

Design and implementation weather station system

based on wireless sensor network

Project Team
Raed AL-Warasneh Rawaa Radaydeh

Shatha AL-Amayreh
Project Supervisor

Prof.Karim Tahboub

Submitted to the College of Engineering
in partial fulfillment of the requirements for the degree

Communication and Electronics and Mechatronics
Engineering

Palestine Polytechnic University

Hebron – Palestine
December 2016

2

Palestine polytechnic University
Hebron – Palestine

College of Engineering
Electrical and Mechanical Engineering Departments

Design and implementation weather station system

based on wireless sensor network

Project Team
Raed AL-Warasneh Rawaa Radaydeh

Shatha AL-Amayreh
By the guidance of our supervisor , and by the
acceptance of all members in the testing committee ,
this project is delivered to department of electrical and
mechanical engineering in the college of engineering
and technology , to be as a partial fulfillment of the
requirement of the department for the degree of CE.

Supervisor signature

Testing committee signature
----------------------- ----------------

The head of department signature

3

 جامعة بوليتكنك فلسطين
فلسطين –الخليل

دسةكلية الهن
 دائرة الهندسة الكهربائية

Design and implementation weather station system
based on wireless sensor network

بناء على نظام كلية الهندسة واشراف ومتابعة المشرف المباشر على

تم تقديم هذا العمل الى دائرة , اللجنة المناقشة المشروع وموافقة اعضاء
ة البكالوريوس في هندسة فاء بمتطلبات درجوذلك للو ةية الكهربائالهندس

سكينو ر تاكيملا ةسدنهو تاينو ر تكللا او تالاتصالا

 فتوقيع المشر

 توقيع اللجنة المناقشة

----------------- ------------------

 توقيع رئيس الدائرة

4

ءالاهدا
البشرية جمعاء من الظلمات جر خأ نم ىلا ةيادب عضاو تملا دهجلا اذه يدهن

 الى النور محمد صلى الله عليه وسلم
مو ي دعب امو ي ربكن انو ر ي ىتح راهنلاب مهليل او لصو الى امهاتنا وابائنا اللذين

 الى اخوتنا واخواتنا اللذين لم ولا يبخلوا علينا بشيء
 بر دلا او ر انا مهتبحمباللذين والى اصداقائنا واحبابنا

الى الشموع اللتي تحترق وتضيء للاخرين الدروب أساتذتنا اللذين لم يبخلوا
بكل ما لديهم انيلع

أضاء بعلمه عقل غيره وهدى بالجواب الصحيح حيرة و انقبس الى كل من
ظهر بسماحته تواضع العلماء وبرحابته سماحة العارفين وأخجلنا أف سائليه

 باهتمامه
ولو بجملة او حتى كلمةالى كل من ساعدنا

 الى كل محب للعلم ومتيم به
لئك اللذين حرموا حريتهم خلف القضبان لجل هذا الوطن الغاليو الى ا

الى اولئك اللذين فقدوا حياتهم لكي نبقى نحن على هذا الوطن ولا نفرط بحبة
 تراب منه

 مكل مهقدونه ايا مكيدهن عضاو تملا لمعلا اذه ىلع هنيع تعقو نم لك ىلا

 انتانسح ناز يم يف هلعجيو هلبقتي نا ىلو ملا نم نيجار

5

 Palestine Polytechnic University

College of Engineering and Technology

Electrical and Mechanical Engineering Departments
Communication and Electronics and Mechatronics Engineering

Graduation project

Design and implementation weather station system
based on wireless sensor network

Project Team
Raed AL-Warasneh Rawaa Radaydeh

Shatha AL-Amayreh
Project Supervisor

Prof.Karim Tahboub

Hebron – Palestine

December 2016

6

Acknowledgments

 First of all thanks ALLAH for giving us patience robust minds and will to understand

and treat the needs of our world that lead us to completion our graduation project.

 We shall express our deep gratitude to those who help us in whole strides of our life and

support us every time our mothers fathers sisters brothers families and friends.

 We also indebted and deeply grateful to our supervisor and director Prof.Karim Tahboub

for his support encouragement and his help to take some advantages of his experience and

knowledge this thanks reach to all teachers doctors and supervisors that we met in our

preceptorial life from first class in primary stage until now …

7

 الملخص

تقوم فكرة المشروع بشكل عام على بناء نظام محطات أرصاد جوية ،حيث يقوم بإدارة هذه المحطات من ناحية

المختلفة للطقس وعرض هذه المتغيرات ونشرها بطريقة منظمة وسريعة وغير مكلفة ، بالإضافة الى قياس المتغيرات

ذلك سيوفر المشروع الكثير من الوقت والجهد للمستخدمين الذين يهتمون بمعرفة هذه المتغيرات مقارنة بالطرق

 . التقليدية

للقيام بعملية نقل (GSM)بكة الهواتف المحمولة اللاسلكية التي تدعمها ش (GPRS)يستخدم المشروع تقنية

 .لخادم المعلومات من أماكن تواجد هذه المحطات الى ا

والداعم لأوامر (ARDUINO IDE)برنامج مخصص الا وهو كل ذلك سوف يتم التعامل معه عن طريق

 .الحصول على هذه البيانات والداعمة أيضا لبناء واجهة للمستخدم لتسهيل(AT commands)الاتصال بالمودم

حيث (ARDUINO)مقابل ذلك سوف تتم قراءة المتغيرات المختلفة للجو عن طريق مجسات موصولة بمعالج

. سيقوم الأخير بجمع هذه المتغيرات والتواصل مع المودم وارسال هذه البيانات الى الخادم لعرضها ونشرها وتخزينها

 .م لعملية نقل البيانات والجهد المبذول للقيام بذلك موفرا بذلك كل الوقت المستخد

8

ABSTRACT

 In this project we aim to design weather station in order to provide us with some

weather variables every day such as temperature, humidity, amount of rainfall level,

barometric pressure and speed and direction of wind and others . The main function for this

station is to send data one time every three hours during the day by using the global

system for mobile communication (GSM/GPRS) modem which is connected directly with

a microcontroller. To make the project more efficient, some parameters are taken into

account like cost, availability of components, the project time life, power consumption,

accuracy at sending and receiving of data.

 the main aim of giving data from different stations is knowing the weather state

accurately in any time, and any location. taking the weather information from these

stations and disseminate it will satisfy this.

9

Table of Content

Acknowledgments……………………………………………………………….....2

الملخص... 3

ABSTRACT…………..…………………………………………………………...4

LIST Of TABLES…………………………………………………………………..8

LIST Of FIGURES…………………………………………………………………9

CHAPTER ONE

INTRODUCTION

1.1 Introduction..10

1.2 Project objectives………………………………………………………..…………....10

1.3 Project Motivation………………………………………………………………….....10

1.4 Related Work..11

1.5 Time schedule……….…………………………………………..………………….....14

1.6 Cost Analysis..15

1.7 Project Overview………………………………………………………………............15

CHAPTER TWO

THEORITICAL BACKGROUND

2.1 Recognition of the need………………………………………………………………..16

 2.1.1Need of global metrological center..16

 2.1.2Need of local Palestinian metrological center…………………………….………..16

2.2The need for scalable-expanded weather station networks ……………………………17

2.3Project Equipment …………………………………………………………………..…18

 2.3.1Arduino Mega 2560………………………………………………………………..18

10

 2.3.2SIM900 GSM/GPRS Shield………………………………………………………18

 2.3.3Temperature And Humidity Sensor………………………………………………19

 2.3.4Pressure Sensor……………………………………………………………………20

2.4 Conceptual design……………………………………………………………………..21

2.5 The Server …………………..……………………………………………….………..22

 2.6 Software Design……...……………………………………………………………….22

 2.6.1 The Main Tasks OF The Server…………….……………………………………..23

 2.6.2 Database……………..……………………………………………………………………23

 2.6.3 The Microcontrollers Software (Arduino IDE)…………………………………..24

CHAPTER THREE

THEORITICAL BACKGROUND

3.1 General Packet Radio Services(GPRS)……………………………………………….25

 3.1.1 Overview…………………..………………………………………………………25

 3.1.2 How Does GPRS Work?…..………………………………………………………25

 3.1.3IP Address…………….……………………………………………………………25

 3.1.4 Advantages Of GPRS……………………………………………………………...26

3.2 What Is Arduino………………….……………………………………………………26

 3.2.1 Arduino Mega 2560………………………………………………………………..27

 3.2.2 SIM900 GSM/GPRS Shield….……………………………………………………28

 3.3 Programming Language……...……………………………………………………….29

 3.4 SQL Database…………………………………………………………………………29

 3.5AT Commands.…………………………………………...……………….…………..30

CHAPTER FOUR

SYSTEM IMPLEMENTATION

11

4.1Sensors And Arduino Interfacing And Programming………………………………….33

 4.1.1 Arduino And Temperature And Humidity Sensor(DHT11) ……………………...33

 4.1.2 Arduino And Pressure Sensor(BMP180)…………………….………………...….34

 4.1.3 Arduino And SIM900 GSM/GPRS Shield……………………………….………..35

4.2 Software Program Design ………………………………………………………….…35

CHAPTER FIVE

RESULTS

5.1 DHT11 Testing……………………………………………………………………...…38

5.2 SIM900 GSM/GPRS Testing……………………………………………………….…38

5.3 Software Testing…………………………………………………………………….…39

CHAPTER SIX

CONCLUSION AND RECOMMINDATIONS

6.1 Problems………………………………………………………………………………40

6.2 Acquired Learning Outcomes…………………………………………………………40

6.3 Recommendations……………………………………………………………………..40

REFRENCES……………………………………………………………………………..41

12

List of Tables

Table
Number

Table Name

Page
Number

2.1 The highest and lowest value registered climatic element in Palestine 15

13

List of Figures

Figure

Number

Figure Name Page

Number

1.1 The weather station project 10

1.2 Homemade logger of temperature and solar data 11

1.3 Tenerife weather station 12

1.4 Weather Station (Easi Data Mark) 13

2.1 Arduino Mega 2560 17

2.2 SIM900GSM/GPRS Shield 18

2.3 DHT11 18

2.4 BMP180 19

2.5 Conceptual design of weather station system based on WSN 20

2.6 The basic component of the Server 21

2.7 Adding new node to the system flow chart 22

3.1 GPRS Shield form 27

4.1 Arduino with DHT11 32

4.2 Arduino with BMP180 33

4.3 Arduino with SIM900 GSM/GPRS Shield 34

4.4 The Webpage Interface 35

4.5 The Readings of the Node sensors 35

4.6 The Data come from multi stations 36

5.1 DHT11 Testing 37

5.2 SIM900 GSM/GPRS Shield Testing 37

5.3 Software Testing 38

14

CHAPTER ONE

INTRODUCTION

15

1.1 Introduction

 The weather has always a great influence on people’s health and modes habits, daily

activities, productivity, performance and social behavior, etc. Sometimes, the connection is

direct and obvious. "Knowing the weather" and trying to forecast it correctly can make a

difference for the survival and prosperity of mankind.

 Weather data help us make choices. Whether you will need an umbrella when you go to

school tomorrow, whether you can cycle to your friend’s house, whether or not you can go

to the beach at week’s end. Farming is always affected by the weather no matter what sort

of farming it is, the weather will affect it.

 With advances in technology in recent years, new methods and equipment have been

developed to monitor weather, and collect weather information. With this new technology

it is possible to make more accurate measurements for any period of time.

 Today, one of the most frequently used type of equipments are wireless weather stations.

1.2 Project Objective

 Design two prototypes of remote weather stations(with same design), to read the

temperature, humidity, amount of rain fall, barometric pressure, wind speed and direction,

forming a base for scalable stations that could absorbs other future nodes(weather stations).

1.3 Project Motivation

1. Palestine as a country, suffers from a significant lack of weather stations to

cover the entire country. The biggest motivation is to design and build a

modern plant that meets the required purpose.

2. Due to the availability of wireless communication devices and techniques that

led us to exploit these technologies and their use in the design and construction

of a station.

3. The high cost of import stations manufactured in some of the companies and

their access to Palestine led to design and building station.

16

1.4 Related work

 1.4.1 The Weather station

 This project was for students in Houston Baptist University it measures temperature,

rainfall, humidity, barometric pressure and wind speed, the aim of this project is to

compare data gathered from the weather station in 2011 to local weather since 1900, and in

the near future include working with Information Technology Services to make up-to-date

campus weather conditions available to all University students through portal. Additional

plans include installing a lightning rod that will be beneficial for outdoor sporting events

and a soil density reader for biology lab, this project shown as figure1.1.

Figure 1.1: the weather station project

 1.4.2 Home Made Logger of Temperature and Solar Data[1]

 This project made by David Cook, it is designed to be located away from the house

without a power cord and it is also Operate for long periods of time without human

intervention or maintenance, retain data in the event of a power loss or microcontroller

reset. Survive all outdoor temperatures and conditions (such as rain and snow).The weather

station consists of a small solar panel (about 1/8 watt), rechargeable battery backup for

night time and cloudy operation, microcontroller ,data stored in a 4 MB flash chip, two

power source monitors, and six temperature sensors. The six temperature sensors four are

taped to a bamboo pole at various heights, one is in the project box, and one is a couple of

inches underground. This project shown as Figure 1.2.

