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Abstract 

 

 

The stabilization of the camera during recording videos is one of the most challenges 

which facing any photographer whether he is professional or beginner.  

 

This project aims to compensate the vibration from photographer’s body which acts on 

the recorded video by stabilize the camera in two-axes to get smooth record of video 

regardless of photographer’s movement. 

 

To achieve the project goal, there are two motor to stabilize the camera, one motor for 

each axis. The gyroscope and accelerometer which placed on the base of the camera 

gives the feedback of the current position of the camera to the control unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

صالملخّ   
 

 

 مصور أي تواجه التي التحديات أكثر من واحد هو الفيديو تسجيل أثناء الكاميرا والحفاظ على ثباتيتها استقرار

. المبتدئين أو من المصورين هذا المصور محترفا   كان سواء  

 

 حول محورين وعزلها والحفاظ على ثباتية الكاميرا الفيديو في الاهتزاز من التخلص إلى المشروع هذا يهدف

المصور من أجل الحصول على تصوير فيديو سلس خالٍ من الاهتزازات . جسم اهتزاز عن  

 

هدف هذا المشروع, يوجد محركان للحفاظ على استقرار الكاميرا, كل محرك يحافظ على وضعية لتحقيق 

 الكاميرا حول محور معين, ويوجد حساس مثبت على قاعدة الكاميرا يزود المتحكم بوضعية الكاميرا الحالية.
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Chapter 1 

Introduction 

 

 

The stabilizer is a device that is used to keep the camera stable against the external vibration and 

disturbances. 

 

1.1) Problem Definition 

 

One of the most common challenges that faces the photographers is taking pictures or video 

recordings in moving states. Maintaining the stability of the camera within a specific position 

needs a “professional” photographer. Therefore, to keep the position of the camera fixed “stable” 

even the body of the photographer vibrates, i.e., helps the photographers in stabilizing the position 

of the camera, photographers need to use stabilizers for their cameras while recording videos. 

 

Using different types of camera-support arms to increase the stability of the camera is 

ineffective solution. The following pictures show some difficulties that can face the photographers 

when using these support-arms while taking pictures. 

 
                      Figure 1.1: Support Arm               Figure 1.2: Support Arm 

 

 

Any person can use this device (the stabilizer) to get a clear and smooth record of video, 

regardless of his vibration of body. It is also not heavy, which means that the photographer can 

move freely. This also implies that recording a clear video will not need a professional 

photographer. 

 

As a mechatronics system, the camera must be stabilized automatically and intelligently, 

so the system needs sensors to act some measurements (angle of rotation, attitude, etc.), a controller 

with desired driver to drive the motors with suitable torque and synergetic integration between 

them. Using one motor for each axis makes the camera stable in two-axes. The stabilizer is used 
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easily, which means that the clear photos and smooth videos will not need to be taken by a 

professional photographer when this device is used. 

 

 

1.2) Related Work 

 

Some techno-companies such as Feiyu Tech, Glidecam were provide a solution of the problem 

mentioned in Section 1.1. By design models and controllers of specific type of cameras to get rid 

of the vibrations. Some of these products are shown in Figure 1.3. [1] 

 

This project is following the way of the solution which created by these companies, by 

designing a model and controller to solve the problem. 

 

 
Figure 1.3: Some Products of Companies (Feiyu Tech, Glidecam) 

 

 

1.3) Motivation 

 

Any beginner photographer wants to record video confront his lack of skills in recording as a 

blocker from record or publish his recorded video. So the project team aims to build the stabilizer 

to help anyone to record his events perfectly with no high skills. Also to provide the product to the 

local market with reasonable price, the cost of the products which available in the market is up to 

2000 $. 
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1.4) Timeframe Table 

 

(Table 1.1) shows the timeframe of the work and steps that are take place in the first semester. On 

the other hand, (Table 1.2) shows the timeframe of the work in the second semester. 

 

 

Table 1.1: Timeframe of the First Semester 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Problem Identification               

Finding Solution               

CAD Design               

Kinematic and Dynamic 

Equations 

              

Simulation and Detection of 

Errors 

              

Specifying Components               

 

 

 

 

Table 1.2: Timeframe of the Second Semester 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Purchase of the necessary 

electronic parts 

              

Checking the control system on 

prototype 

              

Turning and painting the parts                

Assembling and checking the 

system 
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1.5) Chapters Overview 

 

This report consists of five chapters including this chapter. The rest of this report is organized as 

follow: 

 

Chapter 2: 

This chapter talks about mechatronics design approach of the stabilizer. It includes recognition of 

the need, conceptual design and specification, modular solution of the need, sensors and actuators, 

detailed mathematical model which discuss kinematics with its two branches forward and inverse 

and discuss the dynamics of the system. 

 

Chapter 3: 

This chapter discusses the material, mechanical and electrical component selection for the project. 

 

Chapter 4: 

This chapter is talks about software programming and controller design. 

 

Chapter 5: 

This chapter explains the project parts and their assembly. 

 

Chapter 6: 

This chapter discusses the experimental results of using the stabilizer while recording video. 

 

Chapter 7: 

This chapter discusses conclusion and the future work. 
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Chapter 2 

Mechatronics Design 

 

 

This chapter explains the construction of the stabilizer, detail of its mechanical parts and the 

dynamic model as well as forward and inverse kinematics of the stabilizer. 

 

 

2.1) Recognition of the Need 

 

Any beginner photographer suffers from vibration of the camera which affect on the record of 

video. This is usually due to the fact that the photographer cannot modify stand of the camera 

vibration and sudden movements during recording, which affects the quality of the recorded video 

negatively. Thus, it is a fact that any person who uses the camera for video recording hopes to get 

clear videos easily. 

 

To make the camera stable while taking a photo or recording a video, a device to hold the 

camera and to allow the photographer to move freely and to get clear photo or video is needed. 

The previous solution, which is using the camera support arms, is difficult to be applied, these 

arms limit the photographer’s movement. 

 

So the need is to compensate against the noise which appear on the recorded videos. 
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2.2) Conceptual Design and Functional Specifications 

 

We design a device that consists of three bodies that are connected with each other by motors 

as shown in Figure 2.1.  

 
Figure 2.1: The Stabilizer 

 

The main feature of this design is portability, so it should be light. In addition, the energy source 

should be built in it. 

 

 

2.3) Modular Mathematical Modeling 

 

The principle of elimination of the noise is described as below: 

 
Figure 2.2: Modular Mathematical Model (calculate the error of wrong) 

 

We aim to eliminate of the frequency under 2 Hz. And amplitude range [-10 to +10] cm. 
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2.4) Sensors and Actuators 

 

This section describes the desired sensors and the actuators to match the stabilizer requirements. 

 

2.4.1) Sensors 

 

Mpu6050 (Accelerometer and gyroscope sensor) is used to measure the angle of the camera in two 

directions and to give the attitude feedback to the controller about the current position. It is shown 

in Figure 2.3 

 
Figure 2.3: Mpu6050 Angle Sensor 

 

2.4.2) Actuators 

 

Since we trend to use light material and the stabilizer design is symmetry, the stabilizer did not 

need motors with high torque. So we choose three-phase brushless DC motors, namely, (BGM 

4108-130). A top view of this motor is shown in Figure 3.2. 

 
Figure 2.4: Three-Phase Brushless DC Motor 

 

This motor is often use for stabilizers. Since it has high speed and high accuracy. The magnetic 

field of the motor rotates it to reach the needed position, then the same magnetic field locks it 

from slipping. 
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The motor specifications are shown in Table2.1. [2] 

Table 2.1: Specifications of BGM 4108-130 Three-Phase Brushless DC Motor 

Turns 130 turns 

Cooper Wire(mm) 0.15 

Poles 22 

Slots 24 

Weight 90g 

Motor Size (mm) Ф46*25 

Ri (Ω) 17.0 ohm 

 

 

 

2.5) Mathematical Model 

 

This section explains the kinematics and dynamics of our stabilizer. 

The stabilizer consists of three parts (part one, part two and part three) as shown in Figures 2.5 and 

2.6. These parts are connected with each other by two revolute joints. Each of them is driven by a 

brushless DC-motor. The mounting point of the camera is located on part three. The box on part 

one contains the electronic and control circuits. 

