

Figure 2.2: Comparison between passive and active RFID
(7)

3. Semi-passive tag
(8)

 :

 Semi-passive (battery assisted backscatter) radio frequency (RF) tags are powered by a

battery, offering a very good range of readability. While they do not contain an active

transmitter, PNNL's semi-passive tags have been proven in real-world conditions to read and

write from distances up to 100 meters. With power from small batteries similar to those found in

watches, semi-passive tags can be used to monitor inputs from sensors, even when the tags aren't

in the presence of a radio frequency field. As a result, the semi-passive RF tags also can control

outputs. These systems can be used to monitor and activate or deactivate items remotely, making

them ideal for applications such as alarms, seals, or thermostats.

 The major Advantages of Semi-passive tag :

 Read and write from as far as 100 meters.

 Monitor external inputs such as temperature, pressure, chemicals and tamper detectors.

 Multiple tags can be read simultaneously.

 Control outputs such as valves and switches.

 Identifies an item's precise location.

 Operates with a battery lifetime of more than five years.

[15]

 Can be located to within 0.1 meters.

 By reading and writing through fences, walls, and boxes it is easier to track and identify

items.

 Classification of RFID tags is also possible with respect to their capabilities such as read-

only, re-write and further data recoding. Further data recording examples are temperature,

motion and pressure etc. Compiled tags classification into five classes is:
(7)

 Class 0: Read only, contains an ID number that is written only once during manufacture.

 Class 1: Write once read many, which is manufactured with no data written in to the

memory. Data can be written by manufacture or the user one time.

 Class 2: Read-Write, which is most flexible type of tag, that user can access to read and

write data into the tag memory.

 Class 3: Read-write (with sensor), which is contain sensors for recording parameters like

temperature, pressure and motion, which are either semi passive or active.

 Class 4: Read-Write (with integrated transmitters), which are like miniature radio devices

without the present of the reader, these kind are active tags.

2.2.3. b RFID Reader

 RFID reader is external powered equipment used in RFID system for producing and

accepting radio signals. A single reader can operate on multiple frequencies and this

functionality depends on the vendor, it can have anti-collision algorithm/procedures for

deducting multiple tags at one time. RFID reader works as middle-ware between tag and user

application. Reader is the central part of the RFID system and communicates with tags and

computer program, it supply tags information to a computer program after reading each tags

unique ID. It can also perform writing on to tag, if the tag is supported. Although the reader can

have multiple frequency capability but it works on a single frequency at a time. The reader can

communicate with the computer program and need either wired or wireless connection with the

computer. The reader can use a wire connection with any of the following: USB, RS-232, and

RS485. Otherwise, the reader can connect with the computer through Wi-Fi. The reader provides

various management techniques and functionality to computer programs through various built-in

functions/components.

[16]

 Readers Types

 There are two types of RFID readers
 (9)

:

 RFID read-only readers: As the name suggests, these devices can only query or read

information from a nearby RFID tag. These readers are found in fixed, stationery

applications as well as portable, handheld varieties.

 RFID read-write readers: Also known as encoders, these devices read and also write

(change) information in an RFID tag. Such RFID encoders can be used to program

information into a "blank" RFID tag. A common application is to combine such a

RFID reader with a barcode printer to print "smart labels". Smart labels contain a

UPC bar code on the front with an RFID tag embedded on the back.

2.2.3. c Reader Antennas

 RFID readers and reader antennas work together to read tags. Reader antennas convert

electrical current into electromagnetic waves that are then radiated into space where they can be

received by a tag antenna and converted back to electrical current. Just like tag antennas, there is

a large variety of reader antennas and optimal antenna selection varies according to the solution's

specific application and environment.

 The two most common antenna types are linear- and circular-polarized antennas. Antennas

that radiate linear electric fields have long ranges, and high levels of power that enables their

signals to penetrate through different materials to read tags. Linear antennas are sensitive to tag

orientation; depending on the tag angle or placement, linear antennas can have a difficult time

reading tags. Conversely, antennas that radiate circular fields are less sensitive to orientation, but

are not able to deliver as much power as linear antennas.

 Choice of antenna is also determined by the distance between the RFID reader and the tags

that it needs to read. This distance is called read range. Reader antennas operate in either a "near-

field" (short range) or "far-field" (long range). In near-field applications, the read range is less

than 30 cm and the antenna uses magnetic coupling so the reader and tag can transfer power. In

near-field systems, the readability of the tags is not affected by the presence of dielectrics such as

water and metal in the field.

 In far-field applications, the range between the tag and reader is greater than 30 cm and can

be up to several tens of meters. Far-field antennas utilize electromagnetic coupling and

dielectrics can weaken communication between the reader and tags.
 (10)

[17]

2.2.3. d Reader Control and Application Software

 Reader control and application software, also known as middleware, helps connect RFID

readers with the applications they support. The middleware sends control commands to the

reader and receives tag data from the reader.
(10)

2.2.4 RFID standards
(11)

 Like many other technologies, RFID standards are used. RFID standards, as any other

standards enable manufacturers to make the same products for a variety of markets and in this

way gain the economies of scale.

 RFID standards also enable products from different manufacturers to operate together. One

example may be for tags which are used in very large quantities and manufacturers may want to

source from two suppliers to provide reliability.

 RFID standards bodies

 There are two main international RFID standards bodies or standardization bodies:

 ISO - International Standards Organization

 EPCglobal - Electronics Product Code Global Incorporated

 Although these two organizations provide the main RFID standards organizations, there is

also a plethora of other standards that apply to niche areas of RFID.

In terms of the standardization organizations ISO is the longest established. In 1996 it set up a

joint committee with IEC to look at standardization for RFID technology.

 The ISO RFID standards fall into a number of categories according to the aspect of RFID

that they are addressing. These include: air interface and associated protocols; data content and

the formatting; conformance testing; applications; and various other smaller areas.

 In addition to the ISO RFID standards, there are also the standards from EPC Global. In

1999 a number of industrial companies with MIT set a consortium known as the Auto-ID

consortium with the aim of researching and standardizing RFID technology.

[18]

 In 2003 this organization was split with the majority of the standardization activities

coming under a new entity called EPCglobal. The Auto-ID Center retained its activities

associated with the research into RFID technologies.

 Auto-ID tag standards

 In order to be able to standardize the RFID tags, the Auto-ID Center devised a series of

classes for RFID tags. Was generated and these still form the basis for a developed system of

RFID tag classes seen today:

 Class 0: Basic read-only passive tag using backscatter where the tag was programmed at

the time the tag chip was made.

 Class 1: Basic read-only passive tag using backscatter with one-time non-volatile

program capability.

 Class 2: Passive backscatter tag with up to 65k of read-write memory.

 Class 3: Semi-passive tag with up to 65 k read-write memory and a battery incorporated

to provide increased range.

 Class 4: Active tag using a battery to enable extra functionality within the tag and also

to provide power for the transmitter.

 Class 5: An active tag that provides additional circuitry to communicate with other class

5 tags.

 The responsibilities for Class 0 and Class 1 RFID tag definitions and standards were handed

on to EPC Global in 2003.

 Although other newer RFID tag standards and now available, reference is still made to these

original tag classes.

 Gen2 RFID tag standard

 In 2004 EPCglobal began the creation of a second generation protocol, often referred to as

EPCglobal Gen2. While the EPCglobal Gen2 RFID standard is not backwards compatible with

the Class 0 and Class 1 tags, it aims to provide a worldwide RFID tag standard that is compatible

with ISO standards.

[19]

 ISO 18000 series RFID standards

 The ISO 18000 series standards are a series of standards that define the air interface for the

different RFID frequencies in use around the globe. There are a total of seven standards within

the ISO 18000 series as outlined in the table below:

Table 2.2: ISO 18000 standard

ISO 18000

STANDARD

DETAILS OF THE PARTICULAR ISO 18000 SERIES

STANDARD

ISO 18000-V1
Generic parameters for air interfaces for globally accepted

frequencies

ISO 18000-V2 Air interface for 135 KHz

ISO 18000-V3 Air interface for 13.56 MHz

ISO 18000-V4 Air interface for 2.45 GHz

ISO 18000-V5 Air interface for 5.8 GHz

ISO 18000-V6 Air interface for 860 MHz to 930 MHz

ISO 18000-V7 Air interface at 433.92 MHz

 RFID standards are now widespread in their use, and although EPCglobal and ISO are

separate organizations, there are efforts to move towards a single RFID standards scenario,

rather than having two sets of competing RFID standards.

2.2.5 RFID Frequencies

 RFID systems can be broken down by the frequency band within which they operate: low

frequency, high frequency, and ultra-high frequency. In the sections below we will explore the

frequencies of RFID systems.

[21]

 Frequency refers to the size of the radio waves used to communicate between RFID systems

components. RFID systems throughout the world operate in low frequency (LF), high frequency

(HF) and ultra-high frequency (UHF) bands. Radio waves behave differently at each of these

frequencies with advantages and disadvantages associated with using each frequency band.

 If an RFID system operates at a lower frequency, it has a shorter read range and slower data

read rate, but increased capabilities for reading near or on metal or liquid surfaces. If a system

operates at a higher frequency, it generally has faster data transfer rates and longer read ranges

than lower frequency systems, but more sensitivity to radio wave interference caused by liquids

and metals in the environment.

1. LF RFID

 The LF (Low Frequency) band covers frequencies from 30 KHz to 300 KHz. Typically LF

RFID systems operate at 125 KHz, although there are some that operate at 134 KHz. This

frequency band provides a short read range of 10 cm, and has slower read speed than the higher

frequencies, but is not very sensitive to radio wave interference.

