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Abstract

This theses aims to develop a better understanding of skew lattice and its ideals.

We present the definitions of lattice, skew lattice, ideals and filters.

Due to the importance of orders and ordered sets in the study of both lattice and

skew lattice, the definitions of orders and ordered sets are presented, then we de-

fine a lattice in two ways and present the connection between them, furthermore,

we discuss the concept of ideal and filter in a lattice. The algebraic definition of a

skew lattice and some of its properties are introduced. We discuss the three Green’s

relations on a skew lattice. Also we study an order structure of a skew lattice, and

the related results and the characterizations theorems are studied.

Furthermore we introduce the concept of ideal, filter, skew ideal and principal ideal

in a skew lattice. The characterizations theorems for each of these concepts and the

results connecting between them are discussed.
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Introduction

In the first half of the nineteenth century, through George Booles research work on

formalization of propositional logic, he introduced the concept of Boolean algebra.

At the end of that century, Charles S. Pierce and Ernst Schroeder found it useful

to introduce the concept of lattice while independently, Richard Dedekinds research

led to the same concept. In fact, Dedekind submit two papers about the subject of

lattice, but then the subject stayed recumbent and did not attracted the attention

of mathematicians until the thirties of the twentieth century.

In the mid-thirties of the 20th century, the lattice theory was further developed by

Garrett Birkhoff. In a series of Birkhoffs papers, it is demonstrated that the lattice

theory provides a unified framework for unrelated developments in many mathemat-

ical disciplines. Birkhoff himself, V. Glivenko, Karl Menger, John von Neumann,

Oystein Ore, George Gratzer and many authors have developed enough for this field.

In 1949, noncommutative lattices have studied by Pascual Jordan who was mo-

tivated by certain questions in quantum mechanics. It is later approached by Slavk

and Cornish who refer to a special variety of noncommutative lattices, namely skew

lattices. Skew lattices turned out to be the most fruitful class of noncommutative

lattices and thus have received the most attention. A more general version of skew

lattices can be found in Jonathan Leech’s 1989 paper.

Joao Pita Costa [29] introduced the concept of ideal (filter) in a skew lattice. In

1
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his paper the concept of a skew ideal in a skew lattice was introduced. Also he

introduced the concept of principal ideal in a skew lattice.

The material of this thesis lies in three chapters, each one contains basic defini-

tions, examples and important theorems.

Chapter one: In this chapter we begin with basic definitions needed in this work.

We introduce the concept of partially ordered set, preorder, totally ordered set, du-

ality, lattice as partially ordered set, lattice as algebraic structure and sublattice.

Examples and theorems are also introduced to illustrate these concepts. In addition

special elements in partially ordered set such as least and greatest, minimal and

maximal, upper and lower bounds are given. We learn how to represent any finite

partially ordered set graphically. Finally, special subsets of lattices such as ideals,

filters, and principal ideals are introduced.

Chapter two: In this chapter we introduce the concept of skew lattice. We present

an algebraic structure of a skew lattice and derive its relation with the lattice. We

discuss Greens relations on skew lattices and several theorems regarding D relation.

Some properties of skew lattices such as rectangular, left- and right-handed, sym-

metric, normal, conormal, binormal, distributive, and cancellative will be studied.

Also the two famous first and second decomposition theorems will be given. In ad-

dition Skew Boolean algebra are defined with some examples. We also present an

order structure of a skew lattice. The notions of natural partial order and the nat-

ural preorder on a skew lattice will be introduced with characterizations theorems.

Furthermore, representing the skew lattice geometrically will be illustrated.

Chapter three: In this chapter we talk about ideals in skew lattices. We give the

definitions of an ideal, filter, and skew ideal of a skew lattice with examples and

characterizations of each concept. Also the definition of principal ideal and princi-

pal skew ideal of a skew lattice will be introduced with theorems connecting between
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these concepts.



Chapter 1

Preliminaries

This chapter is devoted mainly to presenting some definitions and theorems that

will be used in posterior chapters. The basic concepts introduced in this chapter are

partially ordered set, lattice and ideal and filter in a lattice. Theorems and examples

are discussed to illustrate these concepts.

1.1 Partially Ordered Sets

This section describes the basic theory of partially ordered sets. We give the defini-

tions of a partially ordered set and totally ordered set. We present extreme elements

in a partially ordered set. Also we illustrate how to present a partially ordered set

graphically. Finally, the very important concept of duality will be introduced.

1.1.1 Basic Definitions

Definition 1.1.1. [3] Suppose that P is a set and that ≤P a binary relation on P .

Then ≤P is a partial order if it is reflexive, antisymmetric, and transitive,

4



1.1. Partially Ordered Sets 5

i.e., for all a, b and c in P , we have that

P1: a ≤P a. (reflexivity)

P2: if a ≤p b and b ≤p a then a = b. (antisymmetry)

P3: if a ≤p b and b ≤p c then a ≤p c. (transitivity)

A set P with a partial order ≤P on it is called a partially ordered set or simply

a poset, and is denoted by (P,≤P ).

Example 1.1.1. For any set X, consider the power set P (X). The set inclusion

relation ⊆ on P (X) is a partial order, and (P (X),⊆) is a poset.

Remark 1.1.1. Any subset of a poset is itself a poset under the same relation.

Remark 1.1.2. The symbol ≤P is read related to. The notation, a <P b means

that a ≤P b, but a 6= b. The relation a ≤P b is also written b ≥p a.

Definition 1.1.2. [17] A relation ≤P on a set P which is reflexive and transitive

but not necessarily antisymmetric is called a quasiorder or a preorder.

Example 1.1.2. The proper subset relation ⊂ on the power set P (X) of a set X is

a preorder.

Remark 1.1.3. A pair of elements a, b are comparable if a ≤p b or b ≤p a.

Otherwise, a and b are incomparable, denoted by a ‖ b.
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Definition 1.1.3. A poset (P,≤P ) is totally ordered if every a, b ∈ P are com-

parable, that is a ≤P b or b ≤P a.

A totally ordered set is also called a chain. In contrast, a poset (P,≤P ) is antichain

if every distinct pair of elements is incomparable.

Example 1.1.3. The divisibility relation | on the set of natural numbers N =

{1, 2, . . .} defined by a | b if and only if a divides b , is a partial order and (N, |) is

a poset, but it is not a chain, since not every a, b ∈ N are comparable. For example,

2 ‖ 3.

Example 1.1.4. The sets N,Z,Q,R of natural, integer, rational, and real numbers

with the usual order relation ≤ ( less than or equal ) form chains.

Example 1.1.5. The set of prime numbers which is partially ordered by division

relation is an antichain.

1.1.2 Extreme Elements in Posets

Various types of extreme elements in a partially ordered set (P,≤P ) will be defined

and examples will be introduced.

Definition 1.1.4. [1] Let (P,≤P ) be a poset, and x ∈ P . Then:

1. x is called a minimal element if a ∈ P and a ≤P x implies that a = x.

2. x is called a maximal element if a ∈ P and x ≤P a implies that x = a.
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Example 1.1.6. Let P = {2, 4, 5, 10, 12} be partially ordered by divisibility |. Then |

is given by {(2, 2), (4, 4), (5, 5), (10, 10), (12, 12), (2, 4), (2, 10), (2, 12), (4, 12), (5, 10)}.

It is clear that 10 and 12 are maximal elements; while, 2 and 5 are minimal elements.

Definition 1.1.5. [2] Let (P,≤P ) be a partially ordered set.

1. An element m ∈ P is called a greatest element of P if p ≤P m for all p ∈ P .

2. An element n ∈ P is called a least element of P if n ≤P p for all p ∈ P .

The least and greatest elements of a poset are also called bottom and top and they

are represented by the symbols ⊥ and >, respectivey. A poset that has both bottom

and top is called a bounded poset.

Remark 1.1.4. A poset has at most one greatest element and at most one least

element, i.e., if greatest and least elements exist, they are unique.

Example 1.1.7. In the poset (P (X),⊆), we have a top > = X and a bottom ⊥ = ∅.

Thus, (P (X),⊆) is a bounded poset.

Example 1.1.8. A finite chain always has bottom and top elements, but an infinite

chain need not have. For example, the chain (N,≤) has bottom element 1, but no

top, while the chain (Z,≤) have neither bottom nor top.

Note that a least element must be minimal and a greatest element must be maximal,

but the converse is not necessarily true. For instance, in Example 1.1.6, 10 is not a

greatest element since 4 - 10 and 5 is not a least element since 5 - 12.
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Definition 1.1.6. [1] Let (P,≤P ) be a partially ordered set and let S ⊆ P .

1 . An upper bound for S is an element u ∈ P for wich

s ≤P u ∀s ∈ S

The set of all upper bounds for S is denoted by Su. If Su has a least element,

it is called the join or least upper bound or supremum of S and is denoted

by
∨
S. The join of a finite set S = {a1, . . . , an} is denoted by

a1 ∨ . . . ∨ an

2 . A lower bound for S is an element l for which

l ≤P s ∀s ∈ S

The set of all lower bounds for S is denoted by Sl. If Sl has a greatest element,

it is called the meet or greatest lower bound or infimum of S and is denoted

by
∧
S. The meet of a finite set S = {a1, . . . , an} is denoted by

a1 ∧ . . . ∧ an.

The least upper bound and the greatest lower bound of S can be shortened by

l.u.b.(lub) and g.l.b.(glb) respectively. If l.u.b. and g.l.b. exist, they are unique.

Example 1.1.9. In the poset (N, |) the supremum of any two elements a and b or

a ∨ b is the least common multiple of a and b. The infimum of a and b or a ∧ b is

their greatest common divisor.

The upper and lower bounds may fail to exist, this can be seen in the following

example.

Example 1.1.10. Consider the poset (R,≤). The subset Z ⊆ R has no upper bound

and no lower bound.
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1.1.3 Diagrams

Just as we represent sets, functions, and relations with diagrams to make them more

understandable, we can represent (finite) partially ordered sets informatively with a

particular diagram. To illustrate a diagrammatic representation of a poset, we need

the idea of covering.

Definition 1.1.7. [20] In the poset (P,≤P ), a covers b or b is covered by a, in

notation, a = b or b < a iff a >P b and for no x, a >P x >P b.

Observe that, if the poset (P,≤P ) is finite, b ≤P a if and only if there exists a finite

sequence x1, x2, . . . , xn of elements of P such that

b < x1 < x2 < . . . < xn < a.

Thus, in the finite case, the partial order on P determines, and is determined by,

the covering relation.

Now, using covering relation, we can get graphical representation of any finite poset

P as follows:

� Elements of P are points in the plane.

� If b <P a, then a is drawn above b.

� If b < a, then a and b are connected by a line.

