Palestine Polytechnic University

College of Engineering

Raspberry Pi and old personal computer’s based face
detection and recognition system.

Prepared By

Ameer O. Herbawi Mohammad J. Teeti Sajed Y. Hmeed

Supervisor: Eng. Ayman Wazwaz

Submitted to the College of Engineering in fulfillment of the requirements for the
Bachelor degree in Communication and Electronic Engineering

Hebron, May 2017

Palestine Polytechnic University
Collage of Engineering

Department of Electrical Engineering

Project title:

Raspberry Pi and old personal computers based face
detection and recognition system.

Team:

Ameer O. Herbawi Mohammad J. Teeti Sajed Y. Hmeed

By the guidance of our supervisor, and by the acceptance of all members in the testing
committee, this project is delivered to the Electrical Engineering Department in the College
of Engineering, to be as a fulfillment of the requirement of the department for the degree of
Bachelor’s in communication and electronic engineering.

Supervisor signature

Dedication

This work is dedicated to our parents, who taught us that the best kind of knowledge
to have is that which is learned for its own sake. Who also taught us that even the

largest task can be accomplished if it is done one step at a time.

Acknowledgment

We give to the Palestine polytechnic university, special thanks to the Communication
and Electronics Engineering teachers in college of engineering who guided us for the
past years, without their support, knowledge and patience, this work would never be

done.

A special thanks for our supervisor Engineer Ayman Wazwaz. His sage advice, insightful
criticisms, and patient encouragement aided the writing of this thesis in innumerable

ways.

We also thanks Engineer Mutaz Jawadeh for the help he aided during our
implementation and to the 2012 communications and electronic engineering students

who helped us in our testing phases.

Abstract

This project aims to deploy a network. This network consists of group of computers
connected together with a microcomputer to which a camera is connected. The system will
take images of people, analyze, detect and recognize the human faces using image
processing algorithms, thus such a system can serve as a security system in public gathering
(e.g. Malls, Universities, airports ...etc.). The system will be able to detect and recognize a

human face in different situations and scenarios.

This project will implement “Boosted Cascade of Simple Features algorithm” to detect
human faces. “Local Binary Pattern algorithm” to recognize these faces. Raspberry Pi will
be the main component for its remarkable capabilities among with the raspberry pi camera

for image capturing; all needed programmers are written in python 2 and 3.

The project goals were achieved, an improvement of about 80 % in recognition processing
time was gained due to the multiple server approach, load balancing were also achieved to

send images over the connected servers.

uaﬂ.d\
1 3aS gn aday)l i) ¢(sb sl Jremall (o gailall 5 Aaail) Gy gudal 3 aY) e JalSiia alai sl g 5) 138 Cangy

Azl ébﬁ]\&@cu)ﬂ\}cpﬁ\ %Aﬂ&g&:ewew\ Jaa e\dil.u\dﬂagc\.@.}lc s y2ill 5o g gl st e)l A
25Kl Al Claaaill § Cilaaladl g Y sl Jia

daa)l ia g 3y eall 86l MNI“Boosted Cascade of Simple Features”))s Hlaill s axdii.
op s pall 1o (8 bl aSatall o Ko sl gomly gl oda e aaill “Local Binary Pattern”
ZQQQ@BM\@A\Mchng\)}\M“.:\mua.adam 11 Sl daas yria g A seall 4t jaal

3 o5y

ot Jumdy o sn sl e oxll Ao s (s 8 % 80 (I il A ilam sy Lediind 5 5 kel ila)
Dssall Jla) ie Jlaa¥) a5 lase Gaad 4ilia) ¢l (g sl 1 (e w38) eaall Jan apl] 4akia 5 jeal 4330
Alaid) 3 jeaY) e darall Cagdy Laa 4 gulall 3 3¢a

List of Figures

Figure Number

Figure Name

Page Number

General System Block

Figure 1.1] 4
Diagram
) The two models for face
Figure 2.1 o] 13
detection in color images
Figure 2.2 Skin Detection 14
Locating and identifying the
Figure 2.3 eye location for a two 14
different face pose and color
) Construction of the mouth
Figure 2.4] 15
maps for two subjects
) Example of integrating an
Figure 2.5] 16
image
Harr Features used to
) compare with the calculated
Figure 2.6)) 17
features after integral image
representation
Figure 2.7 Nose Harr-like Feature 17
) local binary patterns
Figure 2.8) 21
generation
) arbitrary number of neighbors
Figure 2.9]] 22
in local Binary Pattern
Raspberry pi 2 Model B
Figure 2.10 P) yP 27
Microcontroller
Raspberry Pi Microcomputer
Figure 3.1 and Camera Module in 34
Schematic view
) Raspberry Pi and Camera
Figure 3.2 35

Flow chart

Block Diagram illustrating

Figure 3.3] 37
Raspberry input and output
] Flow chart for face detection
Figure 3.4] 37
and cropping phase
Flow chart illustrating face
Figure 3.5 detection by a boosted 38
cascade of simple features
) Functional Block Diagram for
Figure 3.6 o 39
face recognition
) Block Diagram illustrating
Figure 3.7) o 40
final recognition stage
Figure 3.8 Servers flow chart 41
) Face Recognition Algorithm
Figure 3.9 42
flow chart
Flow Chart of Dataset
Figure 3.10 Creation and Inserting Names 43
and ID’s to Database
Flow chart of training
Figure 3.11 procedure and pushing DB 44
and YML to servers
_ General System Block
Figure 3.12) 46
Diagram
Figure 3.13 General System Flow Chart 47
. General Flow Diagram of
Figure 4.1) 50
system Implementation
. Connecting Raspberry Camera
Figure 4.2) 51
to Raspberry pi Board
Raspberry pi with mouse,
Figure 4.3 keyboard, camera, and monitor 52
connected
Figure 4. 4 Router Binding Table 53
Figure 4.5 Android Application 56

Figure 5.1

Error percentage versus scale
factor for different minimum

neighbor's values

64

Figure 5.1.1

Figure 5.1.1: Error percentage
versus scale factor for MN 4
and different polynomial fit.

66

Figure 5.1.2

Figure 5.1.1: Error percentage
versus scale factor for MN 5

and different polynomial fit.

67

Figure 5.1.3

Figure 5.1.1: Error percentage
versus scale factor for MN 6

and different polynomial fit.

68

Figure 5.2

Transmission Time toward

Servers

70

Figure 5.3

Recognition processing time

(one server vs. three servers)

73

Figure 5.4

Chart representing the
number of faces vs the
number of faces per person in
the dataset when two
different cameras were used

for training and detection.

75

Figure 5.5

Chart-representing number of
faces vs number of faces per
person in the dataset when
two different cameras was
used for training and
detection with equalization

implemented.

76

Figure 5.6

Chart representing number of
faces vs number of faces per
person in the dataset when the
same camera was used for
training and detection with

equalization implemented

77

Figure 5.7

Chart representing number of
faces vs number of faces per
person in the dataset while the
same camera was used for
training and detection with
equalization implemented with

confidence of 60.

78

Figure 5.8

Chart representing number of
faces vs number of faces per
person in the dataset while
the same camera was used for
training and detection with

equalization implemented.

79

Figure 5.9

Chart representing number of
faces vs number of faces per
person in the dataset when the
same camera was used for
training and detection with

equalization implemented and

confidence of 60.

80

VI

List of Tables

Table Number Table Name Page Number
Table 1.1 Estimated Total Cost 7
First Semester Timing
Table 1.2) 8
Diagram
Second Semester Timing
Table 1.3] 8
Diagram
Comparison Between
Table 2.1 _) 26
Raspberry Pi and Arduino
Detection parameters test (SF
Table 5.1 60
1.3, MN 6)
Detection parameters test (SF
Table 5.2 61
1.2, MN 6)
Detection parameters test (SF
Table 5.2 61
1.2, MN 6)
Detection parameters test (SF
Table 5.3 61
1.1, MN 6)
Table 5.4 Detection parameters test (SF 62

Vi

1.3, MN 5)

Detection parameters test (SF

Table 5.5 62
1.2, MN 5)
Detection parameters test (SF
Table 5.6 62
1.1, MN 5)
Detection parameters test (SF
Table 5.7 63
1.3, MN 4)
Detection parameters test (SF
Table 5.8 63
1.2, MN 4)
Detection parameters test (SF
Table 5.9 63
1.1, MN 4)
Detection parameters test for
Table 5.10) 65
varying SF for MN of 4.
Detection parameters test for
Table 5.11 varying SF for MN of 5. 66
Detection parameters test for
Table 5.12) 67
varying SF for MN of 6.
Transmission Time towards
Table 5.13 69
one server
Transmission Time towards
Table 5.14 69
Three servers
Processing Time on One
Table 5.15 72
Server
Processing Time on Three
Table 5.16 72
Server
Recognition accuracy for
Table 5.17 _ 75
different cameras
Recognition accuracy for
Table 5.18 different cameras with 76

equalization implemented

VI

Recognition accuracy for the
Table 5.19 same camera with 77
equalization implemented
Recognition accuracy for the
Table 5.20 same camera with 18
equalization implemented and
confidence of 60.
Recognition accuracy for the
Table 5.21 same camera with 80
equalization implemented
Recognition accuracy for the
Table 5.22 same camera with a1
equalization implemented and
confidence of 60.
List of Abbreviations
RP Raspberry Pi
PC Personal Computer
GPU Graphics processing unit
CCTV Closed-circuit television camera
FLD Fisher Liner Discriminant
SVM Support Vector Machine
LCD Liquid crystal displays
PCA Principle Component analysis

LDA Linear Discriminant analysis
LBP Local Binary Pattern
LBPH Local Binary Pattern Histograms
CATS5E Category 5 Ethernet
Wi-Fi Wireless Fidelity
LAN Local Area Network
IEEE Institute of Electrical and Electronics Engineers
OSlI Open Systems Interconnection
TCP/IP Transmission Control Protocol/Internet
Protocol
RAM Random Access Memory
PIC Peripheral Interface Controller
SD Card Secure Digital card
FOSS Free and Open Source Software
YCbCr Luminance; Chroma: Blue; Chroma: Red
CsSlI Camera Serial Interface
SoC System on Chip
0s Operating System
VML Why A Markup Language (XML generating
language by Volker Birk)
GB Gigabyte
MAC Medium Access Control
apt Advance Package Tool
Ccv Computer Vision
1/0 Input/output
GUI Graphical User Interface
DB Database
IDE Integrated Development Environment

Table of Contents

ADSITACt (ENGHISN) ... e I
ADSITACT (ATADIC) ..o.e e II
|5 o) il S T 1 I
LSt Of Tables ...t e e e Vil
| A AN o) 02 (5 4 F2 Y3 o) 4 T IX

Chapter One: Introduction

I Y 1075 A 1510)3 2
L2 ODJECLIVES .ottt e e e e e e 2
R 0 1 o T P 3
Y o T e 0] (0 Yoy RPN 4
LS REIAEA WOTK ..o 5
LB EQUIPIMIENT . e 7
1.7 ESMAtEd COSE . nnintittint ettt e e e e ettt 7
1.8 TIMING DIAZIAIM ...ttt ettt et et et et e et et e et et et e e e e aeaneaaeans 8

Chapter Two: Theoretical Background

2 T2 (04 L1150 s 11
2.2 FACE DELECTION ...ttt ettt e e e e e e e et 12
B B 11 (016 101510 s 12
2.2.2 Face Detection using a static or mono color backgroundccceceeiiniinn.... 12
2.2.3 Face Detection in COIOT IMAZESvuuintiinietiii ettt et et et e ae e eeaeees 12

2.2.3.1 Detection in Color Images using skin-tone color model 13
2.2.3.2 Detection by a boosted cascade of simple featuresooenne.. 15

2.3 FACE RECOGNITION ... et e e e e 19

2.3.1 Historical backgroundoooiiiiiiiiii e 19

232 INEFOAUCHION .. .enete et e e e e e 19

2.3 3 BA@ONTACES .. uiintteii ettt e 20

2.3 4 FISREITaCES .. .neeneiei e 20

2.3.5 Local Binary HiStOZIamcouiiiiiiitiiiii ittt e e e e eeee e 21

2.3.5.1 Mathematical Backgroundcoooiiiiiiiii i 22

2.4 System BackbDOmneo.uitiiiiii e e 23

2.4.1 Network INfrastrucCtureo.oiiiuiiii e 24

2ALTTCP/P .o 25

2.4.2 MICTOCOMPULETS ...ttt etiiieseat et e et entee e et e teea e e e e e e ae et e s e eaeenteneneneeneaneas 25

2.4.2.1 ClasSIfiCAtIONSoieeiei e 26

2.4.2.2 Raspberry Pi MICrOCOMPULETooviieiitiit i e, 26

2.4.2.3 Software Backgroundoooiiiiiiiii 27

243 Camera Moduleo, 28

244 SCTVETS .ttt 29

2.4.5 Android smart phone and applicationcooiviiiiiiiii i 29

2.5 CONCIUSION ..uintt ettt e e e 30
Chapter Three: System Design

3.1 INtrOQUCLION ...uuit i e e 32

3.2 The Camera and Raspberry Pio.iinii e 33

3.2.1 BIOCK DIagramoouuieiii it 34

S22 FIOW CRATT .ot 35

3.3 The Raspberry Piand SeIrVersoiuiiiiiiii i e e e eeee e 36

3.3. 1 BIOCK DIagramouuineiii ittt 36
.32 FLOW Chart ... e e e 37
3.4 Servers Sub System (RecOgnition STAJE)oviiniiiit it 39
341 BIoCK DIagramoiieiiii i e 40
.2 FLOW CRhart ..ot e e e e 41
3.5 Servers Sub system (Training STAGE)veuriniii it e e aeeea s 43
BB.LFIOW ChaAITS ...t 43
3.6 General System TTTUSTIAtioNcouuintiti e e e e 44
3.6.1 General Block Diagramcoooiiuiiiiiiiiiii i 45
3.6.2 General FIow Chart ... e, 47

