

Design of Wedge Wood cutting Machine

By
Khalid Khamayseh

Ahmad Hmedat
Supervisor:
Eng. Mekawi Hraiz

Submitted to the College of Engineering
In partial fulfillment of the requirements for the degree of Bachelor degree in Industrial Automation

Engineering

Palestine Polytechnic University
2017 May
Palestine Polytechnic University

الإهداء

بسم الله الرحن الرحيم
((قل إعملوا فسيرى الله عملكم ورسوله والمؤنون))
صدق الله العظيم
 من فتحوا أمامنا أبواب الثنوق والنوض ، اللى بسمة احمل ونبع الحنان اللى من هم بلسم روحنا إلى ورود حياثنا .
!إلى القلوب الطاهرة الرقيقة والنفوس البريثة إلى رياحين حيانتا
.!إخوتنا..

الى شموع أحرقت نسطا لتضيء من هم حولها.. اليكم يا وردة فاح عبعا وطاب شذاها ..اليكم يا وردة زاد بريتها . أساتنتنا الأفاضل..

$$
\begin{aligned}
& \text { ونخ بالنكر مشرفنا المهندس مكاوي حريز } \\
& \text { الى النين وقفوا بجانبنا في السراء والضراء } \\
& \text {.أصدقاثنا.. } \\
& \text { الى من يعصف قلوبنا.. المى من نحن فداه } \\
& \text {..وطنا فلسطين.. } \\
& \text { الى من ضحى بحريتهم من اجل غيرم } \\
& \text { أسرانا البواسل } \\
& \text { اللى من مر Tكم منا جميعا } \\
& \text { شهداثنا الأبطال } \\
& \text { الى أهات الشههاء والأسرى والجرحى } \\
& \text { إلى كل من أحبنا واحببناه }
\end{aligned}
$$

Abstract

:

Wedge wood its using to make a gap between the stones in the construction process, in the industrial and practical life, the technicians managed to find certain form for wedge wood to make build operation easy, these ideas came to the technicians to cut the wedge wood manually, the traditional way has many disadvantages in terms of, Effort and a long time in production, in addition making the human life in risk, the main goal of this project is to build a machine to cut the wedge wood in automatic way, the worker put the wood piece to the machine, and he start the machine from a safely distance, this project aimed to solving this problem by design and implementation of a wedge wood cutting machine, that producing the wedge wood in automatic way, The machine was desired to reduce the time and effort that need for production and to ensure the best shape of the product.

إسفين الخشب يستخدام لإحداث فجوة بين الحجارة في عملية البناء، في الحياة الصناعية والعملية، تمكن الفنيين العثور على شكل معين لاسفين الخشب لجعل عملية البناء سهلة، وجاءت هذه الأفكار إلى الفنيين لقطع إسفين الخشب يدويا، والطريقة النقلليدية لديها العديد من العيوب من حيث، جهـ ووقت طويل في الإنتاج، بالإضافة إلى جعل الحياة البشرية في خطر، والهدف الرئيسي من هذا المشروع هو بناء آلة لقطع إسفين الخشب بطريقة اوتوماتيكية، يضع العامل قطعة الخشب إلى الجهاز، وتبدأ الالة العمل من مسافة بأمان، ويهف هذا المشرو ع إلى حل هذه المشكلة من خلال تصميم وتنفبذ آلة قطع إسفين الخشب ، التي تتتج إسفين الخشب بطر يقة اوتوماتيكية، الجهاز مطلوب للحد من الوقت والجهـ التي تحتاجه إلى الإنتاج وضمان أفضل شكل للمنتج.

List of Contents

Contents	Page
Dedication	II
Abstract	III
Abstract in Arabic	IV
List of Content	V
List of Figures	IX
List of Table	XII
List of Appendix	XIII
Chapter one: Introduction	1
1.1: Introduction	2
1.2: Problem statement	3
1.3: Goals and objectives	4
1.4: Project scope	5
1.5: Flow chart of project	5
1.6: Time Schedule for Introduction of the Project	6
1.7: Total Cost for the Project	8
Chapter two: production of wedge wood	9
2.1: Introduction	10
2.2: Types of wood	10
2.3: Traditional method of cutting wedges	11
2.4: Automated method of cutting wedges	12

2.4.1 Loading stage 14
2.4.2 Right cutting stage 14
2.4.3 Left cutting stage 16
2.4.4 Horizontal cutting stage 18
Chapter three: Mechanical Design 20
3.1: Introduction 21
3.2: Mechanical design 21
3.2.1 Design of Conveyor 21
3.2.1.1 Design of Conveyor bearing 21
3.2.1.2 Calculating the Torque of the Conveyor Gear 26
3.2.1.3 Finding the Torque and the Power of Conveyor Gear 27
3.2.2 Circular saw blade 28
3.2.2.1 Number of Teeth 28
3.2.2.2 Gullet 29
3.2.2.3 Tooth Configuration 30
3.2.2.4 Hook Angle 31
3.2.2.5 Kerf Width 32
3.2.2.6 Calculation of circular saw blade motor 36
Chapter four: PLC Programming 39
4.1 Introduction 40
4.2: PLC description 40
4.3 PLC Ladder program 43
4.4 Human machine interface (HMI) 45
4.4.1 Introduction 45

4.4.2 HMI design	47
Chapter Five: Electrical design and Protection	49
5.1 Introduction	50
5.2 Motors	50
5.2.1 Single phase induction motor	50
5.2.2 Electrical linear actuator	51
5.2.2 Dc series motor	52
5.3 Components	53
5.3.1 Limit switch.	53
5.3.2 Clements	54
5.3.3 Photoelectric sensor	54
5.3.4 Relay	54
5.3.5 Overload	55
5.3.6 Emergency Stop Button.	56
5.4 Power Circuit	57
Chapter Six: Experimental Result \& Recommendations	60
6.1 Introduction	61
6.2 Test Result	61
6.3 Recommendation	63
6.4 Future Work	63
6.5 Conclusion	63
References	65
Appendix A	66

Appendix B 74
Appendix C 79
Appendix D 83

List of Figures

Figure Page
Figure (1.1) Stone building 2
Figure (1.2) Distance between the stone 2
Figure (1.3) Distance between the stone not equal 3
Figure (1.4) wedges wood 3
Figure (1.5) Human risk 5
Figure (1.6) Block diagram of cutting wedge wood 5
Figure (1.7) Flowchart of project 6
Figure (2.1) White wood 10
Figure (2.2) Spruce wood 11
Figure (2.3) Traditional cutting of wedge wood 11
Figure (2.4) wedge wood jig 12
Figure (2.5) Proposed design of the machine 13
Figure (2.6) Conveyor guide 14
Figure (2.7) Right cutting stage 15
Figure (2.8) Right cutting stage wedge 16
Figure (2.9) Left cutting stage 17
Figure (2.10) Left cutting stage wedge 17
Figure (2.11) Horizontal cutting stage 18
Figure (2.12) Horizontal cutting stage wedges 19
Figure (3.1) Free body diagram of ball bearing 23
Figure (3.2) Bearing 25
Figure (3.3) An image showing the roller and the bearing, where both are 25 installed inside the belt
Figure (3.4) The free body diagram of the conveyor pulley 26
Figure (3.5) Teeth description 29
Figure (3.6) Tooth Configuration 31
Figure (3.7) Hook angle 31
Figure (3.8) Kerf width 32
Figure (3.9.1) Tooth shape 33
Figure (3.9.2) Bore (the center of blade) 34
Figure (3.9.3) The keyway of blade 34
Figure (3.9.4) The pinhole of blade 35
Figure (3.9.5) The slot of blade 35
Figure (3.9.6) Circular saw blade design 36
Figure (4.1) Model explanation 40
Figure (4.2) WPLsoft software 42
Figure (4.3) PLC connection 41
Figure (4.4) PLC Ladder program 44
Figure (4.5) HMI 45
Figure (4.6) Screen editor software 46
Figure (4.7) HMI to PLC communication 46
Figure (4.8) Screen 1 47
Figure (4.9) Screen 2 48
Figure (5.1) single phase induction motor 50
Figure (5.2) Electric linear actuator 51
Figure (5.3) Limit switch 53
Figure (5.4) Clements 54
Figure (5.5) Photoelectric sensor 55
Figure (5.6) Relay 55
Figure (5.7) Overload 56
Figure (5.8) Emergency Stop Button 56
Figure (5.9) power circuit for cutting motor 57
Figure (5.10) power circuit for conveyor motor 57
Figure (5.11) Power circuit for base motor 58
Figure (5.12) power circuit for conveyor motor 58
Figure (6.1) wedge wood Sizes 61
Figure (6.2) The final machine 62

List of Tables

Tables	Page	
Table (1.1)	Time schedule for introduction of the project	7
Table (1.2)	Time schedule for the project	7
Table (1.3)	The budget	8
Table (3.1)	Specific gravity	37
Table (3.2)	Kerf width factor	38
Table (4.1)	PLC inputs	42
Table (4.2)	PLC outputs	42
Table (5.1)	single phase induction motor Specifications	51
Table (5.2)	Electric linear actuator Specifications	52
Table (5.3)	24VDC series motor Specifications	53
Table (5.4)	12VDC series motor Specifications	53
Table (5.5)	Photoelectric sensor Specifications	54

List of Appendix

Tables	
Appendix A	
	A.1 Dimensions of Bearing
	A. 2 Mechanical Properties of Steel 1080
	A.3 Figure 19-1: Single-Strand Roller Chain Selection Chart
	A.4 Dimensions of Chains-Single Strand Source
	A. 5 Service Factors, Ks
	A.6 Horsepower Ratings of Single Strand Roller Chain, No. 40
	A.7 Preferred Sizes and Reynard (R-Series) Numbers

Chapter One

Introduction

1.1 Introduction
1.2 Problem statement
1.3 Goals and objectives
1.4 Block diagram
1.5 Flowchart of project
1.6 Time Schedule for the Project
1.7 Total Cost for the Project

1.1 Introduction:

In our region Palestine and Jordan, spread stone and marble for building houses, institution and hospitals.
the stone used by The technicians to build the buildings, have specific measurements, usually it's have the same width, and variable length, there is a distance from 50 mm to 100 mm between the stone and the other, that's for some reasons:

1) To give a beautiful view, as shown in figure (1.1).