17

Figure 1.2: Home Made Logger of Temperature and Solar Data

 1.4.3 Tenerife Weather Station

 The weather station runs 24 hours a day, 7 days a week and 365 days a year; logging data

and providing weather status information to many systems within the observatory, The

weather station consist of many sensors, wind speed 1, wind speed 2, wind direction,

internal temperature, external temperature, rain, dew, cloud south north, east, and west,

solar radiation, light sun rise and set, barometric pressure. One function of the weather

station is to provide a good or bad signal to the control server, the good or bad signal is

generated every 10 seconds; the output is controlled by a series of rules, if any of the rules

report that the weather is bad the output signal is set to bad, this information is used to

govern the operation of the control server. In addition to the control server the good or bad

output is also used by numerous safety systems that act to protect the system in the event

of a failure elsewhere in the system. The weather station collects samples from each sensor

every 10 seconds; every 10 minutes the weather station calculates average, minimum and

maximum values and inserts them into the database, from here the database logs are

uploaded to the primary UK server, from which they are used to generate the weather

statistics and graphs.

18

Figure 1.3: Tenerife Weather Station

 1.4.4 Weather Station (EasiData Mark 4)[2]

 The EasiData Mark 4 is a highly flexible data logger that until 2009 formed the core

component of Environdata’s modular weather stations. These weather stations can be

customized to suit almost any application or location, The EasiData Mark 4 can store up to

216 data types, including real time calculations on sensor inputs (eg. Current sensor

readings, means, maximums, minimums, true vector wind analysis, evaporation rate etc).

New commands can be sent to the logger at any time to reconfigure its storage operation.

The Mark 4 can be programmed to meet specific requirements now, and re-programmed

when those requirements change. An Environ data Easi Data Mark 4 Weather Station is a

robust computerized system that measures and records environmental conditions in real

time. Weather station consists of four key components, external sensors that measure

environmental parameters and transmit raw data, A data logger that 9 collects and analyses

the raw data and calculates the results before storing it into internal memories, A

communications method of the choice that transmits the stored data to any external

computer, Environ data’s software that will download and display data in preferred format.

Environ data manufactures almost 20 different types of sensors to operate with the Easi

Data system, These include: solar radiation, relative humidity, air temperature, wet and dry

bulb temperature, grass temperature, soil temperature, rainfall, wind speed, wind direction,

barometric pressure, soil moisture, radiant heat, ultra violet radiation, and Photo

synthetically active radiation. Remote Communications Equipment for project include :

GSM Remote Link (Global System for Mobile Communications), CDMA Remote Link

19

(Code Division Multiple Access),Modem Dial-Up – Via a standard phone line, UHF Radio

Link, Network Connection, or RS-232 Serial Cable Link – maximum preferred distance

100 meters, up to 5 km with line drivers.

Figure 1.4: Weather Station (Easi Data Mark)

1.4.5 Conclusion

 When the group of this project check out the related projects, they found many

differences between them. These differences can summaries as the following:

1. The weather station Project does not contain GSM modem to provide the

destination by collected data moment by moment .

2. Home Made logger of Temperature and Solar Data project has not GSM for giving

data moment by moment, and do not have the ability to provide the other

conditions of the weather like wind and direction, and humidity

3. Tenerife Weather Station project needs to connect directly to 8 a source power, so

this project not useful to be installed in isolated area to measured weather

conditions, and also it is more cost.

4. Weather Station[Easi Data Mark 4] project not contains system for rechargeable

battery, so in isolated area not useful, and also it is high cost.

20

1.5 Time Schedule

Week

Tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

System

design

Develop

ment

phase

Test

phase

Documen

tation

1.6 Cost Analysis

PART AMOUNT COST/Piece (NIS)

Arduino Mega 2 175x2

GSM/GPRS Shield 2 250x2

Jawwal SIM 2 300

Monthly pill for Jawwal - 90x2

DHT11 2 25x2

BMP180 2 25x2

Power bank 2 80x2

Wooden works - 200x2

Documintation - 70

Total 2060

21

1.7 Project Overview

 In chapter 2, system design, serves to introduce the technology and related terms used

in this thesis. Reason of choosing the sensors of the project.

 In chapter 3, talk about GPRS and its feature.

 Chapter 4,the project implementation and interfacing between the sensor of the project

and Arduino .Chapter five contain the result of testing and operating the project, the final

one contain the faced problems and recommendations .

22

CHAPTER TWO

THEORITICAL BACKGROUND

23

2.1 General Packet Radio Service(GPRS)

 2.1.1 Overview [3]

 GPRS is a data network architecture that is designed to integrate with the existing GSM

networks and offer mobile subscriber “always on” packet switched data services access to

the corporate networks and the internet.

 GPRS provides mobile operators with an opportunity to offer higher-margin data access

services to subscribers. In return subscribers benefit from GPRS by being able to use

higher band width mobile connections to the internet and corporate networks. GPRS

tunneling protocol is the protocol used by GSM or UTMS operators to convert radio

signals from subscribers into data packets, and then to transport them in non-encrypted

tunnels.

 With the addition GPRS to GSM, mobile operators are adding mobile internet and virtual

private network services to their existing mobile voice services. GPRS networks are

connected to several external data networks including those of roaming partners, corporate

customers, GPRS roaming exchange providers and the public internet.

 GPRS can be thought of as an overlay network onto a second generation GSM network.

This data overlay network provides packet data transport at rates from 9.6 to 171 kbps. In

addition, multiple users can share the same air-interface resources.

2.1.2 How Does GPRS Work?[4]

 When a user turns on a GPRS device, typically it will automatically scan for a local

GPRS channel. If an appropriate channel is detected , the device will attempt to attach to

the network. The SGSN receives the attach request, fetches subscribers profile information

from the subscribers HLR node and authenticates the user. Ciphering may be established at

this point.

2.1.3 IP Address [5]

 An Internet Protocol address (IP address) is a numerical label assigned to each device

(e.g., computer, printer) participating in a computer network that uses the Internet Protocol

for communication. [DOD Standard Internet Protocol (January 1980)] An IP address

serves two principal functions: host or network interface identification and location

addressing. Its role has been characterized as follows: "A name indicates what we seek. An

address indicates where it is. A route indicates how to get there.

 There are two types of IP addresses:

1. Static IP address, which is a unique and fixed IP address on a network.

24

2. Dynamic IP address, which is assigned by means of the dynamic host configuration

protocol every time a device starts.

2.1.4 Advantages of GPRS [6]

 GPRS is a non-voice service that provides wireless packet data access within GSM

‘’Global System for Mobile communication’’ networks. Although newer, faster mobile

technologies such as Edge; 3G (Third Generation); Universal Mobile Telecommunication

Service; and high-speed download packet access, or HSDPA access have been developed

for mobile devices, GPRS is still supported by most mobile networks.

2.2 What is Arduino? [7]

 Arduino is an open-source prototyping platform based on easy-to-use hardware and

software. Arduino provides an open-source and easy-to-use programming tool, for writing

code and uploading it to your board. It is often referred to as the Arduino IDE (Integrated

Development Environment).

 The Arduino boards are able to read inputs - light, proximity or air quality on a sensor, or

an SMS or Twitter message- and turn it into an output- activating a motor, turning on a

light, publishing content online or trigger external events. You can tell your board what to

do by writing code and uploading it to the microcontroller on it using the Arduino

programming language (based on Wiring), and the Arduino Software (IDE), based on

Processing.

 Over the years Arduino has powered thousands of projects. Arduino has gathered around

a community where beginners and experts from around the world share ideas, knowledge

and their collective experience. There are thousands of makers, students, artists, designers,

programmers, researchers, professionals and hobbyists worldwide who use Arduino for

learning, prototyping, and finished professional work production.

 Arduino was born at the Interaction Design Institute Ivrea IDII from the Wiring project

as an easy tool for fast prototyping, aimed at students without a background in electronics

and programming. The main objective of both projects is to make the process of working

with technology and electronics easier. The Arduino board has evolved to adapt to new

needs ranging from simple 8-bit boards to products ready for IoT applications. All Arduino

boards are completely open-source, empowering users to build them independently and

eventually adapt them to their particular needs. The software is open-source, and it is

growing through the contributions of developers and the Arduino community worldwide.

25

 There have been many similar projects, but none of them succeeded as well as Arduino

has, due to how easy it is to use the software, and the affordability of the hardware. The

Arduino software is easy-to-use for beginners, yet flexible enough for advanced users

needs. It runs on Mac, Windows, and Linux. This project used Arduino due to inexpensive

and flexible hardware, simple programming environment, cross-platform, open source and

extensible software Open source and extensible hardware.

2.2.1 Arduino MEGA 2560[8]

 The Mega 2560 is a microcontroller board based on the ATmega2560. It has 54 digital

input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs

(hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an

ICSP header, and a reset button. It contains everything needed to support the

microcontroller; simply connect it to a computer with a USB cable or power it with a AC-

to-DC adapter or battery to get started.

Feature

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 Ma

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Length 101.52 mm

Width 53.3 mm

Weight 37 g

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf

26

2.2.2 SIM900 GPRS/GSM Shield[9]

 The SIM900 GSM/GPRS Shield provides you a way to use the GSM cell phone network

to receive data from a remote location. The shield allows you to achieve this via any of the

three methods:

1. Short Message Service

2. Audio

3. GPRS Service

 The GPRS Shield is compatible with all boards which have the same form factor (and pin

out) as a standard Arduino Board. The GPRS Shield is configured and controlled via its

UART using simple AT commands. Based on the SIM900 module from SIMCOM, the

GPRS Shield is like a cell phone. Besides the communications features, the GPRS Shield

has 12 GPIOs, 2 PWMs and an ADC.

Figure 2.1: GPRS shield form

Feature:

1. Quad-Band 850 / 900/ 1800 / 1900 MHz - would work on GSM networks in

all countries across the world.

2. Control via AT commands - Standard Commands: GSM 07.07 & 07.05 |

Enhanced Commands: SIMCOM AT Commands.

3. Short Message Service - so that you can send small amounts of data over

the network (ASCII or raw hexadecimal).

4. Embedded TCP/UDP stack - allows you to upload data to a web server.

5. Speaker and Headphone jacks - so that you can send DTMF signals or play

recording like an answering machine.

6. SIM Card holder and GSM Antenna - present onboard.

27

7. 12 GPIOs, 2 PWMs and an ADC (all 2.8 volt logic) - to augment your

Arduino.

8. Low power consumption - 1.5mA(sleep mode).

9. Industrial Temperature Range - -40°C to +85 °C.

3.3 Programming Language [10]

 The Arduino programming language is a simplified version of C/C++. If the operator

know C, programming the Arduino will be familiar. If the operator do not know C, no need

to worry as only a few commands are needed to perform useful functions. An important

feature of the Arduino is that the operator can create a control program on the host PC,

download it to the Arduino and it will run automatically. Remove the USB cable

connection to the PC, and the program will still run from the top each time you push the

reset button. Remove the battery and put the Arduino board in a closet for six months.

When the operator reconnect the battery, the last program the operator stored will run. This

means that when the operator connect the board to the host PC to develop and debug his

program, but once that is done, the operator no longer need the PC to run the program.

3.4 SQL Database[11]

 SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to

communicate with a database. According to ANSI (American National Standards

Institute), it is the standard language for relational database management systems. SQL

statements are used to perform tasks such as update data on a database, or retrieve data

from a database. Some common relational database management systems that use SQL are:

Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Although most database

systems use SQL, most of them also have their own additional proprietary extensions that

are usually only used on their system. However, the standard SQL commands such as

"Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to accomplish

almost everything that one needs to do with a database.

 A relational database system contains one or more objects called tables. The data or

information for the database are stored in these tables. Tables are uniquely identified by

their names and are comprised of columns and rows. Columns contain the column name,

data type, and any other attributes for the column. Rows contain the records or data for the

columns.

28

3.5 AT Commands [12]

The Hayes command set is a specific command language originally developed by Dennis

Hayes for the Hayes Smart modem 300 baud modem in 1981. The command set consists of

a series of short text strings which can be combined to produce commands for operations

such as dialing, hanging up, and changing the parameters of the connection.

 AT commands are instructions used to control a modem. AT is the abbreviation of

Attention. Every command line starts with "AT" or "at". That's why modem commands are

called AT commands. Many of the commands that are used to control wired dial-up

modems, such as ATD (Dial), ATA (Answer), ATH (Hook control) and ATO (Return to

online data state), are also supported by GSM/GPRS modems and mobile phones. Besides

this common AT command set, GSM/GPRS modems and mobile phones support an AT

command set that is specific to the GSM technology, which includes SMS-related

commands like AT+CMGS (Send SMS message), AT+CMSS (Send SMS message from

storage), AT+CMGL (List SMS messages) and AT+CMGR (Read SMS messages).Note

that the starting "AT" is the prefix that informs the modem about the start of a command

line. It is not part of the AT command name. For example, D is the actual AT command

name in ATD and +CMGS is the actual AT command name in AT+CMGS. However,

some books and web sites use them interchangeably as the name of an AT command.

 There are two types of AT commands: basic commands and extended commands; Basic

commands are AT commands that do not start with "+". For example, D (Dial), A

(Answer), H (Hook control) and O (Return to online data state) are basic commands,

Extended commands are AT commands that start with "+". All GSM AT commands are

extended commands. For example, +CMGS (Send SMS message), +CMSS (Send SMS

message from storage), +CMGL (List SMS messages) and +CMGR (Read SMS messages)

are extended commands.

3.5.1 Here are some of the tasks that can be done using AT commands with a GSM/GPRS

modem or mobile phone:

1. Get basic information about the mobile phone or GSM/GPRS modem. For

example, name of manufacturer (AT+CGMI), model number (AT+CGMM), IMEI

number (International Mobile Equipment Identity) (AT+CGSN) and software

version (AT+CGMR).