Chapter Four: System Implementation

AL INEEOAUCTION oo e e 50

4.2 General Flow Diagram of system Implementationociieieseeeeenn. 50

4.3 RASPDEITY PICAMETA ...ueee sttt ettt et e 51
4.3.1 CONNECLING thE CAMEIAccvieiiciccieee ettt be e e nre s 51
4.3.2 Camera Setup and ConFIQUIALIONcoiiiriiieieie et 52
4.4 RasSPDErry Pi IMICTOCOMPULEToviiitiiteite ittt sttt bbbt 52
T N\ ATV ST (V] OSSR 53
4.8 SEIVEIS .otttk ettt ettt bbbt b et E £ R AR R AR e R R Rt R et r s 54
4.6.1 Installing Operating SYSIEIMcoviiiiiiiie et sre e re e 54
4.6.2 Preparing the servers With OPeNCVccooiioiiiccecce e 54
4.6.3 Programming COUBSciuiiiieierieriestestesiesieeiees ettt st sbe st se e bt sbe st st sbeeseene e 54
4.7 RESUIT HANAIETS ...t 56
4.7.1 MONItoring USING SUPEIVISON SCIEEINccueiuieieieitesiesiesiesieseseesee e sie st sttt 56
4.7.2 Monitoring using Android APPIICALIONcoiiiiiiiiiie e, 56

X

Chapter Five: Testing and analyzing data

BT INITOAUCTION .. v ettt e e e e e e e e e e e e 59

5.2 Detection parameters teStSoiu ittt eee e saeeaees D9

5.3 Testing faces transmission time from raspberry pito Servers.ocooiiiiiiiiiiiiiniiii, 68
5.4 Testing recognition-proCessing tIMe.oiuiitini i e e, 71
5.5 Testing reCOgNItioN PATAIMELETSutrint et et ettt et et etet et eeee e et e et es et eneareaeaanenns 74
5.5.1 Detection using raspberry pi camera - training using laptop webcam 75
5.5.2 Detection and training using laptop webcamooiiiiiiiiii i 77
5.5.3 Detection and training using raspberry pi CAmMeraccocoeeiviiiniininiiiennnns 79
5.6 CONCIUSION .. ettt e e e e e e e e e e 81

Chapter Six: Results and future work

B.1 INITOAUCTION .. vttt e e e e e e e e e et 83

8.2 RESUILS ...ttt e 83

6.2.1 Detection parameters reSUltS.c.iiriiiii e 83
6.2.2 Transmission time reSUILS ..o 84
6.2.3 Recognition proCcessSing tiMeiiiirii e e 85
6.2.4 Recognition parameters teStvieirii i 86
0.3 FULUIC WOTK ..o e e 86
RETOIEIICES ...ttt e e 88
Appendix (A) Camera Setup and Configurationsc.ovvuiiiiieiiiiiiiiie i eenenn, 91
Appendix (B) Raspbian Installation 94
Appendix (C) OpenCV INStallationooiriiiii e eeee s 94
Appendix (D) Ubuntu Installation ... 103
Appendix (E) Dataset Creator COUEooiiriit i e e 105

APPENdiX (F) Trainer COOEuueini it e e e 106

AppendiX (G) Recognition COAEu.uiuieitiet ittt ettt et et e eaee e aees 107
APPENdiX (H) CHENE COUR ..o e e 109
APPENdiX (I) RP SErver COE .. ittt e eee e 111
AppendiX (J) DELECHION COAEooiuriieti et 113
Appendix (K)Raspberry pi Cameraouuuienniieit it eite et e e e eee e eaeeess 115
Appendix (L) RaSPDEITY Pl ..vnuiieiiiiiit it 116

XV

CHAPTER ONE

Introduction

1.1 Motivation

1.2 Objectives

1.3 Overview

1.4 Methodology
1.5 Related work
1.6 Equipment

1.7 Estimated cost
1.8 Timing Diagram

1|Page

Chapter One
Introduction

1.1 Motivation

Digital graveyard has become one of the greatest challenges in this fast growing technical world,;
according to Daily-mail [1] it’s a terrible waste of space and money, since all the old devices-we will
consider personal computers for the sake of the desired application-and electronics are thrown away
for trivial reasons, such as the availability of a new device or components, thus this does not mean
that the old devices are useless, in fact, they are not.

As electronics and communications engineers, we started searching for ways to benefit from the
existed technologies to expand the resources of the new technologies instead of tolerating the big cost

of creating new matching resources.

Viewing the resources available with the microcomputers, they are tremendous, but, for very complex
tasks, microcontrollers would take a long and unnecessary processing time to accomplish its tasks or

applications.

1.2 Objectives:

The goal of the project is to build a system that can detect and recognize faces of people using
image-processing techniques. Practically this idea can be implemented in large gathering areas (Malls,

Airports, and Universities) to provide security.
The main objectives of this project summarized as follows:

1) Benefiting from the unused computers in corporation with microcomputers.
2) Expanding the desired microcomputer capabilities.
3) Implement a face detection and recognition algorithm to run over the microcomputer to notice

the effect of combining the computers with microcontrollers all together.

2|Page

1.3 Overview:

Eventually, every one of us is going to get rid of old computer and throw it away, if a larger
scope is consider such as municipalities and universities they do an annual upgrade for the computers
that they own. That is a huge aspect of the problem, what if these computers could have been used

and embed into a specific application using their quit well resources.

In addition, when observing the somehow restricted capabilities of Raspberry pi -which can be
considered as a second problem - and how it could benefited from old computers, while evolving the
capabilities that raspberry pi have. By conducting a proposal that combines these two aspects. an
inspiration to build a system that consists of raspberry pi and old computers in order to perform a

complex application over them.

This project is likely to be a good way to re-use the existing PC along with modern microcomputers
and solve the mentioned problems, and it will create a new integrated system, which will save Money,

Effort and Time, which are much appreciated in technical field.

3|Page

1.4 Methodology:

The block diagram in Figure 1.1 consists of a camera that will capture and forward frames to
the Raspberry pi [2], the Raspberry pi then will detect and crop the faces in this frame and transmit
the resulted face over Ethernet to one of the available PC’s.
Meanwhile the PC’s are going to recognize the received faces and display the unknown picture on

one of the servers and notify the mobile phone (android).

4

TCPAP 3
Private Net'r.'o.r;:“)

A 4
A 4

Raspberry P12

Y

Figure 1.1: General System Block Diagram.

The system works as follows:

1) A camera is connected to the raspberry pi will stream live video to the raspberry pi.

2) By implementing detection algorithm on the raspberry pi, faces of the people should be
detected, and cropped so they are ready for transmission to the connected old personal
computers.

4|Page

3)

4)

5)

The connection between the raspberry pi and the computers is a TCP/IP based, either as
Ethernet or as a wireless connection.

A specific computer will receive the cropped face image and run it through a face recognizer
algorithm to recognize the face from the database.

If the face is unknown, and the system cannot recognize it, a notification message will appear
over the computer screen along with the mobile device notification (android application)

showing the stranger face.

1.5 Related works

1)

2)

Raspberry pi Based Human Face Detection [3], in this paper a face detection system using
raspberry pi was developed. The system that they built was Python based, they implemented
real time face detection, and were able to detect faces from a specific images, object detection
also was considered here, using a variety of data bases to test their result they were able to
detect a very foggy and ambiguous faces, as far as we can consider that this is a great work,
but the authors didn’t approach face recognition algorithms due to complexity of the
recognition process, and since the recognition process will need a more powerful resources to

accomplish an excellent result.

Graphical processing unit (GPU): Application for Closed Circuit Television Camera (CCTV)
systems [4], the authors were able to switch from the CCTV graphical processor to a PC GPU,
in this we noticed the trend toward using a PC GPU for its quit well capabilities, a capability
better than the one in the CCTV system, they embedded the security cameras into the PC GPU,
and we could notice that the PC GPU is an excellent resource to use when generating and
displaying the typical content of a CCTV system, image composition and content decoding
were not a problem in this case, they were done in an accurate way. What was noticeable that
they suggested at the end of their paper saying “if we need a system capable of displaying
more source we can increase the power of the PC components, and when we reach a point
where it is not possible, we can add a second PC, making this a cheap and scalable solution”,

we can refer to this as a good point regarding the re-use of old computers.

5|Page

3)

4)

5)

Accelerating Real-time Face Detection on a Raspberry Pi Telepresence Robot[5], this paper is
focusing on accelerating only the face detection process over the Raspberry pi, the authors
were able to achieve a good results, thus they had to take the CPU of the Raspberry pi to its
limits, and they also needed a little bit more RAM, they implemented a software to accelerate
the detection of faces over the raspberry pi, which was better than their detection algorithm in
Telepresence robot, they had showed that combining the Raspberry Pi into another

microcomputer (Telepresence robot here) could improve the overall system performance.

Face Detection, [6] attempted to detect faces in a digital image using various techniques such
as skin color segmentation, morphological processing, template matching, Fisher linear
discriminant (FLD), Eigen face decomposition, and support vector machines (SVM). It
determined that the more complex classifiers did not work as well as expected due to the lack
of large databases for training. Reasonable results were obtained with color segmentation,
template matching at multiple scales, and clustering of correlation peaks.

Reusing personal computer devices - good or bad for the environment? [7]: The energy saving
potential of reusing / reselling personal computer (PC) devices was evaluated relative to the
choice of buying new. Contrary to the common belief of reuse leading to energy savings, with
the advent of more efficient laptops and liquid crystal displays (LCD), reuse of an old personal
computer device can lead to relative energy expenditure. We found that in certain scenarios
this expenditure could be as large as 300% of the lifecycle energy inventory for the new device.
As a result, it is essential to assess the reuse of personal computer devices more critically,

incorporating the different factors that influence the analysis.

6|Page

1.6 Equipment:

1) Raspberry pi 2 version B Microcomputer.

2) Raspberry Pi Camera Module Version 1.3.

3) TP-Link 4-Port Router with Wireless adapter.

4) Ethernet Cables.

5) Group of Unused (Old) computers as servers.

6) Android Mobile phone.

1.7 Estimated Costs:

The following table 1.1 estimate the total cost for the project
Table 1.1: Estimated Total cost for the project

Component Quantity

Raspberry Pi 1
Camera Module 1
Router 1
Ethernet cables 4
Computers 3
Mobile Phone 1

Total estimated cost for the project

Estimated Total Cost

80%
25%
30%
10$
450%
100%
695%

7|Page

1.8 Timing Diagram:

Table 1.2: First Semester Timing Diagram

Week

Task

Searching for Topic

Collecting Information

Analyzing

Documentation

Table 1.3: Second Semester Timing Diagram

Week

Task

Implementation

Testing

Documentation

8|Page

CHAPTER TWO

Theoretical Background

2.1 Introduction
2.2 Face Detection
2.2.1 Introduction
2.2.2 Face Detection using a static or mono color background
2.2.3 Face Detection in color images
2.2.3.1 Detection in Color Images using skin-tone color model
2.2.3.2 Detection by a boosted cascade of simple features
2.3 Face Recognition
2.3.1 Historical background
2.3.2 Introduction
2.3.3 Eigenfaces
2.3.4 Fisherfaces
2.3.5 Local Binary Histogram
2.3.5.1 Mathematical Background
2.4 System Backbone
2.4.1 Network Infrastructure

241.1 TCP/IP
9|Page

2.4.2 Microcomputers
2.4.2.1 Classifications
2.4.2.2 Raspberry Pi Microcomputer
2.4.2.3 Software Background

2.4.3 Camera Module

2.4.4 Servers

2.4.5 Android smart phone and application

2.5 Conclusion

10| Page

Chapter Two

Theoretical Background

2.1 Introduction

This chapter outlines the basic concept behind face detection, recognition algorithms, in
addition to the primary aspect of the cropping, transmission and processing of the picture. In this
chapter, the theory regarding the algorithms will be fairly described. Moreover, a mathematical

overview will be represented when needed.

The first section in this chapter investigates the different types of face detection algorithms, whilst
there are many detection algorithms major focusing will be given to static face detection and detection
in color images, the previous algorithms will be generally introduced, in addition to the mathematical
background of each algorithm when needed. While viewing this section a graphical example will be
added to support a better understanding of each algorithm.

Face recognition is the second section in this chapter, in this section an introduction to a three famous
face recognition algorithms, Eigenfaces, Fisherfaces, and Local binary patterns histograms will be
given, in addition to some historical background whenever its needed to support a better understanding
of how each algorithm evolved within time. Major focusing will be given to mathematical
background.

The last section in this chapter “System backbone”, this name was chosen since this section will
provide an overview for the whole backbone of the system. Network part will be explained, the various
transmission mediums are discussed, the desired transmission protocol will be discussed, and the
theory behind the microcomputers in both hardware — software terms is explained, the hardware
components rather than the microcomputer such as the camera, server and mobile phone are also

considered.