Figure (1.1):Stone Building.
2) If there is no distance between the stones, the rain well cause issues to the building, as shown in figure (1.2).

Figure (1.2): distance between the stones
3) In some cases, the distance between the stones not equals, as shown in figure (1.3).

Figure(1.3): Distance between the stones not equals.
To solve those issues, must found the distance between them, making this distance by putting some material like plastic, steel, or wood, steel high cost, the plastic has issues like slid the stones from each other and not workable, in the work field, the wood is the most solution workable cheap cost proves stone on each other.

Even the wood it can't use all types for some reasons which faced shear technicians and builder.
In the industrial and practical life, the technicians managed to find certain form for wedge wood to make build operation easy, these ideas came to the technicians to shear the wedge manually. Thus came to us design a machine to shear the wedges automatically.

1.2 Problem statement:

This study will focus on studying the following problems and investigating the appropriate solutions:

1) The technicians can't shear all the wedges in same size, as shown in figure (1.4).

Figure (1.4) : wedges wood .
2) The traditional technique of shearing the wedge make the humans life in risk, as shown in figure (1.5).

Figure (1.5) :human risk.

1.3 Goals and Objectives:

The main objective to this study make a design to shear the wedge wood and other reasons:
1- Protect human life when using the traditional technique to produce wedge.
2- Minimize or reduce the amount of damaged wood, and use them in wedges wood industry.
3- Achieve standard sizes of the wedges.

1.4 project scope

Project aims are to give a suggested design of Wedge Wood cutting Machine . Each machine contains many processes from input to output as illustrated in block diagrams in figure (1.6).

Figure (1.6): Block diagram of cutting wedge wood.
The process starts with enter wood plate to the conveyor. Second the wood plate enter between two roll.Third the motor circular saw works and the circular saw cutting the first right wedge wood. Fourthly the circular saw cutting left wedge wood. And finally the circular saw cut mid two wedge wood.

1.5 Flowchart of project .

The flowchart will explain the operation of the machine, as shown in figure (1.7).

Figure (1.7): Flowchart of project.

1.6 Time Schedule for the Project .

As shown in Table 1.1 and Table 1.2 the time schedules for the project in steps. The time needed for the project is Thirty weeks., Table 1.1 and Table 1.2 lists the tasks of the project respectively, and the needed tasks for each in gray.

Table (1.1): Time schedule for introduction of the project

First semester																			
No. of week Task	1	2		3	4		5	6		7	8	9		10	11	12	13	14	15
Identification of project idea																			
Sites visit																			
Introduction about the project operation																			
Mechanical design																			
Electrical design																			

Table (1.2): Time schedule for the project

Second semester																	
No. of week Task	1	2	3	4		5	6	7		8	9	10	11	12	13	14	15
Determine Mistakes																	
Generate Solutions																	
Generate Alternative Designs																	
Writing and Documentation																	
Results and Conclusion																	

1.6 Total Cost for the Project

The Table below shows the budget of the project and its distribution. The budget of the project is estimated to be around 4185 NIS, In Table 1.3 is listed the needed components for the project, the price of each component's single unit, the number of units needed of each component, and the total price for each component.

Table (1.3): The budget

	Component name	Quantity	Price (NIS)	Total price (NIS)
$\mathbf{1}$	PLC	1	600	600
$\mathbf{2}$	Ac motor	1	300	300
$\mathbf{3}$	24v DC motor	1	100	100
$\mathbf{4}$	24v DC cylinder	1	100	100
$\mathbf{5}$	12v DC motor	1	100	100
$\mathbf{6}$	Micro switch	2	50	100
$\mathbf{7}$	rolls	2	250	500
$\mathbf{8}$	Steel for Body	-	300	300
$\mathbf{9}$	Emergency Switch	1	25	25
$\mathbf{1 0}$	Limit switch	3	10	30
$\mathbf{1 1}$	HMI	1	600	600
$\mathbf{1 2}$	Over load	1	70	70
$\mathbf{1 3}$	Relays	7	50	350
$\mathbf{1 4}$	Photo sensor	2	50	100
$\mathbf{1 5}$	Bearing	9	40	360
$\mathbf{1 6}$	Circular saw blade	1	50	50
$\mathbf{1 7}$	Gears	2	100	200
$\mathbf{1 8}$	Electrical cabinet	1	200	200
$\mathbf{1 9}$	Parts	-	100	100
			Total price	$\mathbf{4 1 8 5}$ (NIS)

Chapter Two

Production of wedge Wood

2.1 Introduction.
2.2 Types of wood.
2.3 Traditional method of cutting wedges.
2.4 Automated method of cutting wedges.

2.1 introduction.

There have been many developed methods for wedge wood production, some of them are considered traditional, while others are automated. Before we introduce our machine, we will talk about the disadvantages of common methods of wedge wood production.

2.2 Types of wood

There is two main type of wood:

1) Hardwood: this type of wood not compatible with this operation, because it's expensive and hard to cut.
2) Softwood: this type good for this operation, easy to cut and almost cheaper than hardwood.

Softwood have many type and not all of them can work, the types that work:

1) Spruce wood
2) White wood

Figure (2.1): white wood

Figure (2.2): spruce wood

2.3 Traditional method of cutting wedges

The worker holds the wood piece and put it with wedge wood jig figure (2.4), and pass it through the circular saw blade, as shown in figure (2.3), then he flips the stock so that the front faces back and the top faces down, then he repeats this process, "cut, cut, flip... cut, cut, flip...", If just "cut, cut, cut", it will end up with a chunk.

Figure (2.3): Traditional cutting of wedge wood.

Figure (2.4): Wedge wood jig
Disadvantages of traditional method:

- Make human life in danger like it may be cut the finger of worker or grain of wood get into his eye.
- Its take much time of producing.

2.4 Automated method of cutting wedges.

In our project we will show the new technology of producing the wedge wood using a full automated machine programmed with a PLC, which will allow the user to control the operation of the machine by a pushbutton installed on the HMI, this method of production will ensure to save the time and the workers life, the proposed machine, is shown in the figure (2.5).

Figure (2.5): Proposed design of the machine

In order to take an image in our minds about how the machine works and the manufacturing stages passes through it to get the final product, we divided the stages of production into four stages.

1. Loading stage.
2. Right cutting stage.
3. Left cutting stage.
4. Horizontal cutting stage.

These four stages are integrated with each other in order to get the final product, in the coming sections each stage will be explained in full details.

2.4.1 Loading Stage:

The worker put the wood plate into the conveyor guide manually, then the conveyor transport the wood plate inside, as shown in figure (2.6).

Figure (2.6): conveyor guide

2.4.2 Right cutting stage:

After the conveyor transport the wood plate the base motor rotate the circular saw motor to the right cutting location, then the electrical cylinder make the circular saw up and down, in order to know that the machine start cutting from the right cutting stage, as shown in figure (2.7).

Figure (2.7): right cutting stage.

After the right cutting stage, the wood plate will show in figure (2.8).

Figure (2.8): right cutting stage wedge

2.4.3 Left cutting stage:

The base motor rotates the circular saw motor to the left cutting location, as shown in figure (2.9), then the electrical cylinder make the circular saw up and down.

Figure (2.9): left cutting stage.

After the left cutting stage, the wood plate will show in figure (2.10).

Figure (2.10): left cutting stage wedge

2.4.4 Horizontal cutting stage:

The base motor rotates the circular saw motor to the horizontal cutting location, as shown in figure (2.11), then the electrical cylinder make the circular saw up and down.

Figure (2.11): horizontal cutting stage.

After the left cutting stage, the wood plate will show in figure (2.12).

Figure (2.12): horizontal cutting stage wedges

Chapter Three

Mechanical Selection

3.1 Introduction

3.2 Mechanical Selection

3.1 Introduction.

It is desired to design and produce Wedge Wood cutting Machine fully automated and controlled. The process starts when the user puts the wood in the Conveyor guide and press the start button, The wood is prepared and loaded to the conveyor manually, but the process of pulling the wood automatically and the wood stops after reach the sensor and then begins the first cut-off operation that cuts the first wedge and after the first cut-off operation spins the engine to start with the process of the second cut and that cut the second wedge and then the traffic rotates at the angle of 180 , which cut the third and fourth wedge together, thus bringing the number of wedges produced in each cut is equal to four wedges.

The machines divided into four subsystems:-

1. loading wood.
2. Right cutting stage
3. Left cutting stage
4. Horizontal cutting stage.

3.2 Mechanical Selection.

In this section each block will be explained in detail noting that, the used material for most parts in this machine is high strength steel.

3.2.1 Selection of Conveyor.

3.2.1.1 Selection Bearing of Conveyor.

In the design of conveyor bearing we consider that there is no thrust loading, and the loading is only radial.

