

Chapter 4

Structural Analysis \& Design

4.1 Introduction.
4.2 Factored Loads.
4.3 Slabs Thickness calculation.
4.4 Load Calculation.
4.5 Design of Topping.
4.6 Design of Rib (R1-(09)).
4.7 Design of Beam (B2-(04)).
4.8 Design of Column (C32)
4.9 Design of Stair
4.10 Design of Basement Wall
4.11 Design of Isolated Footing (F5-C50)

4.12Design of flat slab
4.13Design of Column (C44)
4.14 Design of Shear Wall
4.15Design of Mat Foundation
4.16 Design of Spherical Shell

4.1 Introduction:

Many structures are built of reinforced concrete: bridges, buildings, retaining walls, tunnels, and others.

Reinforced concrete is logical union of two materials: plain concrete, which possesses high compressive strength but little tensile strength, and steel bars embedded in the concrete, which can provide the needed strength in tension.

4.1.1 Design method and requirements:

The design strength provided by a member is calculated in accordance with the requirements and assumptions of ACI_code (318M_14).

4.1.2 Strength design method:

In ultimate strength design method, the service loads are increased by factors to obtain the load at which failure is considered to be occur.

This load called factored load or factored service load. The structure or structural element is then proportioned such that the strength is reached when factored load is acting. The computation of this strength takes into account the nonlinear stress-strain behavior of concrete.

The strength design method is expressed by the following,
Strength provided \geq strength required to carry factored loads.

4.2 Factored loads:-

The factored loads for members in our project are determined by:
$W_{u}=1.4 \mathrm{D}_{\mathrm{L}} \mathrm{ACl}$-code-318-14(9.2.1).
$W_{u}=1.2 D_{L}+1.6 L_{L}$ ACI-code-318-14(9.2.2).

Materials:-

Concrete B300, $\quad \mathrm{Fc}^{\prime}=0.8 * 30=24 \mathrm{~N} / \mathrm{mm}^{2}=24 \mathrm{Mpa}$
Reinforcement Steel, fy $=420 \mathrm{~N} / \mathrm{mm}^{2}=420 \mathrm{Mpa}$
$f_{y t}=420 \mathrm{Mpa}$, will be used in design and calculations.

4.3Slabs Thickness calculation:-

According to ACl -Code-318-14 table 9.5(a), the minimum thickness of non- prestressed beams or one way, slabs unless deflections are computed for one end continuous for one-way rib slabb given as following:

Fig (4-1):Rib(R2-(17)) at the First floor

Fig (4-2): spans of rib (R2-(17))

Hminfor two end continuous beam
$H \min =L / 21$ longest two end continuous supported is 6.78 m

Hmin $=6780 / 21=322.85 \mathrm{~mm}$

For First floor slab, use thickness of slab 35 cm .

4.4 Load Calculation:-

For the one-way ribbed slabs, the total dead load to be used in the analysis and design is calculated as follows:

Fig (4-3) Typical section in ribbed slab

Material	Unitweight $\left(\mathrm{KN} / \mathrm{m}^{3}\right)$	Thickness (cm)	load
Tile	23	3	0.69
Mortar	22	2	0.44
Sand	16	7	1.12
Topping slab	25	8	2
partition	$2.3 \mathrm{KN} / \mathrm{m}^{2}$		2.3
D. L ${ }_{\text {tot }}$			6.55

Fig (4-4) Typical section in topping
table (4-1) calculation of total load ofR1-09

4.5 Design of Topping:-

4.5.1 Calculation of Dead load For $1 m$ strip

Material	Unit weight(kN/m3)	
tile	23	$\mathbf{1}$
mortar	22	$\mathbf{2}$
sand	16	$\mathbf{3}$
toppting	25	$\mathbf{4}$
block	10	$\mathbf{5}$
rib	25	$\mathbf{6}$
plaster	22	$\mathbf{7}$
partion	$2.3(\mathrm{KN} / \mathrm{m} 2)$	$\mathbf{8}$

table (4-2) calculation of dead load for topping.

4.5.2 Calculation of live load

From Jordan's Code
$\mathrm{L}_{\mathrm{L}}^{\text {total }}=4 \mathrm{KN} / \mathrm{m}$
$\mathrm{Wu}=1.2 \mathrm{D} . \mathrm{L}+1.6 \mathrm{~L} . \mathrm{L}$
$=1.2 * 6.55+1.6 * 4=14.3 \mathrm{KN} / \mathrm{m}$

Design of shear :-

Used $f y=420 \mathrm{MPa} \&{ }^{f c^{\prime}}=24 \mathrm{MPa}$
$\Phi^{*} \mathrm{Vc}=0.75 \times \sqrt{24} \times \frac{1}{6} \times 1000 \times 80 \times 0.001=49 \mathrm{KN}>2.86 \mathrm{kN} * \phi$

No shear reinforcement is required.

CheckФMn>Mu

$M u=\frac{w_{u} * l^{2}}{12}=\frac{14.3 * 0.4^{2}}{12}=0.19 \mathrm{kN} . \mathrm{m}$
$M n=0.42 \sqrt{f c^{\prime}} * s$
$S=\frac{b h^{2}}{6}$
$M n=0.42 \sqrt{f c^{\prime}} * \frac{b h^{2}}{6}$
$M n=0.42 \times \sqrt{24} \times \frac{1000 * 80^{2}}{6} \times 10^{-6}=2.19 \mathrm{kN} . \mathrm{m}$
$\varnothing=0.55$ for plain concrete
$\phi \times M n=0.55 * 2.19=1.205 k N . m$.
$\phi \times M n=1.204 k N . m>M u=0.195 k N . m$.

No reinforcement is required according to ACl -Code $-318 \mathrm{M}-14$, so As min for slabs as Shrinkage and temperature reinforcement .

Shrinkage and temperature reinforcement must be provided.

For the shrinkage and temperature reinforcement:
$\rho=0.0018$
ACI-318-14 (7.12.2)
$A s=\rho * b * h=0.0018 * 1000 * 80=144 \mathrm{~mm} 2 / \mathrm{m}$
As $($ (皿 8$)=50.27 \mathrm{~mm}^{2}$
So number of bars $=144 / 50.27=2.86$
$1 / \mathrm{N}=350 \mathrm{~mm}$
The step is the smallest of :-

$$
\begin{aligned}
1_{-} \mathrm{S} & =3 * \mathrm{~h}=240 \mathrm{~mm} . \quad \text { control } \\
2_{-} \mathrm{S} & =380\left(\frac{280}{f_{S}}\right) 2.5 \mathrm{Cc}=380\left(\frac{280}{(2 / 3) \times 420}\right)-2.5 * 20 \\
& =330
\end{aligned}
$$

select mesh ? $8 / 20 \mathrm{~cm}$, As. prov $=2.51 \mathrm{~cm}^{2} / \mathrm{m}>A s m i n=1.44 \mathrm{~cm}^{2} / \mathrm{m}$

Then use $\Phi 8$ @ 20cm for practical purposes in both directions.
From practical consideration, the secondary reinforcement parallel to the rib shall be placed in the slab and spaced at distance not more than half of the spacings between ribs (usually two bars upon each 40 cm width block).
4.6 Design of Rib (R1-(09)):-

Fig (4-5):Rib(R1-(09)) at the First floor

4.6.1 Design constant:-

- b_{E} For T- section is the smallest of the following:

$$
b_{E}=\operatorname{Ln} / 4=4.83 / 4=1.21 \mathrm{~m}
$$

$b_{E}=\mathrm{bw}+16 t f=12+16(8)=1.4 \mathrm{~m}$
$b_{E}=\mathrm{c} / \mathrm{c}$ spacing between adjacent ribs $=0.52 \mathrm{~m}$

Control ... 52cm

- Requirements for Slab Floor According to ACI- (318M-14).
bw $\geq 10 \mathrm{~cm}$. . $\mathrm{ACI}(8.13 .2)$

Select bw=12cm
h $\leq 3.5^{*}$ bw \qquad ACl (8.13.2)

Select $\mathrm{h}=35 \mathrm{~cm}<3.5^{*} 12=42 \mathrm{~cm}$
$\mathrm{tf} \geq \mathrm{Ln} / 12 \geq 50 \mathrm{~mm}$ \qquad . $\mathrm{ACl}(8.13 .6 .1)$

Select $t f=8 \mathrm{~cm}$

4.6.2 Calculation of Dead load:-

Dead load Calculation		
Tiles	$23^{*} 0.03 * 0.52$	$=0.3588 \mathrm{KN} / \mathrm{m}$
Mortar	$22 * 0.02 * 0.52$	$=0.2288 \mathrm{KN} / \mathrm{m}$
Sand	$16 * 0.07 * 0.52$	$=0.5824 \mathrm{KN} / \mathrm{m}$
Topping	$25 * 0.08 * 0.52$	$=1.04 \mathrm{KN} / \mathrm{m}$
Block	$10^{*} 0.27^{*} 0.4$	$=1.08 \mathrm{KN} / \mathrm{m}$
Rib	$25 * 0.27^{*} 0.12$	$=0.81 \mathrm{KN} / \mathrm{m}$
Plastering	$22 * 0.02 * 0.52$	$=0.2288 \mathrm{KN} / \mathrm{m}$
Partition	$2.3 * 0.52$	$=1.196 \mathrm{KN} / \mathrm{m}$

Table (4-3) calculation of the total load for (R1-(09)).