 

Part one might be held by hand or fixed during tests. 

The direction of the joints is indicated by the double arrows. 

The dimensions l1, l2, h1, b2, h3 are in Figures 2.5 and 2.6, mass, mass moment of inertia and center 

of mass for each body are given by the Computer Aided Design (CAD) models of the stabilizer. 
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Figure 2.5: Side View of the Stabilizer 

 

l1=105 mm. 

l2=80 mm. 

h1=125 mm. 

b2=180 mm. 

h3=40 mm. 

 

And Table 2.2 shows the stabilizer properties which taken from SolidWorks CAD model. 
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Table 2.2: The stabilizer properties which taken from SolidWorks CAD model. 

                   Part 

Property 

Unit Part one Part two Part three 

Mass [gram] 56 82.2 86.5 

Mass moment of 

Inertia about x-axis 

(Ix) 

[gram*mm2] (0.00, 0.86, 0.51) (1.00, -0.01, -0.04) (1.00, -0.01, 0.00) 

Mass moment of 

Inertia about y-axis 

(Iy) 

[gram*mm2] (0.00, -0.51, 0.86) (-0.04, 0.00, -1.00) (0.01, 1.00, -0.00) 

Mass moment of 

Inertia about z-axis 

(Iz) 

[gram*mm2] (1.00, 0.00, 0.00) (0.01, 1.00, -0.00) (0.00, 0.00, 1.00) 

Center of mass along 

x-axis 

[mm] -25 -34.12 -26.23 

Center of mass along 

y-axis 

[mm] -38.48 -124.89 -124.98 

Center of mass along 

z-axis 

[mm] 26.77 58.44 108 
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Figure 2.6: Front View of the Stabilizer 

 

 

2.5.1) Stabilizer’s Kinematics 

 

The kinematics is the description of the motion system regardless of the force that acts to the 

system. We used the kinematics in the derivation of the system dynamics (see Section 2.5.2).  

The two-axes camera stabilizer (2-ACS) (see Figures 2.5 and 2.6) consists only of two 

revolute joints (R-joints). Each revolute joint has one degree of freedom (DOF). This gives a two 

DOF, roll and pitch (θ2, θ3), respectively.  

The kinematics can be divided into forward and inverse kinematics as shown below: - [3] 
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2.5.1.1) Forward Kinematics 

 

Forward kinematics of a Multi-Body System (MBS) is used to find the position and the velocity 

of the end effector due to change in joints angles. 

 

The 2-ACS is classified as serial robot. The camera is the end effector. Serial robots are often 

described by using the Denavit-Hartenberg method (D-H method). This method places the 

coordinate systems of each joint and use a set of rules to find forward kinematics of the MBS. 

Each frame is described by double arrow on it with the frame number. [4] 
 

 

Two-Axes transformation matrices  

By using the parameters of the stabilizer’s parts l1, l2, h1, h3 and b2 in Figures 2.5 and 2.6, the 

transformation between the bodies is described as follow: 

 

1) There is no rotation between base frame (0) and frame (1) about z-axis, so the rotation matrix  
Between the base frame (0) and frame (1) ( 0

1R ) that is shown in Figures 2.5 and 2.6 is [5] 

0

1

1 0 0

0 1 0

0 0 1

R

 
 


 
  

                                                         (2.1) 

   The distance between the coordinate origins of base frame (0) and frame (1), ( 0

1d ), is 

1

0

1

1

0

l

d

h

 
 


 
  

                                                             (2.2) 

2) The rotation matrix between frame (1) and frame (2), ( 1

2R ), that is shown in Figures 2.5 and 

2.6. is 

1

2 2 2

2 2

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

R  

 

 
 

 
 
  

                                             (2.3) 

The distance between the coordinate origins of base frame (1) and frame (2), ( 1

2d ), is 

          
2

1

2 2 2

2 2

0.5 cos( )

0.5 sin( )

l

d b

b





 
 

 
 
  

                                                       (2.4)   
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3) The rotation matrix between the frame of body (2) and the frame of body (3), ( 2

3R ), is 

3 3

2

3

3 3

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )

R

 

 

 
 


 
  

                                                        (2.5) 

 

and the distance between the coordinate origins ( 2

3d ) is 

                                         
3 3

2

3 2

3 3

sin( )

0.5

cos( )

h

d b

h





 
 


 
  

                                                            (2.6) 

 

4) The total transformation between the frame of body (3) and the base frame (0), ( 0

3T ), is 

                                   
0 0

0 0 1 23 3

3 1 2 3
0 1

R d
T T T T

 
  
 

                                      (2.7)  

The rotation matrix between the base frame (0) and the frame of body (3), ( 0

3R ), is 

               0 0

1

1 2

3 2 3R RR R                                                            (2.8) 

 

 

   

   

3 3

3 2 3 2 3 2

2 3 2

0

2 2

cos 0 sin( )

sin( )sin( ) cos cos( )sin

cos( )sin sin( ) cos( )cos

R

 

    

    

 
 

  
  

                                .                  (2.9) 

And the distance between the origin of the base frame (0) and the origin of the frame of body (3), (
0

3d  ) , from the transformation matrix (0T3) is   

 

   

   

2 3 3

3 3 3 2

3 2

0

3

1 sin

cos sin

1 cos cos

l h

h

h

l

d

h



 

 

 
 

  
  





                                                         (2.10) 

 

Another transformation is used in the inverse kinematics in Section 2.5.1.2 which is the rotation 

matrix between body (3) and the ground. 

 
   

   

3

cos 0 sin( )

sin( )sin( ) cos cos( )sin

cos( )sin sin( ) cos( )cos

groun

y y

x y x y x

x y x x

d

x

R

 

    

    

 
 

  
 
  

                                    (2.11) 

Where ( x ,
y ) are the angles of camera on body (3) which are read from an angle sensor attached 

on body (3). It is assumed that frame (3) is parallel to the angle sensor frame. 

 

 



 
 

14 
 

Forward Angular Velocity 

The relationship between the local angular velocities ( 2 3,  ) of the joints and the camera angular 

velocity ( 3

3 ) can be expressed using Jacobian-Matrix J as  

  23

3

3

x

y

Z

J




 




 
  

    
   

                                                                   (2.12)  

where ( 2 3,  ) are the angular velocity of body two and angular velocity of body three 

respectively. 

The Jacobian J can be viewed as the angular velocity directions of the joints presented in 

the coordinate of camera’s frame and because the 2-ACS consists only of R-joints it can be written 

as 

 

3 3 32
3

22 3 2 3

32
2

23 3

[ ] [ ]

[ ]T

J R

R

   

 

 



                                                      (2.13) 

where  

         
2

2

1

0

0



 
 


 
  

                                                               (2.14) 

         
3

3

0

1

0



 
 


 
  

                                                               (2.15) 

which are the directions of the joints, by substituting Equations (2.5), (2.14) and (2.15) into (2.13), 

and then sub in Equation (2.12) we get 

               

  23

3

3

0 ωcos θ 0

0 ω0 1 

0 0sin(θ ) 0

roll

pitch

yaw







     
          
        

                                         (2.16)      

 

 

2.5.1.2) Inverse Kinematics 

 

Inverse kinematics is used to calculate the joints angles when the end effector position is known. 

Inverse kinematics in the 2-ACS application is used to know the joints angles (θ2, θ3), which are 

explained in Figure 2.5 and Figure 2.6, from the orientation of the camera. 
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Angular Position 

 

The goal is to change the attitude of the camera relative to the ground. This will result in a control 

error between the desired attitude and angle sensor current attitude. This can be presented as a new 

rotation matrix in the reference of the camera frame. 

   

   

3 3

3

  2 3 2 3 2

2 3 2 2 2

cos( ) 0 sin( )

sin( )sin( ) cos cos( )sin

cos( )sin sin( ) cos( ) cos 

R

 

    

    

 
 

  
  

e
                                  (2.17) 

 

where 2 3,    are the errors ( )des      of the roll and pitch in the camera reference frame where 

are (e) denotes an imagined error coordinate frame. 

