
I

Dedication

We would like to express our gratitude to our parents, our families our friends and our

colleagues who always encourages us to excellence and delivering the best, and they

were in all stages of the project.

They have always been a beacon for us in the way of our lives until we got to this

success. This achievement and coming achievement is meaningless without their

presence beside us contactable.

We express our love and gratitude and deep respect for them.

II

Acknowledgments

First of all, we would like to thank Allah, then our thanks go to our parents, supervisor

Dr. Iyad Hashlamoun, and teaching and administrative staff at Palestine Polytechnic

University in general and Mechanical Engineer Department in particular for their great

patience and work with the project team and their assistance to get this work.

Last but not least we would like to thank our friends, colleagues and the rest of the

family for their everlasting love and support.

III

Abstract

The stabilization of the camera during recording videos is one of the most challenges

which facing any photographer whether he is professional or beginner.

This project aims to compensate the vibration from photographer’s body which acts on

the recorded video by stabilize the camera in two-axes to get smooth record of video

regardless of photographer’s movement.

To achieve the project goal, there are two motor to stabilize the camera, one motor for

each axis. The gyroscope and accelerometer which placed on the base of the camera

gives the feedback of the current position of the camera to the control unit.

IV

صالملخّ

 مصور أي تواجه التي التحديات أكثر من واحد هو الفيديو تسجيل أثناء الكاميرا والحفاظ على ثباتيتها استقرار

. المبتدئين أو من المصورين هذا المصور محترفا كان سواء

 حول محورين وعزلها والحفاظ على ثباتية الكاميرا الفيديو في الاهتزاز من التخلص إلى المشروع هذا يهدف

المصور من أجل الحصول على تصوير فيديو سلس خالٍ من الاهتزازات . جسم اهتزاز عن

هدف هذا المشروع, يوجد محركان للحفاظ على استقرار الكاميرا, كل محرك يحافظ على وضعية لتحقيق

 الكاميرا حول محور معين, ويوجد حساس مثبت على قاعدة الكاميرا يزود المتحكم بوضعية الكاميرا الحالية.

V

List of Contents

Dedication ... I

Acknowledgments .. II

Abstract .. III

 IV ... الملخّص

List of Contents ... V

List of Figures ... VIII

List of Tables ... XI

List of Symbols ... XII

Chapter 1: Introduction --- 1

1.1) Problem Definition ... 1

1.2) Related Work .. 2

1.3) Motivation .. 2

1.4) Timeframe Table .. 3

1.5) Chapters Overview ... 4

Chapter 2: Mechatronics Design ------------------------------------- 5

2.1) Recognition of the Need ... 5

2.2) Conceptual Design and Functional Specifications 6

2.3) Modular Mathematical Modeling ... 6

2.4) Sensors and Actuators .. 7

VI

2.4.1) Sensors -- 7

2.4.2) Actuators --- 7

2.5) Mathematical Model ... 8

2.5.1) Stabilizer’s Kinematics --- 11

 2.5.1.1) Forward Kinematics -- 12

 2.5.1.2) Inverse Kinematics -- 14

2.5.2) Dynamics --- 16

Chapter 3: Material and Component Selection ------------------ 17

3.1) Material ... 17

3.2) Electronic Component .. 17

3.2.1) Controller --- 17

3.2.2) Motors Drivers --- 19

3.2.3) Power Source -- 19

3.2.4) Joystick --- 20

3.3) Mechanical Components .. 20

3.3.1) Connecting Pin -- 20

3.3.2) Ball Bearing -- 21

VII

Chapter 4: Software and Controller Design ---------------------- 23

4.1) The Basic Work Principle of the System ... 23

4.2) Controller Design ... 24

4.2.1) MAPLE Program Simulation -- 24

4.2.2) Matlab Simulation --- 27

4.2.2) Experimental Part --- 30

4.3) Brushless DC Motor Control .. 31

Chapter 5: Parts of the Stabilizer and Assembly ---------------- 32

5.1) Parts .. 32

5.2) Assembly .. 36

Chapter 6: Experimental Results ----------------------------------- 40

Chpater 7: Conclusion and Future Work ------------------------- 43

7.1) Conclusion .. 43

7.2) Future Work .. 43

 Appendixes --- 44

 References -- 63

VIII

List of Figures

Figure 1.1: Support Arm .. 1

Figure 1.2: Support Arm .. 1

Figure 1.3: Some Products of Companies (Feiyu Tech, Glidecam) 2

Figure 2.1: The Stabilizer ... 6

Figure 2.2: Modular Mathematical Model (calculate the error of wrong) 6

Figure 2.3: Mpu6050 Angle Sensor ... 7

Figure 2.4: Three-Phase Brushless DC Motor ... 7

Figure 2.5: Side View of the Stabilizer .. 9

Figure 2.6: Front View of the Stabilizer ...11

Figure 3.1: Arduino Mega 2560 ...17

Figure 3.2: L298n Dual H-bridge Driver ...19

Figure 3.3: Joystick ...20

Figure 3.4: Connecting Pin ...20

Figure 3.5: NSK 6200 ZZCM NS7S Ball Bearing ...21

Figure 4.1: Basic work principle of the system ..23

Figure 4.2: Blocks Model of the Stabilizer on Maple ..25

Figure 4.3: 3D Model of the Stabilizer on Maple ...25

Figure 4.4: Torque Disturbance In Pitch and Roll Direction26

Figure 4.5: Camera Angle Response about Pitch ...26

Figure 4.6: Camera Angle Response about Roll ..26

IX

Figure 4.7: The Simulink model of the stabilizer ...29

Figure 4.8: The disturbance which act on the model in both directions29

Figure 4.9: The response of the system about pitch angle30

Figure 4.10: The response of the system about roll angle30

Figure 4.11: : Input sine waves to control the BLDC Motor31

Figure 5.1: Base and Cup ...32

Figure 5.2: Left Side of Camera Holder ...32

Figure 5.3: Right Side of Camera Holder ...33

Figure 5.4: Right Support of the Camera Holder ...33

Figure 5.5: Assistant Part for Right Support of the Camera Holder34

Figure 5.6: Left Support of the Camera Holder ...34

Figure 5.7: Primary Holder ...35

Figure 5.8: Main Holder ...35

Figure 5.9: Handle of the Stabilizer ...36

Figure 5.10: Exploded View of the Stabilizer ..36

Figure 5.11: Camera Holder ...37

Figure 5.12: Primary Holder with Supports ...38

Figure 5.13: The Stabilizer After it had been Assembled Practically38

Figure 5.14: Wiring Diagram of the Stabilizer ...39

Figure 6.1: The error on pitch angle when we use a kalman filter40

Figure 6.2 The error on pitch angle while recording the video.41

Figure 6.3: The controller output on pitch angle while recording the video..........41

Figure 6.4: disturbance on the roll angle while recording the video.42

X

Figure 6.5: The controller output on roll while recording the video.42

XI

List of Tables

Table 1.1: Timeframe of the First Semester .. 3

Table 1.2: Timeframe of the Second Semester .. 3

Table 2.1: Specifications of BGM 4108-130 Three-Phase Brushless DC Motor 8

Table 2.2 :The stabilizer properties which taken from SolidWorks CAD model. ..10

Table 3.1: Arduino Mega 2560 Specifications ...18

Table 3.2: L298n Dual H-bridge Driver Specifications ..19

Table 3.3: NSK 6200 ZZCM NS7S Ball Bearing Specifications22

Table 4.1: Effects of Increasing PID Controller Parameters Independently24

Table 5.1: The Stabilizer Parts in Exploded View ..37

XII

List of Symbols

symbol Meaning

Өi Current angle of body (i)

Li Length of body i

hi Height of body i

bi Width of body i

j

iR Rotation matrix between frame j and frame i

j

id Distance between frame j and frame i

mi Mass of body i

Iixx,Iixy,Iixz

Iiyx,Iiyy,Iiyz

Iizx,Iizy,Iizz

Mass moment of inertia for body i about its center of mass

ωi Angular velocity of body i

Ф Angular velocity of camera

(φx, φy, φz) Components of angular velocity for the camera

D Inertial-type matrix

H Velocity coupling vector

G Gravitational vector

Q Reaction torques

1

Chapter 1

Introduction

The stabilizer is a device that is used to keep the camera stable against the external vibration and

disturbances.

1.1) Problem Definition

One of the most common challenges that faces the photographers is taking pictures or video

recordings in moving states. Maintaining the stability of the camera within a specific position

needs a “professional” photographer. Therefore, to keep the position of the camera fixed “stable”

even the body of the photographer vibrates, i.e., helps the photographers in stabilizing the position

of the camera, photographers need to use stabilizers for their cameras while recording videos.

Using different types of camera-support arms to increase the stability of the camera is

ineffective solution. The following pictures show some difficulties that can face the photographers

when using these support-arms while taking pictures.

 Figure 1.1: Support Arm Figure 1.2: Support Arm

Any person can use this device (the stabilizer) to get a clear and smooth record of video,

regardless of his vibration of body. It is also not heavy, which means that the photographer can

move freely. This also implies that recording a clear video will not need a professional

photographer.