Total dead load $=5.584 \mathrm{KN} / \mathrm{m} /$ rib

4.6.3 Calculation of Live load:-‘

From Jordanian live loads table live load for malls is $4 \mathrm{KN} / \mathrm{m}^{2}$
Total live load $=4^{*} 0.52=2.08 \mathrm{KN} / \mathrm{m} / \mathrm{rib}$

Material :-

concrete B300
Fc' $=24 \mathrm{~N} / \mathrm{mm}^{2}$
Reinforcement Steel
fy $=420 \mathrm{~N} / \mathrm{mm}^{2}$

Section :-

$$
\begin{array}{r}
\mathrm{b}=12 \mathrm{~cm} \quad \begin{array}{r}
\mathrm{bf}=52 \mathrm{~cm} \\
\mathrm{~h}=35 \mathrm{cmTf}=8 \mathrm{~cm}
\end{array}
\end{array}
$$

Fig. (4-6) Geometry of Rib (R1-(09)).
load proup no. 1.
Dead load-Service
Units:kN, meter

I ive leard-Servine

Fig. (4-7) :Service load of Rib (R1-(09))

Fig. (4-8) :Rib Envelope(R1-(09))

Reactions
 Factored DeadR 11.66 39.88 12.25 LiveR 6.84 19.81 7.02 MaxR 18.51 59.68 19.27 MinR 10.61 49.58 11.32 Service DeadR 9.72 33.23 10.21 LiveR 4.28 12.38 4.39 MaxR 14. 45.61 14.59 MinR 9.06 39.29 9.63

Fig. (4-9) :RibReactions(R1-(09))

4.6.4 Design of flexure:-

4.6.4.1 Design of Negative moment of rib (R1-(09)):

1) Maximum negative moment $M u^{(-)}=17.4 \mathrm{KN} . \mathrm{m}$.
$d=$ depth - cover - diameter of stirrups $-($ diameter of bar/ 2)
$=350-20-10-\frac{12}{2}=315 \mathrm{~mm}$.
$\mathrm{Mn}=\mathrm{Mu} / \phi=17.4 / 0.9=19.33 \mathrm{KN} . \mathrm{m}$
$m=\frac{f y}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 * 24}=20.6$
$K_{n}=\frac{M_{n}}{b * d^{2}}=\frac{19.33 * 10^{-3}}{0.12 *(0.315)^{2}}=1.623 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-. \overline{1-\frac{2 * K_{n} * m}{f_{y}}}\right)$
$=\frac{1}{20.6}\left(1-\overline{1-\frac{2 * 1.623 * 20.6}{420}}\right)=0.00403$
$\rightarrow \mathrm{A}_{\mathrm{s}}=\rho * \mathrm{~b} * \mathrm{~d}=0.00403 * 120 * 315=152.334 \mathrm{~mm}^{2}$.

$$
\begin{aligned}
& \begin{aligned}
A s_{\min } & =\frac{\overline{f_{t}^{\prime}}}{4\left(f_{y}\right)} * b_{w} * d \geq \frac{1.4}{f_{y}} * b_{w} * d \ldots \ldots \ldots . .(\mathrm{ACI}-10.5 .1) \\
& =\frac{\sqrt{24}}{4 * 420} * 120 * 315 \geq \frac{1.4}{420} * 120 * 315 \\
& =110.23 \mathrm{~mm}^{2}<126 \mathrm{~mm}^{2} \ldots \ldots \ldots \ldots . . \text { Larger value is control. } \\
\rightarrow \mathrm{As}_{\min } & =126 \mathrm{~mm}^{2}<\mathrm{As}_{\mathrm{req}}=152.334 \mathrm{~mm}^{2} . \\
\therefore \mathrm{As}= & 152.334 \mathrm{~mm}^{2} . \\
2 \quad 10 & =157.08 \mathrm{~mm}^{2}>\mathrm{As}_{\mathrm{req}}=152.334 \mathrm{~mm}^{2} . \mathrm{OK} .
\end{aligned}
\end{aligned}
$$

Use 210

\rightarrow Check for strain:- $\left(\varepsilon_{s} \geq \mathbf{0 . 0 0 5}\right)$

Tension $=$ Compression
$\mathrm{A}_{\mathrm{s}} * \mathrm{fy}=0.85 * f_{\mathrm{c}}^{\prime} * \mathrm{~b} * \mathrm{a}$
$157.08 * 420=0.85 * 24 * 120 * \mathrm{a}$
$\mathrm{a}=26.95 \mathrm{~mm}$.
$c=\frac{a}{\beta_{1}}=\frac{26.95}{0.85}=31.7 \mathrm{~mm} . \quad *$ Note: $f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$\varepsilon_{S}=\frac{d-c}{c} * 0.003$
$=\frac{315-31.7}{31.7} * 0.003=0.027>0.005 \quad \therefore \phi=0.9 \mathrm{OK}$
4.6.4.2Design of Positive moment of rib (R1-(09))
d $=$ depth - cover - diameter of stirrups $-($ diameter of bar/ 2)

$$
=350-20-10-\frac{10}{2}=315 \mathrm{~mm} .
$$

$\rightarrow M_{u \text { max }}=18.5 \mathrm{KN} . \mathrm{m}$
$\mathrm{b}_{\mathrm{E}} \leq$ Distance center to center between ribs $=520 \mathrm{~mm}$. \qquad Controlled.
\leq Span $/ 4=4830 / 4=1207.5 \mathrm{~mm}$.
$\leq\left(16^{*} \mathrm{t}_{\mathrm{f}}\right)+\mathrm{b}_{\mathrm{w}}=\left(16^{*} 80\right)+120=1400 \mathrm{~mm}$.
$\rightarrow \mathrm{b}_{\mathrm{E}}=\mathbf{5 2 0} \mathrm{mm}$.
$\rightarrow M_{n f}=0.85 f_{c}^{\prime} * b_{E} * t_{f} * d-\frac{t_{f}}{2}$

$$
=0.85 * 24 * 0.52 * 0.08 * 0.315-\frac{0.08}{2} * 10^{3}=233.37 \mathrm{KN} . \mathrm{m}
$$

$\phi \mathrm{M}_{\mathrm{nf}}=0.9 * 233.37=210.0 \mathrm{KN} . \mathrm{m}$
$\rightarrow \phi \mathrm{M}_{\mathrm{nf}}=210.0 \mathrm{KN} . \mathrm{m}>\mathrm{M}_{\mathrm{u} \text { max }}=18.5 \mathrm{KN} . \mathrm{m}$.
\therefore Design as rectangular section.

1) Maximum positive moment $M u^{(+)}=18.5 \mathrm{KN} . \mathrm{m}$
$\mathrm{Mn}=\mathrm{Mu} / \phi=18.5 / 0.9=20.56 \mathrm{KN} . \mathrm{m}$
$m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 * 24}=20.6$
$K_{n}=\frac{M_{n}}{b * d^{2}}=\frac{20.56 * 10^{-3}}{0.52 *(0.315)^{2}}=0.398 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-\overline{1-\frac{2 * K_{n} * m}{f_{y}}}\right)$
$=\frac{1}{20.6} 1-\overline{1-\frac{2 * 0.398 * 20.6}{420}}=0.00096$
$\rightarrow \mathrm{A}_{\mathrm{s}}=\rho * \mathrm{~b} * \mathrm{~d}=0.00096 * 520 * 315=157.248 \mathrm{~mm}^{2}$.

$$
\begin{align*}
A s_{\min } & =\frac{\overline{f_{t}^{\prime}}}{4\left(f_{y}\right)} * b_{w} * d \geq \frac{1.4}{f_{y}} * b_{w} * d \ldots \ldots \ldots . .(\mathrm{ACI}-10.5 .1) \tag{ACI-10.5.1}\\
& =\frac{\sqrt{24}}{4 * 420} * 120 * 315 \geq \frac{1.4}{420} * 120 * 315 \\
& =110.22 \mathrm{~mm}^{2}<126 \mathrm{~mm}^{2} \ldots \ldots \ldots \ldots \text { Larger value is control. }
\end{align*}
$$

$\rightarrow \mathrm{As}_{\text {min }}=126 \mathrm{~mm}^{2}<\mathrm{As}_{\mathrm{req}}=157 . \mathrm{mm}^{2}$.
$\therefore \mathrm{As}=157.248 \mathrm{~mm}^{2}$.
$210=157.1 \mathrm{~mm}^{2}>\mathrm{As}_{\mathrm{req}}=157 \mathrm{~mm}^{2}$. OK.
Use 210
\rightarrow Check for strain:- $\left(\varepsilon_{s} \geq \mathbf{0 . 0 0 5}\right)$
Tension $=$ Compression
$\mathrm{A}_{\mathrm{s}} * \mathrm{fy}=0.85 * f_{\mathrm{c}}^{\prime} * \mathrm{~b} * \mathrm{a}$
$157.1 * 420=0.85 * 24 * 520 * \mathrm{a}$
$\mathrm{a}=6.22 \mathrm{~mm}$.
$c=\frac{a}{\beta_{1}}=\frac{6.22}{0.85}=7.3 \mathrm{~mm} . \quad \quad *$ Note: $f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$\varepsilon_{S}=\frac{d-c}{c} * 0.003$

$$
=\frac{315-7.3}{7.3} * 0.003=0.126>0.005 \therefore \phi=0.9 \mathrm{OK}
$$

2) Maximum positive moment $M u^{(+)}=17.1 \mathrm{KN} . \mathrm{m}$
$\mathrm{Mn}=\mathrm{Mu} / \phi=17.1 / 0.9=19 \mathrm{KN} . \mathrm{m}$
$m=\frac{f y}{0.85 f_{t}^{\prime}}=\frac{420}{0.85 * 24}=20.6$
$K_{n}=\frac{M_{n}}{b * d^{2}}=\frac{17.1+10^{-3}}{0.52 *(0.315)^{2}}=0.33 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-\overline{1-\frac{2 * K_{n^{*} m}}{f y}}\right)$
$=\frac{1}{20.6} 1-\overline{1-\frac{2 * 0.33 * 20.6}{420}}=0.00079$
$\rightarrow \mathrm{A}_{\mathrm{s}}=\rho * \mathrm{~b} * \mathrm{~d}=0.00079 * 120 * 315=29.86 \mathrm{~mm}^{2}$.
$A s_{\min }=\frac{\overline{f_{t}^{\prime}}}{4\left(f_{y}\right)} * b_{w} * d \geq \frac{1.4}{f_{y}} * b_{w} * d$ (ACI-10.5.1)
$=\frac{\sqrt{24}}{4 * 420} * 120 * 315 \geq \frac{1.4}{420} * 120 * 315$
$=110.2 \mathrm{~mm}^{2} 126 \mathrm{~mm}^{2} \ldots \ldots \ldots \ldots$. Larger value is control.
$\rightarrow \mathrm{As}_{\text {min }}=126 \mathrm{~mm}^{2}>\mathrm{As}_{\text {req }} 29.86 \mathrm{~mm}^{2}$.
$\therefore \mathrm{As}=126 \mathrm{~mm}^{2}$.
$210=157 \mathrm{~mm}^{2}>\mathrm{As}_{\mathrm{req}}=126 \mathrm{~mm}^{2}$. OK.