The resulting figure is called a diagram or a Hasse diagram of P .
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Example 1.1.11. Figure 1.1 shows the Hasse diagram of the poset {1, 2, 3, 4, 5, 6, 7, 8}

ordered by divisibility.

Figure 1.1:

Note that 1 is a minimal and least element of the above poset and 5, 6, 7, 8 are

maximal elements. But there is no greatest element

Example 1.1.12. Figure 1.2 shows the Hasse diagram of the poset P ({a, b, c})

under set inclusion.

Figure 1.2:

Note that ∅ is a minimal and least element of the above poset and {a, b, c} is a

maximal and greatest element.
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1.1.4 Duality

Given any partially ordered set P we can form a new partially ordered set P ∂ (the

dual of P ) by defining x ≤P y to hold in P ∂ if and only if y ≤P x holds in P ( such

partial order on P ∂ is called the converse partial order.

Definition 1.1.8. [28] The dual of a poset P is that poset P ∂ defined by the con-

verse partial ordering relation on the same elements.

Let Φ be a statement about a poset P . One can define the dual statement to

Φ to be the statement formed by replacing each occurrence of ≤P by ≥P and vice

versa. Thus, least upper bound is replaced by greatest lower bound, maximal by

minimal and so on.

If a statement holds for a poset (P,≤P ), its dual holds for the dual poset (P ∂,≥P ).

For example, x is an upper bound for the set K in the poset (P,≤P ) if and only if

x is a lower bound for K in (P ∂,≥P ). Similarly, u is a supremum of K in the poset

(P,≤P ) if and only if u is an infimum of K in (P ∂,≥P ). This allows us to formulate

the following principle.

The Duality Principle for Posets: Given a statement Φ about posets which

is true in all posets, then the dual statement Φ∂ is true in all posets.

” The validity of this principle follows from the fact that any poset can be regarded

as the dual of some other poset. The duality principle allows us to simplify proofs

of certain statements that concern posets. For statements involving both a concept

and its dual we need to prove only half of the statement; the other half follows

by applying the duality principle. For instance, once we prove the statement ”any

subset of a poset can have at most one least upper bound,” the dual statement ”any

subset of a poset can have at most one greatest lower bound” follows. ” [18]
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Remark 1.1.5. The two statements Φ and Ψ that are true in exactly the same

posets ( i.e. Φ is true in a poset P if and only if Ψ is true in the same poset P ) are

called logically equivalent. If a statement is logically equivalent to its dual, it is

called a self-dual.

Note that the dual of the dual poset is the original poset
[ (
P ∂
)
∂ = P

]
and that the

dual of the dual statement is the original statement also
[ (

Φ∂
)
∂ = Φ

]
.

For a finite poset P , we can get a Hasse diagram for P ∂ by turning upside down a

Hasse diagram for P . Figure 1.3 gives an example.

Figure 1.3:

1.2 Lattices

In this section the concepts of lattice and sublattice are introduced where lattices

are defined in two ways, one as partially ordered sets and the other as algebraic

structures. Theorems and examples are presented to illustrate these concepts. Fur-

thermore, we discuss the concept of ideal and filter in a lattice.
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1.2.1 Lattices as Partially Ordered Sets

Many important properties of a poset P are expressed in terms of the existence of

certain upper bounds or lower bounds of subsets of P . One of the most important

classes of posets defined in this way is lattices.

In partially ordered sets, the least upper bound x∨ y or greatest lower bound x∧ y

of {x, y} may fail to exist for two different reasons, one of them is that x and y may

have no common upper bound or have no common lower bound. The other reason

is that x and y have no least upper bound or have no greatest lower bound.

A special structure arises when every pair of elements in a poset has both a least

upper bound and a greatest lower bound.

Definition 1.2.1. [7] A lattice is a partially ordered set (L,≤P ) where every pair

x, y in L has a supremum and an infimum (in L).

Note that the join (supremum) and meet (infimum) are called lattice operations.

Definition 1.2.2. [21] A lattice is trivial if it has only one element; otherwise it is

nontrivial.

Example 1.2.1. Every chain is a lattice. For a two elements x and y, without loss

of generality, say x ≤P y, then x ∧ y = x and x ∨ y = y. For example, the set Z of

integers with the usual order relation is a lattice, where for all x and y in Z

x ∧ y = min(x, y) and x ∨ y = max(x, y)

Example 1.2.2. The set of natural numbers N under divisibility forms a lattice,

where for any x and y in N

x ∧ y = gcd(x, y) and x ∨ y = lcm(x, y)
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Example 1.2.3. Let L be the set of linear subspaces of a vector space V . Then L

is lattice under set inclusion, where for all S and T in L

S ∧ T = S ∩ T and S ∨ T = S + T = {v + w : v ∈ S,w ∈ T}.

Example 1.2.4. Let S be the set of all subgroups of a group G. Then S is a lattice

under set inclusion, where for any H and K in S

H ∧K = H ∩K and H ∨K = 〈H ∪K 〉

where 〈H ∪K 〉 means the intersection of all subgroups of G that contains H ∪K.

Similar statements can be made for other algebraic objects, such as the submodules

of a module, the subrings of a ring or the subfields of a field.

Note that not all posets are lattices. For example, consider the poset ({1, 2, 3, 4, 5}, |)

whose Hasse diagram is given in Figure 1.4. The supremum of {2, 3} and {3, 5} do

not exist. Thus this poset is not a lattice.

Figure 1.4:
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Theorem 1.2.1. [24] If (L,≤P ) is a lattice then for any a, b, c ∈ L, the following

results hold:

(L1) a ∧ a = a and a ∨ a = a (Idempotent)

(L2) a ∧ b = b ∧ a and a ∨ b = b ∨ a (Commutative)

(L3) (a∧ b)∧ c = a∧ (b∧ c) and (a∨ b)∨ c = a∨ (b∨ c) (Associative)

(L4) a∧ (a∨b) = a and a∨ (a∧b) = a (Absorption)

Proof. We prove the results for the meet operation. And the results of the join

operation can be proven similarly.

(L1) a ∧ a = inf{a, a} = a. Thus a ∧ a = a.

(L2) a ∧ b = inf{a, b} = inf{b, a} = b ∧ a.

(L3) Let b ∧ c = d then d = inf{b, c}

⇒ d ≤P b and d ≤P c

Now, let a ∧ d = e then e = inf{a, d}

⇒ e ≤P a and e ≤P d

⇒ e ≤P a and e ≤P b and e ≤P c [ since≤P is transitive and d ≤P b, d ≤P c ]

⇒ e is a lower bound of {a, b, c}

If l is any lower bound of {e, b, c} then

l ≤P a and l ≤P b and l ≤P c

Now,

l ≤P b, l ≤P c and d = inf{b, c} give l ≤P d

l ≤P a and e = inf{a, d} give l ≤P e.

Hence, e = inf{a, b, c}. Similarly, we can show (a∧ b)∧ c = inf{a, b, c}. Thus

(a ∧ b) ∧ c = a ∧ (b ∧ c).

(L4) To prove a ∧ (a ∨ b) = a, we know that a ≤P a and a ≤P a ∨ b

⇒ a ≤P a ∧ (a ∨ b) (1.1)
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again

a ∧ (a ∨ b) = inf{a, a ∨ b} ≤P a (1.2)

From 1.1 and 1.2, by antisymmetry, we have, a ∧ (a ∨ b) = a.

Theorem 1.2.2. [24] For any a, b, c, d in a lattice (L,≤P ), the following properties

hold:

(a) a ≤P b and c ≤P d⇒ a ∨ c ≤P b ∨ d

(b) a ≤P b and c ≤P d⇒ a ∧ c ≤P b ∧ d.

Proof. (a) Suppose that a ≤P b and c ≤P d. By definition of join operation ∨, we

have

b ≤P b ∨ d and d ≤P b ∨ d

Now,

a ≤P b and b ≤P b ∨ d⇒ a ≤P b ∨ d by transitivity.

Similarly,

c ≤P d and d ≤P b ∨ d⇒ c ≤P b ∨ d.

Thus b ∨ d is an upper bound of a and c. Since a ∨ c is the least upper bound

of a and c, we have, a ∨ c ≤P b ∨ d. The proof of (b) is similar.

Corollary 1.2.1. [24] For any a, b, c in a lattice (L,≤P ), the following properties

hold.

(a) a ≤P b⇒ a ∨ c ≤P b ∨ c

(a) a ≤P b⇒ a ∧ c ≤P b ∧ c.
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Proof. The proofs of (a) and (b) follow by taking d = c in the above theorem.

The following theorem gives a connection between the partial ordering relation ≤P
and the two binary operations ∨ and ∧ in a lattice (L,≤P ).

Theorem 1.2.3. [24] Let (L,≤P ) be a lattice in which ∧ and ∨ denote the operations

of meet and join. Then for any a, b

(a) a ≤P b⇔ a ∧ b = a

(b) a ≤P b⇔ a ∨ b = b.

Proof. (a) Suppose that a ∧ b = a. Since a ∧ b = inf{a, b}, therefore a ∧ b ≤P b

⇒ a ≤P b. [ since a ∧ b = a ]

Conversely, suppose that a ≤P b. Since ≤P is reflexive, we have, a ≤P a.

Now, a ≤P b and a ≤P a⇒ a is a lower bound of {a, b}

⇒ a ≤P inf{a, b} = a ∧ b.

Since a∧ b is infimum of {a, b}, a∧ b ≤P a. Hence, by antisymmetry, a = a∧ b.

Part (b) can be proved in a way similar to the proof (a).

Corollary 1.2.2. [24] Let L be a lattice and a, b ∈ L. Then

a ∧ b = a if and only if a ∨ b = b.

Proof. The proof follows from parts (a) and (b) of the above theorem.

1.2.2 Lattices as Algebraic Structures

A set together with certain operations defined on it is usually referred to as an

algebraic structure. Lattices were introduced as partially ordered sets. Now, an
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alternative definition of a lattice can be formulated as algebraic structure satisfying

certain axiomatic identities.

Definition 1.2.3. [31] An algebraic lattice (L;∨,∧) is a set L with two binary

operations meet and join, ∧ and ∨, such that both operations are commutative and

associative, and the absorption law holds. i.e. ∀a, b, c ∈ L,

1 . a ∧ b = b ∧ a, a ∨ b = b ∨ a (Commutivity)

2 . (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c) (Associativity)

3 . a = a∧ (a∨ b) = a∨ (a∧ b) (Absorption law)

Actually, absorption causes both operations to be idempotent. Given that ∨ and ∧

are satisfying the absorption identities,

a ∧ a = a ∧ (a ∨ (a ∧ b)) = a and a ∨ a = a ∨ (a ∧ (a ∨ b)) = a.

So the idempotently is implicitly contained and it can be neglected in the definition.