Step 1: Compute F_{x} and F_{y} by applying static equilibrium equations to the shaft supported by the bearing.

$$
\begin{equation*}
\mathrm{Sf}=\mathrm{Si}+\mathrm{Vt}+\frac{1}{2} \mathrm{at}^{2} \tag{3.1}
\end{equation*}
$$

s_{f} : The distance from the middle to the end of the conveyor.
s_{i} : The ini1tial distance, and equal zero.
v_{i} : Initial velocity of the belt.
a: Acceleration of the belt.
We want the wood plate to move from the start to the end of conveyor in 0.5 seconds ($\mathrm{t}=0.5 \mathrm{sec}$).
$0.08=\frac{1}{2}$ a 0.5^{2}
$\mathrm{a}=0.64 \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{F}_{\mathrm{x}}=\mu * \mathrm{~N}+\mathrm{m} * \mathrm{a}$
$\mathrm{N}=\rho_{w} * v_{t} * \mathrm{~g}$
μ : The coefficient of friction between the belt and the roller, and equals 0.05 .
N : The normal force affected on trunks.
ρ_{w} : The maximum density of stove wood, which is considered to be $440 \mathrm{Kg} / \mathrm{m}^{3}$.
v_{t} : The maximum volume of the trunk, which equals the base area multiplied by the length.
a: Acceleration of the belt.
$\mathrm{N}=440 * 0.05 * 0.025 * 1 * 9.81=5.39 \mathrm{~N}$.
$\mathrm{F}_{\mathrm{x}}=0.05 * 5.39+3 * 0.64=$
$\mathrm{F}_{\mathrm{x}}=0.26+1.9=2.18 \mathrm{~N}$
$\mathrm{F}_{\mathrm{y}}=\mathrm{m} * \mathrm{~g}$
m : Maximum total mass of wood piece loaded on conveyor.
g: the acceleration of gravity, and equals $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathrm{F}_{\mathrm{y}}=3 * 9.81=29.43 \mathrm{~N}$

Figure 3.1 demonstrates the free body diagram of the ball bearing, where the forces are perpendicular to the axis of the bearing.

Step 2: Now we find the resultant radial load $\left(\mathrm{F}_{\mathrm{r}}\right)$:

$\mathrm{F}_{\mathrm{r}}=\sqrt{\mathrm{F}_{\mathrm{x}}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}}$
Figure (3.1): Free body diagram of ball bearing
$=\sqrt{(2.18)^{2}+(29.43)^{2}}$
$\mathrm{F}_{\mathrm{r}}=29.44 \mathrm{~N}$
Where:

Fr: force resultant.

Specifying FD.

The design load can be defined by:
$\mathrm{F}_{\mathrm{D}}=\mathrm{a}_{\mathrm{f}} * \mathrm{~V} * \mathrm{~F}_{\mathrm{r}}$
F_{D} : Design radial load.

V: Rotation factor, and equals l (rotating inner ring).
F_{r} : Radial load on the bearing.
a_{f} : Application factor used because loads are often variable (non-steady) and may increase during operation, and equals 1.2 (machinery with no impact).
$\mathrm{F}_{\mathrm{D}}=1.2 * 1 * 9.8=35.28 \mathrm{~N}$

Step 3: Assuming the desired life $\left(L_{D}\right)$ and Reliability $\left(R_{D}\right)$, we find X_{D}.
$\mathrm{X}_{\mathrm{D}}=\frac{\mathrm{L}_{\mathrm{Dh}}}{\mathrm{L}_{10}}$
$L_{D H}=L_{D} * N * 60$
$\ddot{\theta}=\frac{a}{r}$
Where :
$\ddot{\theta}$: angular acceleration of the pully
r : radious of the pully
X_{D} :Life ratio.
L_{DH} : Design Life, , and equals 30000 (general industrial machinery).
L_{10} : Number of revolutions. and equals $1 * 10^{6}$ (based on 90% reliability).
L_{D} : Desired life (revolutions).
N : speed motor
X rev $=\frac{0.08}{0.05}=1.6 \mathrm{rev} / \mathrm{m}$
$\mathrm{Yrev}=\frac{0.05}{0.01}=5 \mathrm{rev} / \mathrm{m}$
Xrev * Yrev $=8$ turn of motor per piece
$\ddot{\theta}=\frac{0.64}{.06}=10.6 \mathrm{~m} / \mathrm{s}$
$\mathrm{N}=8 \frac{\mathrm{rev}}{\mathrm{m}} * \frac{0.08}{0.25} * \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=153.6 \mathrm{rpm}$
$\mathrm{L}_{\mathrm{Dh}}=30000 * 153.6 * 60=276.48 * 10^{6}$
$X_{D}=\frac{276.48 * 10^{6}}{1 * 10^{6}}=276.48 \mathrm{~h}$

Step 4: Calculate the required catalog rating $\left(\mathrm{C}_{10}\right)$.
$\mathrm{C}_{10}=\mathrm{X}_{\mathrm{D}}^{1 / \mathrm{a}} * \mathrm{~F}_{\mathrm{D}}$
$\mathrm{C}_{10}=276.48^{1 / 3} * 35.28=586.6 \mathrm{~N}$

Figure 3.2 displays a single-row, deep groove ball bearing, with the balls and the groove appearing.

Step 5: Check the catalog and select a suitable bearing.
From Table 3.2.

$\mathrm{C} 10=586.62 \mathrm{~N}$, Bore $=10 \mathrm{~mm}, \mathrm{OD}=30 \mathrm{~mm}$.
Figure (3.2): bearing

Step 6: Finally, we find the diameter the Bearing bore, using the law of factor of safety and the law shear stress.
$\mathrm{n}=\frac{\mathrm{S}_{\mathrm{y}}}{\tau}$
τ : Shear stress.
S_{y} : The yield strength and from Table A-20: S_{y} for high carbon hot rolled steel is 220 Mpa .
n : Factor of safety and we have chosen it to be 4.
$\tau=\frac{220 * 10^{6}}{4}=55 * 10^{6} \mathrm{Mpa}$
$\tau=\frac{F_{r}}{A}$

A: Area of bearing bore.
$\tau=\frac{9.8 \mathrm{~N}}{\frac{\pi}{4} \mathrm{~d}^{2}} \quad \mathrm{~d}^{2}=\frac{4 * \mathrm{~F}}{\pi * \tau} \rightarrow \mathrm{~d}=\sqrt{\frac{4 * 9.8}{\pi * 55 * 10^{6}}}$
$\mathrm{d}=2.26 * 10^{-3} \mathrm{~m}$
$\mathrm{d}=2.26 \mathrm{~mm}$.
Figure (3.3): An image showing the roller and the bearing, where both are installed inside the belt.
Figure 3.3 shows the roller and the bearing. Both of them belt. in the conveyor belt.

3.2.1.2 Calculating the Torque of the Conveyor Gear

The free body diagram of the conveyor pulley is depicted in Figure (3.4).

Figure (3.4): The free body diagram of the conveyor pulley
$\sum \mathrm{M}=\mathrm{J} \ddot{\theta}$
$\mathrm{T}=\mathrm{J} \ddot{\theta}+(\mu * \mathrm{~N}+\mathrm{m} * \mathrm{a}) \mathrm{r}$
$\mathrm{m}=3 \mathrm{~kg}$
$\mathrm{N}=\mathrm{m} * \mathrm{~g}=29.4 \mathrm{~N}$
$\mu * N=0.05 * 29.4 \mathrm{~N}=1.47 \mathrm{~N}$
$\mathrm{m}_{\text {pulley }}=\rho * \mathrm{v}$
$A=\pi\left(d_{\text {out }}-d_{\text {in }}\right)^{2}$
$A=\pi(0.06-0.03)^{2}=0.0028 \mathrm{~m}^{2}$
$\mathrm{V}=\mathrm{A} * \mathrm{~L}$
$\mathrm{V}=0.0028 \mathrm{~m}^{2} * 0.02 \mathrm{~m}=5.6 * 10^{-5} \mathrm{~m}^{3}$
$m_{\text {pulley }}=7850 \mathrm{~kg} / \mathrm{m}^{3} * 5.6 * 10^{-5} \mathrm{~m}^{3}=0.441 \mathrm{~kg}$
$\mathrm{J}=\frac{1}{2} \mathrm{~m}_{\text {pulley }} \mathrm{R}^{2}$
$\mathrm{J}=\frac{1}{2}(0.44)(0.1)^{2}=0.0022 \mathrm{~kg} . \mathrm{m}^{2}$
$m_{\text {pulley }}$: The mass of the pulley.
m : The maximum total mass of two trunks.
ρ : Density of high carbon steel and equals $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
v : Volume of the pulley.
$d_{\text {out }}$: The outer diameter of the pulley.
d_{in} : The inner diameter of the pulley.

From equation 3.18:
$\mathrm{T}=((0.0022 * 10.6)+(29.44) *(0.1)$
$=2.92 \mathrm{~N} . \mathrm{M}$

3.2.1.3 Finding the Torque and the Power of Conveyor Gear

In this sub section we want to find the torque and the power of the conveyor motor, knowing the speed of the gear ($\mathrm{n}_{\mathrm{gear}}$) found from the previous calculations.
$\mathrm{w}_{\text {gear }}=\frac{2 \pi * \mathrm{n}_{\text {gear }}}{60}$
w: Angular Velocity.
n : Desired speed.
$\mathrm{w}_{\text {gear }}=\frac{2 \pi * 153.6}{60}=16.06 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{w}_{\text {motor }}=\frac{\mathrm{w}_{\text {gear }}}{1 / 10} \\
& \mathrm{w}_{\text {motor }}=160.6 \mathrm{rad} / \mathrm{sec} \\
& \mathrm{n}_{\text {motor }}=\frac{160.6 * 60}{2 \pi} \\
& =1534 \mathrm{rpm} \approx 1500 \mathrm{rpm} \\
& \mathrm{~T}_{\text {motor }}=\frac{\mathrm{T}_{\text {gear }}}{10} \\
& \mathrm{~T}_{\text {motor }}=\frac{2.92 \mathrm{~N} . \mathrm{m}}{10}=0.29 \mathrm{~N} . \mathrm{m} \\
& \mathrm{P}=\mathrm{T}_{\text {motor }} * \omega \\
& =.29 \mathrm{~N} . \mathrm{m} * 160.6 \mathrm{rad} / \mathrm{sec} \\
& \mathrm{P}=46.5 \mathrm{watt}
\end{aligned}
$$

3.2.2 Circular saw blade.

Many saw blades are designed to provide their best results in a particular cutting operation. You can get specialized blades for ripping lumber, crosscutting lumber, cutting veneered plywood and panels, cutting laminates and plastics, cutting melamine and cutting non-ferrous metals. There also are general purpose and combination blades, which are designed to work well in two or more types of cuts. (Combination blades are designed to crosscut and rip. General-purpose blades are designed to make all types of cuts, including in plywood, laminated wood and melamine.