: Use 210

\rightarrow Check for strain:- $\left(\varepsilon_{s} \geq \mathbf{0 . 0 0 5}\right)$
Tension $=$ Compression
$\mathrm{A}_{\mathrm{s}} * \mathrm{fy}=0.85 * f_{c}^{\prime} * \mathrm{~b} * \mathrm{a}$
$157 * 420=0.85 * 24 * 520 * \mathrm{a}$

$$
\mathrm{a}=6.216 \mathrm{~mm}
$$

$c=\frac{a}{\beta_{1}}=\frac{6.216}{0.85}=7.313 \mathrm{~mm} . \quad *$ Note: $f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$\varepsilon_{S}=\frac{d-c}{c} * 0.003$

$$
=\frac{315-7.313}{7.313} * 0.003=0.126>0.005 \quad \therefore \phi=0.9 \mathrm{OK}
$$

4.6.4.3Design of shear of rib (R1-(09))

1) $\mathbf{V u}=13.7 \mathrm{KN}$.
$\phi \mathrm{V}_{\mathrm{c}}=\phi * \frac{\overline{f_{c}^{\prime}}}{6} * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}$

$$
=0.75 * \frac{\sqrt{24}}{6} * 0.12 * 0.315 * 10^{3}=23.1 \mathrm{KN}
$$

$$
1.1 * \phi \mathrm{~V}_{\mathrm{c}}=1.1 * 23.1=25.6 \mathrm{KN}
$$

\rightarrow Check for items:-

1- Item 1: $\mathrm{V}_{\mathrm{u}} \leq \frac{\phi V_{c}}{2}$.
$13.7 \leq \frac{25.6}{2}=12.8 \ldots \ldots$.Not satisfy
2- Item $2: \frac{\phi V_{c}}{2}<\mathrm{V}_{\mathrm{u}} \leq \phi \mathrm{V}_{\mathrm{c}}$
$12.8 \leq 13.7 \leq \leq 600 \mathrm{~mm}$.
\therefore Item (2) is satisfy \rightarrow minimum shear reinforcement is required.
$\left(\frac{A_{v}}{s}\right)_{\min } \geq \frac{1}{16} * \frac{\overline{f_{c}^{\prime}}}{f_{y \mathrm{t}}} * \mathrm{~b}_{\mathrm{w}}=\frac{1}{16} * \frac{\sqrt{24}}{420} * 0.12=8.75 * 10^{-5}$.
$\geq \frac{1}{3} * \frac{b_{w}}{f_{y \mathrm{t}}}=\frac{1}{3} * \frac{0.12}{420}=9.52 * 10^{-5}$. \qquad .Control.

Try 8 (2 Legs):
$\frac{2 * 50 * 10^{-6}}{S}=9.52 * 10^{-5} \rightarrow \mathrm{~S}=1.05 \mathrm{~m}$
$\mathrm{S} \leq \frac{d}{2}=\frac{315}{2}=157.5 \mathrm{~mm}$.
$\leq 600 \mathrm{~mm}$.
Use 8 @ 10 Cm
2) $\mathbf{V u}=23 \mathrm{KN}$.
$\phi \mathrm{V}_{\mathrm{c}}=\phi * \frac{\overline{f_{c}^{\prime}}}{6} * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}$

$$
=0.75 * \frac{\sqrt{24}}{6} * 0.12 * 0.315 * 10^{3}=23.15 \mathrm{KN}
$$

$1.1 * \phi \mathrm{~V}_{\mathrm{c}}=1.1 * 23.15=25.6 \mathrm{KN}$.

\rightarrow Check for items:-

1- Item 1: $\mathrm{V}_{\mathrm{u}} \leq \frac{\phi V_{c}}{2}$.
$23 \leq \frac{25.6}{2}=12.8 \ldots \ldots$. Not satisfy
2- Item $2: \frac{\phi V_{c}}{2}<\mathrm{V}_{\mathrm{u}} \leq \phi \mathrm{V}_{\mathrm{c}}$
$12.8 \leq 23 \leq 25.6 \ldots \quad$.... Satisfy.
\therefore Item (2) is satisfy \rightarrow minimum shear reinforcement is required.
$\left(\frac{A_{v}}{s}\right)_{\min } \geq \frac{1}{16} * \frac{\overline{f_{c}^{\prime}}}{f_{y \mathrm{t}}} * \mathrm{~b}_{\mathrm{w}}=\frac{1}{16} * \frac{\sqrt{24}}{420} * 0.12=8.75 * 10^{-5}$.
$\geq \frac{1}{3} * \frac{b_{w}}{f_{y \mathrm{t}}}=\frac{1}{3} * \frac{0.12}{420}=9.52 * 10^{-5} \ldots \ldots \ldots \ldots \ldots$. Control.
Try 8 (2 Legs):
$\frac{2 * 50 * 10^{-6}}{S}=9.52 * 10^{-5} \rightarrow \mathrm{~S}=1.05 \mathrm{~m}$
$\mathrm{S} \leq \frac{d}{2}=\frac{315}{2}=157.5 \mathrm{~mm}$.
$\leq 600 \mathrm{~mm}$

.Use 8 @ 10 Cm

Fig (4-10): Reinforcement of Rib(R1-(09))

4.7 Design of Beam (B1-(17)):

Fig (4-11) Location of beam (B1-(17))

Material :-

concrete B 300	$\mathrm{Fc}^{\prime}=24 \mathrm{~N} / \mathrm{mm}^{2}$
Reinforcement Steel	$\mathrm{fy}=420 \mathrm{~N} / \mathrm{mm}^{2}$

Section :-

Fig (4-12) : Beam Geometry (B1-(17)).
loadgroup no. 1
Dead load-Servica
Units: KN ,meter

Live load - Service
Load factors: 1.20,1.20M.60,0.0)

Fig (4-13) : Service Load of Beam (B1-(17))

Fig (4-14) : Beam Envelop (B1-(17)).

4.7.1 Check whether the section will be act as singly or doubly reinforcement section:

$\rightarrow \mathrm{Mu}_{\max }=28.6 \mathrm{KN} . \mathrm{m}$.
$\mathrm{b}_{\mathrm{w}}=50 \mathrm{Cm} ., \mathrm{h}=35 \mathrm{Cm}$.
$d=$ depth - cover - diameter of stirrups $-($ diameter of bar/ 2)

$$
=350-40-10-\frac{12}{2}=294 \mathrm{~mm}
$$

$\mathrm{C}_{\text {max }}=\frac{3}{7} * \mathrm{~d}=\frac{3}{7} * 294=126 \mathrm{~mm}$.
$\mathrm{a}_{\max }=\beta_{1} * \mathrm{C}_{\text {max }}=0.85 * 126=107.1 \mathrm{~mm} . \quad *$ Note: $f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$\mathrm{Mn}_{\text {max }}=0.85 * f_{c}^{\prime} * \mathrm{~b} * \mathrm{a} *\left(\mathrm{~d}-\frac{a}{2}\right)$
$=0.85 * 24 * 0.5 * 0.1071 *\left(0.294-\frac{0.1071}{2}\right) * 10^{3}$
$=262.67 \mathrm{KN} . \mathrm{m}$.
$\Phi=0.65+\frac{250}{3} *(0.004-0.002)=0.816$
$\rightarrow \phi \mathrm{Mn}_{\max }=0.82 * 262.67=215.39 \mathrm{KN} . \mathrm{m} . \quad *$ Note: $\epsilon_{\mathrm{s}}=0.004 \rightarrow \phi=0.82$
$\rightarrow \phi \mathrm{Mn}_{\max }=215.39 \mathrm{KN} . \mathrm{m}>\mathrm{Mu}=28.6 \mathrm{KN} . \mathrm{m}$.
\therefore Singly reinforced concrete section.

4.7.2 Flexure design:

4.7.2.1 Design of Positive moment:-

1) Maximum negative moment $M u^{(-)}=28.6 \mathrm{KN} . \mathrm{m}$.
$\phi \mathrm{Mn}_{\max }=215.39 \mathrm{KN} . \mathrm{m}>\mathrm{Mu}=28.6 \mathrm{KN} . \mathrm{m} \rightarrow$ Singly reinforced concrete section
$\mathrm{Mn}=\mathrm{Mu} / \Phi=28.9 / 0.9=32.11 \mathrm{KN} . \mathrm{m}$.
$m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 * 24}=20.6$
$K_{n}=\frac{M_{n}}{b * d^{2}}=\frac{32.1 * 10^{-3}}{0.5 *(0.294)^{2}}=0.74 \mathrm{MPa}$.
$\rho=\frac{1}{m}\left(1-\overline{1-\frac{2 * K_{n} * m}{f_{y}}}\right)$

$$
=\frac{1}{20.6} 1-\overline{1-\frac{2 * 0.74 * 20.6}{420}}=0.0017
$$

$$
\rightarrow \mathrm{A}_{\mathrm{s}}=\rho * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}=0.0017 * 500 * 294=249.9 \mathrm{~mm}^{2}
$$

$$
\begin{equation*}
A s_{\min }=\frac{\overline{f_{e}^{\prime}}}{4\left(f_{y}\right)} * b_{w} * d \geq \frac{1.4}{f_{y}} * b_{w} * d \tag{ACI-10.5.1}
\end{equation*}
$$

\qquad

$$
=\frac{\sqrt{24}}{4 * 420} * 500 * 294 \geq \frac{1.4}{420} * 500 * 294
$$

$$
=428.66 \mathrm{~mm}^{2}<490 \mathrm{~mm}^{2} \ldots \ldots \ldots \ldots \text { Larger value is control. }
$$

$\rightarrow \mathrm{As}_{\text {min }}=490 \mathrm{~mm}^{2}>\mathrm{As}_{\mathrm{req}}=249.9 \mathrm{~mm}^{2}$.
$\therefore \mathrm{As}=490.9 \mathrm{~mm}^{2}$.
\# Of $\quad 12=\frac{A s_{\text {req }}}{A_{\text {bar }}}=\frac{490.9}{113.09}=4.3 \rightarrow$ \# of bars $=5$ bars.
Use $412 \rightarrow$ As $=5^{*} 113.09=565.45 \mathrm{~mm}^{2}>\mathrm{As}_{\mathrm{req}}=490.9 \mathrm{~mm}^{2}$.
\rightarrow Check for strain:- $\left(\varepsilon_{s} \geq \mathbf{0 . 0 0 5}\right)$
Tension $=$ Compression
$\mathrm{A}_{\mathrm{s}} * \mathrm{fy}=0.85 * f_{c}^{\prime} * \mathrm{~b} * \mathrm{a}$
$565.45 * 420=0.85 * 24 * 500 * \mathrm{a}$

$$
\mathrm{a}=23.3 \mathrm{~mm}
$$

$c=\frac{a}{\beta_{1}}=\frac{23.3}{0.85}=27.4 \mathrm{~mm} . \quad *$ Note: $f_{c}^{\prime}=24 \mathrm{MPa}<28 \mathrm{MPa} \rightarrow \beta_{1}=0.85$
$\varepsilon_{S}=\frac{d-c}{c} * 0.003$
$=\frac{294-27.4}{27.4} * 0.003=0.029>0.005 \quad \therefore$ ф $=0.9 \mathrm{OK}$

Use 4 12.