Theorem 1.2.4. [9] The two definitions of a lattice given in Definitions1.2.1 and

1.2.3 are equivalent. Equivalently, a lattice defined as a poset (L,≤P ) (see Defi-

nition1.2.1) is an algebraic system with two binary operations which satisfy com-

mutative, associative and absorption laws; a lattice defined as an algebraic system

(L;∨,∧) (see Definition1.2.3) is a lattice defined as a poset where l.u.b.{a, b} and

g.l.b.{a, b} are a ∨ b and a ∧ b respectively.

Proof. Let (L,≤P ) be a lattice satisfying Definition 1.2.1 Then the l.u.b. and g.l.b.

viewed as binary operations on L satisfy commutative, associative and absorption

laws (see Theorem 1.2.1 ). Then (L;∨,∧) is a lattice according to Definition1.2.3,

where a ∨ b = l.u.b.{a, b} and a ∧ b = g.l.b.{a, b}. This proves the first part of the

theorem.

For proving the second part, we start with the algebraic system (L;∨,∧) where ∨

and ∧ satisfy commutative, associative and absorption laws. We have to
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(i) Define a partial ordering on L.

(ii) Prove that a ∧ b = g.l.b.{a, b} realized from ≤P .

(iii) Prove that a ∨ b = l.u.b.{a, b} realized from ≤P .

We define a relation ≤P on L by

a ≤P b iff a ∨ b = b.

By idempotent law, a ∨ a = a. Hence a ≤P a, proving that ≤P is reflexive.

If a ≤P b and b ≤P a, then a ∨ b = b and b ∨ a = a. As a ∨ b = b ∨ a, a = b, proving

antisymmetry of ≤P .

To prove transitivity of ≤P , assume a ≤P b and b ≤P c. This means that a ∨ b = b

and b ∨ c = c. Then

a ∨ c = a ∨ (b ∨ c)

= (a ∨ b) ∨ c (by associativity)

= b ∨ c

= c.

Hence a ≤P c, proving the transitivity of ≤P . Thus we have defined a partial

ordering ≤P on L.

Before proving (ii), we prove the following claim:

a ≤P b⇔ a ∨ b = b⇔ a ∧ b = a.

The proof of this claim is as follows:

The first equivalence is simply the definition of the relation ≤P . Assume a ∨ b = b,

then

a ∧ b = a ∧ (a ∨ b) = a.

So

a ∨ b = b⇒ a ∧ b = a.

Assume a ∧ b = a. Then
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a ∨ b = (a ∧ b) ∨ b = b.

So

a ∧ b = a⇒ a ∨ b = b.

Hence the claim is established.

For proving (ii), we use absorption laws. By L4, a∨ (a∧ b) = a and b∨ (b∧ a) = b,

so a∧ b ≤P a and a∧ b = b∧ a ≤P b, implying that a∧ b is a lower bound for a and

b. If c is any lower bound for a and b, then c ≤P a and c ≤P b, this means c∨ a = a

and c ∨ b = b. So

c = (c∨ a)∧ c (by absorption law)

= a ∧ c. (since c ∨ a = a)

Similarly

c = (c ∨ b) ∧ c = b ∧ c. (since c ∨ b = b)

So

c = c ∧ c = (a ∧ c) ∧ (b ∧ c)

= c ∧ (a ∧ b). (by commutative and associative laws)

By the claim, c ≤P a ∧ b. Thus any lower bound c of a and b satisfies c ≤P a ∧ b.

Hence g.l.b.{a, b} = a ∧ b. (iii) can be proved similarly. Thus we have proved the

second part of the theorem.

Let (L,≤P ) be a lattice. It may has a greatest and least elements. If we think of a

lattice as algebraic structure (L;∨,∧), it is suitable to see these elements from an

algebraic viewpoint.

A lattice L has a one element if there exists 1 ∈ L such that x ∧ 1 = 1 ∧ x = x,

∀x ∈ L. Dually, a lattice L has a zero element if there exists 0 ∈ L such that

x ∨ 0 = 0 ∨ x = x, ∀x ∈ L. A lattice (L,≤P ) has a greatest element if and only if
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(L;∨,∧) has a one element. A dual statement holds for zero and least element.

Definition 1.2.4. [2] A lattice (L;∨,∧) possessing 0 and 1 is called bounded

lattice.

Note that a finite lattice is always bounded, with 0 =
∧
L and 1 =

∨
L.

Example 1.2.5. The lattice (N0; lcm, gcd), where N0 = {0, 1, 2, . . .} is bounded with

greatest element 1 = 0 and least element 0 = 1. While the lattice (N0;max,min) is

not bounded since 1 does not exist.

1.2.3 Sublattices

Definition 1.2.5. [22] A sublattice of a lattice L is a subset of L that is closed

under infimums and supremums.

Equivalently, a sublattice (M ;∨,∧) of a lattice (L;∨,∧) is a subset M of L that is

closed under both the operations ∨ and ∧. i.e. if a, b ∈ M then a ∨ b ∈ M and

a ∧ b ∈M .

Example 1.2.6. A one-element subset of a lattice is a sublattice. In general, any

nonempty chain in a lattice is a sublattice.

Example 1.2.7. The set of positive integers Z+ forms a lattice under divisibility

where a∨b = lcm(a, b) and a∧b = gcd(a, b). Let Sn be the set of all positive divisors

of any positive integer n. Then (Sn, |) is a sublattice of (Z+, |).

Note that a sublattice of a lattice is also a lattice. However, a subset M of a lattice

L can be a lattice under the same order relation and need not be a sublattice of L.

We demonstrate this fact by the following example.
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Example 1.2.8. The division relation on the set L = {1, 2, 3, 6, 12} forms a lattice

whose Hasse diagram is given in Figure 1.5. The subset T = {1, 2, 3, 6} is a sublattice

of L. The subset S = {1, 2, 3, 12} is a lattice under division, but not a sublattice of

L since 2 ∨ 3 = 6 6∈ S.

Figure 1.5:

1.2.4 Ideals and Filters

The dual concepts of ideal and filter are of fundamental importance in algebra and

have a variety of applications. Thus in this subsection we introduce definitions, some

theorems, and examples.

Definition 1.2.6. [2] Let L be a lattice.

1 . A nonempty subset I of L is called an ideal of L if

(a) x ∈ L,a ∈ I and x ≤P a⇒ x ∈ I.

(a) a, b ∈ I ⇒ a ∨ b ∈ I.

A proper ideal, that is, an ideal I 6= L. The set of all ideals of L is denoted

by J (L).

2 . Dually, a nonempty subset F of L is called a filter of L if
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(a) x ∈ L, a ∈ F and x ≥P a⇒ x ∈ F .

(a) a, b ∈ F ⇒ a ∧ b ∈ F .

A proper filter, that is, a filter F 6= L. The set of all filters of L is denoted

by F(L).

Example 1.2.9.

1 . The lattice L itself is both a filter and an ideal.

2 . The family of all finite subsets of any set X is an ideal of the lattice (P (X),⊆).

Any intersection I ∩ J of two ideals I and J of a lattice L is not empty, since for

i ∈ I and j ∈ J , we have i∧ j ≤P i, j and so i∧ j ∈ I ∩ J . Furthermore, I ∩ J is an

ideal of L (The verification is simple).

Remark 1.2.1. Every ideal I of lattice L is a sublattice, since a ∧ b ≤P a for all

a, b ∈ I and thus, a ∧ b ∈ I. Dually, every filter F of L is a sublattice.

Definition 1.2.7. [30] Let A be a nonempty subset of a lattice L.

1) The ideal generated by A, denoted by (A ] , is the smallest ideal of L containing

A.

2) The filter generated by A, denoted by [A) , is the smallest filter of L containing

A.

Definition 1.2.8. [17] if A = {a}, then we write (a ] or a↓ instead of ({a} ] such

that

(a
]
= a↓ = {x ∈ L|x ≤P a}

is known as the principal ideal generated by a. Dually,
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a) = a↑ = {x ∈ L|x ≥P a}

is known as the principal filter generated by a.

Example 1.2.10. Consider the lattice L = {1, a, b, c, d, 0} with Hasse diagram given

in Figure 1.6. The ideal generated by {0, a, b, c, d} is ({0, a, b, c, d}
]
= {0, a, b, c, d} = a↓ ,

and the principal ideal generated by d is d↓ = {0, d}. Of course, 1↓ = L.

Figure 1.6:

Theorem 1.2.5. [6] If L is a lattice then, ordered by set inclusion, the set J (L) of

ideals of L form a lattice in which the lattice operations are given by

J ∧K = J ∩K;

J ∨K = {x ∈ L|x ≤P j ∨ k, forsomej ∈ J, k ∈ K}.

Proof. We have to show that every pair of ideals of L has an infimum and a supre-

mum in J (L). It is clear that if J and K are ideals of L, then so J ∩K, and that

this is the biggest ideal of L that is contained in both J and K. Hence, J∧K ∈ J (L).

Now, any ideal that contains both J and K must clearly contain all the elements

x such that x ≤P j ∨ k where j ∈ J and k ∈ K. Conversely, the set of all such x

clearly contains both J and K, and is contained in every ideal of L that contains
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both J and K.

Moreover, this set is also an ideal of L: if x ∈ J ∨ K and r ∈ L such that

r ≤P x ≤P j ∨ k for some j ∈ J and k ∈ K, then (by transitivity)

r ≤P j ∨ k ⇒ r ∈ J ∨K.

Also, if x, y ∈ J ∨K, then

x ≤P j ∨ k and y ≤P j1 ∨ k1 for some j, j1 ∈ J and k, k1 ∈ K.

Hence

x ∨ y ≤P (j ∨ k) ∨ (j1 ∨ k1) = (j ∨ j1) ∨ (k ∨ k1),

Where (j∨j1) ∈ J and (k∨k1) ∈ K since J and K are ideals. Therefore x∨y ∈ J∨K.

Thus we see that J ∨K is in J (L).



Chapter 2

Skew Lattices

In this chapter we introduce the concept of skew lattice. We present the algebraic

structure of a skew lattice. Also we introduce the three Greens equivalence relations

on a skew lattice. In addition we discuss some properties of a skew lattice. Further-

more we present the order structure of a skew lattice and the diagram representing

the skew lattice graphically.

2.1 Algebraic structure

As in a lattice there exist two ways to present a skew lattice: one as algebraic

structure satisfying certain axiomatic identities and one as order structure satisfy-

ing certain axioms. In this section we present an algebraic structure of skew lattice

and some examples.

To explain an algebraic structure we first illustrate that

(b ∧ a) ∨ a = a and (b ∨ a) ∧ a = a

are absorption laws. Furthermore, there are four other absorption laws that will be

26
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described later.