11| Page

2.2 Face Detection:
2.2.1 Introduction

Face detection is a technology that has been developed and used to detect human faces for
several applications and purposes. In this section derivation and explanation of the three most popular

face detection algorithm is provided.

Given an image, the goal of face detection is to determine whether there are any faces in the image
and if present, Identify and locate human faces in an image regardless of their position, scale,
orientation, pose, and illumination. This process is hard because of Pose Variation, Beards, Glasses,

Facial Expression, Image Orientation, Lighting, Noise and Resolution.

In the following sections, a deeper look is given to clarify the different algorithms.

2.2.2 Face Detection using a static or mono color background

This technique is a very simple one that uses image with a mono-color or static predefined
background, removing the background will always give the Face area. Simple, yet not efficient
because it does not work with different backgrounds, which is the normal case.

2.2.3 Face Detection in color images

In such algorithms the skin color is a key factor for detection process, there are two primary
methodologies, first one detection in color images using skin tone color model and detection by a
boosted cascade of simple features, these two algorithms are described in the following sections. [8]

12| Page

2.2.3.1 Detection in Color Images using skin-tone color model

The method is to detect skin regions over the entire image, and then generate face candidates based
on the spatial arrangement of these skin patches. The algorithm constructs eye, mouth, and boundary

maps for verifying each face candidate. The algorithm provides two modules:

1) Face localization to detect face candidates.

2) Facial features to verify the detected face.

Figure 2.1 represents a graphical clarification for the previous two modules, a color image is
presented to the algorithm, then a lighting compression is applied to minimize the external effects,
then the model determines the candidates, which are the features of the face, finally, the second model

is applied to verify that it’s a face.

‘Face
Candidates

Face
Yerification

Figure 2.1: The two models for Face detection in color images.

The Luminance; Chroma: Blue; Chroma: Red (YCbCr) color space is used to model skin color and
this color space is non-linearly transformed to make the skin cluster independent of luma (non-linear

gamma-corrected luminance O<y <1) figure 2.2 shows the skin detection.

13| Page

Figure 2.2: Skin Detection A) Yellow biased face image.
B) a lighting compensated image.
C) skin of face in A.
D) skin of face in B.

The algorithm uses the facial feature (eyes and nose) as the most important features for detection.
It was found that high values of Cb color (blue difference component in the Y CbCr space) and Low
Values of Cr color (red difference component in the Y CbCr space) are around the eyes and so the
algorithm estimates an Eye Map by using the value of Cb, Inverse of Cr and the ratio of Cb/Cr. Figure
2.3 estimates and locates the eyes.

Figure 2.3: Locating and identifying the eye location for a two different face pose, and color.

14| Page

Since the mouth has more red component than blue component then Cr > Cb and also it was noticed
that there is a relatively low response in Cr/Cb and high response in Cr2.hence the difference between

Cr? and Cr/Cb can determine the mouth region as shown in figure 2.4.

Figure 2.4: Construction of the mouth maps for two subjects.

Then, verifying eyes and mouth by using:

1) Luma variations of eye and mouth blobs.
2) Geometry and orientation constraints of eyes-mouth triangles.

3) The presence of a face boundary around eyes-mouth triangles.

2.2.3.2 Detection by a boosted cascade of simple features [9]

This algorithm provides a very rapid object detection depending on three main key contributions,

which are:

1) The concept of "Integral Images”, which introduces a new way of image representation that
makes the detector capable of computing the features more quickly.

2) AdaBoost based learning algorithm, which can select few but very critical features for
calculation from a huge number of features, and so exclude unwanted features that appear in

the background.

15| Page

3) A method to cascade the calculation of complex features. The Cascading method will allow
the system to spend more time in processing the important features while discarding unwanted

background features rapidly.

In the approach a group of reminiscent features is used to help detect a human face, Image Integral

does the features evaluation.

The first approach that algorithm takes is the image integral.

Image Integral

An Image representation in which the integral can be computed from image using a few
number of operations per pixel and then the features are evaluated using Harr-filter (group of basis

that are used to represent a portion of an image as follows:

Let P(x,y) is the value of a pixel in an image ,then in image integral the value of a pixel is the sum of
all pixels above and to the left of (x1,y1), Figure 2.5 represents an integral system.

P(x1,y1) = Xx 2y p(x,y) Equation (2.1)
Sum the above and to left
| | 1 |
[[1 > 4 6
| | 1 3 (3]
Input Image Integral Image
~ B D=1+ 44— (Z+ 3)
1 2 =A+(A+ B+ C+ D) —
(A+Cc+A+ B)
c D = D
El a

Figure 2.5: Example of integrating an image.
16| Page

Applying the features to the image, subtracting the pixel values under white region from pixel values

under black region, and the result is a single value.

i

Figure 2.6: Harr Features used to compare with the calculated features after integral image

representation.

For example, Figure 2.7 shows a nose feature, applying the feature all over the image will give a
lower value everywhere except for the nose region, then the highest value will be obtained there.

Figure 2.7: Nose Harr-Like Feature.

Because of the large number of Harr-like features in a specific sub window in the image, the
calculation will be tedious and time consuming, so the AdaBoost technique is used to reduce the
number of the features by excluding the (non-facial features) which are not important and carry no

information.

17| Page

The second approach that the algorithm takes to improve the detection and remove the unneeded

features is the AdaBoost

The AdaBoost

A learning algorithm that helps finding the most critical and best features among all features.
After eliminating the irrelevant features, a weighted combination of all relevant features is used to
decide whether the given window has a face or not, each feature is called a weak classifier and

AdaBoost algorithm build a strong classifier as a linear combination of the weak classifiers.

F(x) =a;f(x) +a,f(x) +azf(x)+ - Equation (2.2)

Applying the strong AdaBoost classifiers to all given sub windows in an image is also time consuming
and may limit the real time process of detection, the algorithm solves the problem by involving the

Cascading method.

The last feature added to the algorithm to improve detection speed is the cascading.

Cascading:

In cascading technique, the strong classifiers are divided into stages each contains a strong
classifier. Each stage is used to determine whether the given sub window is a face or not, if the sub
window fails in any of the stages then it's immediately discarded as non-face and another sub window
is processed, by that method time can be preserved to test for faces in the windows that are most likely
to have face.

18| Page

2.3 Face Recognition:
2.3.1 Historical background

Since the early of 50’s, facial recognition had gain its important due to the severe attacks on
buildings, airports in different European countries, it was imminent to develop a system to help the
law in identifying and recognizing the suspect, and match it among a library of pre-known suspect
faces. Therefore, face recognition importance appeared since it doesn’t require interaction between
the system and the suspect, this system simply uses the image to compare and match it with a pre-
known faces and if the face appeared to be known, an action can be taken after. This technology was

monopolized for the government until it was commercially available in 1990s. [10]

2.3.2 Introduction:

Face recognition systems are the new trend in the world of biometric security, we will
introduce some of the most important and recent face recognition algorithms as we will look into the
core of each algorithm, a description will be provided in addition to the mathematical background

when needed.

In the following sections, we will research into the (Open Source Computer Vision Library) OpenCV
Libraries, OpenCV is an open source computer vision and machine learning software library. OpenCV
was built to provide a common infrastructure for computer vision applications and to accelerate the

use of machine perception in the commercial products.

In this section we discuss Eigenfaces, Fisherfaces and local binary pattern histogram algorithms, each
of the above algorithms is supported by the OpenCV library, however we will choose one of these
algorithms to work on considering many factors: efficiency, stability and complexity are a primary

interest.

19| Page

2.3.3 Eigenfaces

Eigenfaces is the first algorithm that is introduce and discussed here, it is the name given to a
set of eigenvectors when they are used in the computer vision problem of human face recognition.
Eigenfaces refers to an appearance-based approach of face recognition that seeks to capture the
variation in a collection of face images and use these variations information to compare images of
individual faces in a feature-based manner. Specifically, the Eigenfaces are the principal of a
distribution of faces, or equivalently, the eigenvectors of the covariance of the set of face images,
where an image with pixels is considered a point (or vector) in -dimensional space. Eigenfaces is still
often considered as a baseline comparison method to demonstrate the minimum expected performance

of such a system [14].

Eigenfaces is a non-zero vector that does not change its direction when the linear transformation is

applied to it.

2.3.4 Fisherfaces

Fisherfaces algorithm is a second recognition algorithm that is discussed in this section, in the
last section, Eigenfaces algorithm was introduced, which was implemented based on Principle
components analysis (PCA), a linear combination of features that maximizes the total variance in data.
While this is clearly a powerful way to represent data, it does not consider any classes and so a lot of
discriminative information may be lost when throwing some components away. This can yield bad

results, especially when it comes to classification. [15]

Fisherfaces is similar to Eigenface but with improvement in better classification of different classes
image. The training set can be classified to deal with different people and different facial expressions.
Better accuracy can be achieved in facial expression than Eigen face approach. Besides, Fisherfaces
removes the first three principal components, which are responsible for light intensity changes; it is

more invariant to light intensity.

20| Page

2.3.5 Local Binary Patterns histograms

Eigenfaces and Fisherfaces take a somehow holistic approach to face recognition. The data is
being treated as a high-dimensional image space, which is not the best approach we can take since
high-dimensional space always requires more attention that is mathematical in addition for its huge

size, which leads to high storage consumption. [16]

Therefore, a lower-dimensional subspace is identified, where useful information is preserved. The
Eigenfaces maximize the total scatter, which can cause some trouble if the variance is generated by
external source as mentioned before. Moreover, some of the components with a maximum variance

over all class aren’t necessarily useful for classification.

The basic idea of Local Binary Patterns is to summarize the local structure in an image by comparing
each pixel with its neighbor. Take a pixel as center and threshold its neighbors against. If the intensity
of the center pixel is greater-equal its neighbor, then denote it with 1 and O if not. it will end up with
a binary number for each pixel, just like 11001111. So with 8 surrounding pixels it will end up with

2"® possible combinations, called Local Binary Patterns or sometimes referred to as LBP codes.

11212 ololo “1

i Binary: 00010011
9]5]6| Threshold |1 1] | Decimal 19
503)1 1lolo]/

4

Figure 2.8: This figure illustrate how local binary patterns are generated.

21| Page

2.3.5.1 Mathematical Background

Local binary patterns are much more efficient than the previous two algorithms; the following steps
will provide an insight to how this algorithm works.

1. A more formal description of the LBP operator can be given as
P—1

LBP(x.,y.) = Z Zps[ip — 1) Equation (2.3)
p=0

With[xmyr] as central pixel with intensity i.; and i-nbeing the intensity of the
neighbor pixel

2. s isthe sign function which is defined as:

sz{] if x > 0

0 else Equation (2.4)

This description enables to capture very fine details in images.

3. The idea is to align an arbitrary number of neighbors on a circle with a variable radius, which

enables to capture the following neighborhoods as figure 2.9 shows.

Spot Spot/Flat Line Edge Corner

Figure 2.9: This figure illustrates the arbitrary number of neighbors.

22 |Page

4. Foragiven Point[xrs Hr]the position of the neighbor [xmyp]’ Pe I:,can be calculated by:

Xp = Xe —I—Rc'ms[h—p]
P Equation (2.5)
. 2mp
Yp = Ye —Rsm[T]

Where R is the radius of the circle and P is the number of sample points.

5. The operator is an extension to the original LBP codes, so it is sometimes called Extended
LBP (also referred to as Circular LBP). If a point coordination’s on the circle does not

correspond to image coordinates, the point is interpolated as follows.

fx,y) = [1 —X x] E[?’g] f[?’}]] F —y} . Equation (2.6)

6. Incorporate the spatial information in the face recognition model. By dividing the LBP image
into ™M local regions and extract a histogram from each. The spatially enhanced feature vector
is then obtained by concatenating the local histograms these histograms are called Local

Binary Patterns Histograms.

2.4 System backbone

This section will generally introduce the basic component of the system, networking side in
addition to the raspberry pi and its camera module, the server operating system, and the mobile phone
and its application, a description for each component will be stated with the appropriate configuration

to be used.

In the first section the network is discussed, what sort of communication methods is used, network
size, and the transmission medium. Second section will talk about raspberry pi and its camera module,

a features list will be provided, and a description for the raspberry pi itself along with its camera

23| Page

module. Next, a discussion for the server and the raspberry pi operating system is stated among the

preferable choices to be made.

2.4.1 Network infrastructure

The network configuration is an important aspect, among the various communication methods
such as wired, wireless communication, which can be further divided to Ethernet lines, coaxial cables,
fiber line as for the wired side, and to wireless fidelity (Wi-Fi) or the Bluetooth connection in the

wireless communication.

Ethernet was a preferred due to its simplicity regarding implementing and using among the system in
addition to the more than excellent data rate of 100 Mb/s for Cat5E. [17]

Ethernetis a family of computer networking technologies commonly used inlocal area
networks (LANs) and metropolitan area networks (MANSs. It was commercially introduced in 1980
and first standardized in 1983 as IEEE 802.3, and has since been refined to support higher bit rates and

longer link distances.

The original 10BASES Ethernet uses coaxial cable as a shared medium, while the newer Ethernet
variants use twisted pair and fiber optic links in conjunction with hubs or switches. Over the course
of its history, Ethernet data transfer rates have been increased from the original 2.94 megabits per
second (Mbit/s) to the latest 100 gigabits per second (Gb/s).