4.7.2.3Design of shear:-

1) $\mathbf{V u}=30.7 \mathrm{KN}$.
$\phi \mathrm{Vc}=\phi * \frac{\overline{f_{c}^{\prime}}}{6} * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}$

$$
=0.75 * \frac{\sqrt{24}}{6} * 0.5 * 0.294 * 10^{3}=90 \mathrm{KN} .
$$

Check for section dimensions:

$\phi \mathrm{Vc}+\left(\frac{2}{3} * \phi * \quad \overline{f_{c}^{\bar{\prime}}} * \mathrm{~b}_{\mathrm{w}} * \mathrm{~d}\right)=119.4+\left(\frac{2}{3} * 0.75 * \sqrt{24} * 0.5 * 0.294 * 10^{3}\right)$

$$
=119.4+360.1=479.47 \mathrm{KN} \ggg \mathrm{Vu}=30.7 \mathrm{KN} .
$$

\therefore Dimension is big enough.

4.7.2.4 Check for the case of shear:

1- Item 1: $\mathrm{V}_{\mathrm{u}} \leq \frac{\phi V_{c}}{2}$.
$30.7 \leq \frac{90}{2}=45 \ldots \ldots$. satisfy.
\therefore Item (1) is satisfy \rightarrow minimum shear reinforcement is required.
$\left(\frac{A_{v}}{s}\right)_{\text {min }} \geq \frac{1}{16} * \frac{\overline{f_{t}^{\prime}}}{f_{y \mathrm{t}}} * b_{\mathrm{w}}=\frac{1}{16} * \frac{\sqrt{24}}{420} * 0.12=8.75 * 10^{-5}$.
$\geq \frac{1}{3} * \frac{b_{w}}{f_{y \mathrm{t}}}=\frac{1}{3} * \frac{0.12}{420}=9.52 * 10^{-5}$. .Control.

Try 8 (2 Legs):
$\frac{2 * 50 * 10^{-6}}{S}=9.52 * 10^{-5} \rightarrow \mathrm{~S}=1.05 \mathrm{~m}$
$\mathrm{S} \leq \frac{d}{2}=\frac{294}{2}=147 \mathrm{~mm} . \leq 600 \mathrm{~mm}$.

Use 8 @ 10 Cm

Fig. (4-15) Detail of Beamandsection(B1-(17)).

4.8 Design of Column(C32):-

4.8.1 Load calculation:

$\mathrm{DL}=2933.68 \mathrm{KN} \quad \mathrm{LL}=993.66 \mathrm{KN}$
$\mathrm{P}_{\mathrm{u}}=5110.275 \mathrm{KN} \quad \mathrm{P}_{\mathrm{n}, \mathrm{req}}=5110.275 / 0.65=7862 \mathrm{KN}$

Assume rectangular section with $=\mathbf{2 . 3 8 \%}$
$P_{n}=0.8 \times \mathrm{Ag} \times\left(0.85 \times \mathrm{fc}+{ }_{\mathrm{g}} \times\left(\mathrm{fy}-0.85 \mathrm{fc}^{\prime}\right)\right)$
$7862=0.8 \times \operatorname{Ag} \times(0.85 \times 24+0.0238 \times(420-0.85 \times 24))$
$\mathrm{A}_{\mathrm{g}}=3285.6 \mathrm{~cm}^{2}$
Use $60 * 55 \mathrm{~cm}$ with $\mathrm{Ag}=3300 \mathrm{~cm}^{2}>\mathrm{A}_{\mathrm{g}, \text { req }}=3285.6 \mathrm{~cm}^{2}$

4.8.2 Check slenderness effect:

Lu : Actual unsupported (unbraced) length.

K : effective length factor ($\mathrm{K}=1$ for braced frame).

R: radius of gyration $=\sqrt{ }(I / A)=0.3 h$
$\mathrm{Lu}=2.76 \mathrm{~m}$

M1/M2 =1

In 60 cm -Direction

$K l u / r<34-12(M 1 / M 2)<40$
$(1 \times 2.76) /(0.3 \times 0.6)=15.33<22 \quad \Rightarrow$ Short

In 55cm -Direction

Klu/ $r<34-12(M 1 / M 2)$
$(1 \times 3.78) /(0.3 \times 0.55)=16.73>22 \Rightarrow$ Short
Short in Both Direction
\rightarrow Here we can solve this column as short tied column
$\mathrm{P}_{\mathrm{n}}=0.8 \times \mathrm{Ag} \times\left(0.85 \times \mathrm{fc}^{\prime}+{ }_{\mathrm{g}} \times\left(\mathrm{fy}-0.85 \mathrm{fc}^{\prime}\right)\right)$
$P_{n}=0.8 \times 600 \times 550 \times(0.85 \times 24+0.0238 \times(420-0.85 \times 24))$

$$
=7896.4 \mathrm{KN}>\mathrm{P}_{\mathrm{n}, \mathrm{req}}=7862 \mathrm{KN} \ldots \ldots . \mathrm{O}
$$

4.8.4 Design of the tie reinforcement :

$\mathrm{S} \leq 6 \mathrm{db}$ (longitudinal bar diameter)
$\mathrm{S} \leq 48 \mathrm{dt}$ (tie bar diameter).
$\mathrm{S} \leq$ Least dimension.
spacing $\leq 16 \times d_{b}=16 \times 2.5=40 \mathrm{~cm} \ldots$. control
spacing $\leq 48 \times d t=48 \times 1.0=48 \mathrm{~cm}$
spacing \leq least.dim $=55 \mathrm{~cm}$

Use $\phi 10 @ 20$ cm

For UingSbCoulmn We have using 16 v 25.

$60 * 55$

16v25

Fig. (4-16) Detail of Reinforcement of Coulmn (C32)

4.9 Design of Stair.

Figure 4-17: Details of stair .
4-9-1 Minimum slab:
$h_{\text {min }}=\frac{L}{20}=\frac{410}{20}=20.5 \mathrm{~cm}$ thickness for deflection (for simply supported one way
solid

Take $h_{\text {min }}=250 \mathrm{~mm}$.

$R B=35.32$

$$
0,4 \quad 3.3 \quad 0,4
$$

4.10 m

Figure 4-18: loads of the flight .

4-9-2Loads Calculation of stair case (1):

Flight Dead Load computations:

$$
\mathrm{Y}=\tan -1\left(\frac{\text { rise }}{\text { run }}\right)
$$

material	Quality Density $\mathrm{KN} / \mathrm{m}^{3}$	$\mathrm{~W} \mathrm{kN} / \mathrm{m}$
Tiles	23	$27\left(\frac{0.17+0.35}{0.3}\right) * 0.03 * 1=1.403$
Mortar	22	$22^{*}\left(\frac{0.17+0.3}{0.3}\right) * 0.02 * 1=1.034$
Stair steps	25	$\frac{25}{0.3} *\left(\frac{0.17+0.3}{2}\right) * 1=2.125$
R.C solid slab	25	$\frac{25 * 0.25 * 1}{\cos 29.54^{\circ}}=7.184$
Plaster	22	$\frac{22 * 0.03 * 1}{\cos 29.54}=0.76$
Total Dead Load	\sum	12.506 KN

Table 4-4: Dead load calculation for flight of stair .

Material	Quality Density $\mathrm{KN} / \mathrm{m}^{3}$	$\mathrm{~W} \quad \mathrm{KN} / \mathrm{m}$
		23
Tiles	22	$23 * 0.03 * 1=0.69$
Mortar	25	$25 * 0.25 * 1=6.25$
R.C solid slab	22	$22 * 0.03 * 1=0.66$
Plaster	Σ	8.04
Total Dead load	Σ	

Table 4-5: Dead load calculation for landing of stair.

$$
\text { * live load }=L L=4 K N / m^{2}
$$

Total factored load: $w=1.2 D+1.6 L$
for flight $w=1.2 * 12.506+1.6 * 4=21.41 \mathrm{KN} / \mathrm{m}$
for landing $w=1.2 * 8.04+1.6 * 4=16.05 \mathrm{~N} / \mathrm{m}$

4-9-3Design of flight (Slab S1 is supported at the centerline of beam and L1).

The reaction at point A:

$$
R_{B}=R_{A}=\frac{21.41 * 3.3}{2}=35.32 \mathrm{KN}
$$

- Check for shear strength:

Assume bar diameter $\emptyset 14$ for main reinforcement.

$$
d=h-20-\frac{d_{b}}{2}=250-20-\frac{14}{2}=223 \mathrm{~mm}
$$

Take the maximum shear as the support reaction

$$
V_{u}=35.32 * \cos 29.54=28.27 \mathrm{KN}
$$

$V_{c}=\frac{\overline{f_{c}^{\prime}}}{6} b_{w} d$
$=\frac{\sqrt{24}}{6} * 1000 * 223 * 10^{-3}=182.1 \mathrm{KN}$.

$$
\phi * V_{c}=0.75 * 182.1=136.55 \mathrm{KN} / 1 \mathrm{~m} \text { strip }
$$

$V_{u, \max }=28.27<\frac{1}{2} \phi * V_{c}=68.27 \mathrm{KN} \ldots$. The thickness of the slab is enough.
Calculate the maximum bending moment and steel reinforcement:

$$
M_{u}=35.32 * 2.05-21.41 * 1.65 * \frac{1.65}{2}=43.26 \mathrm{KN} . \mathrm{m}
$$

$M n=M u / \phi=43.26 / 0.9=48.067 K N . m$

$$
d=\text { depth }- \text { cover }- \text { diameter of stirrups }- \text { diameter of } \frac{\text { bar }}{} 2
$$

$300-20-\frac{14}{2}=223 \mathrm{~mm}$.
$m=\frac{f_{y}}{0.85 f_{t}^{\prime}}=\frac{420}{0.85 * 24}=20.6$
$R_{n}=\frac{M_{n}}{b * d^{2}}=\frac{48.067 * 10^{6}}{1000 * 223^{2}}=0.97 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-\overline{1-\frac{2 * R_{n}^{*} m}{f y}}\right)$
$=\frac{1}{20.6} 1-\overline{1-\frac{2 * 0.97 * 20.6}{420}}=0.0024$
As $=\rho * b * d=0.0024 * 1000 * 223=535.2 \mathrm{~mm}^{2}$.
$A_{\mathrm{s}, \min }=\rho * b * h=0.0018 * 1000 * 250=450 \mathrm{~mm}^{2}$
$A_{s}=535.2 \mathrm{~mm}^{2}>A_{s, \text { min }}=450 \mathrm{~mm}^{2}$
use $\emptyset 14 @ 20$ then
$n=\frac{A_{\mathrm{s}}}{A_{\mathrm{s} 014}}=\frac{535.2}{153.93}=3.47=4, \quad s=\frac{1}{n}=4=0.250 \mathrm{~m}$.