2. HF RFID

 The HF (High Frequency) band ranges from 3 to 30 MHz, most HF RFID systems operate at

13.56 MHz with read ranges between 10 cm and 1 m. HF systems experience moderate

sensitivity to interference.

3. UHF RFID

 The UHF (Ultra High Frequency) frequency band covers the range from 300 MHz to 3 GHz.

Systems complying with the UHF Gen2 standard for RFID use the 860 to 960 MHz band. While

there is some variance in frequency from region to region. The read range of passive UHF

systems can be as long as 12 m, and UHF RFID has a faster data transfer rate than LF or HF.

UHF RFID is the most sensitive to interference, but many UHF product manufacturers have

found ways of designing tags, antennas, and readers to keep performance high even in difficult

environments. Passive UHF tags are easier and cheaper to manufacture than LF and HF tags.

[21]

2.2.6 How RFID system works?
(7)

 RFID system deducts tags within antennas‟ range and performs various operations onto each

tag. The RFID system can only work effectively if all RFID components logically connect

together and these components need to be compatible with each other. That's why understanding

of these separate components is necessary. Implementation of complete RFID solution is only

possible through integration of these components which needs understanding of compatibility for

each component, realization of each component compatibility needs property study for these

components .These components are gathered and defined as above.

 Tag has unique ID and use for unique identification; tags are attached with objects in

RFID solutions.

 Antenna use for reading tags; antenna has its own magnetic field and antenna can only

read tags within these magnetic fields.

 Reader works for handling antenna signals and manipulate tags‟ information.

 Communication infrastructure use for reader to communicate with IT infrastructure and

work as middle layer between application software and reader.

 Application software is computer base software which enable user to see RFID

information, this can be database, application routines or user interface.

Figure 2.3: System overview

[22]

2.2.7 Why we chose low frequency (LF) Passive radio frequency identification

technology?

 In our view the LF Passive RFID is the most appropriate for our project. There are many

reasons that is so, some of them are:

 High reliability: a RFID passive tag does not have a battery and their life of twenty years

or more.

 Suitable reader size for our application to be portable.

 Availability of the reader in our country, where it was the only reader available in our

country.

 The appropriate size and shape: a passive tag is small in size and exists in several shapes as

label, card, button…etc. That is make attachment the tag at any object easy.

2.3 Raspberry Pi

 A Raspberry Pi is a credit-card sized computer originally designed for education, inspired by

the 1981 BBC Micro. Creator Eben Upton's goal was to create a low-cost device that would

improve programming skills and hardware understanding at the pre-university level. But thanks

to its small size and accessible price, it was quickly adopted by tinkerers, makers, and electronics

enthusiasts for projects that require more than a basic microcontroller (such as Arduino devices).

(12)

 The Raspberry Pi is a computer, very like the computers with which you‟re already familiar.

It uses a different kind of processor, so you can‟t install Microsoft Windows on it. But you can

install several versions of the Linux operating system that look and feel very much like

Windows. It also capable of offering basic office computing, low-level gaming, Internet and

email access, media playback and many other features regularly expected from a computer in the

21st century, the Pi achieves all of this with a stripped-down component count, and ARM

processor with a very low price.
(13) (14)

 RASPBIAN, PIDORA, OPENELEC, RASPBMC, RISC OS, and ARCH LINUX these are

few software‟s (operating systems) which are used in RPi. All this software‟s can be downloaded

easily and these are free from the official forum under the NOOBS (new out of the box software)

category. It supports Python as the main programming language for functioning and coding. It

also supports BASIC, C, C++, JAVA, and Perl and Ruby languages.
(15)

[23]

 The Raspberry Pi is an open hardware, with the exception of the primary chip on the

Raspberry Pi, the Broadcom SoC (System on a Chip), which runs many of the main components

of the board–CPU, graphics, memory, the USB controller, etc. Many of the projects made with a

Raspberry Pi are open and well-documented as well and are things you can build and modify by

yourself.
(12)

2.3.2 What are the differences between models?

The current models of the Raspberry Pi available are: the Pi 3 Model B, the Pi 2 Model B, the Pi

Zero, and the Pi 1 Model B+ and A+.

The following table 2.1 is giving you a breakdown of the current versions, their features and a

summary of what they are good for.
(16)

Table 2.3: Comparison between different models of Raspberry Pi

Name Raspberry

Pi 3 Model

B

Raspberry

Pi 2 Model

B

Raspberry Pi

Zero

Raspberry Pi 1

B+

Raspberry Pi 1

A+

Release

date

2016 Feb 29 2015 Feb 1 2015 Nov 30 2012 Feb 15 2014 Nov 10

SoC type Broadcom

BCM2387

Broadcom

BCM2836

Broadcom

BCM2835

Broadcom

BCM2835

Broadcom

BCM2835

Core

type

Cortex-A53

64-bit

Cortex-A7 ARM1176JZF-

S

ARM1176JZF-

S

ARM1176JZF-

S

No. of

cores

4 4 1 1 1

CPU

clock

1.2 GHz 900 MHz 1 GHz 700 MHz 700 MHz

RAM 1 GB 1 GB 512 MB 512 MB 256 MB

USB

Ports

4 4 micro + micro

OTG

2 1

Ethernet Yes Yes No Yes No

HDMI Yes Yes Yes – Mini

HDMI

Yes Yes

[24]

 According to the above Raspberry Pi 3 looks and feel exactly like the Raspberry Pi 2 B, so

for this project Raspberry Pi 2 B is used, because it is adequate and satisfies what is required,

and it‟s available from previous project.

Figure 2.4: Raspberry Pi 2 model B
[14]

2.3.3 Raspberry Pi Basic Hardware Setup

 The Raspberry Pi board contains a processor and graphics chip, program memory (RAM)

and various interfaces and connectors for external devices. Some of these devices are essential,

others are optional. RPi operates in the same way as a standard PC, requiring a keyboard for

command entry, a display unit and a power supply.

 It also requires „mass-storage‟, but a hard disk drive of the type found in a typical PC is not

really in keeping with the miniature size of RPi. Instead we will use an SD Flash memory card

normally used in digital cameras, configured in such a way to „look like‟ a hard drive to RPi‟s

processor. RPi will „boot‟ (load the Operating System into RAM) from this card in the same way

as a PC „boots up‟ into Windows from its hard disk.
 (17)

The following are essential hardware components to get started:

 SD card containing Linux Operating system.

 USB keyboard.

 TV or monitor (with HDMI, DVI, Composite or SCART input).

 Power supply.

[25]

 Video cable to suit the TV or monitor used.

Recommended optional extras include:

 USB mouse

 Internet connection, Model A or B: USB Wi-Fi adaptor

 Internet connection, Model B only: LAN (Ethernet) cable

 Powered USB hub

 Case

2.3.4 Interfacing Raspberry Pi

 The steps of connecting RPi are given below:

1. Begin by placing your SD card into the SD card slot on the RPi. It will only fit one way.

2. Next, plug your keyboard and mouse into the USB ports on the RPi.

3. Make sure that your monitor or TV is turned on, and that you have selected the right

input (e.g. HDMI 1, DVI, etc).

4. Connect your HDMI cable from your RPi to your monitor or TV.

5. If you intend to connect your RPi to the internet, plug an Ethernet cable into the

Ethernet port, or connect a Wi-Fi dongle to one of the USB ports (unless you have a

Raspberry Pi 3).

6. When you're happy that you have plugged all the cables and SD card in correctly,

connect the micro USB power supply. This action will turn on and boot your RPi.

Figure 2.5: Connecting Raspberry Pi
 (16)

[26]

2.3.5 Advantages and disadvantages
(15)

 A. Advantages

 Some of the merits are:

 RPi is an inexpensive device with an easily affordable price.

 RPi has the size of a credit card. As we all know with technology, generally the smaller

it is, the better.

 B. Disadvantages

 Although it has merits but it has some demerits also some of them are:

 Raspberry Pi does not support X86 operating systems means hardware limitations do not

allow for Raspberry Pi to run 32 bit operating systems such as Microsoft Windows,

Max OS X or some varieties of Linux. This can be a huge loss for not-so computer

friendly end users .For professional users; this is not much of a set back as Raspberry Pi

supports other popular operating system.

 Some applications which necessitate high demands on CPU processing are off-limits.

Such as “Model B took 107 ms to complete one calculation of the entirely synthetic

prime number test and a mid-range desktop Core 2 Duo E8400 took only 0.85ms.”(By

Collins, 2012)
(15)

 Users must not use usual computer standards to judge Raspberry Pi. It can work as a

private computer but still cannot replace it.

2.4 Microphone

2.4.1 Microphone

 Microphone is a piece of equipment into which people speak or sing in order to record their

voices or to make their sound louder.

2.4.2 How microphone works
(18)

 A microphone is an example of a transducer, a device that changes information from one

form to another. Sound information exists as patterns of air pressure; the microphone changes

this information into patterns of electric current.

[27]

 A variety of mechanical techniques can be used in building microphones. The two most

commonly encountered in recording studios are the magneto-dynamic and the variable condenser

designs.

2.5 Speaker

 Speaker is an output device that receives audio input from the computer's sound card and

produce audio output in the form of sound waves.

 Speakers are transducers that convert electromagnetic waves into sound waves. The audio

input may be either in analog or digital form. Analog speakers simply amplify the analog

electromagnetic waves into sound waves. Since sound waves are produced in analog form,

digital speakers must first convert the digital input to an analog signal, and then generate the

sound waves.
(19)

2.6 Wi-Fi communication

 Wi-Fi is a very widely used type of medium-range wireless communication system. Medium-

range in this case means that a typical Wi-Fi signal can carry about 100 meters.

