

Enhancing the Performance of Dynamic Weighing System in Automated Production Lines

By

Khaldoon Khaled Banat

Mahmoud Atya Jaffreh

Mansour Azzam Karaki Mohammad Waleed Abu Turkey

Supervisor

Eng. Abed Al-Qader Al-Zaro

Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Industrial Automation Engineering

> Palestine Polytechnic University December - 2016

Palestine Polytechnic University

College of Engineering

Department of Electrical Engineering

Hebron - Palestine

Enhancing the Performance of Dynamic Weighing System in Automated Production Lines

By

Khaldoon Khaled Banat

Mahmoud Atya Jaffreh

.

Mansour Azzam Karaki

Mohammad Waleed Abu Turkey

Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Industrial Automation Engineering

Supervisor Signature

.....

Testing Committee Signature

.....

Chair of the Department Signature

December - 2016

إهداء

إلى معلمنا وقائدنا وحبيبنا وشفيعنا و قدوتنا محمد صلى الله عليه وسلم.

إلى من رسموا بدمائهم خارطة الوطن وطريق المستقبل وهندسوا بأجسادهم معاقل العزة والكرامة وإلى من هم أكرم منا جميعا شهداء الوطن الحبيب.

إلى الذين عشقوا الحرية التي تفوح منها رائحة الياسمين وتواروا خلف القضبان ليفسحوا لنا النور أسرانا البواسل.

إلى أبي الذي لم يبخل علي يوماً بشيء، وأمي التي زودتني بالحنان والمحبة أقول لهم:

أنتم وهبتمونى الحياة والأمل والنشأة على شغف الإطلاع والمعرفة.

إلى إخوتي وأسرتي جميعا.

إلى كل من علمني حرفاً أصبح سنا برقه يضيء الطريق أمامي.

إلى من ضاقت السطور لذكرهم فوسعتهم قلوبنا أصدقاءنا الأعزاء.

إلي كل من أضاء بعلمه عقل غيره، أو هدى بالجواب الصحيح حيرة سائليه، فأظهر بسماحته تواضع العلماء، وبرحابته سماحة العارفين .

إلى من رسم معنا خطوات هذا النجاح الى من بذل جهده ووقتة وكان لنا مرشداً وناصحاً وأخاً مشرفنا الحبيب الأستاذ عبد القادر الزرو.

الملخص

في خطوط الإنتاج المؤتمتة هناك حاجة ماسة للمحافظة على وزن المنتج ضمن نطاق محدد يمنع من الزيادة أو النقصان في الوزن حسب معايير الجودة و الإنتاج.

يستخدم نظام "فحص الوزن" ضمن خطوط الإنتاج للوصول الى الغاية المطلوبة و ذلك من خلال الحصول على إشارة الوزن المُنتج أثناء مروره بخط الإنتاج، و تتأثر هذه الإشارة من العديد من مصادر التشويش والضجيج مما يؤثر على القراءة الحقيقة للوزن.

يهدف مشروعنا إلى قراءة وزنة المُنتج المتحرك على نظام فحص الوزن ومقارنته بالوزن الفعلي من خلال نظام كهروميكانيكي باستخدام متحكم لقَبول أو رفض المُنتج قبل تعبئته من قبل الأيدي العاملة، وهذا سوف يساهم في زيادة دقة قياس الوزن مع المحافظة على سرعة عملية التوزين والإنتاج.

Abstract

In automated production lines, were the mass of single product must be maintained within predefined weight narrow range, a dynamic weight system is required to attain this objective.

Checkweigher is integrated in the production line to reduce the overweight and underweight of the product by acquiring the weight signal from the load cell which affected by different sources of noise and vibration and extracts the correct weight.

The main objective of this project is read the weight of dynamic product on the checkweigher system and make comparison between it and actual weight through electromechanical system by using controller to accept or refuse the product before packaged by working hands, This will increase weighing accuracy while maintaining or increasing the production speed.

LIST OF CONTENTS

الإهداء	Ι
الملخص	Π
ABSTRACT	III
CONTENTS	IV
LIST OF TABLES.	\mathbf{V}
LIST OF FIGURES	VI
CHAPTER 1: INTRODUCTION	1
1.1 Overview	2
1.2 Background	2
1.3 Objectives	2
1.4 Block Diagram	3
1.5 Time Table	4
CHAPTER 2: WEIGHING SYSTEM	5
2.1 Introduction	6
2.2 Checkweigher System	6
2.3 Sensors	7
2.4 Rejecter	9
2.5 PLC	9
2.6 HMI	10
2.7 Protection System	10
2.8 Pneumatic System	13
·	
CHAPTER 3: THEORY	15
3.1 Load Cell	16
3.2 Wiring	21
3.3 Calibration Data	21
3.4 Output	21
3.5 Mechanical Theory	22
CHAPTER 4: ELECTRICAL DESIGNE	25
4.1 Electrical Design	26
4.2 Power Circuit	29
4.3 Control Circuit	30
4.4 Pneumatic Circuit	32
CHAPTER 5: MECHANICAL DESIGNE	33
5.1 Design of Conveyor	34
5.2 Calculating the Torque of the Conveyor	38
5.3 Calculating the Power of the Motor	41
5.4 Final Design Machine	43

CHAPTER 6: TESTING AND EVALUATING	44
6.1 Introduction	45
6.2 Experimental Result	45
6.3 Recommendations	45
6.4 Future Work	46
6.5 Project Cost	46

REFRENCES APPENDIX A: PLC Module APPENDIX B: Low Profile Aluminum Load Cell APPENDIX C: Three Phase Induction Motor APPENDIX D: Catalog Rating for Bearing APPENDIX E: Photo Sensor APPENDIX F: Magnetic Cylinder Sensors APPENDIX G: Double Acting Cylinder

LIST OF TABLES

Table 1.1	Time Table of the Project	4
Table 4.1	Symbol Data for Power Circuit	29
Table 4.2	Inputs Symbol Data for PLC Program Connections	30
Table 4.3	Outputs Symbol Data for PLC Program Connections	30
Table 5.1	Application Factor, a _f	Appendix D
Table 5.2	Recommended Design Life for Bearings	Appendix D
Table 5.3	Dimension and Load Rating for Single Row 0.2 Series Deep Groove and Angular Contact Ball Bearing	Appendix D
Table 6.1	Project Cost	46

LIST OF FIGURES

Figure 1.1	Product Flow in Typical Checkweigher	3
Figure 2.1	Conveyor System	6
Figure 2.2	Conveyor System Types	7
Figure 2.3	Light Sensor	7
Figure 2.4	Load Cell Types	8
Figure 2.5	Rejecters Types	9
Figure 2.6	PLC Types	9
Figure 2.7	Delta HMI	10
Figure 2.8	Contactor	10
Figure 2.9	Circuit Breaker	11
Figure 2.10	Overload	11
Figure 2.11	Emergency Stop Button	12
Figure 2.12	Earth Leakage Circuit Breaker	12
Figure 2.13	Magnetic Cylinder Sensors	13
Figure 2.14	Double Acting Cylinder	13
Figure 2.15	Solenoid Valve	14
Figure 3.1	Low Profile Aluminum load cell	16
Figure 3.2	Strain Gauges in Load Cell	16
Figure 3.3	Strain Gauge	17
Figure 3.4	Wheatstone Bridge	17
Figure 3.5	Strain Gauge Principle	18
Figure 3.6	Load Cell Principle	18
Figure 3.7	Wheatstone Bridge	20
Figure 3.8	Wheatstone Bridge with a Voltmeter	20
Figure 3.9	Free Body Diagram of Ball Bearing	22
Figure 4.1	Dead load Component of Convyor	26
Figure 4.2	Internal Design for the Load Cell	28
Figure 4.3	Connection Module Load Cell	31
Figure 4.4	Connection Pneumatic Circuit	32
Figure 5.1	Angular Contact Ball Bearing	34
Figure 5.2	Free body Diagram of Cylinder	38
Figure 5.3	Electrical Motor	41
Figure 5.4	Final Design Machine	43

LIST OF FIGURES

Equation (3.2)Output Voltage from the Wheatstone Bridge19Equation (3.3)Current Flow in the Branch20Equation (3.4)Current Flow in the Branch21Equation (3.5)Voltage at Point21Equation (3.6)Voltage at Point21Equation (3.7)Resultant Radial Load22Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23Equation (3.13)Life Ratio23Equation (3.13)Life Ratio23	Equation (3.1)	Gauge Factor	19
Equation (3.3)Current Flow in the Branch20Equation (3.4)Current Flow in the Branch21Equation (3.5)Voltage at Point21Equation (3.6)Voltage at Point21Equation (3.7)Resultant Radial Load22Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.2)	Output Voltage from the Wheatstone Bridge	19
Equation (3.4)Current Flow in the Branch21Equation (3.5)Voltage at Point21Equation (3.6)Voltage at Point21Equation (3.7)Resultant Radial Load22Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.3)	Current Flow in the Branch	20
Equation (3.5)Voltage at Point21Equation (3.6)Voltage at Point21Equation (3.7)Resultant Radial Load22Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.4)	Current Flow in the Branch	21
Equation (3.6)Voltage at Point21Equation (3.7)Resultant Radial Load22Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.5)	Voltage at Point	21
Equation (3.7)Resultant Radial Load22Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.6)	Voltage at Point	21
Equation (3.8)Resultant Radial Load22Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.7)	Resultant Radial Load	22
Equation (3.9)Life Ratio22Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.8)	Resultant Radial Load	22
Equation (3.10)Life Ratio22Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.9)	Life Ratio	22
Equation (3.11)Resultant Radial Load23Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.10)	Life Ratio	22
Equation (3.12)Calculate the Ratio23Equation (3.13)Life Ratio23	Equation (3.11)	Resultant Radial Load	23
Equation (3.13) Life Ratio	Equation (3.12)	Calculate the Ratio	23
	Equation (3.13)	Life Ratio	23
Equation (3.14) Life Ratio	Equation (3.14)	Life Ratio	23
Equation (3.15) Factor of Safety	Equation (3.15)	Factor of Safety	23
Equation (3.16) Single Shear	Equation (3.16)	Single Shear	23
Equation (3.17) Double Shear	Equation (3.17)	Double Shear	24
Equation (3.18) Velocity	Equation (3.18)	Velocity	24
Equation (3.19) Final Distance	Equation (3.19)	Final Distance	24
Equation (3.20) Integrated of Acceleration	Equation (3.20)	Integrated of Acceleration	24
Equation (3.21) Radial Velocity	Equation (3.21)	Radial Velocity	24
Equation (3.22) Angular Velocity	Equation (3.22)	Angular Velocity	24
Equation (3.23) Radial Acceleration	Equation (3.23)	Radial Acceleration	24
Equation (3.24) Angular Acceleration	Equation (3.24)	Angular Acceleration	24
	1		
Equation (4.1) Total Dead Load Weight of the Conveyor	Equation (4.1)	Total Dead Load Weight of the Conveyor	27
Equation (4.2) Max Wieght On the Load Cell	Equation (4.2)	Max Wieght On the Load Cell	27
Equation (4.3) Gauge Factor	Equation (4.3)	Gauge Factor	28
Equation (4.4) Output Voltage from the Bridge	Equation (4.4)	Output Voltage from the Bridge	28
	1 ()		
Equation (5.1) Distance from the Middle to the End of the Conveyor	Equation (5.1)	Distance from the Middle to the End of the Conveyor	34
Equation (5.2) Design Load	Equation (5.2)	Design Load	36
Equation (5.3) Life Ratio	Equation (5.3)	Life Ratio	36
Equation (5.4) Torque of the Conveyor	Equation (5.4)	Torque of the Conveyor	38
Equation (5.5) Moment Inertia of Bearing	Equation (5.5)	Moment Inertia of Bearing	39
Equation (5.6) Moment Inertia of Object	Equation (5.6)	Moment Inertia of Object	39
Equation (5.7) Moment Inertia of Belt	Equation (5.7)	Moment Inertia of Belt	40
Equation (5.8) Moment Inertia of Roller	Equation (5.8)	Moment Inertia of Roller	40
Equation (5.9) Total Moment Inertia	Equation (5.9)	Total Moment Inertia	41
Equation (5.10) Torque of the Convevor	Equation (5.10)	Torque of the Conveyor	41
Equation (5.11) Power of the Motor	Equation (5.11)	Power of the Motor	42
Equation (5.12) Safety Factor	Equation (5.12)	Safety Factor	42

Chapter One

Introduction

1.1 Overview

1

- 1.2 Background
- 1.3 Objectives
- 1.4 Block Diagram
- 1.5 Time Table

1.1 Overview

The process of product weighing is an essential part of modern industry. There is a constant need for knowing the exact weight of many items, e.g. food, ingredients for production, pharmacology, chemistry, technology, etc. The type and the number of products that require weight control are increasing. According to that, the legal requirements of government bodies need developing to guarantee the exact weight. In production, this means high accuracy and efficiency of weighing. Continuation of this trend brings benefits for both the customer and the producer. That is, manufacturing efficiency is increased; hence, profitability whilst package quality and quantity are assured to the customer's satisfaction.

1.2 Background

A weighing scale is a measuring instrument that is used for determining the weight or mass of an object. Many traditional instruments are used as weighing scales such as scale spring and balance spring. Weighing scales are used in many industrial and commercial applications, and products such as loaded tractor-trailers and medical scales.

In the area of mass production, products are weighed using industrial weighing systems, which are machines that weigh a package dynamically. The weight of the package is estimated while the product has been carried over a load cell weigh by a transport system. Normally the transport system is of a conveyer belt type. The weigh is mounted on a load cell, which is the uncontrollable weighing device capable of weighing an item. A Signal Processing Module (SPM) acquires the electrical signal from weighing device and estimates a value of weight for the passing product as its output.

The checkweigher is one of the most common dynamic weighing system used in almost all modern production lines, different types of products will be passed on the conveyor with different infeed velocities to collect enough data for analysis and simulation. A digital weight indicator is required to interface the weight transducer.

1.3 Objectives

The overall objective is to design, implement a load cell based dynamic weighing system with improved productivity and accuracy. This work is undertaken in the following developments stages: first, analyse the main factors that affect the accuracy of the dynamic weighing system. Then derive and present the exact model of the load cell based dynamic weighing system. The next stage is studying different approaches to identify, minimize or extract error signal from weighing signal. The fourth stage monitoring the value of weight on the (HMI).

1.4 Block Diagram

In generally a checkweigher dynamic weight system incorporates a series of conveyor belts. Checkweighers are known also as belt weighers, in-motion scales, conveyor scales, dynamic scales, and in-line scales. In filler applications, they are known as check scales. Generally, checkweigher has three belts or chain beds:

• Infeed Conveyor: An infeed belt that may change the speed of the package and bring it up or down to a speed required for weighing. The infeed is also sometimes used as an indexer, which sets the gap between products to an optimal distance for weighing. It, sometimes, has special belts or chains to position the product for weighing.

• A Weigh Belt: This is typically mounted on a weight transducer which can typically be a strain-gauge load cell or a servo-balance (also known as a force-balance), or sometimes known as a split-beam. Some older machines may pause the weigh bed belt before taking the weight measurement. This may limit line speed and throughput.

• Outfeed Conveyor: That provides a method of removing an out of tolerance package from the conveyor line. The reject can vary by application. Some require an air-amplifier to blow small products off the belt, but heavier applications require a linear or radial actuator. Some fragile products are rejected by "dropping" the bed so that the product can slide gently into a bin or other conveyor.

Figure 1.1: Product Flow in Typical Checkweigher

1.5 Time Table

Weeks Tasks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Identification of															
Project Idea															
Drafting a Preliminary															
Project Proposal															
Introduction															
Chapter (1)															
Weighing System															
Chapter (2)															
Theory															
Chapter (3)															
Electrical Design															
Chapter(4)															
Mechanical Design															
Chapter (5)															
Testing and Evaluating															
Chapter (6)															

Table 1.1: Time Table

2

Chapter Two

WEIGHING SYSTEM

- 2.1 Introduction
- 2.2 Checkweigher System
- 2.3 Sensors
- 2.4 Rejecter
- 2.5 PLC
- 2.6 HMI
- 2.7 Protection System
- 2.8 Pneumatic System

2.1 Introduction

Measuring load is an important and essential part of many industrial and commercial operations. It is crucial to have accurate measurements of the load, as small errors, occurring repeatedly, and lead to substantial loss of revenue. Therefore, weighing systems have an important device; it is denoted as load cell. A load cell is uncontrollable weighing device capable of weighing an article. It is used in a variety of industrial weighing applications.

2.2 Checkweigher System

A checkweigher is a system that weighs items as they pass through a production line, classifies the items by preset weight zones, and ejects or sorts the items based on their classification. Checkweighers weigh 100% of the items on a production line. Typically, an infeed section, scale section, discharge section, rejecter or line divider, and computerized control comprise the physical checkweighing system. Checkweighers and their components vary greatly according to how they are used, the items being weighed, and the environment surrounding them.