29

2. Get basic information about the subscriber. For example, MSISDN (AT+CNUM)

and IMSI number (International Mobile Subscriber Identity) (AT+CIMI).

3. Get the current status of the mobile phone or GSM/GPRS modem. For example,

mobile phone activity status (AT+CPAS), mobile network registration status

(AT+CREG), radio signal strength (AT+CSQ), battery charge level and battery

charging status (AT+CBC).

4. Establish a data connection or voice connection to a remote modem (ATD, ATA,

etc).

5. Send and receive fax (ATD, ATA, AT+F*).

6. Send (AT+CMGS, AT+CMSS), read (AT+CMGR, AT+CMGL), write

(AT+CMGW) or delete (AT+CMGD) SMS messages and obtain notifications of

newly received SMS messages (AT+CNMI).

7. Read (AT+CPBR), write (AT+CPBW) or search (AT+CPBF) phonebook entries.

8. Perform security-related tasks, such as opening or closing facility locks

(AT+CLCK), checking whether a facility is locked (AT+CLCK) and changing

passwords (AT+CPWD).

9. Control the presentation of result codes / error messages of AT commands. For

example, you can control whether to enable certain error messages (AT+CMEE)

and whether error messages should be displayed in numeric format or verbose

format (AT+CMEE=1 or AT+CMEE=2).

10. Get or change the configurations of the mobile phone or GSM/GPRS modem. For

example, change the GSM network (AT+COPS), bearer service type (AT+CBST),

radio link protocol parameters (AT+CRLP), SMS center address (AT+CSCA) and

storage of SMS messages (AT+CPMS).

11. Save and restore configurations of the mobile phone or GSM/GPRS modem. For

example, save (AT+CSAS) and restore (AT+CRES) settings related to SMS

messaging such as the SMS center address.

 Note that mobile phone manufacturers usually do not implement all AT commands,

command parameters and parameter values in their mobile phones. Also, the behavior of

the implemented AT commands may be different from that defined in the standard. In

general, GSM/GPRS modems designed for wireless applications have better support of AT

commands than ordinary mobile phones.

30

 In addition, some AT commands require the support of mobile network operators. For

example, SMS over GPRS can be enabled on some GPRS mobile phones and GPRS

modems with the +CGSMS command (command name in text: Select Service for SMS

Messages). But if the mobile network operator does not support the transmission of SMS

over GPRS, the user cannot use this feature.

31

CHAPTER THREE

SYSTEM DESIGN

32

This system has been designed during to the need of the global metrological center, the

need of local Palestinian metrological center and the need for a scalable expanded weather

station networks, these needs are as the following:

3.1 Recognition of the need

 3.1.1 Need of global metrological center

 Until the adoption of the readings of the weather variables from each station by the

World Meteorological Organization :

 It must be the state that you want to send readings to the variables of the weather in the

World Meteorological Organization member.

The ability of local meteorological readings on encryption that has been get from the

monitoring stations, especially the Global Meteorological Organization language and be in

different formats such as BUFR, CREX.

Weather Data takes every three hours Coordinated Universal Time (GMT).

 International standards to build a weather station:

1. The Rain gauge of the station is placed at a height of 50 cm to 80 cm from the

surface of the earth.

2. Temperature and humidity sensors have to be in a box in order to measure the

temperature and humidity properly without external influences ,the Box of

these sensors rises from the earth's surface from 1 meter to 2 meters.

3. Pressure sensor have to be placed in a closed box.

4. The stations set in an open area but if it placed in a close area each station must

have an empty area that equal three time of the station height.

 3.1.2 Need of local Palestinian metrological center

 The weather variables that the Palestinian Meteorological is interested to measures

are temperature, humidity, atmospheric pressure, wind speed and direction and amount of

rainfall and the intensity of the brightness of the sun.

 Palestinian Meteorological distributes there stations on Jenin, Tulkarm, Qalqilya, Nablus,

doma, Jericho, Kardala, Ramallah, Ni'lin, Bethlehem and Hebron.

33

 These stations are controlled remotely with a center to receive data from all stations by

sending data through text messages up to the main center by using a data logger to

collection all variables measurement and send these data variables to the main center .

Table 3.1 The highest and lowest value registered climatic element in Palestine .

3.2 The need for scalable expanded weather station networks:

1. Increasing the density of an existing network by providing data from new sites and

from sites that are difficult to access and inhospitable regions.

2. Supplying, for manned stations, data outside the normal working hours.

3. Increasing the reliability of measurements by using sophisticated technology and

modern, digital measurement techniques.

4. Ensuring the homogeneity of networks by standardizing the measuring techniques.

5. Satisfying new observational needs and requirements.

6. Reducing human errors.

7. Lowering operational costs by reducing the number of observers.

Minimum

Maximum

Variables

-10C +50.5C Temperature

0 57 a node (114 km / h) wind speed

2% 100%
Relative

Humidity

848 1064.4(hpa)
Atmospheric

pressure

0

The highest amount of daily

precipitation)123mm)

the rain

34

3.3 Project Equipment

3.3.1 Arduino Mega 2560 [13]

 There are many version of Arduino, they are differ in structure and tasks. In this project

Arduino mega 2560 is used; it has 54 digital input/output pins (of which 15 can be used as

PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a USB connection, and

a reset button. It contains everything needed to support the microcontroller; simply connect

it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get

started. The Mega 2560 board is compatible with SIM 900 GSM/GPRS shields.

Figure 3.1: Arduino Mega 2560

3.3.2 SIM 900 GSM/GPRS Shield

 There are different type of GPRS modems , that differs in the interface and module types.

 In this project the SIM900GSM/GPRS shield will used due to its capability of supporting

the AT commands that are needed to make the connection between the Arduino and the

shield; it is used also to communicate with the server. In addition this SIM has an low

power consumption.The maximum output current is 450 mille ampere and the maximum

output voltage is 5.2 volts which can be used to power some external functions such as

sensors.

35

Figure 2.2: SIM900 GSM/GPRS shield

3.3.3 Temperature and Humidity Sensor

This project use DHT11 to measure temperature and humidity; that’s because of its

availability as first reason, its more accurate than other available temperature and humidity

sensors in Palestine and it has low price. Maximum output power is 5.5 volts .

Figure 2.3: DHT11

36

3.3.4 Pressure Sensor

 In this project BMP barometric pressure sensor is used to measure the pressure.

 This sensor used for its low price. Maximum output power is 5 volts. It is measure the

ranges of the local pressure also.

Figure 2.4: BMP180

37

2.4 Conceptual design

Figure 2.5: conceptual design of weather stations system based on WSN.

sensors

Temperature

Pressure

Humidit

sensors

 Temperature

Humidity

Pressure

Server(receive ,display and

disseminate data to users)

USER USER
USER

GSM/GPRS Modem

GSM /GPRS Modem

Microcontroller (A/D)

(Arduino Mega)

Microcontroller(A/D)

(Arduino Mega)

Power bank Power bank

Power supply (DC)

38

 The main aim of this design is weather station with scalable property. The conceptual

design of a weather station consists of a microcontroller(Arduino) to processing of signals

weather parameters. And sensors to measure weather parameter by using temperature, and

humidity sensor to treat the temperature and humidity signal, wind speed and direction

sensor to measure a speed and direction of the wind-as future sight-, rain gauge sensor to

measure the amount of rain fall-as future sight- these sensor enter to the microcontroller

that convert the analog signal that come from weather to digital signal to make the

connection to the other devices that dealing with digital signal allowable; servers may be

used to disseminate the information of each station.

 GSM/GPRS connected with microcontroller to send a processing data to main center

(Server) that update and storage these data. The component get a power from power source

likes DC source(we choose power bank to this tasks) .

The main center (Server) of this design will receive data of all stations save it, choose the

appropriate way to display this data and send it to the server in order to facilitate reaching

to these information.

2.5 The Server

 It’s the main point of the system .It will have all instruction that control the displaying

and disseminating the data. It will have a special software that will allow the operator to

monitor and control the network .The software mainly contain a database and GUI.

The system can be partially controlled from any where.

Figure (2.6) the basic component of the Server

2.6 Software Design

 The node types in the system are the same .Each one of them has its parameter. The

software will be able to identify these parameters of each sensor in all nodes-that

distribute in many places-.

Database GPRS

Modem

Software

39

2.6.1 The main tasks of the server

 One of the main tasks of the software is establishing the connection with GPRS modem

at each node; this achieved by AT commands .

This software collect the data about weather variables from all nodes and store it in the

corresponding database.

The program gives the users the ability of adding a new nodes with all information that

specifies this node to the software when needed (as the following flowchart shown).

Figure 2.7: Adding new node to the system flowchart

2.6.2 Database

 A database will be needed as an archive. This archive will have the history of each node

that contain the existing weather variables. Adding and updating data will depend on the

defined variables at two sides (Arduino and server); the new data will be update the old

one. The time and the date will be update with every new reading.

 At server the reading of temperature, humidity and pressure are saving as new data in

database.

 The code of the software of the database will contain some equations over the time and

weather variables reading in order to give the users updating data every ten minutes and

averaging data every three hours.

Start

Enter area name of the

node

Click on add

Enter the weather

variables of the new node

End

40

 There is a specific admin that control the network of the node and the normal users just

see the results.

2.6.3 The Microcontrollers Software(Arduino IDE)

 The software of the project microcontroller (Arduino IDE) will make the Arduino

capable of receiving data from all sensors treat it and send these readings to the server.

 As advanced step this software can make any calculations that the operators need.

Each node in the system will have an Arduino that perform different operations

depending on the sensors that connecting with it and what the operator want-that

depending on the needs of the users-.

 When the operator want to add a new node he will need to the following flowchart to

connect the Arduino with the Modem.

 NO

 Yes

First of all in each node, the Arduino needs to setup a connection with the GPRS modem

by using AT commands the Arduino initiate the connection; if the connection succeeds

then a LED indicator will turn on as a notification then the Arduino will wait an

instructions or events from modem or sensors.

Start

Setup the modem

connection

Turn on indicator

LED

Connected?

Wait for

event

End

41

CHAPTER FOUR

SYSTEM IMPLEMENTATION

42

4.1 Interfacing Circuits:

 Arduino Mega is the main component used to process the signals it receives from the

sensors, these signals describes the condition of the weather at each node. To make the

Arduino be able to read the input signals correctly and respond accordingly different

interfaces circuits will be used to connect these sensors with the Arduino.

 Arduino programming language is used to write the different program of different

sensors.

4.1.1 Interfacing circuit between Arduino and Temperature & Humidity Sensor

(DHT11):

 This sensor is used for measure the temperature and the humidity of the weather.

The sensor connected with Arduino as shown in the following circuit :

Figure 4.1: The interfacing circuit used to connect Arduino with DHT11

43

The connection in reality shown below :

Figure 4.2: Arduino with DHT11

The code of interfacing between Arduino and DHT11-it is used for testing also- is :

44

4.1.2 Interfacing circuit between Arduino and Pressure Sensor (BMP180)

 This sensor is used for measure the pressure of the weather.

The BMP180 sensor has been connected to the Arduino as shown in the following circuit:

Figure 4.3: The interfacing circuit used to connect Arduino with BMP180

The connection in reality shown below :

Figure 4.4: Arduino with BMP180

4.1.3 Interfacing Circuit between Arduino and SIM900 GSM/GPRS Shield

 This shield is used for send all data to the server.

The SIM900 GSM/GPRS Shield has been connected to the Arduino as shown in the

following figures :

45

Figure 4.5: The interfacing circuit used to connect Arduino with SIM900

The connection in reality shown below :

Figure 4.6: Arduino with SIM900 GSM/GPRS Shield

46

4.2 Interfacing codes

4.2.1 Code of interfacing between Arduinu and DHT11

#include <dht.h> //the library of the DHT11 that must downloaded by the user.

dht DHT; //declare a public variable that contained in dht11 library.

#define DHT11_PIN 3 // DHT11 signal pin

void setup(){

 Serial.begin(19600);

}

void loop()

{

 int chk=DHT.read11(DHT11_PIN); //get the reading from DHT11 pin

 Serial.print("TEM="); //print on serial monitor ‘’TEM=’’

 Serial.println(DHT.temperature); //print in new line the value of temperature

 Serial.print("hum="); //print on serial monitor ‘’hum=’’

 Serial.println(DHT.humidity); //print in new line the value of humidity

 delay(1000); //wait one second before get another reading

}

47

4.2.2 Code of interfacing between Arduinu and BMP180

#include <SFE_BMP180.h> // Your sketch must #include this library, and the Wire library.

#include <Wire.h> // (Wire is a standard library included with Arduino.):

SFE_BMP180 pressure; // You will need to create an SFE_BMP180 object, here called "pressure":

#define ALTITUDE 990.0 // Altitude of SparkFun's HQ in Boulder, CO. in meters

void setup()

{

 Serial.begin(9600);

 if (pressure.begin())//check if the sensor initialized or not

 Serial.println("BMP180 init success");//print “BMP180 init success” if the initialization success.

 Else

 {

 Serial.println("BMP180 init fail\n\n");//if the initialization not success print “BMP180 init fail”

 while(1); // Pause forever.

