
Palestine Polytechnic University
Deanship of Graduate Studies and Scientific Research

Performance-Power Enhancement on
High-Scale Heterogeneous Multi Processors

(HMP) using Genetic Algorithms (GA)

Submitted By:
Ahmad N. M. Aljabari

Closs ~'.~;

Thesis submitted in partial fulfillment of requirements of the degree
Master of Science in Informatics

June, 2012

The undersigned hereby certify that they have read and recommend to the

Deanship of Graduate Studies and Scientific Research at Palestine Polytech

nic University the acceptance of a thesis entitled: Performance-Power En

hancement on High-Scale Heterogeneous Multi Processors (HMP)

using Genetic Algorithms (GA) submitted by Ahmad N Aljabari, in

partial fulfillment of the requirements for the degree of Master in Informatics.

Graduate Advisory Committee:

Committee Chair Name (Supervisor), University:

Dr. Mohammed Aldasht, Palestine Polytechnic University
4] ovz Signature: ;/.......... . Date: .. 3./r.., .

Committee Member Name, University:

Dr. Hashem Tamimi, Palestine Polytechnic University

Signature: .1/4rltu1. ~~ Date: .. :> /1:/l..!Z>. i2. .

Committee Member Name, University:

Dr. Labib Arafeh, Alquds U ·~sity \ '1..V ,')__,-- 9X? Signature: •·;'· •· •·············· Date: ·· ··············

Approved for the Deanship:

Dean of Graduate Studies and Scientific Research - Palestine Polytechnic Uni-

versity

S
. // ' ' · ~ Date:.i.: .. 1.-:-..~C?./.2 ignature:. /T-_.......
Pr2. » Ac1% Tab6bsb

~i <) ~_>-:JI_, ~I yWI 04 ~ .. IJ~I oJfe_, o.lii:iu.JI 4-Slhll)Ji.a 0:H ~liJI ~

<liri,ll3 Asl/ A,l99li baas 3 .445l5% yill col-ll » yS 5.3c ,a5 ill3 @sJ\JI

().4 J.lc ~ ~ ~ AJ_,~1 ~ ui .fi:il~ .J:!~I 04 _, . w~k.o..11 04 J#. J.lc ~ ~I

~ I~_, .(NP-complete problem) ~I ¥J ~ ...>#- w.llj La~~ .)¾iJI w~k.o..11

~ ().4 fi:! w~k.o..11 04 ~Li.a ¥.J)I ~_;JI ~ taill:il ill_, .~I ¥illl ~ .. ~I Jig

.ls! A»3yl35 4las19 A<l45.01 @5Al) le &la» 36 5is -ill s clal Cle J;--as

ii

DECLARATION

I declare that the master thesis entitled "Performance-Power Enhance

ment on High-Scale Heterogeneous Multi Processors (HMP) using Genetic

Algorithms (GA)" is my own original work, and hereby certify that unless

stated, all work contained within this thesis is my own independent research

and has not been submitted for the award of any other degree at any institu

tion, except where due acknowledgment is made in the text.

Ahmad N. M. Aljabari

Signature: .

ow 3..7.4.720\

iii

STATMENT

In presenting this thesis in partial fulfillment of the requirements for the

master degree in Informatics at Palestine Polytechnic University (PPU), I

agree that the library shall make it available to borrowers under rules of

the library. Brief quotations from this thesis are allowable without special

permission, provided that accurate acknowledgment of the source is made.

Permission for extensive quotation from, reproduction, or publication of this

thesis may be granted by my main supervisor, or in his absence, by the dean

of graduate studies and scientific research when, in the opinion of either, the

proposed use of the material is for scholarly purposes. Any copying or use of

the material in this thesis for financial gain shall not be allowed without my

written permission.

Ahmad N. M. Aljabari

Signature:......

Date £2.7.4.729\

iv

ABBREVIATIONS

ARM Acorn RISC Machine

CPU Central Processing Unit

EP Execution Power

ET Execution Time

GA Genetic Algorithm

HARD History-Aware, Resource-Based Dynamic Scheduling

HMP Heterogeneous Multi Processor

IC Instructions Count

IPC Instruction Per Clock

IP Information Policy

ISF Instruction Set Format

LP location policy

M CP Multi Core Processor

minGW Minimalist GNU for Windows", is a minimalist development envi

ronment for native Microsoft Windows applications

MIPS Millions of Instructions Per Second

MSYS collection of GNU utilities

MUTP Mutation Probability

NEC Nippon Electric Company

NP Number of Processor

OVPsim Open Virtual Platform Simulator

POPSIZE Population Size (Number of Individual Population)

V

PSD Processor Sharing Density

PVP Primary Virtual Processor

RP Real Processor

RRDA Round Robin Dynamic Assignment

SP Selection Policy

SD Sharing Data

TLP Thread Level Parallelism

TP Transfer Policy

VP Virtual Processor

VLSI Very Large-Scale Integration

XOVERP Crossover Probability

vi

Dedication

I dedicate this study to my parents, my wife, my children, my brothers,

my sisters, and my friends for their encouragement, support, endurance, and

patience.

vii

Acknowledgment

I bow my head to ALMIGHTY ALLAH for the help, guidance and blessing

HE has bestowed me.

I am indebted to all who encouraged me to produce this research study. So

many people helped during the process of writing the study. I am especially

grateful for the encouragement given to me by my supervisor, Dr. Mohammad

Aldasht, at various stages of the production of the research study.

To all of you, once again, thank you very much.

Ahmad NM Aljabari

viii

Table of Contents

1 Introduction
1.1 Overview
1.2 Problem Statement
1. 3 Motivations .
1.4 Objectives ..
1.5 Contribution

1
1
4
6
7
7

2 Background and Literature Review 9
2.1 Heterogeneous multi-processor architecture 11
2.2 Scheduling on HMP Architecture . . . 16

2.2.1 Static Scheduling Algorithm: . . 16
2.2.2 Dynamic Scheduling Algorithm: 16

2.3 Literature review 18
2.3.1 Round Robin Dynamic Assignment (RRDA) on HMP architecture 19
2.3.2 IPC-Driven Dynamic Assignment on HMP Architecture. 20
2.3.3 History-Aware, Resource-Based Dynamic Scheduling on HMP ar-

chitecture 21
2.3.4 Bias scheduling on HMP architecture

2.4 Summary

3 Methodology
3.1 Scheduling Algorithm Assumption

3.1.1 Work Distribution:
3.1.2 Application/ Behavior Problems:
3.1.3 Processor Specifications ...

3.2 Scheduling Algorithm Pseudo Code: .
3.3 Scheduling Algorithm Details
3.4 Genetic Algorithm .

3.4.1 GA Details
3.4.2 Scheduling Algorithm Constraints .

4 Experiments and results
4.1 Environment
4.2 Tools • · ·

4.2.1 OVPsim Simulator
4.2.2 MSYS / MinGW Environment .
4.2.3 Matlab R2007b

22
23

24
25
25
26
26
27
28
36
36
42

45
45
46
46
48
48

ix

TABLE OF CONTENTS

4.3 Challenges and Difficulties during Implementations . . ·.
4.4 Experiments and Results

4.4.1 Phase 1. Accuracy of Estimation Execution Time
4.4.2 Phase 2: Overhead
4.4.3 Phase 3: Power - Performance Tradeoff

5 Conclusion and Future Work
5.1 Discussion .
5.2 Conclusions
5.3 Future work

Bibliography

Appendices

48
49
49
64
72

84
84
85
87

88

93

X

List of Figures

1.1
1.2

Processors Interconnection
Execution Results

i 4 4 4 % 4 g

............

2.1 Different Processors Design on Same Silicon Die Area
2.2 Performance of Separate Processors
2.3 Execution Time for Homogeneous and Heterogeneous
2.4 Threads Swap In RRDA
2.5 Simplify IPC- Driven Dynamic Assignment

3.1 Scheduling Algorithm Part
3.2 Proposed Algorithm Flowchart ...
3.3 Mapping Virtual Platform to Real .
3.4 Chromosome Structure
3.5 Effect of Population Size on Search Accuracy in GA .
3.6 Effect of Crossover Size on Search Accuracy in GA
3.7 Effect of Mutation Size on Search Accuracy in GA.