As a mechatronics system, the camera must be stabilized automatically and intelligently,

so the system needs sensors to act some measurements (angle of rotation, attitude, etc.), a controller

with desired driver to drive the motors with suitable torque and synergetic integration between

them. Using one motor for each axis makes the camera stable in two-axes. The stabilizer is used

2

easily, which means that the clear photos and smooth videos will not need to be taken by a

professional photographer when this device is used.

1.2) Related Work

Some techno-companies such as Feiyu Tech, Glidecam were provide a solution of the problem

mentioned in Section 1.1. By design models and controllers of specific type of cameras to get rid

of the vibrations. Some of these products are shown in Figure 1.3. [1]

This project is following the way of the solution which created by these companies, by

designing a model and controller to solve the problem.

Figure 1.3: Some Products of Companies (Feiyu Tech, Glidecam)

1.3) Motivation

Any beginner photographer wants to record video confront his lack of skills in recording as a

blocker from record or publish his recorded video. So the project team aims to build the stabilizer

to help anyone to record his events perfectly with no high skills. Also to provide the product to the

local market with reasonable price, the cost of the products which available in the market is up to

2000 $.

3

1.4) Timeframe Table

(Table 1.1) shows the timeframe of the work and steps that are take place in the first semester. On

the other hand, (Table 1.2) shows the timeframe of the work in the second semester.

Table 1.1: Timeframe of the First Semester

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Problem Identification

Finding Solution

CAD Design

Kinematic and Dynamic

Equations

Simulation and Detection of

Errors

Specifying Components

Table 1.2: Timeframe of the Second Semester

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Purchase of the necessary

electronic parts

Checking the control system on

prototype

Turning and painting the parts

Assembling and checking the

system

4

1.5) Chapters Overview

This report consists of five chapters including this chapter. The rest of this report is organized as

follow:

Chapter 2:

This chapter talks about mechatronics design approach of the stabilizer. It includes recognition of

the need, conceptual design and specification, modular solution of the need, sensors and actuators,

detailed mathematical model which discuss kinematics with its two branches forward and inverse

and discuss the dynamics of the system.

Chapter 3:

This chapter discusses the material, mechanical and electrical component selection for the project.

Chapter 4:

This chapter is talks about software programming and controller design.

Chapter 5:

This chapter explains the project parts and their assembly.

Chapter 6:

This chapter discusses the experimental results of using the stabilizer while recording video.

Chapter 7:

This chapter discusses conclusion and the future work.

5

Chapter 2

Mechatronics Design

This chapter explains the construction of the stabilizer, detail of its mechanical parts and the

dynamic model as well as forward and inverse kinematics of the stabilizer.

2.1) Recognition of the Need

Any beginner photographer suffers from vibration of the camera which affect on the record of

video. This is usually due to the fact that the photographer cannot modify stand of the camera

vibration and sudden movements during recording, which affects the quality of the recorded video

negatively. Thus, it is a fact that any person who uses the camera for video recording hopes to get

clear videos easily.

To make the camera stable while taking a photo or recording a video, a device to hold the

camera and to allow the photographer to move freely and to get clear photo or video is needed.

The previous solution, which is using the camera support arms, is difficult to be applied, these

arms limit the photographer’s movement.

So the need is to compensate against the noise which appear on the recorded videos.

6

2.2) Conceptual Design and Functional Specifications

We design a device that consists of three bodies that are connected with each other by motors

as shown in Figure 2.1.

Figure 2.1: The Stabilizer

The main feature of this design is portability, so it should be light. In addition, the energy source

should be built in it.

2.3) Modular Mathematical Modeling

The principle of elimination of the noise is described as below:

Figure 2.2: Modular Mathematical Model (calculate the error of wrong)

We aim to eliminate of the frequency under 2 Hz. And amplitude range [-10 to +10] cm.

7

2.4) Sensors and Actuators

This section describes the desired sensors and the actuators to match the stabilizer requirements.

2.4.1) Sensors

Mpu6050 (Accelerometer and gyroscope sensor) is used to measure the angle of the camera in two

directions and to give the attitude feedback to the controller about the current position. It is shown

in Figure 2.3

Figure 2.3: Mpu6050 Angle Sensor

2.4.2) Actuators

Since we trend to use light material and the stabilizer design is symmetry, the stabilizer did not

need motors with high torque. So we choose three-phase brushless DC motors, namely, (BGM

4108-130). A top view of this motor is shown in Figure 3.2.

Figure 2.4: Three-Phase Brushless DC Motor

This motor is often use for stabilizers. Since it has high speed and high accuracy. The magnetic

field of the motor rotates it to reach the needed position, then the same magnetic field locks it

from slipping.

8

The motor specifications are shown in Table2.1. [2]

Table 2.1: Specifications of BGM 4108-130 Three-Phase Brushless DC Motor

Turns 130 turns

Cooper Wire(mm) 0.15

Poles 22

Slots 24

Weight 90g

Motor Size (mm) Ф46*25

Ri (Ω) 17.0 ohm

2.5) Mathematical Model

This section explains the kinematics and dynamics of our stabilizer.

The stabilizer consists of three parts (part one, part two and part three) as shown in Figures 2.5 and

2.6. These parts are connected with each other by two revolute joints. Each of them is driven by a

brushless DC-motor. The mounting point of the camera is located on part three. The box on part

one contains the electronic and control circuits.

Part one might be held by hand or fixed during tests.

The direction of the joints is indicated by the double arrows.

The dimensions l1, l2, h1, b2, h3 are in Figures 2.5 and 2.6, mass, mass moment of inertia and center

of mass for each body are given by the Computer Aided Design (CAD) models of the stabilizer.

9

Figure 2.5: Side View of the Stabilizer

l1=105 mm.

l2=80 mm.

h1=125 mm.

b2=180 mm.

h3=40 mm.

And Table 2.2 shows the stabilizer properties which taken from SolidWorks CAD model.

10

Table 2.2: The stabilizer properties which taken from SolidWorks CAD model.

 Part

Property

Unit Part one Part two Part three

Mass [gram] 56 82.2 86.5

Mass moment of

Inertia about x-axis

(Ix)

[gram*mm2] (0.00, 0.86, 0.51) (1.00, -0.01, -0.04) (1.00, -0.01, 0.00)

Mass moment of

Inertia about y-axis

(Iy)

[gram*mm2] (0.00, -0.51, 0.86) (-0.04, 0.00, -1.00) (0.01, 1.00, -0.00)

Mass moment of

Inertia about z-axis

(Iz)

[gram*mm2] (1.00, 0.00, 0.00) (0.01, 1.00, -0.00) (0.00, 0.00, 1.00)

Center of mass along

x-axis

[mm] -25 -34.12 -26.23

Center of mass along

y-axis

[mm] -38.48 -124.89 -124.98

Center of mass along

z-axis

[mm] 26.77 58.44 108

11

Figure 2.6: Front View of the Stabilizer

2.5.1) Stabilizer’s Kinematics

The kinematics is the description of the motion system regardless of the force that acts to the

system. We used the kinematics in the derivation of the system dynamics (see Section 2.5.2).

The two-axes camera stabilizer (2-ACS) (see Figures 2.5 and 2.6) consists only of two

revolute joints (R-joints). Each revolute joint has one degree of freedom (DOF). This gives a two

DOF, roll and pitch (θ2, θ3), respectively.

The kinematics can be divided into forward and inverse kinematics as shown below: - [3]

12

2.5.1.1) Forward Kinematics

Forward kinematics of a Multi-Body System (MBS) is used to find the position and the velocity

of the end effector due to change in joints angles.

The 2-ACS is classified as serial robot. The camera is the end effector. Serial robots are often

described by using the Denavit-Hartenberg method (D-H method). This method places the

coordinate systems of each joint and use a set of rules to find forward kinematics of the MBS.

Each frame is described by double arrow on it with the frame number. [4]

Two-Axes transformation matrices

By using the parameters of the stabilizer’s parts l1, l2, h1, h3 and b2 in Figures 2.5 and 2.6, the

transformation between the bodies is described as follow:

1) There is no rotation between base frame (0) and frame (1) about z-axis, so the rotation matrix
Between the base frame (0) and frame (1) (0

1R) that is shown in Figures 2.5 and 2.6 is [5]

0

1

1 0 0

0 1 0

0 0 1

R

 
 


 
  

 (2.1)

 The distance between the coordinate origins of base frame (0) and frame (1), (0

1d), is

1

0

1

1

0

l

d

h

 
 


 
  

 (2.2)

2) The rotation matrix between frame (1) and frame (2), (1

2R), that is shown in Figures 2.5 and

2.6. is

1

2 2 2

2 2

1 0 0

0 cos() sin()

0 sin() cos()

R  

 

 
 

 
 
  

 (2.3)

The distance between the coordinate origins of base frame (1) and frame (2), (1

2d), is

2

1

2 2 2

2 2

0.5 cos()

0.5 sin()

l

d b

b





 
 

 
 
  

 (2.4)

13

3) The rotation matrix between the frame of body (2) and the frame of body (3), (2

3R), is

3 3

2

3

3 3

cos() 0 sin()

0 1 0

sin() 0 cos()

R

 

 

 
 


 
  

 (2.5)

and the distance between the coordinate origins (2

3d) is

3 3

2

3 2

3 3

sin()

0.5

cos()

h

d b

h





 
 


 
  

 (2.6)

4) The total transformation between the frame of body (3) and the base frame (0), (0

3T), is

0 0

0 0 1 23 3

3 1 2 3
0 1

R d
T T T T

 
  
 

 (2.7)

The rotation matrix between the base frame (0) and the frame of body (3), (0

3R), is

 0 0

1

1 2

3 2 3R RR R (2.8)

 

   

   

3 3

3 2 3 2 3 2

2 3 2

0

2 2

cos 0 sin()

sin()sin() cos cos()sin

cos()sin sin() cos()cos

R

 

    

    

 
 

  
  

 . (2.9)

And the distance between the origin of the base frame (0) and the origin of the frame of body (3), (
0

3d) , from the transformation matrix (0T3) is

 

   

   

2 3 3

3 3 3 2

3 2

0

3

1 sin

cos sin

1 cos cos

l h

h

h

l

d

h



 

 

 
 

  
  





 (2.10)

Another transformation is used in the inverse kinematics in Section 2.5.1.2 which is the rotation

matrix between body (3) and the ground.