The Ethernet cables used in this project are Cat5E, which could serve up to 100Mbit/s transmission

rates in stable networks.

The second component in our network is the router that is going to connect the different servers to the
raspberry pi, and connect the android phone via wireless connection, a four-port router will be

appropriate for this implementation.

24 |Page

2.4.1.1 TCP/IP Protocol

TCP/IP is the basic communication language or protocol of the Internet. TCP/IP is a two-layer
program. The higher layer, Transmission Control Protocol, manages the assembling of a message or
file into smaller packets that are transmitted over the Internet and received by a TCP layer that
reassembles the packets into the original message. The lower layer, Internet Protocol, handles the

address part of each packet so that it gets to the right destination.

Each computer on the network checks this address to see where to forward the message. Even though
some packets from the same message are routed differently than others, they will be reassembled at
the destination.

TCP/IP uses the client/server model of communication, in which a computer user i.e. client requests
a service (such as requesting a Web page) from another computer i.e. server in the network. TCP/IP
communication is primarily point-to-point, meaning each communication is from one point or host

computer in the network to another point or host computer. [18]

2.4.2 Microcomputers

A microcomputer is a small computer on a single integrated circuit containing a processor
core, memory, and programmable input/output peripherals. Program memory in the form of flash is
often included on chip, as well as typically small amount of RAM. Microcomputers are designed for
embedded applications, in contrast to the microprocessors used in personal computers or other

general-purpose applications [19].

25| Page

2.4.2.1 Classifications: [20]

1) Microcontroller: it includes several types such as PIC, Arduino etc. It has an embedded system
consists of RAM, Input/output Pins and an oscillator that operates from 16-80 MHz
2) Microcomputer: Includes several types, such as Raspberry Pi, Beagle Bone. It consists of

internal clock, Input/output Pins and operates at frequency from 700MHz to 1GHz.

Table 2.1 provide a comparison between raspberry pi an Arduino.

Table 2.1: Comparison between Raspberry Pi (B) & Arduino

Model Arduino Raspberry Pi V2 Model B
Data Rate 16-20 MHz 700-1000 MHz
Random Access Memory 2 KB 512 MB
Read Only Memory 32 KB External SD Card
USB Port - 4
Ethernet - 10/100
Programming Language Set of C/C++ Any language supported by OS

2.4.2.2 Raspberry Pi Microcomputer

The Raspberry pi shown in figure 2.10 is a single-board computer developed in the UK by the
Raspberry Pi Foundation. The Raspberry Pi is a credit-card sized computer that plugs into the TV and
a keyboard. It’s a capable little PC which can be used for many of the things that a desktop PC does,
like spreadsheets, word-processing and games. The design does not include a built-in hard disk or
solid-state drive, instead relying on an SD card for booting and long-term storage. This board is

intended to run Linux kernel based operating systems [21].

26| Page

Figure 2.10: Raspberry pi 2 Model B Microcomputer.

2.4.2.3 Software background [22]

The main module of the system is the microcomputer. In order to work it needs an operating
system. The operating system is the backbone, which will run the microcomputer, in addition, a
programing language is needed to give the microcomputer the ability to process, send, and receive

data. The programming language used within the raspberry pi called “Python”.

The operating systems for the raspberry pi are various. Linux, Raspbian, and Windows 10 are the most

popular operating systems; a flexible operating system like Raspbian will be used.

The most popular programming language among Raspberry Pi is Python. It is one of those rare
languages, which is both simple and powerful. It is an easy to learn language. It has efficient high-
level data structures and a simple but effective approach to object oriented programming. Python’s
elegant syntax and dynamicity, together with its interpreted nature, make it an ideal language for

scripting and rapid application development in many areas on most platforms.

Python has many features such as:
1) Simple: Python is a simple and minimalistic language. Reading a good Python program feels
almost like reading English, although very strict English! This pseudocode nature of Python
is one of its greatest strengths. It allows you to concentrate on the solution of the problem

rather than the language itself.

27| Page

2) Easy to Learn: Python is extremely easy to get started with. Python has an extraordinarily

simple syntax, as already mentioned.

3) Free and Open Source: Python is an example of a FOSS (Free and Open Source Software). In
simple terms, anyone can freely distribute copies of this software, read its source code, make
changes to it, and use pieces of it in new free programs. FOSS is based on the concept of a
community, which shares knowledge. This is one of the reasons why Python is so good - it has

been created and is constantly improved by a community who just want to see a better Python.

4) Portable: Due to its open-source nature, Python has been ported (i.e. changed to make it work
on) to many platforms. Python programs can work on any of these platforms without requiring

any changes at all. Python can be used on Linux, Windows, FreeBSD, and Macintosh.

5) Extensive Libraries: The Python Standard Library is huge indeed. It can help to do various
things involving regular expressions, documentation generation, unit testing, threading,
databases, web browsers, CGI, ftp, email, XML, XML-RPC, HTML, WAV files,
cryptography, graphical user interfaces (GUI).

2.4.3 Camera Module

The Raspberry Pi camera module is used to take high-definition video, as well as still
photographs. There are many examples online of people using it for time-lapse, slow motion and other
video cleverness. The module has a five megapixel fixed-focus camera that supports 1080/30, 720/60
video modes, as well as stills capture. It attaches via a 15cm ribbon cable to the CSI port on the

Raspberry Pi. The camera works with all models of Raspberry Pi 1 and 2. [23]

28| Page

2.4.4 Servers

A server is a computer program or a machine that waits for requests from other machines or
software (clients) and responds to them. The purpose of a server is to share data or hardware and
software resources among clients. This architecture called the client—server model. The clients may
run on the same computer or may connect to the server over a network. Typical computing servers are

database servers, file servers, mail servers, print servers, web servers, and application servers.

The term server is used quite broadly in information technology. In theory, any computerized process
that shares a resource to one or more client processes is a server. So, while the existence of files on a
machine does not classify it as a server, if it uses some mechanism to share these files then it can be a
file server. Similarly, web server software can be run on any capable computer, and so a laptop or
personal computer can fulfill the role of a web server, the purpose of a server is to share data. A server

computer can serve its own computer programs as well.

Servers that will be used must be at least dual core processer, with two giga bytes of RAM, this
specification are the minimum required in order for effective processing time since these servers will
process the images from the raspberry pi and recognize faces.

2.4.5 Android smart phone and application

In this configuration an android phone will be used as a second notification device, this android

smart phone will be part of the system as it will be programmed to receive and view the faces
The android application is Java based, which can be written with the help of android integrated

development environment (IDE); meanwhile the server will trigger a TCP/IP connection based on a

code to transmit the faces to the android application.

29| Page

2.5 Conclusion

After viewing the different types of face detection algorithms, face recognition algorithms and the

system backbone, an initial decision is to work with the following configurations:

1) Face detection algorithm: Detection by a boosted cascade of simple features.
2) Face recognition algorithm: Local Binary Patterns Histograms.

3) Raspberry Pi version 2 model B.

4) Raspberry Pi Camera Module 2.

5) Three servers.

6) Android smart phone

These initial setups will be used to develop the next chapter, where we classify each component task

and how the whole system communicates and process the image in between.

30|Page

CHAPTER THREE

System Design

3.1 Introduction
3.2 The Camera and Raspberry Pi
3.2.1 Block Diagram
3.2.2 Flow Chart
3.3 The Raspberry Pi and Servers
3.3.1 Block Diagram
3.3.2 Flow Chart
3.4 Servers Sub System (Recognition stage)
3.4.1 Block Diagram
3.4.2 Flow Chart
3.5 Servers Sub system (Training stage)
3.5.1 Flow charts
3.6 General System Illustration
3.6.1 General Block Diagram
3.6.2 General Flow Chart

31|Page

Chapter Three
System Design

3.1 Introduction

In the previous chapter, the system was viewed in mathematical terms, a description was given
for the different system components. Thus, each component was treated independently. If the system
were to be dealt with as a set of sub systems such as the camera, raspberry pi and the server, the view
will be different, since each sub system will process the input information to a suitable output form
for the next stage. This chapter introduces the functionality of the system component integrated all
together.

In this chapter major focusing will be given to the way the components interact and generate the
suitable form of output for the next stage, this will ease a better understanding of system functionality

away from the complicated mathematical formulas.

The First section in this chapter discusses the interaction between camera and the Raspberry Pi, and
how they work. Block diagram and a flow chart are provided in order to understand how the frame
that the camera captures will be delivered to the raspberry pi; the specifications for the captured

images and the duration between different images will be provided.

From there, the next section will proceed with how the raspberry pi processes the frame and apply the
detection algorithm, a block diagram in addition to the flow chart for this sub system and the algorithm

will be combined to have a clear overview for this part.

The processing regarding the server will be discussed in the third section, how each server will process
the images and apply the recognition algorithm, a block diagram in addition to the flow chart are
provided, explanation to the way that the servers process the images and then display the faces into a

different display is also provided.

32| Page

Concluding with the last section, general block diagram and the general system flow chart, in addition
to some theoretical scenarios in which specific configurations are considered in order to notice how
different configuration regarding hardware — software may affect the system capabilities, processing

time and efficiency.

3.2 The Camera and Raspberry pi

In this section, an explanation regarding the camera and communication with the raspberry pi
is given, the way that the images are captured and how they are transmitted to the raspberry pi is also

discussed.

Initially, the camera is connected to the raspberry pi via a special serial port dedicated for the camera
on the raspberry pi module. What follows that this camera must be programmed and configured over
the raspberry pi to run properly, in the configuration terminal many parameters can be set, such as

resolution, frame rate, and delay between captured images.

The minimum image resolution allowed is 64 x 64 pixel, and the maximum camera resolution is 2592
x 1944 pixel with a maximum frame rate of 32, the transparency of the captured image and the
brightness - which is an important factor when it comes to detect the faces in the next step - are also

configurable parameters. [24]

The camera will stream live video to the raspberry pi, in order for the detection algorithm to work

with this stream.

33| Page

3.2.1 Block Diagram

Figure 3.1 shows how the Raspberry pi camera module will be connected to the serial port on

the raspberry pi microcomputer, this schematic illustrates the following:

‘ ﬁ;. Incoming Frames
- at different times

o i
Y
)
Ac
<2
~2
W
p
2
3
™
-
w‘.l

000 0 °f

coo

Figure 3.1: Raspberry Pi Microcomputer and Camera Module in Schematic view.

1) Programming the camera - after physically connecting it to the raspberry pi bored — to
initialize.

2) A Python code will configure the camera to stream video.

3) Raspberry pi will read each frame in this video and apply the detection on each frame.

4) Whenever a face present in the frame, the raspberry pi will detect and crop this face and save
it on a folder on raspberry pi.

34|Page

After the camera initialization and as the first frame arrives, the raspberry pi will start processing the
incoming frames. Each frame will run through face detection algorithm, and faces, if existed will be
detected and cropped.

At the end of this stage, multiple captured faces will be stored on the SD card placed within the

Raspberry pi; these faces were taken every time the camera detected them in the frames.

3.2.2 Flow Chart

Figure 3.2 shows the flow chart for the camera and raspberry pi sub system, first the camera
is initialized with the frame rate, resolution, and other configurations. Then a live streaming video
starts to transmit directly to the raspberry pi, this will take place forever until supervisor terminate the

camera for any reasons.

START

Initialize
Camera

ransmit Frames to
Raspberry PI (Live
Video)
User
ermination 2

YES

dD

Figure 3.2: Raspberry Pi and Camera Flow chart.

35|Page

3.3 The Raspberry pi and servers.

In this section the incoming frames in the raspberry pi memory are processed with the detection

algorithm, the raspberry pi applies the algorithm to each frame, one at a time.

Step A: After the Raspberry pi detects the faces, it is taken into consideration that for a better
recognition stage, it is better for the algorithm to work with the face image only. To do so a cropping
procedure is done, so that each frame that has many faces will be marked with a rectangular block,

and then each block is cropped to form group of faces that will be transmitted to the servers.

Step B: Since there are three servers available for the recognition process, each face will be
transmitted to a server at once. For example, if the captured picture has six faces in it, the raspberry
pi shall detect and crop them and send two faces to each server, this will make sure a better load

balancing when it comes to large crowded frames.

In order for images to be transmitted, a session between the raspberry pi and the server must be created,
for the three servers, three sessions are needed; to do so, socket programming which involves opening

a session from the Raspberry pi to the servers is needed.

Programming the sockets into the raspberry pi will be the first stage, to associate a session to each
server, and then transmit the available cropped faces to the servers, face after face over each session

to achieve load-balancing criteria.

3.3.1 Block Diagram

Camera and raspberry pi block diagram in figure 3.3 shows that the camera started to stream
live frames to the raspberry pi. This stream of frames is handled frame by frame on the raspberry pi
each frame is processed by looking for the faces in it, after a face is detected the raspberry pi will crop

this face and write it on the SD card to be ready for transmission to the connected servers.

36|Page

Camera Is ON
Streaming Live Video

One of the Frames
being transmitted

Faces Stored then
on RP SD
B al
@
. & . |
Detection algorithm reads n
the frame and detect them
crop the faces | HSCEEESEEEEEIETTE 0 | ;

Figure 3.3: Block Diagram illustrating Raspberry Pi input and output.
3.3.2 Flow Charts

Flow chart in figure3.4 represents how the raspberry pi starts handling the incoming frames,
the Face detection algorithm is then applied, and if a face is detected the output will be the same image
with rectangle around the face. Applying the cropping code will result in cropped faces, that will be
transmitted to each server one at a time, till the faces are done, if a new frame is available, the process

is repeated.