 }

}

void loop()

{

 char status;//declare a variable

 double T,P,p0,a;//declare variable

 status = pressure.startTemperature();

 if (status != 0)

 {

 delay(status); // Wait for the measurement to complete:

Serial.print(T);

 // Retrieve the completed temperature measurement. Note that the measurement is stored in the variable

T.Function returns 1 if successful, 0 if failure.

 status = pressure.getTemperature(T);

 if (status != 0)

 {

 Serial.print("temperature: ");// Print out the measurement:

 Serial.print(T,2);

 status = pressure.startPressure(3);

 if (status != 0)

 {

delay(status); // Wait for the measurement to complete:

// Retrieve the completed pressure measurement, Note that the measurement is stored in the variable P. Note

also that the function requires the previous temperature measurement (T), (If temperature is stable, you can do

one temperature measurement for a number of pressure measurements.)

function returns 1 if successful, 0 if failure.

status = pressure.getPressure(P,T);

 if (status != 0)

 {

 Serial.print("absolute pressure: "); // Print out the measurement:

 Serial.print(P,2);

 Serial.print(" mb, ");

 } else Serial.println("error retrieving pressure measurement\n");

 } else Serial.println("error starting pressure measurement\n");

 }else Serial.println("error retrieving temperature measurement\n");

 } else Serial.println("error starting temperature measurement\n"); delay(5000); // Pause for 5 seconds.

}

48

4.3 More Details About Web server

4.3.1 Introduction

There are a few basic terms need to understand at the beginning such web page, site ,and

sever, since these expressions are heard all the time. It is easy to confuse these terms

sometimes, since they refer to related but different functionalities. In fact, sometimes these

terms misused in news reports and elsewhere, so getting them mixed up is understandable!

1. web page

 A web page is a simple document displayable by a browser. Such document is written in

the HTML language. A web page can embed a variety of different types of resources such

as:

a. style information — controlling a page's look-and-feel

b. scripts — which add interactivity to the page

c. media — images, sounds, and videos.

2. A website

 A website is a collection of linked web pages (plus their associated resources) that

share a unique domain name. Each web page of a given website provides explicit

links—most of the time in the form of clickable portion of text—that allow the user to

move from one page of the website to another. To access a website, type its domain

name in your browser address bar, and the browser will display the website's main web

page, or homepage (casually referred as "the home"):

3. Web server

A web server is a computer hosting one or more websites. "Hosting" means that all the web

pages and their supporting files are available on that computer. The web server will send

any web page from the website it is hosting to any user's browser, per user request.

4. Database

 A database is an organized collection of data. The data is typically organized to model

aspects of reality in a way that supports processes requiring information. For example,

modeling the availability of rooms in hotels in a way that supports finding a hotel with

vacancies.

49

4.3.2 Save data to database

While broadcasting data over a dedicated web page ,it is useful to store data from

connected sensors. This way enable to monitor live data, and to get historic information. It

also allows to capture data from multiple data input devices and display them at any time

and any way. Even though this could also be done with a dedicated web page by adding a

little more code to your Arduino, it is easier to store it to a database and create a web page

(or user interface) that reads data from the database.

4.3.2.1 SQL Database

SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to

communicate with a database. According to ANSI (American National Standards

Institute), t is the standard language for relational database management systems. SQL

statements are used to perform tasks such as update data on a database, or retrieve data

from a database. Some common relational database management systems that use SQL are:

Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Although most database

systems use SQL, most of them also have their own additional proprietary extensions that

are usually only used on their system. However, the standard SQL commands such as

"Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to accomplish

almost everything that one needs to do with a database.

 A relational database system contains one or more objects called tables. The data or

information for the database are stored in these tables. Tables are uniquely identified by

their names and are comprised of columns and rows. Columns contain the column name,

data type, and any other attributes for the column. Rows contain the records or data for the

columns.

4.3.2.2 Creation of SQL database

To create a web sql ,one thing should be available :

1. Online website hosting: a web hosting will be need to run php and mysql

database(like cpanel).

2. Local server environment like XAMP.

50

The main difference between them that the first one has a real ip address

4.3.2.3 Prepare the database

If web database service running is available or XAMPP installed just log into

phpMyAdmin interface to create a new database.

Figure 4.7: phpMyAdmin interface

Under the tab “Databases” create a new database. Pick a name and collation (depending on

your keyboard localization, or you can leave it as is) and press “Create”.

Figure 4.8: How to create a new database

When you create the database select the tab “Privileges”, from the tab menu.

51

Next need to create a user that will have access to the database. Press “Add user” and in

the new menu enter a username and a password for the user that we are going to use for

database access. other fields could be blank, but the checkbox Grant all privileges on

database

Figure 4.9: How to create a user that will have access to the database

We need a new table that we are going to write data to. Choose “SQL” from the tab menu:

 Put in this code and press “Go”.

CREATE TABLE 'test'.'sensor' ('id' INT NOT NULL AUTO_INCREMENT PRIMARY

KEY, 'time' TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, 'value'

VARCHAR(10) NOT NULL)

52

4.3.2.4 Create files that will capture data sent from Arduino and write it to database

 The easiest way to get data from Arduino to your database is to use php and HTTP GET

request method.

GET – Requests a representation of the specified resource. Requests using GET should

only retrieve data and should have no other effect.

Basically, GET is used for sending limited amount of data to a webpage, ie. a GET request

looks like this:

http://www.yourwebpage.com/write_data.php?data1=value1;data2=value2;data3=value3...

Still this doesn’t write data directly into the database, so php file(for example, the

“write_data.php” file) should be made to receive data from Arduino which will write data

to database.

4.4 conceptual design of the server

Figure 4.10: conceptual design of the server

Hardware

Arduino

+

Sim900

Php

get

Page

file

Data

Base

php

view

file

weather.ppu.edu

 Web

browser

Http URL Get request

request

Insert to data base Select from database

Send by Http to a web

53

4.4.1 The PHP application consists of 4 main files:

 conn_db.php: this file is loaded every time we need to access to the database. It's loaded

in the beginning of the almost each file. It contains a function that returns a new

connection to be used by the PHP to execute query's to the DB. You need to store the DB

configurations (hostname, database, user, password) in this file.

4.4.2 receive_data_GET.php

 when the Arduino sends GET requests to the server, The PHP receives the values sent in

the request and executes an insertion query with those values.

<?php

include "config.php";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

} ?>

54

<?php

$location = $_GET['location'];

$temperature = $_GET['temperature'];

$humidity = $_GET['humidity'];

$pressure = $_GET['pressure'];

$password = $_GET['password'];

/*$all_date =date("y-m-d h:i:s");

$format_date = new Datetime($all_date);

$date_day=$format_date->format('Y-m-d');

$hour=$format_date->format('h');

$minute=$format_date->format('i');*/

if($password=="123123"){

include "conn_db.php";

$sql="INSERTINTOparometers(location,temperature,humidity,pressure)VALUES

('".$location."','".$temperature."','".$humidity."','".$pressure."')";

if ($conn->query($sql) === TRUE

{echo "New record created successfully";} else {echo "Error: " . $sql . "
" .

$conn->error;}

$conn->close();

}else{echo "error password";}

//http://localhost/js-html/ppu-

weather/receive_data_GET.php?location=location1&password=123123&temperat

ure=32&humidity=10&pressure=1000

?>

55

4.4.3 index.php

this is the website landing page. It displays the values that are stored in the database on a

web browser

<?php

// Start the session

session_start(); ?>

<?php include 'header.php'; ?>

<?php include 'function.php';?>

<form action="index.php" method="post">

<div class="component">

</br>

<div style="width:89%; display:inline-block;">

<?php $date_top =date("y-m-d h:i:s");

$datea_top = new Datetime($date_top);

echo $datea_top->format('D d-m-Y')?>

</div>

<divstyle="width:10%; display:inline-block;">

 0:0:0

</div>
</br>

 <select name="location" class="button1" onchange="this.form.submit()" >

 <option value="location1" <?php if ($_POST["location"]=="location1") echo

"selected";?> >Building B</option>

 <option value="location2" <?php if ($_POST["location"]=="location2") echo

"selected";?> >Building C</option>

 </select>

56

<?php

 (isset($_POST['location']))

$location = $_POST['location'];

 }else{$location="location1";?>

<div class="sticky-wrap">

<table class="table2" style="margin: auto; width: 80%;">

<caption>Current Measurments</caption><tr>

<th>Temperature (C ْ)</th>

<th>Temp Max (C ْ)</th>

<th>Temp Min (C ْ)</th>

<th>Humidity (%)</th>

<th>Pressure (hpa)</th>

</tr><tr><td><?php current_temp($location); ?></td>

<td><?php temp_max($location); ?></td>

<td><?php temp_min($location); ?></td>

<td><?php current_hum($location); ?></td>

<td><?php current_pre($location); ?></td></tr>

</table> <table class="table2" style="margin:auto; width: 80%;"<caption>Average In the

last 3 Hours</caption><tr>

<th>Temperature (C ْ)</th><th>Humidity (%)</th><th>Pressure (hpa)</th></tr>

<tr><td><?php cal_average_temp($location); ?></td><td><?php

cal_average_hum($location); ?></td><td><?php cal_average_pre($location);

?></td></tr></table></div>
</br>

<select name="data_charting" class="button1" onchange="this.form.submit()"><option

value="temperature" <?php if ($_POST["data_charting"]=="temperature") echo

"selected";?>>Temperature</option>

 //**

var charttemp = new CanvasJS.Chart("chartContainer_one", {theme:

"theme4",zoomEnabled: true,title: {

 text:<?php echo

"\"".$locations_dic[$location]." - ".$data_charting." - ".$interval_dic[$interval]."\""

?>},animationEnabled: true,animationDuration: 2000,data: [{

type: "line" ,/* "column" "area" "bar" "spline" "pie" "line" */

 dataPoints:<?php generate_dataPoints($location,$data_charting,$interval);

?>}]});charttemp.render();}</script></form>

<?php include "footer.php"; ?>

57

<option value="humidity" <?php if ($_POST["data_charting"]=="humidity") echo

"selected";?>>Humidity</option>

<option value="pressure" <?php if ($_POST["data_charting"]=="pressure") echo

"selected";?> >Pressure</option> </select>

<?php

if(isset($_POST['data_charting'])) $data_charting = $_POST['data_charting'];

}else{$data_charting="temperature";}?>

<select name="interval" class="button1" onchange="this.form.submit()">

<option value="day" <?php if ($_POST["interval"]=="day") echo "selected";?> >Last

Day</option>

<option value="week" <?php if ($_POST["interval"]=="week") echo "selected";?>>Last

Week</option>

<option value="month" <?php if ($_POST["interval"]=="month") echo "selected";?>>Last

Month</option>

<option value="year" <?php if ($_POST["interval"]=="year") echo "selected";?>>Last

Year</option>

</select<?php if(isset($_POST['interval'])){

$interval = $_POST['interval'];}

else{$interval="day";?> <!—

<input type="submit" class="button2" name="submit_history" value=" History "/

<?php if ($_SERVER['REQUEST_METHOD'] === 'POST') {

if (isset($_POST['submit_history'])) {$fun_type="history"} }else {$fun_type="history";}?>-

->

<div id="chartContainer_one" style="height: 250px; width: 80%;margin: auto;border-radius:

18px;"></div>

">

58

4.4.4 Function.php

 This file performs any operation on the stored data, such as determine the average or

maximum or minimum of a given data within a cretin period .

<?php

$locations_dic=array("location1"=>"Building B","location2"=>"Building C");

$interval_dic=array("day"=>"LastDay","week"=>"LastWeek","month"=>"LastMonth","year"=>

"Last Year");?><script type="text/javascript">

window.onload = function() {

 //**

var charttemp = new CanvasJS.Chart("chartContainer_one", {theme: "theme4",zoomEnabled:

true,title: {

text:<?php echo "\"".$locations_dic[$location]."-".$data_charting." -

".$interval_dic[$interval]."\"" ?>},animationEnabled: true,animationDuration: 2000,data: [{

type: "line" ,/* "column" "area" "bar" "spline" "pie" "line" */

 dataPoints:<?php generate_dataPoints($location,$data_charting,$interval);

?>}]});charttemp.render();}</script></form>

<?php include "footer.php"; ?>

59

<?php

function generate_dataPoints($location,$data_showing,$interval){

//$data_showing==> temperature - humidity - pressure

//$interval ==> day , week, year

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' and

current_time_stamp >= (CURDATE() - INTERVAL 1 ".$interval.")";$result = $conn-

>query($sql); $data_points="[";

 if ($result->num_rows > 0) {

while($row = $result->fetch_assoc()) {

$data_points=$data_points."{y:".$row[$data_showing].",label:

\"".$row["current_time_stamp"]."\"},";}}

$data_points=$data_points."]";

$conn->close();

echo $data_points;

/*

$data_points="[{ y: 12, label: \"10:00 am\" },

 { y: 31, label: \"11:00 am\" },

 { y: 3, label: \"12:00 pm\" },

 { y: 46, label: \"01:00 pm\" },

 { y: 30, label: \"02:00 pm\" },

 { y: 14, label: \"03:00 pm\" },

 { y: 24, label: \"04:00 pm\" },

 { y: 45, label: \"05:00 pm\" },

 { y: 20, label: \"06:00 pm\" },

 { y: 45, label: \"07:00 pm\" },

 { y: 45, label: \"08:00 pm\" },

 { y: 45, label: \"09:00 pm\" },

 { y: 45, label: \"10:00 pm\" },

 { y: 45, label: \"11:00 pm\" },

 { y: 20, label: \"12:00 am\" },

 { y: 45, label: \"01:00 am\" },

 { y: 33, label: \"02:00 am\" },

 { y: 32, label: \"03:00 am\" },

 { y: 23, label: \"04:00 am\" },

60

{ y: 45, label: \"01:00 am\" },

 { y: 33, label: \"02:00 am\" },

 { y: 32, label: \"03:00 am\" },

 { y: 23, label: \"04:00 am\" },

 { y: 23, label: \"05:00 am\" },

 { y: 23, label: \"06:00 am\" },

 { y: 15, label: \"07:00 am\" },

 { y: 45, label: \"08:00 am\" },

 { y: 45, label: \"09:00 am\" },]";