2.2.1 Checkweigher System Components

Conveyor System

Conveyors are used to transport product between two or more locations. The variety of products a conveyor system transports is ranges from bolts to pallets and everything in between for distribution and manufacturing systems. See the figure 2.1

Conveyor System Description

A conveyor moves cardboard boxes, wood boxes, metal boxes and plastic boxes. It can also move bags, components, pallets or other components. Many kinds of conveying systems are available, and are used according to the various needs of different industries. [1]

The most famous types of conveyors systems are:

- ✓ Vibrating Conveyor Systems.
- ✓ Roller Conveyor Systems.
- ✓ Vertical Conveyor Systems.
- ✓ Belt Conveyor Systems.

The following figure shows the types of conveyors:

Figure 2.2: Conveyor System Types

2.3 Sensors

A sensor is a device that detects and responds to some type of input from the physical environment. The specific input could be light, heat, motion, moisture, pressure, or any one of a great number of other environmental phenomena. The output is generally a signal that is converted to human-readable display at the sensor location or transmitted electronically over a network for reading or further processing.

2.3.1 Photo Sensors

A Light Sensor generates an output signal indicating the intensity of light by measuring the radiant energy that exists in a very narrow range of frequencies basically called "light", and which ranges in frequency from "Infra-red" to "Visible" up to "Ultraviolet" light spectrum. See the figure 2.3

Figure 2.3: Light Sensor

The light sensor is a passive devices that convert this "light energy" whether visible or in the infra-red parts of the spectrum into an electrical signal output. Light sensors are more commonly known as "Photoelectric Devices" or "Photo Sensors" because the convert light energy (photons) into electricity (electrons).

2.3.2 Load Cells

Load cell is an electromechanical device. It can be called a transducer as it converts one form of energy to another mechanical force or stress to electrical energy. A load cell has various characteristics that are measurable. These characteristics are determined by the type of metal used, shape of the load cell and how well it is protected from its environment. To understand load cells better (you can see the reference [2]) there are terms that you need to become familiar with so you can better match the load cell to your application.

Load Cell Description

An electronic weighing system is the electronic system used for dynamic weighing. A weighing system consists of one or more sensors and an intelligent module. The sensor is usually called a load cell and is available in several different types. In industrial weighing systems, there are three types of load cell: Magnetic transducer which measures change in magnetic permeability, oscillating string transducer which measures changes in frequency and the third one is the strain gauge transducer which measure changes in resistance. The three types of load cell are called transducers because it converts the force into a measurable data. In the weighing system used in this thesis we will use the third type.

Majority of the industrial weighing systems use the strain gauge load cell in various types such as traditional canister, s beam, single ended beam, platform load cell, etc., as shown in figure 2.4 it is considered the most common type of load cells in industry due to their low price and great loads area. In addition, it is suitable to be used in the dusty and moist workshop environments.

Traditional Canister

S-Beam Load Cell

Single Ended Beam

Platform Load Cell

Figure 2.4: Load Cell Types

2.4 Rejecters

A reject signal is sent from the checkweigher control to a rejecter on the checkweigher or further downstream. Typically the reject signal consists of a solid state relay with high or low voltage output or a mechanical contact. [3]

A mechanism which removes items from the line flow upon receiving a signal from a control system. The rejecter often consists of a solenoid operated valve, air cylinder, and associated mechanical parts. Majority of the industrial weighing systems use the rejecters various types such as: flipper, dropout, up and out, air jet, and pusher rejecter, etc., as shown in figure 2.5.

Figure 2.5: Rejecters Types

2.5 PLC (Programmable Logic Control)

A central control system from which one can operate and program functions of several independent or dependent systems. The PLC consists of a user interface, central processor, links to subsidiary system controls, and an electrical control interface.

PLCs have become more and more standard in manufacturing and packaging industries. Some checkweigher manufacturers have designed PLC interfaces to common PLC formats and can now fit into your lines seamlessly. Ask checkweigher manufacturers what level of integration they provide for PLC support.

The most common type of PLC in industry as shown in figure 2.6

Fatek PLC

Siemens PLC Figure 2.6: PLC Types

Delta PLC

2.6 HMI (Human Machine Interface)

A Human Machine Interface (HMI) is the user interface that connects an operator to the controller for an industrial system.

Industrial Control Systems (ICS) are integrated hardware and software designed to monitor and control the operation of machinery and associated devices in industrial environments, including those that are designated critical infrastructure. An HMI includes electronic components for signalling and controlling automation systems. See the figure 2.7

Figure 2.7: Delta HMI

HMIs are usually deployed on Windows based machines, communicating with programmable logic controllers (PLC) and other industrial controllers. [4]

2.7 Protection System

2.7.1 Contactors

Contactors are an electrically controlled switch used for switching a power circuit similar to a relay except with higher current ratings. A contactor is controlled by a circuit which has a much lower power level than the switched circuit.

Contactors come in many forms with varying capacities and features. Unlike a circuit breaker, a contractor is not intended to interrupt a short circuit current, contactors range from several amperes to thousands of amperes. The physical size of contactors ranges from a device small enough to pick up with on hand to large device as shown in figure 2.8

Figure 2.8: Contactor

2.7.2 Circuit Breaker (CB)

If a power surge occurs in the electrical wiring, the breaker will trip this means that a breaker that was in the on position will flip to the off position and shut down the electrical power leading from the breaker. Essentially, a circuit breaker is a safety device. When a circuit breaker is tripped it may prevent a fire to start in overloaded circuit, it can also prevent the destruction of the device that is drawing the electricity. See the figure 2.9

Figure 2.9: Circuit Breaker

2.7.3 Overload

Overload relays are intended to protect motors, controllers and branch-circuit conductors against excessive heating due to prolonged motor over currents up to and including locked rotor currents. Protection of the motor and other branch-circuit components from higher currents, due to short circuits or grounds, is a function of branch-circuit fuses, circuit breakers or motor short circuits protectors. The system needs two overloads to protect the motors. See the figure 2.10

Figure 2.10: Overload

2.7.4 Emergency Stop Button

Emergency Stop Button is shown in a figure 2.11 provides safety for humans and the machine; it offers a wide range of safety components for the protection of humans, machine and production goods in emergency situations.

It is the purpose of emergency-stop device to deflect or minimize the risk as quickly as possible and optimally in the event of an emergency arising.

Figure 2.11: Emergency Stop Button

2.7.5 Earth Leakage Circuit Breaker (ELCB)

Is a safety device used in electrical installations with high Earth impedance to prevent shock. It detects small stray voltages on the metal enclosures of electrical equipment, and interrupts the circuit if a dangerous voltage is detected. Once widely used, more recent installations instead use residual current circuit breakers which instead detect leakage current directly. See the figure 2.12

Figure 2.12: Earth Leakage Circuit Breaker

2.8 Pneumatic System

2.8.1 Magnetic Cylinder Sensors

Detecting piston positions with precision, in countless fields of automation, it is essential to monitor the motion processes in pneumatic cylinders. Magnetic cylinder sensors contactlessly detect the piston position of these cylinders and give a switching signal. They are completely maintenance-free and are mounted outside the cylinder. See the figure 2.13. [5]

Figure 2.13: Magnetic Cylinder Sensors

2.8.2 Double Acting Cylinder

The double-acting cylinder requires compressed air for every direction of movement. On this type of cylinder, the force both the advancing and retracting direction is built up using compressed air. The simplest way of actuating a double-acting cylinder is by using a 5/2-way valve. See the figure 2.14 [6]

Double Acting Cylinder Retracted

Double Acting Cylinder Advanced

2.8.3 Solenoid Valve

Solenoid valve is an electromechanical device used for controlling liquid or gas flow. The solenoid valve is controlled by electrical current, which is run through a coil. When the coil is energized, a magnetic field is created, causing a plunger inside the coil to move. Depending on the design of the valve, the plunger will either open or close the valve. When electrical current is removed from the coil, the valve will return to its de-energized state. See the figure 2.15

Figure 2.15: Solenoid Valve

3

Chapter Three

Theory

- 3.1 Load Cell
- 3.2 Wiring
- 3.3 Calibration Data
- 3.4 Output
- 3.5 Mechanical Theory

3.1 Load Cell

3.1.1 What is a Load Cell?

A load cell is a sensor or a transducer that converts a load or force acting on it into an electronic signal. This electronic signal can be a voltage change, current change or frequency change depending on the type of load cell and circuitry used. There are many different kinds of load cells. We offer resistive load cells and capacitive load cells. See the figure 3.1

Resistive load cells work on the principle of piezo-resistivity. When a load/force/stress is applied to the sensor, it changes its resistance. This change in resistance leads to a change in output voltage when an input voltage is applied.

Capacitive load cells work on the principle of change of capacitance which is the ability of a system to hold a certain amount of charge when a voltage is applied to it. For common parallel plate capacitors, the capacitance is directly proportional to the amount of overlap of the plates and the dielectric between the plates and inversely proportional to the gap between the plates.

Figure 3.1: Low Profile Aluminum load cell

3.1.2 How do Load Cells Works?

A load cell is made by using an elastic member (with very highly repeatable deflection pattern) to which a number of strain gauges are attached.

In this particular load cell shown in figure 3.2, there are a total of four strain gauges that are bonded to the upper and lower surfaces of the load cell. [7]

Figure 3.2: Strain Gauges in Load Cell

3.1.3 Strain Gauge

A strain gauge consists of a very fine length of wire that is woven back and forth in a grid and laid on a piece of paper or plastic called its base. A common wire used is a copper nickel alloy with a diameter of about one thousandth of an inch (.001"). The wire is zig-zagged to form a grid so to increase the effective length of the wire that comes under the influence of the force applied to it. Leads are attached to the ends of the gauge. Strain gauges can be made very small, sometimes as small as 1/64". See the figure 3.3

These gauges are cemented to a strong metal object, commonly referred to as the load receiving element, to make up a load cell. The gauges are configured into a circuit called a *Wheatstone bridge*. [2]

Figure 3.3: Strain Gauge

3.1.4 Wheatstone Bridge Circuit

The four strain gauges are configured in a Wheatstone Bridge configuration with four separate resistors connected as shown in what is called a Wheatstone Bridge Network. An excitation voltage usually 10V is applied to one set of corners and the voltage difference is measured between the other two corners. At equilibrium with no applied load, the voltage output is zero or very close to zero when the four resistors are closely matched in value. That is why it is referred to as a balanced bridge circuit.

When the metallic member to which the strain gauges are attached, is stressed by the application of a force, the resulting strain leads to a change in resistance in one (or more) of the resistors. This change in resistance results in a change in output voltage. This small change in output voltage (usually about 20 mVolt of total change in response to full load) can be measured and digitized after careful amplification of the small mVolt level signals to a higher amplitude 0-5V or 0-10V signal. See the figure 3.4

Figure 3.4: Wheatstone Bridge.

3.1.5 Principle of Load Cell

We can take our strain gauge and Wheatstone bridge theories and use them to construct a load cell. We will use a column of steel and glue a strain gauge on each of the four sides of the column. As weight is placed on top of the column, the length of the column would decrease. The column also would become "fatter," or bulge out. Two strain gauges are placed opposite of each other to respond proportionately to the change in length. [2]

Two other gauges are placed on opposite sides of the column and respond to the change in the column's bulge. Since one pair of strain gauges become shorter their wire diameters become larger and their resistance decreases. The other pair of strain gauges are positioned so their wires lengthen, thus decreasing their diameter and increasing their resistance. If we hung the same weight from the bottom of the column instead of compressing the column we would be placing tension on it. The column and strain gauges would act in the opposite direction but still stretch and compress the wires by the same amount. See the figure 3.5

Figure 3.5: Strain Gauge Principle

We can wire our strain gauges into a Wheatstone bridge configuration. We can calibrate the ammeter to read in pounds instead of amps. In effect, we actually have a scale. Of course this is a crude, very inaccurate scale. It is intended to show the basic load cell principle. [2] Load cells are made in different shapes and configurations. The strain gauges are strategically placed for peak performance. See the figure 3.6

Figure 3.6: load cell principle

The gauge factor *GF* is defined as:

$$GF = \frac{\Delta R_{R_G}}{\epsilon}$$
 Equation (3.1)

Where: ΔR is the change in resistance caused by strain. R_G is the resistance of the under formed gauge. \in is strain.

For metallic foil gauges, the gauge factor is usually a little over 2.For a single active gauge and three dummy resistors in a Wheatstone bridge configuration, the output V from the bridge is: [3]

$$v = \frac{BV. GF. \epsilon}{4}$$
 Equation (3.2)

Where: BV is the bridge excitation voltage.

3.1.6 Load Cell Electrical Theory

The Wheatstone bridge configured above is a simple diagram of a load cell. The resistors marked T1 and T2 represent strain gauges that are placed in tension when load is applied to the cell. The resistors marked C1 and C2 represent strain gauges which are placed in compression when load is applied. [2]

The +In and -In leads are referred to as the +Excitation (+Exc) and -Excitation (-Exc) leads. The power is applied to the load cell from the weight indicator through these leads. The +Out and -Out leads are referred to as the +Signal (+Sig) and -Signal (-Sig) leads. The signal obtained from the load cell is sent to the signal inputs of the weight indicator to be processed and represented as a weight value on the indicator's digital display.

As weight is applied to the load cell, gauges C1 and C2 compress. The gauge wire becomes shorter and its diameter increases. This decreases the resistances of C1 and C2. Simultaneously, gauges T1 and T2 are stretched. This lengthens and decreased the diameter of T1 and T2, increasing their resistances. These changes in resistances cause more current to flow through C1 and C2 and less current to flow through T1 and T2. Now a potential difference is felt between the outputs or signal leads of the load cell.

Current is supplied by the indicator through the -In lead. Current flows from -In through C1 and through -Out to the indicator. From the indicator current flows through the +Out lead, through C2 and back to the indicator at +In. In order to have a complete circuit we needed to get current from the –In side of the power source (Indicator) to the +In side. You can see we accomplished that. We also needed to pass current through the indicator's signal reading circuitry. We accomplished that as the current passed from the –Out lead through the indicator and back to the load cell through the +Out lead. Because of the high internal impedance (resistance) of the indicator, very little current flows between –Out and +Out.

Since there is a potential difference between the -In and +In leads, there is still current flow from – In through T2 and C2 back to + In, and from -In through C1 and T1 back to +In. The majority of current flow in the circuit is through these parallel paths. Resistors are added in series with the input lines. These resistors compensate the load cell for temperature, correct zero and linearity.

We have replaced the ammeter with a voltmeter which will represent the display on our weight indicator. Also, the leads connected to our indicator are designated +Sig and -Sig. These represent our positive and negative signal leads. The represents our indicator's power supply that provides the precise voltage to excite or power the load cell. The resistance values represent our four strain gauges which make up our load cell.

Figure 3.7: Wheatstone bridge

Figure 3.8: Wheatstone bridge with a voltmeter

Now let's place a force on our load cell. Our force caused R1 and R4 to go into tension, which increased their resistances. R2 and R3 went into compression, which decreased their resistances. These changes are depicted in the following diagram.

The current flow in the branch is the branch voltage divided by the branch resistance:

$$I_{R1+R2} = \frac{E_{R1+R2}}{R1+R2}$$
 Equation (3.3)

$$I_{R3+R4} = \frac{E_{R3+R4}}{R3+R4}$$
 Equation (3.4)

From the Figure 3.8 the voltage at point 1 and 2, we can use Ohm's Law.

$$\mathbf{E}_{\mathrm{R3}} = \mathbf{I}_{\mathrm{R3}}\mathbf{R}_{\mathrm{3}} \qquad \qquad \text{Equation (3.5)}$$

$$E_{R1} = I_{R1}R_1$$
 Equation (3.6)

3.2 Wiring

A load cell may have a cable with four or six wires. A six-wire load cell, besides having +Ve and -Ve signal and +Ve and -Ve excitation lines, also has +Ve and -Ve sense lines. These sense lines are connected to the sense connections of the indicator.

These lines tell the indicator what the actual voltage is at the load cell. Sometimes there is a voltage drop between the indicator and load cell. The sense lines feed information back to the indicator. The indicator either adjusts its voltage to make up for the loss of voltage, or amplifies the return signal to compensate for the loss of power to the cell.

Load cell wires are color coded to help with proper connections. The load cell calibration data sheet for each load cell contains the color code information for that cell. Rice Lake Weighing Systems also provides a load cell wiring color guide on the back cover of our Load Cell Product Selection Guide. [2]

3.3 Calibration Data

Each load cell is furnished with a calibration data sheet or calibration certificate. This sheet gives you pertinent data about your load cell. The data sheet is matched to the load cell by model number, serial number and capacity. Other information found on a typical calibration data sheet is output expressed in mV/V, excitation voltage, non-linearity, hysteresis, zero balance, input resistance, output resistance, temperature effect on the output and zero balance, insulation resistance and cable length. The wiring color code is also included on the calibration data sheet.

3.4 Output

A load cell's output is not only determined by the weight applied, but also by the strength of the excitation voltage and its rated mV/V full scale output sensitivity.

Mechanical Theory 3.5

3.5.1 Bearing [In this part two cases for chosen the Bearing:]

Case1: No thrust loading just radial loading

- 1. Compute Fx and Fy by applying static equilibrium equations to the shaft supported by the bearing. See the figure 3.9.
- 2. Find the resultant radial load:

$$F_r = \sqrt{F_x^2 + F_y^2}$$
 Equation (3.7)

$$F_D = a_f V F_r$$
 Equation (3.8)

Where: F_r is radial load on the bearing.