Face
Detection

Remaining
Faces 7

Send Cropped
Face

Open a session
with the server

Yes

Faces
Detected ?

YES

L 4

1Al

Crop Faces

Figure 3.4: Flow chart for face detection and cropping phase.

37|Page

The following Flow chart in figure 3.5 illustrates face detection by a boosted cascade of simple

features.

START

Read RGB
Image

!

Convert RGB
image into
Grayscale

!

Find Features
(Weak
Classifier)

!

Creat Strong
Classifer as
linear
combination of
Weak Classifier

Divide strong
classifer into
stages

Choose a new
sub window

A 4

Test strong
classifer on the
sub window

Remianing Strong
classifer ?

No

Discard sub

¢ candidate to be a NO—p] window

Return The image
And Draw
Rectangular
Around detected
faces

END

Figure 3.5: Flow chart illustrating face detection by a boosted cascade of simple features.
38| Page

3.4 Servers Subsystem (Recognition stage)

In this section the final process, recognition is described, how the servers receive the faces and
start recognizing them, and how each server handles the received faces according to the recognition

algorithm “Local Binary Pattern”.

; - ; » Compare with - .
Receive Face » Recognize Face ® Database faces > Display Result
Stage one Stage Two Stage Three Stage Four

Figure 3.6: Functional Block Diagram for face recognition.

First stage in figure 3.6, the server will receive the face throughout the socket that were opened in
the previous detection stage, then apply the recognition algorithm, since the faces were cropped in the

last stage, it will be much easier to recognize a face among the faces stored in the database.

The second stage, the face will be processed by the Local Binary Pattern Histogram, the output of
this stage is the local binary pattern histogram which will be compared later with the local binary
pattern histogram stored in the data base.

In the third stage, a comparison between the resulted face and the database faces set will be
accomplished through the LBP algorithm. The last stage will display the result on the supervisor

devices, and will notify the mobile phone if the supervisor is currently away.

The database consist of names and images, with each name linked to a set of images, and a unique ID.
Initially nine images for each face, but since LBPH is used, the number of training set images will

heavily depend on the testing results in chapter five.

39|Page

The database will be unified for all of the servers, so all the servers will have a direct connection to
the database. Initially the database will be placed in three servers, thus one of the servers will have a
primary database that if it has to be updated, the rest of the databases will be updated.

3.4.1 Block Diagram

The block diagram in figure 3.7 illustrates how to achieve the final process. The servers will
receive the images one by one, and apply the recognition algorithm, the result is viewed in the dotted
line were the database has three faces only, and since six faces were received, the screen is viewing

the server's result if known; the name is displayed, if not a flag will appear over each unknown face.

Figure 3.7: Block Diagram illustrating final recognition stage.

Notifying the mobile with the unknown faces only, in addition to notification sound to attract the

supervisor attention.

40 |Page

3.4.2 Flow charts

Flow Chart in figure 3.8 starts when the server receives the faces and apply the recognition

process until all the faces are either recognized or flagged unknown.

START

Receive a face
and open it

'

Lable Image
Face With the retrived
Recognition name and
Write it to a folder

l ;

Compare LBPH C D
Lable Image pare pen DB, retrieve the N
" " value with the i
UnKnown values Stored in carresponding name
Write it to a folder YML File linked with the ID .|
Names
DB
N

Retrive The ID
from YML file

Found a
Match ?

YES

Figure 3.8: Servers flow chart.

41 |Page

The flow chart in figure 3.9 clarifies the local binary pattern histogram flow. Initially divide the image
into blocks and apply the histogram calculation which involves selecting the central pixel in the block,
and declare its intensity with a number between 0 and 254 then declare the eight surrounding pixel in

the same manner, any pixel with the same or higher intensity is labeled with 1, otherwise it's a zero.

1 START

L

Divide The Face
Into Blocks

l

Histagram
Caleulation For
Each Block

L

Concating The
Histogram To
Form LEPH

EMD

Figure 3.9: Face Recognition Algorithm flow chart

As soon as deciding for the blocks intensity is over, they are grouped into one weighted value, which
called local binary pattern histograms (LBPH), this block represent the unique features of each image,

which will be compared with the LBPH of the database images i.e. YML file.

42 |Page

3.5 Servers Subsystem (Training stage)

The servers are responsible for another task, which is to create the data set images and train
them to the LBP algorithm to obtain the YML file, which contains all the calculated LBPH for each
Image in the dataset images.

Whenever a new face comes, the recognition process mentioned in figure 3.9 takes place, but before
that stage is applicable, the database (DB) must be created, in addition to the YML file described
above, therefore dataset images for each user must be collected and linked to a user ID and name.

What follows that these trained images must be processed with the LBP algorithm and create a

corresponding YML file that the algorithm can read and retrieve the weighted values when needed.

3.5.1 Flow Charts

The first flow chart figure 3.10 shows the creation of data set images, this step occurs each

time the supervisor wishes to add known persons to the database.

(START)

Enter User ID
1D, and Name into Camera Face
Names | Opens et Detection
DB
DB
Crop the detected
Inser The ID of the User faces and convert
END into Image name and them into gray
Write it into a folder scale.

Figure 3.10: Flow chart of dataset creation and inserting names and ID to DB.

The second flow chart figure 3.11 in this section shows the training process, which takes its main part
using the LBP algorithm discussed in chapter two.

43 |Page

C START) C END)

I I

Open Data set Push DB & YML
Folder Images file to all Servers

v 1

Read Image, Grab

ID from Image —— rite YML File to
Name a folder
Face

Create The
YML FILE

v 7y
No

Contaminate
LBPH weighted

values with same
1D.

Recoghition

Remaining
faces?

Figure 3.11: Flow chart of training procedure and pushing DB and Y ML to servers.

3.6 General System Illustration

In this section, theoretical and expected implementation is covered, to provide an insight about

the following two chapters, where implementations and testing take place.

The general system illustration will provide a sufficient overview for the component functionality.
Giving a major focusing for the server part where explanation to how the server -supervisor computer

and mobile communicate and transfer data.

Beginning with the general block diagram of the system, then discussing the general flowchart, where
the general system block diagram consists of the previous subsystems block diagrams, combining

44 |Page

these subsystems into one block diagram will result in a better understanding for the functionality of

this system.

3.6.1 General Block Diagram

The general system block diagram is represented in figure 3.12

1)
2)

3)

4)
5)

6)

7)

8)

9

Camera stream video to the raspberry pi.

The detection algorithm then receives this stream, loads a frame, detects the faces in it — if
there is any — and returns a cropped faces ready for transmission to the servers.

Every face is then transmitted to the server after the raspberry pi opens a session with the
server to stream the faces.

The transmission continues until all the faces are successfully delivered to the servers.

The server starts receiving the image through the socket (Session) that were opened, and starts
the recognition process.

In the background, the recognition algorithm will run to calculate the LBPH for the faces in
the database, this process happens at initial system run, and whenever a new face is added to
the main database, i.e. training new persons to the system.

Calculation for the LBPH for each received image and compare the result with the database
LBPH.

If a match occurs, the database is opened and the corresponding name to that matched ID is
retrieved

The supervisor will be monitoring the main server screen where each known face will be

shown with the name of the person and each unknown face is flagged with a mark.

10) In case that the supervisor is away from the system, the unknown face is sent to the supervisor

smart phone.

The previous steps summarize the system response and processing to each input frame, it

can be continuously repeated if a new frame contains faces.

45| Page

9
A

)

Figure 3.12: General System Block Diagram

46 |Page

3.5.2 General Flowchart

The general flow chart for the system figure 3.13 describes the initializing process for the

camera, and the processing regarding face detection and recognition over one server.

START

Initilaize
Camera
And RP

Transmit
Frames to
Raspberry P

Raspberry Pl
recives frame
and open it

Face
Detection

Faces
Detected ?

YES
4

Crop faces

Open Session with
the server and
start Sending
faces

remaining
faces

Lable Image as

Write it to folder

‘

Display On
Supervisor Screen
Notify Mobile
Phone

User
Termination?

Yes

v

Connection to
RP(Ready)

v

Reciving faces
Images

'

Face
recognition

Compare LBPH
with the Values
Stored in YML file

" Unknown " lag—NO.

YES
\ 4

Open DB, retrive
the coressponding
name linked with |

y

Lable Image with
the retrived name
and write it to a
folder

'

Figure 3.13: General System Flow Chart

Display On
Supervisor Screen
Notify Mobile
Phone

ID, Names
DB

47 |Page

The following steps summarize the flowchart:

1) The system is turned on, at the same moment that the camera is initializing, the servers will
start.

2) Camera starts streaming and sending frames to the raspberry pi.

3) The raspberry pi reads the incoming frame and detects the faces in it, if no faces appear the
raspberry pi will load and process another frame.

4) If a face is detected, the raspberry pi will crop the face and prepare it for the next stage.

5) A session is opened with the servers so the server starts receiving the faces.

6) Each time a face is received; the server applies the recognition algorithm, and compare the
result of LBPH with the LBPH from the YML file.

7) If match occurs, the server opens the database and retrieves the corresponding name with the
ID.

8) Label the image with the retrieved name, and display it on the supervisor screen.

9) If the algorithm fails to find a match, the image is labeled as Unknown, and viewed on the

supervisors screen and sent to his smart phone.

This chapter concludes the theoretical background; the hardware and software implementations will

be discussed in the next chapter.

48 |Page

CHAPTER FOUR

System Implementation

4.1 Introduction
4.2 General Flow Diagram of system Implementation
4.3 Raspberry pi Camera
4.3.1 Connecting the camera
4.3.2 Camera Setup and Configuration
4.4 Raspberry Pi Microcomputer
4.5 Network Setup
4.6 Servers
4.6.1 Installing Operating System
4.6.2 Preparing the servers with OpenCV
4.6.3 Programming codes
4.7 Result Handlers
4.7.1 Monitoring using supervisor Screen

4.7.2 Monitoring using Android Application

49 |Page

Chapter Four
System Implementation

4.1 Introduction

In this chapter, all the real work is done; this chapter contains all the system implementation

regarding the system setup whether in hardware connections or in software programming.

The following content is supposed to give the reader a clear explanation and full understanding of the

steps that converted the system design (Chapter 3) to a working system.

The chapter will start with the illustration of the system components and the method of connecting
and relating all parts together. Then it will investigate each part and clarify its requirements and tasks.
This chapter will conclude all the theoretical aspects in chapter three and implement them in the real

world.

4.2 General Flow Diagram of System Implementation

The implantation in this system took five main stages, in each stage different steps were taken,

figure 4.1 contains the main five stages, and the rest of this chapter will explain each stage separately.

Result Handlers
Rasphetry Pl Metwork Router Servers (Manitor, Android

App)

Raspberry Pi
Camera

Figure 4.1: General Flow Diagram of System Implementation.

As shown in the above figure, the system implementation will start with the raspberry pi camera, the

connection to the raspberry pi, and then enabling, configuring and running are covered.

Raspberry pi, the main component in this project, most of the job is done here, from installing the
operating system, and connecting the main components, and programming the detecting-cropping

algorithm to TCP/IP server establishment to send images.

50|Page

However, the server stage has a huge role too, since the load-balancing concept would not be achieved
without servers. This stage contains operating system installation, programming the TCP/IP client to
receive faces, programming the datasets creator, LBP trainer, recognition, and programming the SQL

database to save the known user ID’s and names, this is all part of servers duties that are covered.

The in-between stage (Network Router) was an easy, simple phase were connecting the servers

physically, and programming the router to bind devices MAC to a specific IP took place.

Final stage, Result handlers, this stage where all the system results are viewed from, it contains the

supervisor monitoring either by the screen or on his mobile phone.

4.3 Raspberry Pi Camera

This section covers two things, a general information about the camera module, and how it is
connected, then information about the camera programming code, were it was enabled and configured.

4.3.1 Connecting the Camera

The system starts by connecting the Raspberry Pi camera module with the raspberry pi
microcomputer through a 15-pins ribbon cable, the cable connects between the fast camera Serial
Interface bus and the system-on-chip processor (SoC), the camera is connected to the raspberry pi in

figure 4.2.

Figure 4.2: Connecting raspberry pi camera to the Raspberry pi

51|Page

4.3.2 Camera Setup and Configuration

This stage assumes that Raspbian Operating System (OS) is already Installed on Raspberry pi
Microcomputer, this is done through later stage (section 4.4). In this section the camera setup and

configuration are done, they are shown in appendix A.

4.4 Raspberry Pi Microcomputer:

The raspberry pi -as mentioned in the previous chapters- is a major node in the system because
it is the part in which streaming, face detection, face cropping and image transfer processes take place.
After unpacking raspberry pi 2, it is connected to the power and to all the needed peripherals (monitor,
keyboard and mouse, and Ethernet cable)

Figure 4.3: Raspberry pi with mouse, keyboard, camera, and monitor connected.

Raspberry Pi operates on Raspbian OS, it is the Linux OS distribution that was built for Raspberry Pi

microcomputer, and the installation of this system is shown in appendix B.

