

# Design A Mechanical Systems for Palestinian Embassy in Amman-Jordan

By

Diaa Hiji

Supervisor

Eng.Kazem Osaily

Submitted to the College of Engineering In partial fulfillment of the requirements for the degree of

Bachelor in HVAC/R Engineering

Palestine Polytechnic University Jan 2015

Palestine Polytechnic University Hebron-Palestine College of Engineering & Technology Mechanical Engineering Department

**Project Name** 

Design A Mechanical Systems for Palestinian Embassy in

Amman-Jordan

**Done By** 

Diaa Hiji

According to the project supervisor and according to the agreement of the testing committee members, this project is submitted to the Department of Mechanical Engineering at college of engineering and technology in partial fulfillment of requirement of (B.SC) degree in engineering of refrigeration and air conditioning.

Supervisor signature

•••••

Examine committee signature

.....

**Department Head signature** 

••••••

#### Dedication

الى من ربياني صغيرا الى كل من علمني واخذ بيدي وانار لي طريق العلم والمعرفة الى كل من شجعني في رحلتي نحو التميز والنجاح الى كل من ساندني ووقف بجانبي الى كل من قال لي: لا فكان سببا في تحفيزي

الى من ضاقت السطور من ذكرها فوسعها قلبي (Asmaa Abu Arquob )

الى من ضحوا بحريتهم من اجل حريتنا الى من هم اكرم منا جميعا الى كل من قال: لا اله الا الله ... مجد رسول الله

#### Acknowledgement

My thanks go first to my advisor Eng. Kazem Osaily, his guidance and support made this work possible.

I wish to thank Dr. Ishaq seder, Eng. Mohammed Awad. I sincerely believe that this work would not without their inspiration.

And, finally, my thanks go to all lecturers & doctors, engineers, and laboratory supervisors in PPU. Their effort and their nice dealing with me improved me characters to become successful engineer in the future.

#### Abstract

This project deals with the design of mechanical systems for an embassy in Amman city which consists of four stories with a total area of 2864  $m^2$ . So that the embassy serves thousands of Palestinian people living in Jordan.

Mechanical systems include heating, ventilation and air conditioning (HVAC systems), water supply, drainage system and firefighting system.

This project is done as an applied for several engineering courses which has been studies in our Specialization.

This project discus briefly theory needed for the design of mechanical systems. Design output is then displaced on drawing. These drawings will include: piping networks for water distribution, drain and sewage and firefighting system. Also drawing will detail duct systems and different equipment required for the embassy.

يهدف هذا المشروع الى تصميم نظام ميكانيكي متكامل للسفارة الفلسطينية في الاردن, حيث يتواجد الالاف من الفلسطينيين يعيشون ويعملون هناك.

النظام الميكانيكي المراد تصميمه يشمل التدفئة, التكييف, والتهوية, نظام تزويد المياه (الساخنة والباردة), نظام صرف صحى متكامل, نظام تصريف مياه الامطار, اضافة الى ذلك نظام اطفاء الحريق.

نظام التدفئة والتكييف نظام مركب يتكون من مشعات حرارية او ملفات (كويلات) مركبة عليها مراوح لدفع الهواء وتمريره عليها, حيث ان النظام هو نظام مائي كامل يزود الملفات بالمياه الساخنة من بويلر والمياه الباردة تصل من شيلر.

يعتبر هذا المشروع تطبيق لما تم تعلمه ودر استه من متطلبات دائرة الهندسة الميكانيكية و هندسة التكييف والتبريد, ويحقق المشروع النظريات والمبادئ الهندسية المطبقة في تصميم الانظمة والخدمات الميكانيكية للأبنية.

مخرجات المشروع تتحقق في الحسابات المرفقة والمخططات التي تم انجاز ها حيث ان هذه المخططات تحوي شبكات الانابيب للمياه الساخنة والباردة والصرف الصحي والامطار وشبكات التدفئة والتكييف والدكتات المرافقة بالإضافة الى نظام اطفاء الحريق.

# List of Contents:

|     | Dedication                                      | II   |
|-----|-------------------------------------------------|------|
|     | Acknowledgement                                 | III  |
|     | Abstract                                        | IV   |
|     | List of Contents                                | V    |
|     | List of Tables                                  | VIII |
|     | List of Figures                                 | Х    |
|     | Chapter One: Introduction                       | 1    |
| 1.1 | Project Outline                                 | 2    |
| 1.2 | Scope of Project                                | 3    |
| 1.3 | Project Objectives                              | 3    |
| 1.4 | Project Benefits                                | 3    |
| 1.5 | Embassy Description                             | 3    |
| 1.6 | Budget                                          | 4    |
| 1.7 | First Semester Time Table                       | 5    |
| 1.8 | Second Semester Time Table                      | 5    |
|     | Chapter Two: Human Comfort                      | 6    |
| 2.1 | Human Comfort                                   | 7    |
|     | 2.1.1 Factors Affecting Human Comfort           | 8    |
|     | 2.1.2 ASHRAE Comfort Chart                      | 9    |
|     | 2.1.3 Comfort Condition Inside Embassy          | 10   |
|     | 2.1.4 Outside Design Condition                  | 12   |
| 2.2 | Over All Heat Transfer Coefficient "U"          | 13   |
|     | Chapter Three: HVAC System                      | 16   |
| 3.1 | HVAC Systems Classifications                    | 17   |
|     | 3.1.1 Fan-Coil Unit & Fan-Coil With Duct        | 17   |
|     | 3.1.2 Split Unit                                | 18   |
| 3.2 | Cooling Load Estimations                        | 18   |
|     | 3.2.1 Heat Gain Through Sunlit Walls And Roofs  | 18   |
|     | 3.2.2 Heat Gain Through Inside Walls and Ground | 19   |

|                                                           | 3.2.3 Heat Gain Due To Glass Windows                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                      |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | 3.2.4 Convection Heat Gain                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                     |
|                                                           | 3.2.5 Heat Gain Due to Occupants                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                     |
|                                                           | 3.2.6 Heat Gain Due to Lights                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                     |
|                                                           | 3.2.7 Heat gain Due to infiltration                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                     |
|                                                           | 3.2.8 Heat Gain Due to Ventilation                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                     |
| 3.3                                                       | 3 Heating Load Estimations                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                     |
|                                                           | 3.3.1 Heat Loss by Infiltration                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                                     |
| 3.4                                                       | 4 Sample of Heating and Cooling Load                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                                     |
|                                                           | 3.4.1 Heating Load Calculation                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                                                                     |
|                                                           | 3.4.2 Cooling Load Calculation                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                                                                     |
| 3.5                                                       | 5 Total Cooling And Heating Loads For Embassy                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                     |
| 3.6                                                       | 6 Sample Of Calculations For Fan Coil System                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                     |
| 3.7                                                       | 7 Total Calculated Data For (FCU) In Embassy                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                                     |
| 3.8                                                       | 8 Sample Of Calculations For Fan Coils With Duct In                                                                                                                                                                                                                                                                                                                                                                           | n Basement Floor 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                     |
| 3.9                                                       | 9 Total Calculated Data For Fan Coil With Duct In E                                                                                                                                                                                                                                                                                                                                                                           | mbassy 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34                                                                                                                                                                     |
| 3.10                                                      | 10 Selections Of Other HVAC System Components                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                                                                                                                                                                     |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |
|                                                           | Chapter Four: Plumbing System                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>38</b>                                                                                                                                                              |
| 4.1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>38</b><br>39                                                                                                                                                        |
| 4.1<br>4.2                                                | 1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |
|                                                           | 1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39                                                                                                                                                                     |
|                                                           | <ol> <li>Introduction</li> <li>Calculations Hot And Cold demand</li> </ol>                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39                                                                                                                                                               |
|                                                           | <ol> <li>Introduction</li> <li>Calculations Hot And Cold demand</li> <li>4.2.1 Water Service Sizing</li> <li>4.2.2 Friction Method</li> </ol>                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89<br>89<br>89                                                                                                                                                         |
| 4.2                                                       | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39<br>39<br>41                                                                                                                                                   |
| <ul><li>4.2</li><li>4.3</li></ul>                         | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39<br>39<br>41                                                                                                                                                   |
| <ul><li>4.2</li><li>4.3</li></ul>                         | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39<br>39<br>41<br>44                                                                                                                                             |
| <ul><li>4.2</li><li>4.3</li></ul>                         | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39<br>39<br>41<br>44<br>46                                                                                                                                       |
| <ul><li>4.2</li><li>4.3</li></ul>                         | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39<br>39<br>39<br>41<br>44<br>46<br>46                                                                                                                                 |
| <ul><li>4.2</li><li>4.3</li></ul>                         | <ol> <li>Introduction</li> <li>Calculations Hot And Cold demand</li> <li>4.2.1 Water Service Sizing</li> <li>4.2.2 Friction Method</li> <li>Drainage Piping sizing</li> <li>Sanitary Drainage System</li> <li>4.4.1 Manhole Design</li> <li>4.4.2 Manholes Calculations</li> <li>4.4.3 Selection The Diameter And The Slope O</li> </ol>                                                                                      | 3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5 The Drainage Pipe System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39<br>39<br>39<br>41<br>44<br>46<br>46                                                                                                                                 |
| <ul><li>4.2</li><li>4.3</li></ul>                         | <ol> <li>Introduction</li> <li>Calculations Hot And Cold demand.</li> <li>4.2.1 Water Service Sizing.</li> <li>4.2.2 Friction Method.</li> <li>Drainage Piping sizing.</li> <li>Sanitary Drainage System.</li> <li>4.4.1 Manhole Design.</li> <li>4.4.2 Manholes Calculations.</li> <li>4.4.3 Selection The Diameter And The Slope O</li> <li>4.4.4 Drainage Piping Fill.</li> <li>4.4.5 Drainage Piping Velocity.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39<br>39<br>41<br>44<br>46<br>46<br>48<br>49                                                                                                                     |
| 4.2<br>4.3<br>4.4                                         | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>39<br>41<br>44<br>46<br>46<br>48<br>49<br>49                                                                                                                     |
| <ul><li>4.2</li><li>4.3</li><li>4.4</li><li>5.1</li></ul> | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               | 3         3         3         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>39</li> <li>39</li> <li>39</li> <li>41</li> <li>44</li> <li>46</li> <li>46</li> <li>46</li> <li>48</li> <li>49</li> <li>49</li> <li>50</li> <li>51</li> </ul> |
| 4.2<br>4.3<br>4.4                                         | <ol> <li>Introduction</li></ol>                                                                                                                                                                                                                                                                                                                                                                                               | 3         3         3         3         4         4         4         4         4         4         4         4         4         4         4         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 <td< td=""><td>39<br/>39<br/>41<br/>44<br/>46<br/>46<br/>48<br/>49<br/>49</td></td<> | 39<br>39<br>41<br>44<br>46<br>46<br>48<br>49<br>49                                                                                                                     |

| 5.4  | Types of Firefighting Systems                    | 52 |
|------|--------------------------------------------------|----|
|      | 5.4.1 Portable Fire Extinguishers                | 52 |
|      | 5.4.2 Installed Firefighting Systems             | 54 |
| 5.5  | FM 200 Firefighting Systems                      | 55 |
|      | 5.5.1 Physical and Chemical Properties of FM 200 | 55 |
|      | 5.5.2 Advantages and Disadvantages of FM 200     | 56 |
| 5.6  | Sequence of Operations of FM 200 Systems         | 56 |
| 5.7  | Clean Agent Estimation                           | 57 |
| 5.8  | Sample of Weight for FM200                       | 60 |
| 5.9  | Total Weight of FM200 for Embassy                | 60 |
| 5.10 | Selections of other FM200 System Components      | 63 |

| References                    | 66 |
|-------------------------------|----|
| Appendix A                    | 67 |
| Appendix B                    | 76 |
| Catalogues, Charts and Tables | 82 |

| List of Tables: |                                                                      |      |  |  |  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|
| Table Number    | Description                                                          | Page |  |  |  |  |  |  |  |  |
|                 | Chapter One                                                          |      |  |  |  |  |  |  |  |  |
| Table 1.1       | Budget One                                                           | 4    |  |  |  |  |  |  |  |  |
| Table 1.2       | Time Table 1 <sup>st</sup> semester                                  | 5    |  |  |  |  |  |  |  |  |
| Table 1.3       | Time Table 2 <sup>nd</sup> semester                                  | 5    |  |  |  |  |  |  |  |  |
|                 | Chapter Two                                                          |      |  |  |  |  |  |  |  |  |
| Table 2.1       | Indoor Design Conditions                                             | 10   |  |  |  |  |  |  |  |  |
| Table 2.2       | Overall Heat Transfer<br>Coefficients                                | 13   |  |  |  |  |  |  |  |  |
|                 | Chapter Three                                                        |      |  |  |  |  |  |  |  |  |
| Table 3.1       | HVAC systems<br>classifications                                      | 17   |  |  |  |  |  |  |  |  |
| Table 3.2       | Heat Gain Through Sunlit<br>Walls and Roof                           | 25   |  |  |  |  |  |  |  |  |
| Table 3.3       | Heat Gain Due To Glass<br>Window                                     | 25   |  |  |  |  |  |  |  |  |
| Table 3.4       | Total cooling and heating<br>loads for basement floor                | 26   |  |  |  |  |  |  |  |  |
| Table 3.5       | Total cooling and heating<br>loads for ground floor                  | 27   |  |  |  |  |  |  |  |  |
| Table 3.6       | Total cooling and heating<br>loads for first floor                   | 27   |  |  |  |  |  |  |  |  |
| Table 3.7       | Total cooling and heating<br>loads for second floor                  | 28   |  |  |  |  |  |  |  |  |
| Table 3.8       | calculated data for (FCU) for<br>ground floor due to cooling<br>load | 29   |  |  |  |  |  |  |  |  |
| Table 3.9       | Selection Data for Fan Coils<br>Units and Grills in Ground<br>Floor  | 30   |  |  |  |  |  |  |  |  |
| Table 3.10      | Calculated Data for (FCU)<br>for First Floor due to<br>Cooling Load  | 31   |  |  |  |  |  |  |  |  |
| Table 3.11      | Selection Data for Fan Coils<br>Units and Grills in First<br>Floor   | 31   |  |  |  |  |  |  |  |  |
| Table 3.12      | Calculated Data for (FCU)<br>for Second Floor due to<br>Cooling Load | 32   |  |  |  |  |  |  |  |  |
| Table 3.13      | Selection Data for Fan Coils<br>Units and Grills in Second<br>Floor  | 33   |  |  |  |  |  |  |  |  |
| Table 3.14      | B1 at Ground Floor with Duct<br>and Grills Specifications            | 34   |  |  |  |  |  |  |  |  |

| D10 CD I                     | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                            | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and grills specifications    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B1 Summary of Ducts and      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| its Fan coil types at ground |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| floor                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B2 &B17 at ground floor      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| with duct and grills         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chapter Four                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WSFU for basement floor      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WSFU for ground floor        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WSFU for first floor         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WSFU for second floor        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sizing pipe for cold water   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sizing pipe for hot water    | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dfu for basement floor       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dfu for ground floor         | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dfu for first floor          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dfu for vertical stack       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Manholes Calculations        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chapter Five                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| physical properties of       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FM200                        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | B1 Summary of Ducts and<br>its Fan coil types at ground<br>floorB2 &B17 at ground floor<br>with duct and grills<br>specificationsB2 &B17 Summary of<br>Ducts and its Fan coil types<br>at ground floorC2 at first floor with duct<br>and grills specificationsC2 Summary of Ducts and<br>its Fan coil types at first<br>floorC16 at first floor with duct<br>and grills specificationsC16 at first floor with duct<br>and grills specificationsC16 Summary of Ducts and<br>its Fan coil types at first<br>floorC16 Summary of Ducts and<br>its Fan coil types at first<br>floorWSFU for basement floorWSFU for basement floorWSFU for first floorWSFU for first floorWSFU for second floorsizing pipe for cold watersizing pipe for hot waterdfu for ground floordfu for ground floordfu for second floordfu for second floordfu for second floordfu for ground floordfu for second floordfu for second floordfu for second floordfu for pround floordfu for ground floordfu for ground floordfu for second floor </td |

| Table 5.2  | chemical properties of<br>fm200                      | 55 |
|------------|------------------------------------------------------|----|
| Table 5.3  | maximum nozzle straight<br>line distances            | 59 |
| Table 5.4  | relation between pipe<br>diameter and flow rate      | 59 |
| Table 5.5  | total weight of FM200 for<br>basement floor (ZONE 1) | 60 |
| Table 5.6  | total weight of FM200 for<br>ground floor (ZONE 2)   | 61 |
| Table 5.7  | total weight of FM200 for<br>ground floor (ZONE 3)   | 61 |
| Table 5.8  | total weight of FM200 for<br>first floor (ZONE 4)    | 62 |
| Table 5.9  | total weight of FM200 for<br>first floor (ZONE 5)    | 62 |
| Table 5.10 | total weight of FM200 for<br>second floor (ZONE 6)   | 62 |
| Table 5.11 | total weight of FM200 for<br>second floor (ZONE 7)   | 63 |

# List of Figure

| Figure Number | Description                  | Page |  |  |  |  |  |  |  |  |  |  |
|---------------|------------------------------|------|--|--|--|--|--|--|--|--|--|--|
| Chapter Two   |                              |      |  |  |  |  |  |  |  |  |  |  |
| Figure 2-1    | Comfort Zone For Operating   | 10   |  |  |  |  |  |  |  |  |  |  |
| _             | And Temperature And          |      |  |  |  |  |  |  |  |  |  |  |
|               | Relative Humidity            |      |  |  |  |  |  |  |  |  |  |  |
| Chapter Five  |                              |      |  |  |  |  |  |  |  |  |  |  |
| Figure 5-1    | The Fire Triangle            | 51   |  |  |  |  |  |  |  |  |  |  |
| Figure 5-2    | Types of Fires as Classified | 52   |  |  |  |  |  |  |  |  |  |  |

# **CHAPTER ONE**

# **INTRODUCTION**

# CHAPTER 1

# **1.1 Project Outline:**

# **Chapter One:-**

Includes the overview about project, project objectives and benefits.

# **Chapter Two:-**

Includes comfort conditions inside embassy, psychometric characteristics, heat transfer through building and calculation of the overall heat transfer coefficients for all structures of embassy.

### **Chapter Three:-**

Includes overview about HVAC systems, heating system and heating load calculation procedures also the sources of heat loss inside embassy. It contains air conditioning system and how to calculate cooling load from all sources of heat gain inside embassy and duct design and finally selection of equipment.

# **Chapter Four:-**

Includes overview about plumbing systems, water distribution system (cold and hot water) and how potable water shall be distributed inside embassy by using suitable pipes and how the pipes could be designed, also this chapter contains the procedures to calculate the required quantity of potable water for daily usage to know the quantity of tanks that required to store this quantity, designing the storm and rain water drainage system.

# **Chapter Five:-**

Includes overview about firefighting system, calculation and distribution and drawing system on different facilities.

### **1.2 Scope of Project:**

The scope of the project is to deal with the design of mechanical systems, This includes the following main topics:

- 1) Designing of HVAC system for building.
- 2) Designing and overview about plumbing systems, water distribution system.
- 3) Designing and calculation of firefighting system for building.

# **1.3 Project Objectives:**

- The main objectives of this project is to study criteria for designing mechanical systems.
- Design domestic water system and design grid of pipes to sewage and drainage systems.
- 3) Design HVAC system for all floors.
- 4) Design firefighting system for all floors.

#### **1.4 Project Benefits:**

- The main benefit is to fulfill the graduation requirements of Palestine Polytechnic University, and be familiar with all mechanical design of system installed in building to be ready in working in this field after graduation.
- Embassy form the important mechanical design because it needs special care to make inside climate more comfortable and healthier, so this field was chosen to gain more in designing mechanical systems.

#### **1.5 Embassy Description:**

The embassy named "Palestinian Embassy in Jordan" is located in Amman city which is planned to service thousands of Palestinian community living in Jordan. It contains consists of four stories, with a total area of 2864 (m<sup>2</sup>). And it contains the following administration departments:-

- 1) Mechanical and electrical services department.
- 2) Consular, Cultural ,Passports departments.
- 3) Economic and management department.
- 4) Political and military department.

The embassy also has the following departments:-

- 1) Secretary department.
- 2) Waiting and reception department.
- 3) Meeting department.
- 4) Security department.
- 5) Secret rooms.
- 6) Archive department.

In addition to these departments, the embassy contains other service departments such as maintenance, food, laundry, stores, theater, and offices.

# 1.6 Budget:

| Task             | Cost (JD) |
|------------------|-----------|
| Using Internet   | 10        |
| Printing Papers  | 120       |
| Reprinting Paper | 20        |
| Buying Books     | 10        |
| Total            | 160       |

Table 1.1 Budget One.

# **1.7 First Semester Time Table:**

|              |   |   |   |   |   |   |   |   | aure |    |    |    |    |    |    |    |
|--------------|---|---|---|---|---|---|---|---|------|----|----|----|----|----|----|----|
| Week         | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9    | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| Task         |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Select       |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Project      |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Name         |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Gather       |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Information  |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Writing      |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Introduction |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Air          |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Conditioning |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| And Heating  |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| System       |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Plumping     |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Systems      |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Printing     |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |
| Final Copy   |   |   |   |   |   |   |   |   |      |    |    |    |    |    |    |    |

Table 1.2 Time table.