4.1 Pseudo Code to Calculate LU Decomposition ...
4.2 Execution Time for One Sample among 4 Processors
4.3 Execution Time for One Sample among 8 Processors
4.4 Estimated and Measured Execution Time for 4 Processors
4.5 Estimated and Measured Execution Time for 8 Processors
4.6 Estimated and Measured Execution Time for 128 Processors
4. 7 Percentage Error for 4 Processors
4.8 Percentage Error for 8 Processors
4.9 Percentage Error for 16 Processors
4.10 Percentage Error for 128 Processors
4.11 Percentage Error Relative to Number of Processors
4.12 Image Data Base to Matrix
4.13 Processors Interconnection
4.14 Processing Enviroment
4.15 Sample Execution Time for LU Application
4.16 Sample Execution Time for Images Application
4.17 Execution Time for LU Application ...
4.18 Execution Time for Images Application .
4.19 Overhead Ratio for LU Application ..
4.20 Overhead Ratio for Images Application .

5
6

12
15
15
20
21

28
29
31
34
38
41
42

51
58
59
60
61
61
62
62
63
63
65
67
67
68
69
69
70
70
71
71

xi

LIST OF FIGURES

4.21 GA Environment System .
4.22 Benchmarks Execution Information among 64 Processors .
4.23 Benchmarks Execution Information among 128 Processors
4.24 Benchmarks Execution Information among 256 Processors
4.25 Benchmarks Execution Time among 64 Processors
4.26 Max. Performance when Executed among 64 Processors.
4.27 Performance Power Trade off when run 64 Processors .
4.28 Performance Power Trade off when run 128 Processors
4.29 Performance Power Trade off when run 256 Processors

5.1 Percentage Error Relative to Processors Count.. . . .

73
77
77
78
79
81
82
83
83

85

xii

List of Tables

1.1 Threads Behavior Characteristics
1.2 Scheduling Methods ...

2.1 high Scale HMP Model .
2.2 Processors Specification

3.1 Virtual Platform Mapped to Real Platform .
3.2 Processors Specification Assumption ..
3.3 Execution Time and Power Information . . .
3.4 Processors PSD
3.5 PS and Executing Time for Each Processor .

4.1 Processors Specifications
4.2 LU Application Files .
4.3 Platform Consists of 4 Processors
4.4 Platform Consists of 8 Processors
4.5 Platform Consists of 16 Processors
4. 6 Platform Consists of 32 Processors
4. 7 Platform Consists of 64 Processors
4.8 Platform Consists of 128 Processors
4.9 Processors Configuration Slides ...
4.10 Different Platforms Processor Count
4.11 Processors Specification and Capacity .
4.12 Processors Specification
4.13 benchmarks behavior
4.14 Platforms Combination .
4.15 Real Processors Specification .
4.16 Experiment Program Files ..
4.17 Platform Combination, Consist of 64 Processors
4.18 Platform Combination, Consist of 128 Processors
4.19 Platform Combination, Consist of 256 Processors
4.20 Minimum Time and Maximum P .

5
6

12
14

31
33
33
35
35

50
55
57
57
57
57
57
57
64
65
66
67
73
74
74
75
75
76
76
80

xiii

Chapter 1

Introduction

This chapter introduces a general overview of the present research, its problem statement,

objectives, motivations and finally its major contributions to the field. This chapter is

organized as follows: section 1.1 is an overview about the study or the thesis; section 1.2

describes the problem statement; section 1.3 introduces the objectives of the thesis; sec

tion 1.4 lists the motivations of the study; and section 1.5 includes the thesis contributions.

1.1 Overview

The computer system consists of variety components (CPU, Memory, I/0 device, etc.)

Each component in the system is responsible for a particular job during the execution

such as, memory to load code, I/0 device to input/output data, system bus to connect

between components, etc. The primary component in the system is the central process

ing unit (CPU). The original CPU consists of a single processing core that executes the

program code in a sequential mode (instruction by instruction). Computing performance

is improved by increasing the execution speed to the CPU, for example; by increasing the

clock frequency for the processor unit. In the recent years, this approach was abandoned

due to some challenges (increased core complexity, energy and heat cost, limiting the rate

at which the clock speed can be increased, etc.) [18].

1

CHAPTER 1. INTRODUCTION

Parallel programming is another technique which has been developed to increase the

performance of a single processor. Parallel programming is applied by using different

methods like pipelining, VLSI, and superscalar. However, parallel programming methods

have limitations. For example, the pipeline method throughput is generally less than

the number of pipeline stages. In addition, there are limitations in parallel level in the

program itself, and the parallel programming technique is still weak to meet the needs for

high performance in the computing system [10,43].

For these challenges, new trends were adopted for multiprocessor architecture ap

proach by either adding more core in the chip or adding more processor units to increase

computer system performance. Each processor unit is responsible for executing its own

sequence of instruction to increase the overall computing system performance. The mul

tiprocessor architecture is a good method to improve such performance. Amdahl's Law

reveals the maximum speed up that can be expected from parallel algorithms given the

proportion of parts that must be computed sequentially [21].

There are two types of multiprocessor architecture: homogeneous and heterogeneous.

The first one is also called symmetric. In this type, the platform consists of identical pro

cessors. The second type, heterogeneous multiprocessors (HMP) architecture, is called

asymmetric; HMP architecture consists of variety processors on one chip. There are two

different types of HMP architecture: performance heterogeneity, which uses the same

instruction set architecture "ISA" and functional heterogeneity where each core has an

instruction set architecture.

Homogeneous type provides a uniform platform on which parts of the computer pro

grams are executed equally on all processors. However, the homogeneous platform may

not provide the best possible level of performance. To execute different applications of the

2

CHAPTER 1. INTRODUCTION

different parts from the same application, we need different processing requirements. The

benefits of multiprocessors can be achieved by executing different program parts on dif

ferent processors capability or more specialized processors. The implementation on HMP

system might be more complicated. This needs more information of program behavior

and processor types when matching between the processors and the threads to achieve
high performance.

While the HMP has the potential to increase performance, the designed any program

on HMP could be difficult. The programmer not only deals with concerns implicit in

concurrent programming on HMP such as scalability, synchronization, consistency, and

deadlock prevention, but also with different processor types, instruction set architecture,

and thread behavior characteristics so as to schedule threads on processors and achieve

high performance [30].

In multiprocessors architectures, parallel programming has different methods when

compared to a single processor. Multiprocessors technique can exploit thread level par

allelism (TLP) methods. The program or application will decompose to different parts

depending on decomposing methods. There are two methods applicable to decompose

the application into a small part: functional (task) decomposition and data (domain)

decomposition. Each part (thread) will be executed on a processor. With Parallel pro

gramming and TLP, we can exploit multiprocessors system architecture, especially HMP

architecture when executing threads with different processing requirements [43].

The present study aims to exploit high scale HMP architecture by applying genetic

algorithm scheduler on different processor types without any intervention from program

mers, to achieve optimized performance with minimal concumption power, and to make

the assignment of threads to the processors responsible for the runtime system. Scheduling

algorithm on high scale HMP architecture will be implemented by using OVPsim simula-

3

CHAPTERl. INTRODUCTION

tors and Matlab [3,42]. The OVPsim simulator supports many types of processors such

as mips32, arm, Power PC 32, and NEC v850. These processor types are used to build

the computer processing environments. The benchmarks selected in the implementation

support multiprocessor platform environment.

1.2 Problem Statement

In general, laptops, desktop computers, and servers use homogeneous multiprocessor ar

chitecture to move away from complexity. Some applications focus on using HMP ar

chitecture, particularly the applications that have a special purpose such as image/video

processing applications.