Definition 2.1.1. [10] A skew lattice is an algebraic structure S = (S;∨,∧) where

∨ and ∧ are associative, idempotent binary operations satisfying the absorption

identities

x ∧ (x ∨ y) = x = (y ∨ x) ∧ x and x ∨ (x ∧ y) = x = (y ∧ x) ∨ x. (2.1)

Given that ∨ and ∧ are associative, and idempotent binary operations, 2.1 is equiv-

alent to the following identities:

x ∧ y = x iff x ∨ y = y and x ∧ y = y iff x ∨ y = x. (2.2)

Remark 2.1.1. In a skew lattice, if one of the two operations ∧ and ∨ is commuta-

tive then so is the other, and thus the commutativity axiom is satisfied. Satisfying

the commutative axiom along with the three associative, idempotent and absorp-

tion axioms gives a lattice. In other words, the skew lattice is a non-commutative

generalization of lattice.

Example 2.1.1. Any lattice is a skew lattice. Thus, the lattices (N, lcm, gcd) and

(P (X),∪,∩) are skew lattices.

Conversely, not all skew lattices are lattices.

Example 2.1.2. Let S = {a, b} with ∧ and ∨ operations defined by the following

Cayley tables:

∧ a b

a a b

b a b

∨ a b

a a a

b b b
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Then (S;∨,∧) is a skew lattice but not a lattice since a ∧ b 6= b ∧ a.

Definition 2.1.2. [19] A partial function f from A to B is a function in which

f(a) is not defined for every a ∈ A.

Example 2.1.3. Let f(x) = 1/(x + 1)3. Then f is a partial function from R to R

since f(−1) is not defined.

Definition 2.1.3. [25] Let X, Y,A be sets, A ⊂ X, and f : X −→ Y be a function.

The function g : A −→ Y , g(x) := f(x) is called the restriction of f to A, and we

use the notation f |A := g.

Example 2.1.4. Let P (A,B) = {f : F −→ B where F ⊆ A} is the set of all partial

functions from a set A to a set B. Given f : F −→ B and g : G −→ B are in

P (A,B) where, F , G ⊆ A. We define ∧ and ∨ as follows:

f ∧ g = f |F∩G and f ∨ g = g ∪ f |F−G.

It is clear that f ∧ g and f ∨ g are partial functions from A to B. Now,

1. f ∧ f = f and f ∨ f = f .

2. (f ∧ g) ∧ h = f |F∩G∩H = f ∧ (g ∧ h) and

(f ∨ g) ∨ h = h ∪ g|G−H ∪ f |F−G∪H = f ∨ (g ∨ h).

3. f ∧ (f ∨ g) = f |F∩(F∪G) = f = (f ∪ g|G−F )|(G∪F )∩F = (g ∨ f) ∧ f and

f ∨ (f ∧ g) = f |F∩G ∪ f |F−F∩G = f = f ∪ g|G∩F−F = (g ∧ f) ∨ f.

Thus ∨ and ∧ are idempotent, associative binary operations satisfying the absorption

identities, and (P (A,B);∨,∧) is a skew lattice. But it is not a lattice since

f ∧ g = f |F∩G 6= g|G∩F = g ∧ f and f ∨ g = g ∪ f |F−G 6= f ∪ g|G−F = g ∨ f ,

i.e. ∨ and ∧ are not commutative.
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Remark 2.1.2. The algebraic structure of a skew lattice enriched with the following

absorption laws is the same as the algebraic structure of a lattice.

1. (x ∧ y) ∨ x = x

2. x ∧ (y ∨ x) = x

3. (x ∨ y) ∧ x = x

4. x ∨ (y ∧ x) = x

Proof. If we admit all the absorption laws we get that:

x ∧ y = (x ∧ y) ∧ (x ∨ (x ∧ y)) = x ∧ y ∧ x,

y ∧ x = ((y ∧ x) ∨ x) ∧ (y ∧ x) = x ∧ y ∧ x,

x ∨ y = (x ∨ y) ∨ (x ∧ (x ∨ y)) = x ∨ y ∨ x,

y ∨ x = ((y ∨ x) ∧ x) ∨ (y ∨ x) = x ∨ y ∨ x.

Thus the two operations ∧ and ∨ are commutative, and we have a lattice.

Definition 2.1.4. [16] Every skew lattice is regular, i.e., it satisfies the identities

x ∧ y ∧ x ∧ z ∧ x = x ∧ y ∧ z ∧ x and x ∨ y ∨ x ∨ z ∨ x = x ∨ y ∨ z ∨ x.

Remark 2.1.3. A sub-skew lattice (T ;∨,∧) of the skew lattice (S;∨,∧) is a

nonempty subset T of S that is closed under ∨ and ∧ operations.

Example 2.1.5. Any one-element subset of a skew lattice is a sub-skew lattice.

Example 2.1.6. (N,max,min) is a sub-skew lattice of the skew lattice (Z,max,min).
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2.2 Green’s Relations on Skew Lattices

Given an algebraic structure (A,+, ∗) where + and ∗ denote two arbitrary bi-

nary operations, an equivalence relation θ on A is congruence relation if for

all a, b, c, d ∈ A,

aθb and cθd imply a+ c θ b+ d and a ∗ c θ b ∗ d.

The equivalence classes under a congruence relation θ are called congruence classes.And

the congruence class containing the element a ∈ A is denoted by [a]θ. The set of all

congruence classes is denoted by A/θ, it forms an algebraic structure of the same

type as A under the operations

[a]θ +θ [b]θ = [a+ b]θ and [a]θ ∗θ [b]θ = [a ∗ b]θ.

In this section we discuss three congruence relations on skew lattice, which have an

important role in the further development of skew lattice. They are called Green’s

relations.

Definition 2.2.1. [8] On a skew lattice (S;∨,∧) the three canonical Green’s

equivalence relations R, L and D on S are defined by the equivalences

xRy ⇔ (x ∧ y = y and y ∧ x = x)⇔ (x ∨ y = x and y ∨ x = y)

xLy ⇔ (x ∧ y = x and y ∧ x = y)⇔ (x ∨ y = y and y ∨ x = x)

and by the equivalences

xDy ⇔ (x ∧ y ∧ x = x and y ∧ x ∧ y = y)

⇔ (x ∨ y ∨ x = x and y ∨ x ∨ y = y),

for any points x, y in S.
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The congruence classes of Green’s relations are called R-classes, L-classes and D-

classes. An R-, L- and D-class containing x ∈ S is denoted by Rx, Lx and Dx,

respectively.

Remark 2.2.1. In a skew lattice S, all congruence classes (D-classes,R-classes and

L-classes) are sub-skew lattices of S.

Theorem 2.2.1. [15] For any elements x, y of a skew lattice S, xDy if and only if

x ∨ y = y ∧ x.

Proof. If xDy, then

x∨ y = [y ∨ (x∨ y)]∧ (x∨ y) (by absorption law)

= y ∧ (x ∨ y).

Thus

y ∧ x = y ∧ x ∧ (x ∨ y) (by absorption law)

= y ∧ x ∧ [y ∧ (x ∨ y)]

= y ∧ (x ∨ y) = x ∨ y

Conversely, if x ∨ y = y ∧ x, then

x ∧ y ∧ x = x ∧ (x ∨ y) = x

and

y ∧ x ∧ y = (x ∨ y) ∧ y = y

Thus x D y.

Remark 2.2.2. No two distinct elements are commutative under ∧ and ∨ operations

in each D-class, i.e. given x D y, then
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x ∧ y = y ∧ x iff x = y

and

x ∨ y = y ∨ x iff x = y.

Proof. Let x, y ∈ S. Given xDy and x ∧ y = y ∧ x. Then,

x = x ∧ y ∧ x = y ∧ x ∧ x = y ∧ x

and

y = y ∧ x ∧ y = y ∧ y ∧ x = y ∧ x.

So, x = y. The proof for ∨ is similar. The converse direction is clear.

Theorem 2.2.2. [15] In every skew lattice, the identities

(x ∧ y) ∨ (y ∧ x) = y ∧ x ∧ y

and

(x ∨ y) ∧ (y ∨ x) = y ∨ x ∨ y

hold for all x, y.

Proof. since x ∧ y D y ∧ x, Theorem 2.2.1. gives

(x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∧ (x ∧ y) = y ∧ x ∧ y

and

(x ∨ y) ∧ (y ∨ x) = (y ∨ x) ∨ (x ∨ y) = y ∨ x ∨ y.
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Lemma 2.2.1. [15] D is a congruence and S/D is a lattice. Given any congruence

C on S such that S/C is a lattice, D ⊆ C. Thus S/D is the maximal lattice image

of S.

Proof. Given xDy and u ∈ S,

(u ∨ x) ∨ (u ∨ y) ∨ (u ∨ x) = (u ∨ x ∨ y ∨ u) ∨ x

= u ∨ (x ∨ y ∨ x ∨ u ∨ x)

= u ∨ x ∨ u ∨ x = u ∨ x,

and likewise,

(u ∨ y) ∨ (u ∨ x) ∨ (u ∨ y) = u ∨ y.

So that u ∨ x D u ∨ y. Similarly, u ∧ x D u ∧ y, x ∨ u D y ∨ u and x ∧ u D y ∧ u so

that D is indeed a congruence.

Since both x ∧ y D y ∧ x and x ∨ y D y ∨ x for all x, y ∈ S,

Dx ∧D Dy = Dx∧y = Dy∧x = Dy ∧D Dx

and

Dx ∨D Dy = Dx∨y = Dy∨x = Dy ∨D Dx.

So S/D is commutative, and thus is a lattice.

Suppose now that C is a congruence such that S/C is a lattice, and suppose that

xDy. Then

x ∨ y C y ∨ x ⇒ (x ∨ y) ∨ x C (y ∨ x) ∨ x

⇒ x C y ∨ x.

Again,

x ∨ y C y ∨ x ⇒ y ∨ (x ∨ y) C y ∨ (y ∨ x)

⇒ y C y ∨ x.
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Thus x C y∨x and y∨x C y imply x C y. Hence D ⊆ C and so S/D is the maximal

lattice image of S.

Thus, D is the smallest congruence for which the quotient S/D satisfies the property

of commutativity, and thus is a lattice.

2.3 Some Properties of Skew Lattices

In this section, we present some properties of a skew lattice. Also examples and

theorems are presented to illustrate these properties.

Definition 2.3.1. [10] A skew lattice is rectangular if x ∧ y ∧ x = x, or equiva-

lently, x ∨ y ∨ x = x, or also equivalently, x ∧ y = y ∨ x holds.

Remark 2.3.1. A skew lattice S is rectangular if and only if it consists of a single

D-class. So by Remark 2.2.2 there is no two distinct elements that commutes under

∨ and ∧ operations in rectangular skew lattices. Therefore, there is no lattice that

can be regarded as rectangular skew lattice.