# **1.8 Second Semester Time Table:**

| Table | 13  | Time   | table  |
|-------|-----|--------|--------|
| ruore | 1.5 | 1 mile | tuore. |

| Week<br>Task                                       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|----------------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| Information<br>Gathering                           |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Duct Design<br>Calculations                        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Drawing<br>Planes &<br>Selection Of<br>Equipment's |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Firefighting<br>System                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Printing<br>Final Copy                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

# **CHAPTER TWO**

# **HUMAN COMFORT**

# CHAPTER 2

# 2.1 Human Comfort

The process of comfort heating and air conditioning is simply a transfer of energy from one substance to another. This energy can be classified as either sensible or latent heat energy.

**Sensible Heat** is heat energy that, when added to or removed from a substance, results in a measurable change in dry-bulb temperature.

Latent Heat content of a substance are associated with the addition or removal of moisture. Latent heat can also be defined as the "hidden" heat energy that is absorbed or released when the phase of a substance is changed. For example, when water is converted to steam, or when steam is converted to water.

The necessity for comfort air conditioning stems from the fact that the metabolism of the human body normally generates more heat than it needs. This heat is transferred by convection and radiation to the environment surrounding the body. The average adult, seated and working, generates excess heat at the rate of approximately 450 Btu/hr [132 W]. About 60% of this heat is transferred to the surrounding environment by convection and radiation, and 40% is released by perspiration and respiration. As the level of physical activity increases, the body generates more heat in proportion to the energy expended. When engaged in heavy labor, as in a factory for example, the body generates 1.450 Btu/hr [425 W]. At this level of activity, the proportions reverse and about 40% of this heat is transferred by convection and radiation and 60% is released by perspiration and respiration.

In order for the body to feel comfortable, the surrounding environment must be of suitable temperature and humidity to transfer this excess heat. If the temperature of the air surrounding the body is too high, the body feel uncomfortably warm. The body responds by increasing the rate of perspiration in order to increase the heat loss through evaporation of body moisture. Additionally, if the surrounding air is too humid, the air is nearly saturated and it is more difficult to evaporate body moisture. If the temperature of the air surrounding the body is too low, however, the body loses more heat than it can produce. The body responds by constricting the blood vessels of the skin to reduce heat loss.

#### 2.1.1 Factors Affecting Human Comfort

#### 1) Dry Air:

The dry air is a complex mixture of several gases such as nitrogen ,oxygen ,carbon dioxide and other gases such as argon ,carbon monoxide and neon .It does not contain water vapor .the presence of nitrogen in the air represents about 78% by volume while the oxygen occupies about 21% by volume .The other gases represent less than 1%.

#### 2) Moist Air:

The moist air is mechanical mixture of dry air and water vapor. Thus, when moist air is cooled, it loses moisture due to the condensation of the water vapor in the air.

#### 3) Humidity:

The moisture content of the air is referred to as its humidity .This moisture content can be expressed in terms of volume, masses, and moles of pressure.

#### 4)Saturation:

Saturation indicates the maximum amount of water vapor that can exist in one cubic meter of air at a given temperature .It does not depend on the mass and pressure of the air which may simultaneously exist in the same space.

#### 5) Partial Pressure:

Low pressure air-water vapor mixture follows closely the Gibbs-Dalton law of partial pressure. This law states that the total pressure of a mixture of gases is the sum of the partial pressure of each of its constituent gas occupies the entire volume and has the same temperature of the mixture.

6) Dry Bulb Temperature:

Dry bulb temperature is the air temperature that is measured by an accurate thermometer or thermocouple where the measuring instrument is shielded to reduce the effect of direct radiation.

#### 7) Wet Bulb Temperature:

The air temperature measured, using a wetted thermometer bulb, is known as wet bulb temperature .When unsaturated air passes over a wet thermometer bulb, water evaporates from the wetted bulb. Vaporizing latent heat is absorbed by the vaporizing water and thus causes the temperature of the wetted thermometer bulb to fall. The instrument used to measure the wet bulb temperature is called physchrometer.

8) Dew-Point Temperature:

The dew-point temperature is the saturation temperature corresponding to the partial pressure of the water vapor in the surrounding air. When the dew-point temperature is reached, condensation starts as the moist cooled at constant pressure .Further cooling results in more condensation of water vapor. Moreover, at the dew-point temperature or below, the air is said to be saturated because the air is mixed with the maximum possible amount of water vapor.

9) Humidity:

The humidity ratio w, is defined as the mass of water vapor associated with unit mass of dry air .

10) Relative Humidity:

The relative humidity is the ratio of actual partial pressure of the water vapor in the air  $p_v$ , partial pressure of the water vapor ( $\frac{P_v}{P_o}$ .).

#### 2.1.2 ASHRAE Comfort Chart:

Research studies have been conducted to show that, with a specific amount of air movement, thermal comfort can be produced with certain combinations of dry-bulb temperature and relative humidity. When plotted on a psychometric chart, these combinations form a range of conditions for delivering acceptable thermal comfort to 90% of the people in a space. This "comfort zone" and the associated assumptions are defined by ASHRAE Standard 55, Thermal Environmental Conditions for Human Occupancy. Determining the desired condition of the space is the first step in estimating the cooling and heating loads for the space. In this embassy, we will choose

24.5 °C [76°F] dry-bulb temperature,40% relative humidity and the air velocity less than 0.23 m/s as the desired indoor condition during the cooling season.

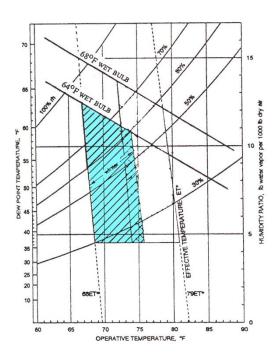



Figure 2.1 comfort zone for operating and temperature and relative humidity

### 2.1.3 Comfort Condition Inside Embassy:

All calculation (heating and cooling loads) will be made according to specified values for inside conditions of embassy design in Table 2.1 below refer to dry bulb temperature and relative humidity in both summer and winter seasons.

|               | Summer                                          |                  | Winter                                          |                  |
|---------------|-------------------------------------------------|------------------|-------------------------------------------------|------------------|
| Room or Area  | <i>T</i> <sub>db</sub> Degrees C<br>(Degrees F) | RH<br>Percent    | <i>T</i> <sub>db</sub> Degrees C<br>(Degrees F) | RH<br>Percent    |
| Bedroom       | 24 (75)                                         | 45 ( <u>+</u> 5) | 22 (72)                                         | 30 ( <u>+</u> 5) |
| Telecom .Room | 20 (68)                                         | 50               | 18 (64)                                         |                  |

Table 2.1Indoor Design Conditions

|                                             | Summer                                          |               | Winter                                          |               |
|---------------------------------------------|-------------------------------------------------|---------------|-------------------------------------------------|---------------|
| Room or Area                                | <i>T</i> <sub>db</sub> Degrees C<br>(Degrees F) | RH<br>Percent | <i>T</i> <sub>db</sub> Degrees C<br>(Degrees F) | RH<br>Percent |
| Clinic                                      | 24 (75)                                         | 50            | 21 (70)                                         | 45            |
| Mosque                                      | 20 (68)                                         | 45            | 18 (64)                                         | 30            |
| Passports&Conditions&Identities             | 22 (72)                                         | 50            | 20 (68)                                         | 30            |
| Multipurpose Hall                           | 20 (68)                                         | 45            | 19 (66)                                         | 30            |
| Cafeteria                                   | 22 (72)                                         | 40            | 20 (68)                                         | 40            |
| Intelligence                                | 24 (75)                                         | 50            | 22 (72)                                         | 45            |
| Guard                                       | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Consul                                      | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Vice-Consul                                 | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| President of the Cultural<br>Dependency     | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Assistant Chief Dependency                  | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Staff Translators                           | 24 (75)                                         | 45            | 20 (68)                                         | 45            |
| President of the Economic<br>Dependency     | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Aides                                       | 24 (75)                                         | 45            | 20 (68)                                         | 45            |
| Responsible for the Economic<br>Aspects     | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Responsible for the Commercial<br>Aspects   | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Responsible for the Agricultural<br>Aspects | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Secretarial & Waiting                       | 24 (75)                                         | 45            | 20 (68)                                         | 45            |
| Secret Room                                 | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Library                                     | 24 (75)                                         | 45            | 20 (68)                                         | 30            |
| President of Political Department           | 24 (75)                                         | 45            | 22 (72)                                         | 45            |
| Exhibition                                  | 24 (75)                                         | 45            | 20 (68)                                         | 45            |
| Mechanical Equipment Rooms<br>(MERs)        | Ventilation Only                                |               | 10 (50)                                         |               |
| Generator Room                              | Ventilation                                     | Only          | 10 (50)                                         |               |

|                     | Summer                            |               | Winter                                          |               |
|---------------------|-----------------------------------|---------------|-------------------------------------------------|---------------|
| Room or Area        | <i>T db</i> Degrees C (Degrees F) | RH<br>Percent | <i>T</i> <sub>db</sub> Degrees C<br>(Degrees F) | RH<br>Percent |
| Media Center        | 24 (75)                           | 45            | 20 (68)                                         | 30            |
| Conference Rooms    | 24 (75)                           | 45            | 20 (68)                                         | 45            |
| Managing Department | 24 (75)                           | 45            | 22 (72)                                         | 45            |
| Kitchen             | 19 (66)                           | 45            | 15 (59)                                         | 30            |
| Water Closet (WC)   | Ventilation Only                  |               | 19 (66)                                         | 30            |

# 2.1.4 Outside Design Condition

2.1.4.1 Outside Design Condition For Summer: T  $_{dry \ bulb}$  =32.7 [°C]

Relative humidity = 38 %

 $T_{wet} = 18.1 [^{\circ}C]$ 

Max wind speed = 1.2 [m/s]

Design month = July

2.1.4.2 Outside Design Condition For Winter : T  $_{dry \ bulb} = 3.2 \ [^{\circ}C]$ 

Relative humidity = 67%

 $T_{wet} = 6.5 [^{\circ}C]$ 

Max wind speed = 1.8 [m/s]

Design month = January

# 2.2 Over All Heat Transfer Coefficient "U" :

$$U = \frac{1}{R_{th}} = \frac{1}{R_i + \frac{\Delta x_1}{k_1} + \frac{\Delta x_2}{k_2} + \dots + R_o} (2.1)$$

 $R_i$ :Inside film resistance of inside wall , and ceiling ( $R_i = 0.12 \ m^2 . C^0 / W$ ).

 $R_o$ :Outside film resistance of outside wall ,floors ,and ceiling ( $R_o = 0.06 \ m^2 . C^0 / W$ ).

 $\Delta x$ :Distance of construction material (*m*).

K :Thermal conductivity of construction material  $(W/m \ . C^0)$ .

|                  | Construction detail | Construction material                                                            | Material<br>thickness<br>[m] | Thermal<br>conduction<br>[W/m.ºC] | U<br>[W/m <sup>2</sup> .ºC] |
|------------------|---------------------|----------------------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------|
| Outside<br>walls |                     | <ol> <li>stone</li> <li>Insulation</li> <li>Concrete</li> <li>plaster</li> </ol> | 0.05<br>0.20<br>0.02<br>0.03 | 1.7<br>1.75<br>0.04<br>1.2        | 1.17                        |
| Inside<br>wall   |                     | 1- plaster<br>2- Block<br>3- plaster                                             | 0.015<br>0.07<br>0.015       | 1.2<br>0.95<br>1.2                | 2.94                        |

Table2.20verall Heat Transfer Coefficients.

|        |             | 1- Asphalt   | 0.02 | 0.81 |       |
|--------|-------------|--------------|------|------|-------|
|        | 2- Concrete | 0.04         | 1.75 |      |       |
| Roof   |             | 3-Insulation | 0.02 | 0.04 |       |
|        |             | 4- Concrete  | 0.05 | 1.75 | 0.77  |
|        |             | 5- Block     | 0.15 | 0.95 |       |
|        |             | 6- plaster   | 0.02 | 1.2  |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
|        |             | 1-Tiles      | 0.02 | 1.1  |       |
|        |             | 2-Concrete   | 0.12 | 1.75 |       |
| Ground |             | 3- Mortar    | 0.02 | 1.2  | 1.146 |
|        |             | 4- Sand      | 0.1  | 0.7  |       |
|        |             | 5- rocks     | 0.5  | 1.05 |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
| Window |             | 1-glass      | _    | _    | 3.2   |
|        |             | C            |      |      |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
| doors  |             | 1-wood       | 0.04 | 0.17 | 3.1   |
|        |             |              |      |      |       |
|        |             |              |      |      |       |
|        |             |              |      |      |       |

# **CHAPTER THREE**

# **HVAC SYSTEM**

# CHAPTER 3

# 3.1 HVAC Systems Classifications

HVAC systems are classified into two basic categories: all-water systems, and split DX system systems, table (3-1) listed HVAC systems types are used in this project.

All-water systems or Water based systems use a single chiller plant or chiller plus boiler to produce water which is then pumped around a building to, most commonly, fan coil units; a fan blows air over a coil containing the water, which then cools or heats the room air. The heat rejected from the room to the water is then pumped back to the chiller unit where it is rejected by a condenser to external air. The water is then chilled or heated again and pumped back to the room units.

Unitary Packaged Systems – similar in nature to individual systems but serve more rooms or even more than one floor, have an air system consisting of fans, coils, filters, ductwork and outlets.

### Table 3.1 HVAC systems classifications

| NO | HVAC systems category                 | HVAC system                  |
|----|---------------------------------------|------------------------------|
| 1  | All-Water                             | Fan coils , ducted fan coils |
| 2  | Split DX system. (Individual Systems) | Split conditioner units      |

### 3.1.1 Fan-Coil Unit & Fan-Coil with Duct

In all internal spaces between different sections in the embassy, a fan coils and fan coil with duct system were installed to Serve this area.

Fan coils units were selected based on several factors, the most important of them its ability to provide adequate air flow to provide the required cooling in summer and heating required in winter, Fan-coil system units have a finned-tube coil, filter, and fan section. The fan recirculates air continuously from the space through the coil, which contains either hot or chilled water. Some units have electric resistance heaters or steam coils, It is controlled either by a manual on/off switch or by thermostat.

The fan coil with duct units regulate the volume of air and often heat the air with hot water, steam, or electric resistance coils in response to space temperature conditions. The terminal units are equipped with fans (fan-powered) to recirculate room air for energy conservation and temperature control. The fan-powered boxes may be either constant volume discharge or variable volume.

In all internal large spaces between different sections in the embassy, a fan coils with duct system were installed to serve this area. Each duct contains a number of grills that's covered the total cooling and heating load.

### 3.1.2 Split Unit

In all internal spaces in basement floor in the embassy, a split units will installed to serve this area. Split units are divided to two part out door unit which contains condenser and compressor, in door unit which contains evaporator, filter, fan to circulate the air inside the space, and water drain.

# **3.2** Cooling Load Estimations

The selection of ventilating, and air conditioning (AC) system components and equipment should always be based on an accurate determination of the building cooling load.

#### 3.2.1 Heat Gain Through Sunlit Walls And Roofs

Q=U.A.(CLTD)<sub>corrected</sub>.

(3.1)

Q : cooling load [kW].

U: over all heat transfer coefficient [W/m<sup>2</sup>.°C].

A : surface area  $[m^2]$ .

CLTD correct : cooling load temperature deference correction.

 $(CLTD)_{corrected} = (CLTD+LM)k + (25.5-Ti) + (To,m-29.4)f$  (3.2)

CLTD : cooling load temperature deference correction, (from appendix A) Table(1).

LM : latitude correction factor, (from appendix A) Table(2).

k : color adjustment ,k=1 for dark roof and 0.5 for light roof surface.

f: roof fan factor equal 0.75 because there is an attic .

Ti : inside design wall temp .

 $T_{o,m}$ : out design door main temperature .

**Note:** CLTD value for roofs ,walls, are taken depending on U values and time of day from CLTD ASHREA table on appendix.

#### 3.2.2 Heat Gain Through Inside Walls and Ground

$$Q = U.A \ \Delta t \tag{3.3}$$

Q: loading load gain inside walls.

A: inside walls area.

U: overall heat transfer coefficient.

 $\Delta t$ : temperature deference between inside air conditioning space and beside air temperature space.

(3.4)

#### 3.2.3 Heat Gain Due To Glass Windows

 $Q_{tr}=A$  (SHG) (SC) (CLF)

Q tr : Heat gain due to solar transmission through glass windows(Watt)

a) solar heat gain factor (SHG):

This factor represents the amount of solar energy they would be received by floor, furniture and the inside walls of the room and can be extracted;(from appendix A) Table(3).

b) shading coefficient (SC):

It accounts from for different shading effects of the glass wall or window and can be extracted (from appendix A) Table(4). For single and double glass, as well as, for insulation glass with

internal shading (venetian blinds, curtains, drapes, roller shades, etc.).the shading coefficient, SC is defined as the ratio of solar heat gain of glass window of the space to the solar heat gain of double strength glass.

c) cooling load factor (CLF):

This represents the effect of the internal walls, floor, and furniture on the instantaneous cooling load, and can be extracted (from appendix A) Table(5). For glass with interior shading. It accounts for the variation of shag factor with time, mass capacity of the structure and the internal shading.

#### 3.2.4 Convection Heat Gain

The convicted cooling load by the glass is calculated by this equation Q=U.A.(CLTD)<sub>corrected</sub>. (3.5)

#### 3.2.5 Heat Gain Due To Occupants

Q total for occupant = Q sensible + Q latent ;(from appendix A) Table(6). (3.6)

Q latent = heat gain latent \* No. of people\* CLF ;(CLF = 0.6).

Q sensible = heat gain sensible \* No. of people\* CLF ;(CLF = 0.6).

#### 3.2.6 Heat Gain Due To Lights

 $Q_{Lt}$  = lighting intensity\*A\*CLF\* ballast factor

(3.7)

Lighting intensity:  $10-30 \text{ w/m}^2$  for apartment so we will take  $30 \text{W/m}^2$ .

A : floor area.

CLF = cooling load factor, dimensionless. (from appendix A) Table(7).

Similar to the sensible heat gain from people, a cooling load factor (CLF) can be used to account for the capacity of the space to absorb and store the heat generated by the lights. If the lights are left on 24 hours a day, or if the air conditioning system is shut off or set back at night, the CLF is assumed to be equal to 1.

Ballast factor = 1.2 for fluorescent lights, 1.0 for incandescent lights.

#### 3.2.7 Heat gain Due To infiltration

$$Q_{inf} = \frac{V_f}{V_{outside}} * (h_o - h_i)$$
(3.8)

From psychometric chart we get :-

- $V_{outside} = 0.885 \text{ m}^3/Kg$
- $h_o = 67 \text{ kJ/kg}$
- $h_i = 49 \text{ kJ/kg}$
- $V_f \rightarrow 6 L/sec \ per \ person.$

#### 3.2.8 Heat Gain Due To Ventilation

Q ven = m' \*C pair \*( $t_{out}$ - $t_{in}$ )air

m<sup>:</sup> total flow rate for fresh air (kg/s) =  $V_f / v$ C<sub>pa</sub> :Specific heat of air = 1.005 kJ/kg.k.

 $T_{in}$ : the inside temperature  $C^{o}$ .

t<sub>out</sub>: the outside temperature C<sup>o</sup>.

 $V_f$ : rate of ventilation= no. of people \* outdoor air .

outdoor air = (6L/s)/person.

v : specific volume for air @ t max = 32.7 C ° and  $\Phi$  = 38 % ;v = 0.855 (m<sup>3</sup>/kg).

#### **3.3 Heating Load Estimations**

The space heating load is the rate at which heat must be added to a space in order to maintain the desired conditions in the space ,generally a dry-bulb temperature.

In general, the estimation of heating loads assumes worst conditions for the space. The winter design outdoor temperature is used for determining the conduction heat loss through exterior

(3.9)

surfaces. No credit is given for heat gain from solar radiation through glass or from the sun's rays warming the outside surfaces of the building. Additionally, no credit is given for internal heat gains due to people, lighting, and equipment in the space.

Many systems are used for this purpose, such as heating by hot water or heating by warm air, sometime small heaters are used for this purpose, there are many criteria's that will be taken to select the suitable system such as cost, efficiency, flexibility and type of building.

The heating load for a space can be made up of many components, including:

- 1) Conduction heat loss to the outdoors through the roof, exterior walls, skylights, and windows
- Conduction heat loss to adjoining spaces through the ceiling, interior partition walls, and floor
- 3) Heat loss due to cold air infiltrating into the space from outdoors through doors, windows, and small cracks in the building envelope.

When calculating heating loss by conduction through the roof, the exterior walls, and the windows, no credit is given for the effect of the sun shining on the outside surfaces. With this assumption, the amount of heat transferred through the surface is a direct result of the temperature difference between the outdoor and indoor surfaces (T is used instead of CLTD).

The amount of heat loss through a roof, an exterior wall, or a window depends on the area of the surface, the overall heat transfer coefficient of the surface, and the dry-bulb temperature difference from one side of the surface to the other.

The equation used to predict the heat loss by conduction is:

$$Q = U \times A \times \Delta t \tag{3.10}$$

Q = the rate at which heat transfer in watts [W].

U = overall heat-transfer coefficient of the surface  $[W/m^2. K]$ .

A = Area of the layer which heat flow through, which in our project may be an area of wall, window, or ceiling..., $[m^2]$ .