Being a wireless protocol, Wi-Fi standard uses the ISM (Industrial, Scientific and Medical) band

of frequency which is free to use and require no licensing. Launched in 2.4 GHz with

transmission rates of 1-2 Mbps, Wi-Fi now works at 5 GHz frequency also with astounding data

transmission rates reaching up to 54 Mbps at both frequencies.

Wi-Fi is a marketing term applied to 802.11b IEEE standard, but it now ubiquitously used for all

the standards that fall under 802.11 category of Wireless LAN. So, Wi-Fi defines 802.11 x

standards where x is the respective Wi-Fi version. Popular Wi-Fi version are a, b, g and n.

Data exchange in Wi-Fi can be summarized into three phases:

 Phase I: Where data is prepared for transmission; it is encoded; changed into frames

(digital signals are sent in frames for better QoS). The frequency for data transmission is

also chosen depending upon the technique used to send the signals wirelessly.

 Phase II: Where data is transmitted with air as the medium of wave transmission

 Phase III: Where data is received, decoded, acknowledged and then used.

[28]

All of these phases apply some of the popular digital communications spread spectrum

techniques for signal multiplexing (FHSS, Infrared, OFDM etc.); make use of security methods

(WEP, WPA). Let‟s find out the technical insides of the Wi-Fi legacy.
 (20)

 We are going to choose Wi-Fi for communication because it satisfy our needed, it has low

cost, good rang, secure and there is many resources explain who to deal with it.

2.7 Voice recognition

 Alternatively referred to as speech recognition, voice recognition is a computer software

program or hardware device with the ability to decode the human voice. Voice recognition is

commonly used to operate a device, perform commands, or write without having to use a

keyboard, mouse, or press any buttons.
 (21)

2.8 SQL database

 SQL (Structured Query Language) is a standardized programming language used for

managing relational databases and performing various operations on the data in them. Initially

created in the 1970s, SQL is regularly used by database administrators, as well as by developers

writing data integration scripts and data analysts looking to set up and run analytical queries.

 The uses of SQL include modifying database table and index structures; adding, updating and

deleting rows of data; and retrieving subsets of information from within a database for

transaction processing and analytics applications. Queries and other SQL operations take the

form of commands written as statements -- commonly used SQL statements include select, add,

insert, update, delete, create, alter and truncate.
 (22)

[29]

Chapter 3
Design Concept

3.1 Overview.

3.2 Basic operation.

3.3 Main block diagram.

3.4 The main components of this project.

3.5 The generic process.

3.6 Wi-Fi communication

[31]

3.1 Overview

 In this chapter, the main design of our system with more details and explanation were shown.

Through an informative block diagrams, system main flow chart, project idea and discuss their

relations with each other and with the overall work as shown in figure 3.1.

3.2 Basic operation

Figure3.1: structure of the system

 The system consists of two RFID readers one is fixed in the room and the other is mobile

and number of the tags attached to the objects.

 At the time the blind person wants to find his misplaced thing, he holds the mobile reader

and says the name of this thing, by voice recognition the name will translate into word, then the

Raspberry Pi will take the corresponding tag ID of the word.

 Using Wi-Fi communication between the two Raspberry Pi‟s the ID send to the fixed one to

begin its role, if the missing object is not in the range of the mobile reader.

 The two readers cooperate with each other to find where the missing thing is and reply to the

blind if they find its object or not.

Wanted tag

[31]

3.3 Main block diagram

Figure3.2: Main block diagram.

3.4 The main components of project

 In this section we described the function of each component that used in our project.

3.4.1 RFID reader

 Two readers were used in the project one was fixed and the other was mobile to be portable

with the blind, the two readers were from the same type that was RFID Access Control ID Card

Reader 125 KHz Wiegand 26 Security.

Figure3.3: RFID Access Control ID Card Reader 125 KHz Wiegand 26 Security.

[32]

The characteristics of this reader are:
 (23)

 125 KHz proximity card reader.

 It's a standard wiegand 26 bit reader.

 Read range: up to 10cm.

 External LED control.

 External buzzer control.

 Indoor / Outdoor operation.

 Solid epoxy potted.

 Weatherproof IP65.

 Reverse polarity protection.

 Support RFID cards (EM4100 standard ID cards).

 Durable keytop with blue backlight.

 Reading Time (Card) ≤ 300 ms.

 The basic functions of the reader in the project is to send data and command to the tags with

build in antenna and read the information on it, then transmit reading result to an RFID program

installed on Raspberry Pi.

3.4.2 RFID tag

 The passive tags in the project were attached to the wanted object, we used different shape

of the tag, card and keyfob as shown in figure 3.4 & 3.5.

 Figure3.4: key fob tag Figure3.5: card tag

[33]

The characteristics of the tags are:
 (24)

 64bit memory array laser programmable

 Several options of data rate and coding available

 On chip resonance capacitor

 On chip supply buffer capacitor

 On chip voltage limiter

 Full wave rectifier on chip

 Large modulation depth due to a low impedance modulation device

 Operating frequency 100 - 150 kHz

 Very small chip size convenient for implantation

 Very low power consumption

 Theses tags were placed in two locations. One was in the domain of the first reader and the

other place in the domain of the second reader. The tags identify the object by the unique ID that

it holds.

3.4.3 Raspberry Pi

 For this system two Raspberry Pi 2 model B were used, one attached to the fixed RFID

reader and the other attached to the mobile reader.

Figure3.6: Raspberry Pi 2 model B

The characteristics of this Raspberry Pi are:
 (16)

 A 900MHz quad-core ARM Cortex-A7 CPU.

[34]

 1GB RAM.

 4 USB ports.

 40 GPIO pins.

 Full HDMI port.

 Ethernet port.

 Combined 3.5mm audio jack and composite video.

 Camera interface (CSI).

 Display interface (DSI).

 Micro SD card slot.

 Video Core IV 3D graphics core.

 The Raspberry Pi was the heart of the system, because the entire component i connected to it.

Moreover it did all the processing and management of the data.

3.4.4 Microphone

 An instrument for converting sound waves into electrical energy variations which may then

be amplified, transmitted, or recorded. For our system USB Microphone was used.

 The microphone used to take the voice signal from the blind person and sent it to the

Raspberry Pi to do the processing on it.

3.4.5 Speaker

 Is a hardware device connected to a computer's sound card that outputs sound generated by

the computer. In our system Mini Portable Speaker for the Raspberry Pi was used.

 The speaker's job was telling the blind person if the wanted object found or not, by using

sentences already recorded.

3.4.6 Wireless adapter

 A wireless adapter is a hardware device that is generally attached to a computer or other

workstation device to allow it to connect to a wireless system.

[35]

 For our system two Wi-Fi adapters were used, the first one connected to the fixed Raspberry

Pi and the other one connected to the mobile Raspberry Pi, so that the two Raspberry Pi‟s can be

in touch.

Figure3.7: Wireless Adapter

The characteristics of wireless adapter is:
 (25)

 Provide Wireless-N capability.

 Flexibility of selectable dual-band Wireless-N--connect to either a 2.4 GHz or 5 GHz

wireless network.

 Set up Adapter in a few easy steps with the included software's simple setup wizard.

 Keep Wi-Fi freeloaders and Internet threats at bay with customizable security settings,

including WPA/WPA2 Personal and WPA/WPA2 Enterprise.

 The wireless adapters were connected to the two RPi‟s to allow the communication

between them.

3.4.7 Voice recognition

 Voice recognition or speech recognition is a computer software program device with the

ability to decode the human voice.

 It needed to convert voice to text, and this text recorded in database in order to get the tag ID

of the corresponding word.

[36]

3.5 The generic process

Figure 3.8: the generic process

The whole system can be divided into four processes:

 System setup process.

 Voice recording process.

 Searching and replying process.

 Adding process.

 All this processes explained in detail as follow:

Start

Voice recording

Searching &

Replying process

End

System setup

Do you want

to search or

add tag?

Search Add

Voice recording

Insert into

database

[37]

3.5.1 System setup process

Figure 3.9: System setup process

3.5.1.1 Explanation of system setup process

 This process occurred at the beginning of the system. And it executed as follow:

 Each reader scans the tags in its range, by sending electromagnetic fields to them.

 All tags reply to the reader and the reader recode their id number this number present the

object, that means each object has its own unique id number.

 Build database and insert the id number and the object name into it.

Start

Scanning tags

Tags reply

Build database

End

Record the tag id

[38]

3.5.2 Voice recording process

Figure 3.10: Voice recording process

As shown in the figure the voice recording process will obtain by:

 USB microphone takes a voice message from the blind.

 Then the message translated into the corresponding text by voice recognition.

 From this text the search in the database begin to determine the ID of the wanted tag.

[39]

3.5.3 Searching & replying process

 The aim of search and reply process was to determine the location of the target tag and it

happens as follow:

Figure 3.11: Searching & replying process

Start

 Target tag ID

ID reaches mobile RPi

End

Yes No
Does the ID

exist in the

reader range?

Determine the place number

According to the place number, order the

proper reader to scan

Determine the location of

selected tag

Give voice message indicate

on the location

Give voice message indicate

that the reader can’t find the

object

[41]

3.5.3.1 Explanation of searching & replying process

 The target tag ID is available at mobile RPi from the previous process; searching process

start in the database to determine the place number of this ID.

 If the place number was for the mobile RPi, it orders the reader to start scanning else the

mobile RPi send an order to the fixed RPi to start scanning via Wi-Fi communication. After the

reader receives the order it read all tag in its range and resend the result to the RPi. Finally the

mobile RPi convert a saved text indicate on the location to voice to be audible for the blind. In

case that the reader can‟t find the object, mobile RPi tell the blind that the wanted object is out of

the readers range.