3.2.2.1 Number of Teeth:

In general, blades with more teeth yield a smoother cut, as shown in figure (3.5), and blades with fewer teeth remove material faster. A 10" blade designed for ripping lumber

A crosscut blade, is designed to produce a smooth cut across the grain of the wood, without splintering or tearing. This type of blade will usually have 60 to 80 teeth, and the higher tooth count means that each tooth has to remove less material. A crosscut blade makes many more individual cuts as it moves through the stock than a ripping blade and, as a result, requires a slower feed rate. The result is a cleaner cut on edges and a smoother cut surface. With a topquality crosscut blade, the cut surface will appear polished.

Figure (3.5): Teeth description.

3.2.2.2 Gullet.

The gullet is the space in front of each tooth to allow for chip removal. In a ripping operation, the feed rate is faster and the chip size is bigger, so the gullet needs to be deep enough for the large amount of material it has to handle. In a crosscutting blade, the chips are smaller and fewer per tooth, so the gullet is much smaller. The gullets on some crosscutting blades also are purposely sized small to inhibit a too-fast feed rate, which can be a problem especially on radial-arm and sliding miter saws. The gullets of a combination blade are designed to handle both ripping and crosscutting. The large gullets between the groups of teeth help clear out the larger amounts of material generated in ripping. The smaller gullets between the grouped teeth inhibit a too-fast feed rate in crosscutting.

3.2.2.3 Tooth Configuration.

The shape of the saw blade tooth and the way the teeth are grouped also affect the way the blade cuts. The configuration of the teeth on a saw blade has a lot to do with whether the blade will work best for ripping, crosscutting or laminates.

Flat-Top (FT): Flat-top teeth are used on blades for ripping hard and soft woods. Because wood is much less likely to chip and splinter when it is being cut with the grain, a rip blade is designed to quickly and efficiently remove material. The flat-top tooth is the most efficient design for cutting and raking material out of the cut, as shown in figure (3.6.1).

Alternate Top Bevel (ATB): This means that the blade teeth alternate between a right- and lefthand bevel. This configuration yields a smoother cut when crosscutting natural woods and veneered plywood. The alternating beveled teeth form a knife-like edge on either side of the blade and make a cleaner cut than flat-top teeth, as shown in figure (3.6.2).

Combination Tooth (Comb.): Combination blades are designed to do both crosscutting and ripping. The teeth are arranged in groups of five - four ATB teeth and one FT - with a large gullet between the groups, as shown in figure (3.6.3).

Triple Chip Grind (TCG): The TCG configuration excels at cutting hard materials such as laminates, MDF and plastics. Teeth alternate between a flat "raking" tooth and a higher "trapeze" tooth. The TCG configuration is also used for non-ferrous metal cutting blades, as shown in figure (3.6.4).

High Alternate Top Bevel (Hi-ATB): The Hi-ATB configuration is used for extra-fine crosscutting and to cut materials surfaced with melamine, which is prone to chipping. The high bevel angle increases the knife-like action at the edge of the blade, as shown in figure (3.6.5).

Figure (3.6): Tooth Configuration

3.2.2.4 Hook Angle.

On most saw blades, the faces of the teeth are tipped forward or backward, rather than being perfectly in line with the center of the blade. This is called "hook angle." On a blade with a positive hook angle, the teeth are tipped forward, toward the direction of the blade's rotation. A negative hook angle means that teeth tip away from the direction of rotation, and a 0° hook angle means that the teeth are in line with the center of the blade.

Hook angle has an important effect on blade operation. A blade with high positive hook angle (say, 20°) will yield a very aggressive cut and a fast feed rate. A low or negative hook angle will slow the feed rate and will also inhibit the blade's tendency to "climb" the material being cut. A blade for ripping lumber on a table saw will generally have a high hook angle, where an aggressive, fast cut is usually what you want. Radial-arm saws and sliding compound miter saws, on the other hand, require a blade with a very low or negative hook angle to inhibit overly fast feed rate, binding and the blade's tendency to "climb" the material, as shown in figure (3.7).

Figure (3.7): Hook angle

3.2.2.5 Kerf Width.

Figure (3.8): Kerf width

The width of the "kerf" - the slot the blade cuts in the material - is another important consideration. Many blade types are available in both full-kerf and thin-kerf varieties. Full-kerf blades typically cut a $1 / 8^{\prime \prime}$ slot and are intended for use on saws powered by 3 hp (or greater) motors.

Thin-kerf saw blades - blades with a kerf thickness of less than $1 / 8^{\prime \prime}$ - were developed for use on portable and contractor model table saws with motors of less than 3 hp . Because a thin-kerf blade has to remove less material than a full-kerf blade, it requires less power to operate and allows lower-powered saws to cut material at an appropriate feed rate without the risk of bogging down during the cut. (Bogging down causes excessive friction; as a result, the blade heats up and can become distorted or burn the cut surface.)

A potential trade-off for the thinner kerf is the fact that the blade plate is thinner and therefore might be expected to vibrate more than a thicker, more rigid plate. However, technological advances in blade design have generated thin-kerf blades that rival the best industrial-quality full-kerf saw blades. Vibration-dampening systems, like the one used with Freud thin-kerf blades, compensate for the slight loss of stability and make thin-kerf blades the optimum choice for lower-powered saws.

As described above, the type of wood should have these specifications:

- Number of teeth: (80) blades with more teeth yield a smoother cut.
- Gullet: the chips are smaller and fewer per tooth.
- Tooth configuration: Alternate Top Bevel (ATB).
- Hook angle: low hook angle $\left(-5^{\circ}\right)$.
- Kerf width: full kerf ($1 / 8^{\prime \prime}$) for three phase.

Saw designer program designed circular saw blade.

Figure (3.9.1): Tooth shape

Figure (3.9.2): Bore (the center of blade)
Ω Keyway Editor

File Edit View Tools Help | File Edit View Tools Help |
| :--- |
| First Set - |
| Number of Keyways 2 |

Number of Keyways	2
Width:	8.000
Depth:	5.000
	0.000

Figure (3.9.3): The keyway of blade

Figure (3.9.4): The pinhole of blade

Figure (3.9.5): The slot of blade

File Edit View Design Tools Help

Figure (3.9.6): Circular saw blade design

3.2.2.6 Calculation of circular saw blade motor.

Step1: calculate tooth bite (F/T).
$T b=\frac{F r * 12}{R p m * N t}$

Tb: Tooth bite (F / T).

Fr: Feed rate (F/M).

Rpm: Shaft speed (RPM).
$N t$: Number of teeth.
$T b=\frac{200 * 12}{1500 * 80}=0.02$

Step2: calculate gullet area required.
$G r=T b * D c$
$G r$: gullet area required $\left(i n^{2}\right)$.
$D c$: Depth of cut (in).
$G r=0.02 * 0.9842=0.0196$

Step3: calculate bite factor.
$B f=0.5+(4 * T b)$
$B f$: bite factor.
$B f=0.05+(4 * 0.02)=0.58$
Step4: calculate hardness factor.
$H f=S g * 2.2$
$S g$: Specific gravity(Table3.2).
Table (3.1): specific gravity
$H f=0.35 * 2.2=0.77$

Type	Value
Softwood	0.35
Cedar-Western Red	0.31
Douglas Fir-Coast	0.45
Pine-Ponderosa	0.38
Spruce-White	0.37
Hardwood	0.65
Birch-Yellow	0.55
Maple	0.56
Oak-White	0.60

Step5: calculate horsepower.
$H p=G r * N t * R b m * B f * H f * K w f * F w f * 0.003$
$F w f$: Face width factor (1.0).
$K w f:$ Kerf width factor (Table 3.3).

Table (3.2): Kerf width factor

Tip Kerf		Factor
0.125	$1 / 8$	0.36
0.15625	$5 / 32$	0.45
0.1875	$3 / 16$	0.55
0.21875	$7 / 32$	0.64
0.250	$1 / 4$	0.73
0.28125	$9 / 32$	0.82
0.3125	$5 / 16$	0.91
0.34375	$11 / 32$	1.00
0.375	$3 / 8$	1.09

$H p=0.0196 * 80 * 1500 * 0.58 * 0.77 * 0.36 * 1 * 0.003=1.134 \mathrm{Hp}$

Chapter Four

PLC \& HMI Programming

4.1 Introduction.
4.2 PLC Description.
4.3 PLC Ladder program.
4.4 Human machine interface (HMI)

4.1 Introduction.

As it has been mentioned before the wedge wood machine is fully automated and the process is performed sequentially, this can be performing by using PLC (programmable logic controller). This made adding automation capability and safety precautions possible, which is explained through this chapter.