Step (S) is smallest of:
1- $3 h=3 * 300=900 \mathrm{~mm}$
2- 450 mm
3- $s=380 \frac{280}{f_{s}}-2.5 C_{c}=380 \frac{280}{\frac{2}{3} 420}-2.5 * 20=330 \mathrm{~mm}$
$s \leq 300 \frac{280}{f_{s}}=300 \frac{280}{\frac{2}{3} 420}=300 \mathrm{~mm}-$ control
$s=200 \mathrm{~mm}<s_{\max }=300 \mathrm{~mm}-O K$
Select $\mathrm{s}=300 \mathrm{~mm}$
Temperature and shrinkage reinforcement.
A_{S} Temperature and shrinkage $=0.0018 * 1000 * 250=450 \mathrm{~mm}^{2}$
use $\emptyset 10 @ 15$ then
$n=\frac{A_{s}}{A_{\text {sø } 10}}=\frac{450}{78.5}=5.7=6 \quad s=\frac{1}{n}=\frac{1}{6}=0.16 \mathrm{~m}$
Take 150 mm

Step (S - for Temperature and shrinkage reinforcement) is the smallest of:

1. $5 h=5 * 250=1250 \mathrm{~mm}$
2. 450 mm - control
$s=150 \mathrm{~mm}<s_{\max }=450 \mathrm{~mm}-$ OK
Select $\mathrm{s}=450 \mathrm{~mm}$

4-9-4 Design of slab L1 (landing):

$$
w_{R}=q_{u}+\text { support of flight }=16.05+23.32=51.37 \mathrm{KN} / \mathrm{m}
$$

The reaction at each end

Figure 4-19: loads of landing
$R=\frac{51.37 * 3.45}{2}=88.61 \mathrm{KN}$
Check for shear strength:
Assume bar diameter $\emptyset 14$ for main reinforcement.
$d=h-20-\frac{d_{b}}{2}=25-20-\frac{14}{2}=223 \mathrm{~mm}$
Take the maximum shear as the support reaction $V_{u}=88.61-51.37 * .323=72.07 \mathrm{KN}$
$V_{c}=\frac{f_{c}^{\prime}}{6} b_{w} d$

$$
\begin{gathered}
=\frac{\sqrt{24}}{6} * 1000 * 223 * 10^{-3}=182.1 \mathrm{KN} \\
\phi * V_{c}=0.75 * 182.1=136.56 \mathrm{KN} / 1 \mathrm{~m} \text { strip } \\
\phi * V_{c}=136.56 \mathrm{KN}>V_{u, \max }=72.07
\end{gathered}
$$

..... The thickness of the slab is enough .
use $h=25 \mathrm{~cm}$

Calculate the maximum bending moment and steel reinforcement:

$$
M_{u}=\frac{51.37 * 3.45^{2}}{8}=76.43 \mathrm{KN} . \mathrm{m}
$$

$M n=M u / \phi=76.43 / 0.9=84.92 \mathrm{KN} . \mathrm{m}$
$d=$ depth - cover - diameter of stirrups - (diameter of bar/ 2
$=250-20-\frac{14}{2}=223 \mathrm{~mm}$.
$m=\frac{f y}{0.85 f_{t}^{\prime}}=\frac{420}{0.85+24}=20.6$
$R_{n}=\frac{M_{n}}{b * d^{2}}=\frac{84.92 * 10^{6}}{1000 * 223^{2}}=1.71 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-\overline{1-\frac{2 * R_{n}^{*} m}{f y}}\right)$
$=\frac{1}{20.6} 1-\overline{1-\frac{2 * 1.71 * 20.6}{420}}=0.00426$
$A s=\rho * b * d=0.00426 * 1000 * 223=950 \mathrm{~mm}^{2}$.
$A_{\mathrm{s}, \min }=\rho * b * h=0.0018 * 1000 * 250=450 \mathrm{~mm}^{2}$
$A_{s}=950 \mathrm{~mm}^{2}>A_{s, \min }=450 \mathrm{~mm}^{2}$
use $\emptyset 14$ then
$n=\frac{A_{s}}{A_{\text {sø14 }}}=\frac{950}{153.93}=6.2=7, \quad s=\frac{1}{n}=0.16$
Step (S) is smallest of:
1- $3 \mathrm{~h}=3 * 300=900 \mathrm{~mm}$
2- 450 mm
3- $s=380 \frac{280}{f_{s}}-2.5 C_{c}=380 \frac{280}{\frac{28}{3} 420}-2.5 * 20=330 \mathrm{~mm}$
$s \leq 300 \frac{280}{f_{s}}=300 \frac{280}{\frac{2}{3} 420}=300 \mathrm{~mm}-$ control
$s=150 \mathrm{~mm}<s_{\max }=300 \mathrm{~mm}-\mathrm{OK}$

- Temperature and shrinkage reinforcement.
A_{S} Temperature and shrinkage $=0.0018 * 1000 * 250=450 \mathrm{~mm}^{2}$
$n=\frac{A_{s}}{A_{\text {sø14 }}}=\frac{450}{153.93}=2.9, \quad s=\frac{1}{n}=\frac{1}{3}=0.333 \mathrm{~m}=.300$
Step ($S-$ for Temperature and shrinkage reinforcement) is the smallest of:
1- $5 h=5 * 250=1250 \mathrm{~mm}$
2- 450 mm - control

$$
s=300 \mathrm{~mm}<s_{\max }=450 \mathrm{~mm}-O \mathrm{~K}
$$

Select $\mathrm{s}=450 \mathrm{~mm}$
4.10 Design of basement wall :-

4.10.1 Load Calculation:-

$f_{c}^{\prime}=24 \mathrm{MPa}$
$f_{y}=420 \mathrm{MPa}$
$\gamma=18 \mathrm{KN}^{\prime} \mathrm{m}^{3}$ Figure 4-20: Basement wall
$\emptyset=30^{\circ}$
$L L=4 K N^{\prime} m^{2}$
Thickness $=h=20 \mathrm{~cm}$, cover $=4 \mathrm{~cm}$

The design will be for 1 m width

- Analysis:
- Loads

Neglect the axial load, since its low value.
$e_{1}=K_{o} * \gamma * h$
$e_{2}=K_{o} * L L$
$K_{o}=1-\sin \emptyset$
So,
$K_{o}=1-\sin 30=1-0.5=0.5$

$$
e_{o}=0.5 * 18 * 2 .!
$$

$E_{o}=26.415 * \frac{2.935}{2}=38.76 \mathrm{KN} / \mathrm{m}^{2}$
$e_{L}=0.5 * 4=2 \mathrm{KN} / \mathrm{m}^{2}$
$E_{L}=2 * 2.935=5.87 \mathrm{KN} / \mathrm{m}^{2}$
Support reactions:
$B_{X}=21.025 \mathrm{KN}$
$A_{X}=38.625 \mathrm{KN}$
$V=0$ at $y=$?
$21.025-P$ y $* \frac{y}{2}-2 * y=0$
$\frac{P_{y}}{y}=\frac{26.415}{2.935}=9$
$21.025-9 * y * \frac{y}{2}-2 * y=0$
$4.5 y^{2}+2 y-21.025=0$
$y=2 m$
$M_{u, \max }=21.025 * 2-9 * 2 * \frac{2}{3} * \frac{2}{2}-2 * 2 * \frac{2}{2}=26.05 \mathrm{KN} . \mathrm{m}$

Factored internal forces
$V_{u}=1.6 * V_{\max }=1.6 * 38.625=61.8 \mathrm{KN}$
$M_{u}=1.6 * M_{\max }=1.6 * 26.05=41.68 \mathrm{KN}$

- Design

Design of shear
$d=200-40-8=152 \mathrm{~mm}$
$V_{u}=61.8 \mathrm{KN}$
$\phi V_{c}=0.75 * \frac{\overline{c_{c}^{\prime}}}{6} b_{w} d=\phi V_{c}=0.75 * \frac{\sqrt{24}}{6} * 1000 * 152=93 \mathrm{KN}>V_{u}=61.8 \mathrm{KN}$
The thickness of Wall is Adequate Enough

Design of flexure

Vertical reinforcement of Tension face

$$
\begin{gathered}
M_{u}=41.68 \mathrm{KN} \cdot \mathrm{~m} \\
M n=M u / \phi=41.68 / 0.9=46.31 \mathrm{KN} \cdot \mathrm{~m}
\end{gathered}
$$

$m=\frac{f y}{0.85 f_{t}^{\prime}}=\frac{420}{0.85 * 24}=20.6$
$R_{n}=\frac{M_{n}}{b * d^{2}}=\frac{46.31 * 10^{6}}{1000 *(152)^{2}}=2.0 \mathrm{MPa}$
$\rho=\frac{1}{m}\left(1-\overline{1-\frac{2 * R_{n}^{*} m}{f_{y}}}\right)$

$$
=\frac{1}{20.6} 1-\overline{1-\frac{2 * 2 * 20.6}{420}}=0.005
$$

$A_{s, \text { req }}=\rho b d=0.005 * 1000 * 152=760 \mathrm{~mm}^{2}$
$A_{\mathrm{s}, \min }=0.0012 * 1000 * 200=240 \mathrm{~mm}$

$$
\begin{gathered}
A_{\mathrm{s}, \text { req }}=760 \mathrm{~mm}^{2}>A_{\mathrm{s}, \min }=240 \mathrm{~mm}^{2} \ldots O \mathrm{~K} \\
\therefore A_{\mathrm{s}, \text { req }}=760 \mathrm{~mm}^{2}
\end{gathered}
$$

Select $7 \emptyset 12$ with $A_{s, p r o}=791.68 \mathrm{~mm}^{2}>A_{s, \text { req }}=760 \mathrm{~mm}^{2} \ldots \mathrm{OK}$

Vertical reinforcement of Compression face
$A_{s, \text { min }}$ for flexture $=0.25 * \frac{\overline{f c^{\prime}}}{f y} * b w * d=0.25 * \frac{\sqrt{24}}{420} * 1000 * 152=443 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s, \text { min }}$ for flexture $=\frac{1.4}{f y} * b w * d=\frac{1.4}{420} * 1000 * 152=506.67 \mathrm{~mm}^{2} / \mathrm{m}$
Select $\mathbf{5} \emptyset 12$ with $A_{\text {s,pro }}=565.5 \mathrm{~mm}^{2}>A_{\mathrm{s}, \min }=506.67 \mathrm{~mm}^{2} / \mathrm{m}$

For inside wall $\emptyset 12 @ 15 \mathrm{~cm}=7.91 \mathrm{~cm}^{2}>7.60 \mathrm{~cm}^{2}$
For outside wall $\emptyset 12 @ 20 \mathrm{~cm}=5.65 \mathrm{~cm}^{2}>5.1 \mathrm{~cm}^{2}$

Horizontal Reinforcement due to Cracking:

$$
\text { Asreq } h=0.002 * b * h=0.002 * 100 * 20=4 \mathrm{~cm}^{2} / \mathrm{m}
$$

For one side $A s=2 \mathrm{~cm}^{2} / \mathrm{m}$
Select for one side horizontal reinforcement $\emptyset 10 @ 20 \mathrm{~cm}=3.93 \mathrm{~cm}^{2}>2 \mathrm{~cm}^{2}$

Figure 4- 21: reinforcement of Basement wall
4.11 Design of Isolated Footing (F5 C50).