*/

}function cal_average_temp($location){

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' and

current_time_stamp >= (CURDATE() - INTERVAL 3 HOUR)";

 $result = $conn->query($sql);

 $average=0;

 $total=0;

 $count=0;

 if ($result->num_rows > 0)

 {

 while($row = $result->fetch_assoc()) {

 $total+=(int)$row["temperature"];

$count+=1;}$average=$total/$count;}echo (int)$average;

$conn->close();}

function cal_average_hum($location){

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' and

current_time_stamp >= (CURDATE() - INTERVAL 3 HOUR)";

61

 $result = $conn->query($sql);

 $average=0;

 $total=0;

 $count=0;

 if ($result->num_rows > 0)

 {while($row = $result->fetch_assoc()) {

 $total+=(int)$row["humidity"];$count+=1;}

$average=$total/$count;

 }echo (int)$average;

 $conn->close();}

function cal_average_pre($location){

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' and

current_time_stamp >= (CURDATE() - INTERVAL 3 HOUR)";

$result = $conn->query($sql);

 $average=0;

 $total=0;

 $count=0;

 if ($result->num_rows > 0)

 {while($row = $result->fetch_assoc()) {

 $total+=(int)$row["pressure"];

 $count+=1;}

$average=$total/$count;

 }

echo (int)$average;$conn->close();}function current_temp($location)

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' ORDER BY

current_time_stamp DESC LIMIT 1 ";

$result = $conn->query($sql);$temp="";

62

 if ($result->num_rows > 0)

 { $row = $result->fetch_assoc(); $temp=$row["temperature"];

 }

echo $temp;$conn->close();}

function current_hum($location){

//echo $location;include "conn_db.php";

 $sql = "SELECT * FROM parometers where location='".$location."' ORDER BY

current_time_stamp DESC LIMIT 1 ";

$result = $conn->query($sql);

$hum="";

if ($result->num_rows > 0) {$row = $result->fetch_assoc();$hum=$row["humidity"];}

echo $hum;$conn->close();}

function current_pre($location){

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' ORDER BY

current_time_stamp DESC LIMIT 1 ";

 $result = $conn->query($sql);

 $pre="";

 if ($result->num_rows > 0)

 {

 $row = $result->fetch_assoc();

 $pre=$row["pressure"];}echo $pre;

 $conn->close();}

function temp_max($location){

include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' and

current_time_stamp >= (CURDATE() - INTERVAL 1 DAY)";

$result = $conn->query($sql);

$max_temp=-50;

 if ($result->num_rows > 0)

 while($row = $result->fetch_assoc())

 {

63

4.5 What is HTTP?

 The Hypertext Transfer Protocol (HTTP) is designed to enable communications between

clients and servers. HTTP works as a request-response protocol between a client and

server.

A web browser may be the client, and an application on a computer that hosts a web site

may be the server.

{

 while($row = $result->fetch_assoc())

 {

 if((int)$row["temperature"]>$max_temp)$max_temp=(int)$row["temperature"];}}$

conn->close();

echo $max_temp;

}function temp_min($location){

 include "conn_db.php";

$sql = "SELECT * FROM parometers where location='".$location."' and

current_time_stamp >= (CURDATE() - INTERVAL 1 DAY)";

 $result = $conn->query($sql);

 $min_temp=100;

 if ($result->num_rows > 0)

 {while($row = $result->fetch_assoc())

 {

 if((int)$row["temperature"]<$min_temp)$min_temp=(int)$row["temperature"];}

 }

 $conn->close();

echo $min_temp;

}

64

 Example: A client (browser) submits an HTTP request to the server; then the server

returns a response to the client. The response contains status information about the request

and may also contain the requested content.

There are Two HTTP Request Methods: GET and POST

Two commonly used methods for a request-response between a client and server are: GET

and POST.

1. GET - Requests data from a specified resource

2. POST - Submits data to be processed to a specified resource

 GET POST

Bookmarked Can be bookmarked Cannot be bookmarked

BACK

button/Reload

Harmless Data will be re-

submitted (the browser

should alert the user

that the data are about

to be re-submitted)

Cached Can be cached Not cached

Encoding type application/x-www-form-urlencoded application/x-www-

form-+urlencoded or

multipart/form-data.

Use multipart encoding

for binary data

History Parameters remain in browser history Parameters are not

saved in browser

history

Restrictions on data

length

Yes, when sending data, the GET method

adds the data to the URL; and the length

of a URL is limited (maximum URL

length is 2048 characters)

No restrictions

65

Restrictions on data

type

Only ASCII characters allowed No restrictions. Binary

data is also allowed

Security GET is less secure compared to POST

because data sent is part of the URL

Never use GET when sending passwords

or other sensitive information!

POST is a little safer

than GET because the

parameters are not

stored in browser

history or in web server

logs

Visibility data is visible to every one in the URL Data is not displayed in

the URL

66

CHAPTER FIVE

RESULT AND PERFORMANCE

67

The group of this project made the component testing under different enviroments to make

sure from its validity; these testings are take a place in this chapter.

5.1 DHT11 Testing

Figure 5.1: DHT11 Testing at room environment

Figure 5.2: DHT11 Testing outside

68

5.2 BMP180 Testing

Figure 5.3: BMP testing inside

Figure 5.4: BMP180 testing outside

69

5.3 SIM900 GSM/GPRS Shield Testing

Figure 5.5: SIM900 GSM/GPRS Shield Testing

5.4 Results of the system

After assembling all components and codes the group reached to their requirement that this

project made for.

By putting the code of hole system-that shown in the appendix D- and operate it, the group

reach to many results that are displayed in the following pictures .

The first one show the readings that reaches to the database of the server from the first

location.

Figure 5.6: Database of the first location

70

The second shows the readings that reach to the database of the server from the second

location.

Figure 5.7: Database of the second location

The last two pictures show the site that the users reached to; to know the condition of the

weather in any place they want without any effort.

71

Figure 5.8: The site of the project

72

CHAPTER SIX

Conclusion and Recommendations

73

6.1 Problems

Many problems, challenges, and issues have been raised during the work on the project.

Many experiments, ideas and researches have been carried out to deal with different

problems, some of these problems are :

1. The availability of more accurate and appropriate sensors to the project.

2. Problems while establishing GPRS communication; due to the limitation on the

frequency band imposed on the local mobile networks that cause a low coverage in

the GPRS service.

6.2 Acquired Learning Outcomes

1. We have learnt how to deal with Arduino as hardware and as software.

2. We have learnt some basics of database building.

3. We have learnt how to interface the Arduino with different type of sensors and with

GPRS module.

4. We have learnt the ways of solving problems.

6.3 Recommendations

At the end some ideas can added to develop or extend this project; by remembering that

this project is scalable and can contains a huge number of node:

1. Using solar cell for each node is a good idea.

2. Using more precise sensors as much as possible.

74

REFRENCES

75

 [1] http://www.robotroom.com/Weather-Station.html

[2] http://www.environmental-expert.com/products/environdata-easidata-mark-4-183915

[3]A.Sicher, R.Heaton GPRS technology overview,Dell computer Corporation,2002

[4] Yokogawa Electric Corporation, SCADA –RTU Communication Using GPRS,

http://www. Yokogawa.com.

[5] Internet Protocol – DARPA Internet Program Protocol Specification (September 1981)

[6] The University of New South Wales: GPRS Optimization, Telenor: GPRS FAQ,

Networks and Telecommunications Research Group: GPRS, RTX: GSM/GPRS

Technology, India Parenting: Why Enable GPRS on Your Mobile Phone.

[7] http://www.arduino.org/learning/getting-started/what-is-arduino

 [8] http://www.ti.com/lit/ds/symlink/lm35.pdf

[9]http://www.dx.com/p/geeetech-bmp085-breakout-barometric-pressure-sensor-for-

arduino-red-369740#.Vy0X_tKDGko

 [10] Arduino Microcontroller Guide W. Durfee, University of Minnesota ver. oct-2011

[11] http://www.sqlcourse.com

[12] http://www.developershome.com/sms/atCommandsIntro.asp

[13] https://www.arduino.cc/en/Main/ArduinoBoardMega2560

http://www.robotroom.com/Weather-Station.html
http://www.environmental-expert.com/products/environdata-easidata-mark-4-183915
http://www.gmat.unsw.edu.au/snap/work/2003/cr17-03proj.pdf
http://www.telenor.rs/en/Consumer/Services/GPRS/FAQ/
http://ntrg.cs.tcd.ie/undergrad/4ba2.01/group1/gprs.htm
http://www.rtx.dk/Default.aspx?ID=899
http://www.rtx.dk/Default.aspx?ID=899
http://www.indiaparenting.com/gadgets-and-gizmos/306_1875/why-enable-gprs-on-your-mobile-phone.html
http://www.ti.com/lit/ds/symlink/lm35.pdf
http://www.dx.com/p/geeetech-bmp085-breakout-barometric-pressure-sensor-for-arduino-red-369740#.Vy0X_tKDGko
http://www.dx.com/p/geeetech-bmp085-breakout-barometric-pressure-sensor-for-arduino-red-369740#.Vy0X_tKDGko
http://www.developershome.com/sms/atCommandsIntro.asp
https://www.arduino.cc/en/Main/ArduinoBoardMega2560

76

Appendices

77

Appendix A

DHT11 Humidity &Temperature Sensor

D-Robotics UK (www.droboticsonline.com)

DHT11 Temperature & Humidity Sensor
features a temperature & humidity sensor
complex with a calibrated digital signal
output.

D-
Robot
ics
7/30/2
010

DHT 11 Humidity & Temperature
Sensor

1. Introduction

This DFRobot DHT11 Temperature & Humidity Sensor features a temperature &

humidity sensor complex with a calibrated digital signal output. By using the exclusive

digital-signal-acquisition technique and temperature & humidity sensing technology, it

ensures high reliability and excellent long-term stability. This sensor includes a resistive-

type humidity measurement component and an NTC temperature measurement

component, and connects to a high-performance 8-bit microcontroller, offering excellent

quality, fast response, anti-interference ability and cost-effectiveness.

Each DHT11 element is strictly calibrated in the laboratory that is extremely accurate on

humidity calibration. The calibration coefficients are stored as programmes in the OTP

memory, which are used by the sensor’s internal signal detecting process. The single-wire

serial interface makes system integration quick and easy. Its small size, low power

consumption and up-to-20 meter signal transmission making it the best choice for various

applications, including those most demanding ones. The component is 4-pin single row

pin package. It is convenient to connect and special packages can be provided according

to users’ request.

2. Technical Specifications:

Overview:

Item Measurement Humidity Temperature Resolution Package
 Range Accuracy Accuracy

DHT11 20-90%RH ±5％RH ±2℃ 1 4 Pin Single
 0-50 ℃ Row

Detailed Specifications:

Parameters Conditions Minimum Typical Maximum

Humidity

Resolution 1%RH 1%RH 1%RH
 8 Bit

Repeatability ±1%RH

Accuracy 25℃ ±4%RH
 0-50℃ ±5%RH

Interchangeabili
ty Fully Interchangeable

Measurement 0℃ 30%RH 90%RH

Range

25℃ 20%RH 90%RH

 50℃ 20%RH 80%RH
Response Time 1/e(63%)25℃， 6 S 10 S 15 S

(Seconds) 1m/s Air

Hysteresis ±1%RH
Long-Term Typical ±1%RH/year

Stability

Temperature

Resolution 1℃ 1℃ 1℃
 8 Bit 8 Bit 8 Bit

Repeatability ±1℃

Accuracy ±1℃ ±2℃
Measurement 0℃ 50℃

Range

Response Time 1/e(63%) 6 S 30 S
(Seconds)

3. Typical Application (Figure 1)

Figure 1 Typical Application

Note: 3Pin – Null; MCU = Micro-computer Unite or single chip Computer

When the connecting cable is shorter than 20 metres, a 5K pull-up resistor is

recommended; when the connecting cable is longer than 20 metres, choose a

appropriate pull-up resistor as needed.

4. Power and Pin

DHT11’s power supply is 3-5.5V DC. When power is supplied to the sensor, do not

send any instruction to the sensor in within one second in order to pass the unstable

status. One capacitor valued 100nF can be added between VDD and GND for power

filtering.

5. Communication Process: Serial Interface (Single-Wire Two-Way)

Single-bus data format is used for communication and synchronization between MCU
and DHT11 sensor. One communication process is about 4ms.

Data consists of decimal and integral parts. A complete data transmission is 40bit, and
the sensor sends higher data bit first.
Data format: 8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit

decimal T data + 8bit check sum. If the data transmission is right, the check-sum should

be the last 8bit of "8bit integral RH data + 8bit decimal RH data + 8bit integral T data +

8bit decimal T data".

5.1 Overall Communication Process (Figure 2, below)

When MCU sends a start signal, DHT11 changes from the low-power-consumption mode

to the running-mode, waiting for MCU completing the start signal. Once it is completed,

DHT11 sends a response signal of 40-bit data that include the relative humidity and

temperature information to MCU. Users can choose to collect (read) some data. Without

the start signal from MCU, DHT11 will not give the response signal to MCU. Once data

is collected, DHT11 will change to the low-power-consumption mode until it receives a

start signal from MCU again.