 
   

   

3

cos 0 sin()

sin()sin() cos cos()sin

cos()sin sin() cos()cos

groun

y y

x y x y x

x y x x

d

x

R

 

    

    

 
 

  
 
  

 (2.11)

Where (x ,
y) are the angles of camera on body (3) which are read from an angle sensor attached

on body (3). It is assumed that frame (3) is parallel to the angle sensor frame.

14

Forward Angular Velocity

The relationship between the local angular velocities (2 3, ) of the joints and the camera angular

velocity (3

3) can be expressed using Jacobian-Matrix J as

 23

3

3

x

y

Z

J




 




 
  

    
   

 (2.12)

where (2 3, ) are the angular velocity of body two and angular velocity of body three

respectively.

The Jacobian J can be viewed as the angular velocity directions of the joints presented in

the coordinate of camera’s frame and because the 2-ACS consists only of R-joints it can be written

as

3 3 32
3

22 3 2 3

32
2

23 3

[] []

[]T

J R

R

   

 

 



 (2.13)

where

2

2

1

0

0



 
 


 
  

 (2.14)

3

3

0

1

0



 
 


 
  

 (2.15)

which are the directions of the joints, by substituting Equations (2.5), (2.14) and (2.15) into (2.13),

and then sub in Equation (2.12) we get

  23

3

3

0 ωcos θ 0

0 ω0 1

0 0sin(θ) 0

roll

pitch

yaw







     
          
        

 (2.16)

2.5.1.2) Inverse Kinematics

Inverse kinematics is used to calculate the joints angles when the end effector position is known.

Inverse kinematics in the 2-ACS application is used to know the joints angles (θ2, θ3), which are

explained in Figure 2.5 and Figure 2.6, from the orientation of the camera.

15

Angular Position

The goal is to change the attitude of the camera relative to the ground. This will result in a control

error between the desired attitude and angle sensor current attitude. This can be presented as a new

rotation matrix in the reference of the camera frame.

   

   

3 3

3

 2 3 2 3 2

2 3 2 2 2

cos() 0 sin()

sin()sin() cos cos()sin

cos()sin sin() cos() cos

R

 

    

    

 
 

  
  

e
 (2.17)

where 2 3,  are the errors ()des    of the roll and pitch in the camera reference frame where

are (e) denotes an imagined error coordinate frame.

The total rotation matrix between the error frame (e) and the 2-ACS base frame (0) is

     3

0 0

3 ,R R R   e e (2.18)

where  are the current angles of joints (2 3, ). A new joint configuration new is chosen such

that.

   

0 0

 ,newe eR R    (2.19)

Which means that coordinate frame (3) becomes in the same frame as (e) that means the desired

attitude is reached.

Equation (2.19) together with Equation (2.18) give

     1 3

 3

0

 new eR R R  e (2.20)

If the right hand side of (2.20) is expressed as

   
11 12 13

1 3

 3 21 22 23

31 32 33

r r r

R R r r r

r r r



 
 



 






e (2.21)

r11, r12, r13, r21, r22, r23, r31, r32 and r33 are found in appendix A.

The new joint parameters are: -

  1

2 32sinnew r  (2.22)

 1

3 31 33tan , new r r   (2.23)

These angels will be the angular position reference signals for the individual joints.

16

2.5.2) Dynamics

The dynamics of a 2-ACS describe its motion taking into consideration the effect of external

forces, such as gravity and torque from the joint actuators. It is presented as a system of differential

equations obtained using either Newton-Euler equations which use Newton’s second law of

motion, or Lagrange equations [5]. In our project we use Lagrange equations to find the dynamic

equations.

In 2-ACS (Figures 2.5 and 2.6) we have three bodies, the first one is the base, the second

body rotates about the x-axis (roll), and the last rotate about y-axis (pitch) and the equation of

motion is:

() (,) ()D q q H q q q G q Q   (2.24)

where

 D is Inertia matrix.

 H is Coriolis matrix.

 G is Gravitational matrix.

 Q is Torque.

 q is the angle.

 q is the angular velocity.

The dynamic model matrices are found in appendix B.

17

Chapter 3

Material and Component Selection

This chapter discusses the material selection of the stabilizer parts, mechanical components and

electrical components which are added to sensors and actuators that were explained in Section 2.4.

3.1) Material

The project team choose the wood, the cheapest and most abundant material. Although it is easy

to be machined to form the parts, it is sensitive to the environmental conditions.

3.2) Electronic Component

The project team choose these components in the control system of the stabilizer to make

synergetic integration among them to get the promising function.

3.2.1) Controller

Arduino Mega 2560, shown in Figure 3.1, and its specifications are shown in Table 3.1

Figure 3.1: Arduino Mega 2560

Table 3.1: Arduino Mega 2560 Specifications [6]

18

Microcontroller AT mega 2560

Operating Voltage 5 volts

Input Voltage 7-12 volt

Digital I/O Pins 54 (of which 14 provides PWM)

Analog Input Pins 16

Dc Current Per I/O Pin 40 mA

Dc Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Length 101.52 mm

Width 53.3 mm

Weight 36 g

This controller is available in the market and it contains suitable inputs and outputs to control the

stabilizer. Its specifications have encouraged the project team to choose it. The specifications

include:

1) Its suitable size and weight to carry on the handle of the stabilizer.

2) It is compatible with Matlab, and programming can be done effectively through it.

3) The power supply source for this controller can be a movable battery, and it is suitable for this

mobile project.

4) Open source codes which are available for many applications and can be downloaded from the

company's website.

5) The available shields for many components which allow the connection of modules easily.

6) The modularity and the last important thing is that it does not need a dedicated programmer as

it can be programmed through the same cable that is used for the PC connection.

7) Other advantages include the upgradability.[6]

19

3.2.2) Motors Drivers

L298n dual H-bridge driver is used to control the motors speed and direction. It is shown

in Figure 3.2

Figure 3.2: L298n Dual H-bridge Driver

Motor driver specifications shown in Table 3.2.

Table 3.2: L298n Dual H-bridge Driver Specifications

Logical voltage: 5V Drive voltage: 5V-35V

Logical current: 0-36 mA Drive current: 2A (MAX single bridge)

Max power: 25W

Dimensions: 43 x 43 x 26 mm

Weight: 26 g

3.2.3) Power Source

The used power source is Lithium recharged batteries, 5v Li-ion Battery Pack because it is suitable

for the device specifications and can drive the motors, sensors and control unit.

https://www.google.ps/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjm996B_dbJAhXDPBoKHR2gAEcQjhwIBQ&url=http%3A%2F%2Fwww.alibaba.com%2Fshowroom%2F5v-li--ion-battery-pack.html&bvm=bv.109910813,d.bGg&psig=AFQjCNE9QYs3XfIWSbuichOpzW0w51Qq9g&ust=1450032151872773

20

3.2.4) Joystick

Used from the user to control the angles of the camera. It is shown in Figure 3.3.

Figure 3.3: Joystick

3.3) Mechanical Components

The project team use these mechanical components to accomplish the stabilizer model to achieve

its duty.

3.3.1) Connecting Pin

It is used to connect part three of the stabilizer with part two without friction. Its length is

determined to make the center of mass of the camera passes through the joints to decrease the

torque on the motor and make the system statically stable. It is shown in Figure 3.4.

Figure 3.4: Connecting Pin

21

3.3.2) Ball Bearing

NSK 6200 ZZCM NS7S: it is used to connect the rod from part (3) of the stabilizer with part (2)

with no friction to allow the motor to balance the camera about the x-axis. It is shown in figure

3.5.

Figure 3.5: NSK 6200 ZZCM NS7S Ball Bearing

Its specifications are shown below in Table 3.3. [7]

22

Table 3.3: NSK 6200 ZZCM NS7S Ball Bearing Specifications

Bearing Dimension

d [mm] 10

D [mm] 30

B [mm] 9

Shoulder Diameters

r [mm] 0.61

da [mm] min 0.5

max 0.63

Da [mm] max 0.984

Load Ratings Cr [lbs.] 1150

Car [lbs.] 538

Factor / 13.2

Limiting Speed (1000) RPM Grease 24

Oil 30

Bearing Weight lbs. 0.07

23

Chapter 4

Software and Controller Design

Now we will select the suitable controller and prepare the code for microcontroller to achieve the

purposes of this project.