4.2 PLC description.

Programmable Logic Controller (PLC) is a digital computer used for automation of electromechanical process, such as control of machinery on factory assembly lines, PLCs are used in many industries and machine. Unlike general-purpose computers, the PLC is designed for multiple inputs and output arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact. programs to control machine operation are typically stored in battery backed-up or non- volatile memory.

The PLC used in this machine is PLC- DVP20EX00R2.

Figure (4.1): model explanation.

The software for PLC- DVP20EX00R2 is the program WPLsoft, as shown in the figure (4.2).

Figure (4.2): WPLsoft software.

Figure (4.3): PLC connection.

In this machine we need 7 inputs, described in table (4.1), and 6 outputs, described in table (4.2)

Table (4.1): PLC inputs.

Input	Logic allocation	address
	Limit switch (Cylinder Up)	X1
S1	Limit switch (Cylinder Down)	X2
S2	Micro switch (Base Right)	X3
S3	Micro switch (Base left)	X4
S4	Limit switch Base 180'	X5
S5	Photo transistor (first stage)	X6
S6	Photo transistor (first stage)	X7
S7		

Table (4.2): PLC outputs

Output	Logic allocation	address
Motor 1	Circular Saw Motor	Y 0
Motor 2	Conveyor	Y 1
Motor 3	Base Motor (Right)	Y 2
Motor 4	Base Motor (Left)	Y 3
Motor 5 UP	Cylinder(Up)	Y 4
Motor 5 Down	Cylinder (down)	Y 5

4.3 PLC Ladder program.

Figure (4.4): PLC Ladder program.

4.4 Human machine interface (HMI).

4.4.1 Introduction.

The Human Machine Interface (HMI) includes the electronics required to signal and control the state of industrial automation equipment. These interface products can range from a basic LED status indicator to a 20 -inch TFT panel with touchscreen interface. HMI applications require mechanical robustness and resistance to water, dust, moisture, a wide range of temperatures, and, in some environments, secure communication. They should provide Ingress Protection (IP) ratings up to IP65, IP67, and IP68, it must first be working with a programmable logic controller (PLC). It is the PLC that takes the information from the sensors, and transforms it to Boolean algebra, so the HMI can decipher and make decisions.

The HMI that used in this project is delta HMI DOP-AS35THTD, as shown in figure (4.5).

Figure (4.5): HMI.

The software for DOP-AS35THTD is the program Screen editor, as shown in the figure (4.6).

Figure (4.6): Screen Editor software.

HMI Connections

Communication Channel

Figure (4.7): HMI to PLC communication.

4.4.2 HMI design.

The (start) pushbutton to start cutting the wedge wood, and the (stop) pushbutton to stop cutting, first of stopping order, make the electrical cylinder get up the cutting motor then turn off the cutting motor, then turn on the base motor to rotate the cutting motor to the right cutting location.

The counter to count how much the machine cut wedge wood from the start, and by push on (Reset) pushbutton the counter will reset to zero.

Figure (4.8): Screen 1

Figure (4.9): Screen 2

5

Chapter Five

Electrical Selection \& Protection

5.1 Introduction.

5.2 Motors.
5.3 Components.
5.4 Power Circuit

5.1 Introduction.

This chapter contains the electrical component specifications (motor, switch, sensor, etc.).

5.2 Motors.

In this project there are one AC motor and three DC motors (electric linear actuator, Conveyer Motor, base motor).

5.2.1 Single phase induction motor

The induction motor is the motor most commonly used in agriculture. The speed of rotation of an induction motor is fairly constant, but it does vary somewhat with loading. As the motor is loaded, it slows down slightly.

Single-phase induction motors are not self-starting without an auxiliary stator winding driven by an out of phase current of near 90°. Once started the auxiliary winding is optional. The auxiliary winding of a permanent-split capacitor motor has a capacitor in series with it during starting and running. A capacitor-start induction motor only has a capacitor in series with the auxiliary winding during starting. A capacitor-run motor typically has a large non-polarized electrolytic capacitor in series with the auxiliary winding for starting, then a smaller non-electrolytic capacitor during running. The auxiliary winding of a resistance split-phase motor develops a phase difference versus the main winding during starting by virtue of the difference in resistance, as shown figure (5.1).

Figure (5.1): single phase induction motor

In this project we used this one as single phase induction motor describe in table (5.1)

Table (5.1): single phase induction motor Specifications

Power (kw)	Current (A)	Voltage (V)	RPM	Eff (\%)
0.25	3.5	220	3000	72

5.2.2 Electrical linear actuator.

A linear actuator moves a load, which can be an assembly, components, or a finished product, in a straight line. It converts energy into a motion or force and can be powered by pressurized fluid or air, as well as electricity.

An electric linear actuator converts electrical energy into torque. An electric motor mechanically connected turns a lead screw. A threaded lead or ball nut with corresponding threads that match those of the screw is prevented from rotating with the screw. When the screw rotates, the nut gets driven along the threads. The direction the nut moves depends on which direction the screw rotates and also returns the actuator to its original position, as shown figure (5.2).

Figure (5.2): Electric linear actuator.

In this project we used this one electric linear actuator as describe in table (5.2).

Table (5.2): Electric linear actuator Specifications

SANXING FD24-A1-460 24 VOLT LINEAR ACTUATOR MOTOR	
INPUT VOLTAGE:	24 V DC
SPEED:	$4 \mathrm{MM} / \mathrm{S}$
DUTY CYCLE:	$10 \% \mathrm{MAX:} \mathrm{2} \mathrm{DK/18} \mathrm{DK}$
MAX LOAD:	$6000 \mathrm{~N} / \mathrm{PUSH}$ $4000 \mathrm{~N} / \mathrm{PULL}$
STRONG:	33 CM
weight: weight :	2300 gr (bulk) 2500 gr (packing)

5.2.3 Dc series motor.

A DC motor is any of a class of rotary electrical machines that converts direct current electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic; to periodically change the direction of current flow in part of the motor. DC motors were the first type widely used, since they could be powered from existing direct-current lighting power distribution systems. A DC motor's speed can be controlled over a wide range, using either a variable supply voltage or by changing the strength of current in its field windings. Small DC motors are used in tools, toys, and appliances. The universal motor can operate on direct current but is a lightweight motor used for portable power tools and appliances. Larger DC motors are used in propulsion of electric vehicles, elevator and hoists, or in drives for steel rolling mills. The advent of power electronics has made replacement of DC motors with AC motors possible in many applications.

Series dc wiper motor that used in this project for conveyor motor, as describe in table (5.3).

Table (5.3): 24 VDC series motor Specifications

Voltage	Current	Power	Torque	Speed
24 V	5 A	120 W	$35.8 \mathrm{~N} . \mathrm{M}$	32 RPM

The motor that used in this project dc series wiper motor for base motor, as describe in table (5.4)

Table (5.4): 12VDC motor Specifications

Voltage	Current	Power	Torque	Speed
12 V	4 A	45 W	$13.4 \mathrm{~N} . \mathrm{M}$	32 RPM

5.3 Components.

5.3.1 Limit switch.

Limit switch is a switch operated by the motion of a machine part or presence of an object. They are used for control of a machine. In this project there is 3 limit switches, the limit switches used in this project shown in figure (5.3)

Figure (5.3): Limit switch.

5.3.2 Clements.

Clements Used to connect wire to another wire, as shown in figure (5.4).

Figure (5.4): Clements.

5.3.3 Photoelectric sensor.

A self-contained photoelectric sensor contains the optics, along with the electronics. It requires only a power source. The sensor performs its own modulation, demodulation, amplification, and output switching. Some self-contained sensors provide such options as built-in control timers or counters. Because of technological progress, self-contained photoelectric sensors have become increasingly smaller.

Remote photoelectric sensors used for remote sensing contain only the optical components of a sensor. The circuitry for power input, amplification, and output switching are located elsewhere, typically in a control panel. This allows the sensor, itself, to be very small. Also, the controls for the sensor are more accessible, since they may be bigger.

Table (5.5): Photoelectric sensor Specifications

Model	Sensing Distrance	Operation voltage	Output			Response
			Method	Mode	time	Sensing method
G50-3A30NA	30 cm 50 cm	DC10-30V	NPN	NO	$<2 \mathrm{mS}$	Diffuse type
G50-3A30NB	30 cm 50 cm	DC10-30V	NPN	NC	$<2 \mathrm{mS}$	Diffuse type
G50-3A30NC	30 cm 50 cm	DC10-30V	NPN	NO+NC	$<2 \mathrm{mS}$	Diffuse type

Figure (5.5): Photoelectric sensor

5.3.4 Relay.

A relay is an electrically operated switch. Many relays use an electromagnet to mechanically operate a switch, but other operating principles are also used, such as solid-state relays. Relays are used where it is necessary to control a circuit by a separate low-power signal, or where several circuits must be controlled by one signal. The first relays were used in long distance telegraph circuits as amplifiers: they repeated the signal coming in from one circuit and re-transmitted it on another circuit. Relays were used extensively in telephone exchanges and early computers to perform logical operations.

Magnetic latching relays require one pulse of coil power to move their contacts in one direction, and another, redirected pulse to move them back. Repeated pulses from the same input have no effect. Magnetic latching relays are useful in applications where interrupted power should not be able to transition the contacts, as shown figure (5.6).

