

Enhancing the Performance of Dynamic Weighing System in Automated Production Lines

By
Khaldoon Khaled Banat
Mahmoud Atya Jaffreh
Mansour Azzam Karaki Mohammad Waleed Abu Turkey

Supervisor
Eng. Abed Al-Qader Al-Zaro

Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Industrial Automation Engineering

Palestine Polytechnic University
 December - 2016

Palestine Polytechnic University
College of Engineering
Department of Electrical Engineering
Hebron - Palestine

Enhancing the Performance of Dynamic Weighing System in Automated Production Lines

By
Khaldoon Khaled Banat
Mahmoud Atya Jaffreh
Mansour Azzam Karaki
Mohammad Waleed Abu Turkey

Submitted to the College of Engineering in partial fulfillment of the requirements for the Bachelor degree in Industrial Automation Engineering

Supervisor Signature
\qquad

Testing Committee Signature

Chair of the Department Signature

December-2016

إلى معلمنا وقائينا وحبيينا وشفيغنا و قاوتنا محمد صلى الله عليه وسلم.

إلى من رسموا بدمائهم خارطة الوطن وطريق المستقبل وهنسوا بأجسادهم معاقل العزة والكرامة وإلى من هم أكرم منا جميعا شهداء الوطن الحبيب.

إلى الذين عشقوا الحرية التي تنوح منها رائحة الياسمين وتواروا خلف التضبان ليفسوا لنا النور أسرانا البواسل. إلى أبي الذي لم يبذل علي يوماً بشيء، وأمي التي زودتتي بالحنان والمحبة أقول لهم: أنتم وهبتوني الحياة والأمل والنشأة على شغف الإطلاع والمعرفة. إلى إخوتي وأسرتي جميعا.

إلى كل من علمني حرفاً أصبح سنا برقه يضيء الطريق أمامي. إلى من ضاقت السطور لذكرهم فوستهم قلوبنا أصدقاءنا الأعزاء.

إلي كل من أضاء بعلمه عقل غيره، أو هدى بالجواب الصحيح حيرة سائليه، فأظهر بسماحته تواضع العلماء، وبرحابته سماحة . العارفين

إلى من رسم معنا خطوات هذا النجاح الى من بذل جهنه ووقتة وكان لنا مرشداً وناصحاً وأخاً مشرفنا الحبيب الأستاذ عبد القادر الزرو.

الملخص

في خطوط الإنتاج المؤتمتة هناك حاجة ماسة للمحافظة على وزن المنتج ضمن نطاق محدد يمنع من الزيادة أو النقصان
في الوزن حسب معايير الجودة و الإنتاج.

يستخدم نظام "فحص الوزن" ضمن خطوط الإنتاج للوصول الى الغاية المطلوبة و ذلك من خلال الحصول على إشارة الوزن الدُنتج أثناء مروره بخط الإنتاج، و تتأثر هذه الإشارة من العديد من مصادر التشويش والضجيج مما يؤثر على القراءة الحقيقة للوزن.

يهدف مشروعنا إلى قراءة وزنة المُنتج المتحرك على نظام فحص الوزن ومقارنته بالوزن الفعلي من خلال نظام كهروميكانيكي باستخدام متحكم لقَبول أو رفض المُنتج قبل تعبئته من قبل الأيدي العاملة، وهذا سوف يساهم في زيادة دقة قياس الوزن مع المحافظة على سرعة عملية التوزين والإنتاج.

Abstract

In automated production lines, were the mass of single product must be maintained within predefined weight narrow range, a dynamic weight system is required to attain this objective.

Checkweigher is integrated in the production line to reduce the overweight and underweight of the product by acquiring the weight signal from the load cell which affected by different sources of noise and vibration and extracts the correct weight.

The main objective of this project is read the weight of dynamic product on the checkweigher system and make comparison between it and actual weight through electromechanical system by using controller to accept or refuse the product before packaged by working hands, This will increase weighing accuracy while maintaining or increasing the production speed.

LIST OF CONTENTS

الإهداء I
الملخص II
ABSTRACT. III
CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI
CHAPTER 1: INTRODUCTION 1
1.1 Overview 2
1.2 Background 2
1.3 Objectives 2
1.4 Block Diagram 3
1.5 Time Table 4
CHAPTER 2: WEIGHING SYSTEM. 5
2.1 Introduction 6
2.2 Checkweigher System 6
2.3 Sensors 7
2.4 Rejecter. 9
2.5 PLC 9
2.6 HMI 10
2.7 Protection System 10
2.8 Pneumatic System. 13
CHAPTER 3: THEORY 15
3.1 Load Cell. 16
3.2 Wiring 21
3.3 Calibration Data 21
3.4 Output. 21
3.5 Mechanical Theory 22
CHAPTER 4: ELECTRICAL DESIGNE 25
4.1 Electrical Design 26
4.2 Power Circuit 29
4.3 Control Circuit 30
4.4 Pneumatic Circuit 32
CHAPTER 5: MECHANICAL DESIGNE 33
5.1 Design of Conveyor 34
5.2 Calculating the Torque of the Conveyor 38
5.3 Calculating the Power of the Motor 41
5.4 Final Design Machine 43
CHAPTER 6: TESTING AND EVALUATING 44
6.1 Introduction 45
6.2 Experimental Result 45
6.3 Recommendations 45
6.4 Future Work 46
6.5 Project Cost. 46

REFRENCES
APPENDIX A: PLC Module
APPENDIX B: Low Profile Aluminum Load Cell
APPENDIX C: Three Phase Induction Motor
APPENDIX D: Catalog Rating for Bearing
APPENDIX E: Photo Sensor
APPENDIX F: Magnetic Cylinder Sensors
APPENDIX G: Double Acting Cylinder

LIST OF TABLES

Table 1.1 Time Table of the Project 4
Table 4.1 Symbol Data for Power Circuit 29
Table 4.2 Inputs Symbol Data for PLC Program Connections 30
Table 4.3 Outputs Symbol Data for PLC Program Connections 30
Table 5.1 Application Factor, a_{f} Appendix D
Table 5.2 Recommended Design Life for Bearings Appendix D
Table 5.3 Dimension and Load Rating for Single Row 0.2 Series DeepGroove and Angular Contact Ball BearingAppendix D
Table 6.1 Project Cost 46

LIST OF FIGURES

Figure 1.1 Product Flow in Typical Checkweigher 3
Figure 2.1 Conveyor System 6
Figure 2.2 Conveyor System Types 7
Figure 2.3 Light Sensor. 7
Figure 2.4 Load Cell Types. 8
Figure 2.5 Rejecters Types 9
Figure 2.6 PLC Types 9
Figure 2.7 Delta HMI 10
Figure 2.8 Contactor 10
Figure 2.9 Circuit Breaker 11
Figure 2.10 Overload 11
Figure 2.11 Emergency Stop Button 12
Figure 2.12 Earth Leakage Circuit Breaker 12
Figure 2.13 Magnetic Cylinder Sensors 13
Figure 2.14 Double Acting Cylinder 13
Figure 2.15 Solenoid Valve 14
Figure 3.1 Low Profile Aluminum load cell 16
Figure 3.2 Strain Gauges in Load Cell 16
Figure 3.3 Strain Gauge 17
Figure 3.4 Wheatstone Bridge 17
Figure 3.5 Strain Gauge Principle 18
Figure 3.6 Load Cell Principle 18
Figure 3.7 Wheatstone Bridge 20
Figure 3.8 Wheatstone Bridge with a Voltmeter 20
Figure 3.9 Free Body Diagram of Ball Bearing 22
Figure 4.1 Dead load Component of Convyor 26
Figure 4.2 Internal Design for the Load Cell 28
Figure 4.3 Connection Module Load Cell 31
Figure 4.4 Connection Pneumatic Circuit 32
Figure 5.1 Angular Contact Ball Bearing. 34
Figure 5.2 Free body Diagram of Cylinder 38
Figure 5.3 Electrical Motor 41
Figure 5.4 Final Design Machine 43

LIST OF FIGURES

Equation (3.1) Gauge Factor 19
Equation (3.2) Output Voltage from the Wheatstone Bridge 19
Equation (3.3) Current Flow in the Branch 20
Equation (3.4) Current Flow in the Branch 21
Equation (3.5) Voltage at Point 21
Equation (3.6) Voltage at Point 21
Equation (3.7) Resultant Radial Load 22
Equation (3.8) Resultant Radial Load 22
Equation (3.9) Life Ratio 22
Equation (3.10) Life Ratio 22
Equation (3.11) Resultant Radial Load 23
Equation (3.12) Calculate the Ratio 23
Equation (3.13) Life Ratio 23
Equation (3.14) Life Ratio 23
Equation (3.15) Factor of Safety 23
Equation (3.16) Single Shear 23
Equation (3.17) Double Shear 24
Equation (3.18) Velocity 24
Equation (3.19) Final Distance 24
Equation (3.20) Integrated of Acceleration 24
Equation (3.21) Radial Velocity 24
Equation (3.22) Angular Velocity 24
Equation (3.23) Radial Acceleration 24
Equation (3.24) Angular Acceleration 24
Equation (4.1) Total Dead Load Weight of the Conveyor 27
Equation (4.2) Max Wieght On the Load Cell 27
Equation (4.3) Gauge Factor 28
Equation (4.4) Output Voltage from the Bridge 28
Equation (5.1) Distance from the Middle to the End of the Conveyor 34
Equation (5.2) Design Load 36
Equation (5.3) Life Ratio 36
Equation (5.4) Torque of the Conveyor 38
Equation (5.5) Moment Inertia of Bearing 39
Equation (5.6) Moment Inertia of Object 39
Equation (5.7) Moment Inertia of Belt 40
Equation (5.8) Moment Inertia of Roller 40
Equation (5.9) Total Moment Inertia 41
Equation (5.10) Torque of the Conveyor 41
Equation (5.11) Power of the Motor 42
Equation (5.12) Safety Factor 42

Chapter One

Introduction

1.1 Overview

1.2 Background

1.3 Objectives
1.4 Block Diagram

1.5 Time Table

1.1 Overview

The process of product weighing is an essential part of modern industry. There is a constant need for knowing the exact weight of many items, e.g. food, ingredients for production, pharmacology, chemistry, technology, etc. The type and the number of products that require weight control are increasing. According to that, the legal requirements of government bodies need developing to guarantee the exact weight. In production, this means high accuracy and efficiency of weighing. Continuation of this trend brings benefits for both the customer and the producer. That is, manufacturing efficiency is increased; hence, profitability whilst package quality and quantity are assured to the customer's satisfaction.

1.2 Background

A weighing scale is a measuring instrument that is used for determining the weight or mass of an object. Many traditional instruments are used as weighing scales such as scale spring and balance spring. Weighing scales are used in many industrial and commercial applications, and products such as loaded tractor-trailers and medical scales.

In the area of mass production, products are weighed using industrial weighing systems, which are machines that weigh a package dynamically. The weight of the package is estimated while the product has been carried over a load cell weigh by a transport system. Normally the transport system is of a conveyer belt type. The weigh is mounted on a load cell, which is the uncontrollable weighing device capable of weighing an item. A Signal Processing Module (SPM) acquires the electrical signal from weighing device and estimates a value of weight for the passing product as its output.

The checkweigher is one of the most common dynamic weighing system used in almost all modern production lines, different types of products will be passed on the conveyor with different infeed velocities to collect enough data for analysis and simulation. A digital weight indicator is required to interface the weight transducer.

1.3 Objectives

The overall objective is to design, implement a load cell based dynamic weighing system with improved productivity and accuracy. This work is undertaken in the following developments stages: first, analyse the main factors that affect the accuracy of the dynamic weighing system. Then derive and present the exact model of the load cell based dynamic weighing system. The next stage is studying different approaches to identify, minimize or extract error signal from weighing signal. The fourth stage monitoring the value of weight on the (HMI).

1.4 Block Diagram

In generally a checkweigher dynamic weight system incorporates a series of conveyor belts. Checkweighers are known also as belt weighers, in-motion scales, conveyor scales, dynamic scales, and in-line scales. In filler applications, they are known as check scales. Generally, checkweigher has three belts or chain beds:

- Infeed Conveyor: An infeed belt that may change the speed of the package and bring it up or down to a speed required for weighing. The infeed is also sometimes used as an indexer, which sets the gap between products to an optimal distance for weighing. It, sometimes, has special belts or chains to position the product for weighing.
- A Weigh Belt: This is typically mounted on a weight transducer which can typically be a strain-gauge load cell or a servo-balance (also known as a force-balance), or sometimes known as a split-beam. Some older machines may pause the weigh bed belt before taking the weight measurement. This may limit line speed and throughput.
- Outfeed Conveyor: That provides a method of removing an out of tolerance package from the conveyor line. The reject can vary by application. Some require an air-amplifier to blow small products off the belt, but heavier applications require a linear or radial actuator. Some fragile products are rejected by "dropping" the bed so that the product can slide gently into a bin or other conveyor.

The following figure shows the checkweigher in production environment.

Figure 1.1: Product Flow in Typical Checkweigher

1.5 Time Table

Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tasks Identification of Project Idea															
Drafting a Preliminary Project Proposal															
Introduction Chapter (1)															
Weighing System Chapter (2)															
Theory Chapter (3)															
Electrical Design Chapter(4)															
Mechanical Design Chapter (5)															
Testing and Evaluating Chapter (6)															

Table 1.1: Time Table

Chapter Two

WEIGHING SYSTEM

2.1 Introduction
2.2 Checkweigher System
2.3 Sensors
2.4 Rejecter
2.5 PLC
2.6 HMI
2.7 Protection System
2.8 Pneumatic System

2.1 Introduction

Measuring load is an important and essential part of many industrial and commercial operations. It is crucial to have accurate measurements of the load, as small errors, occurring repeatedly, and lead to substantial loss of revenue. Therefore, weighing systems have an important device; it is denoted as load cell. A load cell is uncontrollable weighing device capable of weighing an article. It is used in a variety of industrial weighing applications.

2.2 Checkweigher System

A checkweigher is a system that weighs items as they pass through a production line, classifies the items by preset weight zones, and ejects or sorts the items based on their classification. Checkweighers weigh 100% of the items on a production line. Typically, an infeed section, scale section, discharge section, rejecter or line divider, and computerized control comprise the physical checkweighing system. Checkweighers and their components vary greatly according to how they are used, the items being weighed, and the environment surrounding them.

2.2.1 Checkweigher System Components

* Conveyor System

Conveyors are used to transport product between two or more locations. The variety of products a conveyor system transports is ranges from bolts to pallets and everything in between for distribution and manufacturing systems. See the figure 2.1

Figure 2.1: Conveyor System

* Conveyor System Description

A conveyor moves cardboard boxes, wood boxes, metal boxes and plastic boxes. It can also move bags, components, pallets or other components. Many kinds of conveying systems are available, and are used according to the various needs of different industries. [1]

The most famous types of conveyors systems are:
\checkmark Vibrating Conveyor Systems.
\checkmark Roller Conveyor Systems.
\checkmark Vertical Conveyor Systems.
\checkmark Belt Conveyor Systems.

The following figure shows the types of conveyors:

Figure 2.2: Conveyor System Types

2.3 Sensors

A sensor is a device that detects and responds to some type of input from the physical environment. The specific input could be light, heat, motion, moisture, pressure, or any one of a great number of other environmental phenomena. The output is generally a signal that is converted to human-readable display at the sensor location or transmitted electronically over a network for reading or further processing.

2.3.1 Photo Sensors

A Light Sensor generates an output signal indicating the intensity of light by measuring the radiant energy that exists in a very narrow range of frequencies basically called "light", and which ranges in frequency from "Infra-red" to "Visible" up to "Ultraviolet" light spectrum. See the figure 2.3

Figure 2.3: Light Sensor

The light sensor is a passive devices that convert this "light energy" whether visible or in the infra-red parts of the spectrum into an electrical signal output. Light sensors are more commonly known as "Photoelectric Devices" or "Photo Sensors" because the convert light energy (photons) into electricity (electrons).

2.3.2 Load Cells

Load cell is an electromechanical device. It can be called a transducer as it converts one form of energy to another mechanical force or stress to electrical energy. A load cell has various characteristics that are measurable. These characteristics are determined by the type of metal used, shape of the load cell and how well it is protected from its environment. To understand load cells better (you can see the reference [2]) there are terms that you need to become familiar with so you can better match the load cell to your application.

Load Cell Description

An electronic weighing system is the electronic system used for dynamic weighing. A weighing system consists of one or more sensors and an intelligent module. The sensor is usually called a load cell and is available in several different types. In industrial weighing systems, there are three types of load cell: Magnetic transducer which measures change in magnetic permeability, oscillating string transducer which measures changes in frequency and the third one is the strain gauge transducer which measure changes in resistance. The three types of load cell are called transducers because it converts the force into a measurable data. In the weighing system used in this thesis we will use the third type.

Majority of the industrial weighing systems use the strain gauge load cell in various types such as traditional canister, s beam, single ended beam, platform load cell, etc., as shown in figure 2.4 it is considered the most common type of load cells in industry due to their low price and great loads area. In addition, it is suitable to be used in the dusty and moist workshop environments.