- F_x is the force acting on the x-axis.
- F_y is the force acting on the y-axis.
- F_D is Design load.
- a_f is Application factor we take its value from (Table 4 -1), used because loads are often variable (non-steady) and may increase during operation.
- V: rotation factor, takes into account whether the inner or outer race rotates
- $V = \begin{cases} 1.0 \text{ rotating inner ring} \\ 2.0 \text{ rotating outer ring} \end{cases}$

Usually the inner race of the bearing rotates.

3. Assume the desired life (LD) and Reliability (RD)

$$X_D = \frac{L_D}{L_{10}} = \frac{L_D}{10^6}$$
 Equation (3.9)

Where: X_D is Life ratio.

 L_D is Design Life. L_{10} is Rating life and its value equal one million revaluation.

4. Calculate the required catalog rating:

$$C_{10} = \left(\frac{L_D}{L_{10}}\right)^{1/a} * F_D \qquad \dots \qquad \text{Equation (3.10)}$$

Where: C_{10} is Catalog Rating.

5. Check the catalog and we select a suitable bearing from (Table4-3)

Figure 3.9: Free Body Diagram of Ball Bearing

Case2: Radial and thrust loading

- **1.** Compute *Fx* and *Fy* and *Fa* by applying static equilibrium equations to the shaft supported by the bearing.
 - **3.** Find the resultant radial load:

$$F_r = \sqrt{F_x^2 + F_y^2}$$
 Equation (3.11)

And calculate the ratio:

$$F_a/V F_r$$
 Equation (3.12)

4. Assume the desired life (*LD*) and Reliability (*RD*)

$$X_D = \frac{L_D}{L_{10}} = \frac{L_D}{10^6}$$
 Equation (3.13)

4. Start with assumed *Fe* (set the initial trial: $F_e = a_f . V. F_r$)

5. Compute C_{10} using:

$$C_{10} = \left(\frac{L_D}{L_{10}}\right)^{1/a} * F_e$$
 Equation (3.14)

Factor of Safety:

Is a term describing the capacity of a system beyond the expected loads or actual load. Essentially is how much stronger the system is than it usually needs to be for an intended load.

$$n = \frac{s_y}{t} \qquad \dots \qquad \text{Equation (3.15)}$$

Where: *n* is Factor of Safety

 s_y is Share stress

t is Material cross section

And we have two type of shear stress:

1) Single shear

$$\tau_{avg} = \frac{P}{A} = \frac{F}{A}$$
 Equation (3.16)

2) Double shear

$$\tau_{avg} = \frac{P}{A} = \frac{F}{2A}$$
 Equation (3.17)

If the acceleration is known to be constant, the different equation relating time, position, velocity, and acceleration can be integrated.

•
$$V = V_i + a_c t$$
 Equation (3.18)
• $S_f = S_i + V_i t + \frac{1}{2} a_c t^2$ Equation (3.19)

•
$$V^2 = V_i^2 + 2a_c(S - S_i)$$
 Equation (3.20)

Where: V is velocity

V_i is Initial velocity

a_c is Constant acceleration

t is Time

S_f is Final distance

S_i is Initial distance

If the path of motion is expressed in polar coordinates, the velocity and acceleration component can be related to the time derivative of r and θ

•	$V_r = r$ °	 Equation (3.21)
•	$V_\theta = r\theta^\circ$	 Equation (3.22)
•	$a_r = r^{\circ\circ} - r\theta^{\circ 2}$	 Equation (3.23)
•	$a_{\theta} = r\theta^{\circ\circ} + 2r^{\circ}\theta^{\circ}$	 Equation (3.24)

Where: V_r is Radial Velocity r is Position Vevtor V_{θ} is Angular Velocity a_r is Radial Acceleration a_{θ} is Angular Acceleration

4

Chapter Four

Electrical Design

- 4.1 Electrical Design
- 4.2 Power Circuit
- 4.3 Control Circuit
- 4.4 Pneumatic Circuit

4.1 Electrical Design

We have two types of load:

- 1- Dead load
- 2- Live load

4.1.1 Dead Load

We have a many parts of conveyor that have different wieghts and this wieghts are the dead load in the load cell:

- \checkmark The Belt, we weighing it and equal 0.5 kg.
- \checkmark The Roller, we weighing it and equal 0.5 kg.
- ✓ **The Bearing**, we weighing it and equal 0.05 kg.
- \checkmark The Pulley, we weighing it and equal 0.1 kg.
- ✓ **The Sidebar,** we weighing it and equal 0.5 kg.
- ✓ **The Conveyor Carrier,** we weighing it and equal 0.5 kg.
- ✓ **The Motor and Gear ratio,** we weighing it and equal 5 kg.

The following figure shows the dead load component of convyor:

The Roller

The Bearing

The Pulley

The Sidebar

The Conveyor carrier

Figure 4.1: Dead load Component of Convyor

According to this data we want calculate the total dead load weight of the conveyor:

dead load = belt weight + 2roller weight + 4bearing weight + 2sidebar weight +Conveyor carrier weight + motor and gear weight Equation (4.1)

dead load = 0.4kg + (2 * 0.5)kg + (4 * 0.05)kg + (2 * 1)kg + 0.5kg + 5kg = 9.1kg.

4.1.2 Live Load

It is the different wieghts that pass on the conveyor and the range of this wieghts from 0.0kg to 5.0 kg.

To choose the suitable load cell we will calculate the max wieght on the load cell.

 $max weight = dead load + max live load \qquad \dots \qquad Equation (4.2)$ max weight = 9.1 kg + 5 kg = 14.1 kg

According to the max weight we will choose the *Low Profile Aluminium load cell* that have weight min 0.0 kg and the max weigh is 5kg due to the datasheet that attachment in (Appendix B).
4.1.3 Internal Design for the Load Cell

Full-bridge strain gauge circuit

Figure 4.2: Internal Design for the Load Cell

Gauge Factor

The gauge factor *GF* is defined as:

$$GF = \frac{\Delta R_{R_G}}{\epsilon}$$
 Equation (4.3)

Where ΔR : is the change in resistance caused by strain. R_G: is the resistance of the under formed gauge. \in : is strain.

For metallic foil gauges, the gauge factor is usually a little over 2. For single active gauge and three dummy resistors in a Wheatstone bridge configuration, the output V from the bridge is:

Where BV: is the Bridge Excitation Voltage.

We can't determine the change on gauge factor that effect on output signal that happen when we effect on the load cell by different weights; because the relationship between output signal and the weight is not defined in datasheet and we will find this difference by experiment.

4.2 Power Circuit

4.2.1 Symbol Address

Name	Symbol
Circuit Breaker	Q1
Earth Leakage	Q2
Contactor 1	KM1
Contactor 2	KM2
Over Load 1	RT1
Over Load 2	RT2
Motor 1	M1
Motor 2	M2

Table 4.1: Symbol Data for Power Circuit

4.2.2 Power Circuit Connection

4.3 Control Circuit

4.3.1 Inputs Symbol

Name	Symbol	Address	Description
Emergency	EM	X0	Digital input
NC Overload 1	SRT 1	X1	Digital input
NC Overload 2	SRT 2	X2	Digital input
Photo Sensor 1	S0	X3	Digital input
Photo Sensor 2	S1	X4	Digital input
Sensor Cylinder 1	S2	X5	Digital input
Sensor Cylinder 2	S3	X6	Digital input
Sensor Cylinder 3	S4	X7	Digital input

 Table 4.2: Inputs Symbol Data for PLC Program Connections

4.3.2 Outputs Symbol

Name	Symbol	Address	Description
Contactor	KM1	Y0	Motors
Coil 1	Y1	Y1	Cylinder 1
Coil 2	Y2	Y2	Cylinder 2
Coil 3	Y3	Y3	Cylinder 3

Table 4.3: Outputs Symbol Data for PLC Program Connections

4.3.3 PLC Program Connections

4.3.4 Connection Module Load Cell

Figure 4.3: Connection Module Load Cell

4.4 Pneumatic Circuit

Figure 4.4: Connection Pneumatic Circuit

5

Chapter Five

Mechanical Design

- 5.1 Design of Conveyor
- 5.2 Calculating the Torque of the Conveyor
- 5.3 Calculating the Power of the Motor
- 5.4 Final Design Machine

5.1 Design of Conveyor

5.1.1 Design Bearing of Conveyor

In the design of conveyor bearing we consider that there is no thrust loading, and the loading is only radial.

Step 1: At first, we will compute F_x and F_y by applying static equilibrium equations to the shaft supported by the bearing.

$$s_f = s_i + v_i t + \frac{1}{2} a t^2$$
 Equation (5.1)

- Where S_f : The distance from the middle to the end of the conveyor.
 - S_i : The initial distance, and equal zero.
 - v_i : Initial velocity of the belt.
 - a : Acceleration of the belt.

$$0.075 = \frac{1}{2}at^{2}$$

$$0.15 = a(1.33)^{2}$$

$$a = \frac{0.15}{1.7689} = 0.084 \text{ m}^{2}/\text{sec}$$

$$45 \to 60 \text{ sec}$$

$$1 \to t \text{ sec}$$

$$t \text{ sec} = \frac{60}{45} = 1.33 \text{ sec}$$

For Infeed and Outfeed Conveyor:

 $0.20 = \frac{1}{2} at^{2}$ $1.33 started t sec = 0.40 = a(3.54)^{2}$ $a = \frac{0.40}{12.57} = 0.031 m^{2}/sec$ $F_{x} = m_{1} * a$ $F_{y} = m_{1} * g + \frac{1}{2}m_{2} * g$ $34 m_{1}$

$$1.33 \ sec \rightarrow 0.15m$$

$$sec \rightarrow 0.4m$$

$$sec = \frac{0.4 * 1.33}{0.15} = 3.54 \ sec$$

F_x: Force on the x – axis.
F_y: Force on the y – axis.
a : acceleration of the belt.
m₁: mass of the object.
m₂: mass of the roller.

For Checkweigher:

$$F_x = 5 * 0.084 = 0.42 \text{ N}$$

 $F_y = 5 * 9.81 + \frac{1}{2} * 0.5 * 9.81 = 51.5 \text{ N}.$

For Infeed and Outfeed Conveyor:

 $F_x = 5 * 0.031 = 0.1589 \text{ N}$ $F_y = 5 * 9.81 + \frac{1}{2} * 0.5 * 9.81 = 51.5 \text{ N}.$

Step 2: Now we find the resultant radial load (F_r)

For Checkweigher:

$$F_{r} = \sqrt{F_{x}^{2} + F_{y}^{2}} = \sqrt{(0.42)^{2} + (51.5)^{2}}$$
$$F_{r} = 51.5 \text{ N.}$$
$$\theta = \tan^{-1} \frac{F_{Y}}{F_{X}} = \tan^{-1} \frac{51.5}{0.42} = 89.53^{\circ}$$

For Infeed and Outfeed Conveyor:

$$F_{r} = \sqrt{F_{x}^{2} + F_{y}^{2}} = \sqrt{(0.1589)^{2} + (51.5)^{2}}$$
$$F_{r} = 51.5 \text{ N.}$$
$$\theta = \tan^{-1}(\frac{F_{Y}}{F_{x}}) = \tan^{-1}(\frac{51.5}{0.1589}) = 89.82^{\circ}$$

Where F_r: Force resaltant.

Specifying FD

The design load can be defined by:

$$F_D = a_f * V * Fr$$
 Equation (5.2)

Where: a_f is application factor (Table 5-1), used because loads are often variable (non-steady) and may increase during operation.

V rotation factor, takes into account whether the inner or outer race rotates ring outer rotating 1.2 ring inner rotating 0.1V usually the inner race of the bearing rotate (i.e., V=1).[8]

V = 1 (rotating inner ring).

 $a_f = 1$ (machinery with no impact).

 $F_D = 1 * 1 * 51.5 = 51.5 \text{ N}$. Are the same for Checkweigher, Infeed and Outfeed Conveyor.

Step 3: Assuming the desired life (L_D) and Reliability (R_D), we find X_D

$$X_{\rm D} = \frac{L_{\rm Dh}}{L_{10}} \qquad \dots \qquad \text{Equation (5.3)}$$

$$\begin{array}{lll} L_{Dh} = \ L_{Dh} * N * 60 & 0.15m \rightarrow 0.05m \\ \ddot{\theta} = \frac{a}{r} & x \ rev \rightarrow 1 \ rev \\ & x \ rev \rightarrow 1 \ rev \\ & x \ rev \rightarrow 1 \ rev \\ & x \ rev = \frac{0.15}{0.05} = 3 \\ & = 3 \ rev/m \\ & X_{D}: \ Life \ ratio. \\ & L_{D}: \ Desired \ life \ (revolutions). \\ & L_{10}: \ Rating \ life \ (revolutions) = 1 \ million \ rev. \\ & L_{Dh} = 30000 \ (general \ industrial \ machinery). \ (Table \ 5-2) \\ & N: \ speed \ motor. \end{array}$$

 $x_{rev} * y_{rev} = 3*5$ = 15 turn of motor per piece.

For Checkweigher:

Length of the conveyor = 0.15 m.

Diameter of the roller = 0.05 m.

Diameter of the rod = 0.01 m.

$$\ddot{\theta} = \frac{0.084}{0.01} = 8.4 \text{ m/s}$$

$$N = 15 \frac{\text{rev}}{\text{m}} * \frac{1\text{m}}{1.33 \text{ sec}} * \frac{60 \text{ sec}}{1 \text{ min}} = 676.67 \text{ rpm}$$

$$L_{\text{Dh}} = 30000 * 676.67 * 60 = 1218.006 * 10^{6}$$

$$X_{\text{D}} = \frac{1218.006 * 10^{6}}{1 * 10^{6}} = 1218.006 \text{Hp}$$

For Infeed and Outfeed Conveyor:

Length of the conveyor = 0.40 m.

Diameter of the roller = 0.05 m.

Diameter of the rod = 0.01 m.

$$\begin{split} \ddot{\theta} &= \frac{0.031}{0.01} = 3.1 \text{ m/s} & 0.05 \text{m} \to 0.01 \text{m} \\ N &= 40 \frac{\text{rev}}{\text{m}} * \frac{1\text{m}}{3.54 \text{ sec}} * \frac{60 \text{ sec}}{1 \text{ min}} = 685.7 \text{ rpm} & \text{yrev} \to 1 \text{ rev} \\ L_{\text{Dh}} &= 30000 * 685.7 * 60 = 1234.28 * 10^6 & \text{x rev} * \text{y rev} = \frac{0.05}{0.01} = 5 \\ X_{\text{D}} &= \frac{1234.28 * 10^6}{1 * 10^6} = 1234.28 \text{h} & \text{motor per piece} \end{split}$$

Step 4: Calculate the required catalog rating:

$$C_{10} = X_D^{1/a} * F_D$$
 Where C_{10} is Catalog rating. $a = \begin{cases} 3 & for \ ball \ bearing \\ 3.33 & for \ roller \ bearing \end{cases}$

 $0.40m \rightarrow 0.05m$

 $x rev = \frac{0.40}{0.05} = 8$

= 3 rev/m

 $xrev \rightarrow 1 rev$

For Checkweigher:

 $C_{10} = (1218.006)^{1/3} * 51.5 = 549.99N \rightarrow 0.54999 \text{ KN}$

For Infeed and Outfeed Conveyor:

 $C_{10} = (1234.28)^{1/3} * 51.5 = 552.43N \rightarrow 0.55243KN$

Step 5: Check the catalog and select a suitable bearing from (Table 5-3)

For Checkweigher:

C10 = 0.54999 KN, Bore=10 mm, OD = 30 mm.

For Infeed and Outfeed Conveyor:

C10 =0.55243 KN, Bore=10 mm, OD = 30 mm.

Figure 5.1: Angular Contact Ball Bearing

5.2 Calculating the Torque of the Conveyor

 $T = J_e \ddot{\theta} + F_r.r$ Equation (5.4)

Where J_e: is equivalent moment inertia. T: Torque.

5.2.1 Calculate the total moment inertia of checkweigher conveyor

•
$$J_{Bearing} = \frac{\pi}{2} (r_{out} - r_{inner})^4$$
 Equation (5.5)

Where r_{out}: is outradious.

*r*_{inner}: is innerradious.

For checkweigher:	For Infeed and Outfeed Conveyor:
$J_{Bearing} = \frac{\pi}{2} (0.028 - 0.01)^4$	$J_{Bearing} = \frac{\pi}{2} (0.028 - 0.01)^4$
$= 1.6489 * 10^{-7} Kg/m^2$	$= 1.6489 * 10^{-7} Kg/m^2$

Τ

•
$$J_{object} = V^2 * m$$
 Equation (5.6)

Where V: is velocity of conveyor.

For Checkweigher:For Infeed and Outfeed Conveyor: $45 \ object \rightarrow 60 \ sec.$ $45 \ object \rightarrow 60 \ sec.$ $X = \frac{45 * 60}{60}$ $X = \frac{45 * 60}{60}$ $= 45 \ object/s$ $X = \frac{45 * 60}{60}$ $v = \frac{0.15}{1.33} = 0.1127 \ m/s$ $V = \frac{0.40}{3.5} = 0.1142 \ m/s$ Jobject = $0.1127^2 * 55$ $= 0.0635 \ Kg/m^2$ $J_{object} = 0.1142^2 * 5$

•
$$J_{Belt} = \frac{V * m_3}{w}$$
 Equation (5.7)

Where m_3 : is mass of the Belt. w: angular velocity.