Addressing the difficult methods used to decide which thread will be assigned to pro

cessors during the runtime to achieve high performance occurs by exploiting the HMP

system. The scheduler relies on the program characteristic behavior in the runtime en

vironment and the processor's processing capability to make the system decide which

thread-processor matching is better to achieve high performance with minimal power.

To achieve this, the study is developed through the following stages:

• Stepl. Selecting a simulation environment and a set of benchmark applications to

achieve the experimental work of the research.

• Step2. Developing cost function algorithm that will be able to collect program

behavior characteristic information for each processor, processing requirements, ex

ecution behavior and inter-thread communication.

• Step3. Developing an evolutionary scheduling algorithm that uses the program

behavior characteristics and processor characteristics to optimized performance and

decrease power consuming.

• Step4. Analyzing the results and achieving comparison to decide the quality of the

4

CHAPTERl. INTRODUCTION

proposed algorithm and realize the required enhancements which lead to a better
algorithm.

Problem eaample:

By using different methods to schedule thread-processor, we can achieve different

performance. We use an architecture system that consists of 4 heterogeneous processors

(CI, C2, C3, and C4) as shown in figure 1.1. The application that needs to be executed

consists of 4 threads (T1, T2, T3, and T4). Each thread consists of 1 million instructions

and has an instruction per clock (IPC) behavior characteristic for each processor as shown

in Table 1.1.

Table 1.1: Threads Behavior Characteristics
I Thread Cl C2 C3 C4 I

Tl 1.4 2.4 0.5 1.2
T2 0.5 1.5 1 0.5
T3 2 0.5 2.4 3.2
T4 2.6 1 1.6 1.4

c3 C4

Figure 1. l: Processors Interconnection

By using 4 processors to execute 4 threads, we have 16 different combinations to

execute the program. In the example, we will show 4 different combinations. The results

are shown in figure 1.2 by executing the programs using 4 scheduling methods as explained

in table 1.2.

5

CHAPTER 1. INTRODUCTION

Table 1.2: Scheduling Methods
I Methods C 1 C2 C3 C4 I

1 Tl T2 T3 T4
2 T2 T3 T4 TI
3 T3 T4 Tl T2
4 T4 T1 T2 T3

» 1 {[pw,

2 ···············;········•• ~ .

1.5 : ;
. . . .

0.5

2 3 4
Methods

Figure 1.2: Execution Results

1.3 Motivations

Scheduling on heterogeneous multiprocessors is defined as NP-complete problem [23,31]

. The work on high scale processor architecture is expected to be more complicated.

In heterogeneous multiprocessor environments, the programmer must deal with high

scale HMP architecture characteristic to write a program that uses the heterogeneity of

the system to achieve high performance. In this work, the scheduling algorithm will assist

the programmer to write a program without dealing with HMP architecture to build a

program that can observe the system during the run time to perform thread-processor

scheduling in high scale HMP architecture to achieve high performance. In addition to

developing the computing system by integrating a new option that controls the processing

performance according to power status; this option will work through two methods:

First: manual control method: the user increases or decreases the overall perfor

6

CHAPTER 1. INTRODUCTION

mance to save power.

Second: automatic control method: the system observes the power source status

or peak time to change the CPUs performance according to the observation information.

1.4 Objectives

This research focuses on three objectives:

• To integrate new options in the computing system to decrease the value of consuming

power from maximum power. The proposed scheduling algorithm is responsible to

find processor configuration that guarantees to achieve optimal performance within

minimal power.

• To estimate the overall execution time and consuming power needed to execute the

problem before processing.

• To distribute the any problem to all processors according to processor's capability.

1.5 Contribution

Estimating the power consumption and time needed to execute programs on high scale

HMP architecture before executing takes place by:

• Presenting the program by small sample (S) that specify the real phenomena of the

program.

• Determining the program problem size.

• Executing sample (S) on each processor and measuring the time and power needed

for each processor.

• Estimating the consumption power and execution time when using all processors.

• Setting the processor configuration of the high scale HMP architecture by using GA.

7

CHAPTER 1. INTRODUCTION

• Estimating the overall power and time needed to execute the program according to

the processor configuration, sample power and time for each processor, and program

size.

This thesis presents information about how to assist the system to exploit high scale

HMP architecture by carrying out dynamic thread scheduling that increases the perfor

mance with minimal power in a number of ways:

• Abstracting the program behavior characteristic during the run time execution.

• Developing a cost function that uses a program's behavior characteristic to inform

thread placement across heterogeneous processor.

• Developing an evolutionary scheduling algorithm that exploits both the program

behavior characteristics and processor characteristics to optopmize performance and

minimize power consuming.

8

Chapter 2

Background and Literature Review

The purpose of this chapter is to provide a theoretical background about the scheduling

algorithms which are implemented on multi/ many processor architectures. In addition,

this chapter reviews the literature about the development of scheduling algorithms for

heterogeneous multi-processor architectures. The chapter is divided into sections as fol

lows: Section 2.1 presents an overview about two general types of scheduling in HMP

architecture. Section 2.2 presents the general scheduling methods. Section 2.3 presents

the recent method proposed to schedule HMP architecture.

In general, processor performance enhancement focuses on increasing clock frequency

rate and parallel processing by applying instruction level parallelism technique in single

processor (improving single thread performance). However, these techniques are stalled

due to the limitations in the degree of parallel processing that can be extracted from

sequential processing [46] and the clock frequency issues (energy, heat, and complexity)

[39]. The idea is to increase computing system performance by designing a platform which

consists of multi processors with multicores [35]. The multi-core processor is designed by

exploiting available transistors on a given size of processor die. With this generation of

multi-core processors, we can exploit thread level parallelism [21].

9

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Multi-processors platform can be symmetrical (homogeneous); in this type all proces

sors in the chip are identical. Most computing systems are homogeneous. Asymmetrical

(heterogeneous) HMP architectures consist of different types of processors; each processor

has different function (ISA), performance, and capabilities [8].

HMP architecture has better performance than the homogeneous type [9]; the dis

advantage of using HMP architecture is limited to the complexity of exploiting the het

erogeneity in the implementations. There are different methods used to schedule threads

on processors. These methods can be classified into static and dynamic scheduling algo
rithms [12].

In order to exploit Thread Level Parallelism (TLP), the application can be decom

posed by two methods: function decomposition and data decomposition. In order to use

function decomposition, the task splits into small tasks. Each task is run by a special

processor depending on the efficiency and the executing thread on any processing type

(in HMP architecture) or on any processor (in symmetric architecture). In order to using

data decomposition, when the executing application has large data, we split the database

boundary into small parts and distribute these parts to the processors; each processor will

execute the same function [27,32, 38, 43].

When the executing application uses any type of decomposition, dependency must

be controlled to save the consistency and accuracy. There are many methods used to

save implicit execution property like share memory, massage passing, and mailbox. The

present study proposes some methods and techniques that can be used to schedule threads

in HMP architecture in order to increase throughput and system performance.

10

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1 Heterogeneous multi-processor architecture

Computer systems that use multi-processors (heterogeneous resources) are not new. The

IBM System/709 incorporates a processor to process I/O operation. In this case, the

main CPU executes another operation during I/O operation [19]. The same technique

can be found in another system such as IBM System/370, System/360 [13], and Control

Data CDC 6600 [42]. These processors are generally limited to performing special pur

pose operation (transfer and signaling operations) and not sharing the computer system

capabilities. There is another specific purpose processor which has been used to string

matching [15], accelerate floating points [14], encryption [47] and many other applica

tions. [30] proposes that HMP architecture consists of general purpose processors (CPU),

unlike the superscalar processors that have specific purpose processors.

HMP architecture has been recently used in specialist applications such as image/video

applications, network processing, and low power embedded systems. some primary im

plementations of HMP architecture:

• Network processing equipment uses a number of processors like, the IBM Power NP

[7], Intel IXP [5], and Motorola C-Port [20].