Figure 2.4: Load Cell Types

2.4 Rejecters

A reject signal is sent from the checkweigher control to a rejecter on the checkweigher or further downstream. Typically the reject signal consists of a solid state relay with high or low voltage output or a mechanical contact. [3]

A mechanism which removes items from the line flow upon receiving a signal from a control system. The rejecter often consists of a solenoid operated valve, air cylinder, and associated mechanical parts. Majority of the industrial weighing systems use the rejecters various types such as: flipper, dropout, up and out, air jet, and pusher rejecter, etc., as shown in figure 2.5.

Figure 2.5: Rejecters Types

2.5 PLC (Programmable Logic Control)

A central control system from which one can operate and program functions of several independent or dependent systems. The PLC consists of a user interface, central processor, links to subsidiary system controls, and an electrical control interface.

PLCs have become more and more standard in manufacturing and packaging industries. Some checkweigher manufacturers have designed PLC interfaces to common PLC formats and can now fit into your lines seamlessly. Ask checkweigher manufacturers what level of integration they provide for PLC support.

The most common type of PLC in industry as shown in figure 2.6

Fatek PLC

Siemens PLC

Delta PLC

Figure 2.6: PLC Types

2.6 HMI (Human Machine Interface)

A Human Machine Interface (HMI) is the user interface that connects an operator to the controller for an industrial system.

Industrial Control Systems (ICS) are integrated hardware and software designed to monitor and control the operation of machinery and associated devices in industrial environments, including those that are designated critical infrastructure. An HMI includes electronic components for signalling and controlling automation systems. See the figure 2.7

Figure 2.7: Delta HMI

HMIs are usually deployed on Windows based machines, communicating with programmable logic controllers (PLC) and other industrial controllers. [4]

2.7 Protection System

2.7.1 Contactors

Contactors are an electrically controlled switch used for switching a power circuit similar to a relay except with higher current ratings. A contactor is controlled by a circuit which has a much lower power level than the switched circuit.

Contactors come in many forms with varying capacities and features. Unlike a circuit breaker, a contractor is not intended to interrupt a short circuit current, contactors range from several amperes to thousands of amperes. The physical size of contactors ranges from a device small enough to pick up with on hand to large device as shown in figure 2.8

Figure 2.8: Contactor

2.7.2 Circuit Breaker (CB)

If a power surge occurs in the electrical wiring, the breaker will trip this means that a breaker that was in the on position will flip to the off position and shut down the electrical power leading from the breaker. Essentially, a circuit breaker is a safety device. When a circuit breaker is tripped it may prevent a fire to start in overloaded circuit, it can also prevent the destruction of the device that is drawing the electricity. See the figure 2.9

Figure 2.9: Circuit Breaker

2.7.3 Overload

Overload relays are intended to protect motors, controllers and branch-circuit conductors against excessive heating due to prolonged motor over currents up to and including locked rotor currents. Protection of the motor and other branch-circuit components from higher currents, due to short circuits or grounds, is a function of branch-circuit fuses, circuit breakers or motor short circuits protectors. The system needs two overloads to protect the motors. See the figure 2.10

Figure 2.10: Overload

2.7.4 Emergency Stop Button

Emergency Stop Button is shown in a figure 2.11 provides safety for humans and the machine; it offers a wide range of safety components for the protection of humans, machine and production goods in emergency situations.

It is the purpose of emergency-stop device to deflect or minimize the risk as quickly as possible and optimally in the event of an emergency arising.

Figure 2.11: Emergency Stop Button

2.7.5 Earth Leakage Circuit Breaker (ELCB)

Is a safety device used in electrical installations with high Earth impedance to prevent shock. It detects small stray voltages on the metal enclosures of electrical equipment, and interrupts the circuit if a dangerous voltage is detected. Once widely used, more recent installations instead use residual current circuit breakers which instead detect leakage current directly. See the figure 2.12

Figure 2.12: Earth Leakage Circuit Breaker

2.8 Pneumatic System

2.8.1 Magnetic Cylinder Sensors

Detecting piston positions with precision, in countless fields of automation, it is essential to monitor the motion processes in pneumatic cylinders. Magnetic cylinder sensors contactlessly detect the piston position of these cylinders and give a switching signal. They are completely maintenance-free and are mounted outside the cylinder. See the figure 2.13. [5]

Figure 2.13: Magnetic Cylinder Sensors

2.8.2 Double Acting Cylinder

The double-acting cylinder requires compressed air for every direction of movement. On this type of cylinder, the force both the advancing and retracting direction is built up using compressed air. The simplest way of actuating a double-acting cylinder is by using a $5 / 2$-way valve. See the figure 2.14 [6]

Figure 2.14: Double Acting Cylinder

2.8.3 Solenoid Valve

Solenoid valve is an electromechanical device used for controlling liquid or gas flow. The solenoid valve is controlled by electrical current, which is run through a coil. When the coil is energized, a magnetic field is created, causing a plunger inside the coil to move. Depending on the design of the valve, the plunger will either open or close the valve. When electrical current is removed from the coil, the valve will return to its de-energized state. See the figure 2.15

Figure 2.15: Solenoid Valve

Chapter Three

Theory

3.1 Load Cell

3.2 Wiring

3.3 Calibration Data
3.4 Output
3.5 Mechanical Theory

3.1 Load Cell

3.1.1 What is a Load Cell?

A load cell is a sensor or a transducer that converts a load or force acting on it into an electronic signal. This electronic signal can be a voltage change, current change or frequency change depending on the type of load cell and circuitry used. There are many different kinds of load cells. We offer resistive load cells and capacitive load cells. See the figure 3.1

Resistive load cells work on the principle of piezo-resistivity. When a load/force/stress is applied to the sensor, it changes its resistance. This change in resistance leads to a change in output voltage when an input voltage is applied.

Capacitive load cells work on the principle of change of capacitance which is the ability of a system to hold a certain amount of charge when a voltage is applied to it. For common parallel plate capacitors, the capacitance is directly proportional to the amount of overlap of the plates and the dielectric between the plates and inversely proportional to the gap between the plates.

Figure 3.1: Low Profile Aluminum load cell

3.1.2 How do Load Cells Works?

A load cell is made by using an elastic member (with very highly repeatable deflection pattern) to which a number of strain gauges are attached.

In this particular load cell shown in figure 3.2, there are a total of four strain gauges that are bonded to the upper and lower surfaces of the load cell. [7]

Figure 3.2: Strain Gauges in Load Cell

3.1.3 Strain Gauge

A strain gauge consists of a very fine length of wire that is woven back and forth in a grid and laid on a piece of paper or plastic called its base. A common wire used is a copper nickel alloy with a diameter of about one thousandth of an inch (.001"). The wire is zig-zagged to form a grid so to increase the effective length of the wire that comes under the influence of the force applied to it. Leads are attached to the ends of the gauge. Strain gauges can be made very small, sometimes as small as $1 / 64$ ". See the figure 3.3

These gauges are cemented to a strong metal object, commonly referred to as the load receiving element, to make up a load cell. The gauges are configured into a circuit called a Wheatstone bridge. [2]

Figure 3.3: Strain Gauge

3.1.4 Wheatstone Bridge Circuit

The four strain gauges are configured in a Wheatstone Bridge configuration with four separate resistors connected as shown in what is called a Wheatstone Bridge Network. An excitation voltage usually 10 V is applied to one set of corners and the voltage difference is measured between the other two corners. At equilibrium with no applied load, the voltage output is zero or very close to zero when the four resistors are closely matched in value. That is why it is referred to as a balanced bridge circuit.

When the metallic member to which the strain gauges are attached, is stressed by the application of a force, the resulting strain leads to a change in resistance in one (or more) of the resistors. This change in resistance results in a change in output voltage. This small change in output voltage (usually about 20 mVolt of total change in response to full load) can be measured and digitized after careful amplification of the small mVolt level signals to a higher amplitude $0-5 \mathrm{~V}$ or $0-10 \mathrm{~V}$ signal. See the figure 3.4

Figure 3.4: Wheatstone Bridge.

3.1.5 Principle of Load Cell

We can take our strain gauge and Wheatstone bridge theories and use them to construct a load cell. We will use a column of steel and glue a strain gauge on each of the four sides of the column. As weight is placed on top of the column, the length of the column would decrease. The column also would become "fatter," or bulge out. Two strain gauges are placed opposite of each other to respond proportionately to the change in length. [2]

Two other gauges are placed on opposite sides of the column and respond to the change in the column's bulge. Since one pair of strain gauges become shorter their wire diameters become larger and their resistance decreases. The other pair of strain gauges are positioned so their wires lengthen, thus decreasing their diameter and increasing their resistance. If we hung the same weight from the bottom of the column instead of compressing the column we would be placing tension on it. The column and strain gauges would act in the opposite direction but still stretch and compress the wires by the same amount. See the figure 3.5

Figure 3.5: Strain Gauge Principle
We can wire our strain gauges into a Wheatstone bridge configuration. We can calibrate the ammeter to read in pounds instead of amps. In effect, we actually have a scale. Of course this is a crude, very inaccurate scale. It is intended to show the basic load cell principle. [2] Load cells are made in different shapes and configurations. The strain gauges are strategically placed for peak performance. See the figure 3.6

Figure 3.6: load cell principle

The gauge factor $G F$ is defined as:

$$
\begin{equation*}
\mathrm{GF}=\frac{\Delta \mathrm{R} / \mathrm{R}_{\mathrm{G}}}{\epsilon} \tag{3.1}
\end{equation*}
$$

Where: $\Delta \mathrm{R}$ is the change in resistance caused by strain.
R_{G} is the resistance of the under formed gauge. ϵ is strain.

For metallic foil gauges, the gauge factor is usually a little over 2.For a single active gauge and three dummy resistors in a Wheatstone bridge configuration, the output V from the bridge is: [3]

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{BV} . \mathrm{GF} . \epsilon}{4} \tag{3.2}
\end{equation*}
$$

Where: BV is the bridge excitation voltage.

3.1.6 Load Cell Electrical Theory

The Wheatstone bridge configured above is a simple diagram of a load cell. The resistors marked T1 and T2 represent strain gauges that are placed in tension when load is applied to the cell. The resistors marked C 1 and C 2 represent strain gauges which are placed in compression when load is applied. [2]

The + In and -In leads are referred to as the + Excitation (+Exc) and -Excitation (-Exc) leads. The power is applied to the load cell from the weight indicator through these leads. The + Out and -Out leads are referred to as the + Signal (+Sig) and -Signal (-Sig) leads. The signal obtained from the load cell is sent to the signal inputs of the weight indicator to be processed and represented as a weight value on the indicator's digital display.

As weight is applied to the load cell, gauges C 1 and C 2 compress. The gauge wire becomes shorter and its diameter increases. This decreases the resistances of C 1 and C 2 . Simultaneously, gauges T1 and T2 are stretched. This lengthens and decreased the diameter of T 1 and T 2 , increasing their resistances. These changes in resistances cause more current to flow through C1 and C2 and less current to flow through T1 and T2. Now a potential difference is felt between the outputs or signal leads of the load cell.

Current is supplied by the indicator through the -In lead. Current flows from -In through C1 and through -Out to the indicator. From the indicator current flows through the +Out lead, through C2 and back to the indicator at + In. In order to have a complete circuit we needed to get current from the -In side of the power source (Indicator) to the +In side. You can see we accomplished that. We also needed to pass current through the indicator's signal reading circuitry. We accomplished that as the current passed from the -Out lead through the indicator and back to the load cell through the +Out lead. Because of the high internal impedance (resistance) of the indicator, very little current flows between -Out and +Out.

Since there is a potential difference between the -In and +In leads, there is still current flow from - In through T2 and C2 back to + In, and from -In through C1 and T1 back to +In. The majority of current flow in the circuit is through these parallel paths. Resistors are added in series with the input lines. These resistors compensate the load cell for temperature, correct zero and linearity.

We have replaced the ammeter with a voltmeter which will represent the display on our weight indicator. Also, the leads connected to our indicator are designated + Sig and -Sig. These represent our positive and negative signal leads. The represents our indicator's power supply that provides the precise voltage to excite or power the load cell. The resistance values represent our four strain gauges which make up our load cell.

Figure 3.7: Wheatstone bridge

Figure 3.8: Wheatstone bridge with a voltmeter

Now let's place a force on our load cell. Our force caused R1 and R4 to go into tension, which increased their resistances. R2 and R3 went into compression, which decreased their resistances. These changes are depicted in the following diagram.

The current flow in the branch is the branch voltage divided by the branch resistance:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{R} 1+\mathrm{R} 2}=\frac{\mathrm{E}_{\mathrm{R} 1+\mathrm{R} 2}}{\mathrm{R} 1+\mathrm{R} 2} \tag{3.3}
\end{equation*}
$$

$$
\mathrm{I}_{\mathrm{R} 3+\mathrm{R} 4}=\frac{\mathrm{E}_{\mathrm{R} 3+\mathrm{R} 4}}{\mathrm{R} 3+\mathrm{R} 4}
$$

From the Figure 3.8 the voltage at point 1 and 2, we can use Ohm's Law.

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{R} 3}=\mathrm{I}_{\mathrm{R} 3} \mathrm{R}_{3} & \ldots \ldots \ldots \ldots \ldots . \text { Equation (3.5) } \\
\mathrm{E}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 1} \mathrm{R}_{1} & \ldots \ldots \ldots \ldots \ldots . \text { Equation (3.6) } \tag{3.6}
\end{array}
$$

3.2 Wiring

A load cell may have a cable with four or six wires. A six-wire load cell, besides having +Ve and -Ve signal and +Ve and -Ve excitation lines, also has +Ve and -Ve sense lines. These sense lines are connected to the sense connections of the indicator.

These lines tell the indicator what the actual voltage is at the load cell. Sometimes there is a voltage drop between the indicator and load cell. The sense lines feed information back to the indicator. The indicator either adjusts its voltage to make up for the loss of voltage, or amplifies the return signal to compensate for the loss of power to the cell.

Load cell wires are color coded to help with proper connections. The load cell calibration data sheet for each load cell contains the color code information for that cell. Rice Lake Weighing Systems also provides a load cell wiring color guide on the back cover of our Load Cell Product Selection Guide. [2]

3.3 Calibration Data

Each load cell is furnished with a calibration data sheet or calibration certificate. This sheet gives you pertinent data about your load cell. The data sheet is matched to the load cell by model number, serial number and capacity. Other information found on a typical calibration data sheet is output expressed in mV / V, excitation voltage, non-linearity, hysteresis, zero balance, input resistance, output resistance, temperature effect on the output and zero balance, insulation resistance and cable length. The wiring color code is also included on the calibration data sheet.

3.4 Output

A load cell's output is not only determined by the weight applied, but also by the strength of the excitation voltage and its rated mV / V full scale output sensitivity.

3.5 Mechanical Theory

3.5.1 Bearing [In this part two cases for chosen the Bearing:]

Case1: No thrust loading just radial loading

1. Compute Fx and Fy by applying static equilibrium equations to the shaft supported by the bearing. See the figure 3.9.
2. Find the resultant radial load:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{r}}=\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}} \quad \ldots \ldots \ldots \ldots \ldots . \text { Equation (3.7) } \\
& \mathrm{F}_{\mathrm{D}}=\mathrm{a}_{\mathrm{f}} \mathrm{~V}_{\mathrm{r}} \quad \ldots \ldots \ldots \ldots \ldots . . \text { Equation (3.8) }
\end{aligned}
$$

Where: F_{r} is radial load on the bearing.
F_{x} is the force acting on the x -axis.
F_{y} is the force acting on the y-axis.
F_{D} is Design load.
a_{f} is Application factor we take its value from (Table 4-1), used because loads are often variable (non-steady) and may increase during operation.
V : rotation factor, takes into account whether the inner or outer race rotates
$V=\left\{\begin{array}{l}1.0 \text { rotating inner ring } \\ 2.0 \text { rotating outer ring }\end{array}\right.$
Usually the inner race of the bearing rotates.
3. Assume the desired life (LD) and Reliability (RD)

$$
\begin{equation*}
X_{D}=\frac{L_{D}}{L_{10}}=\frac{L_{D}}{10^{6}} \tag{3.9}
\end{equation*}
$$

Where: X_{D} is Life ratio.
L_{D} is Design Life.
L_{10} is Rating life and its value equal one million revaluation.
4. Calculate the required catalog rating:

$$
\begin{equation*}
C_{10}=\left(\frac{L_{D}}{L_{10}}\right)^{1 / a} * F_{D} \tag{3.10}
\end{equation*}
$$

Where: C_{10} is Catalog Rating.
5. Check the catalog and we select a suitable bearing from (Table4-3)

Case2: Radial and thrust loading

1. Compute $F x$ and $F y$ and $F a$ by applying static equilibrium equations to the shaft supported by the bearing.
2. Find the resultant radial load:

$$
\begin{equation*}
F_{r}=\sqrt{F_{x}^{2}+F_{y}^{2}} \tag{3.11}
\end{equation*}
$$

And calculate the ratio:

$$
F_{a} / V F_{r} \quad \ldots \ldots \ldots \ldots \ldots \text { Equation (3.12) }
$$

4. Assume the desired life $(L D)$ and Reliability ($R D$)

$$
X_{D}=\frac{L_{D}}{L_{10}}=\frac{L_{D}}{10^{6}}
$$

4. Start with assumed $F e$ (set the initial trial: $F_{e}=a_{f} \cdot V \cdot F_{r}$)
5. Compute C_{10} using:

$$
C_{10}=\left(\frac{L_{D}}{L_{10}}\right)^{1 / a} * F_{e}
$$

Factor of Safety:

Is a term describing the capacity of a system beyond the expected loads or actual load. Essentially is how much stronger the system is than it usually needs to be for an intended load.

$$
\begin{equation*}
n=\frac{s_{y}}{t} \tag{3.15}
\end{equation*}
$$

Where: n is Factor of Safety
s_{y} is Share stress
t is Material cross section

And we have two type of shear stress:

1) Single shear

$$
\begin{equation*}
\tau_{\text {avg }}=\frac{P}{A}=\frac{F}{A} \tag{3.16}
\end{equation*}
$$

2) Double shear

$$
\begin{equation*}
\tau_{\mathrm{avg}}=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{\mathrm{F}}{2 \mathrm{~A}} \tag{3.17}
\end{equation*}
$$

If the acceleration is known to be constant, the different equation relating time, position, velocity, and acceleration can be integrated.