 For Checkweigher:
 For Infeed and Outfeed Conveyor:

 $w = \frac{2\pi N}{60}$ $w = \frac{2\pi N}{60}$
 $w = \frac{2\pi * 676.67}{60}$ $w = \frac{2\pi * 685.7}{60}$
 $= 70.8 s^{-1}$ $= 71.8 s^{-1}$
 $J_{Belt} = \frac{0.1127 * 0.4}{70.8}$ $J_{Belt} = \frac{0.1142 * 0.4}{71.81}$
 $= 6.367 * 10^{-4} Kg/m^2$ $J_{Belt} = \frac{0.1142 * 0.4}{71.81}$

•
$$J_{roller} = \frac{1}{4}m_4 r^2 + \frac{1}{3}m_4 l^2$$
 Equation (5.8)

Where m_4 : is mass of the roller. l: length of the roller.

For checkweigher:For Infeed and Outfeed Conveyor:
$$J_{roller} = \frac{1}{4} * 0.5 * (0.025)^2 + \frac{1}{3} * 0.* 0.14^2$$
 $J_{roller} = \frac{1}{4} * 0.5 * (0.025)^2 + \frac{1}{3} * 0.5 * 0.14^2$ $= 3.344 * 10^{-3} Kg/m^2$ $= 3.344 * 10^{-3} Kg/m^2$

For Checkweigher:

$$J_e = 2 * J_{roller} + 4 * J_{Bearing} + J_{object} + J_{Belt} \qquad \text{Equation (5.9)}$$

$$J_e = (2 * 3.344 * 10^{-3}) + (4 * 1.6489 * 10^{-7}) + (0.0635) + (6.367 * 10^{-4})$$

$$= 0.0708 Kg/m^2$$

$$T = J_e \ddot{\theta} + F_r.r$$
 Equation (5.10)

Figure 5.2: Free body Diagram of Cylinder

For Infeed and Outfeed Conveyor:

$$J_e = J_{pully} + 2 * J_{roller} + 4 * J_{Bearing} + J_{object} + J_{Belt}$$
$$J_e = (1.5707 * 10^{-8}) + (2 * 3.344 * 10^{-3}) + (4 * 1.6489 * 10^{-7}) + (0.0653) + (6.36211 * 10^{-4}).$$

$$= 0.07262 Kg/m^2$$

$$J_{e(total)} = J_e * 2$$

$$J_{e(total)} = 0.07262 * 2 = 0.1452 \, Kg/m^2$$

$$\mathbf{T} = \mathbf{J}_{\mathrm{e(total)}} \ddot{\mathbf{\theta}} + \mathbf{F}_{\mathrm{r}}.\,\mathbf{r}$$

= 0.1452 * 3.1 + 51.5 * 0.01 = 0.9652 N.m

5.3 Calculating the Power of the Motor

 $P_{out} = w.T$ Equation (5.11) $H_p = \frac{P_{out}}{746}$ Equation (5.12)

 $H_{p(safty \, factor)} = \alpha * H_p$

Where H_p : is hourse power. α : isasaftyfactor equal 1.13

For Checkweigher:	For Infeed and Outfeed Conveyor:
$p_{out} = 70.8 * 1.109 = 78.58$ Watt.	$p_{out} = 71.81 * 0.9652 = 69.31$ Watt.
$H_p = \frac{78.58}{746} = 0.105 H_p$	$H_p = \frac{69.31}{746} = 0.0929 H_p$
$H_{p(safty \ factor)} = 1.13 * 0.105$	$H_{p(saftyfactor)} = 1.13 * 0.0929$
$= 0.119 H_p$	$= 0.104 H_p$

After we make a calculation, we choose a motor 0.18 HP, 1500 rpm, 3-phase as shown in figure

Figure 5.3: Electrical Motor

5.4 Final Design Machine

Figure 5.4: Final Design Machine

6

Chapter Six

Testing and Evaluating

- 6.1 Introduction
- 6.2 Experimental Result
- 6.3 Recommendations
- 6.4 Future Work
- 6.5 Project Cost

6.1 Introduction

This chapter provides experimental result and some recommendations from the work learned from this project. In this chapter we are listing some goals hope to be accomplished or at least under attention.

6.2 Experimental Result

We made some experiments on parts of our project and these are some of results:

- 1. By interring the object to the infeed conveyer by push object by the pneumatic piston and translate the object to the checkweigher.
- 2. When the object passing on the checkweigher loaded on the load cell, the load cell reads its weight and sends this read to the PLC, then the PLC display the weight of the object on the HMI.
- 3. Then the PLC compare the read if it's equal the specified weight or not, if the reads value equal the specified weight the PLC send command to reject object to the right side otherwise send command to reject object to the left side .

6.3 Recommendations

- 1. The load cell should be put in isolated region so is not affected for noising.
- 2. The load cell is more sensitive so you should be more careful when installed it.
- 3. In this machine you should do the maintenance every 6 months to extend the life of the machine.

6.4 Future Work

The following tasks are suggested as future work:

- 1. The project can be improved for more accuracy and can it used for weighing very small weight and very large weight.
- 2. Improving the project for used in variable introduction line, not just in packaging machine.
- 3. Improving the project by using different type of reject better than the arm reject for more reliability.
- 4. Improving the project so that becomes more diagnostic.

6.5 Project Cost

Description	Price	•
PLC	1200	ല
PLC Module	850	ല
PLC Power Supply	200	ല
HMI	1450	ല
USB Cable for PLC	100	ല
Pneumatic Valve	200	ല
Electrical Works	600	ല
Mechanical Design	800	ല
Mechanical Works	800	ല
Motors	300	ല
Load Cell	200	ല
Electrical Board	400	٦
Total Price	7100	٦

Table 6.1: Project Cost

References

- [1] http://www.cisco-eagle.com/catalog/c-3344-what-is-a-conveyor.aspx.
- [2] Rice Lake, Wisconsin, USA 54868, LOAD CELL HANDBOOK A Comprehensive Guide to Load Cell Theory, Construction and Use.
- [3] http://www.us.anritsu-industry.com/rejector-systems.aspx.
- [4] http://whatis.techtarget.com/definition/human-machine-interface-HMI.
- [5] http://www.baumer.com/us-en/products/presence-detection/magneticsensors/magnetic-cylinder-sensors.
- [6] https://www.festo.com/wiki/en/Pneumatic_cylinders.
- [7] http://www.loadstarsensors.com/what-is-a-load-cell.html.
- [8] Mechanical Engineering Design, chapter11-bearings-yousef 9th edition.

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Type of Application	Load Factor
Precision gearing	1.0-1.1
Commercial gearing	1.1-1.3
Applications with poor bearing seals	1.2
Machinery with no impact	1.0-1.2
Machinery with light impact	1.2-1.5
Machinery with moderate impact	1.5-3.0

Table 5-1:Application factor, a_f

Domestic appliances	1000-2000
Aircraft engines	1000-4000
Automotive	1500-5000
Agricultural equipment	3000-6000
Elevators, industrial fans, multipurpose gearing	8000-15 000
Electric motors, industrial blowers, general industrial machines	20 000-30 000
Pumps and compressors	40 000-60 000
Critical equipment in continuous, 24-h operation	100 000-200 000

Source: Eugene A. Avallone and Theodore Baumeister III, eds., Marks' Standard Handbook for Mechanical Engineers, 9th ed. New York: McGraw-Hill, 1986.

Table 5-2:Recommended design life for bearings

			Fillet	Shoulder		Load Ratings, kN			
Bore,	OD,	Width,	Radius,	Diamet	ter, mm	Deep G	Froove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C ₁₀	C 0	C ₁₀	Co
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

Table 5-3:

Dimension and load rating for single-row 0.2-series deep-groove and angular-contact ball bearing.

Low Profile Aluminum Load Cell

FEATURES

- Capacities 1–200 kg
- Aluminum construction
- Single-point 400 x 400 mm platform
- OIML R60 and NTEP approved
- IP66 protection
- Available with metric and UNC threads
- Optional
 - ATEX, FM, and IECEx approvals available
 - High stiffness version available for dynamic weighing applications

APPLICATIONS

- Bench scales
- Counting scales
- Grocery scales

DESCRIPTION

Model 1042 is a low profile single-point load cell designed for direct mounting in weighing platforms.

Its small physical size, combined with high accuracy and low cost, makes this load cell ideally suited for retail, bench and counting scales.

Capacities of 5 kg and above are supplied as standard in anodized aluminum. This high accuracy load cell is approved to NTEP and other stringent approval standards, including OIML R60.

A humidity resistant protective coating assures long-term stability over the entire compensated temperature range.

The two additional sense wires feed back the voltage reaching the load cell. Complete compensation of changes in lead resistance due to temperature change and/or cable extension, is achieved by feeding this voltage into the appropriate electronics.

Model 1042 Tedea-Huntleigh

Low Profile Aluminum Load Cell

SPECIFICATIONS					
PARAMETER	VALUE				UNIT
Rated capacity—R.C. (Emax)	1 ⁽¹⁾ , 3, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150 ⁽¹⁾ , 200 ⁽¹⁾				kg
NTEP/OIML accuracy class	NTEP	Non-Approved	C3 ⁽²⁾	C6 ⁽³⁾	
Maximum no. of intervals (n)	5000 single	1000	3000	6000(4)	
Y = E _{max} /V _{min}	10000	1400	6000	10000	Maximum available 20000
Rated output-R.O.		2	.0		mV/V
Rated output tolerance		0	.2		±mV/V
Zero balance		0	.2		±mV/V
Zero return, 30 min.	0.0100	0.0500	0.0170	0.0083	±% of applied load
Total error (per OIML R60)	0.0200	0.0300	0.0200	0.0100	±% of rated output
Temperature effect on zero	0.0014	0.0100	0.0023	0.0014	±% of rated output/°C
Temperature effect on output	0.0010	0.0030	0.0010	0.00058	±% of applied load/°C
Eccentric loading error	0.0042	0.0074	0.0024	±% of rated load/cm	
Temp. range, compensated	-10 to +40				°C
Temp. range, safe	–30 to +70			°C	
Maximum safe central overload	150			% of R.C.	
Ultimate central overload	300				% of R.C.
Excitation, recommended	10				VDC or VAC RMS
Excitation, maximum	15				VDC or VAC RMS
Input impedance		415	±20		Ω
Output impedance	350±3				Ω
Insulation resistance	>2000				ΜΩ
Cable length	1(5)				m
Cable type	6 wire, PVC, single floating screen				Standard
Construction	Plated (anodize) aluminum				
Environmental protection	IP66				
Platform size (max)	400 x 400				mm
Recommended torque	Up to 30 kg: 7.0 35 kg and above: 10.0				N*m

⁽¹⁾ 1 kg and 200 kg not approved by OIML; 150 and 200 kg are not approved by NTEP.

⁽²⁾ 50% utilization.

⁽³⁾ 60% utilization.

(4) 6000 divisions from 20 kg to 100 kg.

⁽⁵⁾ Options: 4-wire cable; different cable lengths; side cable entry.

All specifications subject to change without notice.

WIRING SCHEMATIC DIAGRAM (Unbalanced bridge configuration)

WIRING SCHEMATIC DIAGRAM (Balanced bridge configuration)

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.

Tubular Sensors - S50/S51

OIDOJATAC

S50/S51

1

Ĵ

Extended range of standard "One for All" photoelectric tubular M18 sensors

- All optic functions and LASER models
- M18 flat plastic with universal mounting
- Available in M18 metal housing
- Axial or radial optics, cable or connector
- Standard 4-wire NO-NC NPN or PNP output

APPLICATIONS

-Processing and Packaging machinery

- -Conveyor lines, material handling
- -Ceramics intralogistics
- -Automated warehousing

I**↓**I

(*) Axial models. ATEX II 3DG

S50/S51			
Through beam	020 m		
		060 m (class 1 LASER) (S50)	
Retroreflective (on R2 reflector)		0,14 m	
Polarized retroreflective		0,14 m (S50) 0,13 m (S51)	
		0,116 m (class 1 LASER) (S50)	
Retroreflective for transparent (on R2 reflector)		0,11,3 m (S50)	
	short distance 0100 mm		
Diffuse proximity		medium distance 0400 mm (S50) 0450 mm (S51)	
Diridic ploximity		long distance 0700 mm	
		long distance LASER 0350 mm	
Fixed focus		100 mm (S50)	
Background suppression		50100 mm (S50)	
Through beam with fiber optic		0100 mm (S50)	
Diffuse proximity with fiber optic		030 mm (S50)	
Contrast sensor		10 ±2 mm	
Luminescence sensor		020 mm	
	Vdc	1030 V	
Power supply	Vac		
	Vac/dc		
	PNP	•	
	NPN	•	
Output	NPN/PNP		
	relay		
	other		
	cable	•	
Connection	connector	•	
	pig-tail		
Approximate dimensions (mm)		M18x 55/68	
Housing material		PBT, nickel plated brass	
Mechanical protection		IP67	

Tubular Sensors - S50/S51

DIDOJATAC

	TECHNICAL DATA
Power supply	10 30 Vdc (limit values)
Ripple	2 Vpp max.
	35 mA max. (mod. S50A00/B01/C01/C10/C21/D00/E01/T01)
Consumption (output current excluded)	30 mA max. (mod. S50F01/M03, S51A00/B01/C01/C10/C20/F00)
	25 mA max. (mod. S50W03/U03)
	red LED 630 nm (mod. S50D00/E01, S50-PA/MAM03)
	red LED 660 nm (mod. S50B01/T01, S51B01)
	red LED 670 nm (mod. S50-PS/MSM03)
Light emission	IR LED 880 nm (mod. 550/51400/C01/C10/C20/C21/G00)
	white LED 400-700 nm (mod. 550W03)
	IV I ED 370 nm (mod. 550. 1103)
	red Laser 650 pm (mod. 550, 600/E01/B01/C01)
	sonsivity trimmer (mod. B01/C01/C01/E01/E01/T01)
Setting	toach-in nush-hutton (mod. M03/1103)
	LIGUT mode on N.O. output / DADI/ mode on N.C. output (mod. NOS/ 003)
	DADK mode on N.O. output / DARK mode on N.C. output (mod.SouCom/Com/Com/Com/Com/Com/Com/Com/Com/Com/
	DARK mode on N.O. output / Light mode on N.C. output (mod.550A00/B01/E01/F01/101/W03)
Operating mode	white wire or pin 2 connected to +1030V LIGHT mode/ to UV DARK mode (mod. 551)
	white wire or pin 2 not connected LIGHT mode (mod. S51C01/C10/C20)/ DARK mode
	(Mod. SSTAUU/BUT/FUU)
	yellow UUTPUT LED (S50, S51, excl. mod. G00)
Indicators	green STABILITY LED (mod. S50B01/C01/C21/E01/F01), POWER LED (mod. S50G00, S51)
	green/red READY/ERROR LED (mod. S50M03/W03/U03)
Output	PNP or NPN; NO; NC (mod. S50)
Output current	100 mA max.
Saturation voltage	2 V max.
	0,5 ms (mod. S50A00/B01/T01/C10/C21/C01/D00/E01/U03)
	2 ms (mod. S50F01/G00)
Posponso timo	1 ms (mod. \$50M03, \$51A00/B01/C01/C10/G00)
Response time	4 ms (mod. S51F00)
	100 µs (mod. S50W03)
	333 µs (Laser mod. S50)
	1 kHz (mod. S50A00/B01/T01/C10/C21/C01/D00/E01/U03)
	250 Hz (mod. S50F01/G00)
	500 Hz (mod. S50M03, S51A00/B01/C01/C10/G00)
Switching frequency	120 Hz (mod. S51F00)
	5 kHz (mod. S50W03)
	1,5 kHz (Laser mod. S50)
Connection	2 m cable Ø 4 mm, M12 4-pole connector
Dielectric strength	500 Vac, 1 min between electronics and housing
Insulating resistance	>20 MΩ, 500 Vdc between electronics and housing
Electrical protection	class 2
Mechanical protection	IP67
Ambient light rejection	according to EN 60947-5-2
Vibrations	0.5 mm amplitude. 10 55 Hz frequency. for every axis (FN60068-2-6)
Shock resistance	11 ms (30 G) 6 shork for every axis (EN60068-2-27)
	Plastic version PBT
Housing material	Motal vorsion pickol platod brase
l ons material	
Lens material	
Operating temperature	-20
Characteristic and the second s	
Storage temperature	
Weight	Plastic version 75 g max. cable vers. (90 g max. mod. MO3), 25 g max. conn. vers. (40 g max. mod. MO3)
	I Ivietal version 110 g max. cable vers. (125 g max. mod. M03), 60 g max. conn. vers. (75 g max. mod. M03)

Tubular Sensors - S50/S51

OIDOJATAC

S50 DIMENSIONS

PLASTIC

FIBRE OPTIC VERSION

L X X1

57 42 24

METAL

AXIAL VERSION

MODELS

57 38

FIBRE OPTIC VERSION

67 43

DATALOGIC

BACKGROUND SUPPRESSION AXIAL VERSION PLASTIC

CABLE VERSION

10 BEADVIERTOR LED

BACKGROUND SUPPRESSION RADIAL VERSION

DATALOGIC

S51

DIMENSIONS

S50/S51

INDICATORS AND SETTINGS

S50-XX...A00/B01/C01/C21/E01/F01/T01 S51-XX...B01/C01 OUTPUT status LED Yellow Α STABILITY LED Green (Only Receiver) POWER ON LED Green (Only Emitter) B Adjustment trimmer (receiver) Single-turn trimmer for sensitivity adjustment. Rotate in a clockwise direction to increase the operating distance. S50-XX-M03/W03/U03 R **OUTPUT status LED Yellow** Α **READY LED Green** ERROR LED Red B Teach-in push-button В

Teach-in button for setting.