3.5.4 Adding process

Figure 3.12: Adding process

3.5.4.1 Explanation of add process

 When the user select the add option, the system ask him to say the name of the object then

record its id to insert it into database.

Start

Voice recording

End

Insert into

database

[41]

3.6 Wi-Fi communication

 Two Raspberry Pi‟s with Wi-Fi adapter talking to each other by socket programming.

Figure 3.13: RPi with Wi-Fi adapter

 Each Wi-Fi adapter connected to each RPi through the USB port on it, so the RPi‟s

communicate with each other using socket programming.

[42]

Chapter 4
Hardware and software Implementation

4.1 Overview

4.2 Software Design

4.3 Hardware Design

4.4 Initial version of the project

[43]

4.1 Overview

 After viewing the general system design in the previous chapter, it is now the time for

presenting the construction and testing processes.

 When the collecting of all the necessary information related to the project and analysing them

become ready, the group started to build the system step by step, as will be shown.

4.2 Hardware Design

4.2.1 Setting up Raspberry Pi

 We first connected a monitor, keyboard and mouse to the Raspberry Pi to program it. Then we

installed the most recent version of the Raspberry Pi operation system (raspbian jessie with

pixel) on the SD card. Then we upgraded and updated the system.

Figure4.1: Setting up Raspberry pi

4.2.2 Circuits description

 In this section the hardware circuit described in details, by showing the connection and

interfacing between the Raspberry Pi and the RFID reader.

4.2.2.a Raspberry Pi with RC522 RFID reader

 RC522 RFID reader is a RFID near field card reader which work on 13.56 MHz frequency. It

used to do an experiment on it, so making us familiar with dealing and connecting the reader

[44]

with Raspberry Pi. We connected the RC522 RFID reader directly to the Raspberry Pi on the

GPIO pins as shown:

Figure4.2: RC522 reader connection

Figure4.3: RC522 RFID reader

Wiring: Table4.1: RC522 reader wiring

Pi0n name Pin Number Name

3V3 1 VCC

GPOI 25 22 RST

Any Ground Any GND

GPIO 9 21 MISO

GPIO 10 19 MOSI

GPIO 11 23 SCK

GPIO 8 24 NSS

None None IRQ

[45]

4.2.2.b Raspberry Pi with microphone and speaker

 Here the microphone and the speaker were connected to the Raspberry Pi using USB

microphone adapter to deal with voice recognition as will be shown later.

Figure4.4: Microphone and speaker connection

4.2.2.c Raspberry Pi with Wi-Fi

 To enable Wi-Fi communication between the two Raspberry Pi‟s cisco Wi-Fi adapter drivers

were attached to each Raspberry Pi.

Figure4.5: Wi-Fi adapter connection

[46]

 4.3 Software Design

4.3.1 Voice recognition

 Voice recognition was used to convert the voice which was taken from the microphone to

text. For performing two libraries were used: SpeechRecogntion and PyAudio.

 SpeechRecognition is a Library for performing speech recognition, with support for several

engines and APIs, online and offline. In this design Google speech API was employed. This API

converts spoken text (microphone) into written text (Python strings), briefly Speech to Text. You

can simply speak in a microphone and Google API will translate this into written text. The API

has excellent results for English language.

 PyAudio module is required to use microphone input.

Installation

 This is the installation guide for PyAudio and SpeechRecognition.

git clone http://people.csail.mit.edu/hubert/git/pyaudio.git

cd pyaudio

sudo python setup.py install

sudo apt-get installl libportaudio-dev

sudo apt-get install python-dev

sudo apt-get install libportaudio0 libportaudio2 libportaudiocpp0 portaudio19-dev

sudo pip3 install SpeechRecognition

Program

 The following figure 4.6 show the program which record audio from microphone, send it to

the speech API and return a Python string.

 The audio was recorded using the speech recognition module; the module was included on top

of the program. Then the recorded speech was send to the Google speech recognition API which

then returns the output. r.recognize_google(audio) returns a string.

[47]

Figure4.6: Voice recognition program

 After running the program find my book and find my key were told to it, the result was as

following:

Figure4.7: The result of voice recognition

[48]

4.3.2 Speech Synthesis

 Speech synthesis was used for saying message to the user using the speaker. For this purpose

pyttsx library was installed to convert the text to voice by this command.

$ sudo pip install pyttsx

 The code was:

Figure4.8: text to speech code

 Where rate mean integer speech rate in words per minute and we set it here to value 70.

4.3.3 Socket programming

 For network communication socket programming was used between the two RPi's to

communicate via Wi-Fi.

 Sockets are the endpoints of a bidirectional communications channel. Sockets may communicate within

a process, between processes on the same machine, or between processes on different continents.

 We wrote two codes using socket module to make one of raspberry pi acts as server and the other as

client to transfer file between them.

The server code and the result of running it shown in figures 4.9 & 4.10:

 The server accepts the connection from the client and then writes the received data into file.

[49]

Figure 4.9: Server code

Figure 4.10: Running the server code

[51]

 The file that received from the client was:

Figure4.11: Received file

 The client connects to the server and then sends the file to the server as shown in figure 4.12.

Figure4.12: Client code

4.3.4 SQL database

 The SQL database was employed to store the entire tag id and its corresponding name (object

name).

First we install the database on the Raspberry Pi.

[51]

sudo apt-get install python-MySQLdb

Second we create a database with the required field.

import MySQLdb

connection = MySQLdb.connect (host = "localhost",

 user = "taguser",

 passwd = "passwordhiba",

 db = "rfid_tags")

sql_command = """

CREATE TABLE tags (

item INT NOT NULL PRIMARY KEY AUTO_INCREMENNT,

tag_type CHAR(20),

tag_id CHAR(20),

place INT);"""

cursor.execute(sql_command)

Third we write a code to insert the tag id which was read by the RFID reader and the object

name to the database.

def insert():

 #inserting

 file_content1 = file.readline().rstrip('\n')

 file_content2 = object.readline().rstrip('\n')

 query = "INSERT INTO tags (tag_type,tag_id) VALUES (%s,%s)"

 cursor.execute(query, (file_content2,file_content1))

[52]

4.3.5 RFID-RC522

 After connecting the RC522 RFID reader to the Raspberry Pi, we made few configuration

changes on the Raspberry Pi to allow communication with RFID module.

 First enable The Serial Peripheral Interface (SPI), which is a communication protocol used to

transfer data between micro-computers like the Raspberry Pi and peripheral devices.

Second we downloaded the MFRC522-python library as shown:

cd ~

git clone https://github.com/mxgxw/MFRC522-python.git

4.4 Initial version of the project

 We did an experiment and built a simplified system that simulates our graduation project

which locates the location of the missing object using RFID technology. We have done the work

in three stages the first stage was voice recognition (convert speech to text) then reading the tag

by RFID reader and finally voice synthesis (convert text to speech).

The hardware and the software that required for this experiment were:

Hardware Required:

o Raspberry Pi 2

o MFRC522 RFID Reader

o RFID Tags

o USB Microphone

o Speaker

[53]

 Hardware setup is pretty simple and it was as shown in figure 4.13:

Figure 4.13: Hardware setup

Software required:

o Python pyttsx library

o Python speech recognition library

o Python RC522 library

[54]

The system operate as illustrated in the flowchart

Figure 4.14: The process of the initial version of the project

 To locate the place of a missing thing we complete the hardware setup phase then wrote a

python code into the raspberry Pi.

First we define two objects by connecting tags to them: book which tag id is 1556415187 and

key which tag id is 16616334126 and recorded these tags id into database.

Start

Input voice

Convert text to voice

Get ID of the tag corresponding to the

text

The reader start looking for selected ID

The

selected ID

is found

Convert specific text to voice

No
Yes

End

[55]

Second voice recognition was used to take the voice from the person using microphone and

convert this voice to text, and then take this text.

If this text was “book” the reader read the tags in its rang and see if the reading tag has the same

book tag id, if so use Pyttsx, which is a software convert text to voice, to make the speaker say “I

find your book”, and if the tag id was not the same then say “I can‟t find your book move the

reader.”. As shown:

 if (word == 'book'or word == 'book book' or word == 'find my book' or

word == 'find my puppy'):

 if num == '1556415187' :

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I find your book")

 engine.runAndWait()

 elif num != '1556415187':

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I can not find your book move the reader")

 engine.runAndWait()

If this text was “key” the reader start reading and see if the reading tag has the same key tag id if

so use Pyttsx to make the speaker says “I find you‟re key”, and if the tag id was not the same

then say “I can‟t find your key move the reader”. As shown:

if (word == 'monkey'or word == 'mikey' or word == 'find my key' or word ==

'find monkey' or word == 'find party' or word == 'find my teeth') :

 print(word)

 if num == '16616334126' :

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I find your key")

 engine.runAndWait()

 y = False

 elif num != '16616334126':

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I can not find your key move the reader")

 engine.runAndWait()

 y = True

[56]

Chapter 5
Testing and Results

5.1 Overview

5.2 Testing and results

5.2.1 RFID reader testing

5.2.2 Voice recognition testing

5.3 Performance evaluation and analysis

[57]

5.1 Overview

 The final stage to achieve the project is to test the system to get result and measure its

performance. This chapter show all testing needed to evaluate the performance of our system.

5.2 Testing and results

 Checking and testing of the raspberry pi and RFID reader were done in this section including

the tasting results.