- $\mathrm{V}=\mathrm{V}_{\mathrm{i}}+\mathrm{a}_{\mathrm{c}} \mathrm{t}$

Equation (3.18)

- $\mathrm{V}^{2}=\mathrm{V}_{\mathrm{i}}^{2}+2 \mathrm{a}_{\mathrm{c}}\left(\mathrm{S}-\mathrm{S}_{\mathrm{i}}\right) \quad \ldots \ldots \ldots \ldots \ldots .$. Equation (3.20)

Where: V is velocity
V_{i} is Initial velocity
a_{c} is Constant acceleration
t is Time
S_{f} is Final distance
S_{i} is Initial distance

If the path of motion is expressed in polar coordinates, the velocity and acceleration component can be related to the time derivative of r and θ

- $V_{r}=r^{\circ}$

Equation (3.21)

- $V_{\theta}=r \theta^{\circ} \quad \ldots \ldots \ldots \ldots \ldots .$. Equation (3.22)
- $\mathrm{a}_{\mathrm{r}}=\mathrm{r}^{00}-\mathrm{r} \theta^{\circ} \quad \ldots \ldots \ldots \ldots \ldots .$. . Equation (3.23)
- $a_{\theta}=r \theta^{\circ \circ}+2 r^{\circ} \theta^{\circ} \quad \ldots \ldots \ldots \ldots \ldots$. Equation (3.24)

Where: V_{r} is Radial Velocity
r is Position Vevtor
V_{θ} is Angular Velocity
a_{r} is Radial Acceleration
a_{θ} is Angular Acceleration

Chapter Four

Electrical Design

4.1 Electrical Design

4.2 Power Circuit
4.3 Control Circuit
4.4 Pneumatic Circuit

4.1 Electrical Design

We have two types of load:
1- Dead load
2- Live load

4.1.1 Dead Load

We have a many parts of conveyor that have different wieghts and this wieghts are the dead load in the load cell:
\checkmark The Belt, we weighing it and equal 0.5 kg .
\checkmark The Roller, we weighing it and equal 0.5 kg .
\checkmark The Bearing, we weighing it and equal 0.05 kg .
\checkmark The Pulley, we weighing it and equal 0.1 kg .
\checkmark The Sidebar, we weighing it and equal 0.5 kg .
\checkmark The Conveyor Carrier, we weighing it and equal 0.5 kg .
\checkmark The Motor and Gear ratio, we weighing it and equal 5 kg .

The following figure shows the dead load component of convyor:

Figure 4.1: Dead load Component of Convyor

According to this data we want calculate the total dead load weight of the conveyor:

$$
\begin{aligned}
& \text { dead load }=\text { belt weight }+2 \text { roller weight }+4 \text { bearing weight }+2 \text { sidebar weight } \\
& \begin{aligned}
+ \text { Conveyor carrier weight }+ \text { motor and gear weight } \quad \ldots . . . \text { Equation (4.1) }
\end{aligned} \\
& \begin{aligned}
\text { dead load } & =0.4 \mathrm{~kg}+(2 * 0.5) \mathrm{kg}+(4 * 0.05) \mathrm{kg}+(2 * 1) \mathrm{kg}+0.5 \mathrm{~kg}+5 \mathrm{~kg} \\
& =9.1 \mathrm{~kg} .
\end{aligned}
\end{aligned}
$$

4.1.2 Live Load

It is the different wieghts that pass on the conveyor and the range of this wieghts from 0.0 kg to 5.0 kg .

To choose the suitable load cell we will calculate the max wieght on the load cell.

$$
\begin{aligned}
\max \text { weight }= & \text { dead load }+\max \text { live load } \ldots \ldots \ldots . . \text { Equation (4.2) } \\
& \text { max weight }=9.1 \mathrm{~kg}+5 \mathrm{~kg}=14.1 \mathrm{~kg}
\end{aligned}
$$

According to the max weight we will choose the Low Profile Aluminium load cell that have weight min 0.0 kg and the max weigh is 5 kg due to the datasheet that attachment in (Appendix B).

4.1.3 Internal Design for the Load Cell

Full-bridge strain gauge circuit

Figure 4.2: Internal Design for the Load Cell

Gauge Factor

The gauge factor $G F$ is defined as:

$$
G F=\frac{\Delta R / R_{G}}{\epsilon}
$$

Equation (4.3)

Where ΔR : is the change in resistance caused by strain.
R_{G} : is the resistance of the under formed gauge.
ϵ : is strain.

For metallic foil gauges, the gauge factor is usually a little over 2. For single active gauge and three dummy resistors in a Wheatstone bridge configuration, the output V from the bridge is:

$$
v=\frac{B V \cdot G F . E}{4}
$$

Equation (4.4)

Where BV: is the Bridge Excitation Voltage.

We can't determine the change on gauge factor that effect on output signal that happen when we effect on the load cell by different weights; because the relationship between output signal and the weight is not defined in datasheet and we will find this difference by experiment.

4.2 Power Circuit

4.2.1 Symbol Address

Name	Symbol
Circuit Breaker	Q1
Earth Leakage	Q2
Contactor 1	KM1
Contactor 2	KM2
Over Load 1	RT1
Over Load 2	RT2
Motor 1	M1
Motor 2	M2

Table 4.1: Symbol Data for Power Circuit

4.2.2 Power Circuit Connection

4.3 Control Circuit

4.3.1 Inputs Symbol

Name	Symbol	Address	Description
Emergency	EM	X0	Digital input
NC Overload 1	SRT 1	X1	Digital input
NC Overload 2	SRT 2	X2	Digital input
Photo Sensor 1	S0	X3	Digital input
Photo Sensor 2	S1	X4	Digital input
Sensor Cylinder 1	S2	X5	Digital input
Sensor Cylinder 2	S3	X6	Digital input
Sensor Cylinder 3	S4	X7	Digital input

Table 4.2: Inputs Symbol Data for PLC Program Connections

4.3.2 Outputs Symbol

Name	Symbol	Address	Description
Contactor	KM1	Y0	Motors
Coil 1	Y1	Y1	Cylinder 1
Coil 2	Y2	Y2	Cylinder 2
Coil 3	Y3	Y3	Cylinder 3

Table 4.3: Outputs Symbol Data for PLC Program Connections

4.3.3 PLC Program Connections

4.3.4 Connection Module Load Cell

Figure 4.3: Connection Module Load Cell

4.4 Pneumatic Circuit

Figure 4.4: Connection Pneumatic Circuit

Chapter Five

Mechanical Design

5.1 Design of Conveyor
5.2 Calculating the Torque of the Conveyor
5.3 Calculating the Power of the Motor
5.4 Final Design Machine

5.1 Design of Conveyor

5.1.1 Design Bearing of Conveyor

In the design of conveyor bearing we consider that there is no thrust loading, and the loading is only radial.

Step 1: At first, we will compute F_{x} and F_{y} by applying static equilibrium equations to the shaft supported by the bearing.

$$
\begin{equation*}
\mathrm{s}_{\mathrm{f}}=\mathrm{s}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} a \mathrm{t}^{2} \tag{5.1}
\end{equation*}
$$

Where S_{f} : The distance from the middle to the end of the conveyor.
S_{i} : The initial distance, and equal zero.
v_{i} : Initial velocity of the belt.
a : Acceleration of the belt.

For Checkweigher:

$0.075=\frac{1}{2}$ at 2

$$
45 \rightarrow 60 \mathrm{sec}
$$

$0.15=\mathrm{a}(1.33)^{2}$

$$
1 \rightarrow t \mathrm{sec}
$$

$a=\frac{0.15}{1.7689}=0.084 \mathrm{~m}^{2} / \mathrm{sec}$

$$
t \sec =\frac{60}{45}=1.33 \mathrm{sec}
$$

For Infeed and Outfeed Conveyor:

$0.20=\frac{1}{2} \mathrm{at}^{2}$

$$
0.40=\mathrm{a}(3.54)^{2}
$$

$$
\mathrm{a}=\frac{0.40}{12.57}=0.031 \mathrm{~m}^{2} / \mathrm{sec}
$$

$$
\begin{aligned}
& 1.33 \mathrm{sec} \rightarrow 0.15 \mathrm{~m} \\
& t \mathrm{sec} \rightarrow 0.4 \mathrm{~m} \\
& t \mathrm{sec}=\frac{0.4 * 1.33}{0.15}=3.54 \mathrm{sec}
\end{aligned}
$$

Where
$\mathrm{F}_{\mathrm{x}}=\mathrm{m}_{1} * \mathrm{a}$
$\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{1} * \mathrm{~g}+\frac{1}{2} \mathrm{~m}_{2} * \mathrm{~g}$
F_{x} : Force on the x - axis.
F_{y} : Force on the y -axis.
a : acceleration of the belt.
m_{1} : mass of the object.
m_{2} : mass of the roller.

For Checkweigher:

$\mathrm{F}_{\mathrm{x}}=5 * 0.084=0.42 \mathrm{~N}$
$\mathrm{F}_{\mathrm{y}}=5 * 9.81+\frac{1}{2} * 0.5 * 9.81=51.5 \mathrm{~N}$.

For Infeed and Outfeed Conveyor:

$\mathrm{F}_{\mathrm{x}}=5 * 0.031=0.1589 \mathrm{~N}$
$\mathrm{F}_{\mathrm{y}}=5 * 9.81+\frac{1}{2} * 0.5 * 9.81=51.5 \mathrm{~N}$.

Step 2: Now we find the resultant radial load (F_{r})

For Checkweigher:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{r}}=\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}}=\sqrt{(0.42)^{2}+(51.5)^{2}} \\
& \mathrm{~F}_{\mathrm{r}}=51.5 \mathrm{~N} . \\
& \theta=\tan ^{-1} \frac{\mathrm{~F}_{\mathrm{Y}}}{\mathrm{~F}_{\mathrm{X}}}=\tan ^{-1} \frac{51.5}{0.42}=89.53^{\circ}
\end{aligned}
$$

For Infeed and Outfeed Conveyor:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{r}}=\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}}=\sqrt{(0.1589)^{2}+(51.5)^{2}} \\
& \mathrm{~F}_{\mathrm{r}}=51.5 \mathrm{~N} . \\
& \theta=\tan ^{-1}\left(\frac{\mathrm{~F}_{\mathrm{Y}}}{\mathrm{~F}_{\mathrm{X}}}\right)=\tan ^{-1}\left(\frac{51.5}{0.1589}\right)=89.82^{\circ}
\end{aligned}
$$

Specifying FD

The design load can be defined by:

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{a}_{\mathrm{f}} * \mathrm{~V} * \mathrm{Fr} \ldots \ldots \ldots \ldots \ldots \text { Equation (5.2) }
$$

Where: a_{f} is application factor (Table 5-1), used because loads are often variable (non-steady) and may increase during operation.

V rotation factor, takes into account whether the inner or outer race rotates ring outer rotating 1.2 ring inner rotating 0.1 V usually the inner race of the bearing rotate (i.e., $\mathrm{V}=1$).[8]
$\mathrm{V}=1 \quad$ (rotating inner ring).
$\mathrm{a}_{\mathrm{f}}=1 \quad$ (machinery with no impact).
$\mathrm{F}_{\mathrm{D}}=1 * 1 * 51.5=51.5 \mathrm{~N}$. Are the same for Checkweigher, Infeed and Outfeed Conveyor.

Step 3: Assuming the desired life $\left(L_{D}\right)$ and Reliability $\left(R_{D}\right)$, we find X_{D}

$$
\mathrm{X}_{\mathrm{D}}=\frac{\mathrm{L}_{\mathrm{Dh}}}{\mathrm{~L}_{10}} \quad \ldots \ldots \ldots \ldots . \text {. }
$$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{Dh}}=\mathrm{L}_{\mathrm{Dh}} * \mathrm{~N} * 60 \\
& \ddot{\theta}=\frac{\mathrm{a}}{\mathrm{r}}
\end{aligned}
$$

Where: $\ddot{\theta}$: angular accelaration of the pully.
r : radious of the pully.
X_{D} : Life ratio.
L_{D} : Desired life (revolutions).
L_{10} : Rating life (revolutions) $=1$ million rev.
$\mathrm{L}_{\mathrm{Dh}}=30000$ (general industrial machinery). (Table 5-2)
N : speed motor.

$$
\begin{aligned}
0.15 \mathrm{~m} & \rightarrow 0.05 \mathrm{~m} \\
\mathrm{x} \mathrm{rev} & \rightarrow 1 \mathrm{rev} \\
\mathrm{x} \mathrm{rev} & =\frac{0.15}{0.05}=3 \\
& =3 \mathrm{rev} / \mathrm{m}
\end{aligned}
$$

$$
0.05 \mathrm{~m} \rightarrow 0.01 \mathrm{~m}
$$

$$
\text { y rev } \rightarrow 1 \text { rev }
$$

$$
\mathrm{y} \mathrm{rev}=\frac{0.05}{0.01}=5
$$

$$
\mathrm{x}_{\mathrm{rev}} * \mathrm{y}_{\mathrm{rev}}=3 * 5
$$

$$
=15 \text { turn of motor per piece. }
$$

For Checkweigher:

Length of the conveyor $=0.15 \mathrm{~m}$.

Diameter of the roller $=0.05 \mathrm{~m}$.

Diameter of the rod $=0.01 \mathrm{~m}$.
$\ddot{\theta}=\frac{0.084}{0.01}=8.4 \mathrm{~m} / \mathrm{s}$
$\mathrm{N}=15 \frac{\mathrm{rev}}{\mathrm{m}} * \frac{1 \mathrm{~m}}{1.33 \mathrm{sec}} * \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=676.67 \mathrm{rpm}$
$\mathrm{L}_{\mathrm{Dh}}=30000 * 676.67 * 60=1218.006 * 10^{6}$
$\mathrm{X}_{\mathrm{D}}=\frac{1218.006 * 10^{6}}{1 * 10^{6}}=1218.006 \mathrm{Hp}$

For Infeed and Outfeed Conveyor:

Length of the conveyor $=0.40 \mathrm{~m}$.
Diameter of the roller $=0.05 \mathrm{~m}$.

Diameter of the rod $=0.01 \mathrm{~m}$.
$\ddot{\theta}=\frac{0.031}{0.01}=3.1 \mathrm{~m} / \mathrm{s}$
$\mathrm{N}=40 \frac{\mathrm{rev}}{\mathrm{m}} * \frac{1 \mathrm{~m}}{3.54 \mathrm{sec}} * \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=685.7 \mathrm{rpm}$
yrev $\rightarrow 1$ rev
$\mathrm{y} \mathrm{rev}=\frac{0.05}{0.01}=5$
$\mathrm{L}_{\mathrm{Dh}}=30000 * 685.7 * 60=1234.28 * 10^{6}$
$X_{D}=\frac{1234.28 * 10^{6}}{1 * 10^{6}}=1234.28 \mathrm{~h}$
x rev * y rev=8*5=40 turn of motor per piece

Step 4: Calculate the required catalog rating:
$\mathrm{C}_{10}=\mathrm{X}_{\mathrm{D}}^{1 / \mathrm{a}} * \mathrm{~F}_{\mathrm{D}}$
Where C_{10} : is Catalog rating.
$a=\left\{\begin{array}{cl}3 & \text { for ball bearing } \\ 3.33 & \text { for roller bearing }\end{array}\right.$

For Checkweigher:

$$
\mathrm{C}_{10}=(1218.006)^{1 / 3} * 51.5=549.99 \mathrm{~N} \rightarrow 0.54999 \mathrm{KN}
$$

For Infeed and Outfeed Conveyor:

$$
\mathrm{C}_{10}=(1234.28)^{1 / 3} * 51.5=552.43 \mathrm{~N} \rightarrow 0.55243 \mathrm{KN}
$$

Step 5: Check the catalog and select a suitable bearing from (Table 5-3)

For Checkweigher:

$\mathrm{C} 10=0.54999 \mathrm{KN}$, Bore $=10 \mathrm{~mm}, \mathrm{OD}=30 \mathrm{~mm}$.

For Infeed and Outfeed Conveyor:

$\mathrm{C} 10=0.55243 \mathrm{KN}$, Bore $=10 \mathrm{~mm}, \mathrm{OD}=30 \mathrm{~mm}$.