Example 2.3.1. All D-classes are rectangular sub-skew lattices.

Definition 2.3.2. If R is a binary relation on a set A and B ⊆ A, then the restric-

tion of R to B is the relation R|B = R∩(B×B) = {(x, y)|(x, y) ∈ R and x, y ∈ B}.

Remark 2.3.2. If T is a sub-skew lattice of a skew lattice S, then the D relation

on T is the restriction of D in S to T . Thus if T itself is a rectangular sub-skew
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lattice of S, it follows that T consists of a single D-class which implies T is entirely

contained in a D-class of S. Hence each D-class is a maximal rectangular sub-skew

lattice of S.

Example 2.3.2. Let T be a rectangular sub-skew lattice of P (A,B), then T is the

set of partial functions with common domain. Given f, g ∈ T with domains F and

G, respectively. Since T is rectangular, f and g are contained in one D-class of T

and thus we get

f ∧ g = f ∨ g ⇒ f |F∩G = g ∪ f |F−G ⇒ F = G.

Theorem 2.3.1. [26] (The First Decomposition Theorem). In any skew lat-

tice S each D-congruence class is a maximal rectangular subalgebra of S and S/D

is the maximal lattice image of S.

Proof. By Lemma 2.2.1 and Remark 2.3.2.

Definition 2.3.3. [10] A skew lattice is right-handed [respectively, left-handed]

if it satisfies the identities

x ∧ y ∧ x = y ∧ x and x ∨ y ∨ x = x ∨ y. (2.3)

[x ∧ y ∧ x = x ∧ y and x ∨ y ∨ x = y ∨ x]. (2.4)

Remark 2.3.3. A skew lattice is right-handed (respectively, left-handed) if

R = D (L = D).

Remark 2.3.4. The identities for right-handed [ respectively, left-handed ] skew

lattices (2.3) [(2.4)] necessarily assert that both x ∧ y = y and x ∨ y = x [x ∧ y = x

and x ∨ y = y] hold in each D-class.
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Proof. Assume x and y are any elements in a right-handed skew lattice S such that

xDy, then

y ∧ x ∧ y = y ⇒ x ∧ y ∧ x ∧ y = y ⇒ x ∧ y = y,

and

x ∨ y ∨ x = x⇒ x ∨ y = x.

The proof for left-handed skew lattice is similar.

Example 2.3.3. For any lattice, using the commutativity of ∧ and ∨, we get that

the identities of right-handed and left-handed skew lattices are satisfied.

Example 2.3.4. Given any skew lattice S, then S/R and S/L are left-handed and

right-handed skew lattices respectively.

Example 2.3.5. Given f and g are any two partial functions in the skew lattice

(P (A,B);∨,∧) with their domains F and G respectively, then

f ∧ g ∧ f = f |F∩G = f ∧ g and f ∨ g ∨ f = f ∪ g|G−F = g ∨ f .

So, (P (A,B);∨,∧) is a left-handed skew lattice.

Definition 2.3.4. Given three sets E, F , G and two mappings ϕ : E −→ G,

ψ : F −→ G, the fiber product E ×G F (relative to ϕ and ψ ) is the subset of the

Cartesian product E × F consisting of the pairs (x, y) such that ϕ(x) = ψ(y).

Note that L (R) is the smallest congruence making S/L (S/R) a right-handed

(left-handed) skew lattice. This is illustrated in the following theorem:
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Theorem 2.3.2. [26] (The second Decomposition Theorem). Given any skew

lattice S, S/R and S/L are its respective maximal left and right-handed images, with

S being isomorphic to the fibered product, S/R×S/DS/L, of both over their common

maximal lattice image under the map x 7−→ (Rx,Lx).

Definition 2.3.5. [12] The maximal left-handed image S/R is called the left factor

of S and the maximal right-handed image S/L is called the right factor of S.

Definition 2.3.6. [14] A skew lattice S is symmetric if given x and y in S, x∧y =

y ∧ x if and only if x ∨ y = y ∨ x.

Remark 2.3.5. A skew lattice is upper symmetric if x ∧ y = y ∧ x implies

x∨ y = y ∨ x. Dually, it is lower symmetric if x∨ y = y ∨ x implies x∧ y = y ∧ x.

Example 2.3.6. The skew lattice (P (A,B);∨,∧) is symmetric since for any two

partial functions f and g with their domains F and G respectively, when f∧g = g∧f ,

f |F∩G = g|G∩F ⇒ g ∪ f |F−G = f ∪ g|G−F ⇒ f ∨ g = g ∨ f .

Conversely, f ∨ g = g ∨ f implies f ∧ g = g ∧ f .

Definition 2.3.7. [13] A skew lattice is called left strongly symmetric if it

satisfies the identity

(x ∧ y) ∨ x = x ∧ (y ∨ x) (2.5)

and is called right strongly symmetric if it satisfies the identity

(x ∨ y) ∧ x = x ∨ (y ∧ x). (2.6)

A skew lattice is strongly symmetric if it is both left and right strongly symmetric.
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Example 2.3.7. Any lattice (L;∨,∧) is a symmetric skew lattice due to the com-

mutative axiom. Using the absorption identities in addition to the commutativity of

∧ and ∨ we get that:

(x ∧ y) ∨ x = (y ∧ x) ∨ x = x = x ∧ (x ∨ y) = x ∧ (y ∨ x).

Thus a lattice L is a left strongly symmetric skew lattice. by the same way, L is

a right strongly symmetric skew lattice ,which implies that a lattice L is a strongly

symmetric skew lattice also.

Lemma 2.3.1. [13] Any right-handed skew lattice is right strongly symmetric. Du-

ally, any left-handed skew lattice is left strongly symmetric.

Proof. Let S is a right-handed skew lattice. Given x and y in S, then

(x ∨ y) ∧ x = (x ∨ y ∨ x) ∧ x

= x. (by absorption law)

x ∨ (y ∧ x) = x ∨ (x ∧ y ∧ x)

= x. (by absorption law)

Hence, S is right strongly symmetric. The proof for left-handed skew lattice is

similar.

Definition 2.3.8. [4] A skew lattice S is called normal if x∧y∧z∧w = x∧z∧y∧w

and it is called conormal if x ∨ y ∨ z ∨ w = x ∨ z ∨ y ∨ w for all x, y, z, w ∈ S.

Skew lattices that are simultaneously normal and conormal, are called binormal.

Example 2.3.8. Any lattice is binormal skew lattice due to the commutative axiom.
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Example 2.3.9. Given f , g, h and i are partial functions in the skew lattice

(P (A,B);∨,∧) with their domains F , G, H and I respectively, then

f ∧ g ∧ h ∧ i = f |F∩G∩H∩I = f |F∩H∩G∩I = f ∧ h ∧ g ∧ i

So, (P (A,B);∨,∧) is a normal skew lattice.

Definition 2.3.9. [11] A skew lattice (S,∨,∧) is distributive, if the operations

are distributive from both sides at the same time:

x ∧ (y ∨ z) ∧ x = (x ∧ y ∧ x) ∨ (x ∧ z ∧ x), (2.7)

x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x). (2.8)

Example 2.3.10. Every rectangular skew lattice is distributive. Given x,y and z

are elements in a rectangular skew lattice S, then

x ∧ (y ∨ z) ∧ x = x ∧ (z ∧ y) ∧ x

= x ∧ z ∧ x ∧ y ∧ x

= (x ∧ z ∧ x) ∧ (x ∧ y ∧ x)

= (x ∧ y ∧ x) ∨ (x ∧ z ∧ x).

Similarly, x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x).

Definition 2.3.10. [5] A skew lattice is called strongly distributive if it satisfies

the identities

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (2.9)

(y ∨ z) ∧ x = (y ∧ x) ∨ (z ∧ x). (2.10)
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Example 2.3.11. Given f, g and h are partial functions in the skew lattice (P (A,B);∨,∧)

with domains F,G and H respectively, then

f ∧ (g ∨ h) = f |F∩(G∪H) = f |F∩H ∪ f |(F∩G)−(F∩H) = (f ∧ g) ∨ (f ∧ h)

and

(g ∨ h) ∧ f = (h ∪ g|G−H)|(G∪H)∩F = h|H∩F ∪ g|(G−H)∩F = (g ∧ f) ∨ (h ∧ f).

So, (P (A,B);∨,∧) is a strongly distributive skew lattice.

Definition 2.3.11. [15] A skew lattice S is quasi-distributive if its lattice image

S/D is distributive.

It is clear that a distributive skew lattice S implies a distributive lattice image S/D,

which implies a quasi-distributive skew lattice S.

Definition 2.3.12. [11] A skew lattice is cancellative if

x ∨ z = y ∨ z and x ∧ z = y ∧ z imply x = y (2.11)

and

x ∨ y = x ∨ z and x ∧ y = x ∧ z imply y = z. (2.12)

Let S is a skew lattice. We say S has a zero element if there exists 0 ∈ S such

that x ∧ 0 = 0 = 0 ∧ x for all x ∈ S. Dually, S has a one element if there exists

1 ∈ S such that x∨1 = 1 = 1∨x for all x ∈ S. Note that the zero and one elements

in a skew lattice are also called a bottom and top respectively and they are unique

if they exists.
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2.4 Order Structure

The order structure has an important role in the study of a skew lattice. In this

section we present the concept of order structure. Theorems are presented to illus-

trate this concept. Also we introduce the admissible Hasse diagram to represent the

order structure of a skew lattice.

Definition 2.4.1. [27] The natural partial order ≤ on a skew lattice S is defined

by

x ≤ y if and only if x ∧ y = y ∧ x = x, or equivalently, x ∨ y = y ∨ x = y.

Definition 2.4.2. [13] On a skew lattice S the natural preorder is defined by

x � y ⇔ x ∧ y ∧ x = x⇔ y ∨ x ∨ y = y.

Obviously, xDy if and only if x � y and y � x.Furthermore, for all x, y ∈ S, x ≤ y

implies x � y but not conversely, while if the commutativity is satisfied the converse

is also true, i.e. for lattices, x ≤ y if and only if x � y.

It is clear that the natural partial order ≤ is reflexive, antisymmetric and transitive,

thus it is a partial order relation on a skew lattice S. For the natural preorder �,

clearly it is reflexive. Given x � y � z, by regularity of ∧ we get:

x ∧ z ∧ x = x ∧ y ∧ x ∧ z ∧ x ∧ y ∧ x

= x ∧ y ∧ (x ∧ z ∧ y ∧ x)

= x ∧ (y ∧ x ∧ y ∧ z ∧ y) ∧ x

= x ∧ y ∧ z ∧ y ∧ x

= x ∧ y ∧ x = x.

Hence, x � z and thus � is transitive, so � is a preorder relation on S.