EASYtouch[™] provides two setting modes: standard or fine, both obtained by pressing the push-button only once. Please refer to instructions manual for operating details.

S50-XX-C10 S51-XX-A00/C10/C20/F00/G00

G00 OUTPUT status LED yellow (Only Emitter G00)

DATALOGIC

A INFRARED EMISSION

High efficiency reflectors can be used to obtain larger operating distances. Refer to Reflectors.

COLOTATACS

-0

M18 STANDARD

S51 DETECTION DIAGRAMS

30

Operating distance

Note: the diagrams indicate the detection area typical of the axial optic versions; the maximum operating distance of the radial optic versions decreases as indicated in the tables given below

18

Recommended operating distance Maximum operating distance

DATALOGIC

MODEL SELECTION AND ORDER INFORMATION

		550 PLASTIC MODELS			
OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
		2m Cable	NPN	S50-PA-2-A00-NN	952002090
Potroroflactivo	LED Avial optic	2111 Cubic	PNP	S50-PA-2-A00-PP	952002080
Recorenective	EED, Axiai optic	M12 Copportor	NPN	S50-PA-5-A00-NN	952002110
			PNP	S50-PA-5-A00-PP	952002100
		2m Cabla	NPN	S50-PA-2-B01-NN	952001610
	LED Avial aptic	2111 Cable	PNP	S50-PA-2-B01-PP	952001010
	LED, Axiai optic		NPN	S50-PA-5-B01-NN	952001500
		M12 Lonnector	PNP	S50-PA-5-B01-PP	952001020
			NPN	S50-PR-2-B01-NN	952001780
		2m Cable	PNP	S50-PR-2-B01-PP	952001030
	LED, Radial optic		NPN	S50-PR-5-B01-NN	952001720
		M12 Connector	PNP	S50-PR-5-B01-PP	952001040
Polarized retroreflective			NPN	S50-PL-2-B01-NN	952001870
		2m Cable	PNP	S50-PL-2-B01-PP	952001360
	LASER, Axial optic		NPN	S50-PL-5-B01-NN	952001840
		M12 Connector	PNP	S50-PL-5-B01-PP	952001370
			NPN	S50-PH-2-B01-NN	952001950
		2m Cable	PNP	S50-PH-2-B01-PP	952001940
	LASER, Radial optic		NPN	S50-PH-5-B01-NN	952001970
		M12 Connector	PNP	S50-PH-5-B01-PP	952001960
			NPN	S50-PA-2-C01-NN	952001500
		2m Cable		S50-PA-2-C01-PP	952001020
	LED, Axial optic		NDN	SEO DA E CO1 NN	052001030
		M12 Connector		S50 DA 5 C01 DD	952001010
	LED, Radial optic			S50 PR 2 C01 NN	952001000
		2m Cable		S50 DD 2 C01 DD	952001790
				SEO DD E CO1 NN	952001070
		M12 Connector		550-PR-5-CUT-NN	952001730
Long Diffuse proximity			PNP	550-PR-5-L01-PP	952001080
	LASER, Axial optic	2m Cable	NPN	550-PL-2-CUT-INN	952001880
			PNP	550-PL-2-C01-PP	952001380
		M12 Connector	NPN	S50-PL-5-C01-NN	952001850
	LASER, Radial optic		PNP	S50-PL-5-C01-PP	952001390
		2m Cable	NPN	S50-PH-2-C01-NN	952001990
			PNP	S50-PH-2-C01-PP	952001980
		M12 Connector	NPN	S50-PH-5-C01-NN	952002010
			PNP	S50-PH-5-C01-PP	952002000
		2m Cable	NPN	S50-PA-2-C10-NN	952001630
	LED, Axial optic		PNP	S50-PA-2-C10-PP	952001240
		M12 Connector	NPN	S50-PA-5-C10-NN	952001520
Short Diffuse proximity			PNP	S50-PA-5-C10-PP	952001250
		2m Cable	NPN	S50-PR-2-C10-NN	952001800
	LED. Radial optic		PNP	S50-PR-2-C10-PP	952001490
	,	M12 Connector	NPN	S50-PR-5-C10-NN	952001740
			PNP	S50-PR-5-C10-PP	952001480
		2m Cable	NPN	S50-PA-2-C21-NN	952002170
Medium Diffuse proximity	LED Axial optic		PNP	S50-PA-2-C21-PP	952002160
incularit Birlase proximity		M12 Connector	NPN	S50-PA-5-C21-NN	952002190
			PNP	S50-PA-5-C21-PP	952002180
		2m Cable	NPN	S50-PA-2-D00-NN	952001640
	LED Avial ontic	2111 Cubic	PNP	S50-PA-2-D00-PP	952001090
	LED, Milli Optic	M12 Connector	NPN	S50-PA-5-D00-NN	952001530
Fixed focus			PNP	S50-PA-5-D00-PP	952001100
(1660 1060 2		2m Cable	NPN	S50-PR-2-D00-NN	952001810
	ED Radial ontic		PNP	S50-PR-2-D00-PP	952001110
	μετο, παυιαί ορτις	M12 Copportor	NPN	S50-PR-5-D00-NN	952001750
			PNP	S50-PR-5-D00-PP	952001120
		2m Cabla	NPN	S50-PA-2-E01-NN	952001650
Eibor optic	LED Avial aptic	2111 Cable	PNP	S50-PA-2-E01-PP	952001130
רוטפו טענג	בבט, אגומי טענונ	M12 Concertor	NPN	S50-PA-5-E01-NN	952001540
		WIZ CONTECLO	PNP	S50-PA-5-E01-PP	952001140

OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
			NPN	S50-PA-2-F01-NN	952001660
		2m Cable	PNP	S50-PA-2-F01-PP	952001150
	LED, Axial optic		NPN	S50-PA-5-F01-NN	952001550
		M12 Connector	PNP	S50-PA-5-F01-PP	952001160
			NPN	S50-PR-2-F01-NN	952001820
		2m Cable	PNP	S50-PR-2-F01-PP	952001170
	LED, Radial optic		NPN	S50-PR-5-F01-NN	952001760
		M12 Connector	PNP	S50-PR-5-F01-PP	952001180
Through beam receiver			NPN	S50-PL-2-F01-NN	952001890
		2m Cable	PNP	S50-PL-2-F01-PP	952001400
	LASER, Axial optic		NPN	S50-PL-5-F01-NN	952001860
		Mil2 Connector	PNP	S50-PL-5-F01-PP	952001410
		Der Cable	NPN	S50-PH-2-F01-NN	952002030
		2m Cable	PNP	S50-PH-2-F01-PP	952002020
	LASER, Radiai optic		NPN	S50-PH-5-F01-NN	952002050
		MT2 Connector	PNP	S50-PH-5-F01-PP	952002040
	LED Avial antic	2m Cable	-	S50-PA-2-G00-XG	952001190
	LED, Axial optic	M12 Connector	-	S50-PA-5-G00-XG	952001200
	LED Dadial antic	2m Cable	-	S50-PR-2-G00-XG	952001210
Through boom omittor	LED, Radial optic	M12 Connector	-	S50-PR-5-G00-XG	952001220
iniough beam emitter	LASER, Axial optic	2m Cable	-	S50-PL-2-G00-XG	952001420
		M12 Connector	-	S50-PL-5-G00-XG	952001430
	LASER, Radial optic	2m Cable	-	S50-PH-2-G00-XG	952002060
		M12 Connector	-	S50-PH-5-G00-XG	952002070
	LED, Axial optic	2m Cable	NPN	S50-PA-2-M03-NN	952001670
			PNP	S50-PA-2-M03-PP	952001230
		M12 Connector	NPN	S50-PA-5-M03-NN	952001560
Background suppression			PNP	S50-PA-5-M03-PP	952001000
Background Suppression		2m Cable	NPN	S50-PS-2-M03-NN	952001900
	LED Radial optic		PNP	S50-PS-2-M03-PP	952001910
		M12 Connector	NPN	S50-PS-5-M03-NN	952001920
			PNP	S50-PS-5-M03-PP	952001930
		2m Cable	NPN	S50-PA-2-T01-NN	952001690
	LED. Axial optic		PNP	S50-PA-2-T01-PP	952001260
	,	M12 Connector	NPN	S50-PA-5-T01-NN	952001580
Retroreflective for transparent			PNP	S50-PA-5-T01-PP	952001270
		2m Cable	NPN	S50-PR-2-T01-NN	952001830
	LED, Radial optic		PNP	S50-PR-2-T01-PP	952001280
		M12 Connector	NPN	S50-PR-5-T01-NN	952001770
			PNP	S50-PR-5-T01-PP	952001290
		2m Cable	NPN	S50-PA-2-U03-NN	952001700
Luminescence	LED, Axial optic		PNP	S50-PA-2-U03-PP	952001300
		M12 Connector	NPN	S50-PA-5-U03-NN	952001590
			PNP	S50-PA-5-U03-PP	952001310
		2m Cable	NPN	S50-PA-2-W03-NN	952001710
Contrast	LED, Axial optic		PNP	S50-PA-2-W03-PP	952001320
		M12 Connector	NPN	S50-PA-5-W03-NN	952001600
			PNP	S50-PA-5-W03-PP	952001330

S50 METAL MODELS							
OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.		
			NPN	S50-MA-2-A00-NN	952022090		
Retroreflective		ZIII Cable	PNP	S50-MA-2-A00-PP	952022080		
	LED, Axiai optic	M12 Connector	NPN	S50-MA-5-A00-NN	952022110		
		INITZ CONTIECTOR	PNP	S50-MA-5-A00-PP	952022100		
			NPN	S50-MA-2-B01-NN	952021500		
	LED Avial antic	ZIII Cable	PNP	S50-MA-2-B01-PP	952021000		
	LED, Axiai optic	M12 Connector	NPN	S50-MA-5-B01-NN	952021660		
		INITZ CONNECTOR	PNP	S50-MA-5-B01-PP	952021200		
			NPN	S50-MR-2-B01-NN	952021600		
	LED Radial optic	2111 Cable	PNP	S50-MR-2-B01-PP	952021140		
	LLD, Raulai Optic	M12 Copportor	NPN	S50-MR-5-B01-NN	952021760		
Delarized retroroflective		INTZ CONNECCO	PNP	S50-MR-5-B01-PP	952021340		
Polalized recroienective		2m Cablo	NPN	S50-ML-2-B01-NN	952021820		
	LASED Avial optic	2111 Cable	PNP	S50-ML-2-B01-PP	952021400		
	LASER, Axiai optic	M12 Connector	NPN	S50-ML-5-B01-NN	952021850		
		IVITZ CONTIECTOR	PNP	S50-ML-5-B01-PP	952021440		
			NPN	S50-MH-2-B01-NN	952021950		
	LACED Dadial aptic	ZIII Cable	PNP	S50-MH-2-B01-PP	952021940		
	LASER, Radial optic	M12 Connector	NPN	S50-MH-5-B01-NN	952021970		
		WITZ CONNECTOR	PNP	S50-MH-5-B01-PP	952021960		
			NPN	S50-MA-2-C01-NN	952021510		
	LED, Axial optic	ZITI Cable	PNP	S50-MA-2-C01-PP	952021010		
		M12 Connector	NPN	S50-MA-5-C01-NN	952021670		
		IVITZ CONNECTOR	PNP	S50-MA-5-C01-PP	952021210		
	LED Dadial antic	2m Cable	NPN	S50-MR-2-C01-NN	952021610		
			PNP	S50-MR-2-C01-PP	952021150		
	LED, Raulai Optic	M12 Connector	NPN	S50-MR-5-C01-NN	952021770		
Long Diffuso provimity		INTZ CONNECTOR	PNP	S50-MR-5-C01-PP	952021350		
Long Diruse proximity	LASER, Axial optic	2m Cablo	NPN	S50-ML-2-C01-NN	952021830		
		2111 Cubic	PNP	S50-ML-2-C01-PP	952021410		
		M12 Connector	NPN	S50-ML-5-C01-NN	952021860		
			PNP	S50-ML-5-C01-PP	952021450		
	LASER, Radial optic	2m Cable	NPN	S50-MH-2-C01-NN	952021990		
		2111 Cubic	PNP	S50-MH-2-C01-PP	952021980		
		M12 Connector	NPN	S50-MH-5-C01-NN	952022010		
			PNP	S50-MH-5-C01-PP	952022000		
		2m Cable	NPN	S50-MA-2-C10-NN	952021520		
	LED Axial optic		PNP	S50-MA-2-C10-PP	952021020		
	,	M12 Connector	NPN	S50-MA-5-C10-NN	952021680		
Short Diffuse proximity			PNP	S50-MA-5-C10-PP	952021220		
,		2m Cable	NPN	S50-MR-2-C10-NN	952021620		
	LED. Radial optic		PNP	S50-MR-2-C10-PP	952021490		
	,	M12 Connector	NPN	S50-MR-5-C10-NN	952021780		
			PNP	S50-MR-5-C10-PP	952021480		
		2m Cable	NPN	S50-MA-2-C21-NN	952022130		
Medium Diffuse proximity	LED, Axial optic		PNP	S50-MA-2-C21-PP	952022120		
. ,		M12 Connector	NPN	S50-MA-5-C21-NN	952022150		
			PNP	S50-MA-5-C21-PP	952022140		
		2m Cable	NPN	550-MA-2-D00-NN	952021530		
	LED, Axial optic		PNP	550-MA-2-D00-PP	952021030		
		M12 Connector	NPN	550-MA-5-D00-NN	952021690		
Fixed focus			РИР	550-MA-5-D00-PP	952021230		
		2m Cable	NPN	550-MR-2-D00-NN	952021630		
	LED, Radial optic		PNP	550-MR-2-D00-PP	952021160		
		M12 Connector	NPN	550-MR-5-D00-NN	952021790		
			РИЧ	550-MR-5-D00-PP	952021360		

OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
			NPN	S50-MA-2-E01-NN	952021880
		2m Cable	PNP	S50-MA-2-F01-PP	952021040
Fiber optic	LED, Axial optic		NPN	S50-MA-5-E01-NN	952021890
		M12 Connector	PNP	S50-MA-5-E01-PP	952021240
			NPN	S50-MA-2-F01-NN	952021540
		2m Cable	PNP	S50-MA-2-F01-PP	952021050
	LED, Axial optic		NPN	S50-MA-5-F01-NN	952021700
		M12 Connector	PNP	S50-MA-5-F01-PP	952021250
		a. C.U.	NPN	S50-MR-2-F01-NN	952021640
		2m Cable	PNP	S50-MR-2-F01-PP	952021170
	LED, Radial optic	M42 Company	NPN	S50-MR-5-F01-NN	952021800
Thursday have a second second		IVI 12 Connector	PNP	S50-MR-5-F01-PP	952021370
i nrough beam receiver			NPN	S50-ML-2-F01-NN	952021840
	LACED Avial aptic	2m Cable	PNP	S50-ML-2-F01-PP	952021420
	LASER, Axial optic	M12 Connector	NPN	S50-ML-5-F01-NN	952021870
		IVITZ COnnector	PNP	S50-ML-5-F01-PP	952021460
		2m Cabla	NPN	S50-MH-2-F01-NN	952022030
	LASED Dadial antic	ZIII Cable	PNP	S50-MH-2-F01-PP	952022020
	LASER, Raulai optic	M12 Connector	NPN	S50-MH-5-F01-NN	952022050
		INITZ CONNECTOR	PNP	S50-MH-5-F01-PP	952022040
	LED Avial ontic	2m Cable	-	S50-MA-2-G00-XG	952021060
		M12 Connector	-	S50-MA-5-G00-XG	952021260
	LED. Radial optic	2m Cable	-	S50-MR-2-G00-XG	952021180
Through beam emitter	,	M12 Connector	-	S50-MR-5-G00-XG	952021380
	LASER, Axial optic	2m Cable	-	S50-ML-2-G00-XG	952021430
		M12 Connector	-	S50-ML-5-G00-XG	952021470
	LASER, Radial optic	2m Lable	-	S50-MH-2-G00-XG	952022060
		M12 Connector	-	S50-MH-5-G00-XG	952022070
Background curproceion	LED Avial antis	2m Cable	NPN	550-MA-2-M03-NN	952021550
	LED, Axial Optic	M12 Connector		S50-MA E MO2 PP	952021070
Dackground auppression	LED, Radial optic	2m Cable	PNP	550-MA-5-M03-PP	952021270
		M12 Connector	PNP	S50-MS-5-M03-PP	952021930
		WHZ Connector	NPN	S50-MA-2-T01-NN	952021550
		2m Cable	PNP	S50-MA-2-T01-PP	952021090
	LED, Axial optic	M12 Connector	NPN	S50-MA-5-T01-NN	952021730
			PNP	S50-MA-5-T01-PP	952021290
Retroreflective for transparent		2m Cabla	NPN	S50-MR-2-T01-NN	952021650
		2m Cable	PNP	S50-MR-2-T01-PP	952021190
	LED, Radial optic	M42 Company	NPN	S50-MR-5-T01-NN	952021810
		IVITZ CONNECTOR	PNP	S50-MR-5-T01-PP	952021390
Luminescence	LED, Axial optic	M12 Connector	PNP	S50-MA-5-U03-PP	952021300
		2m Cable	PNP	S50-MA-2-W03-PP	952021110
Contrast	LED, Axial optic	M12 Connector	NPN	S50-MA-5-W03-NN	952021750
		WHZ connector	PNP	S50-MA-5-W03-PP	952021310
		S51 MODELS		MODEL	
OPTIC FUNCTION	HOUSING/OPTIC	CONNECTION	NPN	551-MA-2-A00-NK	952701601
	Nickol Diatod Brass Avial	2m Cable	PNP	S51-MA-2-A00-PK	952701541
	MICKEI FIALEU DI ASS, AXIAI	M12 Connector	NPN	S51-MA-5-A00-NK	952701801
			NPN	551-MR-2-A00-NK	952701531
	Nickol Platod Prace Padial	2m Cable	PNP	S51-MR-2-A00-PK	952701651
	NICKEI PIALEU DIASS, RAUIAI	M12 Connector	NPN	S51-MR-5-A00-NK	952701911
Retroreflective				551-MIK-5-AUU-PK	952701071
	Diactic Avial	2m Cable	PNP	S51-PA-2-A00-PK	952701001
	Plasuc, Axidi	M12 Connector	NPN	S51-PA-5-A00-NK	952701331
			PNP	551-PA-5-A00-PK	952701261
	Disatis D. K.L	2m Cable	PNP	S51-PR-2-A00-PK	952701131
	Plastic, Radial	M12 Connector	NPN	S51-PR-5-A00-NK	952701461
			PNP	S51-PR-5-A00-PK	952701391

OPTIC FUNCTION	HOUSING/OPTIC	CONNECTION	OUTPUT	MODEL	ORDER No.
		Dec Cable	NPN	S51-MA-2-B01-NK	952701611
	Nickel Plated Brace, Avial	2m Cable	PNP	S51-MA-2-B01-PK	952701551
	NICKEI PIALEU DIASS, AXIAI	M12 Connector	NPN	S51-MA-5-B01-NK	952701811
			PNP	S51-MA-5-B01-PK	952701761
		2m Cable	NPN	S51-MR-2-B01-NK	952701721
	Nickel Plated Brass, Radial		NDN	551-MR-2-BUT-PK	952701661
		M12 Connector	PNP	551-MR-5-B01-PK	952701921
Polarized retroreflective			NPN	S51-PA-2-B01-NK	952701081
	Directic Avial	2m Lable	PNP	S51-PA-2-B01-PK	952701011
	Plastic, Axiai	M12 Connector	NPN	S51-PA-5-B01-NK	952701341
		W12 Connector	PNP	S51-PA-5-B01-PK	952701271
		2m Cable	NPN	S51-PR-2-B01-NK	952701211
	Plastic, Radial		PNP	S51-PR-2-B01-PK	952701141
		M12 Connector	PNP	S51-PR-5-B01-PK	952701401
			NPN	S51-MA-2-C01-NK	952701621
	Niskal Distant Press, Avial	2m Cable	PNP	S51-MA-2-C01-PK	952701561
	Nickel Plated Brass, Axial	M12 Copportor	NPN	S51-MA-5-C01-NK	952701821
		W12 connector	PNP	S51-MA-5-C01-PK	952701771
		2m Cable	NPN	S51-MR-2-C01-NK	952701731
	Nickel Plated Brass, Radial		PNP	S51-MR-2-C01-PK	952/016/1
		M12 Connector		551-MR-5-C01-NK 551-MP-5-C01-DK	952701931
Medium diffuse proximity			NPN	551-PA-2-C01-NK	952701091
		2m Cable	PNP	S51-PA-2-C01-PK	952701021
	Plastic, Axial	M12 Copportor	NPN	S51-PA-5-C01-NK	952701351
		INTZ CONTECTO	PNP	S51-PA-5-C01-PK	952701281
		2m Cable	NPN	S51-PR-2-C01-NK	952701221
	Plastic, Radial		PNP	S51-PR-2-C01-PK	952701151
		M12 Connector		SST-PR-S-LUT-NK	952701481
			NPN	551-MA-2-C10-NK	952701631
		2m Cable	PNP	S51-MA-2-C10-PK	952701571
	Nickel Plated Brass, Axial	MAD Gamma star	NPN	S51-MA-5-C10-NK	952701831
		MT2 CONTECLOF	PNP	S51-MA-5-C10-PK	952701521
	Nickel Plated Brass, Radial	2m Cable	NPN	S51-MR-2-C10-NK	952701741
			PNP	S51-MR-2-C10-PK	952701681
		M12 Connector		551-MR-5-L10-NK	952701941
Short diffuse proximity	Plastic, Axial		NDN	551-PA-2-C10-NK	952701001
		2m Cable	PNP	S51-PA-2-C10-PK	952701031
		M12 Connector	NPN	S51-PA-5-C10-NK	952701361
		MTZ CONNECTOR	PNP	S51-PA-5-C10-PK	952701291
		2m Cable	NPN	S51-PR-2-C10-NK	952701231
	Plastic, Radial		PNP	S51-PR-2-C10-PK	952701161
		M12 Connector		S51-PR-5-L10-NK	952701491
Narrow beam provimity	Nickel Plated Brass Avial	M12 Connector	PNP	S51-PR-S-C10-PK	952701421
Narrow beam proximity	Nicker Flated Brass, Avia		NPN	S51-MA-2-F00-NK	952701641
	Niskal Distant Drass Avial	2m Cable	PNP	S51-MA-2-F00-PK	952701581
	NICKEI PIALEU BRASS, AXIAI	M12 Copportor	NPN	S51-MA-5-F00-NK	952701841
		W12 Connector	PNP	S51-MA-5-F00-PK	952701781
		2m Cable	NPN	S51-MR-2-F00-NK	952701751
	Nickel Plated Brass, Radial		PNP	S51-MR-2-F00-PK	952/01691
		M12 Connector	DND	551-MR-5-F00-RK	952701951
Through beam receiver			NPN	S51-PA-2-F00-NK	952701121
		2m Cable	PNP	S51-PA-2-F00-PK	952701051
	Plastic, Axiai	M12 Copportor	NPN	S51-PA-5-F00-NK	952701381
		W12 Connector	PNP	S51-PA-5-F00-PK	952701311
		2m Cable	NPN	S51-PR-2-F00-NK	952701251
	Plastic, Radial		PNP	551-PR-2-F00-PK	952/01181
		M12 Connector	PNP	551-PR-5-F00-NK	952701511
		2m Cable	-	S51-MA-2-G00-XG	952701591
	Nickel Plated Brass, Axial	M12 Connector	-	S51-MA-5-G00-XG	952701791
	Nickel Plated Brace Dadial	2m Cable	-	S51-MR-2-G00-XG	952701701
Through beam emitter	MILLEI FIALEU DI 455, MAUIAI	M12 Connector	-	S51-MR-5-G00-XG	952701901
	Plastic, Axial	2m Cable	-	S51-PA-2-G00-XG	952701061
		IVI I Z CONNECTOR	-	551-PA-5-GUU-XG	952701321
	Plastic, Radial	M12 Connector	-	S51-PR-5-G00-XG	952701451

DATALOGIC

S50/S51

ACCESSORIES

ST-5010

R15

ø18,5

20

35

ST-5011

ø18,

32

ST-5012

R12

ST-5017

SWING-18

PLASTIC NUT

SP-40

MICRO 18

R2,1

13

mm

DATALOGIC

MODEL	DESCRIPTION	ORDER No.
ST-5010	M18/14 mounting bracket	95ACC5230
ST-5011	M18 mounting bracket short	95ACC5240
ST-5012	M18 mounting bracket long	95ACC5250
ST-5017	M18 mounting bracket	95ACC5270
S50 EASY -IN	M18/14 EASY in™ adjustable mounting support	95ACC 5300
JOINT -18	M18 jointed support	95ACC 5220
MICRO -18	support with micrometric regulation for tubular M18 sensors	95ACC 1380
ST1218	M12/M18 mounting brackets	95ACC3340
ST1830	M18/M30 mounting brackets	95ACC3350
SP-40	mounting bracket tubular	95ACC1370
SWING-18	adjustable support for M18 tubular sensors	89500006
PLASTIC NUT	flared mounting nut	95ACC2630
MEK -PROOF	front protection (only for metal models)	G500001

CABLES

TYPE	DESCRIPTION	LENGTH	MODEL	ORDER No.
A : 1980 C		3 m	CS-A1-02-G-03	95A251380
		5 m	CS-A1-02-G-05	95A251270
	4-pole, grey, P.v.c.	7 m	CS-A1-02-G-07	95A251280
Axial WITZ CUITIECLUI		10 m	CS-A1-02-G-10	95A251390
		2 m	CS-A1-02-R-02	95A251540
	4-pole, P.U.R.	5 m	CS-A1-02-R-05	95A251560
		3 m	CS-A2-02-G-03	95A251360
		5 m	CS-A2-02-G-05	95A251240
Dadial M12 Connector	4-pole, grey, P.v.c.	7 m	CS-A2-02-G-07	95A251245
Raulai M12 Cuthectur		10 m	CS-A2-02-G-10	95A251260
		2 m	CS-A2-02-R-02	95A251550
	4-pole, P.U.R.	5 m	CS-A2-02-R-05	95A251570
Radial M12 Connector	4-pole, grey, P.V.C.	3 m	CS-A2-12-G-03	95A251400
with LED		5 m	CS-A2-12-G-05	95A251350
(for PNP N.U. sensors)		10 m	CS-A2-12-G-10	95A251370
		3 m	CV-A1-22-B-03	95ACC1480
		5 m	CV-A1-22-B-05	95ACC1490
Axial M12 Connector		10 m	CV-A1-22-B-10	95ACC1500
	4-pole, shielded, black,	15 m	CV-A1-22-B-15	95ACC2070
	P.V.C.	25 m	CV-A1-22-B-25	95ACC2090
		3 m	CV-A2-22-B-03	95ACC1540
Radial M12 Connector		5 m	CV-A2-22-B-05	95ACC1550
		10 m	CV-A2-22-B-10	95ACC1560
		3 m	CS-A1-02-U-03	95ASE1120
		5 m	CS-A1-02-U-05	95ASE1130
Avial M12 Connector	4-pole, U.L., black, P.V.C.	10 m	CS-A1-02-U-10	95ASE1140
AXIAI IVI I Z CUITIECLUI		15 m	CS-A1-02-U-15	95ASE1150
		25 m	CS-A1-02-U-25	95ASE1160
		Connector- not cabled	CS-A1-02-B-NC	G5085002
Radial M12 Connector	4-poie, black	Connector- not cabled	CS-A2-02-B-NC	G5085003

Rev. 01, 07/2016

THE BEST INDUSTRIAL EQUIPMENT

Arc

Pneumatic Equipment

CS1-F

Sensor Switch

(CS1-F CS1-U CS1-S CS1-J CS1-D CS1-G CS1-R Series)

CS1-F : Sensor switch for cylinder

Specifications

Model N <u>O</u>	CS1-F	CS1-U	CS1-S	CS1-J	CS-D	CS1-G	CS1-R		
Wiring method		2 Wire type							
Switching logic		SPST Normally open							
Operating voltage		5~240V DC/AC							
Sensor type		Reed switch							
Switching current			100 mA max.			50 mA max.			
Contact rating		10 W max.					6 W max.		
Temperature range		-10 ~ 70°C							
Enclosure classification		IEC 529 IP67							
Indicator light		LED							

Sensor Switch type

Round Cylinders DSNU – Inch Series

Overview

- Piston Ø 5/16" to 1"
- Stroke lengths up to 20"
- Double-acting
- Meets the highest requirements for running characteristics, service life and load carrying ability
- Extensive range of accessories

Detailed product information → www.festo.com/catalog/dsnu

Product Range Overview								
Function	Туре	Piston Ø	Stroke	Force	Variants	'ariants		
		[in]	[in]	[lbf]	Р	PPV	A	
Double-acting	DSNU	5/16, 3/8, 1/2, 5/8, 3/4, 1	0.04 20	5.2 66.3		∎1)		

1) Adjustable as of Piston \emptyset 5/8"

Variants

 P
 Flexible cushioning at both ends
 PPV
 Adjustable air cushioning at both ends
 A
 Magnet for position sensing

Туре	Piston Ø	Standard Stroke	Variable Stroke ¹⁾
	[in]	[in]	[in]
DSNU	5/16, 3/8	1/2, 1, 2, 3, 4	0.04 4
	1/2, 5/8	1/2, 1, 2, 3, 4, 5, 6, 8	0.04 8
	3/4	1/2, 1, 2, 3, 4, 5, 6, 8, 10, 12	0.04 12
	1	1/2, 1, 2, 3, 4, 5, 6, 8, 10, 12	0.04 20

1) Reliable position sensing requires a minimum stroke of 0.4 inch.

Contents	
 Technical Data 	→ 6
 Ordering Data 	→ 7
 Accessories Overview 	→ 8
- Accessories	→ 9

FESTO

Round Cylinders DSNU – Inch Series

Technical Data

Double-acting

Diameter 5/16 ... 1 in

Stroke length 0.04 ... 20in

General Technical Data

Piston Ø	[in]	5/16	3/8	1/2	5/8	3/4	1
Pneumatic connection		10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	1/8" NPT	1/8" NPT
Piston rod thread		6-32 UNC	6-32 UNC	10-32 UNF	10-32 UNF	5/16-24 UNF	3/8-24 UNF
Constructional design		Piston					
		Piston rod					
		Cylinder barrel					
Cushioning		Flexible cushioning r	ings at both ends (P)		Adjustable air cushioning at both ends (PPV)		
Cushioning length (PPV)	[in]	-			0.47	0.59	0.67
Magnet for position sensing ¹⁾		Optional					

1) Position sensing via magnetic proximity sensor (ordered separately, see accessories).

Operating Pressure [psi]

operating ricessure [psi]							
Piston \varnothing	[in]	5/16	3/8	1/2	5/8	3/4	1
Operating medium		Compressed air in accordance with ISO 8573-1:2010 [7:4:4]					
Note on operating/pilot medium Operation with lubricated medium possible (in which case lubricated operation will always be required)							
Operating pressure		22.1 147.0	14.7 147.0				

Ambient Conditions

Ambient Conditions		
Ambient temperature ¹⁾	[°F]	-4 +176
Corrosion resistance class CRC ²⁾		2

1) Note operating range of proximity sensors

2) Corrosion resistance class 2 according to Festo standard 940 070

Components with moderate corrosion resistance for use in normal industrial environments subjected to contact with coolants or lubricating agents.