Figure 2 Overall Communication Process

5.2 MCU Sends out Start Signal to DHT (Figure 3, below)

Data Single-bus free status is at high voltage level. When the communication between

MCU and DHT11 begins, the programme of MCU will set Data Single-bus voltage level

from high to low and this process must take at least 18ms to ensure DHT’s detection of

MCU's signal, then MCU will pull up voltage and wait 20-40us for DHT’s response.

Figure 3 MCU Sends out Start Signal & DHT Responses

5.3 DHT Responses to MCU (Figure 3, above)

Once DHT detects the start signal, it will send out a low-voltage-level response signal,

which lasts 80us. Then the programme of DHT sets Data Single-bus voltage level from

low to high and keeps it for 80us for DHT’s preparation for sending data.

When DATA Single-Bus is at the low voltage level, this means that DHT is sending

the response signal. Once DHT sent out the response signal, it pulls up voltage and

keeps it for 80us and prepares for data transmission.

When DHT is sending data to MCU, every bit of data begins with the 50us low-voltage-

level and the length of the following high-voltage-level signal determines whether data

bit is "0" or "1" (see Figures 4 and 5 below).

Figure 4 Data "0" Indication

Figure 5 Data "1" Indication

If the response signal from DHT is always at high-voltage-level, it suggests that DHT

is not responding properly and please check the connection. When the last bit data is

transmitted, DHT11 pulls down the voltage level and keeps it for 50us. Then the

Single-Bus voltage will be pulled up by the resistor to set it back to the free status.

6. Electrical Characteristics
VDD=5V, T = 25℃ (unless otherwise stated)

 Conditions Minimum Typical Maximum

Power Supply DC 3V 5V 5.5V

Current Measuring 0.5mA 2.5mA
Supply

 Average 0.2mA 1mA

 Standby 100uA 150uA

Sampling Second 1

period

Note: Sampling period at intervals should be no less than 1 second.

7. Attentions of application

(1) Operating conditions

Applying the DHT11 sensor beyond its working range stated in this datasheet can result
in 3%RH signal shift/discrepancy. The DHT11 sensor can recover to the calibrated status
gradually when it gets back to the normal operating condition and works within its range.
Please refer to (3) of

this section to accelerate its recovery. Please be aware that operating the DHT11 sensor in the non-
normal working conditions will accelerate sensor’s aging process.

(2) Attention to chemical materials

Vapor from chemical materials may interfere with DHT’s sensitive-elements and debase its
sensitivity. A high degree of chemical contamination can permanently damage the sensor.

(3) Restoration process when (1) & (2) happen

Step one: Keep the DHT sensor at the condition of Temperature 50~60Celsius, humidity <10%RH for
2 hours;
Step two:K keep the DHT sensor at the condition of Temperature 20~30Celsius, humidity
>70%RH for 5 hours.

(4) Temperature Affect

Relative humidity largely depends on temperature. Although temperature compensation technology is
used to ensure accurate measurement of RH, it is still strongly advised to keep the humidity and
temperature sensors working under the same temperature. DHT11 should be mounted at the place as
far as possible from parts that may generate heat.

(5) Light Affect
Long time exposure to strong sunlight and ultraviolet may debase DHT’s performance.

(6) Connection wires

The quality of connection wires will affect the quality and distance of communication and high
quality shielding-wire is recommended.

(7) Other attentions

* Welding temperature should be bellow 260Celsius and contact should take less than 10
seconds.
* Avoid using the sensor under dew condition.
* Do not use this product in safety or emergency stop devices or any other occasion that failure of
DHT11 may cause personal injury.
* Storage: Keep the sensor at temperature 10-40℃, humidity <60%RH.

Declaim:

This datasheet is a translated version of the manufacturer’s datasheet. Although the due care has

been taken during the translation, D-Robotics is not responsible for the accuracy of the information

contained in this document. Copyright © D-Robotics.

D-Robotics: www.droboticsonline.com

Email contact: d_robotics@hotmail.co.uk

http://www.droboticsonline.com/

Appendix B

Data s

BMP180

DIGITAL PRESSURE SENSOR

Key features

Pressure range: 300 ... 1100hPa (+9000m ... -500m relating to sea level)

Supply voltage: 1.8 ... 3.6V (VDD)

 1.62V ... 3.6V (VDDIO)

Package: LGA package with metal lid
 Small footprint: 3.6mm x 3.8mm
 Super-flat: 0.93mm height

Low power: 5µA at 1 sample / sec. in standard mode

Low noise: 0.06hPa (0.5m) in ultra low power mode
 0.02hPa (0.17m) advanced resolution mode

* Temperature measurement included

* I
2
C interface

* Fully calibrated
* Pb-free, halogen-free and RoHS compliant,
* MSL 1

Typical applications

 Enhancement of GPS navigation (dead-reckoning, slope detection, etc.)

 In- and out-door navigation

 Leisure and sports

 Weather forecast

 Vertical velocity indication (rise/sink speed)

BST-BMP180-DS000-09 | Revision 2.5 | April 2013 Bosch Sensortec
© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third

parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

BMP180 general description

The BMP180 is the function compatible successor of the BMP085, a new generation of high

precision digital pressure sensors for consumer applications.

The ultra-low power, low voltage electronics of the BMP180 is optimized for use in mobile phones,
PDAs, GPS navigation devices and outdoor equipment. With a low altitude noise of merely 0.25m at

fast conversion time, the BMP180 offers superior performance. The I
2
C interface allows for easy

system integration with a microcontroller.

The BMP180 is based on piezo-resistive technology for EMC robustness, high accuracy and linearity

as well as long term stability.

Robert Bosch is the world market leader for pressure sensors in automotive applications. Based on

the experience of over 400 million pressure sensors in the field, the BMP180 continues a new

generation of micro-machined pressure sensors.

1. Electrical characteristics

If not stated otherwise, the given values are ±3-Sigma values over temperature/voltage range in the

given operation mode. All values represent the new parts specification; additional solder drift is

shown separately.

Table 1: Operating conditions, output signal and mechanical characteristics

Parameter Symbol Condition Min Typ Max Units

Operating temperature TA

operational -40 +85
°C

full accuracy 0

+65

Supply voltage VDD

ripple max. 50mVpp 1.8 2.5 3.6
V

1.62 2.5 3.6

 IDDLOW ultra low power mode 3 µA

Supply current
IDDSTD standard mode 5 µA

@ 1 sample / sec. IDDHR high resolution mode 7 µA
25°C

IDDUHR Ultra high res. mode

12

µA

 IDDAR Advanced res. mode 32 µA

Peak current Ipeak during conversion 650 1000 µA

Standby current IDDSBM @ 25°C 0.1 4
1

µA

950 . . . 1050 hPa

 ±0.12 hPa

Relative accuracy @ 25 °C ±1.0 m
pressure

VDD = 3.3V 700 … 900hPa ±0.12 hPa

 25 . . . 40 °C
±1.0

 m

Absolute accuracy
 300 . . . 1100 hPa

-4.0 -1.0* +2.0 hPa 0 . . . +65 °C
pressure

VDD = 3.3V
 300 . . . 1100 hPa

-6.0 -1.0* +4.5 hPa
-20 . . . 0 °C

Resolution of
 pressure 0.01 hPa

output data temperature 0.1 °C

Noise in pressure see table on page 12-13

Absolute accuracy @ 25 °C -1.5 ±0.5 +1.5 °C
temperature

0 . . . +65 °C -2.0 ±1.0 +2.0 °C VDD = 3.3V

1
 at 85°C

 tc_p_low ultra low power mode 3 4.5 ms

 tc_p_std standard mode 5 7.5 ms

Conversion time

tc_p_hr

high resolution mode

9

13.5

ms

 pressure

 tc_p_luhr ultra high res. mode 17 25.5 ms

 tc_p_ar Advanced res. mode 51 76.5 ms

Conversion time

tC_temp

standard mode

3

4.5

ms

 temperature

 Serial data clock fSCL 3.4 MHz

Solder drifts

Minimum solder

-0.5

+2

hPa

height 50µm

 Long term stability** 12 months ±1.0 hPa

* The typical value is: -1±1
** Long term stability is specified in the full accuracy operating pressure range 0 … 65°C

2. Absolute maximum ratings

Table 2: Absolute maximum ratings

 Parameter Condition Min Max Units

 Storage temperature -40 +85 °C

 Supply voltage all pins -0.3 +4.25 V

ESD rating

HBM, R = 1.5kΩ,

±2

kV

C = 100pF

 Overpressure 10,000 hPa

The BMP180 has to be handled as Electrostatic Sensitive Device (ESD).

Figure 1: ESD

3. Operation

3.1 General description

The BMP180 is designed to be connected directly to a microcontroller of a mobile device via the I
2
C

bus. The pressure and temperature data has to be compensated by the calibration data of the

E
2
PROM of the BMP180.

3.2 General function and application schematics

The BMP180 consists of a piezo-resistive sensor, an analog to digital converter and a control unit

with E
2
PROM and a serial I

2
C interface. The BMP180 delivers the uncompensated value of

pressure and temperature. The E
2
PROM has stored 176 bit of individual calibration data. This is

used to compensate offset, temperature dependence and other parameters of the sensor.

 UP = pressure data (16 to 19 bit)
 UT = temperature data (16 bit)

Note:

(1) Pull-up resistors for I
2
C bus, Rp = 2.2kΩ ... 10kΩ, typ. 4.7kΩ

Figure 2: Typical application circuit

3.3 Measurement of pressure and temperature

For all calculations presented here an ANSI C code is available from Bosch Sensortec (“BMP180
_API”).

The microcontroller sends a start sequence to start a pressure or temperature measurement. After

converting time, the result value (UP or UT, respectively) can be read via the I
2
C interface. For

calculating temperature in °C and pressure in hPa, the calibration data has to be used. These

constants can be read out from the BMP180 E
2
PROM via the I

2
C interface at software initialization.

The sampling rate can be increased up to 128 samples per second (standard mode) for dynamic
measurement. In this case, it is sufficient to measure the temperature only once per second and to
use this value for all pressure measurements during the same period.

Figure 3: Measurement flow BMP180

3.3.1 Hardware pressure sampling accuracy modes
By using different modes the optimum compromise between power consumption, speed and

resolution can be selected, see below table.

Start

Start temp.

measurement

wait 4.5 ms

Read UT

Start pressure

measurement

wait (depends on
mode, see below)

Read UP

Calculate pressure and
temp. in physical unit

Table 3: Overview of BMP180 hardware accuracy modes, selected by driver software via the
variable oversampling_setting

 RMS RMS

Internal

Conversion time

Avg. current @

noise

noise

Mode

Parameter

number of

pressure max.

1 sample/s typ.

typ.

typ.

oversampling_setting

samples

[ms]

[µA]

[hPa]

[m]

ultra low power

0

1

4.5

3

0.06

0.5

 standard 1 2 7.5 5 0.05 0.4

 high resolution 2 4 13.5 7 0.04 0.3

ultra high resolution

3

8

25.5

12

0.03

0.25

For further information on noise characteristics see the relevant application note “Noise in pressure
sensor applications”.

All modes can be performed at higher speeds, e.g. up to 128 times per second for standard mode,

with the current consumption increasing proportionally to the sample rate.

3.3.2 Software pressure sampling accuracy modes

For applications where a low noise level is critical, averaging is recommended if the lower bandwidth

is acceptable. Oversampling can be enabled using the software API driver (with OSR = 3).

Table 4: Overview of BMP180 software accuracy mode, selected by driver software via the variable
software_oversampling_setting

 software_ Conversion Avg. current

Mode Parameter
oversampl time @ 1 RMS noise RMS noise

ing_settin pressure sample/s typ. [hPa] typ. [m]
oversampling_setting

g max. [ms] typ. [µA]

Advanced
1 76.5 32 0.02 0.17

resolution 3

3.4 Calibration coefficients

The 176 bit E
2
PROM is partitioned in 11 words of 16 bit each. These contain 11 calibration

coefficients. Every sensor module has individual coefficients. Before the first calculation of

temperature and pressure, the master reads out the E
2
PROM data.

The data communication can be checked by checking that none of the words has the value 0 or

0xFFFF.

Table 5: Calibration coefficients

 BMP180 reg adr

 Parameter MSB LSB

 AC1 0xAA 0xAB

 AC2 0xAC 0xAD

 AC3 0xAE 0xAF

 AC4 0xB0 0xB1

 AC5 0xB2 0xB3

 AC6 0xB4 0xB5

 B1 0xB6 0xB7

 B2 0xB8 0xB9

 MB 0xBA 0xBB

 MC 0xBC 0xBD

 MD 0xBE 0xBF

3.5 Calculating pressure and temperature

The mode (ultra low power, standard, high, ultra high resolution) can be selected by the variable

oversampling_setting (0, 1, 2, 3) in the C code.

Calculation of true temperature and pressure in steps of 1Pa (= 0.01hPa = 0.01mbar) and

temperature in steps of 0.1°C.

The following figure shows the detailed algorithm for pressure and temperature measurement.

This algorithm is available to customers as reference C source code (“BMP180_ API”) from Bosch

Sensortec and via its sales and distribution partners. Please contact your Bosch Sensortec

representative for details.

Figure 4: Algorithm for pressure and temperature measurement

3.6 Calculating absolute altitude

With the measured pressure p and the pressure at sea level p0 e.g. 1013.25hPa, the altitude in

meters can be calculated with the international barometric formula:

 1
 p 5.255
altitude 44330 * 1 -

p

0

Thus, a pressure change of ∆p = 1hPa corresponds to 8.43m at sea level.