52|Page

Since the raspberry pi is now up and running, then both face detection and cropping are programmed
into the raspberry pi, the necessary programing codes for face detection and cropping were written in
Python. Mainly face detection is accomplished by using the function (detectMultiScale(image],
scaleFactor[, minNeighbors[, minSize[, maxSize]]]])), on each frame, this function will detect each
face in the frame and pass it to the cropping stage, where the function
ImWrite(imagePath,image[y:y+h,x:x+w]) will write the cropped dimensions y to y+h and x to x+w

which represent the face coordination’s on the RP SD.

Note: Raspberry Pi need OpenCV library in order to detect faces, the installation of this library is

discussed in appendix C.

4.5 Network Setup

Connecting the raspberry pi and server to the router was an easy step, the configuration needed
to be done at this point was binding each IP address to a mac address in binding table in the router

figure 4.4 shows how to bind a specific MAC to IP.

IF Address MAC Address
19216813~ |
Manual Config -
182.168.1.2 80:C1:8E:58:F3:05

Figure 4.4: Router binding table

TCP/IP connection was programmed in python on the Raspberry pi for the transfer of detected faces;
a socket is created and opened in a round-robin fashion to transmit toward the three servers. Another
socket was created on the server side to transfer unrecognized faces wirelessly to the Android

application on the supervisor phone .the IP address of the phone is also static.

53|Page

As far for the raspberry pi, the listening state was written in python to initiate the server and waits for
the server (clients) to connect, as long as the raspberry pi is up, it will keep listening for new incoming

clients and bind with them to transmit a new face from the camera.

4.6 Servers:

The Servers side mainly consists of three laptops as the recognition servers, which will handle
the face recognition and training process as well as managing system outcomes and results. The
following sub sections will show OS installing, preparing the servers, implementations of python

codes that facilitate TCP/IP connection, creation of data sets, training, and recognition.

4.6.1 Installing Operating System

At the time of project implementation started, Ubuntu latest version was 16.04, this is the
version that has been installed on the three servers, appendix D contains all the needed information to

install the operating system properly.

4.6.2 Preparing the Servers with OpenCV

After Installing Ubuntu and login into Desktop, the system is now ready to install all updates,
upgrades, and libraries that supports OpenCV, Appendix C shows the servers preparations and

OpenCV installations.

4.6.3 Programming codes

After the system is ready on the server side with the correct programs and
environment, all required programs that will do the job was written in python.

54| Page

A. The dataset creator program was written in order for the supervisor to be able to add new
people to the database including their names and IDs. Each user ID is attached to his image
name for the next process where the trainer will read this ID and assign it with the calculated
weight of LBPH to that specific user (full code provided in appendix E)

B. The Trainer program was written, this program calculates the LBPH for each known person
that was added in the previous step, and stores the result in an YML file in order to be used
by the recognition program. The OpenCV function that facilitate the training process is
recognizer.train(Facelmage,ImageilD).

Where this function reads each image and links it to the user ID and then runs LBPH on it and

stores the resulted weight, the complete code is on appendix F.

C. Then the Recognition Program was written, this program calculates the Local Binary Pattern
Histogram for all the received images and compare each one with the stored patterns from
the YML file, detects the unknown person and sends it to the Result Handlers Stage. The
main function that is used in recognition is id, conf = recognizer.predict(Image) which
returns a weight for the incoming images and compare it with the YML file see (appendix
G) for complete code.

D. Client Program was built; the client receives the image from the Raspberry pi and store it on
the servers. The socket is created with the server IP address using socket.connect (host,port)
and a request to connect and retrieve images is done using socket.recv(ByteNumber), see
(appendix H) for the complete code.

E. Server Program was built: the server program will send images from RP to the connected
servers. (see appendix I)

F. Detection program: this program will detect the faces from the camera frames and save them

on SD card. (see appendix J)

Now, servers are connected together, the servers specifications are (two devices of octa core
processors, 8GB RAM, and the third one is quad-core processors, 4 GB RAM), servers are connected
using local area network and configured as section 4.5 pointed, then, system is up, and testing this

system is the next chapter topic.

55|Page

4.7 Result Handlers

The results can be observed in the system using either, supervisor main server screen or the

android application.
4.7.1 Monitoring using supervisor Screen

In this approach, there will be a main server from which the unknown images are going to be
displayed on its screen. The images are sent from the two servers unknown folders —where the
unknown faces are - to the main server that shows all unknown faces on the screen including images

from its unknown folder.
4.7.2 Monitoring using Android Application

One of the important features of this system was adding mobility allowing the supervisor to
move, while still having the target area under supervision. That feature was achieved by building an
android application that will be monitoring the system and launch a notification each time unknown

is detected. Android studio was used to build the application.

The application has three activities, the first is the main activity where all stored images are viewed
in a list and the first connection to the system is established. The second activity is the activity where
new received images are viewed after clicking the notification bar and the third activity is where the
clicked photo is viewed with its information, the following figures shows the system icon with the

three different windows within this application.

IP Address

192.168.3.10

5050 Port

START
UNKNO YoYNE_YoWVeEYY
WN

UNKNO FoYIN_YeIV-£ vy
WN

UNKNO Yor)q_YalV-g
WN

UNKNO YaVT_YAV-ERY
WN

UNKNO
WN

UNKNO

Figure 4.5: Android application.

56 | Page

The application will start a main thread that constantly listens to the channel defined for the system.
Once any server detects a new unknown face, the server will have the way open to send the image to
the phone.

To do so the server will launch a program build in java that will open a socket with the phone IP
address for the communication, the image is then received and stored in a database on the mobile

storage and a new notification is displayed for the user.

In next chapter testing phase for the system to obtain an optimum values for a better detection and

recognition parameters is done.

57|Page

CHAPTER FIVE

Testing and Analyzing Data

5.1 Introduction

5.2 Detection parameters tests

5.3 Testing faces transmission time from raspberry pi to servers.

5.4 Testing recognition-processing time

5.5 Testing recognition parameters
5.5.1 Detection using raspberry pi camera - training using laptop webcam
5.5.2 Detection and training using laptop webcam
5.5.3 Detection and training using raspberry pi camera

5.6 Conclusion

58| Page

Chapter Five
Testing and Analyzing Data

5.1 Introduction

After system is properly configured and all the needed programs are written, this chapter will go
through many tests that were accomplished over the system; these tests consist of four main parts,

which are:

1. Testing detection parameters.

2. Testing faces transmission time from raspberry pi to servers.
3. Testing recognition-processing time.

4. Testing recognition parameters.

In detection parameters test, the main function that was mentioned earlier in chapter four regarding
the detection which is (detectMultiScale(image[, scaleFactor[, minNeighbors[, minSize][,
maxSize]]]])) will be tested in terms of Scale Factor (SF), Minimum neighbors (MN) and window

size.

In testing the faces transmission time from raspberry pi to servers, the main aim is to notice how the
servers can handle the incoming images rates as if the recognition side has one server or three servers

in addition to a comparison between the ideal delay and actual run time delay.

Finishing this chapter with recognition parameters tests. The first test here is dedicated to find the
recognition-processing time with one server and three servers working to recognize the faces,

followed with a recognition accuracy test in terms of correctly recognized persons.
5.2 Detection Parameters Tests

In this section, the first test was about the first component of the system i.e. the Camera. The
test will determine several parameters related to the camera, these parameters were used in the face

detection algorithm to help detect people faces with the least percentage of error.
The test investigates three main parameters of the captured frame, these parameters are:

1. Windows Size :the size of the rectangle drawn around the detected area and its divided into :
e Minimum Size

e Maximum Size
59| Page

Window size will decide for the minimum detection distance for after which, no detection

is valid.

2. Scale Factor (SF): Parameter specifies how much the image size is reduced at each image
scale.

3. Minimum Neighbors (MN): The minimum number of applied windows that each candidate
rectangle should contain.

The test will run with the following conditions:

1) The camera will take a 100 image (faces and wrong faces are counted equally) on each run.

2) Random movement will be in front of the camera, some people are closer and some are further
away.

3) On each camera run, one of the previous parameters (Window size, SF, MN) was under test
to observe the number of wrongly detected faces.

4) Window size will decide for the distance, the first window size (20*20 | 300*300) is capable
of 4 meters, second window (50*50 | 250*250) can detect 3.7 meters while the last window
(80*80 | 200*200) detects 3 meters away.

The test result are in the tables from 5.1 - 5.9

Table 5.1: Detection parameters test (SF 1.3, MN 6)

o) Number | Number | Number False
Minimum | Maximum
_ _ of false of false of false | percentage
Size Size
)) ©) %
20*20 300*300 21 36 27 28%
50*50 250*250 24 40 35 33%
80*80 200*200 52 38 43 44.33%

60| Page

Table 5.2: Detection parameters test (SF 1.2, MN 6)

o) Number | Number | Number False
Minimum | Maximum
) _ of false of false of false | percentage
Size Size
1)) @) %
20*20 300*300 13 20 23 18.66%
50*50 250*250 26 19 19 21.33%
80*80 200*200 16 14 23 17.66%

Table 5.3: Detection parameters test (SF 1.1, MN 6)

o) Number | Number | Number False
Minimum | Maximum
)) of false of false of false | percentage
Size Size
1)) @) %
20*20 300*300 31 33 20 28%
50*50 250*250 12 15 12 13%
80*80 200*200 31 39 39 36.33%

The three tables (5.1, 5.2, and 5.3) shows the percentage of error in detection when the MN is fixed

and the SF is varying respectively, each test is repeated three times, with three window size ranges in
each.

After observing these tables it can be said that when SF is 1.3 the percentage of error is relatively
high, when the SF is reduced to be 1.2 the percentage of error decreases. However ,when SF is reduced
to 1.1 there was an increment in the error at (20x20-300%300) window size as well as an increment
of error at (80x80-200x200) ,but it's clear that the error decreased when the window size (50%50-
250%250) is used .

This implies that the window of size range ((50x50-250%250) gives a small error percentage when SF
is 1.1, yet those results are obtained when the MN is fixed.

In the following tables (5.4-5.6) the same conditions applies, but a different MN was chosen.

6l|Page

Table 5.4: Detection parameters test (SF 1.3, MN 5)

o] Number | Number | Number False
Minimum | Maximum
_ _ of false of false of false | percentage
Size Size
(1)) @) %
20*20 300*300 29 22 17 22.67%
50*50 250*250 24 27 22 24.33%
80*80 200*200 67 58 70 65%
Table 5.5: Detection parameters test (SF 1.2, MN 5)
o) Number | Number | Number False
Minimum | Maximum
_ _ of false of false of false | percentage
Size Size
1)) ®) %
20*20 300*300 63 19 25 35.67%
50*50 250*250 24 17 21 20.67%
80*80 200*200 36 40 46 40.67%
Table 5.6 Detection parameters test (SF 1.1, MN 5)
o) Number | Number | Number False
Minimum | Maximum
_ _ of false of false of false | percentage
Size Size
1)) ®) %
20*20 300*300 15 17 14 15.33%
50*50 250*250 21 8 17 15.33%
80*80 200*200 49 31 40 40%

After decreasing MN to five, previous tables shows the results for each SF value .The error is
fluctuating between 20% to 65% in the two tables (5.4, 5.5) which is considered a relatively high error

percentage.

When the SF decreased to 1.1 ,the error dramatically decreases to about 15% for window size ranges
(20x20-300x300) and (50x50-250%250) .at the same time ,high percentage (about 40%) still exists
for window size range (80x80-200x%200).

62|Page

It is worthy to mention that the above results were taken in the daylight condition in a normal sunny

day, different light conditions will cause different results especially for the far faces.
The third set of tables was obtained after decreasing MN to four:

Table 5.7: Detection parameters test (SF 1.3, MN 4)

o) Number | Number | Number False
Minimum | Maximum
)) of false of false of false | percentage
Size Size
1)) @) %
20*20 300*300 37 30 20 29%
50*50 250*250 20 16 35 23.67%
80*80 200*200 52 54 61 55.67%
Table 5.8: Detection parameters test (SF 1.2, MN 4)
o) Number | Number | Number False
Minimum | Maximum
_ _ of false of false of false | percentage
Size Size
1)) @) %
20*20 300*300 16 12 4 10.66%
50*50 250*250 16 18 23 19%
80*80 200*%200 54 46 43 47%
Table 5.9: Detection parameters test (SF 1.1, MN 4)
o) Number | Number | Number False
Minimum | Maximum
_ _ of false of false of false | percentage
Size Size
1) 2 ®) %
20*20 300*300 29 29 28 28.66%
50*50 250*250 29 27 36 30.66%
80*80 200*%200 57 51 65 57%

The last set of table’s shows an improvement in detection when SF 1.2 and MN is four; a 10 % error
was obtained here.

63|Page

Figure 5.1 represents the best window size in terms of the minimum detection error, the (20*20 |

300*300) for different values of SF and MN.

40 T T T T T T T T T
At MN 6
At MN 5
35 At MN 4

ERROR Percentage
o 8

N
(o=

15

10
11 112 114 116 118 12 122 124 126 128 13

Scale Factor

Figure 5.1: Error percentage versus scale factor for different minimum neighbors’ values.

Using Matlab fitting tool for the window size (20*20 | 300*300) to calculate the number of false

detections per 100 sample, the following equations were derived

Number of false detections |mn=4 = (1817) x SF?* — (4358) X SF + 2625 Equation (5.1)
Number of false detections |mn=5 = (—1667) x SF? + (4037) x SF — 2408 Equation (5.2)
Number of false detections |mn=6 = (933.3) x SF? — (2240) x SF + 1363 Equation (5.3)

To test the equations as an example the number of false detections at MN = 4 and SF = 1.2 using

equation 5.2 the theoretical value was calculated to be 11.88, while the actual value was found to be

10.66.