2.4. Order Structure 42

Remark 2.4.1. [2] A skew lattice S is totally preordered if for all x, y ∈ S, either

x � y or y � x.

Example 2.4.1. Let S be a rectangular skew lattice. If x, y ∈ S, then x∧y∧x = x,

or equivalently, x ∨ y ∨ x = x which implies x � y or y � x . So S is totally

preordered.

Theorem 2.4.1. [15] In any skew lattice S,

x, y � z implies x ∨ z ∨ y = x ∨ y, (2.13)

x, y � z implies x ∧ z ∧ y = x ∧ y. (2.14)

Proof. Let S be any skew lattice. Given x, y and z in S. For (2.13), using regularity

of ∨ and the fact that x, y � z we obtain:

x ∨ z ∨ y = (x ∨ z ∨ x) ∨ z ∨ (y ∨ z ∨ y)

= (x ∨ z ∨ x) ∨ (y ∨ z ∨ y)

= x ∨ y.

For (2.14), using regularity of ∧ and the fact that x, y � z we obtain:

x ∧ z ∧ y = (x ∧ z ∧ x) ∧ z ∧ (y ∧ z ∧ y)

= (x ∧ z ∧ x) ∧ (y ∧ z ∧ y)

= x ∧ y.

The following result will be useful for understanding the lemmas and theorems

ahead.

Theorem 2.4.2. [29] Let S be a skew lattice and x, y, z ∈ S. Then,
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(1) x ∧ y � x, y and x, y � x ∨ y;

(2) x ∧ y ∧ x ≤ x ≤ x ∨ y ∨ x;

(3) x ∧ y ≤ y ∨ x.

Proof. The proving of (1) and (2) is simple. For (3), let x, y ∈ S. Then, by

absorption laws, we get:

x ∧ y ∧ (y ∨ x) = x ∧ y and (y ∨ x) ∧ x ∧ y = x ∧ y.

Hence, x ∧ y ≤ y ∨ x.

The next lemma present a characterization for the natural partial order by an iden-

tity.

Lemma 2.4.1. [23] Let S be a skew lattice and x, y ∈ S. Then x ≥ y iff y = x∧y∧x

or, dually, x = y ∨ x ∨ y.

Proof. Let x, y ∈ S. If x ≥ y then

x ∧ y ∧ x = y ∧ x = y.

Conversely, by Theorem 2.4.2

y = x ∧ y ∧ x ≤ x or x = y ∨ x ∨ y ≥ y.

Thus we can derive the following characterization for right-handed and left-handed

skew lattices.

Theorem 2.4.3. [23] Let S be a skew lattice. S is right-handed iff for all x, y ∈ S,

y∧x ≤ x and x ≤ x∨ y. Analogously, S is left-handed iff for all x, y ∈ S, x∧ y ≤ x

and x ≤ y ∨ x.

Proof. First, we have to prove for right-handed case. Let x, y ∈ S. By Lemma 2.4.1,
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y ∧ x = x ∧ y ∧ x is equivalent to y ∧ x ≤ x

as well as

x ∨ y = x ∨ y ∨ x is equivalent to x ≤ x ∨ y.

The left-handed case is analogous.

Theorem 2.4.4. [26] For left-handed skew lattices, the following identities hold:

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x (2.15)

(x ∨ (y ∧ x)) ∧ x = x ∨ (y ∧ x) (2.16)

(x ∨ (y ∧ x)) ∧ y = y ∧ x. (2.17)

Proof. Let S is a left-handed skew lattice. Given x, y ∈ S. For (2.15)

x ∧ (y ∨ x) = x ∧ (x ∨ y ∨ x) = x.

Similarly,

(x ∧ y) ∨ x = x.

For (2.16), we know that y ∧ x � x. So

x ∨ (y ∧ x) ∨ x = x.

Thus by (2.2) x ∨ (y ∧ x) ∨ x = x is equivalent to

(x ∨ (y ∧ x)) ∧ x = x ∨ (y ∧ x).

For (2.17), using (2.16), left-handed identity (2.4) and the absorption identities we

get

(x ∨ (y ∧ x)) ∧ y = (x ∨ (y ∧ x)) ∧ x ∧ y

= (x ∨ (y ∧ x)) ∧ x ∧ y ∧ x

= (x ∨ (y ∧ x)) ∧ y ∧ x = y ∧ x.
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Theorem 2.4.5. [23] Let S be a skew lattice and x, y ∈ S. Then x ≥ y and xDy

implies y = x.

Proof. If x ≥ y and xDy then y = x ∧ y ∧ x = x.

Remark 2.4.2. Let S be a skew lattice with comparable D-classes A and B. Then,

B ≤ A in the lattice S/D if and only if there exist x ∈ A and y ∈ B such that y � x.

Proof. Let x ∈ A and y ∈ B such that A and B are denoted by Dx and Dy respec-

tively. Then,

Dy ≤ Dx ⇒ Dy � Dx

⇒ Dy ∧D Dx ∧D Dy = Dy

⇒ Dy∧x∧y = Dy

⇒ y ∧ (y ∧ x ∧ y) ∧ y = y ∧ x ∧ y = y

⇒ y � x.

Now, let there exist x ∈ A and y ∈ B such that y � x. Then,

Dy ∧D Dx ∧D Dy = Dy∧x∧y = Dy which implies B � A. Hence B ≤ A since S/D is

a lattice.

Theorem 2.4.6. [29] Let A and B be comparable D-classes in a skew lattice S such

that A ≥ B. Then, for each a ∈ A, there exists b ∈ B such that a ≥ b, and dually,

for each b ∈ B, there exists a ∈ A such that a ≥ b.

Proof. Given a ∈ A. Take any y ∈ B and set b ∈ S as b = a ∧ y ∧ a. By Remark

2.4.2 we get y � a and so y � a∧y. Hence y � a∧y and a∧y � y implies a∧y D y.

Using the idempotency of ∧ and the fact a ∧ y D y ∧ a we obtain

b = (a ∧ y) ∧ (y ∧ a) ∈ B
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and

a ∧ b ∧ a = a ∧ (a ∧ y ∧ a) ∧ a = a ∧ y ∧ a = b,

which implies a ≥ b. The proof of the dually case is the same.

The skew lattices can graphically represented as follows:

Definition 2.4.3. [13] An admissible Hasse diagram of (a subset of) a skew

lattice is a Hasse diagram for the natural partial order ≤ (usually indicated by full

down edges) with all D-relationships indicated (usually by horizontal dashed edges).

Example 2.4.2. Figure 2.1 shows the admissible Hasse diagram of the right-handed

skew lattice determined by the following Cayley tables:

∧ 0 2 3 1

0 0 0 0 0

2 0 2 3 2

3 0 2 3 3

1 0 2 3 1

∨ 0 2 3 1

0 0 2 3 1

2 2 2 2 1

3 3 3 3 1

1 1 1 1 1

Figure 2.1:

Note that 0 and 1 in the skew lattice above are singleton D−classes.
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However, unlike what happens in the lattice case, the skew lattice operations are

not uniquely defined by the natural partial order i.e., in the case of lattice, we have

x ≤P y if and only if x ∧ y = x if and only if x ∨ y = y, while, the equivalence in

Lemma 2.4.1 does not fully describe the skew lattice operations.

Hence, the admissible Hasse diagram expresses partial information of the skew lat-

tice. For instance, Figure 2.2 shows the admissible Hasse diagram of both the right

and left-handed skew lattices determined by the following Cayley tables :

The right-handed skew lattice:

∧ 0 a b c 1

0 0 0 0 0 0

a 0 a b 0 a

b 0 a b 0 b

c 0 0 0 c c

1 0 a b c 1

∨ 0 a b c 1

0 0 a b c 1

a a a a 1 1

b b b b 1 1

c c 1 1 c 1

1 1 1 1 1 1

The left-handed skew lattice:

∧ 0 a b c 1

0 0 0 0 0 0

a 0 a a 0 a

b 0 b b 0 b

c 0 0 0 c c

1 0 a b c 1

∨ 0 a b c 1

1 0 a b c 1

a a a b 1 1

b b a b 1 1

c c 1 1 c 1

1 1 1 1 1 1
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Figure 2.2:



Chapter 3

Ideals On Skew Lattices

In this chapter we introduce the concept of ideal and filter in skew lattices. In addi-

tion we present the concepts of skew ideal and principal ideal. Also we discuss some

theorems and examples to illustrate these concepts.

3.1 Classical Ideals and Filters

The concept of ideal is of fundamental importance in the study of algebra. Filters,

the order duals of lattice ideals have a variety of applications. In this section we

introduce the concept of ideal and filter in a skew lattice. We discuss some theorems

illustrating this concept. Also we provide the relation between the ideals and the

D-classes of a skew lattice.

Definition 3.1.1. [29] A nonempty subset I of a skew lattice S closed under ∨ is

an ideal of S if, for all x ∈ S and y ∈ I, x � y implies x ∈ I.

49
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Theorem 3.1.1. [29] Let S be a skew lattice and I a subset of S closed under ∨.

The following statements equivalently define an ideal:

(i) for all x ∈ S and y ∈ I, x � y implies x ∈ I;

(ii) for all x ∈ S and y ∈ I, y ∧ x, x ∧ y ∈ I;

(iii) for all x ∈ S and y ∈ I, x ∧ y ∧ x ∈ I.

Proof. Let us show that (i)⇒ (ii)⇒ (iii)⇒ (i). Let x ∈ S and y ∈ I. If (i) holds,

Theorem 2.4.2. implies that y ∧ x, x ∧ y � y so that y ∧ x, x ∧ y ∈ I.

Now, assume that (ii) is hold, then due to x ∧ y ∈ S and y ∧ x ∈ I we get

x ∧ y ∧ x = (x ∧ y) ∧ (y ∧ x) ∈ I

Finally, assuming (iii) we get x = x ∧ y ∧ x ∈ I.

In the same way, we can define the filter of a skew lattice.

Definition 3.1.2. [29] A nonempty subset F closed under ∧ of a skew lattice S is

a filter of S if one of the following equivalent statements holds:

(i) for all x ∈ F and y ∈ S, x � y implies y ∈ F ;

(ii) for all x ∈ F and y ∈ S, y ∨ x, x ∨ y ∈ F ;

(iii) for all x ∈ F and y ∈ S, y ∨ x ∨ y ∈ F .

Example 3.1.1. The sets I = { 0, a, b } and F = { 1, a, b } in Figure 2.2 are an

ideal and filter respectively.

The next theorem present a characterization for ideal and filter.

Theorem 3.1.2. [29] Let S be a skew lattice and I a nonempty subset of S. Then

I is an ideal iff the following equivalence holds for all a, b ∈ S
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a, b ∈ I ⇔ a ∨ b ∨ a ∈ I.