5.2.1 RFID reader testing

 We did several experiments to test the RFID reader work. These experiments were conducted

to test three parameters they are:

1. The range of the RFID reader

2. Multi-tags reading.

3. The error rate of detecting a specific tag

 To do the first test we connected the reader with the raspberry pi as shown in figure5.1 and the

wiring as in table 5.1 then running the code to start scanning.

Figure 5.1: Reading range

[58]

Table5.1: Wiring w26 reader with raspberry pi

Name Pin Number Pin Name

VCC 4 5.0 v

GND 6 0 v

Data0 16 GPIO 23

Data1 18 GPIO 24

 We tested the range of the reader at different supplied voltages. The result of the first

experiment was as follow:

Table 1: the range of w26 reader

 Key fob tag Card tag

5 volt 4 cm 6 cm

7 volt 4.5 cm 7 cm

9 volt 5 cm 9 cm

11 volt 5.5 cm 9 cm

13 volt 6 cm 10 cm

15 volt 6 cm 10 cm

 The result show that the range of the RFID reader depends on the supplied voltage and the

type of the tag. Where increasing the voltage increases the readings range. This is because the

reader must generate energy. This energy must be coupled from the reader to the tag, and the tag

must use it efficiently. Therefore, maximum reader power output, the coupling of the energy

0

2

4

6

8

10

12

05101520

R
an

ge
 (

cm
)

voltage (v)

Reader range

Key fob

card

[59]

from reader to tag become better and the range improved. The tag's antenna aperture also effect

on the range. For this reason the card tag has reading range larger than key fob tag.

Theory and Equations:

 Here we are going to go into some theory. The equation for the Power Transmission

Coefficient, τ, which describes the impedance match. Here, as τ tends to unity, the better the

impedance match between the chip and antenna, as follows:

Here, Rc and Ra are chip and antenna resistance, respectively. Zc and Za are chip and antenna

impedance, respectively. Additionally, by making use of the Friis free-space equation, we can

also obtain an equation for read range, r:

Here, λ is the wavelength, Pr is the power transmitted by the reader, Gr is the reader antenna

gain, Ga is the gain of the receiving tag antenna, and Pth is the minimum threshold power. The

peak read range, r, across a frequency range can be referred to as the tag‟s resonance and will

coincide with the maximum power transmission coefficient, τ.
 (26)

 The variables λ, Gr, Ga, τ and Pth are constant where Pr is variable according to the voltage

feed to the reader. So changing the voltage lead to change the read range.

 What we conclude from this experience is that increasing the effort given to the reader leads to

increasing the distance of the reading without exceeding the maximum amount of voltages borne

by the reader

[61]

 In the second test we wanted to check the ability of the reader to detect multi-tag at the same

time, for that two tags were put above each other as in the figures 5.2 and 5.3

Figure 5.2 : Card and key fob tags

Figure 5.3: Two key fob tags

 In the first case the card tag was always detected due to the difference of antenna aperture where

the antenna aperture of the card is bigger than key fob, so it absorbs most of the transmitted energy from

the reader as shown in figure 5.4. In the second case the upper tag was always detected which was

attached with key as shown in figure 5.5 and that because the upper tag absorb all the transmitted

signal. This proves that the reader can't read multi-tag at the same time.

[61]

Figure5.4: Card detected

Figure5.5: key detected

 The third test aimed to measure the error rate of detecting a specific tag, firstly we examined

card tag by scanning the card 20 times, the correct reading was 16 time. Secondly we examined

key fob tag and the correct reading was 19 time. The error rate was as follow:

Error rate (card) = 20

Error rate (key fob) = 5

5.2.2 Voice recognition testing

 In this section, we tested Google speech recognition to determine the error rate. For the test we

said about fifty word and sentence. Here is a sample of words and sentences that have been

tried(written in red) in figure 5.6

[62]

Figure5.6: sample of testing voice recognition

 The error rate after all trials was around 50 , which is high. To override this problem we

checked all the possible choices for the same word. These possibilities were taken in

consideration in building the database.

 As example, we said ' find my glasses ' and ' find my phone ', then the most repetitive

possibilities added to the database. These possibilities emerged in figure5.7 and 5.8

[63]

Figure5.7: Recognition errors „find my glasses'

Figure5.8: Recognition error for ' find my phone‟

As a result of taking the most repetitive possibilities, the error rate decreased to 25%.

[64]

5.3 Performance evaluation and analysis

 To evaluate the work of the system we tested all stages one after another where was select the

wanted process, searching process and adding process.

5.3.1 Select the wanted process

 The first process that the user of the system do it, is selecting the desired operation either

searching or adding. Two button connected to raspberry pi one for searching and the other for

adding.

 Figure5.9 indicates that the first button is pressed to start searching and figure5.10 indicates

that the second button is pressed.

Figure5.9: Button 1 pressed

Figure5.10: Button 2 pressed

5.3.2 Searching process

 After pressing the first button and selecting the search process, we said the name of the lost

object. This object may be in place one or place two or out of readers range.

[65]

We said find my book which is in place 1, the result was as in figure5.11

Figure5.11: searching in place 1

 There is an error in the reading as shown in the previous figure, the correct reading or

detecting the object is done after three reading two of them were wrong. To overcome this

problem, we have repeated the process of scanning the tags until the desired thing is found.

[66]

 Then we said find my phone which is in place 2, the result was as follow in figure 5.12

Figure5.12: Searching in place2 (server side)

 My phone was in place two so the reading order was sent to client side (place 2). The reader in

place two completed the scanning and returned the result to the server side (place 1). The server

side presents the mobile reader while the client side presents the fixed reader.

Figure5.13 : Searching in place2 (client side)

[67]

 Finally, the case of not existing the object in the readers range has been treated , the figures below

illustrate that .

Figure5.14 : Out of range mobile reader

 Figure5.15 and figure5.16 shows the result if the object was out of range fixed reader.

Figure5.15 : Out of range fixed reader (Server side)

[68]

Figure5.16 : Out of range fixed reader (Client side)

5.3.3 Adding process

 The adding process used to add new object to the data base with its id and place. For adding

the second button was pressed.

 The figure bellow shows the original data base before adding a new tag .

Figure5.17: Database before adding

[69]

 To add new tag we firstly said the name of the new object more than one time for error

handling in voice recognition, and then the new tag was scanned to get the id of this tag. Finally

we selected the place number. These steps are obvious in figure 5.18

Figure 5.18: Adding steps

 The data base after adding the new object become as in figure 5.19

Figure5.19: Database after adding

[71]

 If a search is requested and the required object is not present in the database, the system will

ask the blind to add this object to the database as follow in the figures 5.20, 5.21 and 5.22

Figure5.20 : The steps for adding

 Figure5.21 : Before adding Figure5.22 : After adding

[71]

Chapter 6

Recommendations and Conclusion

6.1 Overview

6.2 System achievements

6.3 Real learning outcomes

6.4 Recommendations

6.5 Conclusion

[72]

6.1 Overview

 The project has been done step by step, for employ the RFID technology to locate things. The

project was making the life of the blind much easier through practical way to find the missing

things. Meanwhile we have some recommendations and suggestions for future work that can be

taken to make the system more efficient.

6.2 System achievement

 Almost all the goals of our system have been achieved. In this point the main achievements

of the system are discussed and the ways of achieving it.

 We deal with the RFID technology and programme the RFID reader to read the tags.

 We use the voice recognition and the text to speech to make the system easy to use.

 We built a database and insert tags into it and search in it.

 We structure an Object Locater using RFID technology, using all these achievements.

 We create network between two RFID reader for searching in many places.

6.3 Real learning outcomes

 After the implementation of the project we have become an expert in the following points:

 Learn how to programme the Raspberry Pi and use it

 Learn how to deal and programme the RFID technology

 Learn how to make socket programming

 Learn how to use the voice recognition and speech to text software

 Learn how to build a database using SQL

 Learn how to solve many problems that we face in voice recognition and RFID reader

[73]

6.4 Recommendations

 After we worked on this project, and faced many problems during the implementation, we

saw the following points may be good improvement for this project in order to make it more

reliable:

 An improvement to the system could be applied, by using Cottonwood: UHF Long

distance RFID reader module to increase the reading range up to 5 meters.

 Try to use the Arabic language in searching and replying process.

6.5 Conclusion

 Finally at the end of the long work in this project, we built the object locator using RFID

technology for blind people, and it has efficiently worked in the way we imagine. We also solve

the problems and challenges that we faced.

 The general challenges include how to deal with the RFID reader and programme it to work in

the way we want, another challenge was how to collect all the hardware‟s and software‟s and

built the system and the biggest challenge was the first moment we turn on the system, and start

finding the way to solve the critical case, which how to understand what the blind say.

 And the specific challenges were:

1. Voice recognition translate differently the same word each time we say it

2. Tell the reader to stop reading the tags when the wanted tag found

3. Increase the reader range

 But at the end of the day it was nice thing to see our dream and effort in building this system

becomes true, also it was an interesting work in this group.

Finally in few words …

 We really hope that using this system the life of the blind people become easier and make

them more dependent on themselves.

[74]

References:

1. Reddy, Sumathi. Why we keep losing our keys. wsj.com. [Online] Apr 14, 2014. [Cited: Dec 7, 2016.]

http://www.wsj.com/articles/SB10001424052702304117904579501410168111866.

2. Payette, Carey. Long Range UHF RFID Item Tracking System. hackster.io. [Online] Sep 27, 2015. [Cited:

Dec 2016, 1.] https://www.hackster.io/careypayette/long-range-uhf-rfid-item-tracking-system-fc5372.