 $\Delta t$  = desired indoor dry-bulb temperature (Ti) minus the design outdoor dry bulb temperature (T<sub>o</sub>), [°C].

#### **3.3.1** Heat Loss by Infiltration

Infiltration is the leakage of outside air through cracks and clearances around the windows and doors. The amount of infiltration depends mainly on the tightness of the windows and doors on the outside wind velocity or the pressure difference between the outside and inside the heat load due to infiltration is given by:

$$Q_{inf} = \frac{V_{inf}}{V_{outside}} * (h_o - h_i)$$
(3.11)

$$V_{inf} = K^* L^* (0.613(s1 * s2 * v)^2)^{2/3}$$
(3.12)

 $Q_{inf}$ : the infiltration heat load [W].

 $V_{inf}$ : the volumetric flow rate of infiltrated air  $[m^3/s]$ .

 $V_{outside}$ : the outside volumetric flow rate  $[m^3/Kg \ dry \ air]$ .

 $h_o$ ,  $h_i$ : are the outside and inside enthapies of infiltrated air, respectively [KJ/Kg].

k: the coefficient of infiltration air for windows, (from appendix A) Table(9).

*l*: the crack length [m].

 $s_1$ : the factor that depends on the topography of the location of the building, (from appendix A) Table(10).

 $s_2$ : another coefficient that depends on the height of the building and terrain of its location, (from appendix A) Table(10).

 $V_o$ : the measured wind speed [m/s].

These include dry-bulb temperature ( $T_{out}$ ), relative humidity out ( ${}^{\Phi}_{out}$ ) and average air speed (v). these values are usually tabulated weather station reports.

#### **3.4** Sample of Heating and Cooling Load

For second floor.

For room #D1 Official Military Room.

#### 3.4.1 Heating Load Calculation

1) ForOutside Wall  $Q_{wall} = U \times A \times \Delta t$ 

 $Q_{\text{wall}}=1.176*(15.67)*(24-4.2)=365 \text{ W}.$ 

2) For Inside Wall. Q<sub>wall</sub>=2.94\*(19.65)\*(14.1)=814.6 W.

3) For Roof
Q<sub>roof</sub>=0.77\*(13.85)\*(24-4.2)=211 W.
4) For Floor
Q<sub>floor</sub>=0.77\*(13.85)\*(14.1)=150 W.

5) For Window Q <sub>window</sub>=3.2\*(6.08)\*(24 - 4.2) =385 W.

6)For Door Q <sub>door</sub>=3.1\* (2.1) \*(14.1) =92 W.

7) For Infiltration Due Windows.

$$Q_{inf} = \frac{V_{inf}}{V_{outside}} * (h_o - h_i)$$
(3.11)  

$$V_{inf} = K^*L^* (0.613(s1 * s2 * v)^2)^{2/3}$$
(3.12)  

$$V_{inf} = 0.43^* [14] * [0.613^* (1^*0.69^* 1.8)^2]^{2/3} = 5.8 m^3/h.$$
  

$$Q_{inf} = \frac{0.0016}{0.855} * (49 - 5) = 82 W.$$

Q total heating Load =  $\sum Q = 2100 \text{ W} = 2.1 \text{ KW}$ .

## 3.4.2 Cooling Load Calculation

1) Heat Gain Through Sunlit Walls and Roof Q=U.A.(CLTD)corrected

(3.1)

(3.9)

| Walls | CLTD | LM  | (CLTD)corrected |
|-------|------|-----|-----------------|
| East  | 17   | 0   | 16.025          |
| Roof  | 7    | 0.5 | 11              |

Table 3.2 Factors of Heat Gain Through Sunlit Walls and Roof

 $Q_{East}$ =1.176\*(8.56)\*16.025=161.3 W.  $Q_{Roof}$ =0.77\*(13.85)\*11=117 W.

2) Heat Gain Through Inside Walls and Ground  $Q = U \times A \times \Delta t$   $Q_{West}=2.94*(9.5)*5.8=162$  W.  $Q_{North}=1.176*(10.15)*8.7=104$  W.  $Q_{South}=2.94*(10.15)*5.8=173$  W.  $Q_{Ground}=0.77*(13.85)*5.8=62$  W.

3) Heat Gain Due To Glass Window Q<sub>tr</sub>=A (SHG) (SC) (CLF)

(3.4)

(3.3)

Table 3.3Factors of Heat Gain Due To Glass Window

| Walls | SHG | SC | CLF  |
|-------|-----|----|------|
| East  | 678 | 1  | 0.42 |
| North | 126 | 1  | 0.7  |

 $Q_{tr}=A$  (SHG) (SC) (CLF)

 $Q_{East}=3.04(678)(1)(0.42)=866$  W.

Q<sub>East</sub>=3.04(126)(1)(0.7) =268 W.

4) Heat Gain Due To Solar Conviction Q=U.A.(CLTD)<sub>corrected</sub>. Q=(3.2)(3.04)(16.025)=156W.

(3.5)

5) Heat Generated By People

Q latent = heat gain latent \* No. of people\* CLF ;(CLF = 0.6). (3.6)

Q latent = 6(70)(0.6)=252W.

Q sensible = heat gain sensible \* No. of people\* CLF ; (CLF = 0.6).

Q sensible = 6(40)(0.6)=144W.

| 6) Heat Gain Due To Lights                          |       |
|-----------------------------------------------------|-------|
| $Q_{Lt}$ = lighting intensity*A*CLF* ballast factor | (3.7) |
| $Q_{Lt} = (20)(13.85)(1)(1) = 277W.$                |       |

#### 7) Heat Gain Due To Ventilation

# $Q_{ven} = m^{*} C_{pair} * (t_{out}-t_{in})air$ (3.9)

 $m = \frac{V_f}{V} = \frac{10*(6 \ l/s)}{0.855(1000)} = 0.07 \ kg/sec.$ Q ven=0.07\*1.005\*(32.7 - 24)=612 W.

8) Heat Gain Due To Infiltration.

 $Q_{inf} = \frac{V_f}{V_{outside}} * (h_o - h_i)$   $Q_{inf} = 6/0.885 * (67-49) = 122W.$ (3.8)

 $Q_{\text{ total Cooling Load}} = \sum Q = 3354 \text{ W} = 3.4 \text{ KW}$  .

# 3.5 Total Cooling And Heating Loads For Embassy.

| Number | Name                   | Cooling load<br>(KW) | Heating load (KW) |
|--------|------------------------|----------------------|-------------------|
| A1     | Bedroom                | 5.1                  | 3.2               |
| A2     | Telecommunication room | 6.8                  | 3.9               |
| A3     | Storage                | 4.1                  | 1.3               |
| A4     | Clinic                 | 6.8                  | 4.2               |
| A5     | Mosque                 | 11.2                 | 7.3               |
| A6     | Storage                | 4.1                  | 1.3               |
| A7     | MERs                   | 2                    |                   |
| A8     | Generator              | 1.5                  |                   |
|        | Total                  | 41.6                 | 21.2              |

Table 3.4 Total cooling and heating loads for basement floor.

| Number   | Name                                        | Cooling load<br>(KW) | Heating load (KW) |
|----------|---------------------------------------------|----------------------|-------------------|
| B1       | Passports &Condition                        | 48.2                 | 32.3              |
| B1<br>B2 | Multipurpose Hall                           | 30.5                 | 22.8              |
| B2<br>B3 | Guard                                       | 2.4                  | 1.02              |
| B3<br>B4 | Consul                                      | 4.6                  | 2.8               |
| B5       | Vice-Consul                                 | 4.3                  | 2.8               |
| B6       | President of Cultural Depart                | 5.1                  | 3.15              |
| B7       | Secretarial & Waiting                       | 4.8                  | 3.8               |
| B8       | Assistant Chief Dependency                  | 5.3                  | 3.6               |
| B9       | Staff Translators                           | 7.5                  | 4.1               |
| B10      | Secret Room                                 | 7.6                  | 3.8               |
| B11      | President of Economic Depart                | 5.2                  | 3.8               |
| B12      | Aides                                       | 2.8                  | 1.83              |
| B13      | Responsible for the Economic<br>Aspects     | 2.55                 | 1.6               |
| B14      | Responsible for the<br>Commercial Aspects   | 2.6                  | 1.65              |
| B15      | Responsible for the<br>Agricultural Aspects | 2.5                  | 1.53              |
| B16      | Intelligence                                | 5.44                 | 3.36              |
| B17      | Multipurpose Hall                           | 30.5                 | 22.8              |
| B18      | Cafeteria                                   | 14.7                 | 9.3               |
|          | Total                                       | 187                  | 126               |

Table 3.5 Total cooling and heating loads for ground floor .

Table 3.6 Total cooling and heating loads for first floor.

| Number | Name                                     | Cooling load (KW) | Heating load<br>(KW) |
|--------|------------------------------------------|-------------------|----------------------|
| C1     | Media Center                             | 12.7              | 8.3                  |
| C2     | Library                                  | 34.6              | 21.7                 |
| C3     | Accountants                              | 4.3               | 2.1                  |
| C4     | Storage                                  | 1.4               | 0.9                  |
| C5     | Secretarial & Waiting                    | 4.6               | 3.8                  |
| C6     | Responsible for the Finances &<br>Budget | 5.7               | 3.15                 |
| C7     | Responsible for Expenditures             | 4.5               | 3.2                  |
| C8     | Recruits                                 | 5.7               | 3.01                 |
| C9     | Managing Department                      | 7.9               | 5.3                  |
| C10    | Assistant Managing Depart                | 6.3               | 4.2                  |
| C11    | Secret Room                              | 8.6               | 4.6                  |
| C12    | General Service Staff                    | 8.4               | 5.45                 |
| C13    | Assistance Office                        | 3.4               | 2.1                  |
| C14    | President of Political Depart            | 7.3               | 5.02                 |

| C15 | Political Department   | 17.6 | 9.4    |
|-----|------------------------|------|--------|
| C16 | Exhibition             | 20.4 | 13.5   |
| C17 | Chamber Communications | 10.8 | 6.3    |
| C18 | Kitchen                | 1.8  | 0.08   |
|     | Total                  | 166  | 102.11 |

Table 3.7 Total cooling and heating loads for second floor.

| Number | Name                       | Cooling load<br>(KW) | Heating load (KW) |
|--------|----------------------------|----------------------|-------------------|
| D1     | Official Military Reports  | 3.4                  | 2.1               |
| D2     | Printing Office            | 2.4                  | 1.4               |
| D3     | Photography                | 4.2                  | 3.2               |
| D4     | Files &Communication       | 2.4                  | 1.4               |
| D5     | Assistant City             | 3.3                  | 2.0               |
| D6     | President of the Military  | 5.8                  | 4.3               |
|        | Depart                     |                      |                   |
| D7     | Assistant Chief Dependency | 5.2                  | 4.2               |
| D8     | Secret Room                | 4.6                  | 3.2               |
| D9     | Ambassador Room            | 9.6                  | 6.3               |
| D10    | First Secretary            | 4.9                  | 3.2               |
| D11    | Second Secretary           | 4.2                  | 2.4               |
| D12    | Special Meeting Room       | 6.8                  | 4.2               |
| D13    | Deputy Ambassador Room     | 5.7                  | 3.2               |
|        | Total                      | 62.5                 | 41.1              |

# 3.6 Sample of Calculations For Fan Coil System.

For room # D1 Official Military Room:

Q = 3.4 Kw

$$\mathbf{Q} = \dot{m} * \mathbf{C}.\mathbf{p}^* \Delta \mathbf{T}$$

- Q : total heat losses [kW].
- $\dot{m}$  : mass flow rate[kg/s].
- C <sub>p</sub>: specific heat capacity at constant pressure
- C  $_{p}$  water = 4.18 [kj/kg c]
- $\Delta T$ : water temperature difference = 8 C<sup>0</sup>.

So,  $\dot{m} = 0.1 \text{ kg/s}$ 

$$\mathbf{A} = \frac{\dot{m}}{\delta * \boldsymbol{v}}$$

Where: A: cross – sectional area of pipe

*m*: Mass flow rate[kg/s].

δ: Water mass density 1000 [kg/ $m^3$ ].

$$A = \frac{\dot{m}}{\delta * v} = \frac{0.1}{1000 * 2} = 0.05 * 10^{-3} m^2$$
$$d = \sqrt[2]{\frac{4(0.05 * 10^{-3})m^2}{\pi}} = 7.97 * 10^{-3} m = 0.314 \text{ inch, so d selected} = 0.5[\text{inch}]$$

Where d = pipe cross - sectional diameter (m).

# 3.7 Total Calculated Data For (FCU) In Embassy.

Table 3.8 Calculated Data for (FCU) for Ground Floor due to Cooling Load.

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>[inch] | Diameter<br>Selection.<br>inch | cfm  |
|----|------|------------|--------------|--------------------|--------------------------------|------|
| 1  | B1   | 48.2       | 1.44         | 1.182              | 1                              | 4535 |
| 2  | B2   | 30.5       | 0.91         | 0.946              | 1                              | 2861 |
| 3  | B3   | 2.4        | 0.07         | 0.266              | 0.5                            | 225  |
| 4  | B4   | 4.6        | 0.14         | 0.372              | 0.5                            | 432  |
| 5  | B5   | 4.3        | 0.13         | 0.358              | 0.5                            | 403  |
| 6  | B6   | 5.1        | 0.15         | 0.388              | 0.5                            | 487  |
| 7  | B7   | 4.8        | 0.14         | 0.377              | 0.5                            | 451  |
| 8  | B8   | 5.3        | 0.16         | 0.394              | 0.5                            | 509  |
| 9  | B9   | 7.5        | 0.22         | 0.473              | 0.5                            | 700  |
| 10 | B10  | 7.6        | 0.23         | 0.483              | 0.5                            | 710  |
| 11 | B11  | 5.2        | 0.16         | 0.393              | 0.5                            | 500  |
| 12 | B12  | 2.8        | 0.08         | 0.366              | 0.5                            | 235  |
| 13 | B13  | 2.55       | 0.08         | 0.086              | 0.5                            | 230  |

| 14 | B14 | 2.6  | 0.08 | 0.086 | 0.5 | 230  |
|----|-----|------|------|-------|-----|------|
| 15 | B15 | 2.5  | 0.07 | 0.085 | 0.5 | 228  |
| 16 | B16 | 5.44 | 0.16 | 0.393 | 0.5 | 509  |
| 17 | B17 | 30.5 | 0.91 | 0.946 | 1   | 2861 |
| 18 | B18 | 14.7 | 0.45 | 0.420 | 0.5 | 1440 |

Table 3.9 Selection Data for Fan Coils Units and Grills in Ground Floor.

| No | Name | Q[ kw] | cfm  | FCU model | Grill dim |
|----|------|--------|------|-----------|-----------|
| 1  | B1   | 48.2   | 4535 | 42CED014  | 18*30     |
| 2  | B2   | 30.5   | 2861 | 42CED014  | 18*30     |
| 3  | B3   | 2.4    | 225  | 42CED003  | 8*12      |
| 4  | B4   | 4.6    | 432  | 42CED005  | 10*12     |
| 5  | B5   | 4.3    | 403  | 42CED005  | 10*12     |
| 6  | B6   | 5.1    | 487  | 42CED005  | 10*12     |
| 7  | B7   | 4.8    | 451  | 42CED005  | 10*20     |
| 8  | B8   | 5.3    | 509  | 42CED006  | 12*20     |
| 9  | B9   | 7.5    | 700  | 42CED008  | 12*20     |
| 10 | B10  | 7.6    | 710  | 42CED008  | 12*20     |
| 11 | B11  | 5.2    | 500  | 42CED006  | 12*20     |
| 12 | B12  | 2.8    | 235  | 42CED003  | 8*12      |
| 13 | B13  | 2.55   | 230  | 42CED003  | 8*12      |
| 14 | B14  | 2.6    | 230  | 42CED003  | 8*12      |
| 15 | B15  | 2.5    | 228  | 42CED003  | 8*12      |
| 16 | B16  | 5.44   | 509  | 42CED006  | 12*20     |
| 17 | B17  | 30.5   | 2861 | 42CED014  | 18*30     |
| 18 | B18  | 14.7   | 1440 | 42CED014  | 18*30     |

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>[inch] | Diameter<br>Selection.<br>inch | cfm  |
|----|------|------------|--------------|--------------------|--------------------------------|------|
| 1  | C1   | 12.7       | 0.38         | 0.788              | 1                              | 1187 |
| 2  | C2   | 34.6       | 1.03         | 1.02               | 1                              | 3263 |
| 3  | C3   | 4.3        | 0.13         | 0.358              | 0.5                            | 403  |
| 4  | C4   | 1.4        | 0.04         | 0.198              | 0.5                            | 132  |
| 5  | C5   | 4.6        | 0.14         | 0.370              | 0.5                            | 432  |
| 6  | C6   | 5.7        | 0.17         | 0.394              | 0.5                            | 530  |
| 7  | C7   | 4.5        | 0.14         | 0.372              | 0.5                            | 424  |
| 8  | C8   | 5.7        | 0.17         | 0.394              | 0.5                            | 530  |
| 9  | C9   | 7.9        | 0.24         | 0.384              | 0.5                            | 742  |
| 10 | C10  | 6.3        | 0.19         | 0.433              | 0.5                            | 593  |
| 11 | C11  | 8.6        | 0.26         | 0.512              | 0.5                            | 805  |
| 12 | C12  | 8.4        | 0.25         | 0.496              | 0.5                            | 790  |
| 13 | C13  | 3.4        | 0.11         | 0.317              | 0.5                            | 320  |
| 14 | C14  | 7.3        | 0.22         | 0.394              | 0.5                            | 687  |
| 15 | C15  | 17.6       | 0.55         | 0.788              | 1                              | 1657 |
| 16 | C16  | 20.4       | 0.61         | 0.788              | 1                              | 1920 |
| 17 | C17  | 10.8       | 0.32         | 0.552              | 1                              | 1017 |
| 18 | C18  | 1.8        | 0.05         | 0.231              | 0.5                            | 170  |

Table 3.10 Calculated Data for (FCU) for First Floor due to Cooling Load.

Table 3.11 Selection Data for Fan Coils Units and Grills in First Floor.

| No | Name | Q[ kw] | cfm  | FCU model | Grill dim |
|----|------|--------|------|-----------|-----------|
| 1  | C1   | 12.7   | 1187 | 42CED014  | 18*30     |
| 2  | C2   | 34.6   | 3263 | 42CED014  | 18*30     |
| 3  | C3   | 4.3    | 403  | 42CED005  | 10*12     |
| 4  | C4   | 1.4    | 132  | 42CED002  | 6*12      |
| 5  | C5   | 4.6    | 432  | 42CED005  | 10*12     |

| 6  | C6  | 5.7  | 530  | 42CED006 | 12*20 |
|----|-----|------|------|----------|-------|
| 7  | C7  | 4.5  | 424  | 42CED005 | 10*12 |
| 8  | C8  | 5.7  | 530  | 42CED006 | 12*20 |
| 9  | C9  | 7.9  | 742  | 42CED008 | 14*20 |
| 10 | C10 | 6.3  | 593  | 42CED006 | 14*20 |
| 11 | C11 | 8.6  | 805  | 42CED009 | 16*20 |
| 12 | C12 | 8.4  | 790  | 42CED008 | 14*20 |
| 13 | C13 | 3.4  | 320  | 42CED004 | 12*20 |
| 14 | C14 | 7.3  | 687  | 42CED007 | 14*20 |
| 15 | C15 | 17.6 | 1657 | 42CED014 | 18*30 |
| 16 | C16 | 20.4 | 1920 | 42CED014 | 18*30 |
| 17 | C17 | 10.8 | 1017 | 42CED014 | 18*30 |
| 18 | C18 | 1.8  | 170  | 42CED002 | 6*12  |

Table 3.12 Calculated Data for (FCU) for Second Floor due to Cooling Load.

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>[inch] | Diameter<br>Selection.<br>inch | cfm |
|----|------|------------|--------------|--------------------|--------------------------------|-----|
| 1  | D1   | 3.4        | 0.10         | 0.314              | 0.5                            | 318 |
| 2  | D2   | 2.4        | 0.07         | 0.262              | 0.5                            | 254 |
| 3  | D3   | 4.2        | 0.13         | 0.358              | 0.5                            | 396 |
| 4  | D4   | 2.4        | 0.07         | 0.262              | 0.5                            | 254 |
| 5  | D5   | 3.3        | 0.09         | 0.297              | 0.5                            | 264 |
| 6  | D6   | 5.8        | 0.17         | 0.394              | 0.5                            | 551 |
| 7  | D7   | 5.2        | 0.15         | 0.353              | 0.5                            | 490 |
| 8  | D8   | 4.6        | 0.14         | 0.370              | 0.5                            | 424 |
| 9  | D9   | 9.6        | 0.29         | 0.412              | 0.5                            | 911 |
| 10 | D10  | 4.9        | 0.15         | 0.380              | 0.5                            | 466 |
| 11 | D11  | 4.2        | 0.13         | 0.358              | 0.5                            | 394 |

| 12 | D12 | 6.8 | 0.20 | 0.394 | 0.5 | 636 |
|----|-----|-----|------|-------|-----|-----|
| 13 | D13 | 5.7 | 0.17 | 0.394 | 0.5 | 530 |

FCU model No Name Q[kw] cfm Grill dim 1 10\*16 D1 3.4 318 42CED004 2 42CED003 8\*12 D2 2.4 254 3 D3 4.2 396 42CED004 10\*12 8\*12 4 2.4 254 42CED003 D4 5 8\*12 D5 3.3 264 42CED003 12\*20 6 D6 5.8 551 42CED006 7 D7 5.2 490 42CED005 10\*12 8 10\*12 D8 4.6 424 42CED005 9 D9 911 42CED010 18\*30 9.6 10\*12 10 42CED005 D10 4.9 466 11 D11 4.2 394 42CED004 10\*16 12 14\*20 D12 6.8 636 42CED007 13 D13 5.7 530 42CED006 12\*20

Table 3.13 Selection Data for Fan Coils Units and Grills in Second Floor.