Figure 5.1: Angular Contact Ball Bearing

5.2 Calculating the Torque of the Conveyor

$$
\mathrm{T}=\mathrm{J}_{\mathrm{e}} \ddot{\theta}+\mathrm{F}_{\mathrm{r}} \cdot \mathrm{r} \quad \ldots \ldots \ldots \ldots \ldots . \text { Equation (5.4) }
$$

Where J_{e} : is equivalent moment inertia.
T : Torque.

5.2.1 Calculate the total moment inertia of checkweigher conveyor

- $J_{\text {Bearing }}=\frac{\pi}{2}\left(r_{\text {out }}-r_{\text {inner }}\right)^{4}$

Equation (5.5)

Where $r_{\text {out }}$: is outradious.
$r_{\text {inner }}$: is innerradious.

For checkweigher:

$$
\begin{aligned}
J_{\text {Bearing }} & =\frac{\pi}{2}(0.028-0.01)^{4} \\
& =1.6489 * 10^{-7} \mathrm{Kg} / \mathrm{m}^{2}
\end{aligned}
$$

For Infeed and Outfeed Conveyor:

$$
\begin{aligned}
J_{\text {Bearing }} & =\frac{\pi}{2}(0.028-0.01)^{4} \\
& =1.6489 * 10^{-7} \mathrm{Kg} / \mathrm{m}^{2}
\end{aligned}
$$

- $J_{o b j e c t}=V^{2} * m$ \qquad Equation (5.6)

Where V : is velocity of conveyor.

For Checkweigher:	For Infeed and Outfeed Conveyor:
$\begin{aligned} & 45 \text { object } \rightarrow 60 \text { sec. } \\ & X \text { object } \rightarrow 60 \text { sec. } \end{aligned}$	45 object $\rightarrow 60 \mathrm{sec}$. X object $\rightarrow 60$ sec.
$\begin{aligned} X & =\frac{45 * 60}{60} \\ & =45 \text { object } / \mathrm{s} \\ v & =\frac{0.15}{1.33}=0.1127 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} X & =\frac{45 * 60}{60} \\ & =45 \text { object } / \mathrm{s} \\ v & =\frac{0.40}{3.5}=0.1142 \mathrm{~m} / \mathrm{s} \end{aligned}$
$\begin{aligned} J_{o b j e c t} & =0.1127^{2} * 55 \\ & =0.0635 \mathrm{Kg} / \mathrm{m}^{2} \end{aligned}$	$\begin{array}{r} J_{\text {object }}=0.1142^{2} * 5 \\ =0.0653 \mathrm{Kg} / \mathrm{m}^{2} \end{array}$

- $J_{B e l t}=\frac{V * m_{3}}{w}$ \qquad

Where m_{3} : is massof theBelt.
w: angularvelocity.

For Checkweigher:	For Infeed and Outfeed Conveyor:
$w=\frac{2 \pi N}{60}$	$w=\frac{2 \pi N}{60}$
$w=\frac{2 \pi * 676.67}{60}$	$w=\frac{2 \pi * 685.7}{60}$
$=70.8 \mathrm{~s}^{-1}$	$=71.8 \mathrm{~s}^{-1}$
$\begin{aligned} J_{\text {Belt }} & =\frac{0.1127 * 0.4}{70.8} \\ & =6.367 * 10^{-4} \mathrm{Kg} / \mathrm{m}^{2} \end{aligned}$	$\begin{aligned} J_{\text {Belt }} & =\frac{0.1142 * 0.4}{71.81} \\ & =6.36211 * 10^{-4} \mathrm{Kg} / \mathrm{m}^{2} \end{aligned}$

- $J_{\text {roller }}=\frac{1}{4} m_{4} r^{2}+\frac{1}{3} m_{4} l^{2}$ \qquad Equation (5.8)

Where m_{4} : is massoftheroller.
l :lengthoftheroller.

For checkweigher:

$$
\begin{aligned}
& J_{\text {roller }}=\frac{1}{4} * 0.5 *(0.025)^{2}+\frac{1}{3} * 0 . * 0.14^{2} \\
& =3.344 * 10^{-3} \mathrm{Kg} / \mathrm{m}^{2}
\end{aligned}
$$

For Infeed and Outfeed Conveyor:

$$
\begin{aligned}
J_{\text {roller }} & =\frac{1}{4} * 0.5 *(0.025)^{2}+\frac{1}{3} * 0.5 * 0.14^{2} \\
& =3.344 * 10^{-3} \mathrm{Kg} / \mathrm{m}^{2}
\end{aligned}
$$

For Checkweigher:

$$
\begin{aligned}
J_{e} & =2 * J_{\text {roller }}+4 * J_{\text {Bearing }}+J_{\text {object }}+J_{\text {Belt }} \quad \ldots \ldots . \ldots \text { Equation }(5.9) \\
J_{e} & =\left(2 * 3.344 * 10^{-3}\right)+\left(4 * 1.6489 * 10^{-7}\right)+(0.0635)+\left(6.367 * 10^{-4}\right) \\
& =0.0708 \mathrm{Kg} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\mathrm{T}=\mathrm{J}_{\mathrm{e}} \ddot{\theta}+\mathrm{F}_{\mathrm{r}} \cdot \mathrm{r}
$$

\qquad Equation (5.10)

$$
=0.0708 * 8.4+51.5 * 0.01=1.109 \mathrm{~N} . \mathrm{m}
$$

Figure 5.2: Free body
Diagram of Cylinder

For Infeed and Outfeed Conveyor:

$$
\begin{aligned}
J_{e}= & J_{\text {pull }}+2 * J_{\text {roller }}+4 * J_{\text {Bearing }}+J_{\text {object }}+J_{\text {Belt }} \\
J_{e}= & \left(1.5707 * 10^{-8}\right)+\left(2 * 3.344 * 10^{-3}\right)+\left(4 * 1.6489 * 10^{-7}\right) \\
& +(0.0653)+\left(6.36211 * 10^{-4}\right) . \\
= & 0.07262 \mathrm{Kg} / \mathrm{m}^{2}
\end{aligned}
$$

$J_{e(\text { total })}=J_{e} * 2$
$J_{e(\text { total })}=0.07262 * 2=0.1452 \mathrm{Kg} / \mathrm{m}^{2}$

$$
\begin{aligned}
\mathrm{T} & =\mathrm{J}_{\mathrm{e} \text { (total }} \ddot{\theta}+\mathrm{F}_{\mathrm{r}} \cdot \mathrm{r} \\
& =0.1452 * 3.1+51.5 * 0.01=0.9652 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

5.3 Calculating the Power of the Motor

$$
\begin{aligned}
& P_{\text {out }}=w . T \\
& H_{p}=\frac{P_{\text {out }}}{746} \quad \ldots \ldots \ldots \ldots \text { Equation (5.11) } \\
& H_{p(\text { safty factor })}=\alpha * H_{p}
\end{aligned}
$$

Where H_{p} : is hourse power.
α :isasaftyfactor equal 1.13

For Checkweigher:	For Infeed and Outfeed Conveyor:
$p_{\text {out }}=70.8 * 1.109=78.58$ Watt.	$p_{\text {out }}=71.81 * 0.9652=69.31 \mathrm{Watt}$.
$H_{p}=\frac{78.58}{746}=0.105 H_{p}$	$H_{p}=\frac{69.31}{746}=0.0929 H_{p}$ $H_{p(\text { safty factor })}=1.13 * 0.105$ $=0.119 H_{p}$
$H_{p(\text { safty factor })}=1.13 * 0.0929$ $=0.104 H_{p}$	

After we make a calculation, we choose a motor $0.18 \mathrm{HP}, 1500 \mathrm{rpm}$, 3-phase as shown in figure

Figure 5.3: Electrical Motor

5.4 Final Design Machine

Figure 5.4: Final Design Machine

6

Chapter Six

Testing and Evaluating

6.1 Introduction

6.2 Experimental Result
6.3 Recommendations
6.4 Future Work
6.5 Project Cost

6.1 Introduction

This chapter provides experimental result and some recommendations from the work learned from this project. In this chapter we are listing some goals hope to be accomplished or at least under attention.

6.2 Experimental Result

We made some experiments on parts of our project and these are some of results:

1. By interring the object to the infeed conveyer by push object by the pneumatic piston and translate the object to the checkweigher.
2. When the object passing on the checkweigher loaded on the load cell, the load cell reads its weight and sends this read to the PLC, then the PLC display the weight of the object on the HMI.
3. Then the PLC compare the read if it's equal the specified weight or not, if the reads value equal the specified weight the PLC send command to reject object to the right side otherwise send command to reject object to the left side .

6.3 Recommendations

1. The load cell should be put in isolated region so is not affected for noising.
2. The load cell is more sensitive so you should be more careful when installed it.
3. In this machine you should do the maintenance every 6 months to extend the life of the machine.

6.4 Future Work

The following tasks are suggested as future work:

1. The project can be improved for more accuracy and can it used for weighing very small weight and very large weight.
2. Improving the project for used in variable introduction line, not just in packaging machine.
3. Improving the project by using different type of reject better than the arm reject for more reliability.
4. Improving the project so that becomes more diagnostic.

6.5 Project Cost

Description	Price
PLC.........	1200
PLC Module	850
PLC Power Supply	
HMI	1450 п
USB Cable for PLC	100
Pneumatic Valve	200
Electrical Works	600
Mechanical Design .	800
Mechanical Works	800
Motors	300
Load Cell	200
Electrical Board	400
Total Price	7100

Table 6.1: Project Cost

References

[1] http://www.cisco-eagle.com/catalog/c-3344-what-is-a-conveyor.aspx.
[2] Rice Lake, Wisconsin, USA 54868, LOAD CELL HANDBOOK A Comprehensive Guide to Load Cell Theory, Construction and Use.
[3] http://www.us.anritsu-industry.com/rejector-systems.aspx.
[4] http://whatis.techtarget.com/definition/human-machine-interface-HMI.
[5] http://www.baumer.com/us-en/products/presence-detection/magnetic-sensors/magnetic-cylinder-sensors.
[6] https://www.festo.com/wiki/en/Pneumatic_cylinders.
[7] http://www.loadstarsensors.com/what-is-a-load-cell.html.
[8] Mechanical Engineering Design, chapter11-bearings-yousef 9th edition.

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G
Type of Application
Load Facłor
Precision gearing 1.0-1.1
Commercial gearing 1.1-1.3
Applications with poor bearing seals 1.2
Machinery with no impact 1.0-1.2
Machinery with light impact 1.2-1.5
Machinery with moderate impact 1.5-3.0

Table 5-1:
Application factor, a_{f}

Domestic appliances	$1000-2000$
Aircraft engines	$1000-4000$
Automotive	$1500-5000$
Agricultural equipment	$3000-6000$
Elevators, industrial fans, multipurpose gearing	$8000-15000$
Electric motors, industrial blowers, general industrial machines	$20000-30000$
Pumps and compressors	$40000-60000$
Critical equipment in continuous, 24-h operation	$100000-200000$
Source: Eugene A. Avallone and Theodore Baumeister III, eds., Marks' Standard Handbook for Mechanical	
Engineers, 9th ed. New York: McGraw-Hill, 1986.	

Table 5-2:
Recommended design life for bearings

Bore, mm	OD,mm	Width, mm	Fillet Radius, mm	Shoulder Diameter, mm		Load Ratings, kN			
						Deep Groove		Angular Contact	
				d_{s}	d_{H}	C_{10}	C_{0}	C_{10}	C_{0}
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

Table 5-3:
Dimension and load rating for single-row 0.2 -series deep-groove and angular-contact ball bearing.

Low Profile Aluminum Load Cell

FEATURES

- Capacities $1-200 \mathrm{~kg}$
- Aluminum construction
- Single-point $400 \times 400 \mathrm{~mm}$ platform
- OIML R60 and NTEP approved
- IP66 protection
- Available with metric and UNC threads
- Optional
- ATEX, FM, and IECEx approvals available
- High stiffness version available for dynamic weighing applications

APPLICATIONS

- Bench scales
- Counting scales
- Grocery scales

DESCRIPTION

Model 1042 is a low profile single-point load cell designed for direct mounting in weighing platforms.
Its small physical size, combined with high accuracy and low cost, makes this load cell ideally suited for retail, bench and counting scales.

Capacities of 5 kg and above are supplied as standard in anodized aluminum. This high accuracy load cell is approved to NTEP and other stringent approval standards, including OIML R60.
A humidity resistant protective coating assures long-term stability over the entire compensated temperature range.
The two additional sense wires feed back the voltage reaching the load cell. Complete compensation of changes in lead resistance due to temperature change and/or cable extenstion, is achieved by feeding this voltage into the appropriate electronics.

OUTLINE DIMENSIONS in millimeters

Capacity, kg	A
$1-30$	20
$50-200$	25.4

4 Mounting holes
M6-6H or 1/4"-20 UNC-2B

Low Profile Aluminum Load Cell

SPECIFICATIONS					
PARAMETER	VALUE				UNIT
Rated capacity-R.C. (Emax)	$1^{(1)}, 3,5,7,10,15,20,30,50,75,100,150{ }^{(1)}, 200^{(1)}$				kg
NTEP/OIML accuracy class	NTEP	Non-Approved	C3 ${ }^{(2)}$	C6 ${ }^{(3)}$	
Maximum no. of intervals (n)	5000 single	1000	3000	$6000{ }^{(4)}$	
$\mathrm{Y}=\mathrm{E}_{\text {max }} / \mathrm{V}_{\text {min }}$	10000	1400	6000	10000	Maximum available 20000
Rated output-R.O.	2.0				mV / V
Rated output tolerance	0.2				$\pm \mathrm{mV} / \mathrm{V}$
Zero balance	0.2				$\pm \mathrm{mV} / \mathrm{V}$
Zero return, 30 min .	0.0100	0.0500	0.0170	0.0083	$\pm \%$ of applied load
Total error (per OIML R60)	0.0200	0.0300	0.0200	0.0100	$\pm \%$ of rated output
Temperature effect on zero	0.0014	0.0100	0.0023	0.0014	$\pm \%$ of rated output/ ${ }^{\circ} \mathrm{C}$
Temperature effect on output	0.0010	0.0030	0.0010	0.00058	$\pm \%$ of applied load/ ${ }^{\circ} \mathrm{C}$
Eccentric loading error	0.0042	0.0074	0.0049	0.0024	$\pm \%$ of rated load/cm
Temp. range, compensated	-10 to +40				${ }^{\circ} \mathrm{C}$
Temp. range, safe	-30 to +70				${ }^{\circ} \mathrm{C}$
Maximum safe central overload	150				\% of R.C.
Ultimate central overload	300				\% of R.C.
Excitation, recommended	10				VDC or VAC RMS
Excitation, maximum	15				VDC or VAC RMS
Input impedance	415 ± 20				Ω
Output impedance	350 ± 3				Ω
Insulation resistance	>2000				$\mathrm{M} \Omega$
Cable length	$1^{(5)}$				m
Cable type	6 wire, PVC, single floating screen				Standard
Construction	Plated (anodize) aluminum				
Environmental protection	IP66				
Platform size (max)	400×400				mm
Recommended torque	Up to $30 \mathrm{~kg}: 7.0$ 35 kg and above: 10.0				$\mathrm{N}^{*} \mathrm{~m}$

${ }^{(1)} 1 \mathrm{~kg}$ and 200 kg not approved by OIML; 150 and 200 kg are not approved by NTEP.
${ }^{(2)} 50 \%$ utilization.
${ }^{(3)} 60 \%$ utilization.
(4) 6000 divisions from 20 kg to 100 kg .
${ }^{(5)}$ Options: 4-wire cable; different cable lengths; side cable entry.
All specifications subject to change without notice.

WIRING SCHEMATIC DIAGRAM (Unbalanced bridge configuration)

WIRING SCHEMATIC DIAGRAM
(Balanced bridge configuration)

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.
Copyright Vishay Precision Group, Inc., 2014. All rights reserved.