Analogously, a nonempty subset F of S is a filter iff for all a, b ∈ S,

a, b ∈ F ⇔ a ∧ b ∧ a ∈ F .

Proof. Let us suppose that I is an ideal of S. If a, b ∈ I, then a ∨ b ∨ a ∈ I since

I is closed under ∨. Let a, b ∈ S such that a ∨ b ∨ a ∈ I. As a, b � a ∨ b ∨ a then

a, b ∈ I. Conversely suppose that the equivalence holds. Thus, I is closed under ∨.

Let a ∈ I and b ∈ S such that b � a. Then a ∨ b ∨ a = a ∈ I and therefore by the

equivalence b ∈ I.

Now, Let us suppose that F is an filter of S. If a, b ∈ F , then a ∧ b ∧ a ∈ F since

F is closed under ∧. Let a, b ∈ S such that a ∧ b ∧ a ∈ F . As a ∧ b ∧ a � a, b then

a, b ∈ F . Conversely suppose that the equivalence holds. Thus, F is closed under

∧. Let a ∈ F and b ∈ S such that a � b. Then a ∧ b ∧ a = a ∈ F and therefore by

the equivalence b ∈ F .

Corollary 3.1.1. [29] All ideals and filters in a skew lattice are sub skew lattices.

Proof. Let I be an ideal of a skew lattice S. I is a subset of S closed under the

operation ∨, by definition. On the other hand, if x, y ∈ I then x ∧ y � x implies

x ∧ y ∈ I. The proof regarding filters is similar.

Note that the ideal [filter] of a skew lattice covers the D-classes it intersects. This

is illustrated in the following theorem:

Theorem 3.1.3. [29] Let S be a skew lattice, I an ideal of S and F a filter of S.

If x ∈ S, y ∈ I and xDy, then x ∈ I. Similarly, if x ∈ S, y ∈ F and xDy, then

x ∈ F .

Proof. If I is an ideal and x ∈ S, whenever y ∈ I is such that xDy, then x � y

implying that x ∈ I. The proof for filter is analogous.
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Remark 3.1.1. The ideal in a skew lattice S is the union of D-classes which con-

stitute the elements of the lattice ideal of S/D.

Proof. Let I be an ideal of S and y ∈ I. Then, by Theorem 3.1.3, for any s ∈ S

such that sDy, we get s ∈ I. Thus Dy is contained in I and so I is a union of some

D-classes of S.

Now, let Dy and Dx are contained in I. Then, Dy ∨D Dx = Dy∨x is contained in I

since y ∨ x ∈ I. If Dx ∈ S/D and Dy is contained in I such that Dx ≤ Dy. Thus

x � y, which implies x ∈ I since I is an ideal and so Dx is contained in I.

Corollary 3.1.2. [29] Let S be a skew lattice and I, F ⊆ S being unions of D-

classes of S. Then, I/D is a lattice ideal of S/D iff I is an ideal of S; dually, F/D

is a lattice filter of S/D iff F is a filter of S.

Proof. Let I be a union of D-classes. If I is an ideal of S then by Remark 3.1.1, we

obtain I/D is a lattice ideal of S/D. Conversely, if x, y ∈ I then by the fact that

Dx,Dy ∈ I/D and the close property of I/D under ∨D operation, Dx∨y∨x ∈ I/D

which implies x∨ y∨x ∈ I. Let x, y ∈ S such that x∨ y∨x ∈ I. As x, y � x∨ y∨x

then Dx,Dy ≤ Dx∨y∨x which implies Dx,Dy ∈ I/D and thus x, y ∈ I. Since the

equivalence x, y ∈ I ⇔ x ∨ y ∨ x ∈ I is hold, I is an ideal of S.

3.2 Skew Ideals and Filters

In this section we introduce the concept of a skew ideal and skew filter in a skew

lattice. Theorems and examples are presented to illustrate these concepts.
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Definition 3.2.1. [29] A nonempty subset I of S closed under ∨ is a skew ideal

of S if, for all x ∈ S and y ∈ I, x ≤ y implies x ∈ I.

Definition 3.2.2. [29] A nonempty subset F of S closed under ∧ is a skew filter

of S if, for all x ∈ S and y ∈ F , x ≥ y implies x ∈ F .

Example 3.2.1. Let S be the skew lattice given in Example 2.4.2 The subsets

I = { 0, 2, 3 } and F = { 1, 2, 3 } of S are a skew ideal and a skew filter respectively.

Remark 3.2.1. All ideals of a skew lattice S are skew ideals.

Proof. Let S be a skew lattice and I an ideal of S. By definition, I is closed under

∨. Now, let x ∈ S and y ∈ I be such that x ≤ y. Then x � y implies x ∈ I, and

thus I is a skew ideal.

However, not all skew ideals of S are ideals. We can see this in the following example:

Example 3.2.2. The set I = { 0, a } in Figure2.2 is a skew ideal. On the other

hand, I is not an ideal, since b � a, but b 6∈ I.

Theorem 3.2.1. [29] All skew ideals [ filters ] are sub skew lattices.

Proof. Let S be a skew lattice and I a skew ideal of S. By definition, I is closed

under ∨. We shall see that I is also closed under ∧. Let x, y ∈ I. As x ∧ y ∧ x ≤ x

and y ∧ x ∧ y ≤ y, both x ∧ y ∧ x and y ∧ x ∧ y are in I. But

x ∧ y = (x ∧ y ∧ x) ∧ (y ∧ x ∧ y) = (y ∧ x ∧ y) ∨ (x ∧ y ∧ x)

where the second equality follows from the fact that (x∧ y ∧ x)D(y ∧ x∧ y). Hence,

x ∧ y ∈ I as required. The proof for y ∧ x ∈ I is similar. The case of skew filters is

analogous.
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Depending on the characterization for the natural partial order described in Lemma

2.4.1 we characterize skew ideals and skew filters of a skew lattice as follows:

Theorem 3.2.2. [29] A nonempty subset I of S is a skew ideal of S iff

(i) for all x, y ∈ I, x ∨ y ∈ I;

(ii) for all x ∈ S and y ∈ I, y ∧ x ∧ y ∈ I.

Proof. Let I is a skew ideal of S. Then (i) is hold. Let x ∈ S and y ∈ I. As

y ∧ x ∧ y ≤ y it follows that y ∧ x ∧ y ∈ I.

Conversely, let x ∈ S and y ∈ I be such that x ≤ y. Then x = y ∧ x ∧ y ∈ I.

Theorem 3.2.3. [29] A nonempty subset F of S is a skew filter of S iff

(i) for all x, y ∈ I, x ∧ y ∈ F ;

(ii) for all x ∈ S and y ∈ F , y ∨ x ∨ y ∈ F .

Proof. The similar proof of Theorem 3.2.2.

Remark 3.2.2. In general, the skew ideal does not cover the D-classes it intersects,

i.e., xDy with x ∈ S and y ∈ I does not necessarily imply that x ∈ I.

Example 3.2.3. The set I = { 0, b } in Figure2.2 is a skew ideal and aDb, but

a 6∈ I.

3.3 Principal Ideals and Filters

In this section we present the concept of a principle ideal and principle filter in a

skew lattice. Also we discuss some theorems and examples to illustrate these con-

cepts.
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Like other algebraic structures. We now define the ideal generated by a subset

of a skew lattice.

Definition 3.3.1. [29] Let X be a nonempty subset of a skew lattice S. Let Y be

the set of all [skew] ideals of S containing X. The intersection M of all elements

in Y is also a [skew] ideal of S that contains X is called the [skew] ideal generated

by X, denoted by X↓
[
X↓∗

]
. If X is a singleton and x ∈ X, then M is said to be a

principal [skew] ideal generated by x, written x↓
[
x↓∗
]
. Principal [skew] filters have

an analogous definition and are denoted by x↑
[
x↑∗
]
.

Theorem 3.3.1. [29] Let S be a skew lattice and x ∈ S. Then,

(i) x↓ = S ∧ x ∧ S = {y ∈ S : y � x} and x↑ = S ∨ x ∨ S = {y ∈ S : x � y}.

(ii) x↓∗ = x ∧ S ∧ x = {y ∈ S : y ≤ x} and x↑∗ = x ∨ S ∨ x = {y ∈ S : x ≤ y}.

Proof. (i) Let us first show that S ∧ x ∧ S = {y ∈ S : y � x}. Fix a ∈ S. Thus,

a ∧ x ∧ b � x due to regularity:

a ∧ x ∧ b ∧ x ∧ a ∧ x ∧ b = a ∧ x ∧ b ∧ a ∧ x ∧ b = a ∧ x ∧ b.

Conversely, if a � x then

a = a ∧ x ∧ a ∈ S ∧ x ∧ S.

The equality S ∨ x ∨ S = {y ∈ S : x � y} has an analogous proof.

Now, we will show that x↓ = S ∧ x ∧ S. Let y, z ∈ S ∧ x ∧ S, that is, y, z � x.

Then

x ∨ y ∨ x = x and x ∨ z ∨ x = x

so that

x = x ∨ x = x ∨ y ∨ x ∨ x ∨ z ∨ x = x ∨ y ∨ x ∨ z ∨ x = x ∨ y ∨ z ∨ x
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due to regularity. Similarly, x = x ∨ z ∨ y ∨ x. Hence, y ∨ z,z ∨ y � x and

therefore y ∨ z,z ∨ y ∈ S ∧ x ∧ S.

Let y ∈ S and z ∈ S∧x∧S such that y � z. Fix a, b ∈ S such that z = a∧x∧b.

Thus, y � a ∧ x ∧ b so that

y = y ∧ a ∧ x ∧ b ∧ y ∈ S ∧ x ∧ S.

By idempotency,

x = x ∧ x ∧ x ∈ S ∧ x ∧ S.

Thus S ∧ x ∧ S is an ideal of S containing x.

Let I be an ideal of S such that x ∈ I. Let a, b ∈ S. Then, a∧x∧ b � x ∈ I so

that a∧ x∧ b ∈ I and, therefore, S ∧ x∧ S ⊆ I. The proof regarding principal

filters is analogous.

(ii) Let us first show that x∧S∧x = {y ∈ S : y ≤ x}. Fix a ∈ S. Thus, x∧a∧x ≤ x.

Conversely, let a ∈ S such that a ≤ x. Then a = x ∧ a ∧ x ∈ x ∧ S ∧ x. The

proof of x ∨ S ∨ x = {y ∈ S : x ≤ y} is analogous.

Now, we will show that x↓∗ = x∧S ∧ x. Let y, z ∈ x∧S ∧ x. Let a, b ∈ S such

that

y = x ∧ a ∧ x and z = x ∧ b ∧ x.