64|Page

5.2.1 Detection Parameters Tests

Previous results were conducted with three reading each time, the following tests works with window
size of (20*20 | 300*300) but this time the SF were varied from 1.1 - 1.3 with a 0.02 step each time.

Table 5.10 provide the SF readings versus number of false detections for MN 4.

Table 5.10: Detection parameters test for varying SF for MN of 4.

Error
Scale Factor Number of | Number of) Number of Average Percentage
false (1) false (2) false (3)
%
11 13 10 24 15.66 15.67
1.12 11 7 14 10.66 10.67
1.14 10 8 7 8.33 8.33
1.16 7 10 8 8.33 8.33
1.18 9 6 10 8.33 8.33
1.2 8 12 8 9.33 9.33
1.23 10 11 10 10.33 10.33
1.25 10 12 12 11.33 11.33
1.27 11 13 16 13.33 13.33
1.3 13 16 16 15 15

The following figure (figure 5.1.2) represent the previous values, the values were plotted and then

fitted to a different polynomial order (four, five and six).

65|Page

Ermor Percentage

T T

- Fitted Polynomial of Order 4
15
s Fitted Polynomial of Order 5
14 Fitted Polynomial of Order 6
Data Points
13 -
12 T
1Mr 7
107 7
o .
8 1= i =
7 1 1 1 1 1 1 1

1.1 1.12

1.14

1.16 1.18

12 1.22

Scale Factor

1.24

1.26

1.28

13

Figure 5.1.1: Error percentage versus scale factor for MN 4 and different polynomial fit.

Table 5.11 provide the SF readings versus number of false detections for MN 5.

Table 5.11: Detection parameters test for varying SF for MN of 5.

Error
Scale Factor Number of Number of Number of Average Percentage
false (1) false (2) false (3) %
11 13 9 11 11 11
1.12 10 4 6 10 10
1.14 11 12 6 9.66667 9.67
1.16 10 8 12 10 10
1.18 11 10 13 11.3333 11.3
1.2 11 14 12 12.333 12.3
1.23 12 15 13 13.33 13.3
1.25 16 16 14 15.33 15.3
1.27 18 18 16 17.33 17.3
1.3 20 20 19 19.66 19.6

66| Page

The following figure (figure 5.1.3) represent the previous values, the values were plotted and then

fitted to a different polynomial order (four, five and six).

A T T T T T T T

—Fitted Polynomial of Oreder 4
—Fitted Polynomial of Oreder 5 8 » : B J
Fittod Polynonial Of.OrerB: |-5seer-snrorsasscas brsgearmmosnronsas i msgstarmmsnrons Ao sgearsssns o o sgtap it oo o s g P sys v
+ Data Points § 5 2 : ~

11 1.12 1.14 1.16 1.18 12 122 1.24 1.26 128 13
Scale Factor

Figure 5.1.2: Error percentage versus scale factor for MN 5 and different polynomial fit.
Table 5.12 provide the SF readings versus number of false detections for MN 6.

Table 5.12: Detection parameters test for varying SF for MN of 6.

Error
Scale Factor Number of | Number of) Rumber of Average Percentage
false (1) false (2) false (3)

%

11 16 15 2 11 11
1.12 17 14 15 15.33 15.3
1.14 18 15 16 16.33 16.33
1.16 19 17 20 18.6 18.6
1.18 20 20 18 19.33 19.3
1.2 20 21 21 20.66 20.6

1.23 22 20 21 21 21
1.25 19 22 18 19.66 19.6
1.27 18 20 18 18.66 18.6
1.3 16 20 17 17.66 17.6

67|Page

The following figure (figure 5.1.4) represent the previous values, the values were plotted and then

fitted to a different polynomial order (four, five and six).

2 : i] I

= Fitted Polynomial of Oreder 4 : :

Fitted Polynomial of Oreder &

—Fitted Polynomial of Oreder 6
* Data Paints

1] —

Error Percentage
=

= i I I I i i |] I
11 1.12 1.14 1.16 1.18 12 122 124 126 1.28 13
Scale Factor

Figure 5.1.3: Error percentage versus scale factor for MN 6 and different polynomial fit.
5.3 Testing Faces Transmission Time from Raspberry Pi to Servers.

In this section, a test was applied to determine the speed of the file transfer between raspberry
pi and the servers using socket programming, the number of transferred files is determined and then

a relationship is obtained between number of receiving servers and number of files transferred.

The following tables clarify the results obtained, note that the time is a conventional term that
corresponds to speed, in the tables below there are two main readings of the transmission time, which

are:

1) With delay.
2) Without delay.

68| Page

Table 5.13 contains data when one server is connected and receiving.

Table 5.13: Transmission Time towards one server

Number of images sent Transmission time without Transmission time with delay
delay (seconds) (seconds)
10 0.042 0.84
50 0.225 5.06
100 0.4 14.24
200 0.868 26.51
500 2.4 65.16
750 3.43 80.93
1000 4.56 107.285

Table 5.14 contains data when three servers are connected and receiving.

Table 5.14: Transmission Time towards three servers.

Number of images sent Transmission time without Transmission time with delay
delay (seconds) (seconds)
10 0.0723 0.84
50 0.2029 4.96
100 0.3266 10.26
200 0.8699 21.56
500 1.434 54.04
750 1.94 80
1000 2.21 105

69| Page

As shown above the transmission time increases slightly with images below 200, and then it starts to

increase notably after 500 images.

The tables also show the difference in results between one and three servers, in the three servers setup
all the transmission time readings were clearly less than the one server setup, it can be said that load

balancing is achieved when the number of servers increased.

However ,the time gets large in the two cases when the files number exceeds 750 , (96.94) on one
server and (93.68) on three servers , which implies that the number of servers limits the speed of file
transfer .New servers should be add to reduce the transmission time after 750 files and so re-achieve

the load balancing again .

The results with delay are the practical results, which were taken for analysis, because they represent

the actual processing time .They were fitted with Matlab and curves were drawn.

After analyzing the results obtained above using Matlab, figure 5.2 represents the images transmission

time towards one server and three servers.

120

On one Server
On Three Servers

100

@
Q
T

60 -

40

Transmission-Time(s)

20 -

: . L . . \ | : .
O 100 200 300 400 500 600 700 800 900 1000
Numbe-OF-Images

Figure 5.2: Transmission time towards servers.

70| Page

After observing figure 5.2, it is clear that when the image number exceeds 750 images, the required
transmission time increases. The curve represents polynomial equations of second order and the

equations were approximated using Matlab fitting tool to the following formulas:

For one server

T =(-3.633x107>) x N> + (0.1426) X N — 0.5623 Equation (5.1)
For three server

T =(—6.643 x107°) x N> + (0.1127) x N — 0.6345 Equation (5.2)

Where T represents the required time in seconds and N represents the number of images to be sent,
applying equation 5.1 on 875 images as an example gives Tls7song) = 96.39 seconds, and when
applying equation 5.5 on 875 images gives T|s7sthree) = 92.89 seconds.

The test was then repeated to check the error percentage, the actual readings for sending 875 image
for one server is 96.94 and for three servers 93.68 the error is then calculated using:

Experimental Value—Theoretical Value 96.94—-96.39
Error ong) = |—= : | ¥ 100% = ———=>% 100% = 0.57%
Theoretical Value
Experimental Value—Theoretical Value 93.68—-92.89
Error(THREE) = | p | * 100% = W * 100% = 0.85%

Theoretical Value

5.4 Testing recognition-processing time.

This section contains an essential test; the system efficiency comes when the number of
servers’ increases, this section investigates that by testing the required time to recognize varying
number of images for one server, comparing these results with three servers to notice the effects of

multi-servers approach.

Processing Time is the time required to process all images as a function of images number and number

of servers.

The following points were taken into consideration while conducting the test:

71| Page

1) The recognition database contained one hundred names.

2) Each person has varying number of faces, some users have three images, and others have

twenty-five images.

3) The test images group consist of 1000 images, varying in size and persons.

The tables 5.15 — 5.16 show the results:

Table 5.15: Processing time on one server

Images number

Processing time (seconds)

10 3.73
100 42.29
500 202

1000 413.11

Table 5.16: Processing time on three servers

Images number

Processing time (seconds)

10 0.81
100 14.41
500 96.97
1000 126.6

Figure 5.3 was generated by Matlab to visualize the effect of adding two extra servers.

72| Page

450 T T T T T T T T T

— | Jsing One Server
me— | sing Three Servers

400

350

Processing-Time(s)
- N N 9]
o Q [y Q
o [e=) Q o

-
Q
Q

50

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number-of-Images

Figure 5.3: Recognition processing time (one server vs. three servers)

The curves were fitted with Matlab fitting tool; the following equations were derived for the required

time to process the faces.
For one server
Tp=0.4122x N - 0.611 Equation (5.3)

For three servers

Tp= 0.1271 X N + 1.794 Equation (5.4)

Where Tp represents the required time in seconds to process N images, applying equation 5.3 on 250
faces as an example gives Tp|2soong) = 102.43 seconds, and when applying equation 5.4 on 250 faces

gives Tplaso(thres) = 33.56 seconds.

The test then was repeated to check the error percentage, the actual readings for processing 250 faces

for one server is 100.34 and for three servers 34.71 the error is then calculated using:
73| Page

Experimental Value—Theoretical Value _100.34-102.43

= * 0y —— % 0fy — 0,
Error (ONE) | Theoretical Value | 100% 102.43 100% = 2.04%
Experimental Value—Theoretical Value 34.71-33.56

Theoretical Value

By inspecting the above tables and figure, we can say that increasing number of servers has a huge

effect on processing time, to be precis when 500 images are processed on one then three servers the

Time of three servers

time reduces by the following factor , Which yields 48% improvement when to

Time of one server

servers were added.
5.5 Testing recognition parameters.

In this section a different tests were taken to improve the recognition accuracy which is the
hardest task to do, recognition is a very complex issue, there are many parameters that could decide
for the recognition accuracy. The number of images in the training set, the quality of these images,
the specifications for the training set camera (laptop webcam), the detection camera (raspberry pi
camera), and lighting, these among others play an essential rule in recognition stage.

The following conditions were taken into consideration while conducting the test:

1) The person under test must be trained to the recognizer prior to the recognition if we wish him
to be a known person in the system.

2) While the person is being trained, various number of images for him was taken, these numbers
are the number of one known person faces in the database, 10, 25, 50, 75 and 150.

3) The person under the test (whether add to the database or not) must walk towards the detection
camera not side to side when test starts.

4) Since the camera specifications play an essential rule, tests with the raspberry pi camera as the
trainer and the detection camera were done, another test was accomplished when the raspberry
pi camera was the detection camera, and the laptop webcam was the training camera.

5) The number of images under test is 40 images, 10 images for each known person and 10

images for a stranger.
Note: Positive: Correctly recognized.
False Positive: Wrongly recognized.

Negative: Unknown person (could not be recognized)

74| Page

5.5.1 Detection using raspberry pi camera - training using laptop webcam

The following table (5.17) contains the results obtained when different cameras were used for

detection and training.

Table 5.17: Recognition accuracy for different cameras.

Number of faces/person | Positive | False positive | Negative | Success percentage
10 18 4 18 45%
25 17 2 21 42.5%
50 17 6 17 42.5%
75 21 2 17 52.5%
150 23 1 16 57.5%

The chart in figure 5.4 visualizes the results in table 5.17.

17 17
| | |
50

MNumber of Faces/Person

25

21
20
1B 18
17

15

Number
of faces

10

2
0
25

10

23
E Positive

21
Falze Positive
17 H Negative
16
2
1
75

150

[]
Y

Figure 5.4: Chart representing the number of faces vs the number of faces per person in the dataset when two
different cameras were used for training and detection.

These success rates are extremely low here; mainly due to two main reasons:

1) Lighting condition.

2) Two different cameras specifications.
75| Page

The following table (Table 5.18) contains a test result for the different cameras, but this time an
equalizer was programmed to balance the lighting of the images, this equalizer was implemented into
detection and training.

Table 5.18: Recognition accuracy for different cameras with equalization implemented.

Number of faces/person | Positive | False positive | Negative | Success percentage
10 28 0 12 70%
25 32 0 9 80%
50 33 0 7 82.5%
75 32 0 8 80%
150 33 0 7 82.5%

The chart in figure 5.5 visualizes the results in table 5.18.

35
32 33 22 33

H Positive

30 TH

H Megafive

25 A

20 -
Number of
Faces

15

12

10 - 4 g

10 25 50 75 150
Number of Faces/Person

Figure 5.5: Chart representing number of faces vs number of faces per person in the dataset when two
different cameras were used for training and detection with equalization implemented.

76| Page

After implementing the equalizer to mitigate the lighting problem, it can be said that the results have
improved, precisely for 50 faces per person the success rate went from 42.5 % to 82.5% i.e. an
improvement of 51.51 %.

5.5.2 Detection and training using laptop webcam

Obviously, the next step is to try the same camera for detection and training while equalizing was

implemented, this test yields the results shown in table 5.19

Table 5.19: Recognition accuracy for the same camera with equalization implemented.

Number of faces/person | Positive | False positive | Negative | Success percentage
10 33 0 7 82.5%
25 34 1 5 85%
50 34 0 6 85%
75 35 0 5 87.5%
150 35 0 5 87.5%

The chart in figure 5.6 visualizes the results in table 5.19.