A
lt

it
u

d
e
 a

b
o

v
e
 s

e
a
 l

e
v
e

l
[m

]

9000

8000

7000 Altitude in standard

6000 atmosphere

5000

4000

3000

2000

1000

0

-1000

300 400 500 600 700 800 900 1000 1100

 Barometric pressure [hPa]

Figure 5: Transfer function: Altitude over sea level – Barometric
pressure

3.7 Calculating pressure at sea level

With the measured pressure p and the absolute altitude the pressure
at sea level can be calculated:

p0
 p

 altitude
5.255

 1 -

44330

Thus, a difference in altitude of ∆altitude = 10m corresponds to 1.2hPa
pressure change at sea level.

4. Global Memory Map

The memory map below shows all externally accessible data

registers which are needed to operate BMP180. The left columns

show the memory addresses. The columns in the middle depict the

content of each register bit. The colors of the bits indicate whether

they are read-only, write-only or read- and writable. The memory is

volatile so that the writable content has to be re-written after each

power-on.
Not all register addresses are shown. These registers are reserved

for further Bosch factory testing and trimming.

Register Name Register Adress bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Reset state

out_xlsb F8h adc_out_xlsb<7:3> 0 0 0 00h

out_lsb F7h adc_out_lsb<7:0> 00h

out_msb F6h adc_out_msb<7:0> 80h

ctrl_meas F4h oss<1:0> sco measurement control 00h

soft reset E0h reset 00h

Id D0h id<7:0> 55h

calib21 downto calib0 BFh down to AAh calib21<7:0> down to calib0<7:0> n/a

 Registers: Control Calibration Data

 registers registers registers Fixed

 Type: read / write read only read only read only

Figure 6: Memory map

Measurement control (register F4h <4:0>): Controls

measurements. Refer to Figure 6 for usage details.

Sco (register F4h <5>): Start of conversion. The value of this bit

stays “1” during conversion and is reset to “0” after conversion is

complete (data registers are filled).

Oss (register F4h <7:6>): controls the oversampling ratio of the

pressure measurement (00b: single, 01b: 2 times, 10b: 4 times, 11b: 8

times).

Soft reset (register E0h): Write only register. If set to 0xB6, will

perform the same sequence as power on reset.

Chip-id (register D0h): This value is fixed to 0x55 and can be used

to check whether communication is functioning.

After conversion, data registers can be read out in any sequence (i.e.

MSB first or LSB first). Using a burst read is not mandatory.

5. I
2
C Interface

 I
2
C is a digital two wire interface

 Clock frequencies up to 3.4Mbit/sec. (I
2
C standard, fast and high-

speed mode supported)
 SCL and SDA needs a pull-up

resistor, typ. 4.7kOhm to VDDIO

(one resistor each for all the I
2
C

bus)

The I
2
C bus is used to control the sensor, to read calibration data

from the E
2
PROM and to read the measurement data when A/D

conversion is finished. SDA (serial data) and SCL (serial clock) have

open-drain outputs.

For detailed I
2
C-bus specification please refer to:

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

5.1 I
2
C specification

Table 6: Electrical parameters for the I
2
C interface

Parameter

Symbol

Min.

Typ

Max.

Units

 Clock input frequency fSCL 3.4 MHz

 Input-low level VIL 0 0.2 * VDDIO V

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

 Input-high level VIH 0.8 * VDDIO VDDIO V

Voltage output low level

VOL

0.3

V

@ VDDIO = 1.62V, IOL = 3mA

 SDA and SCL pull-up resistor Rpull-up 2.2 10 kOhm

SDA sink current

ISDA_sink

9

mA

@ VDDIO = 1.62V, VOL = 0.3V

Start-up time after power-up,

tStart

10

Ms

 before first communication

5.2 Device and register address

The BMP180 module address is shown below. The LSB of the device

address distinguishes between read (1) and write (0) operation,

corresponding to address 0xEF (read) and 0xEE (write).

Table 7: BMP180 addresses

 A7 A6 A5 A4 A3 A2 A1 W/R

1

1

1

0

1

1

1

0/1

5.3 I
2
C protocol

The I
2
C interface protocol has special bus signal conditions. Start (S),

stop (P) and binary data conditions are shown below. At start

condition, SCL is high and SDA has a falling edge. Then the slave

address is sent. After the 7 address bits, the direction control bit R/W

selects the read or write operation. When a slave device recognizes

that it is being addressed, it should acknowledge by pulling SDA low

in the ninth SCL (ACK) cycle.
At stop condition, SCL is also high, but SDA has a rising edge. Data

must be held stable at SDA when SCL is high. Data can change value

at SDA only when SCL is low.

Even though VDDIO can be powered on before VDD, there is a chance

of excessive power consumption (a few mA) if this sequence is used,
and the state of the output pins is undefined so

that the bus can be locked. Therefore, VDD must be powered before

VDDIO unless the limitations above are understood and not critical.

Figure 7: I
2
C protocol

5.4 Start temperature and pressure measurement

The timing diagrams to start the measurement of the temperature

value UT and pressure value UP are shown below. After start

condition the master sends the device address write, the register

address and the control register data. The BMP180 sends an

acknowledgement (ACKS) every 8 data bits when data is received.

The master sends a stop condition after the last ACKS.

Figure 8: Timing diagram for starting pressure measurement

Abbreviations:
S Start
P Stop
ACKS Acknowledge by Slave
ACKM Acknowledge by Master
NACKM Not Acknowledge by Master

5.5 Read A/D conversion result or E
2
PROM data

To read out the temperature data word UT (16 bit), the pressure data word UP (16 to 19 bit) and

the E
2
PROM data proceed as follows:

After the start condition the master sends the module address write command and register

address. The register address selects the read register:

E
2
PROM data registers 0xAA to 0xBF

Temperature or pressure value UT or UP 0xF6 (MSB), 0xF7 (LSB), optionally 0xF8 (XLSB)

Then the master sends a restart condition followed by the module address read that will be

acknowledged by the BMP180 (ACKS). The BMP180 sends first the 8 MSB, acknowledged by

the master (ACKM), then the 8 LSB. The master sends a "not acknowledge" (NACKM) and finally

a stop condition.

Optionally for ultra high resolution, the XLSB register with address 0xF8 can be read to extend

the 16 bit word to up to 19 bits; refer to the application programming interface (API) software rev.

1.1 (“BMP180_ API”, available from Bosch Sensortec).

Figure 9: Timing diagram read 16 bit A/D conversion result

6. Package

6.1 Pin configuration

Picture shows the device in top view. Device pins are shown here transparently only for
orientation purposes.

Figure 10: Layout pin configuration BMP180

Table 9: Pin configuration BMP180

 in No Name Function

 1 CSB* Chip select

 2 VDD Power supply

 3 VDDIO Digital power supply

 4 SDO* SPI output

 5 SCL I2C serial bus clock input

 6 SDA I2C serial bus data (or SPI input)

 7 GND Ground

* A pin compatible product variant with SPI interface is possible upon customer’s request. For

I
2
C (standard case) CSB and SDO are not used, they have to be left open.

All pins have to be soldered to the PCB for symmetrical stress input even though they are
not connected internally.

6.2 Outline dimensions

The sensor housing is a 7Pin LGA package with metal lid. Its dimensions are 3.60mm (±0.1 mm)

x 3.80mm (±0.1 mm) x 0.93mm (±0.07 mm).

Note: All dimensions are in mm.

1 7 6

2 5

3 4

6.2.1 Bottom view

0,50

0,60

Figure 11: Bottom view BMP180

6.2.2 Top view

Figure 12: Top view BMP180

6.2.3 Side view

Figure 13: Side view BMP180

6.3 Moisture sensitivity level and soldering

The BMP180 is classified MSL 1 (moisture sensitivity level) according to IPC/JEDEC standards J-

STD-020D and J-STD-033A.

The device can be soldered Pb-free with a peak temperature of 260°C for 20 to 40 sec. The

minimum height of the solder after reflow shall be at least 50µm. This is required for good

mechanical decoupling between the sensor device and the printed circuit board (PCB).

To ensure good solder-ability, the devices shall be stored at room temperature (20°C).

The soldering process can lead to an offset shift.

6.4 RoHS compliancy

The BMP180 sensor meets the requirements of the EC directive "Restriction of hazardous

substances (RoHS)", please refer also to:

"Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the

restriction of the use of certain hazardous substances in electrical and electronic equipment".

The BMP180 sensor is also halogen-free.

6.5 Mounting and assembly recommendations

In order to achieve the specified performance for you design, the following recommendations and
the
“Handling, soldering & mounting instructions BMP180” should be taken into consideration
when mounting a pressure sensor on a printed-circuit board (PCB):

 The clearance above the metal lid shall be 0.1mm at minimum.

 For the device housing appropriate venting needs to be provided in case the ambient
pressure shall be measured.

 Liquids shall not come into direct contact with the device.

 During operation the sensor is sensitive to light, which can influence the accuracy of the
measurement (photo-current of silicon).

 The BMP180 shall not the placed close the fast heating parts. In case of gradients >
3°C/sec. it is recommended to follow Bosch Sensortec application note ANP015,
"Correction of errors induced by fast temperature changes". Please contact your Bosch
Sensortec representative for details.

7. Legal disclaimer

7.1 Engineering samples

Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid

technical specifications of the product series contained in this data sheet. They are therefore not

intended or fit for resale to third parties or for use in end products. Their sole purpose is internal

client testing. The testing of an engineering sample may in no way replace the testing of a product

series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser

shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

7.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be

used within the parameters of this product data sheet. They are not fit for use in life-sustaining or

security sensitive systems. Security sensitive systems are those for which a malfunction is

expected to lead to bodily harm or significant property damage. In addition, they are not fit for use

in products which interact with motor vehicle systems.

The resale and/or use of products are at the purchaser’s own risk and his own responsibility. The

examination of fitness for the intended use is the sole responsibility of the Purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any

product use not covered by the parameters of this product data sheet or not approved by Bosch

Sensortec and reimburse Bosch Sensortec for all costs in connection with such claims.

The purchaser must monitor the market for the purchased products, particularly with regard to

product safety, and inform Bosch Sensortec without delay of all security relevant incidents.

7.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any

information regarding the application of the device, Bosch Sensortec hereby disclaims any and all

warranties and liabilities of any kind, including without limitation warranties of non-infringement of

intellectual property rights or copyrights of any third party. The information given in this document

shall in no event be regarded as a guarantee of conditions or characteristics. They are provided

for illustrative purposes only and no evaluation regarding infringement of intellectual property

rights or copyrights or regarding functionality, performance or error has been made.

Appendix C

SIM900

SIMCom presents an ultra compact and reliable wireless module-SIM900. This is a complete Quad-band

GSM/GPRS module in a SMT type and designed with a very powerful single-chip processor integrating

AMR926EJ-S core, allowing you to benefit from small dimensions and cost-effective solutions.

Featuring an industry-standard interface, the SIM900 delivers GSM/GPRS 850/900/1800/1900MHz performance for voice,

SMS, Data, and Fax in a small form factor and with low power consumption. With a tiny configuration of 24mm x 24mm x 3

mm, SIM900 can fit almost all the space requirements in your M2M applications, especially for slim and compact
demands of design.

Smart Machine Smart Decision

General features
•Quad-Band 850/ 900/ 1800/ 1900 MHz
•GPRS multi-slot class 10/8
•GPRS mobile station class B
•Compliant to GSM phase 2/2+

– Class 4 (2 W @850/ 900 MHz)
– Class 1 (1 W @ 1800/1900MHz)

•Dimensions: 24* 24 * 3 mm
•Weight: 3.4g
•Control via AT commands (GSM 07.07 ,07.05 and

SIMCOM enhanced AT Commands)
•SIM application toolkit
•Supply voltage range : 3.1 ... 4.8V
•Low power consumption: 1.5mA(sleep mode)
•Operation temperature: -40°C to +85 °C

Specifications for Fax
•Group 3, class 1

Specifications for Data
•GPRS class 10: max. 85.6 kbps (downlink)
•PBCCH support
•Coding schemes CS 1, 2, 3, 4
•CSD up to 14.4 kbps
•USSD
•Non transparent mode
•PPP-stack

Specifications for SMS via GSM/GPRS
•Point to point MO and MT
•SMS cell broadcast
•Text and PDU mode

Software features
•0710 MUX protocol
•embedded TCP/UDP protocol
•FTP/HTTP(available at July ,2010)
•FOTA (available at July ,2010)
•MMS (available at July ,2010)
•Embedded AT (available at Q3,2010)

Specifications for Voice
•Tricodec
– Half rate (HR)
– Full rate (FR)
– Enhanced Full rate (EFR)
•Hands-free operation （Echo suppression）
•AMR
© Half rate (HR)
© Full rate (FR)

Interfaces
•Interface to external SIM 3V/ 1.8V
•analog audio interface
•RTC backup
•SPI interface (option)
•Serial interface
•Antenna pad
•I2C
•GPIO
•PWM
•ADC

Compatibility
•AT cellular command interface

Certificates:

•IC
•CE

•ICASA
•FCC

•TA
•ROHS

•REACH
•PTCRB

•GCF

Certificates (on going):
•AT&T(will be finished at end of July 2010)

More about SIMCom SIM900 Please contact:
Tel: 86-21-32523300
Fax: 86-21-32523301 Email: simcom@sim.com Website: www.sim.com/wm

mailto:simcom@sim.com

Appendix D

THE Code of The system

#include <SoftwareSerial.h> //declare the library of the serial port

#define terminator 10 // DEC value for a LF(line feed) to skip while loop

#include <dht.h> //declare the library of the dht sensor

#include <SFE_BMP180.h> //declare the library of the BMP sensor

#include <Wire.h> //declare the library of wires

dht DHT; //declare the variable of the dht sensor

#define DHT11_PIN 3 // declare the pin of the dht sensor

SFE_BMP180 pressure;

#define ALTITUDE 990.0

double baseline; // baseline pressure

float val; // declare a variable from a float type

int tempPin = 0; //make the initial value of the sensor zero

float mv; // declare a variable from a float type

float dh; // declare a variable from a float type

float pre; // declare a variable from a float type

char ch[20]="wsp"; // declare a variable from a character type

String IncDataSerial = ""; // declare a variable from a string type

void setup() //the main function

{

// delay(1000);

 Serial.begin(19200);

 Serial1.begin(19200);

 if (pressure.begin())

 Serial.println("BMP180 init success");

 else

 {

 // Oops, something went wrong, this is usually a connection problem,

 Serial.println("BMP180 init fail\n\n");

 while(1); // Pause forever.