3. Design and implementation of library books search and management system using RFID Technology.

Haiming Cheng, Ling Huang, He Xe,Yifan Hu,Xu An Wang. Nanjing,China : IEEE, 2016. 978-1-5090-4124-

4.

4. An Indoor Localization System Based On Backscatter RFID Tag. Jun Wang, Yiyin Wang, Xinping Guan.

Shanghai, China : IEEE, 2016. 1558-2612.

5. LANDT, JEREMY. The history of RFID. IEEE. OCTOBER/NOVEMBER 2005.

6. What is RFID? TechNovelgy.com. [Online] [Cited: 11 13, 2016.]

http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=1.

7. [book auth.] Kamran Ahsan. RFID Components, Applications and System Integration with Healthcare

Perspective. s.l. : Deploying RFID - Challenges, Solutions, and Open Issues, 2011.

8. Radio Frequency Identification Tags - Semi Passive. | Pacific Northwest National Laboratory. [Online]

[Cited: 11 13, 2016.] http://availabletechnologies.pnnl.gov/technology.asp?id=90.

9. Firefly University. RFID System Components. firely RFID solution. [Online] [Cited: 11 13, 2016.]

http://www.fireflyrfidsolutions.com/firefly-university/what-is-rfid-copy/.

10. How Do RFID Systems Work. IMPINJ. [Online] [Cited: 11 13, 2016.]

http://www.impinj.com/resources/about-rfid/how-do-rfid-systems-work/.

11. RFID Standards. Radio-Electronics.com. [Online] Adrio Communications Ltd. [Cited: 11 13, 2016.]

http://www.radio-electronics.com/info/wireless/radio-frequency-identification-rfid/iso-epcglobal-iec-

standards.php.

12. Baker, Jason. opensource.com. [Online] February 2, 2015. [Cited: November 2, 2016.]

https://opensource.com/resources/what-raspberry-pi.

13. Graham Hastings, Michael Kölling. The Raspberry Pi Education Manual Version 1.0. s.l. : BCS, the

chartered institute of IT, 2012.

14. Cawley, Christian. MakeUseOf. [Online] February 2013. [Cited: November 2, 2016.]

http://www.makeuseof.com/tag/great-things-small-package-your-unofficial-raspberry-pi-

manual/#chapter-1.

15. Raspberry Pi Technology: A Review. Chaudhari, Harshada. 3, India : International Journal of

Innovative and Emerging Research in Engineering, 2015, Vol. 2.

16. Raspberry Pi Foundation. [Online] [Cited: November 2, 2016.] https://www.raspberrypi.org/.

17. Raspberry Pi Getting Started Guide Vsn 1.0. s.l. : RS Components, 3/2012.

[75]

18. Elsea, Peter. Microphones. artsites.ucsc.edu. [Online] 1996. [Cited: November 11, 2016.]

http://artsites.ucsc.edu/ems/music/tech_background/te-20/teces_20.html.

19. Christensson, Per. Speakers Definition. techterms.com. [Online] February 27, 2010. [Cited:

November 11, 2016.] http://techterms.com/definition/speakers.

20. Wi-Fi Protocol: Networking, Frame Formats, Security, Attributes. www.engineersgarage.com.

[Online] [Cited: April 24, 2017.] https://www.engineersgarage.com/articles/what-is-wifi-technology.

21. Voice recognition. www.computerhope.com. [Online] April 26, 2017. [Cited: May 5, 2017.]

https://www.computerhope.com/jargon/v/voicreco.htm.

22. SQL (Structured Query Language). www.techtarget.com. [Online] September 2016. [Cited: April 30,

2017.] http://searchsqlserver.techtarget.com/definition/SQL.

23. RFID Access Control ID Card Keypad Reader 125KHz Wiegand 26 Security. www.ebay.com. [Online]

[Cited: April 26, 2017.] http://www.ebay.com/itm/RFID-Access-Control-ID-Card-Keypad-Reader-125KHz-

Wiegand-26-Security-/262017939247.

24. Read Only Contactless Identification Device . www.sunrom.com. [Online] [Cited: April 29, 2017.]

www.sunrom.com/get/522300.

25. Cisco-Linksys AE1000 High-Performance Wireless-N Adapter. www.amazon.com. [Online] [Cited:

April 29, 2017.] https://www.amazon.com/Cisco-Linksys-AE1000-High-Performance-Wireless-N-

Adapter/dp/B003B20F5E.

26. Impedance Matching of Tag Antenna to Maximize RFID Read Ranges. M S Yeoman, M A O’Neill.

United Kingdom : Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge, 2014.

27. RFID Privacy & Security Issues. Muir, Brent. Melbourne Area, Australia, Australia : s.n., Feb 25, 2014.

28. Ha, Vipul Chawla and Dong Sam. AN OVERVIEW OF PASSIVE RFID. IEEE Applications & Practice.

2007.

29. Localization Systems using Passive UHF RFID. Jae Sung Choi, Hyun Lee, Ramez Elmasri, Daniel W.

Engels. Arlington, TX USA : IEEE computer socity, 2009.

[76]

Appendix A

Raspberry Pi 2

RFID Access Control ID Card Reader 125 KHz Wiegand 26

[77]

Raspberry Pi v2 Mod B Pin specification

[78]

RFID Access Control ID Card Reader 125 KHz Wiegand 26 Security

[79]

 Appendix B

Codes

initial version of the project

server code

CardReader that was called by server code

Client code

CardReader that was called by client code

[81]

The code of the initial version of the project:

#!/usr/bin/python

import speech_recognition as sr

import sys

import pyttsx

import RPi.GPIO as GPIO

import MFRC522

import signal

#this is the reader function

def reading():

 continue_reading = True

 global num

 num = 0000000000

 def end_read(signal,frame):

 global continue_reading

 print "Ctrl+C captured, ending read."

 continue_reading = False

 GPIO.cleanup()

 # Hook the SIGINT

 signal.signal(signal.SIGINT, end_read)

 # Create an object of the class MFRC522

 MIFAREReader = MFRC522.MFRC522()

 # Welcome message

 print "Welcome to the MFRC522 data read example"

 print "Press Ctrl-C to stop."

 # This loop keeps checking for chips. If one is near it will get the

UID and authenticate

 while continue_reading:

 # Scan for cards

 (status,TagType) =

MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL)

[81]

 # If a card is found

 if status == MIFAREReader.MI_OK:

 print "Card detected"

 # Get the UID of the card

 (status,uid) = MIFAREReader.MFRC522_Anticoll()

 # If we have the UID, continue

 if status == MIFAREReader.MI_OK:

 # Print UID

 print "Card read UID:

"+str(uid[0])+","+str(uid[1])+","+str(uid[2])+","+str(uid[3])

 num = str(uid[0])+str(uid[1])+str(uid[2])+str(uid[3])

 continue_reading = False

 return num

engine = pyttsx.init()

engine.setProperty('rate',70)

obtain audio from the microphone

def take_voice():

 global r

 global audio

 r = sr.Recognizer()

 with sr.Microphone() as source:

 r.adjust_for_ambient_noise(source) # listen for 1 second to

calibrate the energy threshold for ambient noise levels

 engine.say(" Say what you need")

 engine.runAndWait()

 print("Say what you need :")

 audio = r.listen(source)

 return r,audio

[82]

take_voice()

 # recognize speech using Google Speech Recognition

try:

 print("Google Speech Recognition thinks you said " +

r.recognize_google(audio))

 word = r.recognize_google(audio)

 print(word)

 # call reading function

 reading()

except sr.UnknownValueError:

 print('Google can not understand audio')

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 #engine.say("I can not understand audio")

 engine.say("I can not understand audio Repeat again")

 engine.runAndWait()

 take_voice()

 print("Google Speech Recognition thinks you said " +

r.recognize_google(audio))

 word = r.recognize_google(audio)

 # call reading function

 reading()

print num

def find_book():

 global x

 x = True

 if (word == 'book'or word == 'book book' or word == 'find my book' or

word == 'find my puppy'):

 if num == '1556415187' :

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I find your book")

 engine.runAndWait()

[83]

 x = False

 elif num != '1556415187':

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I can not find your book move the reader")

 engine.runAndWait()

 x = True

 return x

find_book()

if x== True :

 reading()

 find_book()

def find_key():

 global y

 y = True

 if (word == 'monkey'or word == 'mikey' or word == 'find my key' or word

== 'find monkey' or word == 'find party' or word == 'find my teeth') :

 print(word)

 if num == '16616334126' :

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I find your key")

 engine.runAndWait()

 y = False

 elif num != '16616334126':

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I can not find your key move the reader")

 engine.runAndWait()

 y = True

 return y

find_key()

if y == True:

 reading()

 find_key()

Server Code (Mobile reader)

#!/usr/bin/python

[84]

import MySQLdb

import re , csv, sys

import time

import os

import speech_recognition as sr

import sys

import pyttsx

import RPi.GPIO as GPIO

import signal

import RPIO

import socket

import atexit

from cardReader import CardReader

my_id = 0

my_place = 0

add_place = 0

GPIO.setmode(GPIO.BCM)

GPIO.setup(17, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)

FT = open('search.txt','w') # open text file to write reading id

FR = open('result_reader2.txt','w') # open text file to write reading result from reader2

FA = open('add_tag.txt','w') # open text file to write all possible choice of the word

FP = open('place_no.txt','w') # open text file to write tag place for the added tag

###############

function to initiate speech synthesis

def start():

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say("press one to search two to add ")

 engine.runAndWait()