#### 3.8 Sample of Calculations For Fan Coils With Duct In Basement Floor.

Using of equal pressure drop method for B1 at ground floor with Q <sub>Total</sub> = 48.2 KW, and V<sub>(required air velocity)</sub> = 4 m/s, from relative friction losses chart at  $\dot{m}_{(air flow rate)} = 2.14 m^3/s$ , we will divided main duct into two equal ducts.

For B1 passports & conditions At Ground Floor With  $Q_{Total} = 48.2$  KW.

 $\dot{m} = \frac{\pi}{4} * d^2 * v$ 

$$d = \sqrt[2]{\frac{4*0.2}{4*\pi}} = 0.58 \text{ m}.$$

 $\frac{\Delta p}{El} = 2 \text{ Pa/m.}$ 

For B1 ducted area the specifications of duct and grills shown below in the Table (3.14).

|    | Branch | Flow              | Flow | Grill size | Velocity | Duct Size    |
|----|--------|-------------------|------|------------|----------|--------------|
| NO | Name   | m <sup>3</sup> /s | cfm  | inch       | m/s      | mm           |
| 1  | A-B    | 0.31              | 657  | 12*20      | 4        | 330W * 257H  |
| 2  | B-C    | 0.28              | 593  | 12*20      | 3.9      | 310W * 241H  |
| 3  | C-D    | 0.25              | 529  | 10*12      | 3.6      | 280W * 235H  |
| 4  | D-E    | 0.23              | 487  | 10*12      | 2.9      | 265W * 227 H |

Table 3.14 B1 at ground floor with duct and grills specifications.

Table 3.15 B1 Summary of Ducts and its Fan Coil Types at Ground Floor.

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>inch | Diameter<br>Selection. inch | Flow<br>cfm | Fan Coil<br>Type |
|----|------|------------|--------------|------------------|-----------------------------|-------------|------------------|
| 1  | B1   | 24.2       | 0.658        | 1.18             | 1                           | 2268        | 42CED014         |

# **3.9** Total Calculated Data for Fan Coil with Duct in Embassy.

| NO | Branch<br>Name | Flow<br>m <sup>3</sup> /s | Flow<br>cfm | Grill size<br>inch | Velocity<br><i>m</i> /s | Duct Size<br>mm |
|----|----------------|---------------------------|-------------|--------------------|-------------------------|-----------------|
| 1  | A-B            | 0.31                      | 657         | 12*20              | 4                       | 330W * 257H     |
| 2  | B-C            | 0.28                      | 593         | 12*20              | 3.9                     | 310W * 241H     |

Table 3.16 B1 at ground floor with duct and grills specifications.

| 3 | C-D | 0.25 | 529 | 10*12 | 3.6 | 280W * 235H  |
|---|-----|------|-----|-------|-----|--------------|
| 4 | D-E | 0.23 | 487 | 10*12 | 2.9 | 265W * 227 H |

Table 3.17 B1 Summary of Ducts and its Fan coil types at ground floor.

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>inch | Diameter Selection.<br>inch | Flow<br>cfm | Fan Coil<br>Type |
|----|------|------------|--------------|------------------|-----------------------------|-------------|------------------|
| 1  | B1   | 24.2       | 0.72         | 1.18             | 1                           | 2268        | 42CED014         |

We will divided the load in B2 room into two ducts, and B17 room is the same it.

Table 3.18 B2 &B17 at ground floor with duct and grills specifications.

|    | Branch | Flow              | Flow | Grill size | Velocity | Duct Size    |  |
|----|--------|-------------------|------|------------|----------|--------------|--|
| NO | Name   | m <sup>3</sup> /s | cfm  | inch       | m/s      | mm           |  |
| 1  | A-B    | 0.23              | 487  | 10*12      | 4        | 265W * 227H  |  |
| 2  | B-C    | 0.18              | 381  | 10*12      | 3.8      | 258W * 205H  |  |
| 3  | C-D    | 0.16              | 339  | 10*12      | 3.6      | 255W * 188H  |  |
| 4  | D-E    | 0.10              | 222  | 8*12       | 3.2      | 240W * 165 H |  |

Table 3.19 B2 &B17 Summary of Ducts and its Fan coil types at ground floor.

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>inch | Diameter<br>Selection. inch | Flow<br>cfm | Fan Coil<br>Type |
|----|------|------------|--------------|------------------|-----------------------------|-------------|------------------|
| 1  | B2   | 15.25      | 0.658        | 1.18             | 1                           | 1430        | 42CED014         |

Table 3.20 C2 at first floor with duct and grills specifications.

|    | Branch | Flow              | Flow | Grill size | Velocity    | Duct Size   |
|----|--------|-------------------|------|------------|-------------|-------------|
| NO | Name   | m <sup>3</sup> /s | cfm  | inch       | <i>m</i> /s | mm          |
| 1  | A-B    | 0.25              | 530  | 12*20      | 5           | 330W * 227H |

| 2 | B-C | 0.20 | 424 | 10*12 | 4.6 | 288W * 210H  |
|---|-----|------|-----|-------|-----|--------------|
| 3 | C-D | 0.18 | 381 | 10*12 | 4.2 | 260W * 198H  |
| 4 | D-E | 0.14 | 297 | 8*12  | 3.6 | 252W * 175 H |

Table 3.21 C2 Summary of Ducts and its Fan coil types at first floor.

| No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>inch | Diameter<br>Selection. inch | Flow<br>cfm | Fan Coil<br>Type |
|----|------|------------|--------------|------------------|-----------------------------|-------------|------------------|
| 1  | C2   | 17.3       | 0.515        | 0.51             | 0.5                         | 1632        | 42CED014         |

Table 3.22 C16 at first floor with duct and grills specifications.

|    | Branch | Flow              | Flow | Grill size | Velocity | Duct Size    |
|----|--------|-------------------|------|------------|----------|--------------|
| NO | Name   | m <sup>3</sup> /s | cfm  | inch       | m/s      | mm           |
| 1  | A-B    | 0.12              | 254  | 8*12       | 4.2      | 232W * 150 H |
| 2  | B-C    | 0.11              | 233  | 8*12       | 4.0      | 219W * 141 H |
| 3  | C-D    | 0.11              | 233  | 8*12       | 3.8      | 210W * 128 H |
| 4  | D-E    | 0.10              | 212  | 8*12       | 3.6      | 195W * 119 H |

Table 3.23 C16 Summary of Ducts and its Fan coil types at first floor.

| ] | No | Name | Load<br>KW | Flow<br>kg/s | Diameter<br>inch | Diameter<br>Selection. inch | Flow<br>cfm | Fan Coil<br>Type |
|---|----|------|------------|--------------|------------------|-----------------------------|-------------|------------------|
|   | 1  | C16  | 10.1       | 0.263        | 0.394            | 0.5                         | 829         | 42CED014         |

# 3.10 Selections Of Other HVAC System Components

#### 1- Split unit :

we will install split units in all spaces in basement floor, that's made by MITSUBISHI ELECTRIC. Model: PKA-A18HA4 (See Catalog)



2- Boiler: Boiler capacity = Total heating load \* corrections factor = 269.21\*1.2 = 323 KW. Boiler model: Super Plus 300/3. (See Catalog)



#### **3-** Expansion tank:

Expansion tank volume has been determent according to boiler capacity. An expansion tank with volume of 1250 (See Catalog)

# 4- Chiller :

Chiller model: PSC4-145, with hermetic compressor R-410a. (See Catalog)



#### 5- Pumps :

Standard pumps and trim based on chiller capacities according to American slandered have been selected using pump tables in appendix.

# **CHAPTER FOURE**

# **Plumbing System**

# CHAPTER 4

# 4.1 Introduction

Plumbing design, is the system of pipes drains fittings, valves, valve assemblies, and devices installed in a building for the distribution of water for drinking and washing, and the removal of waterborne wastes, and the skilled trade of working with pipes, tubing and plumbing fixtures in such systems.

Plumbing fixtures are exchangeable devices using water that can be connected to a building's plumbing system, Some examples of fixtures include water closets (also known as toilets), urinals, bidets, showers, bathtubs, utility and kitchen sinks, lavatory.

Water supply system, there are two basic types of water distribution systems for building:

- 1. up feed distribution system .
- 2. down feed distribution system.

in this project we will use the down feed distribution system, the supply of water for the embassy is received from the municipal, Usually the water pressure at the supply point of the municipality be between (35-50) psi, this water enters the well of the embassy and then by using pumps which pumping the water to the tanks called gravity tanks which located on the roof ,the water from the gravity tank on the roof surface provides the fixtures that are located in the floors below.

Minimum pressure required in the top floor is usually (15) psi for flush tank and maximum pressure on the lowest floor should not exceed (50) psi otherwise pressure reducing valves are used to reduce the pressure, if you use or pipe diameters change in the internal network, the pressure inside the tube does not change, which is changing the flow rate.

# 4.2 Calculations Hot and Cold demand

## 4.2.1 Water Service Sizing

To determine the water service water size in building, a technique called water supply fixture unit (WSFU) is used; WSFU = Water Supply Fixture Unit.

The following Tables will show the water supply fixture unit for the floor plane : Using Table(1) for estimating demand : (See appendix (B))

|                       |         | 1) 1 able 4.1 W | SI U IUI Daseillei |              |                   |
|-----------------------|---------|-----------------|--------------------|--------------|-------------------|
| Fixture type          | No. of  | WSFU from       | Total No. of       | Total No. of | Total No. of WSFU |
|                       | Fixture | Table (1)       | WSFU for cold      | WSFU for hot |                   |
|                       |         | (FU)            | water              | water        |                   |
| Lavatory (General)    | 1       | 2*3/4           | 1.5                | 1.5          | 2                 |
| WC (General) flush    | 1       | 5               | 5                  |              | 5                 |
| tank                  |         |                 |                    |              |                   |
| Bathtub(General)      | 1       | 4*3/4           | 3                  | 3            | 4                 |
|                       | 2       | 4.50.74         | 2                  | 2            | 10                |
| Kitchen Sink(General) | 3       | 4*3/4           | 3                  | 3            | 12                |
|                       |         |                 |                    |              |                   |
| To                    | otal    |                 | 12.5               | 7.5          | 23                |

| a) | Table / 1  | WSELL | for basement floor |  |
|----|------------|-------|--------------------|--|
| a) | 1 able 4.1 | WSLO  | for dasement noor  |  |

\*By using interpolation the required flow is : (See appendix (B)) Table(2).

Hot and cold water = 16.1 gpm.

Cold water = 10 gpm.

Hot water = 6.25 gpm.

| Fixture unit           | No. of  | WSFU from | Total No. of  | Total No. of | Total No. of WSFU |
|------------------------|---------|-----------|---------------|--------------|-------------------|
|                        | Fixture | Table (1) | WSFU for cold | WSFU for hot |                   |
|                        |         | (FU)      | water         | water        |                   |
| Lavatory (General)     | 12      | 2*3/4     | 18            | 18           | 24                |
| Urinal(General) flush  | 4       | 3         | 12            |              | 12                |
| tank                   |         |           |               |              |                   |
| WC (General) flush     | 12      | 5         | 60            |              | 60                |
| tank                   |         |           |               |              |                   |
| kitchen sink (General) | 2       | 4*3/4     | 6             | 6            | 8                 |
| Total                  |         |           | 96            | 24           | 104               |

| b) Table 4.2 WSFU for ground floor. |
|-------------------------------------|
|-------------------------------------|

\*By using interpolation the required flow is : (See appendix (B)) Table(2).

Hot and cold water = 45.8 gpm.

Cold water = 42.2 gpm.

Hot water = 16.32gpm.

| Fixture unit           | No. of  | WSFU from | Total No. of  | Total No. of | Total No. of WSFU |
|------------------------|---------|-----------|---------------|--------------|-------------------|
|                        | Fixture | Table (1) | WSFU for cold | WSFU for hot |                   |
|                        |         | (FU)      | water         | water        |                   |
| Lavatory (General)     | 8       | 2*3/4     | 12            | 12           | 16                |
| Urinal(General) flush  | 4       | 3         | 12            |              | 12                |
| tank                   |         |           |               |              |                   |
| WC (General) flush     | 8       | 5         | 40            |              | 40                |
| tank                   |         |           |               |              |                   |
| kitchen sink (General) | 1       | 4*3/4     | 3             | 3            | 4                 |
| Total                  |         |           | 67            | 15           | 72                |

c) Table 4.3 WSFU for first floor.

\*By using interpolation the required flow is : (See appendix (B)) Table(2).

Hot and cold water = 35.1 gpm.

Cold water = 36.8 gpm.

Hot water = 11 gpm.

| Fixture unit           | No. of  | WSFU from | Total No. of  | Total No. of | Total No. of WSFU |
|------------------------|---------|-----------|---------------|--------------|-------------------|
|                        | Fixture | Table (1) | WSFU for cold | WSFU for hot |                   |
|                        |         | (FU)      | water         | water        |                   |
| Lavatory (General)     | 7       | 2*3/4     | 10.5          | 10.5         | 14                |
| Urinal(General) flush  | 2       | 3         | 6             |              | 6                 |
| tank                   |         |           |               |              |                   |
| WC (General) flush     | 7       | 5         | 35            |              | 35                |
| tank                   |         |           |               |              |                   |
| kitchen sink (General) | 1       | 4*3/4     | 3             | 3            | 4                 |
| Total                  |         |           | 54.5          | 13.5         | 59                |

d) Table 4.4 WSFU for second floor.

\*By using interpolation the required flow is : (See appendix (B)) Table(2).

Hot and cold water = 33 gpm.

Cold water = 31.6 gpm.

Hot water = 10 gpm.

## 4.2.2 Friction Method

The water velocity in the piping system in building is not preferred to exceed 8fps. Outside building it may exceeds 8 fps. Note : (1m = 3.28 ft).

1) Calculate static head for basement floor.

floor to floor height is 3 m.

Static head = floor to floor height + tank outlet height - sink faucet outlet height Sink faucet outlet above basement level = 1m = 3.28 ft. Tank outlet above roof surface(3+3+3+3+2) = 14 m = 45.92 ft. Static head = 45.92 - 3.28 = 42.64 ft. So then the static pressure = static head \* 0.433 psi/ft = 42.64 \* 0.433 = 18.5 psi.

2) Total equivalent length.

To calculate the equivalent length, we will calculate the equivalent length at roof surface to the farthest outlet (Sink faucet) at the basement floor at farthest collector.

a) For cold water system:

Total length from tank outlet to the basement floor through risers = 16 m = 52.5 ft.

Total length from riser to the collector = 10 m = 32.8 ft.

Total length from collector to Sink faucet outlet = 20 m = 65.6 ft.

Total length from tank outlet to the farthest outlet at the basement floor = (16+10+20) = 46 m = 151 ft.

Total equivalent length = total length \* 1.5 = 46 \* 1.5 = 69 m = 226.3 ft.

b) For hot water system :

Total length tank outlet to the basement floor through risers = 16 m = 52.5 ft.

Total length from riser to the collector = 10 m = 32.8 ft.

Total length from collector to Sink faucet outlet = 20 m = 65.6 ft.

Total length from tank outlet to the farthest outlet at the basement floor = (16+10+20) = 46 m = 151 ft.

Total equivalent length = total length \* 1.5 = 46 \* 1.5 = 69 m = 226.3 ft.

 Minimum flow pressure and friction head.
 The minimum required flow pressure at the most remote outlet on the basement floor (Sink faucet ) is 8 psi. a- For cold water system:

Friction head = static pressure – minimum flow pressure

Friction head = 18.5 - 8 = 10.5 psi.

Uniform friction loss = friction/100ft = available friction head/ total equivalent length.

friction/100ft = 10.5 psi/226.3\*100 ft = 3.94 (psi/100ft).

b- For hot water system:

Friction head = static pressure – minimum flow pressure

Friction head = 18.5 - 8 = 10.5 psi.

Uniform friction loss = friction/100ft = available friction head/ total equivalent length.

friction/100ft = 10.5 psi/226.3\*100 ft = 3.94 (psi/100ft).

4) From Figure (1) for steel pipes (See appendix (B)).

**\*\*Note:** We will use this system in two Raisers, one of them for the cold and hot the other one.

| Distance between floor and    | Flow rate | Pipe size (inch) | Friction    | Velocity |
|-------------------------------|-----------|------------------|-------------|----------|
| branches                      | (gpm)     |                  | (psi/100ft) | (fps)    |
| From tank to second floor     | 120.6     | 2 1/2            | 3.94        | 8        |
| Branch second floor           | 31.6      | 1 1/2            | 2.84        | 5        |
| From second to first floor    | 89        | 2 1/2            | 2.84        | 5        |
| Branch first floor            | 36.8      | 1 1/2            | 4.25        | 5        |
| From first to ground floor    | 52.2      | 2                | 2.1         | 4        |
| Branch ground floor           | 42.2      | 1 1/2            | 5           | 5        |
| From ground to basement floor | 10        | 1                | 3           | 3.8      |
| Branch basement floor         | 10        | 1                | 3           | 3.8      |

Table 4.5 sizing pipe for cold water.

Table 4.6 sizing pipe for hot water.

| Tuble 1.0 Sizing pipe for not water. |           |                  |             |          |  |
|--------------------------------------|-----------|------------------|-------------|----------|--|
| Distance between floor and           | Flow rate | Pipe size (inch) | Friction    | Velocity |  |
| branches                             | (gpm)     |                  | (psi/100ft) | (fps)    |  |
| From tank to second floor            | 43.6      | 2                | 3.94        | 6        |  |
| Branch second floor                  | 10        | 1                | 2.8         | 4.25     |  |
| From second to first floor           | 33.6      | 2                | 0.95        | 3        |  |
| Branch first floor                   | 11        | 1                | 3           | 3.8      |  |
| From first to ground floor           | 22.6      | 1 1⁄4            | 2.8         | 4.25     |  |
| Branch ground floor                  | 16.3      | 1 1/4            | 2.5         | 4        |  |

| From ground to basement floor | 6.25 | 3/4 | 3.6 | 3.8 |
|-------------------------------|------|-----|-----|-----|
| Branch basement floor         | 6.25 | 3/4 | 3.6 | 3.8 |

# 4.3 Drainage piping sizing

The required pipe sizing are calculated by using a concept of fixture unit instead of using gpm of drainage water, we use drainage fixture units (dfu). This unit takes into account not only the fixtures water use but also its frequency of use, that is the (dfu) has a built–in diversity factor.

This enable us, exactly as for water supply, to add the dfu of varies fixtures to obtain the maximum expected drainage flow. Drainage pipes are then sized for particular number of drainage fixtures units, according to Tables. (See appendix (B)) Table(3) & Table(4).

Built into these tables are the fill factors that are :

- Branches (Horizontal Pipes) to run maximum of (50%) fill.
- Stacks (Vertical Pipes) are designed to run at maximum of (25%-33%) fill.
- Building drain and swear drains may run somewhat higher (Over 50%) fill.