 

The total rotation matrix between the error frame (e) and the 2-ACS base frame (0) is 

     3

     

0 0

3   ,R R R   e e                                                         (2.18) 

 

where   are the current angles of joints ( 2 3,  ). A new joint configuration new  is chosen such 

that. 

        

0 0

  ,newe eR R                                                              (2.19) 

 

Which means that coordinate frame (3) becomes in the same frame as (e) that means the desired 

attitude is reached. 

 

Equation (2.19) together with Equation (2.18) give 

     1 3

      3 

0

 new eR R R  e                                                       (2.20) 

 

If the right hand side of (2.20) is expressed as 

   
11 12 13

1 3

  3    21 22 23

31 32 33

r r r

R R r r r

r r r



 
 



 






e                                                    (2.21) 

r11, r12, r13, r21, r22, r23, r31, r32 and r33 are found in appendix A. 

 

The new joint parameters are: - 

                                                       1

2 32sinnew r                                                                 (2.22) 

 1

3 31 33tan ,  new r r                                                          (2.23) 

These angels will be the angular position reference signals for the individual joints. 
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2.5.2) Dynamics 

 

The dynamics of a 2-ACS describe its motion taking into consideration the effect of external 

forces, such as gravity and torque from the joint actuators. It is presented as a system of differential 

equations obtained using either Newton-Euler equations which use Newton’s second law of 

motion, or Lagrange equations [5]. In our project we use Lagrange equations to find the dynamic 

equations. 

 

In 2-ACS (Figures 2.5 and 2.6) we have three bodies, the first one is the base, the second 

body rotates about the x-axis (roll), and the last rotate about y-axis (pitch) and the equation of 

motion is: 

( ) ( , ) ( )D q q H q q q G q Q                                                                                                    (2.24) 

where  

  D is Inertia matrix. 

  H is Coriolis matrix. 

  G is Gravitational matrix. 

  Q is Torque. 

  q is the angle. 

  q  is the angular velocity. 

The dynamic model matrices are found in appendix B. 
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Chapter 3 

Material and Component Selection 

 

 

This chapter discusses the material selection of the stabilizer parts, mechanical components and 

electrical components which are added to sensors and actuators that were explained in Section 2.4. 

 

 

3.1) Material 

 

The project team choose the wood, the cheapest and most abundant material. Although it is easy 

to be machined to form the parts, it is sensitive to the environmental conditions. 

 

 

3.2) Electronic Component 

 

The project team choose these components in the control system of the stabilizer to make 

synergetic integration among them to get the promising function. 

 

3.2.1) Controller  

 

Arduino Mega 2560, shown in Figure 3.1, and its specifications are shown in Table 3.1 

 
Figure 3.1: Arduino Mega 2560 

 

 

 

 

Table 3.1: Arduino Mega 2560 Specifications [6] 
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Microcontroller AT mega 2560 

Operating Voltage 5 volts 

Input Voltage 7-12 volt 

Digital I/O Pins 54 (of which 14 provides PWM) 

Analog Input Pins 16 

Dc Current Per I/O Pin 40 mA 

Dc Current for 3.3V Pin 50 mA 

Flash Memory 256 KB of which 8KB used by bootloader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

Length 101.52 mm 

Width 53.3 mm 

Weight 36 g 

 

This controller is available in the market and it contains suitable inputs and outputs to control the 

stabilizer. Its specifications have encouraged the project team to choose it. The specifications 

include: 

1) Its suitable size and weight to carry on the handle of the stabilizer. 

2) It is compatible with Matlab, and programming can be done effectively through it. 

3) The power supply source for this controller can be a movable battery, and it is suitable for this 

mobile project. 

4) Open source codes which are available for many applications and can be downloaded from the 

company's website. 

5) The available shields for many components which allow the connection of modules easily. 

6) The modularity and the last important thing is that it does not need a dedicated programmer as 

it can be programmed through the same cable that is used for the PC connection. 

7) Other advantages include the upgradability.[6] 
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3.2.2) Motors Drivers 

 

L298n dual H-bridge driver is used to control the motors speed and direction. It is shown  

in Figure 3.2 

 

Figure 3.2: L298n Dual H-bridge Driver 

 

Motor driver specifications shown in Table 3.2. 

Table 3.2: L298n Dual H-bridge Driver Specifications 

Logical voltage: 5V Drive voltage: 5V-35V 

Logical current: 0-36 mA Drive current: 2A (MAX single bridge) 

Max power: 25W 

Dimensions: 43 x 43 x 26 mm 

Weight: 26 g 

 

 

3.2.3) Power Source 

 

The used power source is Lithium recharged batteries, 5v Li-ion Battery Pack because it is suitable 

for the device specifications and can drive the motors, sensors and control unit. 

 

 

 

 

 

 

 

 

https://www.google.ps/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjm996B_dbJAhXDPBoKHR2gAEcQjhwIBQ&url=http%3A%2F%2Fwww.alibaba.com%2Fshowroom%2F5v-li--ion-battery-pack.html&bvm=bv.109910813,d.bGg&psig=AFQjCNE9QYs3XfIWSbuichOpzW0w51Qq9g&ust=1450032151872773
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3.2.4) Joystick 

 

Used from the user to control the angles of the camera. It is shown in Figure 3.3. 

 
Figure 3.3: Joystick 

 

 

3.3) Mechanical Components 

 

The project team use these mechanical components to accomplish the stabilizer model to achieve 

its duty. 

 

3.3.1) Connecting Pin 

 

It is used to connect part three of the stabilizer with part two without friction. Its length is 

determined to make the center of mass of the camera passes through the joints to decrease the 

torque on the motor and make the system statically stable. It is shown in Figure 3.4. 

 
Figure 3.4: Connecting Pin 
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3.3.2) Ball Bearing 

 

NSK 6200 ZZCM NS7S: it is used to connect the rod from part (3) of the stabilizer with part (2) 

with no friction to allow the motor to balance the camera about the x-axis. It is shown in figure 

3.5. 

 
Figure 3.5: NSK 6200 ZZCM NS7S Ball Bearing 

 

Its specifications are shown below in Table 3.3. [7] 
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Table 3.3: NSK 6200 ZZCM NS7S Ball Bearing Specifications 

 
 

Bearing Dimension 

d [mm] 10 

D [mm] 30 

B [mm] 9 

 

Shoulder Diameters 

r [mm] 0.61 

da [mm] min 0.5 

max 0.63 

Da [mm] max 0.984 

Load Ratings Cr [lbs.] 1150 

Car [lbs.] 538 

Factor / 13.2 

Limiting Speed (1000) RPM Grease 24 

Oil 30 

Bearing Weight lbs. 0.07 
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Chapter 4 

Software and Controller Design 

 

 

Now we will select the suitable controller and prepare the code for microcontroller to achieve the 

purposes of this project.  

 

4.1) The Basic Work Principle of the System 

 

The project system has two modes, automatic and manual. This Figure shows the operation 

sequences in every mode. 

 

Figure 4.1: Basic work principle of the system 

 

In automatic mode, the controller will maintain the stability of the camera at angles (0, 0) 

for the roll and pitch angles. But in manual mode, the user can change the position of camera using 

a joystick. The user can use a switch to turn the system ON/OFF and select the mode. 
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4.2) Controller Design 

 

We select the Proportional-Integral-Derivative (PID) controller for some reasons: - 

 

1) PID controller depends on three parameters (Kp, Ki, Kd), and we can change the values of these 

parameters to get a suitable response (settling time, over shoot, steady state error). The output of 

the controller is expressed as 

 

0

( )
( ) ( ) ( )

t

p i d

de t
u t K e t K e d K

dt
                                                                                            (4.1) 

Where: -  

              Kp is proportional gain. 

                          Ki is integral gain. 

               Kd is derivative gain. 

    t is the time. 

  u (t) is the controller output. 

  e (t  ( is the error signal. 

 

2) We can use this controller for this prototype, by change the value of PID parameters. 

 

3) To use the PID controller we need only to know the effects of PID parameters on the response: 

- 

 

The effects of increasing PID controller parameters independently are shown in Table 4.1. 