Fig. (4-22) : Footing geometry

From column group5:-
$\mathrm{DL}=1823.96 \mathrm{KN}$
$\mathrm{LL}=818.37 \mathrm{KN}$

Factored load $=3498.14 \mathrm{kN}$.

Soil weight $=18 \mathrm{kN} / \mathrm{m} 3$.

Allowable soil pressure $=400 \mathrm{kN} / \mathrm{m} 2$.
$\mathrm{Fc}^{\prime}=24 \mathrm{Mpa}$
$\mathrm{Fy}=420 \mathrm{Mpa}$

Cover $=7.5 \mathrm{~cm}$

4.11.1Determine the net soil pressure:

use steel bar $\square 14$
Assume $\mathrm{h}=70 \mathrm{~cm}$ \qquad $. d=700-75-14=611 \mathrm{~mm}$

Weight of footing $=0.7 * 25=17.5 \mathrm{KN} / m^{\wedge} 2$
Weight of soil $=1 * 18=18 \mathrm{KN} / m^{\wedge} 2$
Total surcharge load foundation:
$\mathrm{W}=17.5+18=35.5 \mathrm{KN} / \mathrm{m}^{\wedge} 2$
qall.net $=400-35.5=364.5 \mathrm{KN} / m^{\wedge} 2$
4.11.2 : Design of the footing area:
$\mathrm{A}=\mathrm{Pn} /($ qall. net $)=(2642.33) /(364.5)=7.25 \mathrm{~m}^{\wedge} 2$
$A=b^{*} 1$

Take $\mathrm{b}=2.80 \mathrm{~m}$
$1=7.25 / 2.80=2.6$, take $\mathrm{l}=2.80 \mathrm{~m}$
$\mathrm{qu}=3498 /(2.80 * 2.80)=446.2 \mathrm{KN} / \mathrm{m}$

4.11.3 Check for one way shear:

For X-direction:

$$
\mathrm{Vu}=\left((2.80-0.50)^{\star} 0.5-0.611\right) \times 446.2 \times 2.80
$$

$\mathrm{Vu}=673.4 \mathrm{KN}$

For Y-direction:

$\mathrm{Vu}=((\mathrm{L}-\mathrm{a}) * 0.5-\mathrm{d}) \times \mathrm{qu} \times \mathrm{b}$
$\mathrm{Vu}=((2.80-0.5) * 0.5-0.611) \times 446.2 \times 2.80$
$\mathrm{Vu}=673.4 \mathrm{KN}$

$$
\begin{aligned}
& \phi \mathrm{Vc}, \mathrm{x}=\phi\left(\sqrt{ }\left(\mathrm{fc}^{\prime}\right) * \mathrm{bw} * \mathrm{~d}\right) / 6 \\
& =0.75 * \sqrt{ } 24 * 2800^{*} 611^{*} 10^{-3} / 6 \\
& = \\
& =1047.6 \mathrm{KN}>\mathrm{Vux}=673.4 \mathrm{KN} \quad \Rightarrow \mathrm{OK} \\
& \begin{aligned}
\phi \mathrm{Vc}, \mathrm{y} & =\phi\left(\sqrt{ }\left(\mathrm{fc}^{\prime}\right) * \mathrm{bw} * \mathrm{~d}\right) / 6 \\
& =0.75 * \sqrt{ } 24 * 2800 * 611 * 10^{\wedge}-3 / 6 \\
& =1047.6 \mathrm{Kn}>\mathrm{Vuy}=673.4 \mathrm{KN} \quad \Rightarrow \mathrm{OK}
\end{aligned}
\end{aligned}
$$

4.11.4 Check for two way shear:

```
Vu,x = qu*(b*l- (a+d) (c+d))
    =446.2 (2.80*2.80-(0.5+0.611)(0.5+0.611))
    =2506.7 KN.
```

 \(\mathrm{s}=40\) for interior column
 $\beta=50 /(50)=1.0$
bo $=$ Perimeter of critical section taken at $(\mathrm{d} / 2)$ from the loaded area

```
bo = 2* (a+d+c+d)
    =2*(0.50+0.611*2+0.5)
    = 4.444 m
```

Vc the smallest of:
Vc $=1 / 6 *(1+2 / B) \sqrt{ }\left(\mathrm{fc}^{\prime}\right) * \mathrm{~b} * \mathrm{~d} .$. where $1 / 6 *(1+2 / \mathrm{B})=1 / 6 *(1+2 / 1.0)=0.50$ $\mathrm{Vc}=1 / 12((\alpha \mathrm{sd}) / \mathrm{b}+2) \sqrt{ }\left(\mathrm{fc}^{\prime}\right) * \mathrm{~b} * \mathrm{~d} .$. where

$$
1 / 12((\alpha s d) / b+2)=1 / 12((40 * 0.611) / 4.444+2)=0.625
$$

V_c=1/3 $\sqrt{ }\left(\mathrm{fc}^{\prime}\right) * \mathrm{~b} * \mathrm{~d} \quad$ where $1 / 3=0.333 \ldots \ldots \ldots .$. control
Take $\mathrm{V}_{-} \mathrm{c}=1 / 3 * \sqrt{ }\left(\mathrm{fc}^{\prime}\right) * \mathrm{~b} * \mathrm{~d}=1 / 3 * \sqrt{ } 24 * 4444 * 611 *$ 『10』^$(-3)=4434.04 \mathrm{KN}$ $\emptyset \mathrm{V}_{-} \mathrm{c}=0.75 * 7057.8=3325.5 \mathrm{KN}$
$\emptyset \mathrm{V}_{-} \mathrm{c}=3325.5>\mathrm{V}_{-} \mathrm{u}=2506.7 \mathrm{KN}$. \qquad ok

4.11.5Design for bending moment:

4.11.5.1 Design flexure for long And Short direction:

use steel bar $\square 14$
$\mathrm{b}=2.8 \mathrm{~m}, \mathrm{~h}=700 \mathrm{~mm}, \mathrm{~d}=611 \mathrm{~mm}$
$M_{-} u=446.2 * 2.80 *(0.5)^{\wedge} 2 / 2=156.17 \mathrm{KN} . \mathrm{m}$
$\mathrm{m}=\mathrm{f} y /(0.85 \mathrm{fc})=420 /(0.85 * 24)=20.59$.
$\mathrm{R}_{-} \mathrm{n}=\mathrm{M}_{-} \mathrm{u} /\left(\emptyset \mathrm{b} * \mathrm{~d}^{\wedge} 2\right)=(156.17 * \llbracket 10 \rrbracket \wedge 6) /(0.9 * 2800 * \llbracket(611) \rrbracket \wedge 2)=0.17 \mathrm{MPa}$.
$\rho=1 / m\left(1-\sqrt{ }\left(1-\left(2 * R_{-} n * m\right) / f y\right)\right)$

$$
=1 / 20.59(1-\sqrt{ }(1-(2 * 20.59 * 0.17) / 420))=0.00041
$$

$A_{s}=\rho * b * d=0.00041 * 2800 * 611=701.428 \mathrm{~mm}^{2}$.

$$
\text { As_min }=0.0018 * \mathrm{~b} * \mathrm{~h}=0.0018 * 2800 * 700=3528 \mathrm{~mm} 2
$$

$\mathrm{As}_{\text {min }}=3528 \mathrm{~mm}^{2}>$ As $_{\text {req }}=701.428 \mathrm{~mm}^{2}$.
$\therefore A s=A s_{\min }=3528 \mathrm{~mm}^{2}$.
$\mathrm{n}=\mathrm{As}$ _req/ $\left(\mathrm{A} _\right.$bar $\left.\emptyset 14\right)=(3528) / 153.94=25.2$
\therefore Use $26 \Phi 14$
$\mathrm{S}=(2800-75 * 2-26 * 14) / 25=91.44 \mathrm{~mm}$
Step Sis the smallest of
$3 \mathrm{~h}=3 * 700=2100 \mathrm{~mm}$
450........control
$S=91.44<S_{-} \max =450 \ldots \ldots \ldots . . o k$

CITY CENTER (B) DESIGN

4.12 Design of Flat slab :

The design done by using SAFE program.

4.12.1 Load calculation:

Assume slab thickness 30 cm .

N $\mathbf{0}$	Material	Thickness cm	Quality Density KN/m ${ }^{3}$	Calculation		
	Slab	30	25	$0.30 \times 25=7.5$		
	Sand	7	17	$0.07 \times 17=1.19$		
	Mortar	2	22	$0.02 \times 22=0.44$		
	Tile	3	23	$0.03 \times 23=0.69$		
	Plaster	2	22	$0.02 \times 22=0.44$		
6	Partitions			2.38		
				$\Sigma=$	12.64	$\mathrm{KN} / \mathrm{m}^{2}$

Table (4-6) Calculation of the total dead load for flat slab.