• Multimedia workloads and scientific computation use IBM Cell processors [1,22].

• Low power embedded devices, such as mobile phones, use Intel PXA8OOF [29].

In this research we are not talking exclusively about HMP archetecture. However, '
the research extends a wide range of high scale HMP archetecture. Some models of high

scale HMP archetecture are shwon in table 2.1 [1].

When the transistors count are increased, the expected performance will be improved.

In general, performance increase is governed by Pollack's Rule [11]. This means that the

expected performance will be increasing by square root of increasing the transistor count.

For example, doubling the number of transistors in a single processors will increase the

11

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Table 2.1: high Scale HMP Model
Processor NP

TSUBAME 2.0- HP ProLiant SL390s G7 Xeon 6C X5670
K computer, SPARC6A VIIIfx 2.0GHz
Cielo - Cray XE6, Opteron 6136 8C

Manufacturer I
73278
705024
142272

NEC/HP
Fujitsu
Cray Inc

performance about 40% ; on other hand, doubling the number of processors will increase

the performance about 100% in case of parallel workload. Figure 2.1 explains how we

can achieve different performance from the same area of silicon when the processor design

is improved. Figure 2.l(a) presents a single processor, whereby the overall execution

performance for a sequential program equals 4. As shown in Figure 2.1(d), if we can

exploit all processors at the same time with the executing parallel program, we can achieve

performance which is equal to 8. With high degree of complexity to design more processors

from the same area of silicon die, we can increase the performance as shown in 2.1(b, c,

and d).

P=4

P=
2.8

P=
2.8 CJ

CJ
P=
2.8 r
vi

(a) Single P
MP

SP= 4

(b) horn ogeneous MP

SP=2.8, PP= 5.6

(c) HMP (d) homogeneous

SP= 2.8, PP= 6.8 SP= 2, PP=8

Figure 2.1: Different Processors Design on Same Silicon Die Area

As we noted earlier, processor architectures can be divided into two types: homo

geneous and heterogeneous multi-processor architectures. Homogeneous multi-processor

architectures, also called symmetric, consist of identical processors. In general, implemen

tation depends on homogeneous type, specially the computers, which have general purpose

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

programs, like laptops, servers, and desktops [36]. Heterogeneous multi-processor archi

tectures, also called asymmetric HMP architecture, consist of a variety of processors. The

following is an explanation of the two main domains of heterogeneity:

Processors with different performance: these are processors with high perfor

mance and are used to process big threads and processors with low performance and used

to process small threads to reduce consuming power and exploit thread level parallelism.

In this type of variety, all processors on the platform use the same instruction set archi

tecture (ISA), and there is no need to recompile threads in case of swapping between the

processors.

Processors with different ISA (function): these processors can be found in the

applications that have specific purpose. The developer enhances the system by adding

processors that can execute some function with high degree of performance to improve

the overall performance such as multimedia workload, network processing, and embedded

devices. This type of HMP architectures consists of processors, which execute different

instruction set architecture (ISA). The disadvantage of this type is the overload that is

added to the system when a swap process between processors occurs because the system

needs to recompile the process. This can be proved by experimenting on the two types of

HMP architectures.

The two types of architectures are demonstrated in table 2.2. The goal of the experi

ments is to compare performance between the two architectures. Architecture 1 consists

of two processors which differ in performance (processor 0 =MIPS32LE has capability of

300 MIPS; processor 1=MIPS32LE has capability of 100 MIPS). Architecture 2 consists

of two processors which differ in function (processor 0=MIPS32LE has capability of 300

MIPS; processor 1=ARM7 has capability of 100 MIPS). The source code used to create

architecture 1/2 are shown in Appendix A.1 and A.2.

13

CHAPTER2 BACKGROUND AND LITERATURE REVIEW

raan.. le?& Processors Specification
Architecture 1 (performance HMP) Architecture 2 (functional HMP)
Processor Type MIPS Processor Type MIPS
ProcessorO MIPS32LE 100 Processor0 MIPS32LE 300
Processor1 MIPS32LE 300 Processorl ARM7 100

This experiment will implemented by using OVPsim simulator environment. Two

processors will execute the same program shown in Appendix B.l. The program consists

of two threads, each of which is used to multiply two matrices. The program will execute

9 times. In each iteration, the size of matrix will increase, and the size of the matrix in

each thread will be equal.

Figure 2.2 and Figure 2.3 shown the results for architecturel and architecture 2

respectively. In each iteration, we can observe the number of instructions executed by each

processor and the time needed to execute these instructions for each processor without

overhead. We can also measure the overhead needed for each platform, and measure the

total time (overhead+ execution).

The difference between the two processor architectures in processorl; replacement of

processorl in architecturel from ARM7 100 to MIPS32LE 100.

Figure 2.2 shows the cooperation execution time (performance) between two proces

sors with the same capability. As can be seen from Figure 2.2, the ARM7 processor is

faster than MIPS32LE. The difference in speed for each processor is due to the instruction

set architecture format for each processor.

In figure 2.3(a), we can compare the execution time for two architectures without

overhead. Architecturel, which consists of processors different in function, is faster than

architecture 2 which consists of processors different in performance, because architecturel
'

contains an ARM7 processors that have capabilities better than MIPS32LE which is used

in architecture2.

14

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

7

6

5
ARM7

Time 4r

m Sec
MIPS32LE

3

/
/ 0

100 2CO 300 400 500 6(() 700 8CO 9O0

Problem size

Figure 2.2: Performance of Separate Processors

Time

mS
L ✓/

/
/

~/
~~
5 » o» cs %» cs «o

Problem size

(a) Execution time without overhead
for homogeneous and heterogeneous

Time

m mS

00

~00 20J 300 QJ ~ 600 700

Problem size
ec0

(b) Execution time with overhead
for homogeneous and heterogeneous

Figure 2.3: Execution Time for Homogeneous and Heterogeneous

15

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

However, in overall execution time (processor processing time + system overhead

time), Figure 2.3(b) demonstrates that architecture 2 is better than architecture] because

overhead factor coming from the system recompiles the thread to the new instruction set

format.

2.2 Scheduling on HMP Architecture

There are two general types of scheduling algorithms on HMP architecture which are

used to match the thread to the processor to achieve high performance; these types are

dynamic scheduling algorithms and static scheduling algorithms [25]:

2.2.1 Static Scheduling Algorithm:

The assignment of threads to processor before processing. No thread swapping or assign

ment change between processors during runtime.

On homogeneous multi-processor architectures, there is no need for prior informa

tion about thread characteristic and processor type needs to schedule. In general, the

load balancing is a method which applies to schedule thread processors [27].

On heterogeneous multi-processor architectures, there is a need for prior informa

tion about both: thread characteristic and processor type. The goal of static scheduling in

HMP architecture is to utilize the processors that have high capability by doing random

load distribution [9].

2.2.2 Dynamic Scheduling Algorithm:

Re-assignment of threads to the processor during processing according to thread behavior

characteristics.

16

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

There are many policies which must be considered to decide which method or algo

rithm is better to dynamic schedule threads in multi-processor architectures. Dr. Aldasht

proposes using genetic algorithm to explore the overall policies that define the dynamic

load balancing strategies [6].

The first policy, the information policy (IP), is used to determine how the informa

tion exchange between nodes. If IP=1, the information will exchange according to load

balancing frequency. If IP=O, the information will exchange on demand.

The second policy, the transference policy (TP), is used to specify the case of

nodes. If TP = 0, the node is overloaded and needs to transfer the tasks (sender ini

tiator). If TP=1, the node is ready to receive the tasks (receiver initiator). If TP = 2,

we have a sender initiator and a receiver initiator at the same time (symmetric initiators).