4.3 Control Circuit

Tubular Sensors - S50/S51 ФDALALOGIC

||||||||||||||||||||||||||| 5S50/S51
 Extended range of standard "One for All" photoelectric tubular M18 sensors

- All optic functions and LASER models
- M18 flat plastic with universal mounting
- Available in M18 metal housing
- Axial or radial optics, cable or connector
- Standard 4-wire NO-NC NPN or PNP output

APPLICATIONS
-Processing and Packaging machinery -Conveyor lines, material handling -Ceramics intralogistics
-Automated warehousing

(*) Axial models. ATEXII3DG

S50/S51		
Through beam		$\begin{gathered} 0 \ldots . .20 \mathrm{~m} \\ 0 \ldots . .60 \mathrm{~m} \text { (class } 1 \text { LASER) (S50) } \end{gathered}$
Retroreflective (on R2 reflector)		$0,1 \ldots . .4 \mathrm{~m}$
Polarized retroreflective		$\begin{gathered} 0,1 \ldots . .4 \text { m (S50) 0,1 ... } 3 \text { m (S51) } \\ 0,1 \ldots 16 \text { m (class } 1 \text { LASER) (S50) } \end{gathered}$
Retroreflective for transparent (on R2 reflector)		0,1...1,3 m (S50)
Diffuse proximity		```short distance 0...100 mm medium distance 0...400 mm (S50) 0...450 mm (S51) long distance 0...700 mm long distance LASER 0... }350\textrm{mm```
Fixed focus		100 mm (550)
Background suppression		50... 100 mm (S50)
Through beam with fiber optic		$0 . . .100 \mathrm{~mm}$ (S50)
Diffuse proximity with fiber optic		$0 . .30 \mathrm{~mm}$ (S50)
Contrast sensor		$10 \pm 2 \mathrm{~mm}$
Luminescence sensor		0... 20 mm
Power supply	Vdc	10... 30 V
	Vac	
	$\mathrm{Vac} / \mathrm{dc}$	
Output	PNP	-
	NPN	-
	NPN/PNP	
	relay	
	other	
Connection	cable	-
	connector	-
	pig-tail	
Approximate dimensions (mm)		M18x 55/68
Housing material		PBT, nickel plated brass
Mechanical protection		IP67

Tubular Sensors - S50/S51

	TECHNICAL DATA
Power supply	10 ... 30 Vdc (limit values)
Ripple	2 Vpp max.
Consumption (output current excluded)	35 mA max. (mod. S50...A00/B01/C01/C10/C21/D00/E01/T01) 30 mA max. (mod. S50...F01/M03, S51...A00/B01/C01/C10/C20/F00) 25 mA max. (mod. S50...W03/U03)
Light emission	```red LED 630 nm (mod. S50...D00/E01, S50-PA/MA...M03) red LED 660 nm (mod. S50...B01/T01, S51...B01) red LED }670\mathrm{ nm (mod. S50-PS/MS...M03) IR LED 880 nm (mod. S50/51...A00/C01/C10/C20/C21/G00) white LED 400-700 nm (mod. S50...W03) UV LED 370 nm (mod. S50...U03) red Laser 650 nm (mod. S50...G00/F01/B01/C01)```
Setting	sensivity trimmer (mod. B01/C01/C21/E01/F01/T01) teach-in push-button (mod. M03/W03/U03)
Operating mode	LIGHT mode on N.O. output / DARK mode on N.C. output (mod.S50...C01/C10/C21/D00/M03/U03) DARK mode on N.O. output / LIGHT mode on N.C. output (mod.S50...A00/B01/E01/F01/T01/W03) white wire or pin 2 connected to +10 ...30V LIGHT mode/ to OV DARK mode (mod. S51) white wire or pin 2 not connected LIGHT mode (mod. S51...C01/C10/C20)/ DARK mode (mod. S51...A00/B01/F00)
Indicators	yellow OUTPUT LED (S50, S51, excl. mod. G00) green STABILITY LED (mod. S50...B01/C01/C21/E01/F01), POWER LED (mod. S50...G00, S51) green/red READY/ERROR LED (mod. S50...M03/W03/U03)
Output	PNP or NPN; NO; NC (mod. S50)
Output current	100 mA max.
Saturation voltage	2 V max.
Response time	```0,5 ms (mod. S50...A00/B01/T01/C10/C21/C01/D00/E01/U03) 2 ms (mod. S50...F01/G00) 1 ms (mod. S50...M03, S51...A00/B01/C01/C10/G00) 4 ms (mod. S51...F00) 100 \mus (mod. S50...WO3) 333 \mus (Laser mod. S50)```
Switching frequency	```1 kHz (mod. S50...A00/B01/T01/C10/C21/C01/D00/E01/U03) 250 Hz (mod. S50...F01/G00) 500 Hz (mod. S50...M03, S51...A00/B01/C01/C10/G00) 120 Hz (mod. S51...F00) 5 kHz (mod. S50...WO3) 1,5 kHz (Laser mod. S50)```
Connection	2 m cable $\emptyset 4 \mathrm{~mm}$, M12 4-pole connector
Dielectric strength	$500 \mathrm{Vac}, 1 \mathrm{~min}$ between electronics and housing
Insulating resistance	>20 M $2,500 \mathrm{Vdc}$ between electronics and housing
Electrical protection	class 2
Mechanical protection	IP67
Ambient light rejection	according to EN 60947-5-2
Vibrations	0,5 mm amplitude, $10 \ldots 55 \mathrm{~Hz}$ frequency, for every axis (EN60068-2-6)
Shock resistance	$11 \mathrm{~ms} \mathrm{(30} \mathrm{G)} 6$ shock for every axis (EN60068-2-27)
Housing material	Plastic version PBT Metal version nickel plated brass
Lens material	PMMA
Operating temperature	$\begin{gathered} -25 \ldots 55^{\circ} \mathrm{C} \\ \text { (Laser mod.) }-10 \ldots 50^{\circ} \mathrm{C} \end{gathered}$
Storage temperature	$-25 \ldots . .70^{\circ} \mathrm{C}$
Weight	Plastic version 75 g max. cable vers. (90 g max. mod. M03), 25 g max. conn. vers. ($40 \mathrm{~g} \max . \bmod$. MO3) Metal version 110 g max. cable vers. (125 g max. mod. M03), 60 g max. conn. vers. (75 g max. mod. MO3)

Tubular Sensors - S50/S51

S50

DIMENSIONS
PLASTIC

AXIAL VERSION

	M O D E L S	
	with trimmer	without trimmer
L	67	57
X	43	42
X 1	34	24

RADIAL VERSION

FIBRE OPTIC VERSION

METAL

AXIAL VERSION

RADIAL VERSION

FIBRE OPTIC VERSION

Tubular Sensors - S50/S51 ФDALALOGIC

BACKGROUND SUPPRESSION AXIAL VERSION

PLASTIC

METAL

CABLE VERSION

BACKGROUND SUPPRESSION RADIAL VERSION

PLASTIC

METAL

LUMINESCENCE AND CONTRAST

PLASTIC

CABLE VERSION

:METAL

CABLE VERSION

CONNECTIONS

BROWN	1	$10 . . .30 \mathrm{Vdc}$
WHITE	2	
BLACK	4	
BLUE	3	

CABLE

Through beam emitter

BROWN	1	$10 \ldots 30 \mathrm{Vdc}$
WHITE	2	TEST+
BLACK	4	
BLUE	3.	

M12 CONNECTOR

DIMENSIONS

PLASTIC

CABLE VERS.

CH. 22 PLASTIC NUTS

METAL

RADIAL VERSION

CONNECTIONS
CABLE
Through beam emitter

CABLE VERSION

M12 CONNECTOR

S50/S51

INDICATORS AND SETTINGS

S50-XX...A00/B01/C01/C21/E01/F01/T01
S51-XX...B01/C01

A OUTPUT status LED Yellow STABILITY LED Green (Only Receiver) POWER ON LED Green (Only Emitter)

B Adjustment trimmer (receiver)

Single-turn trimmer for sensitivity adjustment. Rotate in a clockwise direction to increase the operating distance.

Teach-in button for setting.
EASYtouch ${ }^{\text {TM }}$ provides two setting modes: standard or fine, both obtained by pressing the push-button only once. Please refer to instructions manual for operating details.

A00/C10/C20/F00
A OUTPUT status LED Yellow STABILITY LED green

GOO
OUTPUT status LED yellow (Only Emitter GOO)

Tubular Sensors - S50/S51

S50 DETECTION DIAGRAMS

axial			25	30
radial		20	25	
0				
$30(\mathrm{~m})$				

Recommended operating distance

Maximum operating distance

axial		15	20
radial	10	15	
0	5	10	15

Recommended operating distance
Maximum operating distance

Operating distance

Operating distance

Tubular Sensors - S50/S51 €DALALOGIC

B RED EMISSION

axial on R5				4	4.5
axial on R2		3.5	4		
radial on R5	2.5	3			

Recommended operating distance
Maximum operating distance
High efficiency reflectors can be used to obtain larger operating distances. Refer to Reflectors (A.01).

B LASER RED EMISSION

Operating distance
High efficiency reflectors can be used to obtain larger operating distances. Refer to Reflectors (A.01).

High efficiency reflectors can be used to obtain larger operating distances.Refer to Reflectors.

Tubular Sensors - S50/S51 ФDALALOGIC

C SHORT INFRARED EMISSION

Recommended operating distance
Maximum operating distance
Man

axial			
radial	35	40	
	30	45	60
0	15	30	

Recommended operating distance
Maximum operating distance
Man

axial			
radial	35	40	
	30	45	60
0	15	30	

Recommended operating distance
Maximum operating distanceRecommended operating distance
Maximum operating distance

Recommended operating distance
Maximum operating distance

C MID INFRARED EMISSION

C LONG INFRARED EMISSION

D RED EMISSION

Tubular Sensors - S50/S51

Operating distance

Operating distance with standard fibers

Standard Fiber-optics:

OF-42-ST-20 proximity
OF-43-ST-20 through beam
High efficiency fiber-optics or accessory lenses can be used to obtain larger operating distances.

M AXIAL RED EMISSION

M RADIAL RED EMISSION

E RED EMISSION

C LASER RED EMISSION

[^0]
Tubular Sensors - S50/S51 ÐDALALOGIC

Operating distance

W WHITE EMISSION

U UV EMISSION

\square Operating distance

M18 STANDARD

Note: the diagrams indicate the detection area typical of the axial optic versions; the maximum operating distance of the radial optic versions decreases as indicated in the tables given below

Recommended operating distance Maximum operating distance

Tubular Sensors - S50/S51

MODEL SELECTION AND ORDER INFORMATION

S50 PLASTIC MODELS					
OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
Retroreflective	LED, Axial optic	2 m Cable	NPN	S50-PA-2-A00-NN	952002090
			PNP	S50-PA-2-A00-PP	952002080
		M12 Connector	NPN	S50-PA-5-A00-NN	952002110
			PNP	S50-PA-5-A00-PP	952002100
Polarized retroreflective	LED, Axial optic	2 m Cable	NPN	S50-PA-2-B01-NN	952001610
			PNP	S50-PA-2-B01-PP	952001010
		M12 Connector	NPN	S50-PA-5-B01-NN	952001500
			PNP	S50-PA-5-B01-PP	952001020
	LED, Radial optic	2m Cable	NPN	S50-PR-2-B01-NN	952001780
			PNP	S50-PR-2-B01-PP	952001030
		M12 Connector	NPN	S50-PR-5-B01-NN	952001720
			PNP	S50-PR-5-B01-PP	952001040
	LASER, Axial optic	2 m Cable	NPN	S50-PL-2-B01-NN	952001870
			PNP	S50-PL-2-B01-PP	952001360
		M12 Connector	NPN	S50-PL-5-B01-NN	952001840
			PNP	S50-PL-5-B01-PP	952001370
	LASER, Radial optic	2 m Cable	NPN	S50-PH-2-B01-NN	952001950
			PNP	S50-PH-2-B01-PP	952001940
		M12 Connector	NPN	S50-PH-5-B01-NN	952001970
			PNP	S50-PH-5-B01-PP	952001960
Long Diffuse proximity	LED, Axial optic	2 m Cable	NPN	S50-PA-2-C01-NN	952001620
			PNP	S50-PA-2-C01-PP	952001050
		M12 Connector	NPN	S50-PA-5-C01-NN	952001510
			PNP	S50-PA-5-C01-PP	952001060
	LED, Radial optic	2 m Cable	NPN	S50-PR-2-C01-NN	952001790
			PNP	S50-PR-2-C01-PP	952001070
		M12 Connector	NPN	S50-PR-5-C01-NN	952001730
			PNP	S50-PR-5-C01-PP	952001080
	LASER, Axial optic	2 m Cable	NPN	S50-PL-2-C01-NN	952001880
			PNP	S50-PL-2-C01-PP	952001380
		M12 Connector	NPN	S50-PL-5-C01-NN	952001850
			PNP	S50-PL-5-C01-PP	952001390
	LASER, Radial optic	2 m Cable	NPN	S50-PH-2-C01-NN	952001990
			PNP	S50-PH-2-C01-PP	952001980
		M12 Connector	NPN	S50-PH-5-C01-NN	952002010
			PNP	S50-PH-5-C01-PP	952002000
Short Diffuse proximity	LED, Axial optic	2 m Cable	NPN	S50-PA-2-C10-NN	952001630
			PNP	S50-PA-2-C10-PP	952001240
		M12 Connector	NPN	S50-PA-5-C10-NN	952001520
			PNP	S50-PA-5-C10-PP	952001250
	LED, Radial optic	2 m Cable	NPN	S50-PR-2-C10-NN	952001800
			PNP	S50-PR-2-C10-PP	952001490
		M12 Connector	NPN	S50-PR-5-C10-NN	952001740
			PNP	S50-PR-5-C10-PP	952001480
Medium Diffuse proximity	LED, Axial optic	2 m Cable	NPN	S50-PA-2-C21-NN	952002170
			PNP	S50-PA-2-C21-PP	952002160
		M12 Connector	NPN	S50-PA-5-C21-NN	952002190
			PNP	S50-PA-5-C21-PP	952002180
Fixed focus	LED, Axial optic	2 m Cable	NPN	S50-PA-2-D00-NN	952001640
			PNP	S50-PA-2-D00-PP	952001090
		M12 Connector	NPN	S50-PA-5-D00-NN	952001530
			PNP	S50-PA-5-D00-PP	952001100
	LED, Radial optic	2 m Cable	NPN	S50-PR-2-D00-NN	952001810
			PNP	S50-PR-2-D00-PP	952001110
		M12 Connector	NPN	S50-PR-5-D00-NN	952001750
			PNP	S50-PR-5-D00-PP	952001120
Fiber optic	LED, Axial optic	2 m Cable	NPN	S50-PA-2-E01-NN	952001650
			PNP	S50-PA-2-E01-PP	952001130
		M12 Connector	NPN	S50-PA-5-E01-NN	952001540
			PNP	S50-PA-5-E01-PP	952001140

OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
		2m Cable	NPN	S50-PA-2-F01-NN	952001660
		2nCable	PNP	S50-PA-2-F01-PP	952001150
		M12 Conector	NPN	S50-PA-5-F01-NN	952001550
		Mr Connector	PNP	S50-PA-5-F01-PP	952001160
		2 mCabl	NPN	S50-PR-2-F01-NN	952001820
			PNP	S50-PR-2-F01-PP	952001170
		M12 Connector	NPN	S50-PR-5-F01-NN	952001760
		M12Connector	PNP	S50-PR-5-F01-PP	952001180
Through bean receiver		2 m Cable	NPN	S50-PL-2-F01-NN	952001890
		2mCable	PNP	S50-PL-2-F01-PP	952001400
		M12 Connector	NPN	S50-PL-5-F01-NN	952001860
		Mre	PNP	S50-PL-5-F01-PP	952001410
		2	NPN	S50-PH-2-F01-NN	952002030
	LASER Radial optic	2 Cable	PNP	S50-PH-2-F01-PP	952002020
	LASER, Radia optic	M12 Connector	NPN	S50-PH-5-F01-NN	952002050
		M12Connector	PNP	S50-PH-5-F01-PP	952002040
	LED, Axial optic	2m Cable	-	S50-PA-2-G00-XG	952001190
	LE, Axial optic	M12 Connector	-	S50-PA-5-G00-XG	952001200
	ED, Radial optic	2 m Cable	-	S50-PR-2-G00-XG	952001210
Through beam emitter	LED, Radal optic	M12 Connector	-	S50-PR-5-G00-XG	952001220
Throug beam enitter	LASER Axial optic	2 m Cable	-	S50-PL-2-G00-XG	952001420
	LASER, Axial optic	M12 Connector	-	S50-PL-5-G00-XG	952001430
	LASER Radial optic	2m Cable	-	S50-PH-2-G00-XG	952002060
	LASER, Radial optic	M12 Connector	-	S50-PH-5-G00-XG	952002070
		2 m Cable	NPN	S50-PA-2-M03-NN	952001670
	UED, Axial optic	2 Cable	PNP	S50-PA-2-M03-PP	952001230
	LED, Axial optic	M12 Connector	NPN	S50-PA-5-M03-NN	952001560
		M12Connector	PNP	S50-PA-5-M03-PP	952001000
Backgound suppression		2m Cable	NPN	S50-PS-2-M03-NN	952001900
	LED Radial optic	2 Cable	PNP	S50-PS-2-M03-PP	952001910
	LED, Radial optic	M12 Connector	NPN	S50-PS-5-M03-NN	952001920
		M12Connector	PNP	S50-PS-5-M03-PP	952001930
		2 m Cable	NPN	S50-PA-2-T01-NN	952001690
	LED, Axial optic		PNP	S50-PA-2-T01-PP	952001260
	LED, Axial optic	M12 Connector	NPN	S50-PA-5-T01-NN	952001580
Retro		Mremetor	PNP	S50-PA-5-T01-PP	952001270
Retroreflive for transparent		Cable	NPN	S50-PR-2-T01-NN	952001830
	LED Radial optic	2 +able	PNP	S50-PR-2-T01-PP	952001280
	LED, Radial optic	M12 Connector	NPN	S50-PR-5-T01-NN	952001770
		Mremer	PNP	S50-PR-5-T01-PP	952001290
		Cab	NPN	S50-PA-2-U03-NN	952001700
Luminescence	LED, Axial optic	2 mable	PNP	S50-PA-2-U03-PP	952001300
Luminescence	LED, Axial optic	2 Connector	NPN	S50-PA-5-U03-NN	952001590
			PNP	S50-PA-5-U03-PP	952001310
Contrast	LED, Axial optic	Ca	NPN	S50-PA-2-W03-NN	952001710
		2 Cable	PNP	S50-PA-2-W03-PP	952001320
		M12 Connector	NPN	S50-PA-5-W03-NN	952001600
			PNP	S50-PA-5-W03-PP	952001330