4.12.2 Check for punching shear:-

Figure (4-23): Punching Shear Capacity Ratios / Shear Reinforcement for flat slab

As shown all ratios less than 1 , so we don't have punching reinforcement.
4.12.3 Design for bending moment:

Figure (4-24): moment distribution in x-direction

Figure (4-25): moment distribution in y-direction

The design of flat slab done by using Finite Element method.
Selected $\emptyset 14 / 15 \mathrm{~cm}$ in both direction for top reinforcement
Selected $\emptyset 14 / 15 \mathrm{~cm}$ in both direction for bottom reinforcement

Figure (4-26): Reinforcement for flat.
4.13 Design of column (C44):-

4.13.1 Load calculation:

DL=845 KN

$$
\mathrm{LL}=200 \mathrm{KN}
$$

$P_{u}=1333 \mathrm{KN} \quad P_{\mathrm{n}, \text { req }}=1333 / 0.65=2050.76 \mathrm{KN}$

Assume rectangular section with $\rho=1.67 \%>1 \%$
$P_{n}=0.8 \times \mathrm{Ag} \times\left(0.85 \times f c^{\prime}+\rho_{g} \times\left(f y-0.85 f c^{\prime}\right)\right)$
$2050.76=0.8 \times \operatorname{Ag} \times(0.85 \times 28+0.0167 \times(420-0.85 \times 28))$
$\mathrm{A}_{\mathrm{g}}=842.78 \mathrm{~cm}^{2}$

Use $25 \times 60 \mathrm{~cm}$ with $\mathrm{Ag}=1500 \mathrm{~cm}^{2}>\mathrm{A}_{\mathrm{g} \text {, req }}=842.78 \mathrm{~cm}^{2}$

4.13.2 Check slenderness effect:

Lu: Actual unsupported (unbraced) length.
K : effective length factor ($K=1$ for braced frame).

R: radius of gyration $=\sqrt{ }(I / A)=0.3 h$
$\mathrm{Lu}=4.3 \mathrm{~m}$
$M 1 / M 2=1$

In 25 cm - Direction

Klu/ $r<34-12(M 1 / M 2)<40$
$(1 \times 4.3) /(0.3 \times 0.25)=57.33>22 \quad=>$ long

In 60cm - Direction

$K l u / r<34-12(M 1 / M 2)$
$(1 \times 4.3) /(0.3 \times 0.6)=23.89>22 \Rightarrow$ Long

Long in x direction

Long in y direction

4.13.3 Calculation for reinforcement:

In $\mathbf{2 5 c m}$ - Direction
$\mathrm{E}_{\mathrm{c}}=4700 \times \sqrt{ } 28=24870.1 \mathrm{MPa}$

```
\(\oint_{\text {dns }}=(1.2 D\) (sustained) \() / P u=(1.2 * 845) / 1333=0.76\)
\(\mathrm{I}_{\mathrm{g}}=b \times\left(h \rrbracket \wedge 3 / 12=60 \times\left(25 \rrbracket \wedge 3 / 12=0.00781 \mathrm{~m}^{4}\right.\right.\)
\(E \mathrm{I}=(0.4 \times E c \times I) /(1+\beta d n s)=(0.4 \times 24870.1 \times 0.00781) /(1+0.76)=44.14 \mathrm{MN} . \mathrm{m}^{2}\)
\(\mathrm{P}_{\mathrm{c}}=\left(\pi^{\wedge} 2 \times E I\right) / \llbracket(K l u) \rrbracket \wedge 2\)
        \(=\left(\pi^{\wedge} 2 \times 44.1\right) / \llbracket(1.0 \times 4.3) \rrbracket \wedge 2\)
        \(=23.6 \mathrm{MN}\)
\(C m=0.6+0.4 \times(M 1 / M 2)=1\)
\(\alpha_{n s}=C m /(1-(P u) /(0.75 P c))=1 /(1-(1333) /(0.75 \times 23.6 \times 1000))=1.1<1.4\)
\(\mathrm{e}_{\text {min }}=15+0.03 \mathrm{~h}=15+0.03 \times 250=22.5 \mathrm{~mm}\)
\(e=e_{\text {min }} \times \&_{n s}=22.5 \times 1.15=25.875 \mathrm{~mm}\)
\(e / h=25.875 / 250=0.099<0.1 \ldots \ldots .(\mathrm{e}=0.082 \mathrm{~h}<0.1 \mathrm{~h})\)
```


In 60 cm - Direction

```
\(\mathrm{E}_{\mathrm{c}}=4700 \times \sqrt{ } 28=24870.1 \mathrm{MPa}\)
\(\oint_{\text {dns }}=(1.2 D(\) sustained \()) / P u=(1.2 * 845) / 1333=0.76\)
\(\mathrm{I}_{\mathrm{g}}=b \times\left(h \rrbracket \wedge 3 / 12=25 \times\left(60 \rrbracket \wedge 3 / 12=0.0045 \mathrm{~m}^{4}\right.\right.\)
\(\mathrm{EI}=(0.4 \times E c \times I) /(1+\beta d n s)=(0.4 \times 24870.1 \times 0.0045) /(1+0.76)=25.44 \mathrm{MN} . \mathrm{m}^{2}\)
\(\mathrm{P}_{\mathrm{c}}=\left(\pi^{\wedge} 2 \times E I\right) / \llbracket(K l u) \rrbracket \wedge 2\)
\(=\left(\pi^{\wedge} 2 \times 25.44\right) / \llbracket(1.0 \times 4.3) \rrbracket \wedge 2\)
\(=13.57 \mathrm{MN}\)
```

$C m=0.6+0.4 \times(M 1 / M 2)=1$
$\&_{n s}=C \mathrm{~m} /(1-(P u) /(0.75 P c))=1 /(1-(1333) /(0.75 \times 13.57 \times 1000))=1.15<1.4$
$\mathrm{e}_{\text {min }}=15+0.03 \mathrm{~h}=15+0.03 \times 600=33 \mathrm{~mm}$
$e=e_{\text {min }} \times \&_{\text {ns }}=33 \times 1.15=37.95 \mathrm{~mm}$
$e / h=37.95 / 600=0.063<0.1 \ldots \ldots .(\mathrm{e}=0.082 \mathrm{~h}<0.1 \mathrm{~h})$
\rightarrow Here we can solve this column as short tied column
$P_{n}=0.8 \times \operatorname{Ag} \times\left(0.85 \times \mathrm{fc}^{\prime}+{ }_{\mathrm{g}} \times\left(\right.\right.$ fy $\left.\left.-0.85 \mathrm{fc}^{\prime}\right)\right)$
$\mathrm{P}_{\mathrm{n}}=0.8 \times 250 \times 600 \times(0.85 \times 28+0.0167 \times(420-0.85 \times 28))$
$=3649.9 \mathrm{KN}>\mathrm{P}_{\mathrm{n}, \text { req }}=2050.76 \mathrm{KN} \mathrm{OK}$

4.13.4 Design of the tie reinforcement :

$\mathrm{S} \leq 6 \mathrm{db}$ (longitudinal bar diameter)
$\mathrm{S} \leq 48 \mathrm{dt}$ (tie bar diameter).
S \leq Least dimension.
spacing $\leq 16 \times \mathrm{d}_{\mathrm{b}}=16 \times 2.0=32 \mathrm{~cm}$
spacing $\leq 48 \times \mathrm{dt}=48 \times 1.0=48 \mathrm{~cm}$
spacing Seast.dim $=25 \mathrm{~cm} . .$. control
$20 \mathrm{~cm} \leq 25 \mathrm{~cm} \mathrm{ok}$

Useф10@20 cm

For column 5(c44)

C44 (25*60)

$\because \varnothing 20$

40 20
$\mathrm{L}=158$
${ }_{L} 10 \frac{102}{37}$

Fig. 4-27 :Reinforcement of column 44

4.14:- Design of Shear wall.(sw15)

(Figure 4-28:Moment and shear diagram)
$\mathrm{Fc}=28 \mathrm{MPa}$
$\mathrm{Fy}=420 \mathrm{MPa}$
$\mathrm{t}=25 \mathrm{~cm}$.shear wall thickness
$\mathrm{Lw}=6.20 \mathrm{~m}$,shear wall width
Hw_{1} for one wall $=3.00 \mathrm{~m}$
Hw_{2} for one wall $=5.1 \mathrm{~m}$ story height
Hw_{3} for one wall $=3.3 \mathrm{~m}$ story height

4.14.1: Design of shear

$\sum F x=V u=374 K N$

4.14.2: Design of the Horizontal reinforcement:

The critical Section is the smaller of:
$\frac{l w}{2}=\frac{6.20}{2}=3.10 \mathrm{~m}$
$\frac{h w}{2}=\frac{21.30}{2}=10.65 \mathrm{~m}$
storyheigh $(H w)=3.30 \mathrm{~m} \ldots \ldots \quad$ control
$d=0.8 \times l w=0.8 \times 6.20=4.96 \mathrm{~m}$

$$
\begin{aligned}
\emptyset V_{\max } & =\emptyset \frac{5}{6} \overline{f_{c}^{\prime}} h d \\
& =0.75 * 0.83 * \sqrt{28} * 250 * 4960 * 10^{-3}=4084.5 \mathrm{KN}>V_{u}
\end{aligned}
$$

V_{c} is the smallest of :
$1-V_{c}=\frac{1}{6} \quad \overline{f_{c}^{\prime}} h d=\frac{1}{6} \sqrt{28} * 250 * 4960 * 10^{-3}=1093.58 \mathrm{KN}$

$$
\begin{aligned}
& 2-V_{c}=0.27 \overline{f_{c}^{\prime}} h d+\frac{N_{u} d}{4 l_{w}}=0.27 \sqrt{28} * 250 * 4960 * 10^{-3}+0=1771.6 \mathrm{KN} \\
& 3-V_{c}=0.05 \overline{f_{c}}+\frac{l_{w} 0.1 \overline{f_{c}^{\prime}}+0.2 \frac{N_{u}}{l_{w} h}}{\frac{M_{u}}{V_{u}}-\frac{l_{w}}{2}} h d \\
& \quad=0.05 \sqrt{28}+\frac{6.200 .1 \sqrt{28}+0}{6.70} 250 * 4960=935.25 \mathrm{KN} \ldots \mathrm{cont}
\end{aligned}
$$

$\frac{M_{u}}{V_{u}}-\frac{l_{w}}{2}=\frac{2308.8}{374}-\frac{6.20}{2}=3.07$
$\mathrm{Vu}=374 \mathrm{KN}<\frac{1}{2} * 0.75 * 935.25=380.8 \mathrm{KN} \quad$ No need reinforcement

- Minimum shear reinforcementis required:

Take ${ }^{\rho}=0.0025$

- Maximum spacing is the least of :
$\frac{L w}{5}=\frac{6200}{5}=1240 \mathrm{~mm}$
$3 * \mathrm{~h}=3 * 250=750 \mathrm{~mm}$
450 mm Control

Try $\phi 12$ ($\mathrm{As}=\mathbf{1 1 3 . 1} \mathbf{~ m m 2) ~ f o r ~ t w o ~ l a y e r s ~}$
$\rho=\frac{A v h}{h^{*} S 2}=\frac{2 * 113.1}{250 * S 2}=0.0025$
$\mathbf{S 2}=455.1 \mathrm{~mm}, \phi 12 @ 250 \mathrm{~mm}$
\rightarrow useф $12 @ 250 \mathrm{~mm}$ in two layer

4.14.3: Design for Vertical reinforcement:-

$\frac{h_{w}}{L_{w}}=\frac{21.30}{6.20}=3430 \mathrm{~mm}$
$\frac{L w}{3}=\frac{6200}{3}=2066.67 \mathrm{~mm}$
450 mm \qquad Control
$3 * \mathrm{~h}=3 * 250=750 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{nv}}=0.0025 * S * \mathrm{~h}$
Try 12 ($\mathbf{A s}=113.1 \mathbf{m m 2}$)
$113.1 * 2=0.0025 * S * 250$
S=452.4
Select $12 @ 250 \mathrm{~mm}$ In tow layer.