[8] 

 

Table 4.1: Effects of Increasing PID Controller Parameters Independently 

Parameter Rise time Overshoot Settling time Steady-state error Stability 

Kp Decrease Increase Small change Decrease Degrade 

Ki Decrease Increase Increase Eliminate Degrade 

Kd Minor change Decrease Decrease No effect in theory Improve if Kd small 

  

We built two PID controllers one for the roll and the other one for the pitch. To find the 

suitable value for the PID parameters that achieve the specification of the project we use two ways: 

using the simulating program MAPLE and the experimental trial and error way. 

 

 

4.2.1) MAPLE Program Simulation 

 

Maple allows the user to draw a model with its physical properties and design a controller to give 

a response of the system. We use the frequency as an input and check if the controller achieves the 

specification or not. So we draw the prototype with real dimension and weights and build a PID 

controller for each motor, but we use a brush DC motor because there is no model for brushless 
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DC motor and we face a problem to build a model based on mathematical model for brushless DC 

motor. The schematic diagrams are shown in Figure 4.2 and Figure 4.3 

 

Figure 4.2: Blocks Model of the Stabilizer on Maple 

 

 

Figure 4.3: 3D Model of the Stabilizer on Maple 

 

. 
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To find the suitable parameters for the PID controller we add a torque on the base body 

one as a disturbance in the pitch and the roll directions, the frequency of the torque is 10 Hz and 

the amplitude is 1.5 radian. 

 
 

Figure 4.4: Torque Disturbance in Pitch and Roll Direction 

 

 

               Then we change the parameters values of the PID controller to have a suitable response. We 

get the response in Figures 4.5 and 4.6 when the PID parameters of the PID Roll are (KP=20, KI=2, 

KD=1) and the parameters of the PID Pitch are (KP=25, KI=4, KD=0.5). 

 

Figure 4.5: Camera Angle Response about Pitch 
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Figure 4.6: Camera Angle Response about Roll 

 

4.2.2) Matlab Simulation 

 

After Simulation on Maple we went to build the model on Matlab. The system is multi-input multi-

output (MIMO), so we linearize the system. 

 

Dynamic Model Linearization  

The dynamic model is non-linear so we face a problem to design a controller for it, we use 

a Tylor series to linearize the dynamic model at the operating point. 

We use Matlab to linearize the model. 

 

State-Space Model  

After linearization of the system, we find the state space model for this sates variables. 

The state-space model of the system is expressed as follows: 

1 2

2 2

3 3

4 3

x

x

x

x

















                                                                                                                                       (2.4) 

 

Where: 

x1, x2, x3 and x4 are the state variables. 

i  is the angle of the body i. 

i  is the angular velocity of the body i. 
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The state space model of the system is expressed as follows: 

x Ax Bu          
y Cx Du                                                                                                                                (4.3) 

 

Where: 

x is the state vector. 

y is the output vector. 

u is the input vector. 

A is the system matrix. 

B is the input matrix. 

C is the output matrix. 

D is the feedforward matrix. 

21

22

43

34

xx

x
x

xx

x





  
  
   
  
  

   

                                                                                                                                     (4.4) 

 

Controller design  

The state-space model is explaining that the system is a multi-input multi-output. we select 

a regulator as a controller for the system to achieve the design requirements. And we select the 

design requirements: 

1, 2f Hz    

where: 

 is the damping ratio. 

f is the frequency. 

 

We use Matlab to find the regulator matrix. 
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Simulink model  

The Simulink model of the stabilizer is shown in Figure 4.7. 

 
Figure 4.7: The Simulink model of the stabilizer 

 

 

The disturbance which act on the model in both directions (Pitch and Roll) is shown in 

Figure 4.8. 

 
Figure 4.8: The disturbance which act on the model in both directions (Pitch and Roll) 
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The response of the system about pitch angle is shown in Figure 4.9. 

 
Figure 4.9: The response of the system about pitch angle 

 

 

And the response about roll angle is shown in Figure 4.10 

 
 

Figure 4.10: The response of the system about pitch angle 

 

 

Matlab code founded in appendix C. 

 

4.2.3) Experimental Part 

 

In this part we examine the validation of PID parameters, by using the prototype to record a video 

then watch the video. And depending on video quality we decide any required changes on the 

controller’s parameters by using the information in Table 4.1.  

 

 

 

 

 

 

 

 

 

 



 
 

31 
 

4.3) Brushless DC Motor Control 

 

The project contains two of three-phase Brushless DC Motors (BLDC), to control these 

motors, the controller gives every phase sine waves and at the same time the phase between waves 

is 120 degrees as shown in Figure 4.11. 

 

Figure 4.11: Input sine waves to control the BLDC Motor 

The used controller (Arduino Mega 2560) has a PWM pins with 8bits timers. The range of 

output for the PWM is from 0 to 255 level, so we build a sequences by PWM to control the BLDC 

motor. 

The Arduino code is in appendix D. 
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Chapter 5 

Parts of the Stabilizer and Assembly 

 

 

5.1) Parts 

This section explains the parts of the stabilizer and their dimensions. All parts are shaped from 

wood plate of 5mm thickness. 

Note: all units which used in dimensions are in millimeter (mm). 

 

1) Base and Cup of Camera Holder 

This part is the base which hold the camera, also it is the cup of the camera to make the system 

symmetrical. So the stabilizer contains two pieces of this part, the slots which are shown in the 

part are designed to add the camera fixture easily It is shown in Figure 5.1. 

 
Figure 5.1: Base and Cup 

 

2) Left Side of Camera Holder 

This part contains four holes of 3mm diameter each for screws to fix the motor with the part, and 

two symmetrical holes to decrease the mass of the stabilizer. It is shown in Figure 5.2. 

 
Figure 5.2: Left Side of Camera Holder 
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3) Right Side of Camera Holder 

This part has a connecting pin to support the camera holder by connecting the pin with a ball 

bearing in right support of the camera holder. It is shown in Figure 5.3. 

 

Figure 5.3: Right Side of Camera Holder 

 

4) Right Support of the Camera Holder 

This part is used as a support of camera holder. It connects the camera holder with the main holder. 

It contains a hole for the ball bearing. It is shown in Figure 5.4. 

 
Figure 5.4: Right Support of the Camera Holder 
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5) Assistant Part for Right Support of the Camera Holder 

Because the width of the ball bearing is 10 mm and the stabilizer is made of wood of 5mm width, 

this part is added to assist the right support of the camera holder to contain the ball bearing 

efficiently. It is shown in Figure 5.5. 

 
Figure 5.5: Assistant Part for Right Support of the Camera Holder 

6) Left Support of the Camera Holder 

This part holds the motor which stabilizes the camera about Y-axis. It contains three holes of 2mm 

diameter each for screws which are used to fix the motor and one pocket of 8mm diameter to 

prevent the motor shaft from lock. It is shown in Figure 5.6. 

 
Figure 5.6: Left Support of the Camera Holder 
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7) Primary Holder 

This part holds the right and left supports of the camera holder. It is connected with the motor to 

stabilize the camera about X-axis.as shown in Figure 5.7. The four holes of 3mm diameter are for 

the screws to fix the motor, the other twelve holes of 10mm diameter and the slots are just to 

remove mass from stabilizer while maintaining the model symmetry. 

 
Figure 5.7: Primary Holder 

 

8) Main Holder 

This part holds the motor which stabilizes the camera about X-axis, also it holds the box which 

contains the control card and drivers. It contains three holes of 2mm diameter for screws of the 

motor. The other side contains the same pocket with 8mm diameter to prevent the motor shaft from 

lock. And it contains three holes of 5mm diameter to fix it with the stabilizer handle with screws 

.it is shown in Figure 5.8. 

 
Figure 5.8: Main Holder 



 
 

36 
 

9) Handle of the Stabilizer 

This part is used to handle the stabilizer, also it holds the joystick on it. it contains three holes of 

5mm diameter to connect it with the main holder with screws. It is shown in Figure 5.9. 

 
Figure 5.9: Handle of the Stabilizer 

 

 

5.2) Assembly 

This section explains the assembly of the part of the stabilizer. 