Figure (5.6): Relay

5.3.5 Overload

Overload relays are intended to protect motors, controllers and branch-circuit conductors against excessive heating due to prolonged motor over currents up to and including locked rotor currents. Protection of the motor and other branch-circuit components from higher currents, due to short circuits or grounds, is a function of branch-circuit fuses, circuit breakers or motor short circuits protectors. The system needs one overloads to protect the motors. See the figure 5.7

Figure (5.7): Overload

5.3.6 Emergency Stop Button.

Emergency Stop Button is shown in a figure 5.8 provides safety for humans and the machine; it offers a wide range of safety components for the protection of humans, machine and production goods in emergency situations.
It is the purpose of emergency-stop device to deflect or minimize the risk as quickly as possible and optimally in the event of an emergency arising

Figure (5.8): Emergency Stop Button
5.4 Power circuit.

Figure (5.9): power circuit for cutting motor

Figure (5.10): power circuit for conveyor motor

Figure (5.11): power circuit for base motor

Figure (5.12): power circuit for conveyor motor

Figure (5.13): machine power circuit.

6

Chapter Six

Experimental Result \& Future work

6.1 Introduction
6.2 Test Result
6.3 Recommendations
6.4 Future Work
6.5 Conclusion

6.1 Introduction

This chapter provides experimental result and some future work for this project. In this chapter we are listing some goals hope to be accomplished or at least under attention.

6.2 Test Result

1) Transporting system: Before obtaining wedges from the wood plate, we try to check the operation of the conveyor by sensing the presence of the wood plate.
2) The size of the machine suitable and small ($50 \mathrm{~cm} * 150 \mathrm{~cm}$)
3) Get the wedge with all the precision and best shape it has, taking into consideration the direction of cutting the wood.
4) The periodic cycle of cutting four wedges is (70 second).
5) Linear actuator system: used to have slow speed and increase accuracy.
6) Make a sheet in cut directions in order to provide a path for cutting blade.

The experimental result of the machine, as shown in figure (6.1) have the best shape as the wedges wood must to be.

Figure (6.1): wedge wood Sizes.

The final machine, as shown in figure (6.2).

Figure (6.2): The final machine

6.3 Recommendations.

These recommendations are recorded to people who can create opportunities for student to make something new and useful, in order to make difference in our country Palestine:

1) Such projects should be handled among different departments according to the project nature (we had lots of mechanical problems that might solve without having enough previous knowledge).
2) Once the university administration financially supported graduation projects, this support must be provided at the beginning of the project work, to enable students to do their projects according to the time plan, and to test them at the proper time.
3) The university should provide the proper toolsets, which enable the student to assemble his project and to test it the university campus, so he could get benefit of experiences in the university.

6.4 Future Work.

The following tasks are suggested as future works:

1) Improving the machine to produce more wedge wood number in less time.
2) Setting a vacuum for the Carpentry.
3) Improving the rotation by using position control.
4) Covering the circular saw blade in terms of increasing the safety.
5) Improving the machine by increase the speed of cutting.

6.5 Conclusion.

1) The price of one kilo of wedge wood that produced in traditional method is 5 shekels, and its cost 2.5 shekels, after calculate the cost in the automatic method,
its 2.5 shekels, by increasing the number of wedges per hour the profit will increase
2) The best shape of wedges that the automatic method produced make the construction process easier than the traditional method.
3) The automatic method saves the human life unlike the traditional method

References

[1] HOUPERT, Numerical and Analytical Calculations in Ball Bearings (Proc. of Congres Roulements, Toulouse, 5-7 Mai 1999, pp. 1-15).
[2] Oriental motor general catalog, 2012/2013, Technical Reference, Selection Calculations for Motors, www.orientalmotor.com.
[3] Richard G. Budynas, and j. Keith Nisbettshigleys, Mechanical Engineering Design, McGraw Hill, Avenue of the Americas, new york, 2011.
[4] J. L. Meriam, L. G. Kraige, Engineering Mechanics - Statics, 7th Edition, Published March 17th 2006 by Wiley.
[5] W. Bolton, programmable logic controller, Newness, 2009.
[6] A. Hughes, Electric Motors and Drivers, 2006.
[7] J.S. Wilson. Sensor Technology, Handbook, Elsevier, 2005.

Appendix A

A. 1 Dimensions of Bearing
A. 2 Mechanical Properties of Steel 1080
A. 3 Figure 19-1: Single-Strand Roller Chain Selection Chart
A. 4 Dimensions of Chains-Single Strand Source
A. 5 Service Factors, Ks
A. 6 Horsepower Ratings of Single Strand Roller Chain, No. 40
A. 7 Preferred Sizes and Reynard (R-Series) Numbers
A. 8 Specifications for Steel Bolts
A. 9 Bending Properties of Fillet Welds

A.1: Dimensions of Bearing

Table 11-2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

Bore, mm	OD, mm	Width, mm	Fillet Radius, mm	Shoulder Diameter, mm		Load Ratings, kN			
						Deep Groove		Angular Contact	
				d_{s}	d_{H}	C_{10}	C_{0}	C_{10}	C_{0}
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

A.2: Mechanical Properties of Steel 1080, 1095 and 1018

Table A-20

Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm ($\frac{3}{4}$ to $1 \frac{1}{4} \mathrm{in}$). These strengths are suitable for use with the design factor defined in Sec. 1-10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] Source: 1986 SAE Handbook, p. 2.15.

1	2	3	4 Tensile	5 Yield	6	7	8
UNS No.	SAE and/or ASI No.	Processing	Strength, MPa (kpsi)	Strength, MPa (kpsi)	Elongation in 2 in, \%	Reduction in Area, \%	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197
G10600	1060	HR	680 (98)	370 (54)	12	30	201
G10800	1080	HR	770 (112)	420 (61.5)	10	25	229
G10950	1095	HR	830 (120)	460 (66)	10	25	248

A.3: Figure 19-1: Single-Strand Roller Chain Selection Chart

A.4: Dimensions of American Standard Roller Chains-Single Strand Source: Compiled from ANSI B29.1-1975

ANSI Chain Number	Pitch, in (mm)	Width, in (mm)	Minimum Tensile Strength, lbf (N)	Average Weight, lbf/ft (N/m)	Roller Diameter, in (mm)	MultipleStrand Spacing, in (mm)
25	$\begin{array}{r} 0.250 \\ (6.35) \end{array}$	$\begin{gathered} 0.125 \\ (3.18) \end{gathered}$	$\begin{array}{r} 780 \\ (3470) \end{array}$	$\begin{gathered} 0.09 \\ 11.31) \end{gathered}$	$\begin{gathered} 0.130 \\ (3.30) \end{gathered}$	$\begin{array}{r} 0.252 \\ (6.40) \\ \hline \end{array}$
35	$\begin{aligned} & 0.375 \\ & (9.52) \end{aligned}$	$\begin{gathered} 0.188 \\ (4.76) \end{gathered}$	$\begin{gathered} 1760 \\ (7830) \end{gathered}$	$\begin{gathered} 0.21 \\ (3.06) \end{gathered}$	$\begin{gathered} 0.200 \\ (5.08) \end{gathered}$	$\begin{array}{r} 0.399 \\ (10.13) \end{array}$
40	$\begin{array}{r} 0.500 \\ (12.70) \\ \hline \end{array}$	$\begin{gathered} 0.312 \\ (7.94) \end{gathered}$	$\begin{array}{r} 3130 \\ (13920) \\ \hline \end{array}$	$\begin{gathered} 0.42 \\ (6.13) \\ \hline \end{gathered}$	$\begin{gathered} 0.312 \\ (7.92) \\ \hline \end{gathered}$	$\begin{array}{r} 0.566 \\ (14.38) \\ \hline \end{array}$
50	$\begin{array}{r} 0.625 \\ (15.88) \\ \hline \end{array}$	$\begin{aligned} & 0.375 \\ & (9.52) \\ & \hline \end{aligned}$	$\begin{array}{r} 4880 \\ (21700) \\ \hline \end{array}$	$\begin{array}{r} 0.69 \\ (10.1) \\ \hline \end{array}$	$\begin{array}{r} 0.400 \\ (10.16) \end{array}$	$\begin{array}{r} 0.713 \\ (18.11) \\ \hline \end{array}$
60	$\begin{array}{r} 0.750 \\ (19.05) \\ \hline \end{array}$	$\begin{array}{r} 0.500 \\ (12.7) \\ \hline \end{array}$	$\begin{array}{r} 7030 \\ (31300) \\ \hline \end{array}$	$\begin{array}{r} 1.00 \\ (14.6) \end{array}$	$\begin{array}{r} 0.469 \\ (11.91) \\ \hline \end{array}$	$\begin{array}{r} 0.897 \\ (22.78) \\ \hline \end{array}$
- 80	$\begin{array}{r} 1.000 \\ (25.40) \\ \hline \end{array}$	$\begin{array}{r} 0.625 \\ (15.88) \\ \hline \end{array}$	$\begin{gathered} 12500 \\ (55600) \\ \hline \end{gathered}$	$\begin{array}{r} 1.71 \\ (25.0) \\ \hline \end{array}$	$\begin{array}{r} 0.625 \\ (15.87) \\ \hline \end{array}$	$\begin{array}{r} 1.153 \\ (29.29) \\ \hline \end{array}$
100	$\begin{array}{r} 1.250 \\ (31.75) \end{array}$	$\begin{array}{r} 0.750 \\ (19.05) \end{array}$	$\begin{gathered} 19500 \\ (86700) \end{gathered}$	$\begin{array}{r} 2.58 \\ (37.7) \end{array}$	$\begin{array}{r} 0.750 \\ (19.05) \end{array}$	$\begin{array}{r} 1.409 \\ (35.76) \end{array}$
120	$\begin{array}{r} 1.500 \\ (38.10) \\ \hline \end{array}$	$\begin{array}{r} 1.000 \\ (25.40) \\ \hline \end{array}$	$\begin{array}{r} 28000 \\ (124500) \\ \hline \end{array}$	$\begin{array}{r} 3.87 \\ (56.5) \\ \hline \end{array}$	$\begin{array}{r} 0.875 \\ (22.22) \\ \hline \end{array}$	$\begin{array}{r} 1.789 \\ (45.44) \\ \hline \end{array}$
140	$\begin{array}{r} 1.750 \\ (44.45) \\ \hline \end{array}$	$\begin{array}{r} 1.000 \\ (25.40) \\ \hline \end{array}$	$\begin{array}{r} 38000 \\ (169000) \\ \hline \end{array}$	$\begin{array}{r} 4.95 \\ (72.2) \\ \hline \end{array}$	$\begin{array}{r} 1.000 \\ (25.40) \\ \hline \end{array}$	$\begin{array}{r} 1.924 \\ (48.87) \\ \hline \end{array}$
160	$\begin{array}{r} 2.000 \\ (50.80) \\ \hline \end{array}$	$\begin{array}{r} 1.250 \\ (31.75) \\ \hline \end{array}$	$\begin{array}{r} 50000 \\ (222000) \\ \hline \end{array}$	$\begin{array}{r} 6.61 \\ (96.5) \\ \hline \end{array}$	$\begin{array}{r} 1.125 \\ (28.57) \\ \hline \end{array}$	$\begin{array}{r} 2.305 \\ (58.55) \\ \hline \end{array}$
mm 180	$\begin{array}{r} 2.250 \\ (57.15) \end{array}$	$\begin{array}{r} 1.406 \\ (35.71) \end{array}$	$\begin{array}{r} 63000 \\ (280000) \end{array}$	$\begin{array}{r} 9.06 \\ (132.2) \\ \hline \end{array}$	$\begin{array}{r} 1.406 \\ (35.71) \end{array}$	$\begin{array}{r} 2.592 \\ (65.84) \end{array}$
200	$\begin{array}{r} 2.500 \\ (63.50) \\ \hline \end{array}$	$\begin{array}{r} 1.500 \\ (38.10) \\ \hline \end{array}$	$\begin{array}{r} 78000 \\ (347000) \\ \hline \end{array}$	$\begin{array}{r} 10.96 \\ (159.9) \\ \hline \end{array}$	$\begin{array}{r} 1.562 \\ (39.67) \\ \hline \end{array}$	$\begin{array}{r} 2.817 \\ (71.55) \\ \hline \end{array}$
240	$\begin{gathered} 3.00 \\ (76.70) \end{gathered}$	$\begin{array}{r} 1.875 \\ (47.63) \end{array}$	$\begin{aligned} & 112000 \\ & (498000) \end{aligned}$	$\begin{aligned} & 16.4 \\ & (239) \end{aligned}$	$\begin{array}{r} 1.875 \\ (47.62) \end{array}$	$\begin{array}{r} 3.458 \\ (87.83) \end{array}$