Tables will show the drainage fixture unit (dfu) for the roof plane.

| Fixture unit       | No. of Fixture | Drainage Fixture Unit | dfu value           | Diameter of |
|--------------------|----------------|-----------------------|---------------------|-------------|
|                    |                | value, dfu            | (Horizontal Branch) | Pipe, in.   |
|                    |                | Table (4)             |                     | Table (3)   |
| WC. Stack(E)       | 1              | 6                     | 6                   | 4           |
| Lavatory. Stack(E) | 1              | 1                     | 1                   | 2           |
| Bathtubr. Stack(E) | 1              | 6                     | 6                   | 4           |
| Kitchen Sink.      | 1              | 2                     | 2                   | 3           |
| Stack(E)           |                |                       |                     |             |

a) Table 4.7 dfu for basement floor.

b) Table 4.8 dfu for ground floor.

| Fixture unit     | No. of Fixture | Drainage Fixture Unit | dfu value           | Diameter of |
|------------------|----------------|-----------------------|---------------------|-------------|
|                  |                | value, dfu            | (Horizontal Branch) | Pipe, in.   |
|                  |                | Table (4)             |                     | Table (3)   |
| WC. Stack(A)     | 5              | 6                     | 30                  | 4           |
| WC. Stack(B)     | 4              | 6                     | 24                  | 4           |
| WC. Stack(F)     | 2              | 6                     | 12                  | 4           |
| Urinal. Stack(A) | 2              | 4                     | 8                   | 4           |

| Urinal. Stack(B)   | 2 | 4 | 8 | 4 |
|--------------------|---|---|---|---|
| Lavatory. Stack(C) | 5 | 1 | 5 | 2 |
| Lavatory. Stack(D) | 4 | 1 | 4 | 2 |
| Lavatory. Stack(F) | 2 | 1 | 2 | 2 |
| Kitchen Sink.      | 1 | 2 | 2 | 2 |
| Stack(F)           |   |   |   |   |

# c) Table 4.9 dfu for first floor.

| Fixture unit       | No. of Fixture | Drainage Fixture Unit | dfu value           | Diameter of |
|--------------------|----------------|-----------------------|---------------------|-------------|
|                    |                | value, dfu            | (Horizontal Branch) | Pipe, in.   |
|                    |                | Table (4)             |                     | Table (3)   |
| WC. Stack(A)       | 4              | 6                     | 24                  | 4           |
| WC. Stack(B)       | 4              | 6                     | 24                  | 4           |
| Urinal. Stack(A)   | 2              | 4                     | 8                   | 4           |
| Urinal. Stack(B)   | 2              | 4                     | 8                   | 4           |
| Lavatory. Stack(C) | 4              | 1                     | 4                   | 2           |
| Lavatory. Stack(D) | 4              | 1                     | 4                   | 2           |
| Kitchen Sink.      | 1              | 2                     | 2                   | 2           |
| Stack(C)           |                |                       |                     |             |

d) Table 4.10 dfu for second floor.

| Fixture unit       | No. of Fixture | Drainage Fixture Unit | dfu value           | Diameter of |
|--------------------|----------------|-----------------------|---------------------|-------------|
|                    |                | value, dfu            | (Horizontal Branch) | Pipe, in.   |
|                    |                | Table (4)             |                     | Table (3)   |
| WC. Stack(A)       | 4              | 6                     | 24                  | 4           |
| WC. Stack(B)       | 2              | 6                     | 12                  | 4           |
| Urinal. Stack(A)   | 2              | 4                     | 8                   | 2           |
| Lavatory. Stack(C) | 4              | 1                     | 4                   | 2           |
| Lavatory. Stack(D) | 2              | 1                     | 2                   | 2           |
| Kitchen Sink.      | 1              | 2                     | 2                   | 2           |
| Stack(C)           |                |                       |                     |             |

| Stack | dfu value | Diameter of |
|-------|-----------|-------------|
|       | (Stack)   | Pipe, in.   |
|       |           | Table (3)   |
| А     | 102       | 4           |
| В     | 76        | 4           |
| С     | 17        | 4           |
| D     | 10        | 4           |
| Е     | 15        | 4           |
| F     | 16        | 4           |

#### Table 4.11 dfu for vertical stack.

#### 4.4 Sanitary Drainage System

#### 4.4.1 Manhole Design

We design the manhole around the building so as that the sewage comes from the stacks flows in, then the sewage flows from one manhole to another so as reaching the septic tank . The design of the manholes depend on the ground and its nature around the building, and so as the first manhole height should not be less than 50 cm. and then we calculate the height of the other manhole depending on the spacing between manholes and the slope of drainage pipes between manhole to be1.5%.

As a result of these calculations we estimate the invert level of the manhole that is the depth of the pipe entering the manhole and we choose the diameter of the manhole depending on the depth of the manhole as below.

- $\Theta$  60 cm for manhole depth (50-100) cm.
- $\Theta$  80 cm for manhole depth (100-150) cm.
- $\Theta$  100 cm for manhole depth (150-250) cm.
- $\Theta$  120 cm for manhole depth > 250 cm.

#### 4.4.2 Manholes Calculations

We assume the depth of the first manhole to be (60 cm) and we calculate the second manhole according to it and so on.

For manhole #.1 :

Top level = -0.6m

Depth = 0.6

Invert level=Top level-Depth = -0.6 - 0.6 = -1.2m

For manhole #. 2 :

The distance between manhole 1 & manhole 2 is 10 m.

Invert level for manhole 2 is:

Y = ((S\*Slope) + 0.075)

Where: S is the distance between manhole 1 & manhole 2.

Slope is 1.5%

7.5 cm, is the point in manhole 2 where the pipe will be connected.

So:

$$Y = ((10 * Slope) + 0.075)$$
$$= ((10 * 0.015) + 0.075)$$
$$= 0.225$$

Top level = -0.6m

Invert level of manhole 2 = Invert level of M1 - Y = -1.2 - 0.225 = -1.43 m.

Depth =  $T.L_{M2} - I.L_{M2} = -0.6 + 1.43 = 0.83$  m.

The following table shows calculations and dimensions of all manholes that used in our project:

| Manhole #      | Top level | Invert level | Depth | Diameter | Cover type  |
|----------------|-----------|--------------|-------|----------|-------------|
|                | (m)       | (m)          | (m)   | (m)      | cover type  |
| M <sub>1</sub> | -0.6      | -1.2         | 0.6   | 0.60     | Medium duty |
| M <sub>2</sub> | -0.6      | -1.43        | 0.83  | 0.60     | Medium duty |
| M <sub>3</sub> | -0.6      | -1.65        | 1.05  | 0.80     | Medium duty |

Table 4.12 Manholes Calculations.

| M <sub>4</sub>    | -0.6  | -1.88 | 1.28 | 0.80 | Medium duty |
|-------------------|-------|-------|------|------|-------------|
| M <sub>5</sub>    | -0.6  | -2.1  | 1.5  | 0.80 | Medium duty |
| D.M <sub>6</sub>  | -0.6  | -2.33 | 1.73 | 1.00 | Medium duty |
| M <sub>7</sub>    | -0.85 | -2.8  | 2.05 | 1.00 | Medium duty |
| D. M <sub>8</sub> | -0.85 | -3.03 | 2.23 | 1.00 | Medium duty |
| M9                | -2.7  | -5.15 | 2.45 | 1.00 | Medium duty |
| M <sub>10</sub>   | -2.7  | -4.93 | 2.23 | 1.00 | Medium duty |
| M <sub>11</sub>   | -2.7  | -4.71 | 2.01 | 1.00 | Medium duty |
| M <sub>12</sub>   | -2.7  | -4.48 | 1.78 | 1.00 | Medium duty |
| M <sub>13</sub>   | -2.7  | -4.26 | 1.56 | 1.00 | Medium duty |
| M <sub>14</sub>   | -2.7  | -4.04 | 1.34 | 1.00 | Medium duty |
| M <sub>15</sub>   | -2.7  | -3.82 | 1.12 | 1.00 | Medium duty |
| M <sub>16</sub>   | -2.7  | -3.59 | 0.89 | 0.6  | Medium duty |
| D.M <sub>17</sub> | -1.5  | -2.84 | 1.34 | 1.00 | Medium duty |

#### 4.4.3 Selection The Diameter And The Slope Of The Drainage Pipe System

Here we will talk about the choice of diameter and slope of the drainage pipe system and we will take the following Bathroom as an example of how we will choose the diameter and the slope of the drainage pipe system.

- 1) We will use pipes (Branches) from fixture unit to the floor drainage (F.D.) with diameter (2") for lavatory and shower and with slope( 2%).
- 2) We will use pipes (Building Drains) from fixture unit to the manhole with diameter (4") for water closet with flush valve and with slope (1% 2%).
- We will use pipes (Sewage Pipes) between manholes with diameter (6") and with slope
   (1.5%), and the waste water will transfer between manholes until it reach the main Manhole.
- 4) We will use floor trap (F.T.) at the end of the branches as a collection box for this pipes and in order to provide a water seal to prevent odors, sewage gases and vermin's from entering building.
- 5) We will use clean out (C.O) at the end of the branches in order to clean the pipes from any things that can blockage and close the pipes.

6) We will use a stack with diameter (4") in order to drain the waste water to the manholes.

#### 4.4.4 Drainage Piping Fill

- 1) Branches are designed to run maximum of 50% fill.
- 2) Stacks are designed to flow between 25 30 % maximum.
- 3) Building drains and sewer drains may be designed over 50% fill.

#### 4.4.5 Drainage Piping Velocity

- 1) For branches the recommended velocity is 2 ft/s.
- 2) For building the recommended velocity is 3 ft/s.
- 3) For greasy the recommended velocity is 4 ft/s.

Velocity of water flow through drainage piping depends on:

1) Pipe diameter.

2) Slope.

For the same diameter large pipe diameter required lower slope For pipes of diameter  $\leq 3$ " the minimum slope is 1/4 in/ ft.

For pipes of diameter  $\geq$  4" the minimum slope is 1/8 in/ ft.

# **CHAPTER FIVE**

# FIRE FIGHTING SYSTEM

# CHAPTER 5

# 5.1 The Fire Triangle

There are three (3) components required for combustion to occur:

Fuel - to vaporize and burn

Oxygen - to combine with fuel vapor

Heat – to raise the temperature of the fuel vapor to its ignition temperature

The following is the typical "fire triangle", which illustrates the relationship between these three components:



Figure 5.1 the fire triangle

# 5.2 Classifications of Fire

Fires are classified into five groups as follows:

Class A: Class A fires involve common combustibles such as wood, paper, cloth, rubber, trash and plastics. They are common in typical commercial and home settings, but can occur anywhere these types of materials are found.

Class B: Class B fires involve flammable liquids' gases, solvents, oil, gasoline, paint, lacquers, tars and other synthetic or oil-based products. Class B fires often spread rapidly and, unless properly secured, can reflash after the flames are extinguished.

Class C: Class C fires involve energized electrical equipment, such as wiring, controls, motors, data processing panels or appliances. They can be caused by a spark, power surge or short circuit and typically occur in locations that are difficult to reach and see.

Class D: Class D fires involve combustible metals such as magnesium and sodium. Combustible metal fires are unique industrial hazards which require special dry powder agents.

Class K: Class K fires involve combustible cooking media such as oils and grease commonly found in commercial kitchens. The new cooking media formulations used form commercial food preparation require a special wet chemical extinguishing agent that is especially suited for extinguishing and suppressing these extremely hot fires that have the ability to reflash.

| A Common             | Wood, Paper,        |
|----------------------|---------------------|
| Combustibles         | Cloth, Etc.         |
| B 🚺 Flammable        | Gasoline, Propane   |
| Liquids & Gases      | other Solvents      |
| C 🔀 Live Electrical  | Computers, Fax      |
| Equipment            | Machines, Etc.      |
| D 🔶 Combustible      | Magnesium, Lithium, |
| Metals               | Titanium            |
| K 🔝 Cooking<br>Media | Oils, Lards, Fats   |

Figure 5.2 types of fires as classified

# 5.3 Fire Signatures

Afire signature is any fire effect (smoke, heat, light, etc.) that can be sensed by fire detector. The amount of heat released by fire varies in accordance with the type of combustible ,arrangement of the combustible ,availability of oxygen ,and numerous other factors.

# 5.4 Types of Firefighting Systems

Fire systems are classified as follows:

## 5.4.1 Portable Fire Extinguishers

Portable fire extinguishers can contain a wide variety of extinguishing agents ,the portable fire extinguishers enable an individual with minimal training to extinguish an incipient fire.

A portable fire extinguisher should not be considered as the sole solution to fire protection analysis of a building but, rather only one of many components of a total fire protection plan.

## • Types of Portable Firefighting Extinguishers

1) Water extinguishers.

- 2) Water spray water extinguishers.
- 3) Antifreeze solution extinguishers.
- 4) Foam fire extinguishers, hand and wheeled.
- 5) Carbon dioxide extinguishers.
- 6) Clean agent extinguishers.
- 7) Dry chemical extinguishers, hand and wheeled.
- 8) Wet chemical extinguishers.
- 9) Liquid gas-type extinguishers.
- 10) Combustible metal extinguishers, hand and wheeled.
- 11) Residential kitchen cooking fire extinguishers.

#### • Types of Occupancies for Protection by Fire Extinguishers.

1) Light (low) hazard occupancy:

Defined as a room, space, or enclosure where the quantity and combustibility of class A combustibles and class B flammables are considered to be low (less than 1 gallon), the buildings or rooms occupied as offices, class room, churches, assembly halls, and guestroom areas of hotels and motels be classified as a light (low) hazard occupancy.

2) Ordinary (moderate) hazard occupancy:

Defined as a room, space, or enclosure where the quantity and combustibility of class A combustibles and class B flammables (1 to 5 gallon maximum) is considered to be moderate, and where fires of moderate heat release are expected, the rooms or building should be classified as ordinary (moderate) hazard occupancy when the following are encountered: dining area, mercantile shops( shoe store or supermarket) and associated storage, light manufacturing, research operations, auto showrooms, parking garages, and workshop or support service areas (kitchens, storage areas ) of light hazard occupancies.

3) Extra (high) hazard occupancy:

Defined as a room, space, or enclosure where the combustibility of contents of the storage, handling, or manufacturing of class A combustible material in which the quantity of class A material is high, or where large amount of class B flammables (more than 5 gallons) are present, and where rapidly developing fires with high rates of heat release are expected.

Extra (high) hazard occupancies could consist of wood working, vehicle repair, air craft and boat servicing, cooking areas, individual product displays and storage and manufacturing processes such as painting, dipping, coating, and flammable liquid handling.

#### 4) Mixed occupancies:

Building featuring more than one occupancy may be protected on a room or area basis, with extinguishers appropriately placed for the occupancy. An example is a school, which would be expected to be protected with extinguishers rated for class hazards and light hazard occupancy, but also may contain a laboratory with a significant quantity of flammable liquid hazard, which would be protected by extinguishers rated for class B hazards and ordinary hazard occupancy.

5) Specialized occupancies: Aircraft hangar.

#### 5.4.2 Installed Firefighting Systems

Automatic fire fighting system are designed and installed in buildings to protect them from fire, these systems are operating as automatic without any human influence when the fire be started.

every installed system has a general components such as pipes, smoke and fire detectors, nozzles and sprinklers, alarm, control panel, and firefighting materials, these systems are divided into two main parts mechanical and electrical parts, the mechanical parts are explained above and electrical component as software installed on CPU and memory in control panel to control of subsystem, the control panel supplied by AC current and DC current from batteries if the current from network is cutoff .

## • Types of Installed Firefighting Systems

1) Water firefighting system.

- Sprinklers.
- Spray.
- Foam.
- 2) Carbon dioxide system.
- 3) Dry chemical system.
- 4) Halon system.
- 5) FM 200 system.

# 5.5 FM 200 Firefighting Systems

FM-200 (Heptafluoropropane, CF3CHFCF3) is a colorless, non-toxic gas, and a clean and effective fire suppression agent. It is normally shipped and stored as a liquefied compressed gas, and hence is typically handled under saturated conditions, the liquid and vapor phases coexist in equilibrium. An understanding of the physical properties of FM-200 and the safe and proper techniques for handling liquefied compressed gases allows the agent to be safely transferred from shipping cylinders to the desired end-use container.

#### 5.5.1 Physical and Chemical Properties of FM 200

Some of the more important physical and chemical properties of FM-200

| Physical Properties              | Measurement                      |
|----------------------------------|----------------------------------|
| Molecular weight                 | 170.03                           |
| Boiling point at 1 atm           | −16.34 °C                        |
| Freezing point                   | −131 °C                          |
| Critical temperature             | 101.75 °C                        |
| Critical pressure                | 2.91 MPa                         |
| Critical volume                  | 1.61 L/Kg                        |
| Critical density                 | 594.25Kg/L                       |
| Critical compressibility         | 0.225                            |
| Acentric factor                  | 0.356                            |
| Specific heat, saturated liquid  | 1.184 (Cp) at 25°C, KJ/Kg per °C |
| Specific heat, saturated vapor   | 0.859 (Cp) at 25°C, KJ/Kg per °C |
| Specific heat, superheated vapor | 0.808 (Cp) at 25°C, KJ/Kg per °C |
| Thermal conductivity, liquid     | 0.069 W/Mk at 25°C               |
| Thermal conductivity, vapor      | 0.0126 W/Mk at 25°C              |
| Viscosity, liquid                | 0.184Centipoise at 25°C          |
| Viscosity, vapor                 | 0.0127Centipoise at 25°C         |
| Surface tension                  | 7.00 MN/M at 25°C                |

Table 5.1 physical properties of FM200

| Chemical Properties | Measurement                      |
|---------------------|----------------------------------|
| Chemical Name       | 1,1,1,2,3,3,3-Heptafluoropropane |
| Molecular Formula   | CF3CHFCF3                        |
| Molecular weight    | 170.03                           |
| CAS Registry Number | 431-89-0                         |
| ASHRAE Designation  | HFC-227ea                        |

#### 5.5.2 Advantages and Disadvantages of FM 200

#### • Advantages of FM200

- Fast and effective.
- No significant reduction in oxygen levels.
- Clean gaseous agent leaving no residue.
- Zero ozone depleting potential.
- Low global warming potential related of Halon.
- Short atmospheric life span.
- Electronically non-conductive.
- Safe for use in fully occupied areas.
- Minimal storage requirement.
- Versatile range of containers, nozzle and ancillaries.
- Extensively tested, recognized and approved worldwide.
- Effective on site installation.

#### • Disadvantages of FM 200

- Forms minimal decomposition products.
- Higher agent cost.

## 5.6 Sequence of Operations of FM 200 Systems.

FM 200 system is gas suppression system extinguished in the space as gas vapor at high pressure (4-6) bar to cover the protected area in the following sequence of operation:

- 1) Once first detector in the space sending smoke directly send signal to control panel.
- 2) Control panel sending the following signal:
  - Actuating 1<sup>st</sup> stage alarm.
  - Shutdown A/C or ventilation system.
  - Closing automatic roll up shutter.

3) On control panel receiving signal from  $2^{nd}$  detector, sending the following signal.

- Actuating 2<sup>nd</sup> stage alarm system.
- To fire alarm system in the building.
- Actuating FM200 solenoid valve directly controlling the FM 200 gas flow.
- After (30-60) sec, the solenoid valve start relapsing the gas from cylinder.
- After (20-40) sec, the solenoid valve start relapsing the gas.

4) Anyone in the building can release manually the gas in case there is fire and the system not responded automatically.

# 5.7 Clean Agent Estimation.

The clean agent (FM-200) Heptafluoropropane is widely used as a substitute for Halon. Halon 1301 is an effective fire suppressant and has been widely used in total flooding gas protection system, but the physical and chemical properties of FM-200 are not the same as Halon 1301, FM200 has better properties than Halon 1301.

The steps needed to design the system including the limitations imposed on the requirements of standards (NFPA2001).

To design FM-200 system, we must follow these steps:

- 1) Perform a hazard analysis and survey of protected area.
- 2) Determine the design concentration required for the hazard.
- 3) Calculate the volume of the protected area.
- 4) Calculate FM-200 agent quantity to provide required design concentration at minimum expected ambient temperature in protected area.

First of all, is must select the type of hazard which the system will operate with it, and the hazard is three types as:

- **Class A Fires**: Fire in ordinary combustible materials, such as wood, cloth, paper, rubber, and many plastics.
- **Class B Fires**: Fire in flammable liquids, oils, greases, tars, oil-based paints, lacquers, and flammable gases.
- **Class C Fires**: Fire that involves energized electrical equipment where the electrical resistivity of the extinguishing media is of importance.

The second step, is determine the design concentration and this value depend on type of hazard, from (NFPA2001) chart the minimum design concentration of three class as following:

- Class A Fires: minimum design concentration is 1.2%.
- **Class B Fires**: minimum design concentration is 1.3%.
- Class C Fires: minimum design concentration is 1.2%.

Third step, is calculating the volume of spaces that need to install FM200 in it with following equation

$$V = L^* W^* H \tag{5.1}$$

Where is:

V: volume of space  $[m^3]$ .

L: length of space [m].

W: Width of space [m].

H: High of space [m].

Finally, the last step to calculate the weight of FM200 we need to protect this area by this equation:

$$W = \frac{V}{S} * (\frac{C}{100 - C})$$
(5.2)

Where is:

W: Weight of FM200 [kg].

V: Net Volume of the Hazard  $[m^3]$ .

S: Specific Volume of superheated agent vapor at 1 atmosphere and the design temperature  $[m^3/Kg]$ .

C: FM 200 Design Concentrations.

The specific volume of superheated FM-200 vapor, S, may be approximated using the following equation:

S =0.12693 + 0.0005131 T

Where:

 $T = temperature in \ ^{\circ}C$ 

Nozzles in the system must be installed in a vertical position with the nozzle facing down, nozzles are available in both 180° and 360° discharge patterns. The 180° (sidewall) nozzle is designed for installation along the walls of the hazard, with the discharge directed away from the wall on which it is installed. The 360° nozzle is designed to be installed in the center of the area being protected.

(5.3)

180 ° nozzles must be located  $0.3 \pm 0.05$ m from a wall, with the orifices directed away from the wall. The nozzle shall be located as close to the centre of the wall as possible, but at least 1/3 of the way along the wall.

 $180^{\circ}$  nozzles have a maximum coverage area defined as any rectangle that can be inscribed in a semicircle of distance 14.73m (48.3 ft), as seen in table 5.3

180 °nozzles may be used in a back-to-back configuration. The nozzles should be placed 0.3 m to 0.6 m (1 to 2 ft) apart.

360° Nozzles must be located as close to the centre of the enclosure apossible.360° Nozzles have a maximum area defined as any rectangle that can be inscribed in a circle of radius 9.06 m (29.7 ft), as seen in table 5.3

Nozzles must be installed so that the orifices are located  $0.15 \pm 0.05$  m (6 ± 2 inches) below the ceiling.

| Nozzle | Distances (m) | Distances (ft) |
|--------|---------------|----------------|
| 180°   | 14.73         | 48.33          |
| 360°   | 9.06          | 29.73          |

Table 5.3 maximum nozzle straight line distances.