The Third policy, the location policy (LP), is used to determine which node is incor

porated in load balancing operation. If LP=O, that means the information collected from

the node is compared with the threshold to decide to which location the node will send

or receive tasks. If LP=1, that means the decision will be according to two-thresholds. If

LP=2, the node will send tasks to the shortest-path based node, with the lower load. If

LP=-3. the node will select a random location node as a receiver or sender. '

The fourth policy, the selection policy (SP), refers to the task selected to transfer

the preemptive (SP=O) or non-preemptive (SP=I) from the sender node. These policies,

which are defined by Aldasht, cover all dynamic and static scheduling methods for multi

core processers. By tuning the policies during the runtime and checking the overall system

performance, THE scheduling algorithm set the value for each policy according to program

behavior characteristics.

17

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.3 Literature review

At first glance, when we talk about the distribution of tasks on a multi-processor archi

tecture, we propose using the theory of load balancing on a multi-processor architecture

as David W. Holmes does by applying H-Dispatch algorithm to a wide range of numerical

simulation problems by using spatial decomposition to create "orthogonal computational

tasks." This algorithm makes efficient use of memory resources by limiting the need for

garbage collection and taking optimal advantage of multiple processors through employing

a "hungry pull strategy" [16]. This algorithm is flexible and efficient when it is applied

to a numerical domain, depending significantly on data sharing, regardless of the type

of multi-processor: homogeneous or heterogeneous. Nevertheless, if the database domain

is used on a heterogeneous multi-processor architecture, it is necessary to develop this

algorithm to do data decomposition and distribution depending on the specification and

processing type of the processor.

Many recent works have tried to handle the above mentioned problem. Jian [16], tries

to exploit the efficiencies of the heterogeneous multi-processor architectures by execut

ing the processes on a smart scheduler which obtains a high performance and consumes

power. There are many proposed scheduling algorithms; each depends on some properties

from the system to achieve dynamic scheduling such as History-Aware Resource-Based

Dynamic Scheduling (HARD). As for the heterogeneous multi-processor architectures

proposed by Jooya, this algorithm depends on recording application resources, utilization

and throughput, and analyzing the information to decide how to adaptively change the

matching between the processes and the processors during the runtime [26]. The above

authors wonder how it would be possible to develop the scheduling algorithm by mixing

new information to make the algorithm more efficient.

Jaejin proposed scheduling algorithm for simultaneous multithreading environment

to obtain good matching between the processes and the processors. Furthermore, the

18

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

History-Aware Resource-based Dynamic (HARD) scheduling algorithm proposes and im

plements in Open Solaris which uses single-ISA heterogeneous multi-processors architec

ture [24]. It is comparatively simple and scalable, but the resulting Algorithm does not

rely on dynamic profiling [18, 34,40]. The scheduling Algorithm is based on the idea of

architecture signatures "a compact summary of architectural properties of an application.

It may contain information about memory-boundedness, available Instruction Level Par

allel (ILP), sensitivity to variations in clock speed and other parameters" [40].

M. Becchi and P. Crowley proposed scheduling algorithm to heterogeneous multi

processor architecture scheduler. The algorithm has the ability to dynamically reschedul

ing processes at a runtime based on periodically collect performance statistics [9]. This

Algorithm collects information on the performance produced by rotating all processes

periodically between cores. After that, the information is used to assign the processes

to the processors in the optimal way that guarantees to achieve high performance. The

main disadvantages of this algorithm are: the overhead is required to update the informa

tion about the performance statistics in addition to the loss caused by rotating processes

periodically; the second disadvantage is the increase of complexity when the numbers of

processors are increasing, down to the case of unreasonable.

As a result the best and most recent methods are used to dynamically schedule '
threads in HMP architecture to maximize the overall performance and reduce the overall

consumption of power during the execution time:

2.3.1 Round Robin Dynamic Assignment (RRDA) on HMP ar

chitecture

The main of objective of the RRDA algorithm on HMP is to assign the threads to the

processors which better exploit the hardware resources in order to improve the perfor

mance with the simple technique of the procedure and policy [9,37].

19

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

There is no need for the cost function in the RRDA algorithm to observe the program

behavior characteristics during the runtime. The procedure of the Algorithm is simple as

shown in figure 2.4: by periodically rotating the threads to processors in a round robin
fashion.

Figure 2.4: Threads Swap In RRDA

This routine ensures that the available processors are equally shared among the run

ning programs.

Algorithm drawbacks, first, the round robin strategy is blind, that This means that

the runtime system is not aware of the thread behavior characteristics and does not use

the runtime execution information to drive threads assignment. Second, the overhead has

a high value for a swap period parameter (the frequency of the rotation).

2.3.2 IPC-Driven Dynamic Assignment on HMP Architecture

This Algorithm depends on Instruction per Clock (IPC) behavior characteristic of threads

during the execution. The assignment of threads to core is driven by IPC for each thread

to improve the overall IPC. The scheduler observes the runtime system and collects in

formation by cost function from the core for each thread. By comparing IPC threads for

all processors, the scheduler decides which thread needs migration to another core.

The IPC must be available for all threads. In fact, the IPC value is available for the

cores that execute threads. If the processor does not execute any thread, we need to

20

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

refresh the information by carrying out the round robin method on the system or swap

the threads for the processor that doesn't execute these threads [9].

Figure 2.5 shows how a simplified IPC-driven guides the system. In (A), the cost func

tion collects information (IPC for each thread executing in processor) from the processors.

The information is processed in (B) by the scheduler controller to drive the assignment

of the thread to the core to achieve better performance. In (C), the controller swaps the

thread between the processors to improve the overall performance.

C

1
·. . '' ... '. '- '.)

A

D

B

SCHEDULER

IPCforTA on P1

IPCforTAon P2

IPC for TB on Pl

IPCforTB on P2

Figure 2.5: Simplify IPC-Driven Dynamic Assignment

2.3.3 History-Aware, Resource-Based Dynamic Scheduling on

HMP architecture

J d h d 1. algorithm for dynamic scheduler on HMP architecture. The ooya propose sc e u mg

: hod thi d ithm is recording the resources utilization and throughput dur mam met.o in us algort

• . · · formance by upgrading the sensitive threads which require ing the runtime to maximize per

f t Ocessor and reducing consumption of power by downgrading more resources to a as er pr

the insensitive threads to the weaker processor [26].

21

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The HARD algorithm relies on t b . wo su sections: detection phase and reassignment
phase. In the detection phase th t f · e cos unction records the thread behavior (throughput

and processors utilization) during a T-clock cycle interval. A short T interval reduces the

performance due to the switching overhead and a 1 T · t al · th th d 3 tong inverve may miss e rea

behavior information, which means that the value of T must be chosen carefully. In the

reassignment phase, the history of information which is collected in the detection unit to

decide which threads need reassignment.

2.3.4 Bias scheduling on HMP architecture

The bias scheduling procedure doesn't include sampling of IPC or CPI on all processor

type or offline profiling because sampling of CPI produces overhead [28]. IPC and CPI

specify single processor performance. These factors are affected by internal and external

stalls during the processing.

The other reason that directly affects on the performance (CPI value) of a processor

can be divide into two categories. The first category specifies the performance differences

which are caused by micro architectural choices in the processor such as, micro architec

tural execution algorithm (ILP, out-of-order, and in-order design), the size of resources

allocated (cash unit, registers, TLP, etc.), and micro architectural feature (pipeline depth,

branch predictors, or unit latency). The second category specifies the performance effects

on the resources outside the core such as, access to shared caches and memory, and I/O

operations.

Application bias means that the processor which operates the system is preferred to

execute a thread at a particular time. Application bias is divided into two types. In first

type, the thread has a small processor bias if the speedup of the execution thread from a

22

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

big processor size to a small proc · · • essor size is modest. In second type, the speedup is large.

The two types of stall (external and internal) are a strong predictor of the application

bias. The scheduler determines the processor stall that limits the application perfor

mance. After that, the application bias guides the scheduling decisions that maximize the

performance.

2.4 Summary

The main difference between the current research and the previous research; is that most

proposed scheduling algorithms in the previous research attempt to enhance performance

to multi processors computing systems through running the system with its all capability,

which means, sharing all processors in execution. These algorithms also efficient if applied

on low scale multi processors systems.