Table 19.1

Table 19-2: service factors, K_{s}		Types of driver					
		Soft starts			Heavy starts		
		AC motors: Normal torque DC motors: Shunt-wound Engines: Multiple-cylinder			AC motors: High torque ${ }^{b}$ DC motors: Series-wound, compound-wound Engines: 4-cylinder or les		
Load Type	Driven machine type	$\begin{gathered} <6 \mathrm{~h} \\ \text { per day } \end{gathered}$	$\begin{aligned} & \hline \text { 6-15 h } \\ & \text { per day } \\ & \hline \end{aligned}$	$\begin{gathered} >15 \mathrm{~h} \\ \text { per day } \end{gathered}$	$\underset{\text { per day }}{<6 \mathrm{~h}}$	$\begin{aligned} & 6-15 \mathrm{~h} \\ & \text { per day } \end{aligned}$	$\begin{gathered} >15 \mathrm{~h} \\ \text { per day } \end{gathered}$
Smooth	Agitators, blowers, fans, centrifugal pumps, light conveyors	1.0	1.1	1.2	1.1	1.2	1.3
Light Shock	Generators, machine tools, mixers, gravel conveyors	1.1	1.2	1.3	1.2	1.3	1.4
Medium Shock	Bucket elevators, textile machines, hammer mills, heavy conveyors	1.2	1.3	1.4	1.4	1.5	1.6
High Shock	Crushers, ball mills, hoists, rubber extruders	1.3	1.4	1.5	1.5	1.6	1.8
Heavy Shock	Any machine that can choke	2.0	2.0	2.0	2.0	2.0	2.0

A. 6 : Horsepower Ratings of Single Strand Roller Chain, No. 40:

Table 19-5(c): Horsepower ratings of single strand roller chain, No. 40

A.7: Preferred Sizes and Renard (R-Series) Numbers

Table A-17
Preferred Sizes and Renard (R-Series)
Numbers
(When a choice can be made, use one of these sizes; however, not all parts or items are available in all the sizes shown in the table.)

Fraction of Inches

$\frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \frac{1}{4}, \frac{5}{16}, \frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{7}{8}, 1,1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{4}, 2 \frac{1}{2}, 2 \frac{3}{4}, 3$, $3 \frac{1}{4}, 3 \frac{1}{2}, 3 \frac{3}{4}, 4,4 \frac{1}{4}, 4 \frac{1}{2}, 4 \frac{3}{4}, 5,5 \frac{1}{4}, 5 \frac{1}{2}, 5 \frac{3}{4}, 6,6 \frac{1}{2}, 7,7 \frac{1}{2}, 8,8 \frac{1}{2}, 9,9 \frac{1}{2}, 10,10 \frac{1}{2}, 11,11 \frac{1}{2}, 12$, $12 \frac{1}{2}, 13,13 \frac{1}{2}, 14,14 \frac{1}{2}, 15,15 \frac{1}{2}, 16,16 \frac{1}{2}, 17,17 \frac{1}{2}, 18,18 \frac{1}{2}, 19,19 \frac{1}{2}, 20$

Decimal Inches

$0.010,0.012,0.016,0.020,0.025,0.032,0.040,0.05,0.06,0.08,0.10,0.12,0.16,0.20,0.24,0.30$, $0.40,0.50,0.60,0.80,1.00,1.20,1.40,1.60,1.80,2.0,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0,4.2$, $4.4,4.6,4.8,5.0,5.2,5.4,5.6,5.8,6.0,7.0,7.5,8.5,9.0,9.5,10.0,10.5,11.0,11.5,12.0,12.5$, $13.0,13.5,14.0,14.5,15.0,15.5,16.0,16.5,17.0,17.5,18.0,18.5,19.0,19.5,20$

Millimeters

$0.05,0.06,0.08,0.10,0.12,0.16,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.0,1.1,1.2$, $1.4,1.5,1.6,1.8,2.0,2.2,2.5,2.8,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,8.0,9.0,10,11,12,14$, $16,18,20,22,25,28,30,32,35,40,45,50,60,80,100,120,140,160,180,200,250,300$

Renard Numbers*

1st choice, R5: $1,1.6,2.5,4,6.3,10$
2d choice, R10: $1.25,2,3.15,5,8$
3d choice, R20: 1.12, 1.4, 1.8, 2.24, 2.8, 3.55, 4.5, 5.6, 7.1, 9
4th choice, R40: $1.06,1.18,1.32,1.5,1.7,1.9,2.12,2.36,2.65,3,3.35,3.75,4.25,4.75,5.3,6$, $6.7,7.5,8.5,9.5$

[^0]
Appendix B

B.1: Model Explanation and Peripherals.
B.2: Terminal Wiring.
B.3: Product Profile and Outline.
B.4: Power Input Wiring.

B.1: Model Explanation and Peripherals

Thank you for choosing DELTA' s PLC DVP Series. The DVP Series has main processing units and extension units. The main processing units offer 14-60 points and the extension units offer 8-32 points. The maximum input/output can be extended up to 128 points. It also can be used on applications according to INPUT/OUTPUT points, power sources, output modules, digital/analog exchanges (A/D \& D/A converter). In addition, DVP SS Series has the special modules (AD/DA/PT/TC/XA) used for extending its functions and the maximum special modules can be extended up to 8 units. For more information on the DVP SS Series, refer to the DVP SS Series user manual.

DVP ES/EX/SS MPU is made from improving the functions and specifications of R/T model structure. The additional R2/T2 model has wide improvement in commands type and execution speed. Please refer to the detail information about usable application commands and devices in this manual when using R2/T2 model. The specification in this manual is major for $\mathrm{R} 2 / \mathrm{T} 2$ model so that there are some new commands and functions won' t be provided for R / T model.

- Nameplate Explanation

- Serial Number Explanation

- Model Explanation

- Peripheral Equipment
© DVPHPP: Handheld Programming Panel
© WPLSoft: Windows Ladder Logic Programming Software
(a) DPLSoft: DOS Ladder Logic Programming SoftwareDVPACAB115: 1.5M Cable (HPP \Leftrightarrow PLC, DVPHPP has this cable attached)
DVPACAB215: 1.5M Cable (PC (9 PIN \& 25 PIN D-SUB) \Leftrightarrow PLC)
() DVPACAB230: 3M Cable (PC (9 PIN \& 25 PIN D-SUB) \Leftrightarrow PLC)
() DVPACAB2A30: 3M Cable (PC (9 PIN D-SUB) \Leftrightarrow PLC)

DVPACAB230: 3M Cable (PC \Leftrightarrow PLC)
(9) DVPACAB315: 1.5M Cable (HPP \Leftrightarrow PC)
(9) DVPACAB403: 30 cm Cable (MPU-main processing unit \Leftrightarrow Extension Unit or Extension Unit \Leftrightarrow Extension Unit $/ / O$ signal extension cable)
(0) DVPAADP01: HPP Power Supply (DVPACAB315 is attached)

B.2: Terminal Wiring

- Terminals Layouts of Special Function MPU

B.3: Product Profile and Outline

B.4: Power Input Wiring

The following diagram shows various possible external power connections for DVP PLC. When wiring AC power, the 'Live' cable should be connected to the ' L' terminal and the ' Neutral' cable should be connected to the ' N ' terminal. When wiring DC power, the 'positive' cable should be connected to the ' + ' terminal and the negative
should be connected to the '-' terminal. At no time should the power supply terminals be connected to any other terminal on the PLC.