4.1) The Basic Work Principle of the System

The project system has two modes, automatic and manual. This Figure shows the operation

sequences in every mode.

Figure 4.1: Basic work principle of the system

In automatic mode, the controller will maintain the stability of the camera at angles (0, 0)

for the roll and pitch angles. But in manual mode, the user can change the position of camera using

a joystick. The user can use a switch to turn the system ON/OFF and select the mode.

24

4.2) Controller Design

We select the Proportional-Integral-Derivative (PID) controller for some reasons: -

1) PID controller depends on three parameters (Kp, Ki, Kd), and we can change the values of these

parameters to get a suitable response (settling time, over shoot, steady state error). The output of

the controller is expressed as

0

()
() () ()

t

p i d

de t
u t K e t K e d K

dt
    (4.1)

Where: -

 Kp is proportional gain.

 Ki is integral gain.

 Kd is derivative gain.

 t is the time.

 u (t) is the controller output.

 e (t (is the error signal.

2) We can use this controller for this prototype, by change the value of PID parameters.

3) To use the PID controller we need only to know the effects of PID parameters on the response:

-

The effects of increasing PID controller parameters independently are shown in Table 4.1.

[8]

Table 4.1: Effects of Increasing PID Controller Parameters Independently

Parameter Rise time Overshoot Settling time Steady-state error Stability

Kp Decrease Increase Small change Decrease Degrade

Ki Decrease Increase Increase Eliminate Degrade

Kd Minor change Decrease Decrease No effect in theory Improve if Kd small

We built two PID controllers one for the roll and the other one for the pitch. To find the

suitable value for the PID parameters that achieve the specification of the project we use two ways:

using the simulating program MAPLE and the experimental trial and error way.

4.2.1) MAPLE Program Simulation

Maple allows the user to draw a model with its physical properties and design a controller to give

a response of the system. We use the frequency as an input and check if the controller achieves the

specification or not. So we draw the prototype with real dimension and weights and build a PID

controller for each motor, but we use a brush DC motor because there is no model for brushless

25

DC motor and we face a problem to build a model based on mathematical model for brushless DC

motor. The schematic diagrams are shown in Figure 4.2 and Figure 4.3

Figure 4.2: Blocks Model of the Stabilizer on Maple

Figure 4.3: 3D Model of the Stabilizer on Maple

.

26

To find the suitable parameters for the PID controller we add a torque on the base body

one as a disturbance in the pitch and the roll directions, the frequency of the torque is 10 Hz and

the amplitude is 1.5 radian.

Figure 4.4: Torque Disturbance in Pitch and Roll Direction

 Then we change the parameters values of the PID controller to have a suitable response. We

get the response in Figures 4.5 and 4.6 when the PID parameters of the PID Roll are (KP=20, KI=2,

KD=1) and the parameters of the PID Pitch are (KP=25, KI=4, KD=0.5).

Figure 4.5: Camera Angle Response about Pitch

27

Figure 4.6: Camera Angle Response about Roll

4.2.2) Matlab Simulation

After Simulation on Maple we went to build the model on Matlab. The system is multi-input multi-

output (MIMO), so we linearize the system.

Dynamic Model Linearization

The dynamic model is non-linear so we face a problem to design a controller for it, we use

a Tylor series to linearize the dynamic model at the operating point.

We use Matlab to linearize the model.

State-Space Model

After linearization of the system, we find the state space model for this sates variables.

The state-space model of the system is expressed as follows:

1 2

2 2

3 3

4 3

x

x

x

x

















 (2.4)

Where:

x1, x2, x3 and x4 are the state variables.

i is the angle of the body i.

i is the angular velocity of the body i.

28

The state space model of the system is expressed as follows:

x Ax Bu 
y Cx Du  (4.3)

Where:

x is the state vector.

y is the output vector.

u is the input vector.

A is the system matrix.

B is the input matrix.

C is the output matrix.

D is the feedforward matrix.

21

22

43

34

xx

x
x

xx

x





  
  
   
  
  

   

 (4.4)

Controller design

The state-space model is explaining that the system is a multi-input multi-output. we select

a regulator as a controller for the system to achieve the design requirements. And we select the

design requirements:

1, 2f Hz  

where:

 is the damping ratio.

f is the frequency.

We use Matlab to find the regulator matrix.

29

Simulink model

The Simulink model of the stabilizer is shown in Figure 4.7.

Figure 4.7: The Simulink model of the stabilizer

The disturbance which act on the model in both directions (Pitch and Roll) is shown in

Figure 4.8.

Figure 4.8: The disturbance which act on the model in both directions (Pitch and Roll)

30

The response of the system about pitch angle is shown in Figure 4.9.

Figure 4.9: The response of the system about pitch angle

And the response about roll angle is shown in Figure 4.10

Figure 4.10: The response of the system about pitch angle

Matlab code founded in appendix C.

4.2.3) Experimental Part

In this part we examine the validation of PID parameters, by using the prototype to record a video

then watch the video. And depending on video quality we decide any required changes on the

controller’s parameters by using the information in Table 4.1.

31

4.3) Brushless DC Motor Control

The project contains two of three-phase Brushless DC Motors (BLDC), to control these

motors, the controller gives every phase sine waves and at the same time the phase between waves

is 120 degrees as shown in Figure 4.11.

Figure 4.11: Input sine waves to control the BLDC Motor

The used controller (Arduino Mega 2560) has a PWM pins with 8bits timers. The range of

output for the PWM is from 0 to 255 level, so we build a sequences by PWM to control the BLDC

motor.

The Arduino code is in appendix D.

32

Chapter 5

Parts of the Stabilizer and Assembly

5.1) Parts

This section explains the parts of the stabilizer and their dimensions. All parts are shaped from

wood plate of 5mm thickness.

Note: all units which used in dimensions are in millimeter (mm).

1) Base and Cup of Camera Holder

This part is the base which hold the camera, also it is the cup of the camera to make the system

symmetrical. So the stabilizer contains two pieces of this part, the slots which are shown in the

part are designed to add the camera fixture easily It is shown in Figure 5.1.

Figure 5.1: Base and Cup

2) Left Side of Camera Holder

This part contains four holes of 3mm diameter each for screws to fix the motor with the part, and

two symmetrical holes to decrease the mass of the stabilizer. It is shown in Figure 5.2.

Figure 5.2: Left Side of Camera Holder

33

3) Right Side of Camera Holder

This part has a connecting pin to support the camera holder by connecting the pin with a ball

bearing in right support of the camera holder. It is shown in Figure 5.3.

Figure 5.3: Right Side of Camera Holder

4) Right Support of the Camera Holder

This part is used as a support of camera holder. It connects the camera holder with the main holder.

It contains a hole for the ball bearing. It is shown in Figure 5.4.

Figure 5.4: Right Support of the Camera Holder

34

5) Assistant Part for Right Support of the Camera Holder

Because the width of the ball bearing is 10 mm and the stabilizer is made of wood of 5mm width,

this part is added to assist the right support of the camera holder to contain the ball bearing

efficiently. It is shown in Figure 5.5.

Figure 5.5: Assistant Part for Right Support of the Camera Holder

6) Left Support of the Camera Holder

This part holds the motor which stabilizes the camera about Y-axis. It contains three holes of 2mm

diameter each for screws which are used to fix the motor and one pocket of 8mm diameter to

prevent the motor shaft from lock. It is shown in Figure 5.6.

Figure 5.6: Left Support of the Camera Holder

35

7) Primary Holder

This part holds the right and left supports of the camera holder. It is connected with the motor to

stabilize the camera about X-axis.as shown in Figure 5.7. The four holes of 3mm diameter are for

the screws to fix the motor, the other twelve holes of 10mm diameter and the slots are just to

remove mass from stabilizer while maintaining the model symmetry.

Figure 5.7: Primary Holder

8) Main Holder

This part holds the motor which stabilizes the camera about X-axis, also it holds the box which

contains the control card and drivers. It contains three holes of 2mm diameter for screws of the

motor. The other side contains the same pocket with 8mm diameter to prevent the motor shaft from

lock. And it contains three holes of 5mm diameter to fix it with the stabilizer handle with screws

.it is shown in Figure 5.8.

Figure 5.8: Main Holder

36

9) Handle of the Stabilizer

This part is used to handle the stabilizer, also it holds the joystick on it. it contains three holes of

5mm diameter to connect it with the main holder with screws. It is shown in Figure 5.9.

Figure 5.9: Handle of the Stabilizer

5.2) Assembly

This section explains the assembly of the part of the stabilizer.

A) Assembly Catalog of the Stabilizer

 The Figure 5.10 explains the exploded view of the stabilizer.

Figure 5.10: Exploded View of the Stabilizer

37

The numbered parts which are shown in Figure 5.10 are explained in Table 5.1.