 

A) Assembly Catalog of the Stabilizer 

 The Figure 5.10 explains the exploded view of the stabilizer. 

 
Figure 5.10: Exploded View of the Stabilizer 
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The numbered parts which are shown in Figure 5.10 are explained in Table 5.1. 

 

Table 5.1: The Stabilizer Parts in Exploded View 

1)  Base of Camera Holder 

2)  Cup of Camera Holder 

3)  Left Side of Camera Holder 

4)  Right Side of Camera Holder 

5)  Right Support of the Camera Holder 

6)  Assistant Part for Right Support of the Camera Holder 

7)  Left Support of the Camera Holder 

8)  Primary Holder 

9)  Main Holder 

10)  Handle of the Stabilizer 

11)  NSK 6200 ZZCM NS7S Ball Bearing 

12)  Connecting Pin 

13)  BGM 4108-130 - 3-phase brushless DC motors - Roll 

14)  BGM 4108-130 - 3-phase brushless DC motors - Pitch 

 

 

B) Camera Holder 

This assembled part consists of base, cup, left side and right side of camera holder. After it is 

assembled practically, it is shown in Figure 5.11. 

 
Figure 5.11: Camera Holder 
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C) Primary Holder with Supports 

This assembled part consists of right and left supports of the camera holder, assistant part for right 

support of the camera holder and the primary holder. After it is assembled practically, it is shown 

in Figure 5.12. 

 
Figure 5.12: Primary Holder with Supports 

 

D) The Stabilizer 

This is the stabilizer after it has been assembled practically. It is shown in Figure 5.13. 

 
Figure 5.13: The Stabilizer After it had been Assembled Practically 
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E) Wiring Diagram 

Figure 5.14 shows the wiring diagram between the electronic components of the stabilizer. 

 
Figure 5.14: Wiring Diagram of the Stabilizer 
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Chapter 6 

Experimental Results 

 

 

This chapter explains the experimental results which taken from the controller while recording a 

video.  

 

First we use a kalman filter to get the angels from the sensor, we get the following result. 

And the Figure 6.1 explains the error on pitch angle when we use a kalman filter to get the angels. 

   
Figure 6.1: The error on pitch angle when we use a kalman filter to get the angels. 

 

We get a right angels but when we move the angels come with noise in high frequency so we use a 

digital motion process algorithm that compatible with the sensor which depending on external 

interrupt. 

 

After we complete the assembly of the model with the controller and put the parameters of the PID 

controller to be for roll (KP= 0.2, KI= 0.1, KD= 0.05) and for pitch (KP= 1, KI= 0.5, KD= 0.01), 

then we check the stabilizer by walking in a flat way. 

We have these results. 

 

And the Figure 6.2 explains the error on pitch angle while recording the video. 
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Figure 6.2 The error on pitch angle while recording the video. 

The Figure 6.3 explains the output of the controller on pitch angle while recording the video. 

 

Figure 6.3: The controller output on pitch angle while recording the video. 

 

And the Figure 6.4 explains the error on roll while recording the video. 
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Figure 6.4: The error on the roll angle while recording the video. 

 

 

The Figure 6.5 explains controller output to the roll motor while recording the video. 

 

Figure 6.5: The controller output on roll while recording the video. 
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Chapter 7 

Conclusion and Future Work 

 

 

7.1) Conclusion 

The project aims to build and provide the market with a local product of the stabilizer, with lower 

cost and good performance in compare with universal product. 

 

 The stabilizer had been built with PID controller, and we make experiments for the stabilizer 

and the results are good but it is lower than our expectations. 

 

 

7.2) Future Work 

1) Develop the methodology of controller programming. 

2) Develop the project to be three-axes stabilizer. 
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Appendixes 

Appendix A: The total rotation matrix between the error frame (e) and the 2-ACS base frame 

(0). 

   
11 12 13

1 3

  3    21 22 23

31 32 33

r r r

R R r r r

r r r



 
 



 






e    

          11 3 3 2 3 3cos( )cos( ) cos sin sin( )  ε ε εr   

       12 2 3sin sin( ) ε r   

         13 3 3 2 3 3sin( )cos( ) cos cos sin( )  ε ε ε  r   

                 21 2 2 3 3 2 3 2 3 3 2cos sin sin cos sin sin( ) cos cos sin sin     ε ε ε ε ε        r   

            22 2 2 3 2 2cos( )cos( ) cos sin sin  ε ε r   

                         23 3 2 3 3 2 2 2 3 3 2sin sin sin cos cos sin( ) cos cos cos sin      ε ε ε ε εr     

                        31 2 3 2 3 2 3 2 2 3 3sin sin sin cos cos sin( ) cos cos cos sin     ε ε ε ε εr     

           32 2 2 2 3 2cos( )sin( ) cos cos sin  ε ε r  

        33 2 3 3 2 2 2 3 3 2 2cos( )cos( )cos( )cos( ) cos( )sin( )sin( ) cos( ) sin( )sin( )           r  
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Appendix B: Dynamics Matrices 

1) D matrix = [D1; D2; D3] (Inertia Matrix) 

       
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2) H vector = [H1; H2; H3] (Coriolis Vector) 
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3) G vector = [G1; G2; G3] (Gravitational Vector) 
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Appendix C: Matlab Code 

 

%d1_0: The distance vector between the coordinate origins of base frame (0) and frame (1). 
function result = d1_0(l1,h1) 
result=[l1;0; h1]; 

 

%d2_0: The distance vector between the coordinate origins of base frame (0) and frame (2). 
function result=d2_0(l1,l2,b2,h1,theta2); 
result=[l2+l1;-0.5 *cos(theta2) *b2;-0.5 *sin(theta2) *b2 + h1]; 

 

%d2_1: The distance vector between the coordinate origins of frame (1) and frame (2). 
function result=d2_1(theta2,l2,b2)  
result=[l2;-0.5*b2*cos(theta2);-0.5*b2*sin(theta2)]; 

 

 

 

%d3_0: The distance vector between the coordinate origins of base frame (0) and frame (3). 
function result=d3_0(theta2,theta3,l1,h1,l2,h3) 
result=[l2-l1+h3*sin(theta3);-

h3*cos(theta3)*sin(theta2);h1+h3*cos(theta2)*cos(theta3)]; 

 

%d3_1: The distance vector between the coordinate origins of frame (1) and frame (3). 
function result=d3_1(theta2,theta3,l2,h3) 
result=[l2 + h3*sin(theta3) 

;-h3*cos(theta3)*sin(theta2);h3*cos(theta2)*cos(theta3)]; 

 

%d3_2: The distance vector between the coordinate origins of frame (2) and frame (3). 
function result=d3_2(theta3,h3 ,b2 ) 
result=[h3*sin(theta3);0.5*b2;h3*cos(theta3)]; 

 

%I1:mass moment  matrix for body one about center of mass . 
function result=I1(I1xx,I1xy,I1xz,I1yx,I1yy,I1yz,I1zx,I1zy,I1zz); 
result=[I1xx I1xy I1xz;I1yx I1yy I1yz;I1zx I1zy I1zz]; 

 

%I2: mass moment matrix for body two about center of mass . 
function result=I2(I2xx,I2xy,I2xz,I2yx,I2yy,I2yz,I2zx,I2zy,I2zz); 
result=[I2xx I2xy I2xz;I2yx I2yy I2yz;I2zx I2zy I2zz]; 

 

%I3: mass moment matrix for body three about center of mass . 
function result=I3(I3xx,I3xy,I3xz,I3yx,I3yy,I3yz,I3zx,I3zy,I3zz); 
result=[I3xx I3xy I3xz;I3yx I3yy I3yz;I3zx I3zy I3zz]; 

 

%%% jacobian matrices 

 

%J1 for  d1_0 
function result=J1(); 
result=[0 0 0;0 0 0;0 0 0]; 

 

%J2 for d2_0 
function result=J2(theta2,b2); 
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result=[0 0 0;0 0.5* sin(theta2)* b2 0;0 -0.5* cos(theta2)* b2 0]; 

 