S50 METAL MODELS					
OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
Retroreflective	LED, Axial optic	2 m Cable	NPN	S50-MA-2-A00-NN	952022090
			PNP	S50-MA-2-A00-PP	952022080
		M12 Connector	NPN	S50-MA-5-A00-NN	952022110
			PNP	S50-MA-5-A00-PP	952022100
Polarized retroreflective	LED, Axial optic	2m Cable	NPN	S50-MA-2-B01-NN	952021500
			PNP	S50-MA-2-B01-PP	952021000
		M12 Connector	NPN	S50-MA-5-B01-NN	952021660
			PNP	S50-MA-5-B01-PP	952021200
	LED, Radial optic	2 m Cable	NPN	S50-MR-2-B01-NN	952021600
			PNP	S50-MR-2-B01-PP	952021140
		M12 Connector	NPN	S50-MR-5-B01-NN	952021760
			PNP	S50-MR-5-B01-PP	952021340
	LASER, Axial optic	2 m Cable	NPN	S50-ML-2-B01-NN	952021820
			PNP	S50-ML-2-B01-PP	952021400
		M12 Connector	NPN	S50-ML-5-B01-NN	952021850
			PNP	S50-ML-5-B01-PP	952021440
	LASER, Radial optic	2 m Cable	NPN	S50-MH-2-B01-NN	952021950
			PNP	S50-MH-2-B01-PP	952021940
		M12 Connector	NPN	S50-MH-5-B01-NN	952021970
			PNP	S50-MH-5-B01-PP	952021960
Long Diffuse proximity	LED, Axial optic	2 m Cable	NPN	S50-MA-2-C01-NN	952021510
			PNP	S50-MA-2-C01-PP	952021010
		M12 Connector	NPN	S50-MA-5-C01-NN	952021670
			PNP	S50-MA-5-C01-PP	952021210
	LED, Radial optic	2 m Cable	NPN	S50-MR-2-C01-NN	952021610
			PNP	S50-MR-2-C01-PP	952021150
		M12 Connector	NPN	S50-MR-5-C01-NN	952021770
			PNP	S50-MR-5-C01-PP	952021350
	LASER, Axial optic	2m Cable	NPN	S50-ML-2-C01-NN	952021830
			PNP	S50-ML-2-C01-PP	952021410
		M12 Connector	NPN	S50-ML-5-C01-NN	952021860
			PNP	S50-ML-5-C01-PP	952021450
	LASER, Radial optic	2 m Cable	NPN	S50-MH-2-C01-NN	952021990
			PNP	S50-MH-2-C01-PP	952021980
		M12 Connector	NPN	S50-MH-5-C01-NN	952022010
			PNP	S50-MH-5-C01-PP	952022000
Short Diffuse proximity	LED, Axial optic	2 m Cable	NPN	S50-MA-2-C10-NN	952021520
			PNP	S50-MA-2-C10-PP	952021020
		M12 Connector	NPN	S50-MA-5-C10-NN	952021680
			PNP	S50-MA-5-C10-PP	952021220
	LED, Radial optic	2 m Cable	NPN	S50-MR-2-C10-NN	952021620
			PNP	S50-MR-2-C10-PP	952021490
		M12 Connector	NPN	S50-MR-5-C10-NN	952021780
			PNP	S50-MR-5-C10-PP	952021480
Medium Diffuse proximity	LED, Axial optic	2 m Cable	NPN	S50-MA-2-C21-NN	952022130
			PNP	S50-MA-2-C21-PP	952022120
		M12 Connector	NPN	S50-MA-5-C21-NN	952022150
			PNP	S50-MA-5-C21-PP	952022140
Fixed focus	LED, Axial optic	2 m Cable	NPN	S50-MA-2-D00-NN	952021530
			PNP	S50-MA-2-D00-PP	952021030
		M12 Connector	NPN	S50-MA-5-D00-NN	952021690
			PNP	S50-MA-5-D00-PP	952021230
	LED, Radial optic	2 m Cable	NPN	S50-MR-2-D00-NN	952021630
			PNP	S50-MR-2-D00-PP	952021160
		M12 Connector	NPN	S50-MR-5-D00-NN	952021790
			PNP	S50-MR-5-D00-PP	952021360

Tubular Sensors - S50/S51

OPTIC FUNCTION	EMISSION	CONNECTION	OUTPUT	MODEL	ORDER No.
		2 mable	NPN	S50-MA-2-E01-NN	952021880
	LED, Axial optic	2 Cable	PNP	S50-MA-2-E01-PP	952021040
	位	M12 Connector	NPN	S50-MA-5-E01-NN	952021890
		N12 Connector	PNP	S50-MA-5-E01-PP	952021240
		2 m Cable	NPN	S50-MA-2-F01-NN	952021540
		2r Cab	PNP	S50-MA-2-F01-PP	952021050
		M12 Connector	NPN	S50-MA-5-F01-NN	952021700
		(PNP	S50-MA-5-F01-PP	952021250
		2 m Cable	NPN	S50-MR-2-F01-NN	952021640
	LED Radial optic	Cable	PNP	S50-MR-2-F01-PP	952021170
	optic	M12 Connector	NPN	S50-MR-5-F01-NN	952021800
Through beam receiver		M12 Connector	PNP	S50-MR-5-F01-PP	952021370
T		2 m Cable	NPN	S50-ML-2-F01-NN	952021840
		2mCable	PNP	S50-ML-2-F01-PP	952021420
	,	M12 Connector	NPN	S50-ML-5-F01-NN	952021870
		,	PNP	S50-ML-5-F01-PP	952021460
		2 m Cabe	NPN	S50-MH-2-F01-NN	952022030
	LASER Radial optic	Cable	PNP	S50-MH-2-F01-PP	952022020
	,	M12 Connector	NPN	550-MH-5-F01-NN	952022050
			PNP	S50-MH-5-F01-PP	952022040
	ir	2m Cable	-	S50-MA-2-G00-XG	952021060
	, Axia optic	M12 Connector	-	S50-MA-5-G00-XG	952021260
	LED, Radial optic	2m Cable	-	S50-MR-2-G00-XG	952021180
Through beam emitter	, Radial optic	M12 Connector	-	S50-MR-5-G00-XG	952021380
兂	LASER Axial optic	2m Cable	-	S50-ML-2-G00-XG	952021430
	LASER, Axial optic	M12 Connector	-	S50-ML-5-G00-XG	952021470
	LASER Radial optic	2m Cable	-	S50-MH-2-G00-XG	952022060
	LASER, Radial optic	M12 Connector	-	S50-MH-5-G00-XG	952022070
		2m Cable	NPN	S50-MA-2-M03-NN	952021550
	LED, Axial optic		PNP	S50-MA-2-M03-PP	952021070
Background suppression		M12 Connector	PNP	S50-MA-5-M03-PP	952021270
	LED, Radial optic	2 m Cable	PNP	S50-MS-2-M03-PP	952021910
	LED, Radial optic	M12 Connector	PNP	S50-MS-5-M03-PP	952021930
		2m Cable	NPN	S50-MA-2-T01-NN	952021570
	LED, Axial optic		PNP	S50-MA-2-T01-PP	952021090
		M12 Connector	NPN	S50-MA-5-T01-NN	952021730
etroreflective for transparent		,	PNP	S50-MA-5-T01-PP	952021290
		2 m Cable	NPN	S50-MR-2-T01-NN	952021650
	IED Radial optic	2 Cable	PNP	S50-MR-2-T01-PP	952021190
	LED, Radialoptic	M12 Connector	NPN	S50-MR-5-T01-NN	952021810
			PNP	S50-MR-5-T01-PP	952021390
Luminescence	LED, Axial optic	M12 Connector	PNP	S50-MA-5-U03-PP	952021300
		2m Cable	PNP	S50-MA-2-W03-PP	952021110
Contrast	LED, Axial optic	M12 Connector	NPN	S50-MA-5-W03-NN	952021750
		M12 Connector	PNP	S50-MA-5-W03-PP	952021310
		ODELS			
OPTIC FUNCTION	HOUSING/OPTIC	CONNECTION	OUTPUT	MODEL	ORDER No.
Retroreflective	Nickel Plated Brass, Axial	2m Cable	NPN	S51-MA-2-A00-NK	952701601
			PNP	S51-MA-2-A00-PK	952701541
		M12 Connector	NPN	S51-MA-5-A00-NK	952701801
		M12 Connector	PNP	S51-MA-5-A00-PK	952701531
	Nickel Plated Brass, Radial		NPN	S51-MR-2-A00-NK	952701711
		2m Cable	PNP	S51-MR-2-A00-PK	952701651
		M12 Connector	NPN	S51-MR-5-A00-NK	952701911
			PNP	S51-MR-5-A00-PK	952701851
	Plastic, Axial	2m Cable	NPN	S51-PA-2-A00-NK	952701071
			PNP	551-PA-2-A00-PK	952701001
		M12 Connector	NPN	S51-PA-5-A00-NK	952701331
			PNP	S51-PA-5-A00-PK	952701261
	Plastic, Radial	2m Cable	NPN	S51-PR-2-A00-NK	952701201
			PNP	S51-PR-2-A00-PK	952701131
		M12 Connector	NPN	S51-PR-5-A00-NK	952701461
			PNP	S51-PR-5-A00-PK	952701391

Tubular Sensors - S50/S51

OPTIC FUNCTION	HOUSING/OPTIC	CONNECTION	OUTPUT	MODEL	ORDER No.
		C	NPN	S51-MA-2-B01-NK	952701611
	Nickel Plated Brass, Axial	2 m Cable	PNP	551-MA-2-B01-PK	952701551
	Nickel Plated Brass, Axiar	M12 Connector	NPN	S51-MA-5-B01-NK	952701811
			PNP	S51-MA-5-B01-PK	952701761
		2m Cable	NPN	S51-MR-2-B01-NK	952701721
	Nickel Plated Brass, Radial	2 m Cable	PNP	S51-MR-2-B01-PK	952701661
	Nickel Plated Brass, Radial	M12 Connector	NPN	S51-MR-5-B01-NK	952701921
Polarized retroreflective		M12Connector	PNP	S51-MR-5-B01-PK	952701861
Polarized retroreflective		2 m Cable	NPN	551-PA-2-B01-NK	952701081
	Plastic, Axial	2 Cable	PNP	S51-PA-2-B01-PK	952701011
	Plastic, Axial	M12 Connector	NPN	S51-PA-5-B01-NK	952701341
			PNP	S51-PA-5-B01-PK	952701271
		2 m Cable	NPN	S51-PR-2-B01-NK	952701211
	Plastic Radial		PNP	S51-PR-2-B01-PK	952701141
	Plastic, Radial	M12 Connector	NPN	S51-PR-5-B01-NK	952701471
		M12Connector	PNP	S51-PR-5-B01-PK	952701401
		2 mCable	NPN	S51-MA-2-C01-NK	952701621
	Nickel Plated Brass, Axial	2 Cable	PNP	S51-MA-2-C01-PK	952701561
	Nickel Plated Brass, Axial	M12 Connector	NPN	S51-MA-5-C01-NK	952701821
		M12Connector	PNP	S51-MA-5-C01-PK	952701771
		2 m Cable	NPN	S51-MR-2-C01-NK	952701731
	Nickel Plated Brass, Radial		PNP	S51-MR-2-C01-PK	952701671
	Nickel Plated Brass, Radial	M12 Connector	NPN	S51-MR-5-C01-NK	952701931
Medium diffuse proximity			PNP	S51-MR-5-C01-PK	952701871
Meaturnafuse proxirity		2 m Cable	NPN	S51-PA-2-C01-NK	952701091
	Plastic Axial	2 Cable	PNP	S51-PA-2-C01-PK	952701021
	Aastic, Axial	M12 Connector	NPN	S51-PA-5-C01-NK	952701351
		M12Connector	PNP	S51-PA-5-C01-PK	952701281
		2 mCable	NPN	S51-PR-2-C01-NK	952701221
	Plastic Radial	2 m Cable	PNP	S51-PR-2-C01-PK	952701151
	Rastic, Radial	M12 Connector	NPN	S51-PR-5-C01-NK	952701481
			PNP	S51-PR-5-C01-PK	952701411
		2 mCable	NPN	S51-MA-2-C10-NK	952701631
	Nickel Plated Brass, Axial		PNP	S51-MA-2-C10-PK	952701571
	Nickel Plated Brass, Axial	M12 Connector	NPN	S51-MA-5-C10-NK	952701831
		M12 Connector	PNP	S51-MA-5-C10-PK	952701521
		2 m Cable	NPN	S51-MR-2-C10-NK	952701741
	Nickel Plated Brass, Radial		PNP	S51-MR-2-C10-PK	952701681
	Nickel Plated Brass, Radia	M12 Connector	NPN	S51-MR-5-C10-NK	952701941
Short diffuse proximity			PNP	S51-MR-5-C10-PK	952701881
Short aruse proximity		2 mCable	NPN	S51-PA-2-C10-NK	952701101
	Plastic, Axial		PNP	S51-PA-2-C10-PK	952701031
	Plastic, Axial	M12 Connector	NPN	S51-PA-5-C10-NK	952701361
		M12 Connector	PNP	S51-PA-5-C10-PK	952701291
		2 m Cable	NPN	S51-PR-2-C10-NK	952701231
	Plastic, Radial		PNP	S51-PR-2-C10-PK	952701161
	Plastic, Radial	M12 Connector	NPN	S51-PR-5-C10-NK	952701491
		M12Connector	PNP	S51-PR-5-C10-PK	952701421
Narrow beam proximity	Nickel Plated Brass, Axial	M12 Connector	PNP	S51-MA-5-C20-PK	952701961
		2 mCable	NPN	S51-MA-2-F00-NK	952701641
	Nickel Plated Brass, Axial	2 Cable	PNP	S51-MA-2-F00-PK	952701581
	Nickel Plated Brass, Axial	M12 Connector	NPN	S51-MA-5-F00-NK	952701841
		M12 Connector	PNP	S51-MA-5-F00-PK	952701781
			NPN	S51-MR-2-F00-NK	952701751
	Nickel Plated Brass, Radial	2 m Cable	PNP	S51-MR-2-F00-PK	952701691
	Nickel Plated Brass, Radial	M12 Connector	NPN	S51-MR-5-F00-NK	952701951
Through beam receiver			PNP	S51-MR-5-F00-PK	952701891
Through bean receiver		2 mable	NPN	S51-PA-2-F00-NK	952701121
	Plastic Axial	2 m Cable	PNP	S51-PA-2-F00-PK	952701051
	Plastic, Axial	M12 Connector	NPN	551-PA-5-F00-NK	952701381
		M12Connector	PNP	S51-PA-5-F00-PK	952701311
		2 m Cable	NPN	S51-PR-2-F00-NK	952701251
	Plastic Radial	2 m Cable	PNP	S51-PR-2-F00-PK	952701181
	Pastic, Radial	M12 Connector	NPN	S51-PR-5-F00-NK	952701511
		M12Connector	PNP	S51-PR-5-F00-PK	952701441
Through beam emitter	Nickel Plated Brass, Axial	2m Cable	-	S51-MA-2-G00-XG	952701591
		M12 Connector	-	S51-MA-5-G00-XG	952701791
	Nickel Plated Brass, Radial	2m Cable	-	S51-MR-2-G00-XG	952701701
		M12 Connector	-	S51-MR-5-G00-XG	952701901
	Plastic, Axial	2 m Cable	-	S51-PA-2-G00-XG	952701061
		M12 Connector	-	S51-PA-5-G00-XG	952701321
	Plastic, Radial	2m Cable	-	S51-PR-2-G00-XG	952701191
		M12 Connector	-	S51-PR-5-G00-XG	952701451

S50/S51

ACCESSORIES

ST-5010

ST-5017

ST-5011

SWING-18

PLASTIC NUT

MICRO 18

mm

Tubular Sensors - S50/S51

MODEL	DESCRIPTION	ORDER No.
ST-5010	M18/14 mounting bracket	95ACC5230
ST-5011	M18 mounting bracket short	95ACC5240
ST-5012	M18 mounting bracket long	95ACC5250
ST-5017	M18 mounting bracket	95ACC5270
550 EASY -IN	M18/14 EASY in ${ }^{\text {TM }}$ adjustable mounting support	95ACC 5300
JOINT -18	M18 jointed support	95ACC 5220
MICRO -18	support with micrometric regulation for tubular M18 sensors	95ACC 1380
ST1218	M12/M18 mounting brackets	95ACC3340
ST1830	M18/M30 mounting brackets	95ACC3350
SP-40	mounting bracket tubular	95ACC1370
SWING-18	adjustable support for M18 tubular sensors	895000006
PLASTIC NUT	flared mounting nut	95ACC2630
MEK - PROOF	front protection (only for metal models)	G5000001