Table 5.1: The Stabilizer Parts in Exploded View

1) Base of Camera Holder

2) Cup of Camera Holder

3) Left Side of Camera Holder

4) Right Side of Camera Holder

5) Right Support of the Camera Holder

6) Assistant Part for Right Support of the Camera Holder

7) Left Support of the Camera Holder

8) Primary Holder

9) Main Holder

10) Handle of the Stabilizer

11) NSK 6200 ZZCM NS7S Ball Bearing

12) Connecting Pin

13) BGM 4108-130 - 3-phase brushless DC motors - Roll

14) BGM 4108-130 - 3-phase brushless DC motors - Pitch

B) Camera Holder

This assembled part consists of base, cup, left side and right side of camera holder. After it is

assembled practically, it is shown in Figure 5.11.

Figure 5.11: Camera Holder

38

C) Primary Holder with Supports

This assembled part consists of right and left supports of the camera holder, assistant part for right

support of the camera holder and the primary holder. After it is assembled practically, it is shown

in Figure 5.12.

Figure 5.12: Primary Holder with Supports

D) The Stabilizer

This is the stabilizer after it has been assembled practically. It is shown in Figure 5.13.

Figure 5.13: The Stabilizer After it had been Assembled Practically

39

E) Wiring Diagram

Figure 5.14 shows the wiring diagram between the electronic components of the stabilizer.

Figure 5.14: Wiring Diagram of the Stabilizer

40

Chapter 6

Experimental Results

This chapter explains the experimental results which taken from the controller while recording a

video.

First we use a kalman filter to get the angels from the sensor, we get the following result.

And the Figure 6.1 explains the error on pitch angle when we use a kalman filter to get the angels.

Figure 6.1: The error on pitch angle when we use a kalman filter to get the angels.

We get a right angels but when we move the angels come with noise in high frequency so we use a

digital motion process algorithm that compatible with the sensor which depending on external

interrupt.

After we complete the assembly of the model with the controller and put the parameters of the PID

controller to be for roll (KP= 0.2, KI= 0.1, KD= 0.05) and for pitch (KP= 1, KI= 0.5, KD= 0.01),

then we check the stabilizer by walking in a flat way.

We have these results.

And the Figure 6.2 explains the error on pitch angle while recording the video.

41

Figure 6.2 The error on pitch angle while recording the video.

The Figure 6.3 explains the output of the controller on pitch angle while recording the video.

Figure 6.3: The controller output on pitch angle while recording the video.

And the Figure 6.4 explains the error on roll while recording the video.

42

Figure 6.4: The error on the roll angle while recording the video.

The Figure 6.5 explains controller output to the roll motor while recording the video.

Figure 6.5: The controller output on roll while recording the video.

43

Chapter 7

Conclusion and Future Work

7.1) Conclusion

The project aims to build and provide the market with a local product of the stabilizer, with lower

cost and good performance in compare with universal product.

 The stabilizer had been built with PID controller, and we make experiments for the stabilizer

and the results are good but it is lower than our expectations.

7.2) Future Work

1) Develop the methodology of controller programming.

2) Develop the project to be three-axes stabilizer.

44

Appendixes

Appendix A: The total rotation matrix between the error frame (e) and the 2-ACS base frame

(0).

   
11 12 13

1 3

 3 21 22 23

31 32 33

r r r

R R r r r

r r r



 
 



 






e

    11 3 3 2 3 3cos()cos() cos sin sin()  ε ε εr

  12 2 3sin sin() ε r

    13 3 3 2 3 3sin()cos() cos cos sin()  ε ε ε r

                 21 2 2 3 3 2 3 2 3 3 2cos sin sin cos sin sin() cos cos sin sin     ε ε ε ε ε r

      22 2 2 3 2 2cos()cos() cos sin sin  ε ε r

                  23 3 2 3 3 2 2 2 3 3 2sin sin sin cos cos sin() cos cos cos sin      ε ε ε ε εr

                  31 2 3 2 3 2 3 2 2 3 3sin sin sin cos cos sin() cos cos cos sin     ε ε ε ε εr

      32 2 2 2 3 2cos()sin() cos cos sin  ε ε r

 33 2 3 3 2 2 2 3 3 2 2cos()cos()cos()cos() cos()sin()sin() cos() sin()sin()           r

45

Appendix B: Dynamics Matrices

1) D matrix = [D1; D2; D3] (Inertia Matrix)

       
       

2 2 2 2 2 2

2 2

1

2 2 2 2

0.5 0.5

 0.

[

5 0.5 , 0, 0]

yy zy

yz zz

I cos cos I cos sin

I sin cos I sin sin

D    

   









       
               

               

2 2 2 2 2 2 2 2 2 2

3 3 3 2 3 3 2 3 3 2 3 3 2 3

3 3 3 3 2 3 3 2

2

3 3 3

0,0.25 0.25

 0.5 0.5 0.5

[

0

xx yx zx

m b sin b sin m b cos b cos

m h cos cos h cos cos m h sin cos h sin cos

sin sin I sin sin cos I sin cos cos

D

I

   

       

       



 

  





             
             

               

2 3 3 3 2 3 2 3 3

2 3 3 2 3 3 2 3 3

3 2 3 2 3 3 2 3 3 2

.5 0.5

0.5 0.5

0.5 0.5 , 0]

xy yy

zy xz

yz zz

sin cos sin I sin cos sin cos I

sin cos cos cos I I cos cos sin

I cos cos sin cos I cos cos cos cos

      

      

       



 

 

     
               
   

3 3 3 3 3 3 2

3 2 3 3 2 3 2 3 3 2

3 3

3 3 3

 [0,0,

]

D cos h m h sin sin

sin sin h sin sin sin cos h sin cos
h m

cos h cos

  

       

 







 
 
 



46

2) H vector = [H1; H2; H3] (Coriolis Vector)

       
       
       

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

 0.5

1 0.5 0.5

0.5

yy zy

zy yz

yz zz

cos I sin cos cos I

H sin sin I sin sin I

cos cos I sin I cos

   

   

   

  
   
 
   

           
                 

       

2_ 2_ 3 2 3 3 3 3 2 3

3 2 3 3 3 2 3 3 2 3 3 2

3 3 3 2 2 3

 2 0.25 0.25

0.25 0.5 0.25

0.25 0.25

[(

dot dot yx zx

xy yy zy

zy zy

H I cos cos sin I cos sin sin

I cos cos sin I sin cos cos cos I cos sin

I cos cos cos cos I cos

       

        

    

  

  

             
             
               

   

3 2 3 3 3 2 2

3 3 2 3 2 2 3 3 3

2 2 3 3 3 3 3 2 3 2

3_ 2_ 2 2

 0.25

0.25 0.25

0.25 0.5

 2

)

(

zy

xz yz

yz zz

dot dot

sin I cos cos cos cos

sin cos sin I cos cos cos cos I

sin sin cos cos I cos cos cos I sin

cos cos co

    

      

       

   



 

 

                 
                 
         

3 3 3 3 3 3 2 2 3 3 3 3 3 3 3

3 2 3 3 3 2 3 3 3 3 3 2

3 3 3 2 3 2 3

 2

0.5 0.5 0.5

0.5 0.5

xx

yx yx zx

zx xy

s h h m sin cos sin sin h h m sin I sin cos

I sin sin sin I sin cos cos I sin sin cos

I cos cos cos I sin sin sin

       

        

    

 

  

         
                     
                     

3 3 2 3 3

3 2 2 3 3 3 3 2 2 3 3 2 3

3 3 2 3 2 3 2 3 3 3 2 2 3 3

0.5

 0.5 3

0.5])

xy

yy zy xz

xz yz zz

I sin cos cos

I sin sin cos sin I cos cos sin sin cos cos cos I

sin sin cos I sin cos cos I sin cos cos cos I sin

   

          

          



  

  

               
               
           

2 2 3 3 3 3 3 3 2 2 3 3 3 3

3 3 3 3 2 3 3 3 2 3 3

3 3 3 2 3 3 3 2 3

2_ 2_

0.5 0.25 0.25

0.25 0.25 0.25

3

xx yx yx

zx zx xy

dot dot

cos cos cos h h m sin cos sin sin h h m sin

I sin cos I sin sin sin I sin cos cos

I sin sin cos I cos cos cos I s

H

       

       

     
 



  

  



     
                     

                   
     

2 3 3

3 2 3 3 3 2 2 3 3 2 2 3

3 3 2 3 3 3 2 3 2 3 2 3 3

3 2 2 3

0.25 0.5 0.5 3 3

0.25 0.25 0.5

0.5

xy yy

xz xz yz

zz

in sin sin

I sin cos cos I sin sin cos sin I zycos cos sin sin

cos cos cos I sin sin cos I sin cos cos I sin

cos cos cos I si

  

          

         

  

  

  

  

                    
3

3_ 3_ 3 3 2 2 3 3 3 2 2 3 3 3 3 3 30.5 2 2 2dot dot

n

h sin sin sin cos h sin cos cos cos h cos sin m h



            

  
  
  
  
  
  
  

  
  

  

3) G vector = [G1; G2; G3] (Gravitational Vector)

47

1 0G  ;

              

           
       

 

2 2 3 2 3_ 2_ 2 2_ 2 2

3 2 3_ 2_ 2 2_

2 2 2

3 2 3_ 2_

 9.81 9.81 9.81

 9.81 9.81
0.5

9.81

imu imu imu

imu imu imu

imu imu

G m sin sin sin cos cos sin b sin

sin cos sin cos sin sin
m b cos

cos cos cos cos

      

     


   

 
  
 

   






                  

                        

 

3 3 3 2 3_ 2_ 2 2_ 3 3 2 2

3 3 2 3_ 2_ 2 2_ 3 2 3_ 2_ 3 3 2

3 3

 9.81. 9.81 9.81

 9.81. s 9.81 9.81

 9.81.

imu imu imu

imu imu imu imu imu

G m sin sin sin cos cos sin h cos cos sin

m sin cos in cos sin sin cos cos cos cos h sin cos

m sin

        

           



     

  

                

                        

 

2 3_ 2_ 2 2_ 3 3 2

3 3 2 3_ 2_ 2 2_ 3 2 3_ 2_ 3 2 3

3 3 3_

 9.81. 9.81

 9.81. 9.81. 9.81

 9.81.

imu imu imu

imu imu imu imu imu

sin sin cos cos sin h cos cos

m sin cos sin cos sin sin cos cos cos cos h sin cos

m cos sin

      

           

 

 

  

              

                

           

2_ 3 3_ 2_ 3 3

3 3 2 3_ 2_ 2 2_ 3 3 2

3 3 2 3_ 2_ 2 2_

 9.81.