4.14.4: Design of bending moment (uniformly distribution flexural

 reinforcement) :$A_{s t}=\frac{6200}{250} * 2 * 113.1=5609.76 \mathrm{~mm}^{2}$
$w=\frac{A_{s t}}{L_{w} h} \frac{f_{y}}{f_{c}^{\prime}}=\frac{5609.7}{6200 * 250} \frac{420}{28}=0.05$
$\alpha=\frac{P_{u}}{l_{w} h f_{c}^{\prime}}=0$
$\frac{C}{l_{w}}=\frac{w+\alpha}{2 w+0.85 \beta_{1}}=\frac{0.05+0}{2 * 0.05+0.85 * 0.85}=0.06$
$\emptyset M_{n}=\emptyset 0.5 A_{s t} f_{y} l_{w}\left(1+\frac{P_{u}}{A_{s t} f_{y}}\right)\left(1-\frac{c}{l_{w}}\right.$

$$
=0.90 .5 * 5609.7 * 420 * 6200(1+0)(1-0.0806)=6043 K N . m>M u
$$

Select $12 @ 250 \mathrm{~mm}$ for vertical reinforcement .
4.15 Design of the Mat Foudation reinforcement :-

Design done by using SAFE.

4.15.1 Load calculation:

Density of soil $=18 \mathrm{KN} / \mathrm{m}^{3}$
Allowable soil pressure $=400 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{Fc}^{\prime}=28 \mathrm{Mpa}$
Fy $=420 \mathrm{Mpa}$
Cover $=7.5 \mathrm{~cm}$
Take the reaction of columns and walls from ETABS.

4.15.2 Determine the soil pressure:

Subgrade Modulus of soil $=120 * 400=48000 \mathrm{KN} / \mathrm{m}^{3}$

Figure (4-29): Soil pressure diagram

Max pressure $=300 \mathrm{KN} / m^{2}<400 \mathrm{KN} / m^{2}$

4.15.3 Check for punching shear:-

Figure (4-30): Punching Shear Capacity Ratios / Shear Reinforcement for flat
As shown aır ranos ress man 1 , so we con inave puncning remiorcement .

4.15.4 Design for bending moment:

Figure (4-31): moment distribution in x-direction

Figure (4-32): moment distribution in y-direction

Section $A-A$

Figure (4-33): reinforcement of mat foundation .

The design of mat foundation by using Finite Element method
Selected basic mesh $\square 16 / 10 \mathrm{~cm}$ for top reinforcement
Selected basic mesh $\square 16 / 10 \mathrm{~cm}$ for bottom reinforcement

- 4.16 .4 : Design of weld:

The calculation of weld based on the following :

1) Fillet weld is used.
2) The plates are $\mathrm{A} 36(\mathrm{fy}=36 \mathrm{ksi}, \mathrm{Fu}=58 \mathrm{ksi})$
3) The plat thickness is $(t=0.5 \mathrm{in})$
4) The electrodes having $F_{E x x}=70 \mathrm{ksi}$
5) The shielded metal arc welding (SMAW) is used.
$1^{\text {st }}$) Design of weld between the vertical member and the Gusset plate in the corners of the truss:
The section of the vertical member is angle ($\mathrm{L} 3 * 3 * 3 / 8$), $\mathrm{Ag}=2.11 \mathrm{in}^{2}$, $\mathrm{y}=0.884$. The value of Max. compression in the vertical member is $\mathrm{Vu}=20.662 \mathrm{Kips}$.

Max. weld size $\left(\mathrm{a}_{\max }\right)=t-\frac{1}{16}=\frac{3}{8}-\frac{1}{16}=\frac{5}{16} \mathrm{in}$
Min. Weld size $\left(\mathrm{a}_{\text {min }}\right)=\frac{3}{16}$ in
Use weld size (a) $=\frac{1}{4}$ in

- Design strength of weld :
$\emptyset \times$ Rnw $=\emptyset \times$ t $\times 0.6 \times$ FExx
$\varnothing \times$ Rnw $=0.75 \times(0.707 \times 1 / 4) \times 0.6 \times 70=5.57 \mathrm{kips}$
- Design strength of base material :
$\emptyset \times \operatorname{Rn}=\emptyset \times(0.6 \times f y) \times \mathrm{t}=1.0 \times 0.6 \times 36 \times \frac{3}{8}=8.1 \mathrm{kips}>5.57 \mathrm{kips} \ldots . \mathrm{ok}$
Or
(Figure 4-40) weld between vertical member and gusset plate)
$\emptyset \times \mathrm{Rn}=\emptyset \times(0.6 \times \mathrm{fu}) \times \mathrm{t}=0.75 \times 0.6 \times 58 \times \frac{3}{8}=9.79 \mathrm{kips}>5.57 \mathrm{kips} \ldots . \mathrm{ok}$
$f 1=5.57 * 3=16.71 \mathrm{kips}$
$f 2=20.662-16.71=3.952 \mathrm{kips}$

$$
l w 2=\frac{f 2}{\emptyset \times \mathrm{Rnw}}=\frac{3.952}{5.57}=0.71 \mathrm{in} \ldots . . \text { use } 1.0 \mathrm{in}
$$

$\left.2^{\text {nd }}\right)$ Design of weld between the diagonal member and the gusset plate:

- The section of the diagonal member is angel ($\mathrm{L} 3 * 3 * 3 / 8$)
- For the vertical member use the same size and dimension of weld for the previous vertical member.

The value if Max. Tension in the diagonal member is $\mathbf{T u}=\mathbf{5 1 . 1} \mathbf{k i p}$.
Max. weld size $\left(\mathrm{a}_{\max }\right)=t-\frac{1}{16}=\frac{3}{8}-\frac{1}{16}=\frac{5}{16} \mathrm{in}$
$\operatorname{Min}=$ Weld $\operatorname{size}\left(\mathrm{a}_{\text {min }}\right)=\frac{3}{16} \mathrm{in}$
Use weld size $(a)=\frac{1}{4}$ in

(Figure 4-41:weld between diagonal member and gusset plate)

- Design strength of weld :
$\emptyset \times$ Rnw $=\varnothing \times$ te $\times 0.6 \times$ FExx
$\emptyset \times$ Rnw $=0.75 \times 0.707 \times{ }^{1} 4 \times 0.6 \times 70=5.57 \mathrm{kips}$
- Design strength of base material :
$\emptyset \times \mathrm{Rn}=\varnothing \times(0.6 \times \mathrm{fy}) \times \mathrm{t}=1.0 \times 0.6 \times 36 \times \frac{3}{8}=8.1 \mathrm{kip}>5.57 \mathrm{kip} \ldots . . \mathrm{ok}$
Or
$\emptyset \times \mathrm{Rn}=\varnothing \times(0.6 \times \mathrm{fu}) \times \mathrm{t}=0.75 \times 0.6 \times 58 \times \frac{3}{8}=9.79 \mathrm{kip}>5.57 \mathrm{kip} \ldots . \mathrm{ok}$

$$
\begin{gathered}
F 3=3 * 5.57=16.71 \text { kips } \\
\sum M \text { at } F 1=0 \\
=16.71 * 1.5+F 2 * 3-51.1 *(3-0.884)=0
\end{gathered}
$$

$\mathrm{F} 2=27.69 \mathrm{kips}$
$\mathrm{F} 1=51.1-16.71-27.69=6.7 \mathrm{kips}$

$$
\begin{aligned}
& l w 1=\frac{f 1}{\emptyset \times \mathrm{Rnw}}=\frac{6.7}{5.57}=1.21 \mathrm{in} \ldots . . \text { use } 1.5 \mathrm{in} \\
& l w 2=\frac{f 2}{\emptyset \times \mathrm{RnW}}=\frac{27.69}{5.57}=4.97 \mathrm{in} \ldots . . \text { use } 5 \mathrm{in}
\end{aligned}
$$

Check for rupture

$$
\begin{gathered}
L=\frac{(5+1.5)}{2}=3.25 \\
U=1-\frac{x}{l}=1-\frac{0.884}{3.25}=0.728 \\
\emptyset t P n=0.75 * f u * \text { Ae } \\
\emptyset t P n=0.75 * 58 * 0.728 * 2.11=66.82 \text { kips }>51.1 \text { kips } \ldots . . \text { ok }
\end{gathered}
$$

$\left.3^{\text {rd }}\right)$ Design of weld between the bottom member and the gusset plate:
The section of the bottom member is angel (W6*12)
$11 / 2.54=4.33$ in

$$
\begin{gathered}
R u=\overline{(R v+R y)^{2} *(R h+R X)^{2}} \\
R v=\frac{P y}{L}=0 \\
R h=\frac{P x}{L}=\frac{20.662}{14.76 * 2}=0.7 \mathrm{kip} / \mathrm{in}
\end{gathered}
$$

$I p=2 * \frac{14.76^{2}}{12}=535.93$ in 3

(Figure 4-42weld between gust plate and bottom member)

$$
\begin{gathered}
R x=\frac{M * Y}{I p}=0 \ldots . y=0 \\
R y=\frac{M * x}{I p}=\frac{20.662 *\left(\frac{4.33}{2}\right.}{535.93}=0.1
\end{gathered}
$$

$R u=\overline{(0+0.1)^{2}+(0.7+0)^{2}}=0.71 \mathrm{kip} / \mathrm{in}$

$$
\varnothing * R n w=R u
$$

$0.75 *(0.707 \mathrm{a}) * 0.6^{*} 70=0.71 \ldots . . \mathrm{a}=0.032$ in

$$
\text { Take } a=\frac{2}{16} \text { in }
$$