However, the current study proposed scheduling algorithms using genetic algorithm

method. It also tries to run· multi processors computing system in high performance

through selecting a number of processors that exist in the multi processors system, this

is to be done by a determined value of power. The efficiency of this algorithm increases

as the number of processors increases in the system.

23

Chapter 3

Methodology

This chapter describes and explains the methodology used to achieve the thesis objectives.

This chapter is organized as follows : section 3.1 describes and explains the scheduling

algorithm assumption; section 3.2 describes and summarizes the scheduling algorithm

pseudo code; section 3.3 explains in detail and exemplifies the scheduling Algorithm

pseudo code; section 3.4 describes genetic algorithm, presents an overview about algo

rithm and explains algorithm procedure.

The study proposes scheduling algorithms, which exploit an HMP platform to achieve

a high performance. In general these algorithms are efficient for a limited number of

processors, and they observe the system during the runtime that needs to process all tasks

in the application. The relationship between the number of processors in the platform

and the overheads is proved. The study proposes that GA based scheduling algorithm

runs in an offiine mode and is efficient for a large number of heterogeneous processors. By

this algorithm, it is possible to estimate the overall execution time and consuming power

which are very close to the real value.

24

CHAPTER 3. METHODOLOGY

3.1 Scheduling Algorithm Assumption

The proposed scheduling algorithm is supported to be efficient in a high scale HMP

platform. However, the application types change the efficiency degree. To obtain a high

degree of efficiency and make the GA based scheduling algorithm that we are developing

more effective, we assume the following application properties:

3.1.1 Work Distribution:

We assume the domain decomposition type with loosely coupled properties. To exploit

many processor environments, we need to decompose or split the application into a small

number of tasks that can be executed in parallel on available processors. After that these

tasks are matched to different processors by applying the efficient scheduling Algorithm.

In general, there are two main types of application decomposition: domain decomposition

and functional decomposition [32,38]

Functional Decomposition: In this method, the original function can be recon

structed into relational constituent parts; each processor executes some parts from the

original function for example:

If we have a function

f = cos() + sin(/y) (3.1)

We can reconstruct f into three function:

f1= /(y), f2= sin(fl), andf3 = cos(a) (3.2)

I h. th d t and y will be stored in a shared place and the functions (fl, n tis case e .ata

f2, and f3) will be distributed to various processors.

D • D ·t · n· This method solves a boundary value problem by split- omain 'ecomposto.

25

CHAPTER 3. METHODOLOGY

ting it into smaller boundary val bl ue pro ems on sub domains. For example, the function
3.3 is filter (x and y will determin · 1 · ·) e pixel positions, Domain (D) consists of images and
the boundary = 1000 units. We can split the D itc ib-do ·5» lik m o su -omains e:

DI= 200 images, D2 = 500 images, and D3 =300 image.

The filter function f executes on all processors, and the sub-domains Dl, D2, and D3

are distributed to various processors.

f = a(x) + b(y) (3.3)

3.1.2 Application/ Behavior Problems:

The application type has two properties: size and sample. In general, the computing

system executes different types of applications, and each type has size I, and we can

present the application size with a small sample like:

1. Relational Databases: The database domain is a structured collection of data; the

structure presents relational data (table) which consist of a number of records. The

size of the application is a number of record and the small sample is one record.

2. Image Processing: The domain consists of a number of images. The size of the

application is a number of images, and the sample is one image.

3. Matrices Processing: The domain consists of a number of matrices, and the oper

ation result is MaN matrix. The problem size is M or N, and the sample is M

result for size M or N result for size N.

3.1.3 Processor Specifications

The scheduling algorithm deals with a a black box processor and doesn't focus on any

properties of the processor specifications like ISA, cache memory, processing type (parallel

26

CHAPTER 3. METHODOLOGY

or sequential), bus bandwidth, ALU, etc. The main part that the scheduler focuses on is
the time needed to execute the sample.

3.2 Scheduling Algorithm Pseudo Code:

This section summarizes the scheduling algorithm procedure as shown in algorithm 3.2

for all parts of the system shown in figure 3.1. Regardless of the implementation of any
part of the procedure.

Begin

Step1. Select a sample S that represents the program of size I

Step2. Determine processors that will share in execution (overloaded

processors will be excluded from the selection phase due to architectural

constraint)

Step3. Execute Son every processor

Step4. Collect execution information (Time (ETi)and Power (EPi)

Step5. Determine the objective function(min ETi or min EPi)

Step6. Use GA to find the optimum configuration of the processors

Step7. Distribute I according to the processors configuration done in step 6

End

Algorithm 3.2

Figure 3.2 shows the proposed algorithm flowchart, all steps in the flowchart sequence

explains in sections (3.3 and 3.4).

27

CHAPTER 3. METHODOLOGY

1. Program information (behavior):
• Problem size.

Small sample.
2. HMC architecture:

Cores count.
Cores power to Exe. Sample.

• Core time t Exe. Sample,
3. Program: able to split Into Independent tasks.
4. HMC architecture.
5. GA scheduler :

Collect 1 and 2 information
- Split program into IT
- Present ares run situation,
• Match thread to core

Figure 3.1: Scheduling Algorithm Part

3.3 Scheduling Algorithm Details

In this section, we will explain our scheduling algorithm. In addition, we will show the

implementation type of each step.

To illustrate the theories and methods in the algorithm, the Example 3-2 is developed

as follows:

l. Create a platform, which consists of 4 heterogeneous processors, processors specif

cation are shown in table 3.2. The source code is in Appendix A.3.

2. Create matrix-vector multiplication application program, using GA to distribute

jobs among processors. The source code is in Appendix B.2.

3. Create a Matlab script file to analyze the information and show the results. The

file is described in Appendix C.1.

4. Create a script file to compile the above files. The source code is described in

Appendix C.2.

Selecting a sample S (which is a portion of the program of size I): According

to the assumptions about the application type, we have two application properties: size

(I) and sample (S). These properties are determined from the compiler. The domain

boundary is determined from I and S as shown in formula 3.4.

28

CHAPTER 3. METHODOLOGY

Start

System Processors
Idle? Type? Job queue?

GA Initialization
Application ?

~ Problem size (P]
Sample size (S}

Evaluation • g

I
Selected Processors

VP

Finish Iter.) l Fit is Stable
Stop

Yes

No Execute S on every
processor

Roulette wheel
selection I

'
Crossover

i

Mutation
I

•

Figure 3.2: Proposed Algorithm Flowchart

29

CHAPTER 3. METHODOLOGY

I Problem = x computation s
The computation part in form 1 3 4 · · · uua »+ represents the functions and operations that

process the data. These computations will be assigned to all processors.

Determining the processors shared in the execution: there are three criteria which are
used to select the processors:

1. The processor is idle.

(3.4)

2. According to threshold, if the job queues of this processor are less than the threshold,

the processor will corporate processing else no.

3. Whether the processor type is compatible with the application or not, information

about problem behavior and processor type is needed.

The processors selected to corporate processing will take value; otherwise, it will take

value 0. The processors status information will be sent to scheduling algorithm as a status

array, as shown in formula 3.5.

St[i] = Status (3.5)

where :

i is the processor id

Status : processor is selected or not

The scheduling algorithm will build a new virtual platform to simplify algorithm ex

ecution on the selected processors. These processors will map to the real processors as

shown in formula 3.6.

VPi]= RP[p] (3.6)

30

CHAPTER 3. METHODOLOGY

where :

i is virtual processor

p is real processor if status is 1

For example, figure 3 3 sh th · ows e virtual processor platform mapping to the real
processor platform.

RP1 RP2 RPS • .. • . • . • RPn

G 6 ·O / \ •••••• w,

····••···• S=4 S=f S=0 S=O S=4 S=O

Figure 3.3: Mapping Virtual Platform to Real

The scheduling algorithm checks processors status; if the result is 1, this means that

the processor will corporate the virtual platform. Table 3.1 shows the processor mapping.