+ 9.81 9.81 9.81

 9.81. 9.81. 9.81.

imu imu imu imu

imu imu imu

imu imu imu

cos sin cos cos h cos

m sin sin sin cos cos sin h sin sin

m sin cos sin cos sin sin cos

    

       

     



  

               3 2 3_ 2_ 3 3 2 imu imucos cos cos h sin cos     

48

Appendix C: Matlab Code

%d1_0: The distance vector between the coordinate origins of base frame (0) and frame (1).
function result = d1_0(l1,h1)
result=[l1;0; h1];

%d2_0: The distance vector between the coordinate origins of base frame (0) and frame (2).
function result=d2_0(l1,l2,b2,h1,theta2);
result=[l2+l1;-0.5 *cos(theta2) *b2;-0.5 *sin(theta2) *b2 + h1];

%d2_1: The distance vector between the coordinate origins of frame (1) and frame (2).
function result=d2_1(theta2,l2,b2)
result=[l2;-0.5*b2*cos(theta2);-0.5*b2*sin(theta2)];

%d3_0: The distance vector between the coordinate origins of base frame (0) and frame (3).
function result=d3_0(theta2,theta3,l1,h1,l2,h3)
result=[l2-l1+h3*sin(theta3);-

h3*cos(theta3)*sin(theta2);h1+h3*cos(theta2)*cos(theta3)];

%d3_1: The distance vector between the coordinate origins of frame (1) and frame (3).
function result=d3_1(theta2,theta3,l2,h3)
result=[l2 + h3*sin(theta3)

;-h3*cos(theta3)*sin(theta2);h3*cos(theta2)*cos(theta3)];

%d3_2: The distance vector between the coordinate origins of frame (2) and frame (3).
function result=d3_2(theta3,h3 ,b2)
result=[h3*sin(theta3);0.5*b2;h3*cos(theta3)];

%I1:mass moment matrix for body one about center of mass .
function result=I1(I1xx,I1xy,I1xz,I1yx,I1yy,I1yz,I1zx,I1zy,I1zz);
result=[I1xx I1xy I1xz;I1yx I1yy I1yz;I1zx I1zy I1zz];

%I2: mass moment matrix for body two about center of mass .
function result=I2(I2xx,I2xy,I2xz,I2yx,I2yy,I2yz,I2zx,I2zy,I2zz);
result=[I2xx I2xy I2xz;I2yx I2yy I2yz;I2zx I2zy I2zz];

%I3: mass moment matrix for body three about center of mass .
function result=I3(I3xx,I3xy,I3xz,I3yx,I3yy,I3yz,I3zx,I3zy,I3zz);
result=[I3xx I3xy I3xz;I3yx I3yy I3yz;I3zx I3zy I3zz];

%%% jacobian matrices

%J1 for d1_0
function result=J1();
result=[0 0 0;0 0 0;0 0 0];

%J2 for d2_0
function result=J2(theta2,b2);

49

result=[0 0 0;0 0.5* sin(theta2)* b2 0;0 -0.5* cos(theta2)* b2 0];

%J3 for d3_0
function result=J3(theta3,h3,theta2);
result=[0 0 cos(theta3)* h3;0 -cos(theta3) *cos(theta2) *h3 sin(theta2)

*sin(theta3) *h3;0 -sin(theta2) *cos(theta3)* h3 -sin(theta3)* cos(theta2)

*h3]

%%% mass moment matrix from the frame zero to bodies frame

%I0_1:
function result=I0_1(I1xx,I1xy,I1xz,I1yx,I1yy,I1yz,I1zx,I1zy,I1zz);
result=[I1xx I1xy I1xz;I1yx I1yy I1yz;I1zx I1zy I1zz];

%I0_2:
function result=I0_2(I2xx,I2xy,I2xz,I2yx,I2yy,I2yz,I2zx,I2zy,I2zz,theta2);
result= [I2xx , I2xy *cos(conj(theta2)) - I2xz* sin(conj(theta2)) , I2xy

*sin(conj(theta2)) + I2xz *cos(conj(theta2)) ; cos(theta2) *I2yx -

sin(theta2)* I2zx ,(cos(theta2)* I2yy - sin(theta2)* I2zy) *cos(conj(theta2))

- (cos(theta2)* I2yz - sin(theta2)* I2zz) *sin(conj(theta2)) , (cos(theta2)*

I2yy - sin(theta2)* I2zy) *sin(conj(theta2)) + (cos(theta2) *I2yz -

sin(theta2) *I2zz) *cos(conj(theta2)); sin(theta2) *I2yx + cos(theta2)* I2zx

, (sin(theta2)* I2yy + cos(theta2)* I2zy) *cos(conj(theta2)) - (sin(theta2)*

I2yz + cos(theta2) *I2zz) *sin(conj(theta2)) , (sin(theta2)* I2yy +

cos(theta2)* I2zy) *sin(conj(theta2)) + (sin(theta2)* I2yz + cos(theta2)

I2zz) cos(conj(theta2))]

%I0_3:
function

result=I0_3(I3xx,I3xy,I3xz,I3yx,I3yy,I3yz,I3zx,I3zy,I3zz,theta2,theta3);
result= [(cos(conj(theta3))* I3xx + z2 *I3yx - z1* I3zx) *cos(theta3)+ z4

*sin(theta3) *sin(theta2) - z3 *sin(theta3) *cos(theta2) , z4 *cos(theta2) +

z3 *sin(theta2) ,(cos(conj(theta3))* I3xx + z2* I3yx - z1 *I3zx)

*sin(theta3)- z4 *sin(theta2) *cos(theta3) + z3 *cos(theta3)* cos(theta2)

;(cos(conj(theta2))* I3yx + sin(conj(theta2))*I3zx)* cos(theta3)+ z6

sin(theta3) sin(theta2) - z5 *sin(theta3) *cos(theta2) , z6* cos(theta2) +

z5 *sin(theta2) , (cos(conj(theta2))* I3yx + sin(conj(theta2))* I3zx)

sin(theta3) - z6 sin(theta2) *cos(theta3) + z5*cos(theta3)

cos(theta2);(sin(conj(theta3)) I3xx - z8 *I3yx + z7* I3zx) *cos(theta3) +

z10 *sin(theta3) *sin(theta2) - z9 *sin(theta3)* cos(theta2) , z10

cos(theta2) + z9 sin(theta2) ,(sin(conj(theta3)) *I3xx - z8 *I3yx + z7*

I3zx) *sin(theta3)- z10* sin(theta2) *cos(theta3) + z9*cos(theta3)*

cos(theta2)]

%r1: rotation matrix for body one
function result=r1();
result=[0 0 0;0 0 0;0 0 0]

%r2: rotation matrix for body two
function result=r2();
result=[0 0 0;1 0 0;0 0 0]

%r3: rotation matrix for body three
function result=r3();
result=[0 0 0;0 0 0;0 1 0]

%R1_0: rotation matrix for frame one refer to frame zero

50

function result =R1_0();
result=[1 0 0;0 1 0;0 0 1];

%R2_1: rotation matrix for frame two refer to frame one
function result=R2_1(theta2)
result=[1 0 0;0 cos(theta2) -sin(theta2);0 sin(theta2) cos(theta2)];

%R3_2: rotation matrix for frame three refer to frame two
function result=R3_2(theta3)
result=[cos(theta3) 0 sin(theta3);0 1 0;-sin(theta3) 0 cos(theta3)];

%R3_0: rotation matrix for frame three refer to frame zero
function result0=R3_0(theta2,theta3)
result1=[cos(theta3),0,sin(theta3)];
result2=[sin(theta2)*sin(theta3), cos(theta2), -cos(theta3)*sin(theta2)];
result3=[-cos(theta2)*sin(theta3), sin(theta2), cos(theta2)*cos(theta3)];
result0=[result1;result2;result3];

%%% dynamic model

%D_matrix : inertia type matrix
function result=Dmatrix(theta2,theta3, I2yy, I2yz , I2zy , I2zz, I3xx,