When designing pipe network systems, the following design parameters should be considered to avoid system reject as 70.6 psi (4.87 bar) minimum nozzle pressure, 80 % maximum agent in pipe, and between 6 - 10 seconds discharge time.

So the pipes diameter are determined depending on flow rate of FM200, and the flow rate of gas can be calculated by division the weight of FM200 on 10 sec, 10sec is the maximum time for discharge gas into spaces, the following table from (NFPA2001) chart explain the relationship between flow rate and pipes diameter.

Table 5.4 relation between pipe diameter and flow rate.

| Pipe Size(in) | Minimum Flow Rate | Maximum Flow Rate |  |
|---------------|-------------------|-------------------|--|
|               | (kg/sec)          | (kg/sec)          |  |
| 3/8           | (0.27)            | (0.91)            |  |
| 1/2           | (0.45)            | (1.36)            |  |
| 3/4           | (0.91)            | (2.50)            |  |
| 1             | (1.59)            | (3.86)            |  |
| 1 1/4         | (2.72)            | (5.67)            |  |
| 1 1/2         | (4.08)            | (9.07)            |  |

| 2     | (6.35)  | (13.61)  |
|-------|---------|----------|
| 2 1/2 | (9.07)  | (24.95)  |
| 3     | (13.61) | (40.82)  |
| 4     | (24.95) | (56.70)  |
| 5     | (40.82) | (90.72)  |
| 6     | (54.43) | (136.10) |

# 5.8 Sample of Weight for FM200.

For second floor.

For room #D1 Official Military Room.

1) 
$$V = L^*W^*H$$
 (5.1)

$$V = 13.85 * 3 = 41.55 \ m^3$$

2) W=
$$\frac{V}{S} * (\frac{C}{100-C})$$
 (5.2)

For maximum weight at T=27°C, S= 0.1420 [ $m^3/Kg$ ].

W= (41.55/0.1377)\*(8.4/100-8.4) = 27.7 Kg.

For minimum weight at T=21°C, S= 0.1377 [ $m^3/Kg$ ].

W = (41.55/0.1420)\*(8.4/100-8.4) = 26.8 Kg.

#### 3) Flow rate of FM200.

Q = 27.7/10 = 2.77 [kg/sec]

The diameter pipe from table(5.4) is 3/4 in .

The number of nozzle is one from 360° type.

# 5.9 Total Weight of FM200 for Embassy.

Table 5.5 total weight of FM200 for basement floor (ZONE 1).

| Num | ber | Area $(m^2)$ | FM         | Number of Nozzle | Pipe Diameter(in) |
|-----|-----|--------------|------------|------------------|-------------------|
|     |     |              | Weight(Kg) | 180° or 360°     |                   |
| A   | 1   | 30.86        | 50         | 1-180°           | 1 1/4             |
| A   | 2   | 21.91        | 36         | 1-360°           | 1                 |
| A   | 3   | 21.83        | 36         | 1-360°           | 1                 |

| A4 | 33.38 | 54  | 1-360° | 1 1/4 |
|----|-------|-----|--------|-------|
| A5 | 40.46 | 65  | 1-360° | 1 1/4 |
| A6 | 22.17 | 36  | 1-360° | 1     |
| A7 | 13.88 | 28  | 1-180° | 3/4   |
| A8 | 18.63 | 31  | 1-180° | 1     |
| Т  | otal  | 336 |        |       |

The diameter of outlet pipe of cylinder is 3(in), from (NFPA2001) chart.

| Table 5.6 total | weight of F | M200 for g | round floor | (ZONE 2). |
|-----------------|-------------|------------|-------------|-----------|
|                 | 0           | 0          |             | · /       |

| Number | Area $(m^2)$ | FM         | Number of Nozzle | Pipe Diameter(in) |
|--------|--------------|------------|------------------|-------------------|
|        |              | Weight(Kg) | 180° or 360°     |                   |
| B1     | 124.13       | 202        | 1-180°           | 2                 |
| B2     | 102.30       | 166        | 2-360°           | 1 1/2             |
| B16    | 10.02        | 17         | 1-180°           | 1/2               |
| B17    | 102.30       | 166        | 2-360°           | 3/4               |
| B18    | 27.07        | 44         | 1-360°           | 1                 |
| Т      | otal         | 595        |                  |                   |

The diameter of outlet pipe of cylinder is 4(in), from (NFPA2001) chart.

| Table 5.7 tota | l weight of FM20 | 0 for ground floor | (ZONE 3). |
|----------------|------------------|--------------------|-----------|
|                |                  |                    | ( )       |

| Number | Area $(m^2)$ | FM<br>Weight(Kg) | Number of Nozzle<br>180° or 360° | Pipe Diameter(in) |
|--------|--------------|------------------|----------------------------------|-------------------|
| B3     | 16.35        | 27               | 1-360°                           | 3/4               |
| B4     | 25.79        | 43               | 1-360°                           | 1                 |
| B5     | 17.64        | 28               | 1-360°                           | 3/4               |
| B6     | 21.74        | 36               | 1-360°                           | 1                 |
| B7     | 24.24        | 38               | 1-360°                           | 1                 |
| B8     | 20.46        | 35               | 1-360°                           | 1                 |
| B9     | 32.63        | 54               | 1-360°                           | 1 1/4             |
| B10    | 26.29        | 44               | 1-360°                           | 1                 |
| B11    | 17.9         | 28               | 1-360°                           | 1/2               |
| B12    | 46.92        | 77               | 1-180°                           | 1 1/4             |
| B13    | 17.06        | 28               | 1-180°                           | 1/2               |
| B14    | 6.37         | 11               | 1-180°                           | 3/8               |
| B15    | 10.27        | 16               | 1-180°                           | 1/2               |
| Т      | otal         | 357              |                                  |                   |

The diameter of outlet pipe of cylinder is 3(in), from (NFPA2001) chart.

| Number | Area $(m^2)$ | FM         | Number of Nozzle | Pipe Diameter(in) |
|--------|--------------|------------|------------------|-------------------|
|        |              | Weight(Kg) | 180° or 360°     |                   |
| C1     | 7.80         | 13         | 1-360°           | 1/2               |
| C2     | 12.8         | 22         | 1-360°           | 3/4               |
| C14    | 27.09        | 44         | 1-360°           | 1                 |
| C15    | 32.64        | 54         | 1-360°           | 1 1/4             |
| C16    | 26.36        | 43         | 1-360°           | 1                 |
| Т      | otal         | 176        |                  |                   |

| <b>T</b> 11 <b>F</b> 0 · · · 1 |                 | C C' C           |           |
|--------------------------------|-----------------|------------------|-----------|
| Table 5.8 total                | weight of FM200 | tor first floor  | (ZONE 4). |
| 10010 010 0000                 |                 | 101 11100 110 01 | (         |

The diameter of outlet pipe of cylinder is 2(in), from (NFPA2001) chart.

| Number | Area $(m^2)$ | FM         | Number of Nozzle | Pipe Diameter(in) |
|--------|--------------|------------|------------------|-------------------|
|        |              | Weight(Kg) | 180° or 360°     |                   |
| C3     | 12           | 21         | 1-360°           | 3/4               |
| C4     | 20.04        | 35         | 1-180°           | 1                 |
| C5     | 19.15        | 33         | 1-360°           | 1                 |
| C6     | 16.98        | 30         | 1-360°           | 1                 |
| C7     | 15.71        | 26         | 1-360°           | 3/4               |
| C8     | 4.22         | 7          | 1-360°           | 3/8               |
| C9     | 11.38        | 20         | 1-360°           | 3/4               |
| C10    | 17.1         | 31         | 1-360°           | 1                 |
| C11    | 16.07        | 30         | 1-360°           | 1                 |
| C12    | 21.93        | 36         | 1-360°           | 1                 |
| C13    | 31.99        | 53         | 1-360°           | 1 1/4             |
| C17    | 22.44        | 37         | 1-360°           | 1                 |
| C18    | 19.63        | 35         | 1-180°           | 1                 |
| Т      | otal         | 394        |                  |                   |

Table 5.9 total weight of FM200 for first floor (ZONE 5).

The diameter of outlet pipe of cylinder is 3(in), from (NFPA2001) chart.

| Number | Area $(m^2)$ | FM<br>Waight( $V_{\alpha}$ ) | Number of Nozzle<br>180° or 360° | Pipe Diameter(in) |
|--------|--------------|------------------------------|----------------------------------|-------------------|
|        |              | Weight(Kg)                   |                                  |                   |
| D1     | 13.85        | 28                           | 1-360°                           | 3/4               |
| D2     | 7.1          | 13                           | 1-360°                           | 1/2               |
| D3     | 11.29        | 20                           | 1-360°                           | 3/4               |
| D4     | 7.06         | 13                           | 1-360°                           | 1/2               |
| D5     | 13.71        | 23                           | 1-360°                           | 3/4               |
| D12    | 30.88        | 52                           | 1-360°                           | 1 1/4             |

Table 5.10 total weight of FM200 for second floor (ZONE 6).

| D13 | 26.65 | 44  | 1-360° | 1 |
|-----|-------|-----|--------|---|
|     | otal  | 193 |        |   |

The diameter of outlet pipe of cylinder is 2 1/2(in), from (NFPA2001) chart.

| Number | Area $(m^2)$ | FM         | Number of Nozzle | Pipe Diameter(in) |
|--------|--------------|------------|------------------|-------------------|
|        |              | Weight(Kg) | 180° or 360°     |                   |
| D6     | 21.51        | 36         | 1-360°           | 1                 |
| D7     | 23.19        | 38         | 1-360°           | 1                 |
| D8     | 26.63        | 40         | 1-360°           | 1 1/4             |
| D9     | 48.08        | 78         | 1-360°           | 1 1/4             |
| D10    | 13.81        | 23         | 1-360°           | 3/4               |
| D11    | 16.71        | 31         | 1-360°           | 1                 |
| Т      | otal         | 246        |                  |                   |

Table 5.11 total weight of FM200 for second floor (ZONE 7).

The diameter of outlet pipe of cylinder is 2 1/2(in), from (NFPA2001) chart.

# 5.10 Selections of other FM200 System Components.

#### 1) Nozzles.

Type of nozzles are installing in parts of embassy. that's made by FIKE Company.

Model: (180°-80-060/80-066), (360°-80-052/80-058).

(See Catalog)



2) Heat Detector.

Heat detectors made by EDWARDS SIGNALING Company, and will installing in every spaces protecting by firefighting system.

Model: 281B-PL.

(See Catalog)



#### 3) Smoke Detector.

Smoke detectors made by Imagination at Work Company, and will installing in every spaces protecting by firefighting system.

Model: 541NCSRXT.

(See Catalog)



#### 4) Control Panel.

Every zone need control panel to process any signal coming from any sensor.

Model: HCP-1008E.

(See Catalog)



### 5) Cylinder of FM200 Agent.

Cylinders that's used in every zone made by FIKE Company.

Model: 4BW500.

(See Catalog)



## **References:**

[1] Ronald L.Howell, Principles of Heating Ventilating and Air Conditioning 6<sup>th</sup> edition, ASHRAE, USA, 2009.

[2] Mohammad A. Hammed, Heating and Air conditioning3rd edition, Jordan, 1996.

[3] Brain L.Olsen, Plumbing System 2<sup>nd</sup> edition, Missouri Group, USA, 1982.

[4] Dennis Kubicki, FIRE PROTECTION DESIGN CRITERIA 3rd edition, Washington, D.C, 1982.

[5] http://www.nfpa.org/codes-and-standards/document-information- .

# **APPENDIX** (A)

Table(1)

|           | -4 (       | 400 | 415 | 100 | iu i                                      | ICI | ιψe       | 190 | ijШ      |       | 1649       | <b>1</b> 11 | 10  |     |     | 10  | 10-04                       |     |                           |      |      |      | <u> </u> |      | -Τ  | weils, •         |      |      |           |
|-----------|------------|-----|-----|-----|-------------------------------------------|-----|-----------|-----|----------|-------|------------|-------------|-----|-----|-----|-----|-----------------------------|-----|---------------------------|------|------|------|----------|------|-----|------------------|------|------|-----------|
| th        |            |     |     | •   |                                           | _   |           |     |          |       | S          | <u>01a</u>  | r T | in. | e h |     |                             |     |                           |      |      |      |          |      |     | How<br>of        |      | ,    |           |
| ađe<br>IJ | I          | 2   | 3   | 4   | 1                                         | 5   | 6         | 7   | 8        | 9     | 10         | 11,         | 12  | 13  | 14  | 1.5 | 16                          | 17  | 18                        | 19 : | 20 3 | 21 : | 22 3     | 23 2 |     | Max.             | Min. | Max. | Different |
| ng        |            |     |     |     |                                           |     |           |     |          | ·     |            |             |     |     |     |     |                             | _   |                           |      |      |      |          |      | _   | CLTD             | CLTD | CLTD | CLTD      |
| -         |            | ġ   | 4   | ēks | al an | 噩   | 11        |     | au<br>au | sh    | ïő         | i ou        | pΫ  | 87  | 朤   | 6Ņ  | 齡                           | 嬼   |                           |      | 13   | 韻    |          |      | E)  |                  |      |      |           |
|           | 8          | 8   | 8   | 7   |                                           | 7   | 7         | 7   | 6        | 6     | 6          | б           | 6   | 6   | б   | 6   | б                           | 6   | 6                         | 7    | 7    | 7    | 7        | ₿    | 8   | 2                | δ    | 8    | 2         |
| Ė         | 11         | 11  | 10  | 10  | 1                                         | D   | 9         | 9   | 9        | 8     | В          | 8           | 9   | 9   | 9   | 9   | 10                          | 10  | 10                        | 11   | 11   | 11   | 11       | 11 3 | 11  | <sup>مہ</sup> 22 |      | 51   | 3         |
| _         | 14         | 13  | 13  | 13  | 1                                         | z   | 12        | 11  | 11       | 10    | 10         | 10          | 11  | п   | 12  | 12  | 13                          | 13  | 13                        | 14   | 14   | 14   | 14       | 14   | 14  | 22 "             | 10   | 14   | 4         |
| ŝ         | 13         | 13  | 13  | 12  | 1                                         | 2 : | 11        | 11  | 10       | 10    | 10         | 10          | 10  | 10  | 11  | 11  | 12                          | 12  | 13                        | 13   | 13   | 13   | 13       | 13 : | 13  | 22               | 10   | 13   | 3         |
| -         | 11         | 11  | 11  | 11  | 1                                         | 0 : | 10        | · 9 | 9        | 9     | В          | 8           | 8   | 8   | 8   | 8   | 8                           | 9   | 9                         | 10   | 10   | 11   | п        | 11   | []  | 23               | . 8  | 11   | З         |
| ¥         | 14         | 14  | 14  | 14  | 11                                        | 3   | 13        | 12  | 12       | 11    | 11         | 10          | 10  | 10  | 9   | 9   | 10                          | 10  | 10                        | 11   | 12   | 13   | 13       | 14   | 14  | 24               | 9    | 14 - |           |
| r         | 15         | 15  | 15  | 14  | 11                                        | 4   | 14        | 13  | 13       | 12    | 12         | 11          | 11  | 10  | 10  | 10  | İŌ                          | 10  | 11                        | 11   | 12   | 13   | 14       | 14   | 15  | 1                | 10   | 15   | 5         |
| N         |            |     |     |     |                                           |     | •         | 10  | 10       | 10    | 9          | 9           | 8   | 8   | 8   | 8   | 8                           | B   | 8                         | 9    | 9    | 10   | 11       | 11   | n   | 1                | 8    | 12   | .4        |
|           | 뗾          | ġ,  | 粅   | 矀   |                                           | ф,  | <u>ي،</u> | 12  | 5        | ŝć,   | Ġ          | 101         | η'n | ſ٦  | Ϋ́, | ÍS. | $\mathcal{C}_{\mathcal{C}}$ |     | 1                         | 3    | 1    | 1    |          | et.  | ЗŔ, |                  |      |      | _         |
| I         | <u>ا ا</u> | 8   | 8   | 1   | 7                                         | 7   | 6         | 6   | б        | 5     | 5          | 5           | 5   | 5   | 5   | 5   | 6                           | δ   | 7                         | 7    | 6    | 8    | 8        | 8    | 8   | 24               | 5    | Б    | 3         |
| E         | 11         | 10  | 10  | 9   | ,                                         | 9   | 8         | 7   | 7        | 7     | 7          | 8           | 8   | 9   | -   |     |                             |     |                           |      |      |      |          | 11   |     | 21               | 7    | 12   | 5         |
|           | 13         |     | -   |     | 11                                        | 0   | 10        | 9   | 8        | 8     | . <u>9</u> | 9           |     |     |     |     |                             |     |                           |      |      |      |          | 14   |     |                  | 8    | 15   | 7         |
| Ξ.        | 13         | 12  | 17  | 11  | 11                                        | 0   | 10        | 9   | 8        | 8     | В          | 8           | 9   | 10  | 11  | 12  |                             |     |                           |      |      |      |          | 14   |     | 21               | 8    | 14   | 6         |
|           | 12         | 11  | 11  | 10  | )                                         | 9   | 9         | 8   | 1        | 7     | 6          | 6           | б   | б   | 7   | 8   |                             |     |                           |      |      |      |          | 12   |     | 23               | 6    | 12   | 6         |
| w         | 15         | 15  | 14  | 113 | 3 1                                       | 3   | 12        | 11  | 10       | 9     | 9          | B           | 8   | 7   | 7   | 8   | 9                           |     |                           |      |      |      |          | 16   |     | 24               | 7    | 16   | 9         |
| 7         |            |     |     |     |                                           |     |           | 12  |          |       | 9          | 9           | 8   | '8  | g   | 8   | 8                           | ģ   | 11                        | 12   | 14   | 15   | 16       | 16   | 17  | 24               | 8    | 17   | 9         |
| w         |            |     |     |     |                                           |     |           | 9   |          |       | 7          | 7           | 7   | 6   | 6   | 7   |                             | B   |                           |      | 11   | 12   | 13       | 13   | 13  | 24               | 6    | 13   | 7         |
|           | W.         | al) | 隐   |     | ġ                                         | ŝ,  | 钳         | 5   | 1        | ζ, ju |            | ""          | 罻   | ĉά  | 'nЦ | 烈   | Sec.                        | Шř. | $\mathbf{P}_{\mathbf{r}}$ | 52   |      | s,   | <u>ي</u> | \$4. | -44 | ,                |      |      |           |
| ۲.        | 9          | 8   |     | 1 7 | 7                                         | 6   | . 5       | 5   | 4        | 4     | 4          | 4           | 4   | 5   | 5   | -   | -                           |     | -                         | 9    |      |      | 10       | 9    | 9   | 22               | 4    | 10.  | 6         |
| E         | 10         | 10  | ) 9 |     | В                                         | 7   | 6         | 6   | 6        | 6     | 7          | 8           | 10  | 10  | II  | 12  | 12                          | 12  | 13                        | 13   | 13   | 13   | 12       | 12   | 11  | . 20             | 6    | 13   | 7         |
| 3         | 13         | 12  | n   | 1   |                                           | 9   | 8         | 7   | 7        | 8     | 9          | 11          | 13  | 14  | 15  | 16  | 16                          | 17  | 17                        | 16   | 16   | 16   | 15       | 14   | 13  | 18               | 7    | 17   | 10        |
| Е         | 13         | 12  | 1   | 11  | 0                                         | 9   | 8         | 7   | 6        | 7     | 7          | 9           | 10  | 12  | 14  | 15  | 16                          | 16  | 16                        | 16   | 16   | 16   | 15       | 14   | 13  | 19               | 6    | 16   | 10        |
| 5         | 12         |     |     |     | 9                                         | 8   | 7         | 6   | 6        | 5     | 5          | 5           | Ì5  | 6   | 8   |     |                             |     |                           |      |      |      |          | 13   |     |                  | 5    | 14   | 9         |
| w         |            |     |     | (1) | 2 !                                       | 1   | 10        | 9   | 8        | 7     | 7          | 6           | б   | 6   | 7   | 8   | 10                          | 12  | 14                        | 16   | 18   | 18   | 18       | 13   | 17  | 22               | 6    | 18   | 12        |
| 17<br>17  | •••        |     |     |     | _                                         |     | 11        | 10  | 1 9      | 8     | 7          | 7           | 7   | 7   | 7   | Я   | 9                           | 11  | 13                        | 16   | 18   | 19   | 20       | 19   | 18  | 22               | 7    | 20   | 13        |