CABLES

TYPE	DESCRIPTION	LENGTH	MODEL	ORDER No.
Axial M12 Connector	4-pole, grey, P.V.C.	3 m	CS-A1-02-G-03	95A251380
		5 m	CS-A1-02-G-05	95A251270
		7 m	CS-A1-02-G-07	95A251280
		10 m	CS-A1-02-G-10	95A251390
	4-pole, P.U.R.	2 m	CS-A1-02-R-02	95A251540
		5 m	CS-A1-02-R-05	95A251560
Radial M12 Connector	4-pole, grey, P.V.C.	3 m	CS-A2-02-G-03	95A251360
		5 m	CS-A2-02-G-05	95A251240
		7 m	CS-A2-02-G-07	95A251245
		10 m	CS-A2-02-G-10	95A251260
	4-pole, P.U.R.	2 m	CS-A2-02-R-02	95A251550
		5 m	CS-A2-02-R-05	95A251570
Radial M12 Connector with LED (for PNP N.O. sensors)	4-pole, grey, P.V.C.	3 m	CS-A2-12-G-03	95A251400
		5 m	CS-A2-12-G-05	95A251350
		10 m	CS-A2-12-G-10	95A251370
Axial M12 Connector	4-pole, shielded, black, P.V.C.	3 m	CV-A1-22-B-03	95ACC1480
		5 m	CV-A1-22-B-05	95ACC1490
		10 m	CV-A1-22-B-10	95ACC1500
		15 m	CV-A1-22-B-15	95ACC2070
		25 m	CV-A1-22-B-25	95ACC2090
Radial M12 Connector		3 m	CV-A2-22-B-03	95ACC1540
		5 m	CV-A2-22-B-05	95ACC1550
		10 m	CV-A2-22-B-10	95ACC1560
Axial M12 Connector	4-pole, U.L., black, P.V.C.	3 m	CS-A1-02-U-03	95ASE1120
		5 m	CS-A1-02-U-05	95ASE1130
		10 m	CS-A1-02-U-10	95ASE1140
		15 m	CS-A1-02-U-15	95ASE1150
		25 m	CS-A1-02-U-25	95ASE1160
	4-pole, black	Connector- not cabled	CS-A1-02-B-NC	G5085002
Radial M12 Connector		Connector- not cabled	CS-A2-02-B-NC	G5085003

Pneumatic Equipment

Sensor Switch type

CS1-R

- Piston $\varnothing 5 / 16$ " to 1"

- Stroke lengths up to 20"
- Double-acting
- Meets the highest requirements for running characteristics, service life and load carrying ability
- Extensive range of accessories

Detailed product information \rightarrow www.festo.com/catalog/dsnu

Product Range Overview							
Function	Type	Piston \varnothing [in]	Stroke [in]	$\begin{array}{\|l} \text { Force } \\ \text { [lbf] } \\ \hline \end{array}$	Variants		
					P	PPV	A
Double-acting	DSNU	5/16, 3/8, 1/2, 5/8, 3/4, 1	0.04 ... 20	5.2 ... 66.3	\square	[1)	\square

1) Adjustable as of Piston $\varnothing 5 / 8$ "

Variants

P Flexible cushioning at both ends

PPV Adjustable air cushioning A Magnet for position sensing at both ends

Type	Piston \varnothing [in]	Standard Stroke [in]	Variable Stroke ${ }^{1)}$ [in]
DSNU	$5 / 16,3 / 8$	$1 / 2,1,2,3,4$	$0.04 \ldots 4$
	$1 / 2,5 / 8$	$1 / 2,1,2,3,4,5,6,8$	$0.04 \ldots 8$
	$3 / 4$	$1 / 2,1,2,3,4,5,6,8,10,12$	$0.04 \ldots 12$
	1	$1 / 2,1,2,3,4,5,6,8,10,12$	$0.04 \ldots 20$

1) Reliable position sensing requires a minimum stroke of 0.4 inch.

Contents	
- Technical Data	$\rightarrow 6$
- Ordering Data	$\rightarrow 7$
- Accessories Overview	$\rightarrow 8$
- Accessories	$\boldsymbol{\rightarrow 9}$

Technical Data

Double-acting

Diameter

$$
\text { 5/16 ... } 1 \text { in }
$$

Stroke length
0.04 ... 20in

General Technical Data						
Piston \varnothing [in]	5/16	3/8	1/2	5/8	3/4	1
Pneumatic connection	10-32 UNF	10-32 UNF	10-32 UNF	10-32 UNF	1/8" NPT	1/8" NPT
Piston rod thread	6-32 UNC	6-32 UNC	10-32 UNF	10-32 UNF	5/16-24 UNF	3/8-24 UNF
Constructional design	Piston					
	Piston rod					
	Cylinder barrel					
Cushioning	Flexible cushioning rings at both ends (P)			Adjustable air cushioning at both ends (PPV)		
Cushioning length (PPV) [in]	-			0.47	0.59	0.67
Magnet for position sensing ${ }^{1)}$	Optional					

1) Position sensing via magnetic proximity sensor (ordered separately, see accessories).

| Operating Pressure [psi]
 Piston $\varnothing$$\quad$ [in] | $5 / 16$ | $3 / 8$ | $1 / 2$ | $3 / 8$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operating medium | Compressed air in accordance with ISO 8573-1:2010 [7:4:4] | | | | |
| Note on operating/pilot medium | Operation with lubricated medium possible (in which case lubricated operation will always be required) | | | | |
| Operating pressure | $22.1 \ldots 147.0$ | $14.7 \ldots 147.0$ | | | |

Ambient Conditions

Ambient temperature ${ }^{1)} \quad\left[{ }^{\circ} \mathrm{F}\right]$	$-4 \ldots+176$
Corrosion resistance class (RC²)	2

1) Note operating range of proximity sensors
2) Corrosion resistance class 2 according to Festo standard 940070

Components with moderate corrosion resistance for use in normal industrial environments subjected to contact with coolants or lubricating agents.

Forces [lbf] and Impact Energy [ft-lbf]						
Piston \varnothing [in]	5/16	3/8	1/2	5/8	3/4	1
Theoretical force at 90 psi , extending	6.7	10.6	15.3	27.2	42.5	66.3
Theoretical force at 90 psi , retracting	5.2	9.0	11.5	23.4	35.5	55.5
Max. impact energy at the end positions	0.02	0.04	0.05	0.11	0.15	0.22

Weights [0z]	$5 / 16$	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$	
Piston \varnothing [in]	1.32	2.65	3.17	6.59		
Product weight with 0 inch stroke	1.22	0.25	0.36	0.41	0.40	
Additional weight per 1 inch stroke	0.20		0.94			

Technical Data, Ordering Data

Materials

Sectional view

DSNU

1	Piston rod	High-alloy stainless steel
2	Bearing cap	Wrought aluminum alloy
3	Cylinder barrel	High-alloy stainless steel
4	End cap	Wrought aluminum alloy
-	Seals	Polyurethane, nitrile rubber

Ordering Data									
Piston \varnothing [in]	Stroke [in]	Part No.	Type	LT	Piston \varnothing [in]	Stroke [in]	Part No.	Type	LT
5/16	1/2	546394	DSNU-5/16"-1/2"-P-A	D	3/4	1	546403	DSNU-3/4"-1"-PPV-A	1D
	1	546393	DSNU-5/16"-1"-P-A	1D		2	546406	DSNU-3/4"-2"-PPV-A	1D
	2	546395	DSNU-5/16"-2"-P-A	1D		3	546407	DSNU-3/4"-3"-PPV-A	1D
	3	546396	DSNU-5/16"-3"-P-A	3D		4	546408	DSNU-3/4"-4"-PPV-A	1D
	4	546397	DSNU-5/16"-4"-P-A	3D		5	546409	DSNU-3/4"-5"-PPV-A	1D
	0.04 ... 4	548482	DSNU-5/16"-...-P-A	3D		6	546410	DSNU-3/4"-6"-PPV-A	1D
3/8	1/2	546399	DSNU-3/8"-1/2"-P-A	1D		8	546411	DSNU-3/4"-8"-PPV-A	1D
	1	546398	DSNU-3/8"-1"-P-A	1D		10	546404	DSNU-3/4"-10"-PPV-A	1D
	2	546400	DSNU-3/8"-2"-P-A	1D		12	546405	DSNU-3/4"-12"-PPV-A	1D
	3	546401	DSNU-3/8"-3"-P-A	3D		0.04 ... 12	548536	DSNU-3/4"-...-PPV-A	3D
	0.04 ... 4	548483	DSNU-3/8"-...-P-A	3D	1	1/2	546413	DSNU-1"-1/2"-PPV-A	3D
$1 / 2$	1/2	546387	DSNU-1/2"-1/2"-P-A-B	1D		1	546412	DSNU-1"-1"-PPV-A	1D
	1	546386	DSNU-1/2"-1"-P-A-B	1D		2	546416	DSNU-1"-2"-PPV-A	1D
	2	546388	DSNU-1/2"-2"-P-A-B	1D		3	546421	DSNU-1"-3"-PPV-A	1D
	0.04 ... 8	548484	DSNU-1/2"-...-P-A	3D		4	546417	DSNU-1"-4"-PPV-A	1D
5/8	1	546389	DSNU-5/8"-1"-PPV-A-B	1D		5	546418	DSNU-1"-5"-PPV-A	1D
	2	546390	DSNU-5/8"-2"-PPV-A-B	1D		6	546419	DSNU-1"-6"-PPV-A	1D
	3	546391	DSNU-5/8"-3"-PPV-A-B	1D		8	546420	DSNU-1"-8"-PPV-A	1D
	4	546392	DSNU-5/8"-4"-PPV-A-B	1D		10	546414	DSNU-1"-10"-PPV-A	1D
	0.04 ... 8	548501	DSNU-5/8"-...-PPV-A	3D		12	546415	DSNU-1"-12"-PPV-A	1D
						0.04 ... 20	548437	DSNU-1"-...-PPV-A	3D

[^1] 1D typically ships same day/next day

[^2]

Mounting Attachments and Accessories		\rightarrow Page/Internet
1	Rod eye SGS	9
2	Coupling piece KSZ	ksz
3	Rod clevis SG	9
4	Self-aligning rod coupler FK	9
5	Flange mounting FBN	9
6	Foot mounting HBN/HF	9
7	Swivel mounting WBN	9
8	Swivel mounting SBN	sbn
9	Clevis foot LBN	9

Mounting Attachments and Accessories		\rightarrow Page/Internet
10	One-way flow control valve GRLA	9
11	Push-in fitting QB	9
12	Sensor mounting kit SMBR	smbr
13	Proximity switch SMEO/SMT0	smto
14	Sensor mounting kit SMBR-8	9
15	Proximity switch SME/SMT-8	9
16	Sensor mounting kit SMBR-10	smbr-10
17	Proximity switch SME/SMT-10	9
18	Guide unit FEN	fen

Accessories

Ordering Data - Mounting Attachments			
Technical Data \rightarrow www.festo.com/catalog/<type> or <order code>			
	For \varnothing [in]	Part No.	Type
Foot mounting HBN			
	5/16, 3/8	5123	HBN-8/10x1
	1/2, 5/8	5125	HBN-12/16x1
	3/4, 1	5127	HBN-20/25x1
	5/16, 3/8	5124	HBN-8/10x2
	1/2, 5/8	5126	HBN-12/16x2
	3/4, 1	5128	HBN-20/25x2
Foot mounting HF			
	5/16, 3/8	11243	HF-5/16"-3/8"-A
	1/2, 5/8	11244	HF-1/2"-5/8"-A
	3/4, 1	11245	HF-3/4"-1"-A
Flange mounting			
	5/16, 3/8	5129	FBN-8/10
	1/2, 5/8	5130	FBN-12/16
	3/4, 1	5131	FBN-20/25
Swivel mounting			
	5/16, 3/8	8608	WBN-8/10
	1/2, 5/8	8609	WBN-12/16
	3/4, 1	8610	WBN-20/25
Clevis foot			
	5/16, 3/8	6057	LBN-8/10
	1/2, 5/8	6058	LBN-12/16
	3/4, 1	6059	LBN-20/25

Ordering Data - Piston Rod Attachments			
	For \varnothing [in]	Part No.	Type
Rod eye			
	5/16, 3/8	532693	SGS-6-32
	1/2, 5/8	532694	SGS-10-32
	3/4	532695	SGS-5/16-24
	1	532696	SGS-3/8-24
Rod clevis			
	5/16, 3/8	11127	SG-6-32
	1/2, 5/8	546552	SG-UNF10-32-B
	3/4	546574	SG-UNF5/16"-24-B
	1	546540	SG-UNF3/8"-24-B
Self-aligning rod coupler			
	5/16, 3/8	532702	FK-6-32
	1/2, 5/8	532703	FK-10-32
	3/4	532704	FK-5/16-24
	1	532705	FK-3/8-24

	For \varnothing [in]	Part No.	Type
	5/16	175091	SMBR-8-8
	3/8	175092	SMBR-8-10
	1/2	175093	SMBR-8-12
	5/8	175094	SMBR-8-16
	3/4	175095	SMBR-8-20
	1	175096	SMBR-8-25

Ordering Data - One-way Flow Control Valves for Exhaust Air Flow Control				
Technical Data $\boldsymbol{\rightarrow} 253$				
Function	For \varnothing [in]	Tubing O.D. [in]	Part No.	
	5/16, 3/8,	5/32	564840	GRLA-10-32-UNF-QB-5/32-U
	1/2, 5/8	1/4	564842	GRLA-10-32-UNF-QB-1/4-U
	3/4, 1	5/32	534656	GRLA-1/8-QB-5/32-U
		1/4	534658	GRLA-1/8-QB-1/4-U

| Ordering Data
 Function | | | | For \varnothing [in] |
| :--- | :--- | :--- | :--- | :--- | | Tubing |
| :--- |
| |

Overview

DSNU Standard Cylinders meet ISO 6432 mounting, rod, bore and thread dimension specifications for easy interchangeability.

- Piston $\varnothing 8$ to 25 mm
- Stroke lengths up to 500 mm
- Double-acting
- Meets the highest requirements for running characteristics, service life and load carrying ability
- Extensive range of accessories

Variants

Plexible cushioning rings/pads
at both ends

PPS Pneumatic cushioning, self-adjusting at both ends
adjustable at both ends

Contents	
- Technical Data	$\rightarrow 24$
- Ordering Data	$\rightarrow 25$
- Accessories Overview	$\rightarrow 26$
- Accessories	$\rightarrow 27$

Technical Data, Ordering Data

Materials

End caps: Wrought aluminum alloy Housing: High-alloy stainless steel Piston rod: High-alloy steel
Seals: Polyurethane, nitrile rubber

Technical Data										
Piston \varnothing		8	10	12	16	20	25			
Pneumatic connection		M5	M5	M5	M5	G118	G1/8			
End of piston rod		Male thread								
Piston rod thread		M4	M4	M6	M6	M8	M10x1.25			
Cushioning		Flexible cushioning rings/pads at both ends			Pneumatic cushioning, adjustable at both ends					
		Pneumatic cushioning, self-adjusting at both ends								
Cushioning length ${ }^{1)}$	[mm]				-		9	12	15	17
Theoretical force at 6 bar, advancing	[N]	30	47	68	121	189	295			
Theoretical force at 6 bar, retracting	[N]	23	40	51	104	158	247			
Max. torque at the piston rod 2)	[Nm]	-	-	0.10	0.10	0.20	0.45			
$\varnothing /$ length at 0 mm stroke	[mm]	19/86	19/86	24/105	24/111	32/132	32/141			

1) Applies exclusively to pneumatic cushioning adjustable at both ends (PPV).
2) Applies exclusively to variants with protection against rotation (Q).

Operating Conditions Piston \varnothing	8	$10 \ldots 25$	
Operating medium		Compressed air in accordance with ISO 8573-1:2010 [7:4:4]	
Note on operating/pilot medium		Operation with lubricated medium possible (in which case lubricated operation will always be required)	
Operating pressure	$[\mathrm{bar}]$	$1.5 \ldots 10$	$1 \ldots 10^{1)}$
Ambient temperature $\left.{ }^{2}\right)$	$\left[{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+80$	

1) Piston $\varnothing 12 \mathrm{~mm}$, pneumatic cushioning adjustable at both ends: $2 . . .10$ bar.
2) Note operating range of proximity sensors.