%J3 for d3_0 
function result=J3(theta3,h3,theta2); 
result=[0 0 cos(theta3)* h3;0 -cos(theta3) *cos(theta2) *h3  sin(theta2) 

*sin(theta3) *h3;0 -sin(theta2) *cos(theta3)* h3  -sin(theta3)* cos(theta2) 

*h3] 

 

%%% mass moment matrix from the frame zero to bodies frame   

%I0_1: 
function result=I0_1(I1xx,I1xy,I1xz,I1yx,I1yy,I1yz,I1zx,I1zy,I1zz); 
result=[I1xx I1xy I1xz;I1yx I1yy I1yz;I1zx I1zy I1zz]; 

 

%I0_2: 
function result=I0_2(I2xx,I2xy,I2xz,I2yx,I2yy,I2yz,I2zx,I2zy,I2zz,theta2); 
result= [I2xx , I2xy *cos(conj(theta2)) - I2xz* sin(conj(theta2)) , I2xy 

*sin(conj(theta2)) + I2xz *cos(conj(theta2)) ; cos(theta2) *I2yx - 

sin(theta2)* I2zx ,(cos(theta2)* I2yy - sin(theta2)* I2zy) *cos(conj(theta2))  

- (cos(theta2)* I2yz - sin(theta2)* I2zz) *sin(conj(theta2)) , (cos(theta2)* 

I2yy - sin(theta2)* I2zy) *sin(conj(theta2)) + (cos(theta2) *I2yz - 

sin(theta2) *I2zz) *cos(conj(theta2)); sin(theta2) *I2yx + cos(theta2)* I2zx 

,  (sin(theta2)* I2yy + cos(theta2)* I2zy) *cos(conj(theta2)) - (sin(theta2)* 

I2yz + cos(theta2) *I2zz) *sin(conj(theta2)) ,  (sin(theta2)* I2yy + 

cos(theta2)* I2zy) *sin(conj(theta2))  + (sin(theta2)* I2yz + cos(theta2) 

*I2zz)* cos(conj(theta2))] 

 

%I0_3: 
function 

result=I0_3(I3xx,I3xy,I3xz,I3yx,I3yy,I3yz,I3zx,I3zy,I3zz,theta2,theta3); 
result= [(cos(conj(theta3))* I3xx + z2 *I3yx - z1* I3zx) *cos(theta3)+ z4 

*sin(theta3) *sin(theta2) - z3 *sin(theta3) *cos(theta2) , z4 *cos(theta2) + 

z3 *sin(theta2) ,(cos(conj(theta3))* I3xx + z2* I3yx - z1 *I3zx) 

*sin(theta3)- z4 *sin(theta2) *cos(theta3) + z3 *cos(theta3)* cos(theta2) 

;(cos(conj(theta2))* I3yx + sin(conj(theta2))*I3zx)* cos(theta3)+ z6 

*sin(theta3)* sin(theta2) - z5 *sin(theta3) *cos(theta2) , z6* cos(theta2) + 

z5 *sin(theta2) , (cos(conj(theta2))* I3yx + sin(conj(theta2))* I3zx) 

*sin(theta3) - z6* sin(theta2) *cos(theta3) + z5*cos(theta3) 

*cos(theta2);(sin(conj(theta3))* I3xx - z8 *I3yx + z7* I3zx) *cos(theta3) + 

z10 *sin(theta3) *sin(theta2) - z9 *sin(theta3)* cos(theta2) , z10 

*cos(theta2) + z9* sin(theta2) ,(sin(conj(theta3)) *I3xx - z8 *I3yx + z7* 

I3zx) *sin(theta3)- z10* sin(theta2) *cos(theta3) + z9*cos(theta3)* 

cos(theta2)] 
 

%r1: rotation matrix for body one  
function result=r1(); 
result=[0 0 0;0 0 0;0 0 0] 

 

%r2: rotation matrix for body two 
function result=r2(); 
result=[0 0 0;1 0 0;0 0 0] 

 

%r3: rotation matrix for body three 
function result=r3(); 
result=[0 0 0;0 0 0;0 1 0] 

 

%R1_0: rotation matrix for frame one refer to frame zero 
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function result =R1_0(); 
result=[1 0 0;0 1 0;0 0 1]; 

 

%R2_1: rotation matrix for frame two refer to frame one 
function result=R2_1(theta2) 
result=[1 0 0;0 cos(theta2) -sin(theta2);0 sin(theta2) cos(theta2)]; 

 

%R3_2: rotation matrix for frame three refer to frame two 
function result=R3_2(theta3) 
result=[cos(theta3) 0 sin(theta3);0 1 0;-sin(theta3) 0 cos(theta3)]; 

 

%R3_0: rotation matrix for frame three refer to frame zero 
function result0=R3_0(theta2,theta3) 
result1=[cos(theta3),0,sin(theta3)]; 
result2=[ sin(theta2)*sin(theta3), cos(theta2), -cos(theta3)*sin(theta2)]; 
result3=[ -cos(theta2)*sin(theta3), sin(theta2),  cos(theta2)*cos(theta3)]; 
result0=[result1;result2;result3]; 

 

 

 

%%%  dynamic model  

%D_matrix : inertia type matrix  
function result=Dmatrix(theta2,theta3, I2yy,  I2yz  , I2zy , I2zz,  I3xx,  

I3xy  ,I3xz , I3yx  , I3yy,  I3yz , I3zx,  I3zy , I3zz, m2, m3,b2,h3 )         
t1=(J1()'*m1*J1())+(0.5*r1()'*I0_1(I1xx,I1xy,I1xz,I1yx,I1yy,I1yz,I1zx,I1zy,I1

zz)*r1())  
t2=(J2(theta2,b2)'*m2*J2(theta2,b2))+(0.5*r2()'*I0_2(I2xx,I2xy,I2xz,I2yx,I2yy

,I2yz,I2zx,I2zy,I2zz,theta2)*r2()) 
t3=(J3(theta3,h3,theta2)'*m3*J3(theta3,h3,theta2))+(0.5*r3()'*I0_3(I3xx,I3xy,

I3xz,I3yx,I3yy,I3yz,I3zx,I3zy,I3zz,theta2,theta3)*r3()) 
result=t1+t2+t3; 

 

% D_inverse: inverse matrix for a inertia type matrix 
function result=invD(theta2,theta3, I2yy,  I2yz  , I2zy , I2zz,  I3xx,  I3xy  

,I3xz , I3yx  , I3yy,  I3yz , I3zx,  I3zy , I3zz, m2, m3,b2,h3 ); 
result1= [1/(0.5* cos(theta2)* cos(theta2)*  I2yy-0.5*sin(theta2) 

*cos(theta2)* I2zy-0.5*cos(theta2)* sin(theta2) *I2yz+0.5*sin(theta2)* 

sin(theta2) *I2zz),0,0]; 
result2=[0 ,1/(0.25*sin(theta2)*sin(theta2)*b2*b2*m2+0.25* cos(theta2)* 

cos(theta2) * b2 * b2*  m2 + cos(theta2)*cos(theta2)*  cos(theta3) *  

cos(theta3)* h3* h3 * m3+cos(theta3) *cos(theta3)* sin(theta2)* sin(theta2) * 

h3 * h3  *m3 + 0.5* I3xx *sin(theta3)*sin(theta3)-0.5* I3yx *cos(theta3) 

*sin(theta2) *sin(theta3)+0.5*I3zx* cos(theta2) *cos(theta3)* sin(theta3)-

0.5*I3xy*cos(theta3)*sin(theta2)*sin(theta3)+0.5* 

I3yy*cos(theta3)*cos(theta3)*sin(theta2)*sin(theta2)-0.5* I3zy* cos(theta2) 

*cos(theta3)*cos(theta3)*sin(theta2)+0.5* sin(theta3) *cos(theta3) 

*cos(theta2)*I3xz-0.5*cos(theta3) *cos(theta3)*sin(theta2)*cos(theta2)* 

I3yz+0.5*cos(theta2) *cos(theta2)*cos(theta3)*cos(theta3) *I3zz),0]; 
result3=[0,0,1/(h3*h3*(sin(theta3) 