I3xy ,I3xz , I3yx , I3yy, I3yz , I3zx, I3zy , I3zz, m2, m3,b2,h3)
t1=(J1()'*m1*J1())+(0.5*r1()'*I0_1(I1xx,I1xy,I1xz,I1yx,I1yy,I1yz,I1zx,I1zy,I1

zz)*r1())
t2=(J2(theta2,b2)'*m2*J2(theta2,b2))+(0.5*r2()'*I0_2(I2xx,I2xy,I2xz,I2yx,I2yy

,I2yz,I2zx,I2zy,I2zz,theta2)*r2())
t3=(J3(theta3,h3,theta2)'*m3*J3(theta3,h3,theta2))+(0.5*r3()'*I0_3(I3xx,I3xy,

I3xz,I3yx,I3yy,I3yz,I3zx,I3zy,I3zz,theta2,theta3)*r3())
result=t1+t2+t3;

% D_inverse: inverse matrix for a inertia type matrix
function result=invD(theta2,theta3, I2yy, I2yz , I2zy , I2zz, I3xx, I3xy

,I3xz , I3yx , I3yy, I3yz , I3zx, I3zy , I3zz, m2, m3,b2,h3);
result1= [1/(0.5* cos(theta2)* cos(theta2)* I2yy-0.5*sin(theta2)

cos(theta2) I2zy-0.5*cos(theta2)* sin(theta2) *I2yz+0.5*sin(theta2)*

sin(theta2) *I2zz),0,0];
result2=[0 ,1/(0.25*sin(theta2)*sin(theta2)*b2*b2*m2+0.25* cos(theta2)*

cos(theta2) * b2 * b2* m2 + cos(theta2)*cos(theta2)* cos(theta3) *

cos(theta3)* h3* h3 * m3+cos(theta3) *cos(theta3)* sin(theta2)* sin(theta2) *

h3 * h3 *m3 + 0.5* I3xx *sin(theta3)*sin(theta3)-0.5* I3yx *cos(theta3)

*sin(theta2) *sin(theta3)+0.5*I3zx* cos(theta2) *cos(theta3)* sin(theta3)-

0.5*I3xy*cos(theta3)*sin(theta2)*sin(theta3)+0.5*

I3yy*cos(theta3)*cos(theta3)*sin(theta2)*sin(theta2)-0.5* I3zy* cos(theta2)

*cos(theta3)*cos(theta3)*sin(theta2)+0.5* sin(theta3) *cos(theta3)

*cos(theta2)*I3xz-0.5*cos(theta3) *cos(theta3)*sin(theta2)*cos(theta2)*

I3yz+0.5*cos(theta2) *cos(theta2)*cos(theta3)*cos(theta3) *I3zz),0];
result3=[0,0,1/(h3*h3*(sin(theta3)

*(sin(theta3)*cos(theta2)*cos(theta2)+sin(theta3)* sin(theta3)* sin(theta2)

*sin(theta2) + cos(theta3) *cos(theta3))*m3))];
result=[result1;result2;result3];

51

%H_Matrix : Coriolis matrix
function result=Hmatrix(theta2,theta2_dot,theta3, theta3_dot)

v=Dmatrix(theta2,theta3, I2yy, I2yz , I2zy , I2zz, I3xx, I3xy ,I3xz ,

I3yx , I3yy, I3yz , I3zx, I3zy , I3zz, m2, m3,b2,h3)
x=[0;theta2;theta3]
c=[0;theta2_dot;theta3_dot]

for i=1:1:3
for j=1:1:3
 for k=1:1:3
 r1=(diff(v(i,j),x(k,1))-(0.5*diff(v(j,k),x(i,1))))*c(j,1)*c(k,1)
 h(k)=sum(r1);
 end
 Hnn(j)=sum(h);
end
y(i)=sum(Hnn)
end
result=[y(1);y(2);y(3)]

%G_matrix: gravitational matrix
function result=Gvector(theta2,theta3,theta2_imu,theta3_imu)

grav0=(R3_0(theta2,theta3)*[-

cos(theta2_imu)*sin(theta3_imu);sin(theta2_imu);cos(theta2_imu)*cos(theta3_im

u)]*9.81).';

grav1=m1*grav0*J1();

grav2=m2*grav0*J2(theta2,b2);

grav3=m3*grav0*J3(theta3,h3,theta2);

grav=[grav1(1,1)+grav1(1,2)+grav1(1,3);grav2(1,1)+grav2(1,2)+grav2(1,3);grav3

(1,1)+grav3(1,2)+grav3(1,3)];

52

%%% linearization code

%Parameters: Variables which used in the model.
global l2 b2 h3 I3xx I3xy I3xz I3yx I3yy I3yz I3zx I3zy I3zz I2xx I2xy

I2xz I2yx I2yy I2yz I2zx I2zy I2zz m2 m3
l2=0.045
b2=0.082
h3=0.024
I3xx=0.3
I3xy=0
I3xz=0.04
I3yx=0
I3yy=0
I3yz=0
I3zx=0.2
I3zy=0
I3zz=0.5
I2xx=0
I2xy=0
I2xz=0
I2yx=0
I2yy=0.6
I2yz=0.2
I2zx=0
I2zy=0.3
I2zz=0.2
m2=0.03572
m3=0.02405

v=invD(theta2,theta3, I2yy, I2yz , I2zy , I2zz, I3xx, I3xy ,I3xz , I3yx

, I3yy, I3yz , I3zx, I3zy , I3zz, m2, m3,b2,h3)
z=Gvector(theta2,theta3,theta2_imu,theta3_imu)
c=Hmatrix(theta2,theta2_dot,theta3, theta3_dot)
t=[0;t2;t3]
b=v*(t-z-c)
%%%%to find matrix A
A21=diff(b(2),theta2)
A22=diff(b(2),theta2_dot)
A23=diff(b(2),theta3)
A24=diff(b(2),theta3_dot)
A41=diff(b(3),theta2)
A42=diff(b(3),theta2_dot)
A43=diff(b(3),theta3)
A44=diff(b(3),theta3_dot)

theta3_imu=0
theta2_imu=0
theta2=0
theta3=0
theta2_dot=0
theta3_dot=0

%%%to find matrix B
b21=diff(b(2),t2)
b22=diff(b(2),t3)
b41=diff(b(3),t2)
b42=diff(b(3),t3)

53

%%%state space model

A=[0 1 0 0;0.1149 0 -0.0276 0;0 0 0 1;0 0 0 0]
B=[0 0;3.998 0;0 0;0 500]
C=[1 0 0 0;0 0 1 0]
 D=[0 0;0 0]
 %%% design requirements zeta=1 f=2 w=2*pi*f

 %%% to find the regulator matrix
 P=[-80 -80.01 -80.02 -80.03]
 K=place(A,B,P)

54

Appendix D: Arduino code

1) PID controller:

double pid_controller_roll (double error, double error_previous)

{

double result1=0;

 ///******* calculat the time ******

delta_time = (micros() - last_process) / 1000000.0;

last_process = micros();

//delta_time = 0.000001;

 //*********** PID *****

 KP = (P * error);

 KI += I * error * delta_time;

 KD = ((error - error_previous) / delta_time)* D;

 result1 = KP + KD + KI;

 return result1;

}

double pid_controller_pitch(double error2 , double error_previous2)

{

 double result=0;

 ///******* calculat the time ******

delta_time2 = (micros() - last_process2) / 1000000.0;

last_process2 = micros();

//delta_time = 0.000001;

 //*********** PID *****

 KP2 = (P2 * error2);

 KI2 += I2 * error2 * delta_time2;

 KD2 = ((error2 - error_previous2) / delta_time2) * D2;

 result = KP2 + KD2+ KI2;

 return result;

}

55

2) Control Code of Brushless DC Motor

void move_motor_roll(int sign_roll, int step_roll) {

 for(int i=0;i<step_roll;i++) {

 if(direction_roll * sign_roll < 0) {

 direction_a_roll = direction_a_roll * -1;

 direction_b_roll = direction_b_roll * -1;

 direction_c_roll = direction_c_roll * -1;

 direction_roll = direction_roll * -1;

 }

 if(position_a_roll + direction_a_roll > 255 | position_a_roll + direction_a_roll < 0)

direction_a_roll = direction_a_roll * -1;

 if(position_b_roll + direction_b_roll > 255 | position_b_roll + direction_b_roll < 0)

direction_b_roll = direction_b_roll * -1;

 if(position_c_roll + direction_c_roll > 255 | position_c_roll + direction_b_roll< 0)

direction_c_roll = direction_c_roll * -1;

 position_a_roll = position_a_roll + direction_a_roll;

 position_b_roll= position_b_roll + direction_b_roll;

 position_c_roll = position_c_roll + direction_c_roll;

 p1 = SinusValues[position_a_roll];

 p2 = SinusValues[position_b_roll];

 p3 = SinusValues[position_c_roll];

 analogWrite(ph1,p1);

 analogWrite(ph2,p2);

 analogWrite(ph3,p3);

 //delay(1);

 }

}

56

void move_motor_pitch(int sign_pitch, int step_pitch) {

 for(int i=0;i<step_pitch;i++) {

 if(direction_pitch * sign_pitch < 0) {

 direction_a_pitch = direction_a_pitch * -1;

 direction_b_pitch = direction_b_pitch* -1;

 direction_c_pitch = direction_c_pitch * -1;

 direction_pitch = direction_pitch* -1;