 }

 baseline = getPressure(); //read the value of the pressure sensor

 Serial.print("baseline pressure: "); //print the value of the pressure sensor

 Serial.print(baseline);

 Serial.println(" mb");

// Automatically power up the SIM900.

 pinMode(9, OUTPUT); //declare the mode of the pin number 9

 digitalWrite(9,LOW); //make the value of the ninth pin zero

 delay(1000);

 digitalWrite(9,HIGH); //make the value of the ninth pin 1

 delay(2500);

 digitalWrite(9,LOW); //make the value of the ninth pin zero

 delay(3500);

 // End of SIM900 power up.

 }

void loop()

{

 double a,P; //declare varibels

 // Get a new pressure reading:

 P = getPressure();

 // a=getPressure(T);

// a=getTemperature();

 /*char status;

 double T,P,p0,a; //declare variables from double type

 status = pressure.startTemperature(); //read the reading of the pressure sensor

 if (status != 0)

 {

 delay(status);

status = pressure.getTemperature(T); //read the reading of the temprature sensor

 if (status != 0)

 {

 // Print out the measurement:

 Serial.print("temperature: ");

 Serial.print(T,2);

 status = pressure.startPressure(3);

 if (status != 0)

 {

 delay(status);

 status = pressure.getPressure(P,T);

 if (status != 0)

 {

 // Print out the measurement:

 Serial.print("absolute pressure: ");

 Serial.print(P,2);

 Serial.print(" mb, ");

 }

 else Serial.println("error retrieving pressure measurement\n");

 }

 else Serial.println("error starting pressure measurement\n");

 }

 else Serial.println("error retrieving temperature measurement\n");

 }

 else Serial.println("error starting temperature measurement\n");

 delay(5000); // Pause for 5 seconds.

*/

 if (Serial1.available()>0) // if date is coming from software serial port

==> data is coming from gprs shield

 {

 Boolean getLF = false; //declare a variable from Boolean type as false

 while(Serial1.available()>0 && !getLF) // reading data into string if activity is on port

and getLF is false ==> no LF have been send

 {

 char buffer=Serial1.read(); // writing data into char

 IncDataSerial += buffer; //put the reading of the gprs in the buffer variable

and decrement it

if (buffer == terminator) {

 getLF = true;

 }

 }

 Serial.print(IncDataSerial); // send string (char array) to hardware serial

 Serial.print("\r"); // send a CR because it is missing

 IncDataSerial = "";

 }

reedtemp(); //declare the function of reading the value of the

temperature sensor

 //sendToServer(mv,dh, 20, ch, 30, 40) ; //send the values of sensors to the server

 sendToServer(mv,dh,baseline);

 if (Serial.available()>0) // if data is available on hardwareserial port ==> data is

comming from PC or notebook

 Serial1.write(Serial.read()); // write it to the GPRS shield

}

void reedtemp() //the function of reading the value of the temperature sensor

{

/* val = analogRead(tempPin); //reading the temprature sensor

//Serial.println(val); //print the last reading

 mv = (((val/1023.0)*5000)/10); //convert the reading to real one

 Serial.println(mv); //print the real value

 delay(15000);

 Serial.println(mv);

 */

 int chk=DHT.read11(DHT11_PIN);

 //Serial.print("TEM=");

mv=(DHT.temperature);

 Serial.println(mv);

 Serial.println("hum=");

 dh=(DHT.humidity);

 Serial.print(dh);

 baseline = getPressure();

 Serial.print("baseline pressure: ");

 Serial.print(baseline);

Serial.println(" mb");

 delay(120000);

 /*

 char status;

 double T,P,p0,a;

 status = pressure.startTemperature();

 if (status != 0)

 {

 delay(status);

status = pressure.getTemperature(T);

 if (status != 0)

 {

 // Print out the measurement:

 Serial.print("temperature: ");

 Serial.print(T,2);

 status = pressure.startPressure(3);

 if (status != 0)

 {

 delay(status);

 status = pressure.getPressure(P,T);

 if (status != 0)

 {

 // Print out the measurement:

 Serial.print("absolute pressure: ");

 // Serial.print(P,2);

 pre= Serial.print(P,2);

 //Serial.print(pre);

 Serial.print(" mb, ");

 Serial.print(pre);

 }

 else Serial.println("error retrieving pressure measurement\n");

 }

 else Serial.println("error starting pressure measurement\n");

 }

 else Serial.println("error retrieving temperature measurement\n");

 }

 else Serial.println("error starting temperature measurement\n");

 delay(5000); // Pause for 5 seconds.

 */

 }

 //the function that send the data to the server

//there is an appendix and a paragraph in the report that interprets the AT commands

 void sendToServer(double _temp, double moins, double pres){

char temp[20];

Serial1.println("AT");

 delay(500);

Serial1.println("AT+CGATT?");

 delay(500);

Serial1.println("AT+SAPBR=3,1,\"APN\",\"wap\"");

 delay(500);

Serial1.println("AT+SAPBR=1,1");

 delay(500);

 Serial1.println("AT+HTTPINIT");

 delay(500);

 Serial1.println("AT+HTTPPARA=CID,1");

 delay(500);

 char str[200] = ("AT+HTTPPARA= \"URL\" ,http://weather.ppu.edu/receive_data_GET.php?");

 strcat(str,"location=");

 strcat(str,"location1");

 strcat(str,"&password=");

 strcat(str,"123123");

 strcat(str,"&temperature=");

 //strcat(str,temp);

dtostrf(_temp, 4, 4, temp);

 strcat(str,temp);

 // strcat(str,"&humidity=");

 // strcat(str,temp);

strcat(str,"&humidity=");

dtostrf(moins, 4, 4, temp);

 // strcat(str,"&humidity=");

 strcat(str,temp);

//dtostrf(windVal, 4, 4, temp);

 strcat(str,"&pressure=");

 //strcat(str,temp);

 dtostrf(pres, 4, 4, temp);

 strcat(str,temp);

 //strcat(str,"&windDir=");

 //strcat(str,windDir);

//dtostrf(pres, 4, 4, temp);

 // strcat(str,"&pres=");

 //strcat(str,temp);

//dtostrf(rain, 4, 4, temp);

 //strcat(str,"&rain=");

 //strcat(str,temp);

 Serial1.println(str);

 delay(1000);

 // set http action type 0 = GET, 1 = POST, 2 = HEAD

 Serial1.println("AT+HTTPACTION=1");

 delay(1000);

 Serial1.println("AT+HTTPDATA=15000,15000");

 }

 /*void sendToServer(double _temp, double moins, double windVal, char windDir[20], double pres,

double rain){true

char temp[20];

Serial1.println("AT");

 delay(500);

Serial1.println("AT+CGATT?");

 delay(500);

Serial1.println("AT+SAPBR=3,1,\"APN\",\"wap\"");

 delay(500);

Serial1.println("AT+SAPBR=1,1");

 delay(500);

 Serial1.println("AT+HTTPINIT");

 delay(500);

 Serial1.println("AT+HTTPPARA=CID,1");

 delay(500);

 char str[200] = ("AT+HTTPPARA= \"URL\" ,http://weather.ppu.edu/request.php?");

 strcat(str,"location=");

 strcat(str,"position2");

 strcat(str,"&temp=");

dtostrf(_temp, 4, 4, temp);

 strcat(str,temp);

dtostrf(moins, 4, 4, temp);

 strcat(str,"&moins=");

 strcat(str,temp);

dtostrf(windVal, 4, 4, temp);

 strcat(str,"&windVal=");

 status = pressure.startPressure(3);

 if (status != 0)

 {

 delay(status);

 status = pressure.getPressure(P,T);

 if (status != 0)

 {

 // Print out the measurement:

 Serial.print("absolute pressure: ");

 // Serial.print(P,2);

 pre= Serial.print(P,2);

 //Serial.print(pre);

 Serial.print(" mb, ");

 Serial.print(pre);

 }

 else Serial.println("error retrieving pressure measurement\n");

 }

 else Serial.println("error starting pressure measurement\n");

 }

 else Serial.println("error retrieving temperature measurement\n");

 }

 else Serial.println("error starting temperature measurement\n");

 delay(5000); // Pause for 5 seconds.

 */

 }

 void sendToServer(double _temp, double moins, double pres){

char temp[20];

Serial1.println("AT");

 delay(500);

Serial1.println("AT+CGATT?");

 delay(500);

Serial1.println("AT+SAPBR=3,1,\"APN\",\"wap\"");

 delay(500);

Serial1.println("AT+SAPBR=1,1");

 delay(500);

 Serial1.println("AT+HTTPINIT");

 delay(500);

 Serial1.println("AT+HTTPPARA=CID,1");

 delay(500);

 char str[200] = ("AT+HTTPPARA= \"URL\" ,http://weather.ppu.edu/receive_data_GET.php?");

 strcat(str,"location=");

 strcat(str,"location1");

 strcat(str,"&password=");

 strcat(str,"123123");

 strcat(str,"&temperature=");

 //strcat(str,temp);

dtostrf(_temp, 4, 4, temp);

 strcat(str,temp);

 // strcat(str,"&humidity=");

 strcat(str,temp);

 strcat(str,"&windDir=");

 strcat(str,windDir);

dtostrf(pres, 4, 4, temp);

 strcat(str,"&pres=");

 strcat(str,temp);

dtostrf(rain, 4, 4, temp);

 strcat(str,"&rain=");

 strcat(str,temp);

 Serial1.println(str);

 delay(1000);

 //delay(5000);

 // set http action type 0 = GET, 1 = POST, 2 = HEAD

 Serial1.println("AT+HTTPACTION=0");

 delay(1000);

 Serial1.println("AT+HTTPDATA=15000,15000");

 }*/

 /* void sendToServer(double _temp, double moins, double windVal, char windDir[20], double pres,

double rain){

 strcat(str,"location=");

 strcat(str,"position2");

 strcat(str,"&temp=");

dtostrf(_temp, 4, 4, temp);

 strcat(str,temp);

dtostrf(moins, 4, 4, temp);

 strcat(str,"&moins=");

 strcat(str,temp);

dtostrf(windVal, 4, 4, temp);

 strcat(str,"&windVal=");

 strcat(str,temp);

 strcat(str,"&windDir=");

 strcat(str,windDir);

dtostrf(pres, 4, 4, temp);

 strcat(str,"&pres=");

 strcat(str,temp);

dtostrf(rain, 4, 4, temp);

 strcat(str,"&rain=");

 strcat(str,temp);

 Serial1.println(str);

 delay(1000);

 //delay(5000);

 // set http action type 0 = GET, 1 = POST, 2 = HEAD

 Serial1.println("AT+HTTPACTION=1");

 delay(1000);

 Serial1.println("AT+HTTPDATA=15000,15000");

 }*/

 double getPressure()

{

 char status;

 double T,P,p0,a;

// You must first get a temperature measurement to perform a pressure reading.

 // Start a temperature measurement:

 // If request is successful, the number of ms to wait is returned.

 // If request is unsuccessful, 0 is returned.

status = pressure.startTemperature();

 if (status != 0)

 {

 // Wait for the measurement to complete:

 delay(status);

 // Retrieve the completed temperature measurement:

 // Note that the measurement is stored in the variable T.

 // Use '&T' to provide the address of T to the function.

 // Function returns 1 if successful, 0 if failure.

 status = pressure.getTemperature(T);

 if (status != 0)

 {

 // Start a pressure measurement:

 // The parameter is the oversampling setting, from 0 to 3 (highest res, longest wait).

 // If request is successful, the number of ms to wait is returned.

 // If request is unsuccessful, 0 is returned.

 status = pressure.startPressure(3);

 if (status != 0)

 {

 // Wait for the measurement to complete:

 delay(status);

 // Retrieve the completed pressure measurement:

 // Note that the measurement is stored in the variable P.

 // Use '&P' to provide the address of P.

 // Note also that the function requires the previous temperature measurement (T).

 // (If temperature is stable, you can do one temperature measurement for a number of pressure

measurements.)

 // Function returns 1 if successful, 0 if failure.

status = pressure.getPressure(P,T);

 if (status != 0)

 {

 return(P);

 }

 else Serial.println("error retrieving pressure measurement\n");

}

 else Serial.println("error starting pressure measurement\n");

 }

 else Serial.println("error retrieving temperature measurement\n");

 }

 else Serial.println("error starting temperature measurement\n");

}

	مشروع التخرج النهااااائي11.pdf
	Appendix-A +b+c(1).pdf
	Appendix D 3f.pdf