Table 3.1: Virtual Platform Mapped to Real Platform
Virtual processor Real processor Position

VPl RPI 1
VP2 RP2 2
VP3 RP5 5
VP4 RP7 7

Executing S on every processor: According to the collected information (about

the problem sample Sand virtual platform VP array), we can execute Son every selected

processor. The overhead will be arising in this process; the scheduling algorithm must

wait for all processors to execute because the next procedures depend on this execution

information. There is only one way to decrease the overhead by decreasing the size of the

sample S.

31

CHAPTER 3. METHODOLOGY

In the previous example, Swill execute in the shared processors (RPl, RP2, RP5, and

RPT), they incorporate to execute problem I,

Collecting execution information (Time (ETi), Power (EPi): According to

the processor type and capacity, each processor will spend time and consume power to

execute S. We can measure the execution time and consuming power in following steps:

1. Measure execution time: It is the overall time spent in the execution.

Use the first method in scheduling algorithm. The time will be measured by formula

3. 7 under OVPsim simulator inveroment.

IC%
[5==

P.mips

where:

ICi is the count of instructions executed by processor i

P.mips is MIPS for Processor i

(3.7)

2. Measure execution power: In this process we measure the consuming power needed

to execute S on every processor, as shown in formula 3.8 [48].

Pi= c x V? f (3.8)

where:

Pi is the power for processor i

C is switching capacitance

V is processor i voltage

f is processor i clock frequuency

. l :fc measured executing time for a sample by multiply For example: previous plattorm

32

CHAPTER 3. METHODOLOGY

Vector (N) with square matrix (NxN) on platform consists of four processors. As shown
in table 3.2, the processor specificati ons are not real. Table 3.3 shows the result of
execution time and execution • power according to formula (3.7, 3.8). IC presents the
instruction count for each process /h · h d sor w'.1c, nee s to execute S. IC value depends on the
processor ISA and compatibility of application ith th w1 le processor type.

Table 3.2: Processors Specification Assumption
Processor Type MIPS X M V Cxk f MHZ
RPI ARM7 100 3.5 18 33
RP2 ARM7 200 3. 7 20 36
RP5 NEC V850 100 4.1 45 50
RP7 NEC V850 150 1.7 5 20

Table 3.3: Execution Time and Power Information
Processor IC Execution time micro S Execution power volt

RPI
RP2
RP5
RP7

1881767
1881767
14514366
14514366

18817.67
9408.835
145143.66
96762.44

7276.5
9856.8
37822.5
289

Determining the objective function: We have two objective functions. The first

one is to find the processor configuration s to achieve better performance according to

consumed power or, the secound is find better energy according to the determined per

formance.

Using the GA to find the optimum processor configuration: In genetic Al

gorithm, we use virtual processor platforms to calculate processes, and search spaces in

high-scale multiprocessors, which is very big (2, N number of processor). For example,

if we use a platform consisting of 64 processors, the search space will be approx. (18x1018)

possible solutions.

To configure the genotype in genetic algorithm, the chromosome variable will be as

shown in figure 3.4.

CPUSTATUS: present the virtual processor status: for any generation of GA, we have

33

CHAPTER 3. METHODOLOGY

Tfitness; ; /Execution Time
i.: ·EE±.5 AF "3

Pfitness; •• " // Consuming Power /
••· '' I •.• : ·- ~ .

, ···•··

Figure 3.4: Chromosome Structure

virtual processor configurations. Each processor presents one binary variable.

Tfitness: presents the overall execution time needed to execute problem I for any pro

cessor configuration. Here is the procedure to calculate Tfitness

1. Calculate processor sharing density PSD.

1 1
Psp]= SI py, 2SH pr

where:

PSD[i] is processor sharing density for Pi

S[i] processor status

2. Calculate P sharing data:

Psi] = I x PSD[i]

3. Calculate overall execution time

Tfitness = Ma(Ps[i] x ETi)

(3.9)

(3.10)

(3.11)

. 1 t bl 3 4 shows the result of the processor sharing density In the previous example, ai le .

h b ize (PS) which will be executed for each processor (PSD), and table 3.5 shows t e Su s

34

CHAPTER 3. METHODOLOGY

from the total problem size and the • .
execution time needed to solve this sub size. These

are the results for the sum virtual procc ifi . essor configuration.

I VP config I ET Table 3.4: Processors PSD
m.s I PSD

1 2 3 4 1 2 3 4 1 2 3 4 1 0 0 1 1.9 1.9 14.5 14.5 0.837189 0 0 0.162811 1 1 0 1 1.9 1.9 14.5 14.5 0.313041 0.626081 0 0.060878
0 1 1 0 1.9 1.9 14.5 14.5 0 0.939122 0.060878 0
1 0 1 1 1.9 1.9 14.5 14.5 0.755218 0 0.097913 0.146869

Table 3.5: PS and Executing Time for Each Processor
I VP config I ET m.s I PSD
1 2 3 4 1 2 3 4 1 2 3 4
1 0 0 1 837 0 0 163 15750390 0 0 15772278
1 1 0 1 313 626 0 61 5889931 5889931 0 5902509
0 1 1 0 0 939 61 0 0 8834896 8853763 0
1 0 1 1 755 0 98 147 14207341 0 14224079 14224079

The amount of consuming power needed by each processor (Pfitness) needed to execute

problem I for any processor configuration is calculated by using formula

Pruess = 2(S] x PE) (3.12)

where:

S[i] Processor Status (shair/not shair).

PEi Consuming Power for Processr i.

Distribute problem size 'I': according to the processor configuration done in step 6,

The GA results present the virtual processor configurations that achieve objective fitness.

Returning to the virtual processor map, we can present the real processor configuration

and the shared value for each processor.

35

CHAPTER 3. METHODOLOGY

3.4 Genetic Algorithm

Genetic Algorithm was developed by john Holland [33] at University of Michigan. It

directs search Algorithms based on the mechanics of biolc i.5]. 5ltir id. 1bfield of 1olog1caa evoluion, an a su, tel o

artificial intelligence that involves combinatorial optimization problems based on heuristic

search methods of exploring all the possible solution to get the optimal one (sub-optimal

may be sufficient [17]. In many cases, it will be time consuming to get the optimal

solution. For GA efficiency, it is widely used today in various fields like engineering,

science, and business.

3.4.1 GA Details

We must represent a solution for any problem as a genome (or chromosome). Figure 3.4

represents a problem as a chromosome. The genetic algorithm then creates a population

of solutions and applies genetic operators, such as mutation and crossover, to evolve the

solutions in order to find the best one(s).

Several steps will be used: determining the value of population size, the minimum number

of processors, the crossover probability (XOVERP) between (0.5 an 1), and the mutation

probability (MUTP) between (0.1 and 0.2).

Step 1: Initializing Population: enter random processors configuration for each

population individually, as shown in pseudo code:

36

CHAPTER 3. METHODOLOGY

Begin

Step!. Determine the numb . .
er of individual population (POPSIZE) according to

population size and the number
of processor (NOOFCPU = length(VP))

Step2.

Step3.

Step4.

Step5.

End If

For 1 to POPSIZE

For 1 to NOOFCPU

Enter random value (O) or 1 for each processor (S[i])

If (S[PVP] = 0) set S[PVP] = 1 // t . t = cons rain 1

Step6. If (VS[i]=0) repeat step 3 to 5 // constraint 2

End If

End For

End For

End

Example (3-2) shows the effect of population size on executing matrix-victor multi

plication by 8 processors (4 ARM with MIPS =100, 150, 200, and300, 4 NEC V850 with

MIPS =100, 250, 250, and 350).

Note: Population size (POPSIZE parameter) affects the performance of GA Algo

rithm. Figure 3.5 shows GA performance according to the value of POPSIZE. This

figure represents the average of the overall execution time for the previous Example (3-2)

with different value of POPSIZE and fixed value of XOVERP (0.8) and MUTP (0.15).