Ordering Data - P Variant									
$\begin{aligned} & \text { Piston } \varnothing \\ & {[\mathrm{mm}]} \end{aligned}$	Stroke [mm]	Part No.	Type	LT	Piston \varnothing [mm]	Stroke [mm]	Part No.	Type	LT
8	10	19177	DSNU-8-10-P-A	D	12	10	19189	DSNU-12-10-P-A	1D
	25	19178	DSNU-8-25-P-A	1D		25	19190	DSNU-12-25-P-A	1D
	40	19179	DSNU-8-40-P-A	1D		40	19191	DSNU-12-40-P-A	1D
	50	19180	DSNU-8-50-P-A	1D		50	19192	DSNU-12-50-P-A	1D
	80	19181	DSNU-8-80-P-A	3D		80	19193	DSNU-12-80-P-A	3D
	100	19182	DSNU-8-100-P-A	3D		100	19194	DSNU-12-100-P-A	3D
	1 ... 200	14326	DSNU-8-...-P-A	3D		125	19195	DSNU-12-125-P-A	3D
10	10	19183	DSNU-10-10-P-A	1D		160	19196	DSNU-12-160-P-A	3D
	25	19184	DSNU-10-25-P-A	1D		200	19197	DSNU-12-200-P-A	3D
	40	19185	DSNU-10-40-P-A	1D		1 ... 200	14324	DSNU-12-...-P-A	3D
	50	19186	DSNU-10-50-P-A	1D					
	80	19187	DSNU-10-80-P-A	3D					
	100	19188	DSNU-10-100-P-A	3D					
	1 ... 200	14325	DSNU-10-...-P-A	3D					

[^3]1D typically ships same day/next day
3D typically ships within 3 days

Ordering Data

Accessories

Peripherals Overview

Accessories		
1	Rod eye SGS	Page/Internet
2	Coupling piece KSG/KSZ	ksg, ksz
3	Rod clevis SG	27
4	Self-aligning rod coupler FK	27
5	Flange mounting FBN	27
6	Foot mounting HBN	27
7	Swivel mounting WBN	27
8	Swivel mounting SBN	sbn
9	Clevis foot LBN	27

Accessories		
10	One-way flow control valve GRLA	27
11	Push-in fitting QS	27
12	Mounting kit SMBR	smbr
13	Proximity sensor SMEO/SMTO-4	smto
14	Mounting kit SMBR-8	27
15	Proximity sensor SME/SMT-8	27
16	Mounting kit SMBR-10	smbr-10
17	Proximity sensor SME/SMT-10	27
18	Guide unit FEN	fen

Accessories

Ordering Data - Mounting Attachments			
Technical Data \rightarrow www.festo.com/catalog/<type> or «order code>			
Designation	For \varnothing [mm]	Part No.	Type
Foot mounting			
	8,10	5123	HBN-8/10x1
	12,16	5125	HBN-12/16x1
	20, 25	5127	HBN-20/25x1
	8,10	5124	HBN-8/10x2
	12,16	5126	HBN-12/16x2
	20, 25	5128	HBN-20/25x2
Flange mounting			
	8,10	5129	FBN-8/10
	12, 16	5130	FBN-12/16
	20, 25	5131	FBN-20/25
Swivel mounting			
	8,10	8608	WBN-8/10
	12,16	8609	WBN-12/16
	20, 25	8610	WBN-20/25
Clevis foot			
	8,10	6057	LBN-8/10
	12,16	6058	LBN-12/16
	20, 25	6059	LBN-20/25

Ordering Data - Piston Rod Attachments			
Technical Data \rightarrow www.festo.com/catalog/<type> or <order code>			
Designation	For \varnothing [mm]	Part No.	Type
Rod eye			
	8,10	9253	SGS-M4
	12,16	9254	SGS-M6
	20	9255	SGS-M8
	25	9261	SGS-M10x1,25
Rod clevis			
	8,10	6532	SG-M4
	12,16	3110	SG-M6
	20	3111	SG-M8
	25	6144	SG-M10x1,25
Self-aligning rod coupler			
	8,10	6528	FK-M4
	12,16	2061	FK-M6
	20	2062	FK-M8
	25	6140	FK-M10x1,25

Ordering Data - Mounting Kits for Proximity Sensors SMT/SME-8

	For \varnothing [mm]	Part No.	Type
	8	175091	SMBR-8-8
	10	175092	SMBR-8-10
	12	175093	SMBR-8-12
	16	175094	SMBR-8-16
	20	175095	SMBR-8-20
	25	175096	SMBR-8-25

Ordering Data - One-way Flow Control Valves for Exhaust Air Flow Control				
Technical Data $\boldsymbol{\rightarrow} 253$				
Function	For \varnothing [mm]	Tubing O.D. [mm]	Part No.	Type
	8,10,	4	197577	GRLA-M5-QS-4-RS-D
	12,16	6	197578	GRLA-M5-QS-6-RS-D
	20, 25	4	197580	GRLA-1/8-QS-4-RS-D
		6	197581	GRLA-1/8-QS-6-RS-D

Ordering Data - Push-in Fittings QB				Technical Data $\boldsymbol{\rightarrow} 245$
Function	For \varnothing [mm]	Tubing O.D. [mm]	Part No.	Type
	$\begin{aligned} & 8,10, \\ & 12,16 \end{aligned}$	4	153304	QSM-M5-4
		6	153306	QSM-M5-6
	20, 25	4	153001	QS-1/8-4
		6	153002	QS-1/8-6

Network 2

Network 3

Wetwork 4

Matwork E

Network 6

Network 8

Network E

Metwork 10

Wetwork 11

NeWhork 13

Network 14

Wetwork 16

Network 16

Nework 17

4.2 Power Circuit

Instruction Sheet安裝說明
安装说明
BiLGI DÖKÜMANI
－Load Cell Module
－Load Cell 科重模組
Δ Load Cell 科重模块
－Load Cell Modiilii

Thank you for choosing Delta's DVP series PLC. Delta releases DVP02LC-SL load cell module of weight measurement function. DVP02LC-SL provides 24-bit resolution applicable for 4 -wire or 6 -wire load cells with various eigenvalues. Therefore, the response time can be adjusted in coordination with each other according to users' needs. On this basis, the market requirements on weight measurement can easily be met.
\wedge This instruction sheet provides introductory information on electrical specifications, general specifications, installation and wiring.
\wedge This is an OPEN TYPE I/O module and therefore should be installed in an enclosure free of airborne dust, humidity, electric shock and vibration. The enclosure should prevent non-maintenance staff from operating the device (e.g. key or specific tools are required to open the enclosure) in case danger and damage on the device may occur.

* DO NOT connect the input AC power supply to any of the I/O terminals; otherwise serious damage may occur. Check all the wiring again before switching on the power. Make sure the ground terminal \oplus is correctly grounded in order to prevent electromagnetic interference.
N The tightening torque for I/O terminal block is $1.95 \mathrm{~kg}-\mathrm{cm}(1.7 \mathrm{in}-\mathrm{lbs})$. Use $60 / 75^{\circ} \mathrm{C}$ copper conductors only.
- Product Profile \& Dimensions

[Figure 1]

1. Mounting hole of the I/O module

3. I/O module connection port	4. I/O module clip
5.Status indicator (POWER, RUN, ERROR and L.V)	6.Function status indicator $($ NET, ZERO, MAX, MOTION $)$ 7. I/O terminals8. RS-232 port 9. Mounting slot clip 10. RS-485 port 11. DC power input

- I/O Terminal Layout

- External Wiring

Note 1: Please connect the $\left.{ }^{(}\right)$terminal on both the power module and Load Cell module to the system earth point and ground the system contact or connect it to the cover of power distribution cabinet.

- Electrical Specifications

Load cell module	Voltage output
Rated power supply voltage/ power consumption	24 VDC (-15 to +20\%)/3W
Voltage Boundary	18 to 31.2 VDC
Max. current consumption	125 mA
Input signal range	$\pm 40 \mathrm{mVDC}$
Sensibility	+5 VDC +/-10\%
Internal resolution	24 bits
Communication port	RS-232, RS-485
Applicable sensor type	4-wire or 6-wire strain gauge
Temperature coefficient span	$\leq \pm 50 \mathrm{ppm} / \mathrm{K}$ v. E
Temperature coefficient zero point	$\leq \pm 0.4 \mu \mathrm{~V} / \mathrm{K}$
Linearity error	$\leq 0.02 \%$
Response time	2, 10, 20, 40, $80 \mathrm{~ms} \times$ channels
4 measuring ranges	0 to $1 \mathrm{mV} / \mathrm{V}, 0$ to $2 \mathrm{mV} / \mathrm{V}, 0$ to $4 \mathrm{mV} / \mathrm{V}, 0$ to $6 \mathrm{mV} / \mathrm{V}$
Max. distance for connecting to load cell	100 M
Max. current output	5 VDC * 300 mA
Permitted load cell resistance	40 to $4,010 \Omega$
Common mode rejection (CMRR @50/60 Hz)	$\geq 100 \mathrm{~dB}$
Dynamic value filter	Setting range: K 1 to K 5
Average value filter	Setting range: K1 to K100
Isolation method	500 VAC between digital circuits and Ground 500 VAC between analog circuits and Ground 500 VAC between analog circuits and digital circuits

Load cell module	Voltage output
Series connection to DVP-PLC MPU	Connectable to the left side of MPU, numbered from 100 to 107 according to the position of module from the closest to farthest to MPU.
Operation / storage temperature	Operation: 0 to $55^{\circ} \mathrm{C}$ (temp.), 50 to 95\% (humidity), pollution degree 2 Storage: -25 to $70^{\circ} \mathrm{C}$ (temp.), 5 to 95\% (humidity)
Vibration / shock immunity	International standards: IEC61131-2, IEC 68-2-6 (TEST Fc)/ IEC61131-2 \& IEC 68-2-27 (TEST Ea)

* Complying with DIN1319-1, the tolerance of measured value should be $\leq 0.05 \%$ under $20^{\circ} \mathrm{C}$ +10 K temperature range.
* When the corrected ambient temperature and the actual temperature have a difference of more than $10^{\circ} \mathrm{C}$, it is suggested that you re-correct it.
- Control Register

CR\#	Add.	Attrib.		Register name	Explanation
\#0	H1000	O	R	Model name	Set up by the system: DVP02LC-SL model code $=$ H'4206
\#1	H1001	0	R	Firmware version	Display the current firmware version in hex.
\#2	H1002	O	R/W	Characteristic value	Mode 0 ($\mathrm{H}^{\prime} 0000$): $1 \mathrm{mV} / \mathrm{V}$ Mode 1 ($\mathrm{H}^{\prime} 0001$): $2 \mathrm{mV} / \mathrm{N}$, default Mode 2 ($\mathrm{H}^{\prime} 0002$): $4 \mathrm{mV} / \mathrm{N}$ Mode 3 (H'0003): $6 \mathrm{mV} / \mathrm{N}$
\#3	H1003	O	R/W	Reaction time for measurement	Mode 0 ($\mathrm{H}^{\prime} \mathbf{O} 000$): 2 ms Mode 1 ($\mathrm{H}^{\prime} 0001$): 10 ms Mode 2 (H'0002): 20 ms Mode 3 (H'0003): 40 ms Mode 4 (H'0004): 80 ms , default
\#4	H1004	O	R	Average value of all channels	Sum up CH 1 average value and CH 2 average value and equalize them. Equation: $(\mathrm{CH} 1$ average value $+\mathrm{CH} 2$ average value)/2
\#6	H1006	X	RW	CH 1 to CH 2 read tare weight	Read present average value as tare weight value bit0: CH 1 ; bit1: CH 2 ; bit2 to bit15: reserved
\#7	H1007	O	R/W	CH 1 to CH 2 gross/net weight	Display present weight as Gross (K0) or Net (K1). bit0 to bit3: CH 1 ; bit4 to bit7: CH 2 ; bit8 to bit15: reserved. Take CH1 for example: bit 3 to bit0 $=0000$, gross; bit3 to bit0 $=0001$, net; bit3 to bit0 $=$ 1111, channel disabled.
\#8	H1008	0	R/W	CH1 tare weight	The user can write in the weight or read it by commands.
\#9	H1009	0	R/W	CH2 tare weight	Default: K0; Range: -K32,768 to K32,767.
\#10	H100A	0	R/W	CH 1 average times	Default: K10; Range: K1 to K100.
\#11	H100B	0	R/W	CH2 average times	When the set value exceeds the range, it will automatically be changed to K1 or K100.
\#12	H100C	X	R	CH1 average weight	avera
\#13	H100D	X	R	CH 2 average weight	Display average weigh
\#14	H100E	X	R	CH 1 present weight	Display present weight.
\#15	H100F	X	R	CH 2 present weight	
\#16	H1010	\bigcirc	R/W	CH1 standstill times	Default: K5
\#17	H1011	O	RW	CH2 standstill times	Range: K1 to K500

CR\#	Add.		ttrib.	Register name	Explanation
\#18	H1012	O	R/W	CH 1 standstill range	Default: K10 Range: K1 to K10,000
\#19	H1013	O	R/W	CH 2 standstill range	
\#20	H1014	O	R/W	CH 1 decimal place	Default: K2 Range: K1 to K4
\#21	H1015	O	R/W	CH 2 decimal place	
\#22	H1016	O	R/W	CH 1 unit of measurement	Enter max. 4 ASCII words. CR\#22, CR\#24: High word CR\#23, CR\#25: Low word
\#23	H1017	O	R/W	CH 1 unit of measurement	
\#24	H1018	O	R/W	CH 2 unit of measurement	
\#25	H1019	O	R/W	CH 2 unit of measurement	
\#26	H101A	X	R/W	Weight correction command	For the user to correct the weight. Default: H'0000 H'0001: CH1 Reset to zero command H'0002: CH1 Weight base point command H'0003: CH2 Reset to zero command H'0004: CH2 Weight base point command
\#33	H1021	O	R/W	CH 1 weight base point	For CR\#33 to CR\#34 default $=\mathrm{K} 1,000$; Range: K-32,768 to K32,767 Steps for correction: Take CH1 for example 1: Place no weights on the load cell 2: Set up CR\#26 command = "H'0001"
\#34	H1022	0	R/W	CH 2 weight base point	3: Place standard weights on load cell 4: Write the weight of the weights on the plate into CR\#33. 5: Set up CR\#26 command = "H'0002"
\#35	H1023	O	R	CH1 max. weight	Set up the max. weight. When the measured value exceeds the set value, error codes will be recorded.
\#36	H1024	O	R	CH 2 max. weight	
\#37	H1025	O	R/W	Upper limit for CH 1 zero point check	Reference for reset to zero. When the weight is within this range, the status code will be set to "zero bit", indicating the current zero weight status. Default: K10 Range: K-32,768 to K32,767
\#38	H1026	O	R/W	Upper limit for CH 2 zero point check	
\#39	H1027	O	R/W	Lower limit for CH 1 zero point check	Reference for reset to zero. When the weight is within this range, the status code will be set to "zero bit", indicating the current zero weight status. Default: K-10 Range: K-32,768 to K32,767
\#40	H1028	O	R/W	Lower limit for CH 2 zero point check	
\#41	H1029	X	R/W	Saving set value (H’5678)	Save the present set value and write all the set values into the internal Flash for use next time DVP02LC-SL is switched on. H0: No action, Default H'FFFF: Saving is successful H'5678: Write to internal Flash When H'5678 is written in, all set values will be saved in Flash. When the saving is completed, CR\#41 will become H'FFFF. If the value written in is not H'5678, it will automatically return to H 0 , e.g. write K 1 into CR\# to return to KO.

CR\#	Add.	Attrib.		Register name	Explanation
\#43	H102B	X	R/W	CH1 filter percentage	Default: K2
\#44	H102C	X	R/W	CH 2 filter percentage	Range: K1 to K5 (Unit: 10\%)
\#45	H102D	X	R/W	CH 1 filter average value	Display average weight after filtering.
\#46	H102E	X	R/W	CH 2 filter average value	Condition to enable filter: average time ≥ 30
\#50	H1032	X	R	Status code	b0 (H'0001): CH1 zero weight (empty) b1 (H'0002): CH2 zero weight (empty) b2 (H'0004): CH1 exceeds max. weight (overload) b3 (H'0008): CH2 exceeds max. weight (overload) b4 (H'0010): CH1 stable measured value b5 (H'0020): CH2 stable measured value b6 ~ b15: Reserved
\#51	H1033	X	R	Error code	Store all the error statuses. See "Error Code Table" below. Default: H'0000
\#52	H1034	O	R/W	RS-232 node address	
\#53	H1035	O	R/W	RS-232 communication setting	For CR\#52, CR\#54 default = 1 Range: K1 to K255
\#54	H1036	O	R/W	RS-485 node address	ASCII, 9600, 7 E 1 See "Communication
\#55	H1037	O	R/W	RS-485 communication setting	Format Table" below.

Symbols: O means latched. X means not latched.
R means can read data. W means can write data.

- Error Code Table for CR\#51:

bit	Content	Error	bit	Content	Error
b0	K1 (H'0001)	Power supply abnormality	b1	K2 (H'0002)	Hardware abnormality
b2	K4 (H'0004)	CH1 conversion error	b3	K8 (H'0008)	CH1 SEN voltage error
b4	K16 (H'0010)	CH2 conversion error	b5	K32 (H'0020)	CH2 SEN voltage error
b6 ~ b15	K64 (H'0040)	Reserved			

Note: Every error status is decided by its corresponding bit, so there might be more than 2 error statuses occurring at the same time. 0 refers to no error; 1 refers to error occurring.

- Communication Format Table for CR\#53, CR\#55:

bit15	bit14~bit8	bit7	bit6	bit5	bit4	bit3	bit2		bit1	bit0
ACSII/RTU	Reserved	Baudrate				Data length	Stop bit		Parity	
Description										
bit15	ACSII/RTU			0	ASCII		1	RTU		
bit7~bit4	Baudrate			0	9,600 bps		1	19,200 bps		
				2	38,400 bps		3	57,600 bps		
				4	115,200 bps		5	Else none		
bit3	Data length (RTU = 8 bits)			0	7		1	8		
bit2	Stop bit			0	1 bit		1	2 bits		
bit1~bit0	Parity			0	Even		1	Odd		
				2	None		3	None		

[^0]: * standard Fiber-optics

[^1]: LT = Lead time

[^2]: 3D typically ships within 3 days

[^3]: $\mathbf{L T}=$ Lead time