###############

###############

function to create the database

def build_db():

 try:

 connection = MySQLdb.connect (host = "localhost",

 user = "taguser",

 passwd = "passwordhiba",

 db ="rfid_tags")

 except mc.Error as e:

 print("Error %d: %s" % (e.args[0], e.args[1]))

 sys.exit(1)

[85]

 cursor = connection.cursor()

 cursor.execute ("DROP TABLE IF EXISTS tags")

 sql_command = """

 CREATE TABLE tags (

 item INT NOT NULL PRIMARY KEY AUTO_INCREMENT ,

 tag_type CHAR(20),

 tag_id CHAR(20),

 place INT);"""

 cursor.execute(sql_command)

 sql_command = """

 INSERT INTO tags(tag_type, tag_id, place) VALUES

 ('find my book','994369' , 1),

 ('book', '994369', 1),

 ('book book', '994369', 1),

 ('my book', '994369', 1),

 ('find Michael','994369', 1),

 ('find my puppy', '994369', 1),

 ('find my phone','410450' , 2),

 ('find my iphone', '410450', 2),

 ('phone', '410450', 2),

 ('find my remote' ,'988216', 2),

 ('120 mos' ,'988216', 2),

 ('find my vitamix' ,'988216', 2),

 ('remote' ,'988216', 2),

 ('find my key', '994247', 1),

 ('find my keys','994247' , 1),

 ('find monkey', '994247', 1),

 ('find my teeth', '994247', 1),

 ('find molly', '994247', 1);"""

 cursor.execute(sql_command)

 print(sql_command)

 connection.commit()

 cursor.close()

 connection.close()

###############

###############

function to search in database

def searchINdb(word):

 global my_id

 global my_place

 try:

 connection = MySQLdb.connect (host = "localhost",

[86]

 user = "taguser",

 passwd = "passwordhiba",

 db ="rfid_tags")

 except mc.Error as e:

 print("Error %d: %s" % (e.args[0], e.args[1]))

 sys.exit(1)

 cursor = connection.cursor()

 sql = "SELECT * FROM tags WHERE tag_type = '%s' " % (word)

 try:

 cursor.execute(sql)

 # Fetch all the rows in a list of lists.

 results = cursor.fetchall()

 for row in results:

 item= row[0]

 tag_type= row[1]

 tag_id = row[2]

 my_id = row[2]

 place = row[3]

 my_place = row[3]

 print "item=%s,tag_type=%s,tag_id=%s, place=%s" % (item, tag_type,

tag_id,place)

 FT.write(my_id)

 FT.flush()

 return my_id,my_place

 for row in not results :

 print('unable to fecth data')

 except:

 print "Error: unable to fecth data"

 speech = "press button two to add new object"

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say(speech)

 engine.runAndWait()

 speech = "it is not in database"

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say(speech)

 engine.runAndWait()

 switches()

 connection.commit()

###############

###############

function to obtain audio from the microphone

def take_voice():

 global r

 global speech

 global audio

 global word

[87]

 word ='null'

 r = sr.Recognizer()

 with sr.Microphone() as source:

 r.adjust_for_ambient_noise(source) # listen for 1 second to calibrate the energy threshold for

ambient noise levels

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say(speech)

 print(speech)

 engine.runAndWait()

 audio = r.listen(source)

 return r,audio

###############

###############

function to begin reading process

def scanning_tag():

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("start scanning")

 engine.runAndWait()

 global end

 end = ""

 global Tag_ID

 BIT_TRANSMISSION_TIME = 0.002 #From wiegand specification

 FRAMESIZE = 26 #Supposed size of received frame

 FRAMETIME = FRAMESIZE * BIT_TRANSMISSION_TIME #Theoric time necessary to

transfer a frame

 ALLOWANCE = 10 #Auhtorized allowance for the transmission time in

percent

 TIMEOUT = FRAMETIME*(1+ALLOWANCE/100) #Real time allowed for the

transmission

 readersList = [

 CardReader("reader", 23, 24, TIMEOUT)] #Creating readers

 def closeProgram(signal, frame):

 """ Close fonction"""

 print("\nResseting GPIO...", end)

 RPIO.cleanup() #Reset every channel that has been set up by this

program, and unexport interrupt gpio interfaces

 print(" ok")

 print("exiting")

 sys.exit(0)

 #Starting readers

 readersCount = 0

 for reader in readersList:

 print("Initializing reader " + str(readersCount) + "...", end)

 reader.registerReader()

 print(" Done !")

 readersCount += 1

[88]

 #Ready message

 print("Ready to go !")

 RPIO.wait_for_interrupts()

###############

###############

function to send reading order to the second reader

def send_order():

 x = True

 FT = open('search.txt','r') # open text file to write reading id

 FR = open('result_reader2.txt','w')

 s = socket.socket() # Create a socket object

 host = '' # Get local machine name

 port = 9985 # Reserve a port for your service.

 s.bind((host, port)) # Bind to the port

 s.listen(5) # Now wait for client connection.

 while x:

 c, addr = s.accept() # Establish connection with client.

 print 'Got connection from', addr

 print "Sending..."

 l = FT.read(1024)

 print l

 while (l):

 print "Sending..."

 c.send(l)

 l = FT.read(1024)

 FT.flush()

 print "Done Sending"

 c.shutdown(socket.SHUT_WR)

 line = c.recv(1024)

 while(line):

 FR.write(line)

 line = c.recv(1024)

 FR.flush()

 print "Done Receiving"

 x = False

 c.close() # Close the connection

###############

###############

function for searching and adding process

def switches():

 while True:

 global add_place

 global speech

 input_state = GPIO.input(17) #pin 11 GND 9

 if input_state == False:

 print('Button 1 Pressed')

[89]

 time.sleep(0.2)

 speech = "say what you need"

 take_voice()

 ###############

 # recognize speech using Google Speech Recognition

 try:

 print("Google Speech Recognition thinks you said " + r.recognize_google(audio))

 word = r.recognize_google(audio)

 searchINdb(word)

 print(my_id)

 except sr.UnknownValueError:

 print('Google can not understand audio')

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I can not understand audio Repeat again")

 engine.runAndWait()

 take_voice()

 print("Google Speech Recognition thinks you said " + r.recognize_google(audio))

 word = r.recognize_google(audio)

 searchINdb(word)

 ###############

 if (my_place==1) :

 scanning_tag() # call scanning_tag function

 elif (my_place == 2):

 send_order()

 FR = open('result_reader2.txt','r')

 result_reader2 = FR.read()

 if (result_reader2 == 'exist') :

 speech = " it is in place two"

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say(speech)

 print(speech)

 engine.runAndWait()

 else:

 speech = "I can not find it in place two"

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say(speech)

 engine.runAndWait()

 break

 input_state2 = GPIO.input(18) #pin 12 GND 14

 if input_state2 == False:

 print('Button 2 Pressed')

 time.sleep(0.2)

 speech = "say what to add"

 take_voice()

 print("Google Speech Recognition thinks you said " + r.recognize_google(audio))

 word = r.recognize_google(audio)

 print(word)

[91]

 FA.write(word)

 FA.write('\n')

 ###############

 # recognize speech using Google Speech Recognition

 try:

 for no_saying in range (1):

 speech = "repeat again"

 take_voice()

 print("Google Speech Recognition thinks you said " + r.recognize_google(audio))

 word = r.recognize_google(audio)

 print(word)

 FA.write(word)

 FA.write('\n')

 FA.flush()

 FT.write('%d' % 1000)

 FT.flush()

 scanning_tag()

 speech = "say the place number"

 take_voice()

 print("Google Speech Recognition thinks you said " + r.recognize_google(audio))

 word = r.recognize_google(audio)

 print(word)

 if(word == 'place one' or word == 'this one' or word == 'list one' or word == 'fun' or

word =='placement' or word == 'one'):

 add_place = 1

 else :

 add_place = 2

 # To add a new tag into database

 except sr.UnknownValueError:

 print('Google can not understand audio')

 engine = pyttsx.init()

 engine.setProperty('rate',70)

 engine.say("I can not understand audio Repeat again")

 engine.runAndWait()

 take_voice()

 print("Google Speech Recognition thinks you said " + r.recognize_google(audio))

 word = r.recognize_google(audio)

 try:

 connection = MySQLdb.connect (host = "localhost",

 user = "taguser",

 passwd = "passwordhiba",

 db ="rfid_tags")

 except mc.Error as e:

 print("Error %d: %s" % (e.args[0], e.args[1]))

 sys.exit(1)

 cursor = connection.cursor()

 ID = open('/home/pi/getTag_ID.txt', 'r') # read the id of the added tag

 object = open('add_tag.txt','r') # read all possible choice of the word

 for i in range (2):

[91]

 ID.seek(0)

 file_content1 = ID.readline().rstrip('\n')

 print file_content1

 file_content2 = object.readline().rstrip('\n')

 print file_content2

 query = "INSERT INTO tags (tag_type,tag_id, place) VALUES (%s,%s,%s)"

 cursor.execute(query, (file_content2,file_content1,add_place))

 connection.commit()

 break

###############

start() # call start function

switches() # call switches function

CardReader code that was called by server code

[92]

import RPIO

import threading

import sys

import signal

import pyttsx

f = open("getTag_ID.txt",'w')

FT = open('search.txt','r')

global end

global my_id

end = " "

tag_id = 0

count_read = 0

class CardReader(object):

 """Class representing a reader. One object should be instantiated for each physical

reader"""

 def __init__(self, name, GPIO_0, GPIO_1, TIMEOUT):

 #Pins used to receive 0s and 1s

 self.name = name

 self.GPIO_0 = GPIO_0

 self.GPIO_1 = GPIO_1

 self.tag = "" #The buffer used to store the RFID Tag

 self.TIMEOUT = TIMEOUT #Real time allowed for the transmission

 return super(CardReader,self).__init__()

 def addBitToTag(self, gpio_id, val):