 }

 if(position_a_pitch + direction_a_pitch > 255 | position_a_pitch + direction_a_pitch < 0)

direction_a_pitch = direction_a_pitch * -1;

 if(position_b_pitch + direction_b_pitch > 255 | position_b_pitch + direction_b_pitch < 0)

direction_b_pitch = direction_b_pitch* -1;

 if(position_c_pitch + direction_c_pitch > 255 | position_c_pitch+ direction_b_pitch < 0)

direction_c_pitch = direction_c_pitch * -1;

 position_a_pitch = position_a_pitch + direction_a_pitch;

 position_b_pitch = position_b_pitch + direction_b_pitch;

 position_c_pitch = position_c_pitch + direction_c_pitch;

 p4 = SinusValues2[position_a_pitch];

 p5 = SinusValues2[position_b_pitch];

 p6 = SinusValues2[position_c_pitch];

 analogWrite(ph4,p4);

 analogWrite(ph5,p5);

 analogWrite(ph6,p6);

 }

}

57

3) The Main Page

#define ph1 5

#define ph2 6

#define ph3 7

#define ph4 11

#define ph5 10

#define ph6 9

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 #include "Wire.h"

#endif

MPU6050 mpu;

// MPU control/status vars

bool dmpReady = false; // set true if DMP init was successful

uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU

uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)

uint16_t packetSize; // expected DMP packet size (default is 42 bytes)

uint16_t fifoCount; // count of all bytes currently in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

Quaternion q; // [w, x, y, z] quaternion container

VectorInt16 aa; // [x, y, z] accel sensor measurements

VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements

VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements

VectorFloat gravity; // [x, y, z] gravity vector

float euler[3]; // [psi, theta, phi] Euler angle container

float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo

uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };

********* INTERRUPT DETECTION ROUTINE ********

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high

void dmpDataReady() {

 mpuInterrupt = true;

}

uint8_t i2cData[14]; // Buffer for I2C data

const int SinusValues[256];

58

void calcSinusArray(uint8_t maxPWM, uint8_t *array)

{

 for(int i=0; i<N_SIN; i++)

 {

array[i] = 128 -sin(2.0 * i / N_SIN * 3.14159265) * maxPWM / 2.0;

 }

}

// ********* Motor roll *****************

 static uint32_t position_a_roll = 0;

static uint32_t position_b_roll = 170;

static uint32_t position_c_roll = 170;

int direction_a_roll = 1;

int direction_b_roll = 1;

int direction_c_roll = -1;

int direction_roll = 1;

int p1,p2,p3;

//********** Motor pitch******************

static uint32_t position_a_pitch = 0;

static uint32_t position_b_pitch = 170;

static uint32_t position_c_pitch = 170;

int direction_a_pitch = 1;

int direction_b_pitch = 1;

int direction_c_pitch= -1;

int direction_pitch = 1;

int p4,p5,p6;

//************roll pid parameters ***************

double setpoint = 0;

double current_position = 0;

double output = 0;

long last_process = 0;

float delta_time = 0;

double error = 0;

double error_previous = 0;

double

P = 1.5,

I = 0.0005,

D = 0.002;

double

59

KP = 0,

KI = 0,

KD = 0;

double result1=0;

//************ pitch pid parameters ******************

//VARIABELS

double setpoint2 =0;

double current_position2 = 0;

double output2 = 0;

long last_process2 = 0;

float delta_time2 = 0;

double error2 = 0;

double error_previous2 = 0;

double

P2 = 0.5,

I2 = 1,

D2 = 1;

double

KP2 = 0,

KI2 = 0,

KD2 = 0;

void setup() {

void setup() {

 // join I2C bus (I2Cdev library doesn't do this automatically)

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 Wire.begin();

 TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)

 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

 Fastwire::setup(400, true);

 #endif

 Serial.begin(115200);

 while (!Serial); // wait for Leonardo enumeration, others continue immediately

 // initialize device

 Serial.println(F("Initializing I2C devices..."));

 mpu.initialize();

60

 // verify connection

 Serial.println(F("Testing device connections..."));

 Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050

connection failed"));

 // wait for ready

 Serial.println(F("\nSend any character to begin DMP programming and demo: "));

 while (Serial.available() && Serial.read()); // empty buffer

 while (!Serial.available()); // wait for data

 while (Serial.available() && Serial.read()); // empty buffer again

 // load and configure the DMP

 Serial.println(F("Initializing DMP..."));

 devStatus = mpu.dmpInitialize();

 // supply your own gyro offsets here, scaled for min sensitivity

 mpu.setXGyroOffset(220);

 mpu.setYGyroOffset(76);

 mpu.setZGyroOffset(-85);

 mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

 // make sure it worked (returns 0 if so)

 if (devStatus == 0) {

 // turn on the DMP, now that it's ready

 Serial.println(F("Enabling DMP..."));

 mpu.setDMPEnabled(true);

 // enable Arduino interrupt detection

 Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));

 attachInterrupt(0, dmpDataReady, RISING);

 mpuIntStatus = mpu.getIntStatus();

 // set our DMP Ready flag so the main loop() function knows it's okay to use it

 Serial.println(F("DMP ready! Waiting for first interrupt..."));

 dmpReady = true;

 packetSize = mpu.dmpGetFIFOPacketSize();

 }

 pinMode(ph1, OUTPUT);

 pinMode(ph2, OUTPUT);

 pinMode(ph3, OUTPUT);

 pinMode(ph4, OUTPUT);

 pinMode(ph5, OUTPUT);

61

 pinMode(ph6, OUTPUT);

 Serial.begin(115200);

setup_MPU();

setpoint = 0;

setpoint2 = 0;

calcSinusArray(255, SinusValues);

}

void loop() {

if (!dmpReady) return;

while (!mpuInterrupt && fifoCount < packetSize) {

 current_position = ypr[1] * 180/M_PI;

 current_position2 = ypr[2] * 180/M_PI;

 //****** error ******

 error = setpoint - current_position;

 error2 = setpoint2 - current_position2;

 //********** pid controller *******

output = pid_controller_roll(error, error_previous);

output2 = pid_controller_pitch(error2, error_previous2);

error_previous = error;

error_previous2 = error2;

if (current_position != 0){

if(output > 0){

 move_motor_roll(1, abs(output)) ;

 }

 else {

move_motor_roll(-1, abs(output)) ;

 }

}

if (current_position2 != 0){

if(output2 > 0){

62

 move_motor_pitch(1, abs(output2)) ;

 }

 else {

 move_motor_pitch(-1, abs(output2)) ;

 }

}

 // reset interrupt flag and get INT_STATUS byte

 mpuInterrupt = false;

 mpuIntStatus = mpu.getIntStatus();

 // get current FIFO count

 fifoCount = mpu.getFIFOCount();

 // check for overflow (this should never happen unless our code is too inefficient)

 if ((mpuIntStatus & 0x10) || fifoCount == 1024) {

 // reset so we can continue cleanly

 mpu.resetFIFO();

 Serial.println(F("FIFO overflow!"));

 // otherwise, check for DMP data ready interrupt (this should happen frequently)

 } else if (mpuIntStatus & 0x02) {

 // wait for correct available data length, should be a VERY short wait

 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

 // read a packet from FIFO

 mpu.getFIFOBytes(fifoBuffer, packetSize);

 // track FIFO count here in case there is > 1 packet available

 // (this lets us immediately read more without waiting for an interrupt)

 fifoCount -= packetSize;

 #ifdef OUTPUT_READABLE_YAWPITCHROLL

 // display Euler angles in degrees

 mpu.dmpGetQuaternion(&q, fifoBuffer);

 mpu.dmpGetGravity(&gravity, &q);

 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

 #endif

}

}

63

References

[1] Wikipedia, San Diego, California, USA,2014. Available at

 https://en.wikipedia.org/wiki/Gimbal_(company). Last visit date 06/07/2016.

[2] Dys, Beijing exhibition center,China,2016. Available at

http://www.dys.hk/ProductShow.asp?ID=19 . Last visit at 06/07/2016.

[3] Theory of Machines and Mechanisms , Joseph Edward Shigley and John Joseph Iicker,Jr,

McGraw-Hill Book Company,Auckland Bogota Guatmala Hamburg Lisbon, 1981.

[4] R N Jazar. Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer,

2007.

[5] Robot Modeling and Control, Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, JOHN

WILEY & SONS, INC,New York,1985.

[6] Arduino web site, https://store.arduino.cc/ . Last visit at 06/07/2016.

[7] NSK Company, Table of Contents Ball Bearings,pp 11. Available at www.bearing.co.il/1-

AM7B.pdf . Last visit at 06/07/2016.

[8] Wikipedia. Available at https://en.wikipedia.org/wiki/PID_controller . Last visit at

06/07/2016

https://en.wikipedia.org/wiki/Gimbal_(company)
http://www.dys.hk/ProductShow.asp?ID=19
https://store.arduino.cc/
http://www.bearing.co.il/1-AM7B.pdf
http://www.bearing.co.il/1-AM7B.pdf
https://en.wikipedia.org/wiki/PID_controller

	Introduction.pdf
	Two Axes Camera Stabilizer - Project.pdf