By absorption,

y ∨ z ∨ x = (x ∧ a ∧ x) ∨ (x ∧ b ∧ x) ∨ x = (x ∧ a ∧ x) ∨ x = x.

Similarly x ∨ y ∨ z = x. Hence y ∨ z ≤ x and its an analogous proof to show

that z ∨ y ≤ x. Therefore y ∨ z,z ∨ y ∈ x ∧ S ∧ x.

Now let a, b ∈ S such that a ≤ x ∧ b ∧ x. Then

a = x ∧ b ∧ x ∧ a ∧ x ∧ b ∧ x ∈ x ∧ S ∧ x.

By idempotency,

x = x ∧ x ∧ x ∈ x ∧ S ∧ x.
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Thus x ∧ S ∧ x is an ideal of S containing x.

Let I be an ideal of S such that x ∈ I. Let a ∈ S. As x ∧ a ∧ x ≤ x ∈ I then

x ∧ a ∧ x ∈ I so that x ∧A ∧ x ⊆ I. The proof regarding principal skew filters

is analogous.

Corollary 3.3.1. [29] Let S be a skew lattice and x ∈ S. Then, x∧S∧x ⊆ S∧x∧S

and, dually, x ∨ S ∨ x ⊆ S ∨ x ∨ S.

Proof. Let a ∈ S. Then x ∧ a ∧ x � x so that x ∧ a ∧ x ∈ S ∧ x ∧ S. The duality

have the similar proof.

Example 3.3.1. Let S be the skew lattice given in Example 2.4.2 The ideal generated

by the set X = { 0, 2, 3 } is X↓ = { 0, 2, 3 } = 2↓. The skew ideal generated by the

set y = { 0, 1, 2 } is y↓∗ = { 0, 1, 2, 3 } = S and the principle skew ideal generated

by the element 2 is 2↓∗ = { 0, 2 }. Since 1 is the top element in S, x ≤ 1 for all

x ∈ S and so 1↓∗ = S.

Theorem 3.3.2. [29] Let S be a skew lattice X a nonempty subset of S and x, y ∈ S.

Then,

(i) X↓ =
⋃
{D↓x : x ∈ X} and X↑ =

⋃
{D↑x : x ∈ X}.

(ii) x↓ = y↓ ⇔ Dx = Dy and x↑ = y↑ ⇔ Dx = Dy.

Proof. (i) This is direct consequence of Remark 3.1.1: as the ideals in S are just

the unions of the D-classes that constitute the elements of the ideals of S/D,

then the principal ideals are just unions of blocks constituting the corespondent

principal lattice ideal.
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(ii) Let x↓ = y↓. Then x � y and y � x, by the definition. Thus xDy which implies

Dx = Dy. Conversely, by Theorem 3.1.3, xDy implies x ∈ y↓ and y ∈ x↓ implies

x↓ ⊆ y↓ and y↓ ⊆ x↓.

Theorem 3.3.3. [29] Let S be a skew lattice X a nonempty subset of S and x, y ∈ S.

Then,

(i) x↓∗ ∩ Dx = {x} and x↑∗ ∩ Dx = {x}.

(ii) x↓∗ = y↓∗ ⇔ x = y and x↑∗ = y↑∗ ⇔ x = y.

Proof. (i) Let a ∈ x↓∗ ∩ Dx. Then, a ≤ x and aDx so that a = x.

(ii) Suppose that x↓∗ = y↓∗. Then x ≤ y and y ≤ x which implies xDy, and thus

by Theorem 2.4.5, x = y.

Theorem 3.3.4. [29] Let S be a skew lattice. For all x ∈ S, the principal ideal x↓

is the union of all principal skew ideals y↓∗ such that y ∈ Dx.

Proof. Let x ∈ S. Suppose that a ∈ x↓ and a 6∈ Dx. Then by Remark 2.4.2,

Da ≤ Dx. Theorem 2.4.6 implies that there exist y ∈ Dx such that a ≤ y. Thus,

a ∈ y↓∗. On the other hand, if a ∈ y↓∗ with yDx, then a ≤ y � x. Thus a � x and

so a ∈ x↓.

Theorem 3.3.5. [29] Let S be a skew lattice and x, y ∈ S such that xDy. Then,

| x↓∗ |=| y↓∗ |.

Proof. Consider the maps φ : x↓∗ → y↓∗ and ϕ : y↓∗ → x↓∗ defined by φ(a) = y∧a∧y

and ϕ(b) = x ∧ b ∧ x, for every a ∈ x↓∗ and b ∈ y↓∗. Both of these maps are clearly

well defined. Now, we have to show that they are the inverse of each other. Let

c ∈ y↓∗. Then,
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φ ◦ ϕ(c) = y ∧ x ∧ c ∧ x ∧ y = y ∧ x ∧ y ∧ c ∧ y ∧ x ∧ y = y ∧ c ∧ y = c

due to regularity and the assumption that xDy. Similarly, ϕ ◦ φ(c) = c. Thus the

inverse functions ϕ and φ are one to one and so | x↓∗ |=| y↓∗ |.

Corollary 3.3.2. [29] Let S be a skew lattice and x ∈ S. Then,

| x↓ |≤| Dx | · | x↓∗ |.

Proof. Let x ∈ S. By Theorem 3.3.4,

x↓ =
⋃
y∈Dx

y↓∗.

Then,

| x↓ | = |
⋃
y∈Dx

y↓∗ |

≤ Σy∈Dx | y↓∗ | .

By Theorem 3.3.5,

= Σy∈Dx | x↓∗ |

= | Dx | · | x↓∗ | .

Example 3.3.2. Let S be a skew lattice given in Example 2.4.2. Then,

2↓ = { 0, 2, 3 }, 2↓∗ = { 0, 2 } and D2 = { 2, 3 }. Thus

| 2↓ |≤| D2 | · | 2↓∗ |



Bibliography

[1] Abu-Ghalioon, A. Ideals In Almost Distributive Lattice. Master Thesis, Pales-

tine Polytechnic University, 2017.

[2] Alkurd, A. Ideals, Congruences and Derivations in Distributive Lattices. Mas-

ter Thesis, Palestine Polytechnic University, 2016.

[3] Al-Natsheh, M. Types of Lattices and Applications of Complete Lattices. Mas-

ter Thesis, Palestine Polytechnic University, 2009.

[4] Assaye, B., Alamneh, M., Mebrat, Y. Skew Semi-Heyting Almost Distributive

Lattices. International Journal of Mathematics And its Applications, vol. 5,

no. 2, pp. 359369, 2017.

[5] Bauer, A., Cvetko-Vah, K., Gehrke, M., van Gool, S. J., Kudryavtseva, G. A

non-commutative Priestley duality. Topology and its Applications, vol. 160,

no. 12, pp. 1423-1438, 2013.

[6] Blyth, T. S. Lattices and Ordered Algebraic Structures. Springer, U.S.A., 2005.

[7] Border, K. C. Preliminary notes on lattices. 2011.

[8] Carfi, D., Cvetko-Vah, K. Skew lattice structures on the financial events plane.

Applied Sciences, vol. 13, pp. 9-20, 2011.

[9] Chandrasekaran, N., Umaparvathi, M. Discrete mathematics. PHI Learning

Private Limited, Delhi, 2015.

[10] Kinyon, M., Leech, J. Categorical skew lattices. Order, vol. 30, no. 3, pp.

763-777, 2013.

60



[11] Cvetko-Vah, K. A new proof of Spinks’ Theorem. In Semigroup Forum, vol.

73, no. 2, pp. 267-272, 2006.

[12] Cvetko-Vah, K. Internal decompositions of skew lattices. Communications in

Algebra, vol. 35, no. 1, pp. 243-247, 2006.

[13] Cvetko-Vah, K. On strongly symmetric skew lattices. Algebra universalis, vol.

66, no. 1-2, pp. 99, 2011.

[14] Cvetko-Vah, K., Costa, J. P. On the coset laws for skew lattices in rings. Novi

Sad J. Math, vol. 40, no. 3, pp. 11-25, 2010.

[15] Cvetko-Vah, K., Kinyon, M., Leech, J., Spinks, M. Cancellation in skew

lattices. Order, vol. 28, no. 1, pp. 9-32, 2011.

[16] Cvetko-Vah, K., Salibra, A. The connection of skew Boolean algebras and

discriminator varieties to Church algebras. Algebra universalis, vol. 73, no.

3-4, pp. 369-390, 2015.

[17] Davey, B. A., Priestley, H. A. Introduction to lattices and order. Cambridge

university press, 2002.

[18] Djeraba, C. Mathematical Tools For Data Mining: Set Theory, Partial Orders,

Combinatorics. Advanced Information and Knowledge Processing. Springer,

2008.

[19] Garnier, R., Taylor, J. Discrete mathematics: proofs, structures and applica-

tions. CRC press, 2009.

[20] Grtzer, G. General lattice theory. Springer Science + Business Media, 2002.

[21] Grtzer, G. The congruences of a finite lattice. A proof-by-picture approach.

Birkhuser, Boston, 2006.

[22] Grillet, P. A. Abstract algebra Springer Science + Business Media, 2007.

[23] Pita Costa, J. On the coset structure of a skew lattice. Demonstratio Math-

ematica, vol. 44, no. 4, pp. 673-692, 2011.

61



[24] Gupta, M.K. Discrete Mathematics. Krishna Prakashan Media (P) Ltd, India,

2009.

[25] Krolyi, K. Introductory Set Theory. Master Thesis, Etvs Lornd University.

[26] Kinyon, M., Leech, J., Costa, J. P. Distributivity in skew lattices In Semigroup

Forum Vol. 91, No. 2, pp. 378-400, 2015.

[27] Kudryavtseva, G. A refinement of Stone duality to skew Boolean algebras.

Algebra universalis, vol. 67, no. 4, pp. 397-416, 2012.

[28] Oehrle, R. T. Duality. UCLA Working Papers in Linguistics, Theories of

Everything , vol. 17, pp. 306-315, 2012.

[29] Pita Costa, J. On ideals of a skew lattice. arXiv preprint arXiv:1207.0231,

2012.

[30] Roman, S. Lattices and ordered sets. Springer Science + Business Media,

2008.

[31] Yang, Y. Notes for Introduction to Lattice theory. 2013.

62


	Preliminaries
	Partially Ordered Sets
	Basic Definitions
	Extreme Elements in Posets
	Diagrams
	Duality

	Lattices
	Lattices as Partially Ordered Sets
	Lattices as Algebraic Structures
	Sublattices
	Ideals and Filters


	Skew Lattices
	Algebraic structure
	Green's Relations on Skew Lattices
	Some Properties of Skew Lattices
	Order Structure

	Ideals On Skew Lattices
	Classical Ideals and Filters
	Skew Ideals and Filters
	Principal Ideals and Filters

	Bibliography