| North                      |    |    |   |   |    |    |   |   |   |   |    | Sol | ar | Tin | ne / | ł  |    |    |    |    |    |    |    |    |    | Hour |   |      |            |
|----------------------------|----|----|---|---|----|----|---|---|---|---|----|-----|----|-----|------|----|----|----|----|----|----|----|----|----|----|------|---|------|------------|
| Latitude<br>Wall<br>Facing | 1  | 2  | 2 | 3 | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 13  | 14   | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Max. |   | Max. | Difference |
| NW                         | 14 | 13 | 1 | 2 | 11 | 10 | 9 | 8 | 7 | 6 | 6  | 5   | 5  | 6   | 6    | 6  | 7  | 9  | 10 | U  | 14 | 15 | 15 | 15 | 15 | 22   | 5 | 15   | 10         |
|                            |    |    |   |   |    |    |   |   |   |   |    | Gre | up | DW  | alls |    | 1  |    |    |    |    |    |    |    |    |      |   |      |            |
| N                          | 8  | 7  | 1 | 7 | 6  | 5  | 4 | 3 | 3 | 3 | 3  | 4   | 4  | 5   | 6    | 6  | 7  | 8  | 9  | 10 | 11 | 11 | 10 | 10 | 9  | 21   | 3 | 11   | 8          |
| NE                         | 9  | 8  |   | 7 | 6  | 5  | 5 | 4 | 4 | 6 | 8  | 10  | 11 | 12  | 13   | 13 | 13 | 14 | 14 | 14 | 13 | 13 | 12 | 11 | 10 | 19   | 4 | 14   | 10         |
| E                          | 11 | 10 |   | 8 | 7  | 6  | 5 | 5 | 5 | 7 | 10 | 13  | 15 | 17  | 18   | 18 | 18 | 18 | 18 | 17 | 17 | 16 | 15 | 13 | 12 | 16   | 5 | 18   | 13         |
| SE                         | 11 | 10 |   | 9 | 7  | 6  | 5 | 5 | 5 | 5 | 7  | 10  | 12 | 14  | 16   | 17 | 18 | 18 | 18 | 17 | 17 | 16 | 15 | 14 | 12 | 17   | 5 | 18   | 13         |
| S                          | 11 | 10 |   | 8 | 7  | 6  | 5 | 4 | 4 | 3 | 3  | 4   | 5  | 7   | 9    | 11 | 13 | 15 | 16 | 16 | 16 | 15 | 14 | 13 | 12 | 19   | 3 | 16   | 13         |
| SW                         | 15 | 14 | 1 | 2 | 10 | .9 | 8 | 6 | 5 | 5 | 4  | 4   | 5  | 5   | 7    | 9  | 12 | 15 | 18 | 20 | 21 | 21 | 20 | 19 | 17 | 21   | 4 | 21   | 17         |
| w                          | 17 | 15 | 1 | 3 | 12 | 10 | 9 | 7 | 6 | 5 | 5  | 5   | 5  | 6   | 6    | 8  | 10 | 13 | 17 | 20 | 22 | 23 | 22 | 21 | 19 | 21   | 5 | 23   | 18         |
| NW                         | 14 | 12 | 1 | 1 | 9  | 8  | 7 | 6 | 5 | 4 | 4  | 4   | 4  | 5   | 6    | 7  | 8  | 10 | 12 | 15 | 17 | 18 | 17 | 16 | 15 | 22   | 4 | 18   | 14         |

| Tabl | e(2) |
|------|------|
|------|------|

| Lat. | Month     | N    | NNE<br>NNW |      | ENE<br>WNW | E<br>W | ESE<br>WSW |        | SSE  | s    | Horizontal<br>Roofs |
|------|-----------|------|------------|------|------------|--------|------------|--------|------|------|---------------------|
| 16   | December  | -2.2 | -3.3       | -4.4 | -4.4       | -2.2   | -0.5       | 2.2    | 5.0  | 7.2  | -5.0                |
|      | Jan./Nov. | -2.2 | -3.3       | -3.8 | -3.8       | -2.2   | -0.5       | 2.2    | 4.4  | 6.6  | -3.8                |
|      | Feb./Oct. | -1.6 | -2.7       | -2.7 | -2.2       | -1.1   | 0.0        | 1.1    | 2.7  | 3.8  | -2.2                |
|      | Mar/Sept. | -1.6 | -1.6       | -1.1 | -1.1       | -0.5   | -0.5       | 0.0    | 0.0  | 0.0  | -0.5                |
|      | Apr./Aug. | -0.5 | 0.0        | -0.5 | -0.5       | -0.5   | -1.6       | -1.6   | -2.7 | -3.3 | 0.0                 |
|      | May/July  | 2.2  | 1.6        | 1.6  | 0.0        | -0.5   | -2.2       | -2.7   | -3.8 | -3.8 | 0.0                 |
|      | June      | 3.3  | 2.2        | 2.2  | 0.5        | -0.5   | -2.2       | -3.3   | -4.4 | -3.8 | 0.0                 |
| 24   | December  | -2.7 | -3.8       | -5.5 | -6.1       | -4.4   | -2.7       | 1.1    | 5.0  | 6.6  | -9.4                |
|      | Jan./Nov. | -2.2 | -3.3       | -4.4 | -5.0       | -3.3   | -1.6       | -1.6   | 5.0  | 7.2  | -6.1                |
|      | Feb./Oct. | -2.2 | -2.7       | -3.3 | -3.3       | -1.6   | -0.5       | 1.6    | 3.8  | 5.5  | -3.8                |
|      | Mar/Sept. | -1.6 | -2.2       | -1.6 | -1.6       | -0.5   | -0.5       | 0.5    | 1.1  | 2.2  | -1.6                |
|      | Apr./Aug. | -1.1 | -0.5       | 0.0  | -0.5       | -0.5   | -1.1       | -0.5   | -1.1 | -1.6 | 0.0                 |
|      | May/July  | 0.5  | 1.1        | 1.1  | 0.0        | 0.0    | -1.6       | -1.6   | -2.7 | -3.3 | 0.5                 |
|      | June.     | 1.6  | 1.6        | 1.6  | . 0.5      | 0.0    | -1.6       | -2.2   | -3.3 | -3.3 | 0.5                 |
| 32   | December  | -2.7 | -3.8       | -5.5 | -6.1       | -4.4   | -2.7       | 1.1    | 5.0  | 6.6  | -9.4                |
|      | Jan./Nov. | -2.7 | -3.8       | -5.0 | -6.1       | -4.4   | -2.2       | 1,1    | 5.0  | 6.6  | -8.3                |
|      | Feb./Oct. | -2.2 | -3.3       | -3.8 | -4.4       | -2.2   | -1.1       | 2.2    | 4:4  | 6.1  | -5.5                |
|      | Mar/Sept. | -1.6 | -2.2       | -2.2 | -2.2       | -1.1   | -0.5       | 5 1.6  | 2.7  | 3.8  | -2.7                |
|      | Apr./Aug. | -1.1 | -1.1       | -0.5 | -1.1       | 0.0    | -0.5       | 5 0.0  | 5.0  | 0.5  | -0.5                |
|      | May/July  | 0.5  | 0.5        | 0.5  | 0.0        | 0.0    | -0.5       | 5 -0.5 | -1.6 | -1.6 | 0.5                 |
|      | June      | 0.5  | 1.1        | 1.1  | 0.5        | 0.0    | -1.1       | 1 -1.1 | -2.2 | -2.2 | 1.1                 |

# Table(3)

| TABLE 9-7 Solar<br>Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan.     | Feb. | Mar          | Apr | Mar  | Turn | Test |            | angie                                    | OI JE | IN.  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|--------------|-----|------|------|------|------------|------------------------------------------|-------|------|------|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76       | 85   | 101          | 114 | 120  | 120  | Ju.  | Aug.       |                                          | Oct.  | Nov. | Dec. |
| NNE/NNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76       | 85   | A second and |     | 1000 | 139  | 126  |            | 104                                      | 88    | 76   | 69   |
| NE/NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a series |      | 117          | 252 | 350  | 385  | 350  | 249        | 110                                      | 88    | 76   | 69   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91       | 205  | 338          | 461 | 536  | 555  | 527  | 445        | 325                                      | 199   | 91   |      |
| ENE/WNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 331      | 470  | 577          | 631 | 656  | 656  | 643  | 615        | S. S |       |      | 69   |
| E/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 552      | 647  | 716          |     |      |      |      | 1000       | 546                                      | 451   | 325  | 265  |
| ESE/WSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722      | 201  | 200          |     |      | 675  | 0/8  | 691        | 678                                      | 615   | 546  | 511  |
| and the second se | 1275     | 764  | 748          | 691 | 628  | 596  | 612  | 663        | 716                                      | 738   | 710  | 688  |
| SE/SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 786      | 782  | 716          | 590 | 489  | 439  | 473  | 571        | 688                                      | 754   | 773  |      |
| SSE/SSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 789      | 732  | 615          | 445 | 213  | 262  | 303  | Constant . |                                          |       | 1    | 776  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 776      | 697  | 555          |     |      |      | -    | 429        | 596                                      | 710   | 776  | 795  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |              | 363 | 233  | 189  | 227  | 350        | 540                                      | 678   | 767  | 795  |
| Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 555      | 685  | 795          | 855 | 874  | 871  | 861  | 836        | 770                                      | 672   | 552  | 498  |

# Table(4)

|                | Nominal       | Solar      | Shading Coefficien                                                                                                                                                                                                                | at, W/m <sup>1</sup> ·K |
|----------------|---------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Type of Glass  | Thickness, mm | Trans.     | $h_{\rm m} = 22.7$                                                                                                                                                                                                                | h = 17.0                |
| 2. 新学会社会会主义的   | Sin           | gle Glass  |                                                                                                                                                                                                                                   | 的复数的复数形式                |
| Clear .'       | 3             | 0.84       | 1,00                                                                                                                                                                                                                              | · 1.00                  |
|                | 6             | 0.78       | 0.94                                                                                                                                                                                                                              | 0.95                    |
| -              | 10            | 0.72       | 0.90                                                                                                                                                                                                                              | 0.92                    |
|                | . 12          | 0.67       | 0.87                                                                                                                                                                                                                              | 0.88 🔭                  |
| Heat absorbing | 3             | 0.64       | . 0.83                                                                                                                                                                                                                            | 0.85                    |
| •              | 6.            | 0.46       | 0.69                                                                                                                                                                                                                              | 0.73                    |
| • •            | , 10          | 0.33       | 0.60                                                                                                                                                                                                                              | 0.64                    |
|                | 12            | 0.42       | 0,53                                                                                                                                                                                                                              | 0.58                    |
|                | Dou           | ble Glass  | n in an an Arlands, an Arl<br>Arlands, an Arlands, an Arl |                         |
| Regular        | . 3           |            | 0.90                                                                                                                                                                                                                              |                         |
| Plate          | 6. '          | ·          | 0.83 ·                                                                                                                                                                                                                            | - <u> </u>              |
| Reflective     | 6             |            | · 0.20-0.40                                                                                                                                                                                                                       | . —                     |
| 的是一种问题和自己的问题。  | Insula        | iting Glas | S.S. MARKEN                                                                                                                                                                                                                       |                         |
| Clear          | 3             | 0.71       | 0.88                                                                                                                                                                                                                              | 0.88                    |
| •              | 6             | 0.61       | 0.81                                                                                                                                                                                                                              | 0.82                    |
| Heat absorbing | .6            | 0.36       | 0.55                                                                                                                                                                                                                              | 0.58                    |

TABLE 9-8 Shading coefficient (SC) for class windows without interior - nhiadla . 1

| Table(5)                                                                                         |   |
|--------------------------------------------------------------------------------------------------|---|
| TABLE 9-10 Cooling load factors (CLE) for glass windows without interior shading, path latitudes | - |

| Glass  | Building     |       |          |            |       |        |              | ·             | Sola  | r Ti  | ne, h  |        |        |        |        |            |             |              |
|--------|--------------|-------|----------|------------|-------|--------|--------------|---------------|-------|-------|--------|--------|--------|--------|--------|------------|-------------|--------------|
| Facing | Construction | 1     | 2        | 3          | 4     | 5      | 6            | 7             | 8     | 9     | 10     | 11     | 12     | 13     | 14     | 15         | 16          | 17           |
|        | L            | 0.17  | 0.14     | 0.11       | 0.09  | 0.08   | 0.33         | 0.24          | 0.48  | 0.56  | 0.61   | 0.71   | 0.76   | 0.80   | 0.82   | 0.82       | Q.79        | 0.75         |
| N      | M            | 0.23  | 0.20     | U.18       | 0.16  | 0.14   | 0.34         | 0.14          | 0.46  | 0.53  | 0.59   | 0.65   | 0.70   | 0.73   | 0.75   | 0.76       | 0.74        | 0.75         |
| Shaded | н            | 0.25  | 0.23     | 0.21       | 0.20  | 0.19   | 0.38         | 0.45          | 0.49  | 0.55  | 0.60   | 0.65   | 0.69   | 0.72   | 0.72   | 0.72       | 0.70        | 0.70         |
| •      | L            | 0.06  | 0.05     | 0.04       | 0.03  | 0.03   | 0.26         | 0.43          | 0.47  | 0.44  | 0.41   | 0.40   | 0.39   | 0.39   | 0.38   | 0.36       | 0.33        | 0,30         |
| NNE    |              | 1     |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.30         |
|        | · H          |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.28         |
|        | Ŧ            | 0.04  | 0.04     | <u>م</u> م | 0.02  | 0.03   |              |               | D 51  | ח כו  | n 46   | 0 20   | 0.76   | л 22   | A 21   | 0.26       | 0.26        | 0.23         |
| 3777   |              |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.24         |
| NE     |              |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             |              |
|        | H .          | 0.09  | 0.08     | 0.08       | 0.07  | 0.07   | 0.23         | 0.37          | U.44  | 0.44  | . 0.39 | 0.34   | 0.31   | 0.29   | 0.27   | 0.20       | 0.24        | 0.22         |
| •      | L            | 0.04  | 0.03     | 0.03       | 0.02  | 0.02   | 0.21         | 0.40          | 0.52  | 0.57  | 0.53   | 0.45   | 0.39   | 0.34   | 0.31   | 0.28       | 0.25        | 0.22         |
| ENE    | ·M           | 0.07  | 0.06     | 0,05       | 0.05  | 0.04   | 0.20         | 0.35          | 0.45  | 0.49  | Q.47   | 0.41   | 0.36   | 0.33   | 0.30   | 0.28       | 0.26        | 0.23         |
|        | H            | 0.09  | 0.09     | 0.08       | 0.07  | 0.07   | 0.22         | 0.36          | 0.46  | 0.49  | 0.45   | 0.38   | 0.31   | 0.30   | 0.27   | 0.25       | 0.23        | 0.21         |
|        | L            | 0.04  | 0.03     | 0.03       | 0.02  | 0.02   | 0.19         | 0.37          | 0.51  | 0.57  | 0.57   | 0.50   | 0.42   | 0.37   | 0.32   | 0.29       | 0.25        | 0.22         |
| E      |              |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.23         |
| ÷.     |              |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.22         |
|        | ·            |       | <u> </u> |            |       | ~ ~-   |              |               |       |       | ~ ~-   |        | - ··   |        |        |            | <u>0</u> 00 |              |
|        | · L          | 0.01  | 5 0 0    | 4 0 0      | 3 0 0 | 100    | 37 0         | 170           | 34 0  | 49.0  | 158 0  | 1 61 0 | 57 6   | 1 48 6 | 141    | 0.36       | 0.32        | 0.28         |
| ESE    | M            |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.29         |
|        | H            | 0.10  | 0.0      | 9 0.0      | 9 0.0 | 08 0.0 | 08 0.        | 19 0.         | 32 0  | .43 0 | .50 0  | ).52 ( | ).49 ( | D.41 ( | 0.36   | 0.32<br>~` | 0.29        | 0.26<br>-    |
|        | L            | 0.0   | 5 0.0    | 4 0.0      | 4 0.0 | 13 0.0 | <b>D3 0.</b> | 13 0.         | 28 O  | .43 ( | .55 (  | ).62 ( | ).63 ( | 0.57   | .48    | 0.42       | 0.37        | 0.33         |
| SE     | м            |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.33         |
|        | н            | 0.1   | 1, 0.1   | 0 0.1      | 0 0.0 | 19 0.1 | J8 U.        | 170.          | 26 0  | .40 L | .49 L  | 1.53 ( | 1.53   | 0.48   | 0.41   | 0.30       | 0,35        | 0.30         |
|        | Ľ.           |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.40         |
| SSE    | M<br>H       |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.39<br>0.35 |
|        | ·L           |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.50         |
| s .    | M            | 0.1:  | 2 0.1    | 1 0.0      | 9 0.0 | 8 0.0  | 07 0.        | 08 0          | 11 0  | .14 0 | .21 (  | 0.31 ( | ).42   | 0.52   | 0.57   | 0.58       | 0.53        | 0.47         |
|        | н            | ÷.    |          |            |       |        |              |               |       |       |        |        | •      |        |        |            |             | 0.43         |
| SSW    | L<br>M       |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.65         |
| 55 W   | H            |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 0.55         |
|        | L            | 0.13  | 2 0.1    | 0 0.0      | 8 0.0 | 06 0.0 | D5 O.        | <u>0</u> 6 0. | 080   | .10 0 | 0.12 ( | 0.14 ( | 0.16   | 0.24 ( | 0.36   | 0.49       | 0.60        | 0.66         |
|        | L            | 0.12  | 2 0.1    | 0 0.0      | 8 0.0 | 6 0.0  | 5 0.0        | 6 0.0         | 8 0.3 | 0 0.  | 12 0.1 | 14 0.3 | 16 0.3 | 24 O.3 | 36-0.4 | 49 0.      | 60 D.       | 66 0.6       |
| SIY    |              |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 58 0.5       |
| 0.1    | H            | 4     |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 56 0.5       |
|        |              | .<br> |          |            |       |        |              |               |       | NU 0. | 10 0   | 12.0   |        | 17 0'' |        | 40.0       | 57 0        | 67 A A       |
|        | L            |       |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | .62 0.6      |
| ₩S₩    | M            | 1     |          |            |       |        |              |               |       |       |        |        |        |        |        |            |             | 54 0.5       |
|        | H .          | 10.15 | 5 0,1    | 4 0.1      | 3 0.1 | 2 0.1  | 1 0,1        | 1 0.1         | 2 0.1 | 3 0.  | 14 0.  | 15 0.1 | 16 0.  | 18.0"  | 26 0.  | 30 D.      | 46 U,       | .53 0.5      |

#### Table(6)

| ABLE 9-13 Heal gain rate from misce |          | ithout Hoo | đ      | With Hood    |
|-------------------------------------|----------|------------|--------|--------------|
| Appliances                          | Sensible | Latent     | Total  | All Sensible |
| Hair dryers (Blower type)           | 675      | 120        | 795    | ·            |
| Hair dryers (Helmet type)           | 550      | 100        | 650    |              |
| Coffee brewer (electrical)          | 225      | 65         | 290    | 95           |
| Coffee brewer (gas)                 | 490      | 210        | 700    | 415          |
| Water heater                        | 1 1 3 0  | 335        | 1,465  |              |
| Coffee urn (electrical)             | 1,075    | 350        | 1,425  | 440          |
| Coffee urn (gas)                    | 1,460    | 625        | 2,085  | 415          |
| Deep fat fryer (electrical)         | 820      | 1,930      | 2,750  | 730          |
| Deep fat fryer (gas)                | 2,080    | 2,080      | 4,160  | 830          |
| Tonster                             | 1,055    | 705        | 1,760  | 440          |
| Domestic gas oven                   | 2,430    | 1200       | 3,630  | ·            |
| Roasting oven                       | 500      | 320        | 820    | · ·          |
| Food warmer (gas)                   | 1,550    | 400        | 1,950  | 400          |
|                                     | 335      | 220        | 555    | ]            |
| Egg boiler                          | -13,600  | 7,200      | 20,800 | 4,150        |
| Frying griddle                      | 1,550    | 1,060      | 2,610  | 780          |
| Hotplate                            | 56       | 1,000      | 56     |              |
| Neon sign, per meter length         | 190      | 350        | 540    | · _ ·        |
| Sterilizer                          |          | 120        | 590    |              |
| Laboratory burner                   | 470      | 120        | 1,760  | -            |
| Small copy machine                  | 1,760    | _          | 3,515  | _            |
| Large copy machine                  | 3,515    |            | ديرد   |              |
| Motors:                             |          |            | 1 100  |              |
| 400-2,000 W                         | 1,100    |            | 1,100  |              |
| 2,000–15,000 W                      | 2,430    |            | 2,430  |              |

-----

TABLE 9-13 Heal gain rate from miscellaneous appliances, W.43

# Table(7)

TABLE 9-14 Cooling load factor (CLF)u , for lights 1

| Number of hours<br>after lights are |      | are X <sup>c</sup><br>operation |        | operation |
|-------------------------------------|------|---------------------------------|--------|-----------|
| turned On                           | 10   | 16                              | 10     | 16        |
| 0                                   | 0.08 | 0.19                            | 0.01   | 0.05      |
| 1                                   | 0.62 | 0.72                            | 0.76   | 0.79      |
| 2                                   | 0.66 | 0.75                            | . 0.81 | 0.83      |
| 3                                   | 0.69 | 0.77                            | 0.84   | 0.87      |
| 4 -                                 | 0.73 | 0.80                            | 0.88   | 0.89      |
| 5                                   | 0.75 | 0.82                            | 0.90   | 0.91      |
| 6                                   | 0.78 | 0.84                            | 0.92   | 0.93      |
| . 7 * :                             | 0.80 | 0.85                            | 0.93   | 0.94      |
| 8                                   | 0.82 | 0.87                            | 0.95   | 0.95      |
| 9                                   | 0.84 | 0.88                            | 0.96   | 0.96      |
| 10                                  | 0.85 | 0.89                            | 0.97   | 0.97      |
| 11                                  | 0.32 | 0.90                            | 0.22   | 0.98      |
| 12 -                                | 0.29 | 0.91                            | 0.18   | 0.98      |
| 13                                  | 0.26 | 0.92                            | 0.14   | 0.98      |
| 14                                  | 0.23 | 0.93                            | 0.12   | 0.99      |
| 15                                  | 0.21 | 0.94                            | 0.09   | 0.99      |
| 16                                  | 0.19 | 0.94                            | 0.08   | 0.99      |
| 17                                  | 0.17 | 0.40                            | 0.06   | 0.24      |
| 18                                  | 0.15 | 0.36                            | 0.05   | 0.20      |