*(sin(theta3)*cos(theta2)*cos(theta2)+sin(theta3)* sin(theta3)* sin(theta2) 

*sin(theta2) + cos(theta3) *cos(theta3))*m3))]; 
result=[result1;result2;result3]; 
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%H_Matrix : Coriolis matrix  
function result=Hmatrix(theta2,theta2_dot,theta3, theta3_dot) 

 
v=Dmatrix(theta2,theta3, I2yy,  I2yz  , I2zy , I2zz,  I3xx,  I3xy  ,I3xz , 

I3yx  , I3yy,  I3yz , I3zx,  I3zy , I3zz, m2, m3,b2,h3 )         
x=[0;theta2;theta3] 
c=[0;theta2_dot;theta3_dot] 

  
for i=1:1:3 
for j=1:1:3 
    for k=1:1:3 
       r1=(diff(v(i,j),x(k,1))-(0.5*diff(v(j,k),x(i,1))))*c(j,1)*c(k,1) 
       h(k)=sum(r1); 
    end  
    Hnn(j)=sum(h); 
end 
y(i)=sum(Hnn) 
end 
result=[y(1);y(2);y(3)] 

 

 

 

%G_matrix: gravitational matrix  
function  result=Gvector(theta2,theta3,theta2_imu,theta3_imu) 

 
grav0=(R3_0(theta2,theta3)*[-

cos(theta2_imu)*sin(theta3_imu);sin(theta2_imu);cos(theta2_imu)*cos(theta3_im

u)]*9.81).'; 

grav1=m1*grav0*J1(); 

grav2=m2*grav0*J2(theta2,b2); 

grav3=m3*grav0*J3(theta3,h3,theta2); 

grav=[grav1(1,1)+grav1(1,2)+grav1(1,3);grav2(1,1)+grav2(1,2)+grav2(1,3);grav3

(1,1)+grav3(1,2)+grav3(1,3)]; 
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%%% linearization code  

%Parameters: Variables which used in the model. 
global   l2 b2 h3  I3xx I3xy I3xz I3yx I3yy I3yz I3zx I3zy I3zz I2xx I2xy 

I2xz I2yx I2yy I2yz I2zx I2zy I2zz m2 m3  
l2=0.045 
b2=0.082 
h3=0.024 
I3xx=0.3  
I3xy=0 
I3xz=0.04  
I3yx=0 
I3yy=0 
I3yz=0 
I3zx=0.2 
I3zy=0  
I3zz=0.5 
I2xx=0 
I2xy=0 
I2xz=0 
I2yx=0 
I2yy=0.6 
I2yz=0.2 
I2zx=0 
I2zy=0.3  
I2zz=0.2 
m2=0.03572 
m3=0.02405 

 
v=invD(theta2,theta3, I2yy,  I2yz  , I2zy , I2zz,  I3xx,  I3xy  ,I3xz , I3yx  

, I3yy,  I3yz , I3zx,  I3zy , I3zz, m2, m3,b2,h3 ) 
z=Gvector(theta2,theta3,theta2_imu,theta3_imu) 
c=Hmatrix(theta2,theta2_dot,theta3, theta3_dot) 
t=[0;t2;t3] 
b=v*(t-z-c) 
%%%%to find matrix A 
A21=diff(b(2),theta2) 
A22=diff(b(2),theta2_dot) 
A23=diff(b(2),theta3) 
A24=diff(b(2),theta3_dot) 
A41=diff(b(3),theta2) 
A42=diff(b(3),theta2_dot) 
A43=diff(b(3),theta3) 
A44=diff(b(3),theta3_dot) 
 

theta3_imu=0 
theta2_imu=0 
theta2=0 
theta3=0 
theta2_dot=0  
theta3_dot=0 

  
%%%to find matrix B 
b21=diff(b(2),t2) 
b22=diff(b(2),t3) 
b41=diff(b(3),t2) 
b42=diff(b(3),t3) 

 

 

 

 



 
 

53 
 

%%%state space model 

 
A=[0 1 0 0;0.1149 0 -0.0276 0;0 0 0 1;0 0 0 0] 
B=[0 0;3.998 0;0 0;0 500] 
C=[1 0 0 0;0 0 1 0]      
 D=[0 0;0 0] 
 %%% design requirements  zeta=1  f=2 w=2*pi*f 

 %%% to find the regulator matrix  
 P=[-80 -80.01 -80.02 -80.03] 
 K=place(A,B,P) 
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Appendix D: Arduino code  

1) PID controller: 

 

double pid_controller_roll (double error, double error_previous) 

{ 

double result1=0; 

  ///******* calculat the time ****** 

delta_time = (micros() - last_process) / 1000000.0; 

last_process = micros(); 

//delta_time = 0.000001; 

 

  //*********** PID ***** 

  KP = (P * error ); 

  KI += I * error * delta_time; 

  KD = ((error - error_previous) / delta_time)* D; 

  

  result1 = KP + KD + KI; 

    return result1; 

} 

 

double pid_controller_pitch(double error2 , double error_previous2) 

{ 

  double result=0; 

  ///******* calculat the time ****** 

delta_time2 = (micros() - last_process2) / 1000000.0; 

last_process2 = micros(); 

//delta_time = 0.000001; 

  //*********** PID ***** 

  KP2 = (P2 * error2 ); 

  KI2 += I2 * error2 * delta_time2; 

  KD2 = ((error2 - error_previous2) / delta_time2) * D2; 

  

  result = KP2 + KD2+ KI2; 

             return result; 

} 
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2) Control Code of Brushless DC Motor  

 

void move_motor_roll(int sign_roll, int step_roll) { 

   

  for(int i=0;i<step_roll;i++) { 

   

  if(direction_roll * sign_roll < 0 ) { 

     

  direction_a_roll = direction_a_roll * -1;   

  direction_b_roll = direction_b_roll * -1;   

  direction_c_roll = direction_c_roll * -1;   

  direction_roll = direction_roll * -1; 

    

  } 

 

  if(position_a_roll + direction_a_roll > 255 | position_a_roll + direction_a_roll < 0) 

direction_a_roll = direction_a_roll * -1; 

  if(position_b_roll + direction_b_roll > 255 | position_b_roll + direction_b_roll < 0) 

direction_b_roll = direction_b_roll * -1; 

  if(position_c_roll + direction_c_roll > 255 | position_c_roll + direction_b_roll< 0) 

direction_c_roll = direction_c_roll * -1; 

 

  position_a_roll = position_a_roll + direction_a_roll; 

  position_b_roll= position_b_roll + direction_b_roll; 

  position_c_roll = position_c_roll + direction_c_roll; 

   

  p1 = SinusValues[position_a_roll]; 

  p2 = SinusValues[position_b_roll]; 

  p3 = SinusValues[position_c_roll]; 

   

  analogWrite(ph1,p1); 

  analogWrite(ph2,p2); 

  analogWrite(ph3,p3); 

  //delay(1); 

  }   

   

} 
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void move_motor_pitch(int sign_pitch, int step_pitch) { 

   

  for(int i=0;i<step_pitch;i++) { 

   

  if(direction_pitch * sign_pitch < 0 ) { 

     

  direction_a_pitch = direction_a_pitch * -1;   

  direction_b_pitch = direction_b_pitch* -1;   

  direction_c_pitch = direction_c_pitch * -1;   

  direction_pitch = direction_pitch* -1; 

    

  } 

 

  if(position_a_pitch + direction_a_pitch > 255 | position_a_pitch + direction_a_pitch < 0) 

direction_a_pitch = direction_a_pitch * -1; 

  if(position_b_pitch + direction_b_pitch > 255 | position_b_pitch + direction_b_pitch < 0) 

direction_b_pitch = direction_b_pitch* -1; 

  if(position_c_pitch + direction_c_pitch > 255 | position_c_pitch+ direction_b_pitch < 0) 

direction_c_pitch = direction_c_pitch * -1; 

 

  position_a_pitch = position_a_pitch + direction_a_pitch; 

  position_b_pitch = position_b_pitch + direction_b_pitch; 

  position_c_pitch = position_c_pitch + direction_c_pitch; 