Forces [lbf] and Impact Energy [ft-lbf]						
Piston \varnothing [in]	5/16	3/8	1/2	5/8	3/4	1
Theoretical force at 90 psi, extending	6.7	10.6	15.3	27.2	42.5	66.3
Theoretical force at 90 psi, retracting	5.2	9.0	11.5	23.4	35.5	55.5
Max. impact energy at the end positions	0.02	0.04	0.05	0.11	0.15	0.22

Weights [oz]						
Piston \varnothing [in]	5/16	3/8	1/2	5/8	3/4	1
Product weight with 0 inch stroke	1.22	1.32	2.65	3.17	6.59	8.40
Additional weight per 1 inch stroke	0.20	0.25	0.36	0.41	0.64	0.99

FESTO

Round Cylinders DSNU – Inch Series Technical Data, Ordering Data

DSN	U	
1	Piston rod	High-alloy stainless steel
2	Bearing cap	Wrought aluminum alloy
3	Cylinder barrel	High-alloy stainless steel
4	End cap	Wrought aluminum alloy
-	Seals	Polyurethane, nitrile rubber

Ordering Data									
Piston \varnothing	Stroke				Piston Ø	Stroke			
[in]	[in]	Part No.	Туре	LT	[in]	[in]	Part No.	Туре	LT
5/16	1/2	546394	DSNU-5/16"-1/2"-P-A	1D	3⁄4	1	546403	DSNU-3/4"-1"-PPV-A	1D
	1	546393	DSNU-5/16"-1"-P-A	1D		2	546406	DSNU-3/4"-2"-PPV-A	1D
	2	546395	DSNU-5/16"-2"-P-A	1D		3	546407	DSNU-3/4"-3"-PPV-A	1D
	3	546396	DSNU-5/16"-3"-P-A	3D		4	546408	DSNU-3/4"-4"-PPV-A	1D
	4	546397	DSNU-5/16"-4"-P-A	3D		5	546409	DSNU-3/4"-5"-PPV-A	1D
	0.04 4	548482	DSNU-5/16"P-A	3D		6	546410	DSNU-3/4"-6"-PPV-A	1D
3⁄8	1/2	546399	DSNU-3/8"-1/2"-P-A	1D		8	546411	DSNU-3/4"-8"-PPV-A	1D
	1	546398	DSNU-3/8"-1"-P-A	1D		10	546404	DSNU-3/4"-10"-PPV-A	1D
	2	546400	DSNU-3/8"-2"-P-A	1D		12	546405	DSNU-3/4"-12"-PPV-A	1D
	3	546401	DSNU-3/8"-3"-P-A	3D		0.04 12	548536	DSNU-3/4"PPV-A	3D
	0.04 4	548483	DSNU-3/8"P-A	3D	1	1/2	546413	DSNU-1"-1/2"-PPV-A	3D
1/2	1/2	546387	DSNU-1/2"-1/2"-P-A-B	1D		1	546412	DSNU-1"-1"-PPV-A	1D
	1	546386	DSNU-1/2"-1"-P-A-B	1D		2	546416	DSNU-1"-2"-PPV-A	1D
	2	546388	DSNU-1/2"-2"-P-A-B	1D		3	546421	DSNU-1"-3"-PPV-A	1D
	0.04 8	548484	DSNU-1/2"P-A	3D		4	546417	DSNU-1"-4"-PPV-A	1D
5/8	1	546389	DSNU-5/8"-1"-PPV-A-B	1D		5	546418	DSNU-1"-5"-PPV-A	1D
	2	546390	DSNU-5/8"-2"-PPV-A-B	1D		6	546419	DSNU-1"-6"-PPV-A	1D
	3	546391	DSNU-5/8"-3"-PPV-A-B	1D		8	546420	DSNU-1"-8"-PPV-A	1D
	4	546392	DSNU-5/8"-4"-PPV-A-B	1D		10	546414	DSNU-1"-10"-PPV-A	1D
	0.04 8	548501	DSNU-5/8"PPV-A	3D		12	546415	DSNU-1"-12"-PPV-A	1D
		÷				0.04 20	548437	DSNU-1"PPV-A	3D

1D typically ships same day/next day

3D typically ships within 3 days

FESTO

Round Cylinders DSNU – Inch Series

Mou	Mounting Attachments and Accessories			
		→ Page/Internet		
1	Rod eye SGS	9		
2	Coupling piece KSZ	ksz		
3	Rod clevis SG	9		
4	Self-aligning rod coupler FK	9		
5	Flange mounting FBN	9		
6	Foot mounting HBN/HF	9		
7	Swivel mounting WBN	9		
8	Swivel mounting SBN	sbn		
9	Clevis foot LBN	9		

Mou	Mounting Attachments and Accessories			
		➔ Page/Internet		
10	One-way flow control valve GRLA	9		
11	Push-in fitting QB	9		
12	Sensor mounting kit SMBR	smbr		
13	Proximity switch SMEO/SMTO	smto		
14	Sensor mounting kit SMBR-8	9		
15	Proximity switch SME/SMT-8	9		
16	Sensor mounting kit SMBR-10	smbr-10		
17	Proximity switch SME/SMT-10	9		
18	Guide unit FEN	fen		

Round Cylinders DSNU – Inch Series

Accessories

Ordering Data – Mounting Attachments					
Т	echnical Data 🗲 www.f	esto.com/cat	alog/ <type> or <order code=""></order></type>		
	For \varnothing [in]	Part No.	Туре		
Foot mounting HBN					
	5/16, 3/8	5123	HBN-8/10x1		
201	1/2,5/8	5125	HBN-12/16x1		
	3/4, 1	5127	HBN-20/25x1		
- 🔊	5/16, 3/8	5124	HBN-8/10x2		
	1/2,5/8	5126	HBN-12/16x2		
	3/4, 1	5128	HBN-20/25x2		
Foot mounting HF					
6	5/16, 3/8	11243	HF-5/16"-3/8"-A		
000	1/2,5/8	11244	HF-1/2"-5/8"-A		
0	3/4, 1	11245	HF-3/4"-1"-A		
Flange mounting					
	5/16, 3/8	5129	FBN-8/10		
(O)	1/2,5/8	5130	FBN-12/16		
	3/4, 1	5131	FBN-20/25		
Swivel mounting					
	5/16, 3/8	8608	WBN-8/10		
10]	1/2, 5/8	8609	WBN-12/16		
	3/4, 1	8610	WBN-20/25		
Clevis foot					
1 An	5/16, 3/8	6057	LBN-8/10		
YO	1/2, 5/8	6058	LBN-12/16		
	3/4, 1	6059	LBN-20/25		

Ordering Data – Piston Rod Attachments

Technical Data → www.festo.com/catalog/‹type› or ‹order code›				
	For Ø [in]	Part No.	Туре	
Rod eye				
	5/16, 3/8	532693	SGS-6-32	
	1/2, 5/8	532694	SGS-10-32	
Ø	3/4	532695	SGS-5/16-24	
	1	532696	SGS-3/8-24	
Rod clevis	·			
	5/16, 3/8	11127	SG-6-32	
	1/2, 5/8	546552	SG-UNF10-32-B	
40	3/4	546574	SG-UNF5/16"-24-B	
	1	546540	SG-UNF3/8"-24-B	
Self-aligning rod coupler				
	5/16, 3/8	532702	FK-6-32	
	1/2, 5/8	532703	FK-10-32	
CORV -	3/4	532704	FK-5/16-24	
	1	532705	FK-3/8-24	

Ordering Data -	Ordering Data – Proximity Sensors and Connecting Cables					
	Description	Part No.	Туре			
Proximity sense	or for C-slot, magneto-re	sistive – N/	O contact Technical data → 173			
A A A A A A A A A A A A A A A A A A A	PNP, cable, 8 ft	551373	SMT-10M-PS-24V-E-2,5-L-OE			
CT B	PNP, plug	551375	SMT-10M-PS-24V-E-0,3-L-M8D			
Magnetic reed -	– N/O contact		Technical data 🗲 174			
	Cable, 8 ft	551369	SME-10M-ZS-24V-E-2,5-L-OE			
CT E	Plug	551367	SME-10M-DS-24V-E-0,3-L-M8D			
Proximity sense	or for T-slot, magneto-re	sistive – N/	O contact Technical data → 169			
	PNP, cable, 8 ft	574335	SMT-8M-A-PS-24V-E-2,5-OE			
17 B	PNP, plug	574334	SMT-8M-A-PS-24V-E-0,3-M8D			
¢	NPN, cable, 8 ft	574338	SMT-8M-A-NS-24V-E-2,5-OE			
	NPN, plug	574339	SMT-8M-A-NS-24V-E-0,3-M8D			
Magnetic reed	– N/O contact		Technical data 🗲 170			
	Cable, 8 ft	543862	SME-8M-ZS-24V-K-2,5-0E			
AT B	Plug	543861	SME-8M-DS-24V-K-0,3-M8D			
Ý						
Connecting cab	le, straight socket					
	8 ft	541333	NEBU-M8G3-K-2.5-LE3			

FESTO

Ordering Data - Mounting Kits for Proximity Sensors SMT/SME-8

-	For Ø [in]	Part No.	Type
	[]		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	5/16	175091	SMBR-8-8
	3/8	175092	SMBR-8-10
	1/2	175093	SMBR-8-12
9	5/8	175094	SMBR-8-16
	3/4	175095	SMBR-8-20
	1	175096	SMBR-8-25

Ordering Data – One-way Flow Control Valves for Exhaust Air Flow Control						
				Technical Data 🗲 253		
Function	For Ø [in]	Tubing	Part No.	Туре		
		0.D. [in]				
ิล	5/16, 3/8,	5/32	564840	GRLA-10-32-UNF-QB-5/32-U		
	1/2,5/8	1/4	564842	GRLA-10-32-UNF-QB-1/4-U		
	3/4, 1	5/32	534656	GRLA-1/8-QB-5/32-U		

Ordering Data	– Push-in Fit	Technical Data 🗲 245		
Function	For \varnothing [in]	Tubing	Part No.	Туре
		0.D. [in]		
	5/16, 3/8,	3/16	533268	QB-10-32-UNF-3/16-U
S A	1/2,5/8	1/4	533269	QB-10-32-UNF-1/4-U
	3/4, 1	3/16	533272	QB-1/8-3/16-U
		1/4	533273	QB-1/8-1/4-U

Lead Time LT for all products on this page: 1D typically ships same day/next day

2014/06 - Subject to change - FAST Program Catalog

FESTO

Overview

DSNU Standard Cylinders meet ISO 6432 mounting, rod, bore and thread dimension specifications for easy interchangeability.

- Piston \varnothing 8 to 25 mm
- Stroke lengths up to 500 mm
- Double-acting
- Meets the highest requirements for running characteristics, service life and load carrying ability
- Extensive range of accessories

Detailed product information → www.festo.com/catalog/dsnu

Product Range	Product Range Overview								
Function	Version	Piston \varnothing	Stroke	Force	Variants				
		[mm]	[mm]	[N]	Р	PPS	PPV	A	
Double-acting	DSNU								
	Basic version	8, 10, 12	1 500	30 68		-	-		
		16, 20, 25		121 295	-				

Variants

P Flexible cushioning rings/pads at both ends

Pneumatic cushioning, self-adjusting at both ends

PPS

PPV Pneumatic cushioning, adjustable at both ends

A Position sensing

Contents	
– Technical Data	→ 24
 Ordering Data 	→ 25
- Accessories Overview	→ 26
- Accessories	→ 27

Note: All metric products can be used within inch tubing systems via hybrid fittings (→ Overview on page 240)

Technical Data, Ordering Data

Materials

End caps: Wrought aluminum alloy Housing: High-alloy stainless steel Piston rod: High-alloy steel Seals: Polyurethane, nitrile rubber

Technical Data										
Piston Ø		8	10	12	16	20	25			
Pneumatic connection		M5	M5	M5	M5	G1⁄8	G1⁄8			
End of piston rod		Male thread	Male thread							
Piston rod thread	M4	M4	M6	M6	M8	M10x1.25				
Cushioning		Flexible cushioning rings/pads at both ends			Pneumatic cushioning, adjustable at both ends					
					Pneumatic cushioning, self-adjusting at both ends					
Cushioning length ¹⁾	[mm]	-		9	12	15	17			
Theoretical force at 6 bar, advancing	[N]	30	47	68	121	189	295			
Theoretical force at 6 bar, retracting	[N]	23	40	51	104	158	247			
Max. torque at the piston rod ²⁾	[Nm]	-	-	0.10	0.10	0.20	0.45			
\varnothing /length at 0 mm stroke	[mm]	19/86	19/86	24/105	24/111	32/132	32/141			

1) Applies exclusively to pneumatic cushioning adjustable at both ends (PPV).

2) Applies exclusively to variants with protection against rotation (Q).

Operating Conditions

Piston \varnothing		8	10 25		
Operating medium		Compressed air in accordance with ISO 8573-1:2010 [7:4:4]			
Note on operating/pilot medium		Operation with lubricated medium possible (in which case lubricated operation will always be required)			
Operating pressure	[bar]	1.5 10	1 10 ¹⁾		
Ambient temperature ²⁾	[°C]	-20 +80			

1) Piston Ø 12 mm, pneumatic cushioning adjustable at both ends: 2 ... 10 bar.

2) Note operating range of proximity sensors.

Ordering Data – P Variant									
Piston Ø	Stroke					Piston Ø	Stroke		
[mm]	[mm]	Part No.	Туре	LT		[mm]	[mm]	Part No.	Туре
8	10	19177	DSNU-8-10-P-A	1D		12	10	19189	DSNU-12-10-P-A
	25	19178	DSNU-8-25-P-A	1D			25	19190	DSNU-12-25-P-A
	40	19179	DSNU-8-40-P-A	1D	Ī		40	19191	DSNU-12-40-P-A
	50	19180	DSNU-8-50-P-A	1D	Ī		50	19192	DSNU-12-50-P-A
	80	19181	DSNU-8-80-P-A	3D	Ī		80	19193	DSNU-12-80-P-A
	100	19182	DSNU-8-100-P-A	3D	Ī		100	19194	DSNU-12-100-P-A
	1 200	14326	DSNU-8P-A	3D	İ		125	19195	DSNU-12-125-P-A
10	10	19183	DSNU-10-10-P-A	1D	İ		160	19196	DSNU-12-160-P-A
	25	19184	DSNU-10-25-P-A	1D	Ī		200	19197	DSNU-12-200-P-A
	40	19185	DSNU-10-40-P-A	1D	Ī		1 200	14324	DSNU-12P-A
	50	19186	DSNU-10-50-P-A	1D	1				
	80	19187	DSNU-10-80-P-A	3D	İ				
	100	19188	DSNU-10-100-P-A	3D	Ì				
	1 200	14325	DSNU-10P-A	3D	Ì				

LT = Lead time

3D typically ships within 3 days

LT 1D 1D 1D 1D 3D 3D 3D 3D 3D 3D

Ordering Data

Ordering Data – PPS and PPV Variant									
Piston Ø	Stroke				Piston Ø	Stroke			
[mm]	[mm]	Part No.	Туре	LT	[mm]	[mm]	Part No.	Туре	LT
16	25	559263	DSNU-16-25-PPS-A	1D	16	25	33973	DSNU-16-25-PPV-A	1D
	40	559264	DSNU-16-40-PPS-A	1D		40	19229	DSNU-16-40-PPV-A	1D
	50	559265	DSNU-16-50-PPS-A	1D		50	19230	DSNU-16-50-PPV-A	1D
	80	559266	DSNU-16-80-PPS-A	1D		80	19231	DSNU-16-80-PPV-A	3D
	100	559267	DSNU-16-100-PPS-A	1D		100	19232	DSNU-16-100-PPV-A	3D
	125	559268	DSNU-16-125-PPS-A	1D		125	19233	DSNU-16-125-PPV-A	3D
	160	559269	DSNU-16-160-PPS-A	1D		160	19234	DSNU-16-160-PPV-A	3D
	200	559270	DSNU-16-200-PPS-A	1D		200	19235	DSNU-16-200-PPV-A	3D
20	25	559271	DSNU-20-25-PPS-A	1D		1 320	14320	DSNU-16PPV-A	3D
	40	559272	DSNU-20-40-PPS-A	1D	20	25	33974	DSNU-20-25-PPV-A	1D
	50	559273	DSNU-20-50-PPS-A	1D		40	19236	DSNU-20-40-PPV-A	1D
	80	559274	DSNU-20-80-PPS-A	1D		50	19237	DSNU-20-50-PPV-A	1D
	100	559275	DSNU-20-100-PPS-A	1D		80	19238	DSNU-20-80-PPV-A	1D
	125	559276	DSNU-20-125-PPS-A	1D		100	19239	DSNU-20-100-PPV-A	1D
	160	559277	DSNU-20-160-PPS-A	1D		125	19240	DSNU-20-125-PPV-A	1D
	200	559278	DSNU-20-200-PPS-A	1D		160	19241	DSNU-20-160-PPV-A	1D
	250	559279	DSNU-20-250-PPS-A	1D		200	19242	DSNU-20-200-PPV-A	1D
	300	559280	DSNU-20-300-PPS-A	1D		250	19243	DSNU-20-250-PPV-A	1D
	320	559281	DSNU-20-320-PPS-A	3D		300	19244	DSNU-20-300-PPV-A	1D
25	25	559282	DSNU-25-25-PPS-A	1D		320	34720	DSNU-20-320-PPV-A	3D
	40	559283	DSNU-25-40-PPS-A	1D		1 320	14321	DSNU-20PPV-A	3D
	50	559284	DSNU-25-50-PPS-A	1D	25	25	33975	DSNU-25-25-PPV-A	1D
	80	559285	DSNU-25-80-PPS-A	1D		40	19245	DSNU-25-40-PPV-A	1D
	100	559286	DSNU-25-100-PPS-A	1D		50	19246	DSNU-25-50-PPV-A	1D
	125	559287	DSNU-25-125-PPS-A	1D		80	19247	DSNU-25-80-PPV-A	1D
	160	559288	DSNU-25-160-PPS-A	1D		100	19248	DSNU-25-100-PPV-A	1D
	200	559289	DSNU-25-200-PPS-A	1D		125	19249	DSNU-25-125-PPV-A	1D
	250	559290	DSNU-25-250-PPS-A	1D		160	19250	DSNU-25-160-PPV-A	1D
	300	559291	DSNU-25-300-PPS-A	1D		200	19251	DSNU-25-200-PPV-A	1D
	320	559292	DSNU-25-320-PPS-A	3D		250	19252	DSNU-25-250-PPV-A	1D
	400	559293	DSNU-25-400-PPS-A	3D		300	19253	DSNU-25-300-PPV-A	1D
	500	559294	DSNU-25-500-PPS-A	3D		320	34721	DSNU-25-320-PPV-A	3D
						400	35193	DSNU-25-400-PPV-A	3D
						500	35194	DSNU-25-500-PPV-A	3D
						1 500	14322	DSNU-25PPV-A	3D