#### Table(8)

| 1. I. I.                            |                                                       | A CONTRACTOR                            | Total                                          |                        | Cont.                |
|-------------------------------------|-------------------------------------------------------|-----------------------------------------|------------------------------------------------|------------------------|----------------------|
| Type of Activity                    | Typical<br>Application                                | Total Heat<br>Dissipation<br>Adult Male | Adjusted <sup>(*)</sup><br>Heat<br>Dissipation | Sensible<br>Heat,<br>W | Latent<br>Heat,<br>W |
| Seated at rest                      | Theater :                                             | is or all out                           |                                                | ALL FA                 | 1.1.1                |
|                                     | Matinee                                               | 111.5                                   | 94.0                                           | 64.0                   | 30.0                 |
|                                     | Evening                                               | 111.5                                   | 100.0                                          | 70.0                   | 30.0                 |
| Seated, very<br>light work          | Offices, hotels,<br>apartments,<br>restaurants        | 128.5                                   | 114.0                                          | 70.0                   | 44.0                 |
| Moderately<br>active office<br>work | Offices, hotels, apartments                           | 135.5                                   | 128.5                                          | 71.5                   | 57.0                 |
| Standing, light '<br>work, walking  | Department<br>store, retail<br>store,<br>supermarkets | 157.0                                   | 143.0                                          | 71.5                   | , 71.5               |
| Walking, seated                     | Drug store                                            | 157.0                                   | 143.0                                          | 71.5                   | 71.5                 |
| Standing,<br>walking<br>slowly      | Bank                                                  | 157.0                                   | 143.0                                          | 71.5                   | 71.5                 |
| Sedentary work                      | Restaurant                                            | 168.5                                   | 157.0                                          | 78.5                   | 78.5                 |
| light bench<br>work                 | Factory                                               | 238.0                                   | 214.0                                          | 78.0                   | 136.0                |
| Moderate work                       | Small-Parts<br>assembly                               | 257.0                                   | 243.0                                          | 87.0                   | 156.0                |
| dancing                             | Dance halls                                           | 257.0                                   | 243.0                                          | 87.0                   | 156.0                |
| Walking at 1.5<br>m/s               | Factory                                               | 286.0                                   | 285.0                                          | 107.0                  | 178.                 |
| Bowling<br>(participant)            | Bowling alley                                         | 428.5                                   | 414.0                                          | 166.0                  | 248.                 |
| Heavy work                          | Factory                                               | 428.5                                   | 414.0                                          | 166.0                  | 248.                 |

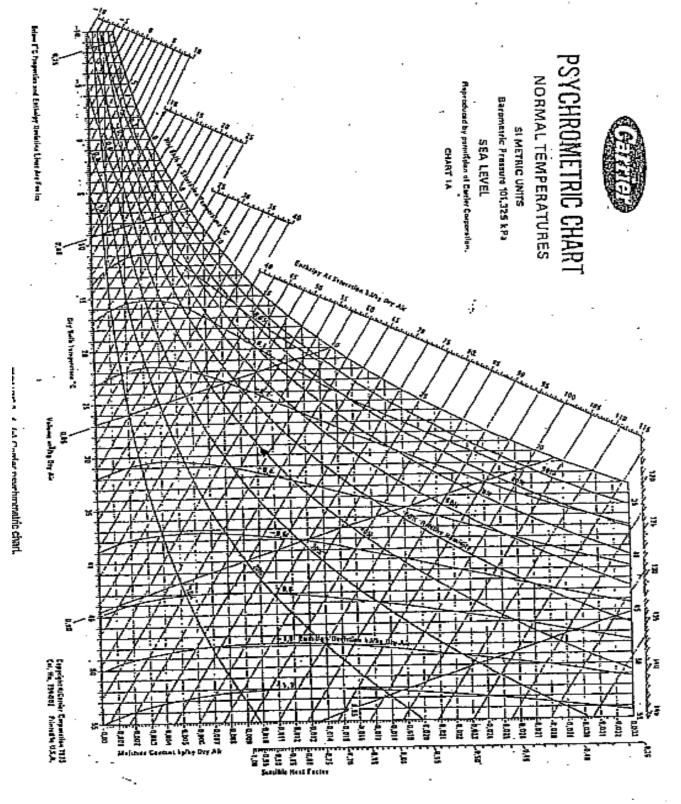
# Table(9)

# TABLE 6-2 Values of infiltration air coefficient K.<sup>[2]</sup> for windows.

| :                             | Infiltration Air Coefficient K |         |         |  |  |
|-------------------------------|--------------------------------|---------|---------|--|--|
| Window Type                   | Average                        | Minimum | Maximum |  |  |
| Sliding                       | • ,                            |         |         |  |  |
| Iron                          | 0.36                           | 0.25    | 0.40    |  |  |
| Aluminum                      | 0.43                           | 0.25    | 0.70    |  |  |
| Hung                          |                                |         |         |  |  |
| Iron                          | 0.25                           | 0.10    | 0.60    |  |  |
| Aluminum (side pivoted)       | 0.36                           | 0.07    | 0.70    |  |  |
| Aluminum (horizontal pivoted) | 0.30                           | 0.07    | 0.50    |  |  |
| PVC                           | 0.10.                          | 0.03    | 0.15    |  |  |

Table(10)

1


| BLE | 5-3 Values of the factor S1 of Eq. (6-7).                          | Value    |
|-----|--------------------------------------------------------------------|----------|
| N₂  | Topography of Location                                             | of $S_1$ |
| 1   | Protected locations by hills or buildings (wind speed = 0.5 m/s)   | 0.9      |
| 2   | Unprotected locations such as sea shores, hill tops, etc.          | 1.1      |
| 3   | Locations other than that listed in item (1) or (2) of this table. | 1.0      |

### Table(11)

TABLE 6-4 Values of the factor S<sub>2</sub> of Eq. (6--7).

| Location Class   | í    | Class | 1    |      | Class  | 2.     |            | CIass | 3    |            | Class | 4      |
|------------------|------|-------|------|------|--------|--------|------------|-------|------|------------|-------|--------|
| Building Height, | A    | B     | С    | A    | в      | C:     | A .        | B     | . C  | . <b>A</b> | в     | С      |
| m                |      |       | _    |      |        |        | . <u>.</u> |       |      |            |       |        |
| 3                | 0.47 | 0.52  | 0.56 | 0.55 | 0.60   | 0.64   | 0.63       | 0.67  | 0.72 | 0.73       | 0.78  | 0.83   |
| 5                | 0.50 | 0.55  | 0.60 | 0.60 | 0.65   | 0.70   | 0.70       | 0.74  | 0.79 | 0.78       | 0,83  | 0.88   |
| 10               | 0.58 | 0.62  | 0.67 | 0.69 | 0.74   | 0.78   | 0.83       | 0.88  | 0.93 | 0.90       | 0.95  | 1.00   |
| 15               | 0.64 | 0.69  | 0.74 | 0.78 | 0.83 · | 0.88   | 0,91       | 0.95  | 1.00 | 0.94       | 0.99  | 1.03   |
| 20               | 0.70 | 0.75  | 0.79 | 0.85 | 0.90   | 0.95   | 0.94       | 0.98  | 1.03 | 0.96       | 1.01  | 1.06   |
| 30               | 0.79 | 0.85  | 0.90 | 0.92 | 0.97   | 1.01   | 0.98       | 1.03  | 1.07 | 1.00       | 1.05  | -1.09  |
| 40               | 0.89 | 0.93  | 0.97 | 0.95 | 1.00   | 1.05   | 1.01       | 1.06  | 1,10 | 1.03       | 1.08  | 1.12   |
| 50               | 0.94 | 0.98  | 1.02 | 1.00 | 1.04   | 1,08   | 1.04       | 1.08  | 1.12 | 1.06       | 1.10  | 1.14   |
| . 60             | 0.98 | 1.02  | 1.05 | 1.0ż | 1.06   | 1.10   | 1.06       | 1.10  | 1.14 | 1.08       | 1.12  | 1.15   |
| 80               | 1.03 | 1.07  | 1.10 | 1.06 | 1.10   | • 1.13 | 1.09       | 1.13  | 1.17 | 1.11       | 1.15  | 1.18   |
| 100              | 1.07 | 1.10  | 1.13 | 1.09 | 1.12   | 1.16   | 1:12       | 1.16  | 1.19 | 1.13       | 1.17  | . 1.20 |
| 120              | 1.10 | 1.13  | 1.15 | 1.11 | 1.15   | 1.18   | 1.14       | 1.18  | 1.21 | 1.15       | 1.19  | 1.22   |
| 140              | 1.12 | 1.15  | 1.17 | 1.13 | 1.17   | 1.12   | 1.16       | 1.19  | 1.22 | 1.17       | 1.20  | 1.24   |
| 160              | 1.14 | 1.17  | 1.19 | 1.15 | 1.18   | 1.21   | 1.18       | 1.21  | 1.24 | 1.19       | 1.22  | 1.25   |
| 180              | 1.16 | 1,19  | 1.20 | 1.17 | 1.20   | 1.23   | 1.19       | 1.22  | 1.25 | 1.20       | 1.23  | 1.26   |
| 200 ·            | 1.18 | 1.21  | 1.22 | 1.18 | 1.21   | 1.24   | 1.21       | 1.24  | 1.26 | 1.21       | 1.24  | 1.27   |

Figure (1)



LATEMOMETRY

# **APPENDIX (B)**

### Table(1)

#### 506 / WATER SUPPLY, DISTRIBUTION AND FIRE SUPPRESSION

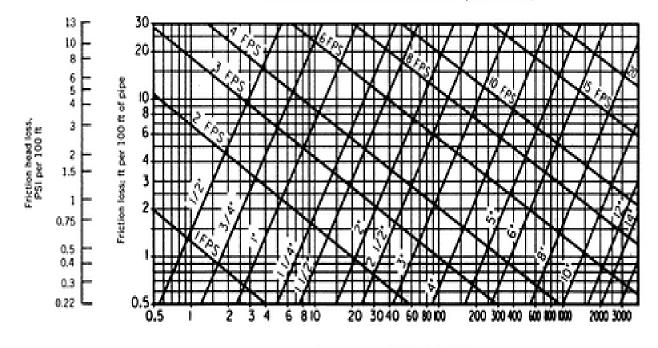
| Fixture <sup>a</sup>        | Use           | Type of<br>Supply Control | Fixture<br>Units <sup>b</sup> | Min. Size of<br>Fixture Branch <sup>d</sup> in. |
|-----------------------------|---------------|---------------------------|-------------------------------|-------------------------------------------------|
| Bathroom group <sup>e</sup> | Private       | Flushometer               | 8                             |                                                 |
| Bathroom group <sup>e</sup> | Private       | Flush tank for closet     | 6                             | -                                               |
| Bathtub                     | Private       | Faucet                    | 2                             | 1/2                                             |
| Bathtub                     | General       | Faucet                    | 4                             | 1/2                                             |
| Clothes washer              | Private       | Faucet                    | 2                             | 1/2                                             |
| Clothes washer              | General       | Faucet                    | 4                             | 1/2                                             |
| Combination fixture         | Private       | Faucet                    | 3                             | 1/2                                             |
| Dishwasher                  | Private       | Automatic                 | 1                             | 1/2                                             |
| Drinking fountain           | Offices, etc. | Faucet ¾ in.              | 0.25                          | 1/2                                             |
| Kitchen sink                | Private       | Faucet                    | 2                             | 1/2                                             |
| Kitchen sink                | General       | Faucet                    | 4                             | 1/2                                             |
| Laundry trays (1-3)         | Private       | Faucet                    | 3                             | 1/2                                             |
| Lavatory                    | Private       | Faucet                    | 1                             | 3/8                                             |
| Lavatory                    | General       | Faucet                    | 2                             | 1/2                                             |
| Separate shower             | Private       | Mixing valve              | 2                             | 1/2                                             |
| Service sink                | General       | Faucet                    | 3                             | 1/2                                             |
| Shower head                 | Private       | Mixing valve              | 2                             | 1/2                                             |
| Shower head                 | General       | Mixing valve              | 4                             | 1/2                                             |
| Urinal                      | General       | Flushometer               | 5                             | 3/4 *                                           |
| Urinal                      | General       | Flush tank                | 3                             | 1/2                                             |
| Water closet                | Private       | Flushometer               | 6                             | 1                                               |
| Water closet                | Private       | Flushometer/tank          | 3                             | 1/2                                             |
| Water closet                | Private       | Flush tank                | 3                             | 1/2                                             |
| Water closet                | General       | Flushometer               | 10                            | 1                                               |
| Water closet                | General       | Flushometer/tank          | 5                             | 1/2                                             |
| Water closet                | General       | Flush tank                | 5                             | 1/2                                             |

| Table 9.3 Water Supply Fixture | Units and Fixture Branch Sizes |
|--------------------------------|--------------------------------|
|--------------------------------|--------------------------------|

Water supply outlets not listed above shall be computed at their maximum demand, but in no case less than the following values:

| Predomi        | Systems<br>nantly for<br>Tanks | Supply Systems<br>Predominantly for<br>Flushometers |               |  |  |
|----------------|--------------------------------|-----------------------------------------------------|---------------|--|--|
| Load,<br>WSFU* | Demand,<br>gpm                 | Load,<br>WSFU*                                      | Demand<br>gpm |  |  |
| 6              | 5                              |                                                     | -             |  |  |
| 10             | 8                              | 10                                                  | 27            |  |  |
| 15             | 11                             | 15                                                  | 31            |  |  |
| 20             | 14                             | 20                                                  | 35            |  |  |
| 25             | 17                             | 25                                                  | 38            |  |  |
| 30             | 20                             | 30                                                  | 41            |  |  |
| 40             | 25                             | 40                                                  | 47            |  |  |
| 50             | 29                             | 50                                                  | 51            |  |  |
| 60             | 33                             | 60                                                  | 55            |  |  |
| 80             | 39                             | 80                                                  | 62            |  |  |
| 100            | 44                             | 100                                                 | 68            |  |  |
| 120            | 49                             | 120                                                 | 74            |  |  |
| 140            | 53                             | 140                                                 | 78            |  |  |
| 160            | 57                             | 160                                                 | 83            |  |  |
| 180            | 61                             | 180                                                 | 87            |  |  |
| 200            | 65                             | 200                                                 | 91            |  |  |
| 225            | 70                             | 225                                                 | 95            |  |  |
| 250            | 75                             | 250                                                 | 100           |  |  |
| 300            | 85                             | 300                                                 | 110           |  |  |
| 400            | 105                            | 400                                                 | 125           |  |  |
| 500            | 125                            | 500                                                 | 140           |  |  |
| 750            | 170                            | 750                                                 | 175           |  |  |
| 1000           | 210                            | 1000                                                | 218           |  |  |
| 1250           | 240                            | 1250                                                | 240           |  |  |
| 1500           | 270                            | 1500                                                | 270           |  |  |
| 1750           | 300                            | 1750                                                | 300           |  |  |
| 2000           | 325                            | 2000                                                | 325           |  |  |
| 2500           | 380                            | 2500                                                | 380           |  |  |
| 3000           | 435                            | 3000                                                | 435           |  |  |
| 4000           | 525                            | 4000                                                | 525           |  |  |
| 5000           | 600                            | 5000                                                | 600           |  |  |
| 6000           | 650                            | 6000                                                | 650           |  |  |
| 7000           | 700                            | 7000                                                | 700           |  |  |
| 8000           | 730                            | 8000                                                | 730           |  |  |
| 9000           | 760                            | -9000                                               | 760           |  |  |
| 10,000         | 790                            | 10,000                                              | 790           |  |  |

Table 9.4 Table for Estimating Demand


# Table(3)

| Diameter<br>of Pipe, in. | Maximum                                | Maximum Number of Fixture Units That May Be Connected to |                                                 |                                      |  |  |  |  |  |  |  |  |
|--------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
|                          |                                        | One Stack of<br>Three Branch                             | Stacks with More Than Three<br>Branch Intervals |                                      |  |  |  |  |  |  |  |  |
|                          | Any Horizontal<br>Fixture Branch,* dfu | Intervals or<br>Less, dfu                                | Total for<br>Stack, dfu                         | Total at One<br>Branch Interval, dfu |  |  |  |  |  |  |  |  |
| 11/2                     | 3                                      | 4                                                        | 8                                               | 2                                    |  |  |  |  |  |  |  |  |
| 2                        | 6                                      | 10                                                       | 24                                              | 6                                    |  |  |  |  |  |  |  |  |
| 21/2                     | 12                                     | 20                                                       | 42                                              | 9                                    |  |  |  |  |  |  |  |  |
| 3                        | 20*                                    | 48*                                                      | 72*                                             | 20*                                  |  |  |  |  |  |  |  |  |
| 4                        | 160                                    | 240                                                      | 500                                             | 90                                   |  |  |  |  |  |  |  |  |
| 5                        | 360                                    | 540                                                      | 1100                                            | 200                                  |  |  |  |  |  |  |  |  |
| 6                        | 620                                    | 960                                                      | 1900                                            | 350                                  |  |  |  |  |  |  |  |  |
| 8                        | 1400                                   | 2200                                                     | 3600                                            | 600                                  |  |  |  |  |  |  |  |  |
| 10                       | 2500                                   | 3800                                                     | 5600                                            | 1000                                 |  |  |  |  |  |  |  |  |
| 12                       | 3900                                   | 6000                                                     | 8400                                            | 1500                                 |  |  |  |  |  |  |  |  |
| 15                       | 7000                                   |                                                          |                                                 |                                      |  |  |  |  |  |  |  |  |

# Table 10.4 Horizontal Fixture Branches and Stacks

| Type of Fixture or Group of Fixtures                                                                                      | Drainage<br>Fixture<br>Unit<br>Values |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Automatic clothes washer (2 "standpipe)<br>Bathroom group consisting of a water<br>closet, lavatory and bathtub or shower | 3                                     |
| stall:<br>Flushometer valve closet                                                                                        |                                       |
|                                                                                                                           | 8                                     |
| Tank-type closet<br>Bathtub (with or without overhead                                                                     | 6                                     |
| shower) 1 1/2 "trap                                                                                                       | 2                                     |
| Bidet 1 1/2 "trap                                                                                                         | 3                                     |
| Clinic sink                                                                                                               | 6                                     |
| Combination sink-and-tray with food waste                                                                                 |                                       |
| grinder 1 1/2 "trap                                                                                                       | 4                                     |
| Combination sink-and-tray with one 1 1/2"                                                                                 | 50                                    |
| trap                                                                                                                      | 2                                     |
| Combination sink-and-tray with separate                                                                                   |                                       |
| 1 1/2" traps                                                                                                              | 3                                     |
| Dental unit or cuspidor                                                                                                   | 1                                     |
| Dental lavatory                                                                                                           | 1                                     |
| Drinking fountain                                                                                                         | 1/2                                   |
| Dishwasher, domestic                                                                                                      | 2                                     |
| Floor drains with 2 "waste                                                                                                | 3                                     |
| Kitchen sink, domestic, with one 1 1/2 "<br>trap                                                                          | 2                                     |
| Kitchen sink, domestic, with food waste<br>grinder                                                                        | 2                                     |
| Lavatory with 1 1/4 "waste                                                                                                | 1                                     |
| Laundry tray (1 or 2 compartments)                                                                                        | 2                                     |
| Shower stall, domestic 2"trap                                                                                             | 2                                     |
| Showers (group) per head<br>Sinks:                                                                                        | 2                                     |
| Surgeon's                                                                                                                 | 3                                     |
| Flushing rim (with valve)                                                                                                 | 6                                     |
| Service (trap standard)<br>Service (P trap)                                                                               | 3                                     |
| Pot, scullery, etc.                                                                                                       | 2 4                                   |
| Jrinal, pedestal, siphon jet blowout                                                                                      | 6                                     |
| Urinal, stall lip                                                                                                         | 4                                     |
| Urinal stall, washout                                                                                                     | 4                                     |
| Urinal trough (each 6-foot section)                                                                                       | 2                                     |
| Wash sink (circular or multiple) each set<br>of faucets                                                                   | 2                                     |
| Water closet, tank-operated                                                                                               | 4                                     |
| Water closet, valve-operated                                                                                              | 6                                     |
| Fixtures not listed above:                                                                                                |                                       |
| Trap Size 1 1/4 "or less                                                                                                  | 1                                     |
| Trap Size 1 1/2"                                                                                                          | 2                                     |
| Trap Size 2 "                                                                                                             | 3                                     |
| Trap Size 2 1/2"                                                                                                          | 4                                     |
| Trap Size 3 "                                                                                                             | 5                                     |
| Trap Size 4 "                                                                                                             | 6                                     |

#### Figure (1)



Friction Head Loss for Water in Commercial Steel Pipe (Schedule 40)

Flow rate, U.S. gal/min (water @ 60°F)

Figure 9.5 Chart of friction head loss in Schedule 40 black iron or steel pipe, for water at 60°F, in feet of water and psi per 100 ft of equivalent pipe length. Pipe sizes are nominal. (Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia, from the 1993 ASHRAE Handbook—Fundamentals.)

# **Catalogues, Charts and Tables**