 #Beginning of a new frame, we start the timer

 if self.tag == "":

 self.t = threading.Timer(self.TIMEOUT, self.processTag)

 self.t.start()

 #We check wether we received a 0 or a 1

 if gpio_id == self.GPIO_0:

 self.tag += "0"

 elif gpio_id == self.GPIO_1:

 self.tag += "1"

 def registerReader(self, edge = 'falling', pull_up_down=RPIO.PUD_UP):

 RPIO.setup(self.GPIO_0, RPIO.IN)

 RPIO.setup(self.GPIO_1, RPIO.IN)

 RPIO.add_interrupt_callback(self.GPIO_0, self.addBitToTag, edge = edge,

pull_up_down = pull_up_down)

 RPIO.add_interrupt_callback(self.GPIO_1, self.addBitToTag, edge = edge,

pull_up_down = pull_up_down)

 #Initializing timer

[93]

 self.t = threading.Timer(0.1, self.processTag)

 self.t.start()

 def removeReader(self):

 RPIO.del_interrupt_callback(self.GPIO_0)

 RPIO.del_interrupt_callback(self.GPIO_1)

 #Method triggered after Timer tick that prints out the tag

 def processTag(self):

 global count_read

 if self.tag == "":

 return

 elif len(self.tag) < 10:

 print("[" + self.name + "] Frame of length (" + str(len(self.tag)) +

"):" + self.tag + " DROPPED")

 elif self.verifyParity(self.tag):

 print("[" + self.name + "] Frame of length (" + str(len(self.tag)) + "):

" + self.tag + " (" + str(CardReader.binaryToInt(self.tag)) + ") OK KOI")

 count_read += 1

 tag_id =str(CardReader.binaryToInt(self.tag))

 f.write(tag_id)

 f.flush()

 my_id = FT.readline().rstrip()

 FT.seek(0) # to read from the first line

 print (my_id,tag_id,count_read)

 if(tag_id == my_id):

 print('I find the wanted object')

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say('I find it ')

 engine.runAndWait()

 RPIO.stop_waiting_for_interrupts()

 elif(my_id == '1000'):

 print('I add the tag')

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say('I add it ')

 engine.runAndWait()

 RPIO.stop_waiting_for_interrupts()

 elif(tag_id != my_id and count_read == 3):

 print('I can not find it, out of range')

 engine = pyttsx.init()

 engine.setProperty('rate',80)

 engine.say('I can not find it ')

 engine.runAndWait()

 RPIO.stop_waiting_for_interrupts()

 self.tag = ""

[94]

 def verifyParity(self, binary_string):

 first_part = binary_string[0:13]

 second_part = binary_string[13:]

 parts = [first_part, second_part]

 bitsTo1 = [0, 0]

 index = 0

 for part in parts:

 bitsTo1[index] = part.count('1')

 index += 1

 if bitsTo1[0] % 2 != 0 or bitsTo1[1] % 2 != 1:

 print("[" + self.name + "] Frame of length (" + str(len(self.tag)) + "):

" + self.tag + " (" + str(CardReader.binaryToInt(self.tag)) + ") - PARITY CHECK FAILED")

 return False

 return True

 #Method to convert the RFID binary value into a readable integer

 @staticmethod

 def binaryToInt(binary_string):

 print(binary_string)

 binary_string = binary_string[1:-1] #Removing the first and last bit (Non-data

bits)

 print(binary_string)

 result = int(binary_string, 2)

 return result

Client code (Fixed reader)

[95]

import signal

import socket

import RPIO

import sys

from cardReader import CardReader

f = open('result.txt', 'w') # to write result on it

s = socket.socket() # Create a socket object

host = '192.168.1.6' # Get local machine name

port = 9985 # Reserve a port for your service.

s.connect((host, port))

fi = open('reciving_id.txt','wb')

print 'reciving...'

li = s.recv(1024)

while (li):

 print 'reciving...'

 fi.write(li)

 li = s.recv(1024)

 print li

fi.close()

print "Done reciving"

print s.recv(1024)

order_file = open('reciving_id.txt','r') # to get the order

order = order_file.readline().rstrip('\n')

print order

BIT_TRANSMISSION_TIME = 0.002 #From wiegand specification

FRAMESIZE = 26 #Supposed size of received frame

FRAMETIME = FRAMESIZE * BIT_TRANSMISSION_TIME #Theoric time necessary to

transfer a frame

ALLOWANCE = 10 #Auhtorized allowance for the transmission time in percent

TIMEOUT = FRAMETIME*(1+ALLOWANCE/100) #Real time allowed for the transmission

#Creating readers

readersList = [

CardReader("reader", 23, 24, TIMEOUT),

CardReader("arduino", 8, 7, TIMEOUT)

]

def closeProgram(signal, frame):

 """ Close fonction"""

 print("\nResseting GPIO...")

 RPIO.cleanup() #Reset every channel that has been set up by this program, and

unexport interrupt gpio interfaces

 print(" ok")

 print("exiting")

 sys.exit(0)

[96]

signal.signal(signal.SIGINT, closeProgram)

#Starting readers

readersCount = 1

for reader in readersList:

 print("Initializing reader " + str(readersCount) + "...")

 reader.registerReader()

 print(" Done !")

 readersCount += 1

#Ready message

print("Ready to go !")

RPIO.wait_for_interrupts()

f = open('result.txt','rb')

print 'Sending...'

l = f.read(1024)

while (l):

 print 'Sending...'

 s.send(l)

 l = f.read(1024)

f.close()

print "Done Sending"

s.shutdown(socket.SHUT_WR)

print s.recv(1024)

s.close() # Close the socket when done

CardReader code that was called by client code

[97]

import RPIO

import threading

f = open('reciving_id.txt','r')

fr = open('result.txt', 'w')

tag_id = 0

count_read = 0

class CardReader(object):

 """Class representing a reader. One object should be instantiated for each physical

reader"""

 def __init__(self, name, GPIO_0, GPIO_1, TIMEOUT):

 #Pins used to receive 0s and 1s

 self.name = name

 self.GPIO_0 = GPIO_0

 self.GPIO_1 = GPIO_1

 self.tag = "" #The buffer used to store the RFID Tag

 self.TIMEOUT = TIMEOUT #Real time allowed for the transmission

 return super(CardReader , self).__init__()

 def addBitToTag(self, gpio_id, val):

 #Beginning of a new frame, we start the timer

 if self.tag == "":

 self.t = threading.Timer(self.TIMEOUT, self.processTag)

 self.t.start()

 #We check wether we received a 0 or a 1

 if gpio_id == self.GPIO_0:

 self.tag += "0"

 elif gpio_id == self.GPIO_1:

 self.tag += "1"

 def registerReader(self, edge = 'falling', pull_up_down=RPIO.PUD_UP):

 RPIO.setup(self.GPIO_0, RPIO.IN)

 RPIO.setup(self.GPIO_1, RPIO.IN)

 RPIO.add_interrupt_callback(self.GPIO_0, self.addBitToTag, edge = edge,

pull_up_down = pull_up_down)

 RPIO.add_interrupt_callback(self.GPIO_1, self.addBitToTag, edge = edge,

pull_up_down = pull_up_down)

 #Initializing timer

 self.t = threading.Timer(0.1, self.processTag)

 self.t.start()

 def removeReader(self):

 RPIO.del_interrupt_callback(self.GPIO_0)

 RPIO.del_interrupt_callback(self.GPIO_1)

 #Method triggered after Timer tick that prints out the tag

 def processTag(self):

[98]

 global count_read

 if self.tag == "":

 return

 elif len(self.tag) < 10:

 print("[" + self.name + "] Frame of length (" + str(len(self.tag)) +

"):" + self.tag + " DROPPED")

 elif self.verifyParity(self.tag):

 print("[" + self.name + "] Frame of length (" + str(len(self.tag)) + "):

" + self.tag + " (" + str(CardReader.binaryToInt(self.tag)) + ") OK KOI")

 tag_id = str(CardReader.binaryToInt(self.tag))

 my_id = f.read()

 f.seek(0)

 count_read += 1

 print(count_read,tag_id,my_id)

 if(tag_id == my_id):

 print("i found it YAY")

 fr.write('exist')

 fr.flush()

 RPIO.stop_waiting_for_interrupts()

 elif(tag_id != my_id and count_read == 3):

 print('not exisist')

 print('-----Out of the range-----')

 fr.write('not exist')

 fr.flush()

 RPIO.stop_waiting_for_interrupts()

 self.tag = ""

 def verifyParity(self, binary_string):

 first_part = binary_string[0:13]

 second_part = binary_string[13:]

 parts = [first_part, second_part]

 bitsTo1 = [0, 0]

 index = 0

 for part in parts:

 bitsTo1[index] = part.count('1')

 index += 1

 if bitsTo1[0] % 2 != 0 or bitsTo1[1] % 2 != 1:

 print("[" + self.name + "] Frame of length (" + str(len(self.tag)) + "):

" + self.tag + " (" + str(CardReader.binaryToInt(self.tag)) + ") - PARITY CHECK FAILED")

 return False

 return True

 #Method to convert the RFID binary value into a readable integer

 @staticmethod

 def binaryToInt(binary_string):

 print(binary_string)

 binary_string = binary_string[1:-1] #Removing the first and last bit (Non-data

bits)

 print(binary_string)

[99]

 result = int(binary_string, 2)

 return result

	figure and table.2 (3).pdf
	المشروع.نهائي (1).pdf