   

  p4 = SinusValues2[position_a_pitch]; 

  p5 = SinusValues2[position_b_pitch]; 

  p6 = SinusValues2[position_c_pitch]; 

   

  analogWrite(ph4,p4); 

  analogWrite(ph5,p5); 

  analogWrite(ph6,p6); 

 

  }   

   

} 
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3) The Main Page  
 

#define ph1 5 

#define ph2 6 

#define ph3 7 

 

#define ph4 11 

#define ph5 10 

#define ph6 9 

#include "I2Cdev.h" 

#include "MPU6050_6Axis_MotionApps20.h" 

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 

    #include "Wire.h" 

#endif 

MPU6050 mpu; 

// MPU control/status vars 

bool dmpReady = false;  // set true if DMP init was successful 

uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU 

uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error) 

uint16_t packetSize;    // expected DMP packet size (default is 42 bytes) 

uint16_t fifoCount;     // count of all bytes currently in FIFO 

uint8_t fifoBuffer[64]; // FIFO storage buffer 

 

// orientation/motion vars 

Quaternion q;           // [w, x, y, z]         quaternion container 

VectorInt16 aa;         // [x, y, z]            accel sensor measurements 

VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements 

VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements 

VectorFloat gravity;    // [x, y, z]            gravity vector 

float euler[3];         // [psi, theta, phi]    Euler angle container 

float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector 

 

// packet structure for InvenSense teapot demo 

uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' }; 

 

*********               INTERRUPT DETECTION ROUTINE             ******** 

 

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high 

void dmpDataReady() { 

    mpuInterrupt = true; 

} 

uint8_t i2cData[14]; // Buffer for I2C data 

const int SinusValues[256]; 
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void calcSinusArray(uint8_t maxPWM, uint8_t *array) 

{ 

  for(int i=0; i<N_SIN; i++) 

  { 

array[i] = 128 -sin(2.0 * i / N_SIN * 3.14159265) * maxPWM / 2.0; 

  }   

} 

 

// ********* Motor roll ***************** 

 

 static uint32_t position_a_roll = 0; 

static uint32_t position_b_roll = 170; 

static uint32_t position_c_roll = 170; 

int direction_a_roll = 1; 

int direction_b_roll = 1; 

int direction_c_roll = -1; 

int direction_roll = 1; 

int p1,p2,p3; 

 

//********** Motor pitch****************** 

static uint32_t position_a_pitch = 0; 

static uint32_t position_b_pitch = 170; 

static uint32_t position_c_pitch = 170; 

int direction_a_pitch = 1; 

int direction_b_pitch = 1; 

int direction_c_pitch= -1; 

int direction_pitch = 1; 

int p4,p5,p6; 

 

 

//************roll  pid parameters  ***************  

double setpoint = 0; 

double current_position = 0; 

double output = 0; 

long last_process = 0; 

float delta_time = 0; 

double error = 0; 

double error_previous = 0; 

 

double 

P = 1.5, 

I = 0.0005, 

D = 0.002; 

double 
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KP = 0, 

KI = 0, 

KD = 0; 

double result1=0; 

 

 

 

 

//************ pitch pid parameters  ****************** 

//VARIABELS 

double setpoint2 =0; 

double current_position2 = 0; 

double output2 = 0; 

long last_process2 = 0; 

float delta_time2 = 0; 

double error2 = 0; 

double error_previous2 = 0; 

 

double 

P2 = 0.5, 

I2 = 1, 

D2 = 1; 

double 

KP2 = 0, 

KI2 = 0, 

KD2 = 0; 

 

void setup() { 

void setup() { 

    // join I2C bus (I2Cdev library doesn't do this automatically) 

    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 

        Wire.begin(); 

        TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz) 

    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE 

        Fastwire::setup(400, true); 

    #endif 

 

    Serial.begin(115200); 

    while (!Serial); // wait for Leonardo enumeration, others continue immediately 

 

    // initialize device 

    Serial.println(F("Initializing I2C devices...")); 

    mpu.initialize(); 
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    // verify connection 

    Serial.println(F("Testing device connections...")); 

    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 

connection failed")); 

 

    // wait for ready 

    Serial.println(F("\nSend any character to begin DMP programming and demo: ")); 

    while (Serial.available() && Serial.read()); // empty buffer 

    while (!Serial.available());                 // wait for data 

    while (Serial.available() && Serial.read()); // empty buffer again 

 

    // load and configure the DMP 

    Serial.println(F("Initializing DMP...")); 

    devStatus = mpu.dmpInitialize(); 

 

    // supply your own gyro offsets here, scaled for min sensitivity 

    mpu.setXGyroOffset(220); 

    mpu.setYGyroOffset(76); 

    mpu.setZGyroOffset(-85); 

    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip 

 

    // make sure it worked (returns 0 if so) 

    if (devStatus == 0) { 

        // turn on the DMP, now that it's ready 

        Serial.println(F("Enabling DMP...")); 

        mpu.setDMPEnabled(true); 

 

        // enable Arduino interrupt detection 

        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); 

        attachInterrupt(0, dmpDataReady, RISING); 

        mpuIntStatus = mpu.getIntStatus(); 

 

        // set our DMP Ready flag so the main loop() function knows it's okay to use it 

        Serial.println(F("DMP ready! Waiting for first interrupt...")); 

        dmpReady = true; 

 

        packetSize = mpu.dmpGetFIFOPacketSize(); 

    } 

 

  pinMode(ph1, OUTPUT); 

  pinMode(ph2, OUTPUT); 

  pinMode(ph3, OUTPUT); 

  pinMode(ph4, OUTPUT); 

  pinMode(ph5, OUTPUT); 
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  pinMode(ph6, OUTPUT); 

    Serial.begin(115200); 

setup_MPU(); 

setpoint = 0; 

setpoint2 = 0; 

calcSinusArray(255, SinusValues); 

} 

 

 

 

 

void loop() { 

 

if (!dmpReady) return; 

 

while (!mpuInterrupt && fifoCount < packetSize) { 

   current_position = ypr[1] * 180/M_PI; 

   current_position2 = ypr[2] * 180/M_PI; 

 

  //****** error ****** 

  error = setpoint - current_position; 

  error2 = setpoint2 - current_position2; 

 

  //********** pid controller   ******* 

 

output = pid_controller_roll(error, error_previous); 

output2 = pid_controller_pitch(error2, error_previous2); 

error_previous = error; 

error_previous2 = error2; 

 

 

if (current_position != 0){ 

if(output > 0 ){ 

  move_motor_roll(1, abs(output)) ; 

 

  } 

 else { 

move_motor_roll(-1, abs(output)) ; 

  } 

} 

 

 

if (current_position2 != 0){ 

if(output2 > 0 ){ 



 
 

62 
 

  move_motor_pitch(1, abs(output2)) ; 

 

  } 

 else { 

     move_motor_pitch(-1, abs(output2)) ; 

  } 

} 

    // reset interrupt flag and get INT_STATUS byte 

    mpuInterrupt = false; 

    mpuIntStatus = mpu.getIntStatus(); 

 

    // get current FIFO count 

    fifoCount = mpu.getFIFOCount(); 

 

    // check for overflow (this should never happen unless our code is too inefficient) 

    if ((mpuIntStatus & 0x10) || fifoCount == 1024) { 

        // reset so we can continue cleanly 

        mpu.resetFIFO(); 

        Serial.println(F("FIFO overflow!")); 

 

    // otherwise, check for DMP data ready interrupt (this should happen frequently) 

    } else if (mpuIntStatus & 0x02) { 

        // wait for correct available data length, should be a VERY short wait 

        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); 

 

        // read a packet from FIFO 

        mpu.getFIFOBytes(fifoBuffer, packetSize); 

         

        // track FIFO count here in case there is > 1 packet available 

        // (this lets us immediately read more without waiting for an interrupt) 

        fifoCount -= packetSize; 

 

        #ifdef OUTPUT_READABLE_YAWPITCHROLL 

            // display Euler angles in degrees 

            mpu.dmpGetQuaternion(&q, fifoBuffer); 

            mpu.dmpGetGravity(&gravity, &q); 

            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); 

             

        #endif 

     

} 

} 
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