40
34 34 35 35 W Positive
35 =]
False Positive
30 4 m Negative
25 -
MNumber
of faces

20

15

10 25

50 75 150
MNumber of faces/person

Figure 5.6: Chart representing number of faces vs number of faces per person in the dataset when the same
camera was used for training and detection with equalization implemented.

77| Page

Again, another improvement gained due to unifying the cameras and if the process was to be improved
even more, manipulating a threshold value called recognizer confidence (see appendix G line 38)
which was used to separate the known and the unknown values for any test images. If the value
changed to 60, the following results in table 5.20 are obtained.

Table 5.20: Recognition accuracy for the same camera with equalization implemented and confidence of 60.

Number of faces/person | Positive | False positive | Negative | Success percentage
10 34 0 6 85%
25 35 0 5 87.5%
50 35 0 5 87.5%
75 35 0 5 87.5%
150 36 0 4 90%
The chart in figure 5.7 visualizes the results in table 5.20.
40
- 34 35 35 35 36 H Positive
W Negative
30
Number 25
of faces
20
15
10
] i 5 5 5 s
) - - - -
10 75 150

25 50
Number of faces/person

Figure 5.7: Chart representing number of faces vs number of faces per person in the dataset while the same
camera was used for training and detection with equalization implemented with confidence of 60.

78| Page

Since a test for the laptop webcam was done for training and detection, another test was implemented

to see the specifications of the raspberry pi camera in the next section.
5.5.3 Detection and training using raspberry pi camera

In this section, raspberry pi camera capabilities were tested, applying same conditions
mentioned in earlier, thus the test was implemented with equalization since it obviously provides a

reasonable result.

The following table (table 5.21) contains the result obtained when the raspberry pi camera was used

for detection and training.

Table 5.21: Recognition accuracy for the same camera with equalization implemented.

Number of faces/person | Positive | False positive | Negative | Success percentage
10 29 1 10 72.5%
25 30 0 10 75%
50 30 0 10 75%
75 30 0 10 75%
150 30 0 10 75%

The chart in figure 5.8 visualize the results in table 5.21.

35
H Positive

20 30 30 30 30 False Positive
30
H Megative

25
Number

of faces
20

15

1o 10 10 10 10
10
=1
1
o n] (o] o
u]
10 25 =1 75 150

o
Number of faces/person

Figure 5.8: Chart representing number of faces vs number of faces per person in the dataset while the same

camera was used for training and detection with equalization implemented.

79| Page

The results are reasonable for the raspberry pi camera in comparison to the laptop camera since the

laptop webcam has a higher image resolution.

To improve the obtained results it is possible to manipulate the confidence value, by setting the

confidence to 60 yielded the following results.

Table 5.22: Recognition accuracy for the same camera with equalization implemented and confidence of 60.

Number of faces/person | Positive | False positive | Negative | Success percentage
10 29 0 11 72.5%
25 32 0 8 80%
50 33 0 7 82.5%
75 34 0 6 85%
150 36 0 4 90%

The chart in figure 5.9 visualizes the results in table 5.22.

40

36 H Positive
35 34
33
32 M Megative
- 25
MNumber

of faces

20

15

11
1 -1
7
6
I I I 4
o l
10 25 50 75 150

Number of faces/person

=]

un

Figure 5.9: Chart representing number of faces vs number of faces per person in the dataset when the same

camera was used for training and detection with equalization implemented and confidence of 60.

Better results were gained, that is due to the more restricted confidence value.

80|Page

5.6 Conclusion

The entire tests that were needed is done, on each section the needed equations and graphs are

provided to support a better understanding of the system functionality.

It can be said that the general equations and figures that have been derived are applicable in certain
conditions and in a specific environment, applying the system in any other environment will require
re-doing the tests to obtain the suitable parameters for the new environment, however the system is

functional for this testing environment with acceptable error margins.

In the following chapter, the testing result is discussed and analyzed in addition to the conclusion

regarding the objectives that were chosen in chapter one, ending with some future work suggestions.

8l |Page

CHAPTER SIX

Results and Future Work

6.1 Introduction

6.2 Results
6.2.1 Detection parameters results.
6.2.2 Transmission time results
6.2.3 Recognition processing time
6.2.4 Recognition parameters test

6.3 Future work

82|Page

Chapter Six

Results and Future Work

6.1 Introduction

This chapter concludes the project, in this chapter all the previous results are discussed,
followed by a conclusion for the best parameters and conditions that is needed to properly run the
system, ending with the suggested future work that will definitely improve the system capabilities and

values.

6.2 Results

This section discuss the result obtained from each test in chapter five.

6.2.1 Detection parameters results

After finishing the detection parameters test we can state the following results to be chosen

whenever the system is operating, keeping in mind the conditions stated earlier which are:

1. The camera should be placed in front of the person under test, meaning that the person should
be approaching the camera; otherwise, unexpected results will be obtained
2. The lighting problem is very complex, but for a better performance, the area of interest should

be always lighted.

The test started with detection using raspberry pi camera, training using laptop webcam, the test
yielded bad results, and these bad results were mainly due to lighting conditions and different camera
specifications.

This problem was partially solved by implementing an equalizer to mitigate the lighting conditions,
but still, the different cameras specifications caused a bit too high error rates, to proof that unifying
the cameras would help to reduce these errors, a third test was conducted using same camera for

training and detection, a better results were obtained then.

83|Page

Under the previous conditions among the other mentioned in chapter five, the following conclusions
were stated in order for the detection to work with the minimum false detection. These values of

window size, scale factor, minimum neighbor, equalizer and camera type are:

Minimum window size: 20*20
Maximum window size: 300*300
Scale factor: 1.2

Minimum neighbors: 4

Implement the equalization.

2 e o

Detection and training camera must be of the same specifications.

These are not ideal values nor assumptions, they could be easily changed if the camera location
changed, or the lighting in the room also changed, as mentioned earlier, these values resulted in about

10% false detections only.

To find the number of false detections when using the (20*20 | 300*300) window size the following
equations apply

e Number of false detections mn=6 = (1817) x SF? — (4358) x SF + 2625
e Number of false detections jun=s = (—1667) x SF? + (4037) x SF — 2408
e Number of false detections mn=6 = (933.3) x SF?> — (2240) x SF + 1363

Minimum neighbors (MN), Scale factor (SF), the result is the number of false detection out of 100
image.

6.2.2 Transmission time results

As for the transmission time results the system was able to perform load-balancing criteria
whenever a new server is added, it was obvious that increasing the number of servers will reduce the

needed time to transmit a group of images.

The main problem that took effort to be solved here is how to facilitate the TCP/IP connection using

python to achieve the load balancing criteria, and a great result were obtained when testing took place.

84 |Page

The decrease in the transmission time when sending 500 images for example is about 83% when three

server were used instead of only one.
The equation that relates the required transmission time and the number of images are:
For one server

e T=(-3.633e—05)x N2+ (0.1426) x N — 0.5623

For three servers

o T =(-6.643e—06) x N2+ (0.1127) x N — 0.6345

Transmission time (T), Number of images to be transmitted (N).

6.2.3 Recognition processing time

The processing recognition time was extremely useful test; it proved that the increase in the
servers number will result in a faster recognition time, this is essential for implementing the project

in the real life.

The main problem in this test was the resources shortage, only three available servers, thus a quite
well results were obtained, the processing time is reduced by about 48% when three servers were used

instead of only one server.

The equations that relate the processing time and the number of images are
For one server

e Tp=0.4122xN-0.611

For Three servers

e Tp=0.1271X N + 1.794

Processing time (Tp), Number of processed faces (N)

85|Page

6.2.4 Recognition parameters test

This test pointed out to the best setup to be used to obtain a better recognition, when talking
about the number of faces per person. While keeping in mind that recognition process is a very
complex task that requires an almost perfect dataset, i.e. the better the dataset, the better the

recognition accuracy.

Another important result from this stage is that in order to get a better recognition accuracy the same

camera is needed for both training and detection.

In addition, the lighting problem was solved by implementing an equalizer here in both training and

detection phases to ensure a better results.

The desired configuration depends mainly on the setup, in this case, and by using two different
cameras while equalization implemented the best number of faces to be used is 50 faces per person,

this will yield 82.5 % successful recognition.

6.3 Future Work

After finishing the required objectives in this project, the final suggestions and recommendations for

this project are:

1. Toimprove the system efficiency, more than one camera must to be connected to the raspberry
pi computer to increase the coverage area.

2. More research can be done to DetectMultiscale function to relate the minimum factor as a third
variable into the detection parameters equation.

3. Multiple raspberry pi — multiple server configuration to provide more efficient system to cover
bigger areas.

4. Implement Wi-Fi connection between raspberry pi and the servers either by implementing the
new raspberry pi version 3 or by adding Wi-Fi adapter to the existing raspberry pi 2.

5. Improve the detection further more by implementing a Bilateral Filter to smooth out small
variations in detected faces.

6. Implement face alignment on both training and detected faces to allow the system to work with
the persons even though they are not walking towards the camera.

7. Adding more than three servers to improve the recognition processing time.

8 |Page

8. To improve detection distance, a different harr cascaded classifier needs to be used,
specifically building a new cascaded classifier that contains facial images smaller than 20*20
to allow the system to detect their faces.

9. Implement the system at night; this will require using night vision camera.

10. A lighting sensor can be add to manipulate the detected faces equalization by measuring the
current light intensity and upon that value a specific equalization is done.

11. Instead of saving the detected faces on the raspberry pi and then sending them, the TCP/IP
server python code can be modified to directly send the captured images to the connected

clients.

87|Page

References

[1] Jay Akbar, where your computer goes to die. Available at
http://www.dailymail.co.uk/news/article-3049457/Where-computer-goes-die-Shocking-pictures-
toxic-electronic-graveyards-Africa-West-dumps-old-PCs-laptops-microwaves-fridges-phones.html
(Last Visit Date: 14/12/2016).

[2, 23, 24] Raspberry Pi Official Web site, Available at https://www.raspberrypi.org (Last Visit
Date: 14/12/2016).

[3] Swathi. V, Steven Fernandes, Raspberry Pi Based Human Face Detection, published in
International of advanced research in computer and communication engineering Vol. 4, Issue 9,
September 2015

[4] Victor Bautista Saiz; Fernan Gallego, GPU: Application for CCTV systems, Published in:
Security Technology (ICCST), 2014 International Carnahan Conference.

[5] Krit Janard; Worawan Marurngsith, Accelerating Real-time Face Detection on a Raspberry Pi
Telepresence Robot, publish in: Fifth international conference on Innovative Computing
Technology 20-22 May 2015

[6] Ping Hsin Lee, Vivek Srinivasan, and Arvind Sundararajan. Face Detection, Final Year Project,

Stanford university 2014

[7] Sahni, S. et al. “Reusing personal computer devices - good or bad for the environment?”

Sustainable Systems and Technology (ISSST), 2010 IEEE International Symposium on 6-1-2010

88 |Page

[8] Rein-Lien Hsu’, Mohamed Abdel-Mottaleb, and Anil K. Jain’ Dept. of Computer Science &
Engineering, Michigan State University, Electrical and Computer Engineering Dept., University of

Miami.

[9] Rapid Object Detection using a Boosted Cascade of Simple Features, P. Viola Mitsubishi Electr.
Res. Labs. Published in: Computer Vision and Pattern Recognition, 2001.

[10] Carson Reynolds and Rosalind W. Picard, Designing for Affective Interactions, MIT Media

Laboratory

[11] T. Kohonen, Self-organization and Associative Memory, Springer-Verlag, Berlin, 1989.

[12] J.Shermina, “Face recognition system using multilinear PCA and locality preserving

projection,” Proc. 2011 IEEE GCC Conference and Exhibition, pp. 283-286, 2011.

[13] Mohd Noah A. Rahman, Armanadurni Abd Rahman, Afzaal H. Seyal and Nursuziana
Kamarudin , Facial Recognition Using Eigenfaces, published in Computer Vision and Pattern

Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference

[14] Eigenfaces from OpenCV documentation from
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#eigenfaces (last
visited 14/12/2016)

[15] Fisherfaces from OpenCV documentation from

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#fisherface, (last visited
14/12/2016)

89 |Page

[16] Local Binary Pattern Histograms from OpenCV documentation
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-
histograms (last visited 14/12/2016)

[17] Ethernet features from IEEE official website http://www.ieee802.org/3/

[18] TCP/IP protocol suite from http://spectrum.ieee.org/computing/networks/osi-the-internet-that-

wasnt

[19] R. R. Ambadas and R. P. Chaudhari, "PIC Microcontroller Universal Board", International

Journal of Innovative Technology and Exploring Engineering, VVol.3, Issue.7, December 2013, p.1

[20] Tarun Agarwal, Microcontrollers type and applications, from
https://www.elprocus.com/microcontrollers-types-and-applications/ (last visited 14/12/2016)

[21] Raspberry Pi microcontroller, overview, types, software, available at
http://www.element14.com/community/docs/DOC-42993/1/raspberry-pi-single-board-computer
(last visited 14/12/2016)

[22] Features of Python. https://www.ibiblio.org/swaroopch/byteofpython/read/features-of-
python.html. (last visited 14/12/2016)

90 |Page

	Print 1.pdf
	Print 2.pdf
	Final.pdf