When DC voltage is supplied to the PLC, make sure the power is at terminals 24VDC and 0 V (power range is 20VDC~26VDC). When voltage is lower than $17.5 \mathrm{VDC}, \mathrm{PLC}$ will stop operating, all outputs will turn OFF and the ERROR LED will flash Continuously.

Appendix C

C. 1 Circular Saw Blade Selection

C. 1 Circular Saw Blade Selection:

Universal circular saw blade Longitudinal and cross cut

Appendix D

D.1: Power Line Installation
D.2: Basic Inspection
D.3: Pin Definition of Serial Communication
D.4: Specifications

D.1: Power Line Installation

The specifications for power terminal wiring are shown in the table below:

Type	Wire Gauge (AWG)	Stripped length	Torque
Solid	$28 \sim 12$	$7 \sim 8 \mathrm{~mm}$	$5 \mathrm{~kg}-\mathrm{cm} \mathrm{(4.3} \mathrm{lb-in)}$
Stranded	$28 \sim 12$	$7 \sim 8 \mathrm{~mm}$	$5 \mathrm{~kg}-\mathrm{cm} \mathrm{(4.3} \mathrm{lb-in)}$

The specifications for communication terminal wiring are shown in the table below (AS Series only):

Type	Wire Gauge (AWG)	Stripped length	Torque
Solid	$30 \sim 16$	$5 \sim 6 \mathrm{~mm}$	$2 \mathrm{~kg}-\mathrm{cm} \mathrm{(1.7} \mathrm{lb-in)}$
Stranded	$30 \sim 16$	$5 \sim 6 \mathrm{~mm}$	$2 \mathrm{~kg}-\mathrm{cm} \mathrm{(1.7} \mathrm{lb-in)}$

Be sure to plug power line into HMI according to following arrow direction.

D.2: Basic Inspection

Item	Content
	,"Periodically inspect the screws of the connection between the HMI and device. Tighten screws as necessary as they may loosen due to vibration and varying temperatures.
General Inspection,	Ensure that oil, water, metallic particles or any foreign objects do not fall inside the HMI, control panel or ventilation slots and holes. As these will cause damage. " Ensure the correct installation and the control panel. It should be free from airborne dust, harmful gases or liquids.

Item	Content
Inspection before operation (power is not applied)	, Ensure that all wiring terminals are correctly insulated. , Ensure that all wiring is correct or damage and or malfunction may result. ", Visually check to ensure that there are not any unused screws, metal strips, any conductive or inflammable materials inside HMI. ,, Ensure to lower electromagnetic interference when devices are influenced by it. ,. Ensure that the external applied voltage to HMI is correct and matched to the controller.
Inspection before operation (power is applied)	, Check if power LED lights. , Check if the communication among devices is normal. ,, Please contact our local distributors or Delta sales representative if there are any abnormal conditions.

D.3: Pin Definition of Serial Communication

COM1 Port [A, AE and AS57BSTD Series]

COM Port	PIN	Contact
	1	
	2	RXD
	3	TXD
Pin	4	
	5	GND
	6	
$\because \because$	7	RTS
	8	CTS
	9	

Note: Blank = No Connection.

COM2 Port [A Series]

COM Port	PIN	MODE1	MODE2	MODE3
		RS-232	RS-422	RS-485
Pin	1		RXD-	D-
	2	RXD	RXD+	D+
	3	TXD	TXD+	D+
	4		TXD-	D-
	5	GND		
	6		RTS-	
人 $\because \because \because$	7	RTS	RTS+	
	8 CTS	CTS	CTS+	
	9		CTS-	

Note 1: Blank = No Connection.
Note 2: When selecting Mode3 (for RS-485), D+ indicates that PIN 2 and PIN 3 is connected, and D-indicates that PIN 1 and PIN 4 is connected.

COM2 and COM3 Port [AE, A80THTD1 and A10THTD1 Series]

COM Port		PIN	MODE1	MODE2	MODE3	MODE4	MODE5	MODE6	
		RS-232	RS-422	RS-485	RS-232*2	RS-422*2	RS-485*2		
	COM2		1		RXD-	D-		RXD1-	D1-
		2	RXD	RXD+	D+	RXD1	RXD1+	D1+	
		3	TXD	TXD+	D+	TXD1	TXD1+	D1+	
		4		TXD-	D-		TXD1-	D1-	
		5	GND						
	COM3	6		RTS-			TXD2-	D2-	
		7	RTS	RTS+		TXD2	TXD2+	D2+	
		8	CTS	CTS+		RXD2	RXD2+	D2+	
		9		CTS-			RXD2-	D2-	

Note 1: Blank = No Connection.
Note 2: When selecting Mode3 (for RS-485), D+ indicates that PIN 2 and PIN 3 is connected, and D-indicates that PIN 1 and PIN 4 is connected. When selecting Mode6 (for RS-485), D1+ indicates that PIN 2 and PIN 3 is connected, D1-indicates that PIN 1 and PIN 4 is connected, D2+ indicates that PIN 7 and PIN 8 is connected, and D2- indicates that PIN 6 and PIN 9 is connected.

COM1 and COM3 [AS38BSTD, AS35THTD Series]

COM Port		PIN	MODE1	MODE2	
		RS-232	RS-232*2		
Pin	COM1		1		
		2	RXD	RXD1	
		3	TXD	TXD1	
		4			
		5	GND		
	COM3	6			
(0) $\because \because \because$		7	RTS	TXD2	
		8	CTS	RXD2	
		9			

Note: Blank = No Connection.

COM Port	PIN	MODE1	MODE2
		RS-422	RS-485
	R-	RXD-	D-
	R+	RXD+	D+
	T-	TXD-	D-
	T+	TXD+	D+
	G	GND	

Note 1: When selecting Mode2 (for RS-485), D+ indicates that R+ and T+ is connected, and D-indicates that R-and T- is connected.

COM2 and COM3 Port [AS57BSTD Series]

COM Port		PIN	MODE1	MODE2	MODE3	
		RS-485*2	RS-422*2	RS-422		
	COM2		R-	D-	RXD-	RXD-
		R+	D+	RXD+	RXD+	
		T-		TXD-	TXD-	
		T+		TXD+	TXD+	
		G	GND			
	COM3	R-	D-	RXD-	CTS-	
		R+	D+	RXD+	CTS+	
		T-		TXD-	RTS-	
		T+		TXD+	RTS+	

Note 1: Blank = No Connection.
Note 2: When using RS-422 flow control, please refer to the COM3 Port signals table above for pin assignments. At this time, COM2 and COM3 ports cannot be used individually.
Comparison of Flow Control Protocols

COM Port	DOP-AE Series	DOP-A Series	DOP-AS57 Series	DOP-AS35 / AS38 Series

D.4: Specifications

MODEL	AS35THTD	AS38BSTD	AS57B(C)STD	A(E)57BSTD	A(E)57GSTD
Storage Temp.	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$				
Ambient Humidity	$\begin{gathered} 10 \% \sim 90 \% \mathrm{RH}\left[0 \sim 40^{\circ} \mathrm{C}\right], 10 \% \sim 55 \% \mathrm{RH}\left[41 \sim 50^{\circ} \mathrm{C}\right] \\ \text { Pollution Degree } 2 \end{gathered}$				
Vibration Resistance	IEC 61131-2 Compliant $5 \mathrm{~Hz} \leqq \mathrm{f}<9 \mathrm{~Hz}=$ Continuous: $1.75 \mathrm{~mm} /$ Occasional: 3.5 mm $9 \mathrm{~Hz} \leqq f \leqq 150 \mathrm{~Hz}$ = Continuous: $0.5 \mathrm{~g} /$ Occasional: 1.0 g $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions for 10 times				
$\begin{aligned} & \text { Dimensions } \\ & \text { (W) } \times(\mathrm{H}) \times(\mathrm{D}) \mathrm{mm} \\ & \hline \end{aligned}$	$140.8 \times 104.8 \times 44.8$				$184.1 \times 144.1 \times 4$
Panel Cutout $(\mathrm{W}) \times(\mathrm{H}) \mathrm{mm}$	118.8×92.8				172.4×132.4
Weight	Approx. 315 g	Approx. 310 g			Approx. 760 g

$10=1$

1) The half-life of backlight is defined as original luminance being reduced by 50% when the maximum driving current is supplied to HMI. The life of LED backlight shown here is an estimated value under $25^{\circ} \mathrm{C}$ normal temperature and humidity conditions.
2) Users please use isolated power supply except DOP-A80THTD1, DOP-AE80THTD and DOP-A(E)10THTD1 these models.
3) Users can download the Screen Editor V1.05, the program editor of Delta HMI product and the user manual via the following link: http://www.delta.com.tw/industrialautomation/.
4) The content of this quick start may be revised without prior notice. Please consult our distributors or download the most updated version at $\mathrm{http}: / / \mathrm{www}$. delta.com.tw/industrialautomation/.

[^0]: ${ }^{4}$ May be multiplied or divided by powers of 10 .