1

LT = Lead time

1D typically ships same day/next day

3D typically ships within 3 days

FESTO

Accessories

Accessories					
		→ Page/Internet			
1	Rod eye SGS	27			
2	Coupling piece KSG/KSZ	ksg, ksz			
3	Rod clevis SG	27			
4	Self-aligning rod coupler FK	27			
5	Flange mounting FBN	27			
6	Foot mounting HBN	27			
7	Swivel mounting WBN	27			
8	Swivel mounting SBN	sbn			
9	Clevis foot LBN	27			

Accessories				
		→ Page/Internet		
10	One-way flow control valve GRLA	27		
11	Push-in fitting QS	27		
12	Mounting kit SMBR	smbr		
13	Proximity sensor SMEO/SMTO-4	smto		
14	Mounting kit SMBR-8	27		
15	Proximity sensor SME/SMT-8	27		
16	Mounting kit SMBR-10	smbr-10		
17	Proximity sensor SME/SMT-10	27		
18	Guide unit FEN	fen		

FESTO

Accesso	ries
1000000	1105

Ordering Data – Mo	ounting Attachments								
Technical Data → www.festo.com/catalog/‹type› or ‹order code›									
Designation	For \varnothing [mm]	Part No.	Туре						
Foot mounting	Foot mounting								
	8, 10	5123	HBN-8/10x1						
	12, 16	5125	HBN-12/16x1						
	20, 25	5127	HBN-20/25x1						
	8,10	5124	HBN-8/10x2						
	12, 16	5126	HBN-12/16x2						
	20, 25	5128	HBN-20/25x2						
Flange mounting	·								
	8, 10	5129	FBN-8/10						
(0)	12, 16	5130	FBN-12/16						
	20, 25	5131	FBN-20/25						
Swivel mounting	·								
$\langle \langle \rangle$	8, 10	8608	WBN-8/10						
1007	12, 16	8609	WBN-12/16						
	20, 25	8610	WBN-20/25						
Clevis foot									
1	8, 10	6057	LBN-8/10						
1 YO	12, 16	6058	LBN-12/16						
	20, 25	6059	LBN-20/25						

Ordering Data – Piston Rod Attachments								
Technical Data → www.festo.com/catalog/‹type› or ‹order code›								
Designation For \varnothing [mm] Part No. Type								
Rod eye								
	8,10	9253	SGS-M4					
	12, 16	9254	SGS-M6					
Ø	20	9255	SGS-M8					
	25	9261	SGS-M10x1,25					
Rod clevis								
	8, 10	6532	SG-M4					
	12, 16	3110	SG-M6					
40	20	3111	SG-M8					
	25	6144	SG-M10x1,25					
Self-aligning rod cou	upler							
	8, 10	6528	FK-M4					
	12, 16	2061	FK-M6					
Core -	20	2062	FK-M8					
	25	6140	FK-M10x1,25					

Ordering Data – Proximity Sensors and Connecting Cables								
	Description	Part No.	Туре					
Proximity sense	or for C-slot, magneto-re	sistive – N/	′O contactTechnical data → 173					
	PNP, cable, 2.5 m	551373	SMT-10M-PS-24V-E-2,5-L-OE					
CT &	PNP, plug	551375	SMT-10M-PS-24V-E-0,3-L-M8D					
Magnetic reed -	- N/O contact		Technical data 🗲 174					
	Cable, 2.5 m	551369	SME-10M-ZS-24V-E-2,5-L-OE					
CT &	Plug	551367	SME-10M-DS-24V-E-0,3-L-M8D					
Proximity sense	or for T-slot, magneto-re	sistive – N/	O contact Technical data → 169					
	PNP, cable, 2.5 m	574335	SMT-8M-A-PS-24V-E-2,5-OE					
17 B	PNP, plug	574334	SMT-8M-A-PS-24V-E-0,3-M8D					
¢-	NPN, cable, 2.5 m	574338	SMT-8M-A-NS-24V-E-2,5-OE					
	NPN, plug	574339	SMT-8M-A-NS-24V-E-0,3-M8D					
Magnetic reed -	- N/O contact		Technical data 🗲 170					
	Cable, 2.5 m	543862	SME-8M-ZS-24V-K-2,5-0E					
A B V	Plug	543861	SME-8M-DS-24V-K-0,3-M8D					
¢-								
Connecting cab	le, straight socket							
	2.5 m	541333	NEBU-M8G3-K-2.5-LE3					

Ordering Data - Mounting Kits for Proximity Sensors SMT/SME-8

-	•		•
	For Ø [mm]	Part No.	Туре
	8	175091	SMBR-8-8
A VE	10	175092	SMBR-8-10
	12	175093	SMBR-8-12
9	16	175094	SMBR-8-16
	20	175095	SMBR-8-20
	25	175096	SMBR-8-25

Ordering Data	Ordering Data – One-way Flow Control Valves for Exhaust Air Flow Control									
				Technical Data 🔿 253						
Function	For Ø	Tubing	Part No.	Туре						
	[mm]	0.D. [mm]								
A	8, 10,	4	197577	GRLA-M5-QS-4-RS-D						
	12,16	6	197578	GRLA-M5-QS-6-RS-D						
	20, 25	4	197580	GRLA-1/8-QS-4-RS-D						
		6	197581	GRLA-1/8-QS-6-RS-D						

Ordering Data	– Push-in Fit	Technical Data 🗲 245		
Function	For Ø [mm]	Tubing O.D. [mm]	Part No.	Туре
5	8,10,	4	153304	QSM-M5-4
S A	12,16	6	153306	QSM-M5-6
	20, 25	4	153001	QS-1/8-4
		6	153002	QS-1/8-6

1

Lead Time LT for all products on this page: 1D typically ships same day/next day

INSTRUCTION SHEET 安裝說明 安装说明 BILGI DÖKÜMANI

- Load Cell Module
- ▲ Load Cell 秤重模組
- ▲ Load Cell 秤重模块
- 🔺 Load Cell Modülü

Thank you for choosing Delta's DVP series PLC. Delta releases DVP02LC-SL load cell module of weight measurement function. DVP02LC-SL provides 24-bit resolution applicable for 4-wire or 6-wire load cells with various eigenvalues. Therefore, the response time can be adjusted in coordination with each other according to users' needs. On this basis, the market requirements on weight measurement can easily be met.

- This instruction sheet provides introductory information on electrical specifications, general specifications, installation and wiring.
- This is an OPEN TYPE I/O module and therefore should be installed in an enclosure free of airborne dust, humidity, electric shock and vibration. The enclosure should prevent non-maintenance staff from operating the device (e.g. key or specific tools are required to open the enclosure) in case danger and damage on the device may occur.
- ✓ DO NOT connect the input AC power supply to any of the I/O terminals; otherwise serious damage may occur. Check all the wiring again before switching on the power. Make sure the ground terminal ⊕ is correctly grounded in order to prevent electromagnetic interference.
- The tightening torque for I/O terminal block is 1.95 kg-cm (1.7 in-lbs). Use 60/75°C copper conductors only.

Product Profile & Dimensions

1.	Mounting hole of the I/O module	Ζ.	DIN rail mounting slot (35mm)
3.	I/O module connection port	4.	I/O module clip
5.	Status indicator (POWER, RUN, ERROR and L.V)	6.	Function status indicator (NET, ZERO, MAX, MOTION)
7.	I/O terminals	8.	RS-232 port
9.	Mounting slot clip	10.	RS-485 port
11	DC nowor input		

I/O Terminal Layout

External Wiring

Note 1: Please connect the Φ terminal on both the power module and Load Cell module to the system earth point and ground the system contact or connect it to the cover of power distribution cabinet.

Electrical Specifications

Load cell module	Voltage output
Rated power supply voltage/ power consumption	24 VDC (-15 to +20%) / 3W
Voltage Boundary	18 to 31.2 VDC
Max. current consumption	125 mA
Input signal range	± 40 mVDC
Sensibility	+5 VDC +/-10%
Internal resolution	24 bits
Communication port	RS-232, RS-485
Applicable sensor type	4-wire or 6-wire strain gauge
Temperature coefficient span	≤ ± 50 ppm/K v. E
Temperature coefficient zero point	≤ ± 0.4 µV/K
Linearity error	≤ 0.02%
Response time	2, 10, 20, 40, 80 ms × channels
4 measuring ranges	0 to 1 mV/V, 0 to 2 mV/V, 0 to 4 mV/V, 0 to 6mV/V
Max. distance for connecting to load cell	100 M
Max. current output	5 VDC * 300 mA
Permitted load cell resistance	40 to 4,010 Ω
Common mode rejection (CMRR @50/60 Hz)	≥100dB
Dynamic value filter	Setting range: K1 to K5
Average value filter	Setting range: K1 to K100
Isolation method	500 VAC between digital circuits and Ground 500 VAC between analog circuits and Ground 500 VAC between analog circuits and digital circuits

Load cell module	Voltage output
Series connection to DVP-PLC MPU	Connectable to the left side of MPU, numbered from 100 to 107 according to the position of module from the closest to farthest to MPU.
Operation / storage temperature	Operation: 0 to 55°C (temp.), 50 to 95% (humidity), pollution degree 2 Storage: -25 to 70°C (temp.), 5 to 95% (humidity)
Vibration / shock immunity	International standards: IEC61131-2, IEC 68-2-6 (TEST Fc)/ IEC61131-2 & IEC 68-2-27 (TEST Ea)

Complying with DIN1319-1, the tolerance of measured value should be ≤ 0.05% under 20°C
 + 10K temperature range.

When the corrected ambient temperature and the actual temperature have a difference of more than 10°C, it is suggested that you re-correct it.

Control Register

CR#	Add.	Α	ttrib.	Register name	Explanation
#0	H1000	0	R	Model name	Set up by the system: DVP02LC-SL model code = H'4206
#1	H1001	0	R	Firmware version	Display the current firmware version in hex.
#2	H1002	0	R/W	Characteristic value	Mode 0 (H'0000): 1 mV/V Mode 1 (H'0001): 2 mV/V, default Mode 2 (H'0002): 4 mV/V Mode 3 (H'0003): 6 mV/V
#3	H1003	0	R/W	Reaction time for measurement	Mode 0 (H'0000): 2 ms Mode 1 (H'0001): 10 ms Mode 2 (H'0002): 20 ms Mode 3 (H'0003): 40 ms Mode 4 (H'0004): 80 ms, default
#4	H1004	0	R	Average value of all channels	Sum up CH1 average value and CH2 average value and equalize them. Equation: (CH1 average value + CH2 average value)/2
#6	H1006	х	R/W	CH1 to CH2 read tare weight	Read present average value as tare weight value bit0: CH1; bit1: CH2; bit2 to bit15: reserved
#7	H1007	0	R/W	CH1 to CH2 gross/net weight	Display present weight as Gross (K0) or Net (K1), bit0 to bit3: CH1; bit4 to bit7: CH2; bit8 to bit15: reserved. Take CH1 for example: bit3 to bit0 = 0000, gross; bit3 to bit0 = 0001, net; bit3 to bit0 = 1111, channel disabled.
#8	H1008	0	R/W	CH1 tare weight	The user can write in the weight or read it by commands
#9	H1009	0	R/W	CH2 tare weight	Default: K0; Range: -K32,768 to K32,767.
#10	H100A	0	R/W	CH1 average times	Default: K10; Range: K1 to K100.
#11	H100B	0	R/W	CH2 average times	automatically be changed to K1 or K100.
#12	H100C	х	R	CH1 average weight	Display average weight
#13	H100D	х	R	CH2 average weight	Display average weight.
#14	H100E	х	R	CH1 present weight	Display present weight
#15	H100F	х	R	CH2 present weight	Display present weight.
#16	H1010	0	R/W	CH1 standstill times	Default: K5
#17	H1011	0	R/W	CH2 standstill times	Range: K1 to K500

CR#	Add.	Α	ttrib.	Register name	Explanation
#18	H1012	0	R/W	CH1 standstill range	Default: K10
#19	H1013	0	R/W	CH2 standstill range	Range: K1 to K10,000
#20	H1014	0	R/W	CH1 decimal place	Default: K2
#21	H1015	0	R/W	CH2 decimal place	Range: K1 to K4
#22	H1016	0	R/W	CH1 unit of measurement	
#23	H1017	0	R/W	CH1 unit of measurement	Enter max. 4 ASCII words.
#24	H1018	0	R/W	CH2 unit of measurement	CR#23, CR#25: Low word
#25	H1019	0	R/W	CH2 unit of measurement	
#26	H101A	x	R/W	Weight correction command	For the user to correct the weight. Default: H'0000 H'0001: CH1 Reset to zero command H'0002: CH1 Weight base point command H'0003: CH2 Reset to zero command H'0004: CH2 Weight base point command
#33	H1021	0	R/W	CH1 weight base point	For CR#33 to CR#34 default = K1,000; Range: K-32,768 to K32,767 Steps for correction: Take CH1 for example 1: Place no weights on the load cell 2: Set un CR#26 command = "H'0001"
#34	H1022	0	R/W	CH2 weight base point	 Blace standard weights on load cell Write the weight of the weights on the plate into CR#33. Set up CR#26 command = "H'0002"
#35	H1023	0	R	CH1 max. weight	Set up the max. weight. When the measured
#36	H1024	0	R	CH2 max. weight	value exceeds the set value, error codes will be recorded.
#37	H1025	0	R/W	Upper limit for CH1 zero point check	Reference for reset to zero. When the weight is within this range, the status code will be set to "zero bit", indicating the current zero
#38	H1026	0	R/W	Upper limit for CH2 zero point check	weight status. Default: K10 Range: K-32,768 to K32,767
#39	H1027	0	R/W	Lower limit for CH1 zero point check	Reference for reset to zero. When the weight is within this range, the status code will be set to "zero bit", indicating the current zero
#40	H1028	0	R/W	Lower limit for CH2 zero point check	weight status. Default: K-10 Range: K-32,768 to K32,767
#41	H1029	x	R/W	Saving set value (H'5678)	Save the present set value and write all the set values into the internal Flash for use next time DVPO2LC-SL is switched on. H0: No action, Default H'FFFF: Saving is successful H'5678: Write to internal Flash When H'5678 is written in, all set values will be saved in Flash. When the saving is completed, CR#41 will become H'FFFF. If the value written in is not H'5678, it will automatically return to H0, e.g. write K1 into CR# to return to K0.

CR#	Add.	А	ttrib.	Register name	Explanation		
#43	H102B	х	R/W	CH1 filter percentage	Default: K2		
#44	H102C	х	R/W	CH2 filter percentage	Range: K1 to K5 (Unit: 10%)		
#45	H102D	х	R/W	CH1 filter average value	Display average weight after filtering.		
#46	H102E	х	R/W	CH2 filter average value	Condition to enable filter: average time ≥ 30		
#50	H1032	×	R	Status code	b0 (H'0001): CH1 zero weight (empty) b1 (H'0002): CH2 zero weight (empty) b2 (H'0004): CH1 exceeds max. weight (overload) b3 (H'0008): CH2 exceeds max. weight (overload) b4 (H'0010): CH1 stable measured value b5 (H'0020): CH2 stable measured value b6 ~ b15: Reserved		
#51	H1033	х	R	Error code	Store all the error statuses. See "Error Code Table" below. Default: H'0000		
#52	H1034	0	R/W	RS-232 node address			
#53	H1035	0	R/W	RS-232 communication setting	For CR#52, CR#54 default = 1 Range: K1 to K255		
#54	H1036	0	R/W	RS-485 node address	ASCII, 9600, 7, E, 1. See "Communication"		
#55	H1037	0	R/W	RS-485 communication setting	Format Table" below.		
Sym	Symbols: O means latched. X means not latched.						

R means can read data. W means can write data.

▲ Error Code Table for CR#51:

bit	Content	Error	bit	Content	Error				
b0	K1 (H'0001)	Power supply abnormality	r supply rmality b1 K2 (H'0002)						
b2	K4 (H'0004)	CH1 conversion error	b3	K8 (H'0008)	CH1 SEN voltage error				
b4	K16 (H'0010)	CH2 conversion error	b5	K32 (H'0020)	CH2 SEN voltage error				
b6 ~ b15	~ b15 K64 (H'0040) Reserved								
Note: E	Note: Every error status is decided by its corresponding bit, so there might be more than 2 error statuses occurring at the same time. 0 refers to no error; 1 refers to error occurring.								

▲ Communication Format Table for CR#53, CR#55:

bit15	bit14~bit8	bit7	bit6	bit5	bit4	bit3	bi	t2	bit1	bit0
ACSII/RTU	Reserved		Bau	drate		Data length	Stop bit		Parity	
Description										
bit15	ACSII/RTU			0	ASCII		1	RTU		
	Baudrate			0	9,600 bps		1	19,200 bps		
bit7~bit4				2	38,400 bps		3	57,600 bps		
				4	115,200 bps		5	Else none		
bit3	Data length (RTU = 8 bits)			0	7		1	8		
bit2	Stop bit			0	1 bit		1	2 bits		
bit1~bit0	Parity			0	Even		1	Odd		
				2	None	None 3 Non			e	