Step 2: Evaluating Population: Calculate the overall execution time (Tfitness)

and the overall execution consuming power (Pfitness) for each individual, as shown in the

pseudo code:

37

CHAPTER 3. METHODOLOGY

Begin

Step!. Determine the numb . .
er of individual population (POPSIZE) according to

population size and the number
of processor (NOOFCPU = length(VP))

Step2.

Step3.

Step4.

Step5.

End If

For 1 to POPSIZE

For 1 to NOOFCPU

Enter random value (O) or 1 for each processor (S[i])

If (S[PVP] = 0) set S[PVP] - 1 // t . t = cons rain 1

Step6 · If (\IS[i] = 0) repeat step 3 to 5 // constraint 2

End If

End For

End For

End

Example (3-2) shows the effect of population size on executing matrix-victor multi

plication by 8 processors (4 ARM with MIPS =100, 150, 200, and300, 4 NEC V850 with

MIPS =100, 250, 250, and 350).

Note: Population size (POPSIZE parameter) affects the performance of GA Algo

rithm. Figure 3.5 shows GA performance according to the value of POPSIZE. This

figure represents the average of the overall execution time for the previous Example (3-2)

with different value of POPSIZE and fixed value of XOVERP (0.8) and MUTP (0.15).

Step 2: Evaluating Population: Calculate the overall execution time (Tfitness)

and the overall execution consuming power (Pfitness) for each individual, as shown in the

pseudo code:

37

CHAPTER 3. METHODOLOGY

x to'
10

9

8

7

o 6
O s
t 5

4

3

2

'% 5

NP = g
Prob Size = 1000
PXOVER= 0.8

PMIJTATION = 015

D-POPSIZE =4
---'o'-POPSIZE = 12
-+--- POPSIZE = 24

10 15
General ion

20 25 30

Figure 3.5: Effect of Population Size on Search Accuracy in GA

Begin

Step1. Determine the execution time (ETi) and Execution Power (PEi) for each

processor corporate in processing problem size I.

Step2. For 1 to POPSIZE

Step3. For 1 to NOOFCPU

Step4. Calculate sharing density: as formula 3.9

Step5. Calculate sharing size:as formula 3.10

Step6. Calculate over all execution time: as furmula 3.11

Step7. Calculate over all consuming power (Pfitness)

End For

End For

End

Step 3: Keeping the best: Determine the best individual for the population which

is compatible with the objective, as shown in the pseudo code:

38

CHAPTER 3. METHODOLOGY

Begin

Step1.

Step2.

Step3.

Determine Pfitness ·: Objective and Tfitness objective
For 1 to POPSIZE

Compare Pfitness with Pfitness
objective and Tfitness with Tfitness

objective

Step4.

End If

End

If ok set best val. pointer to this individual pointer

Step5. Keep population [best val.] individual

End For

Step 4: Selection eliminates the individuals' population; these are far from objec

tive fitness, as shown in the pseudo code:
Begin

Step1. Determine objective search (fitness)

Step2. For n= 1 to POPSIZE

Step3. Calculate relative fitness

Step4. Calculate cumulative fitness

End For

Step5. For n= 1 to POPSIZE

Step6. If (random(between(O.O and 1.0)) < cfitness[n])

Step?. New population= population[n]

Step8. Population = new population

End If

End For

End

individual population by selecting two individual Step 5: Crossover: It creates new
W l·ndividual populations, as shown in the . d ting two ne parents from population an crea

39

CHAPTER 3. METHODOLOGY

pseudo code:
Begin

Step1. For n = 1 to POPSIZE

Step2. Initialize X=O

Step3. If (random(between(O and 1)) < XOVERP)

Step4. ++X End if

Step5. If (X mod 2 = 0)

Step6. Position = random(between 1 and NOOFCPU) End if

Step7. For p = 1 to position

Step8. Swap(S[n] and S[p]

End For

Step9. If (S[PVP] = 0) set S[PVP] = 1 End if

Step1O. If (VS[i] =0) repeat step 6 to 9 End if

Step11. Else m= n

End For

End

Note: To show the effect of XOVERP, Figure 3.6 represents the average of the overall

execution time for the previous Example (3-2) with a different value of XOVERP and

fixed value of POPSIZE (8) and MUTP (0.15).

Step 6: Mutation: this process changes the status of some processors of some indi-

vidual population, as shown in the pseudo code:

40

CHAPTER 3. METHODOLOGY

4;8

7

6

a
t6 E5
tii

4

3

2
0 2 4 6 B

D-XOVER= □.6
-XOVER=DQ.7Z
OXOVER=08

12 14 16 18 20

p· igure 3.6: Effect of Crossover Size on Search Accuracy in GA

Begin

Step1. For 1 to P0PSIZE

Step2. For n = 1 to NOOFCPU

Step3. If (random(between0.0 and 1.0)) < MUTP)

Step4. If (S[n] = 0) S[n] = 1 else S[n] = 0 End If

Step5. If (S[PVP] = 0) set S[PVP] End If

End If

End For

End For

End

Note: To show the effect of MUTP, Figure 3.7 represents the average of the overall

execution time for the previous Example (3-2) with a different value of MUTP and fixed

value of POPSIZE (8) and XOVERP (0.6).
Step7: Evaluating Population: Calculate the overall execution time (Tfitness) and

the overall consuming power (Pfitness) for each individual (the same procedure in step2).

Step 8: Keeping the best: Determine the best individual for the population which

41

CHAPTER 3. METHODOLOGY

NP=a
yo Prob, Size= too0

"[--<#.· ' PXOvER=g5

1.6 +-PMUTATION= 0.05
--PMUTATION= (15
-e- PMUTATION = 0.25

1.4

1.2
fii'

E •
t

O.B

0.6

0.4

so 60

Figure 3.7: Effect of Mutation Size on Search Accuracy in GA

is compatible with the objective, as shown in the pseudo code:
Begin

Step1. For population [best val.] set prev. best. valu = best val.

Step2. Same Procedure in step 3 end for

Step3. If (population [best val.] worst than population [prev. best.

valu.])

Step4. Population [best val.] = population [prev. best valu.] end if

End

Step 9: New Generation: Repeat steps 4 through 7 until you achieve the objective

(Tfitness and Pfitness value).

3.4.2 Scheduling Algorithm Constraints

In general, the scheduling algorithm has two constraints:

1 It t th 1 t. th t produces virtual processor configuration with O status • preven s e so uaon a
s II Thi: if ation means that the overall execution time is close 10r a processors. nus con gur

.) rr · d this status in the algorithm, we must introduce
to zero (optimal value . .1.0 avoi

42

CHAPTER 3. METHODOLOGY

some steps in the algorithm h as shown below:

• In Step2, 'Collect processor status inform . ' . . .
ation', wait until (at least) one pro

cessor corporate is in execution.

• In Step6 Implement GA' It d
' oes not propose any configuration solution with

the zero status for all processor To : rs. Lo avoid that problem in GA algorithm, we
enhance some steps in GA proced sh ureas s own below:

(a) In Step 1 'Initializing Popul t· , . . atuon, reject any individual population with
zero status for all processors.

(b) In Step 5 'Crossover', check new individual population. If the result is "in

dividual population with zero status for all processors", repeat the process

with a new crossover probability value.

(c) In Step 6 'Mutation', check new individual population. If the result is "in

dividual population with zero status for all processors", repeat the process

with a new mutate probability value.

2. The existing primary processors must run all time. In this situation, the scheduling

algorithm prevents any configuration solution that does not include the primary

processors. To make sure of that process, we must make some enhancements in the

scheduling algorithm as shown below:

• In Step2 'Collect processor status information', the most important step make

sure that the corporate of primary processors in processing platform:

(a) Determine primary processor position.

(b) Check virtual processor map onto real processors. If primary processor is

th . tual processor pointer in variable (PVP). present, save 1e vIr
· t present add new virtual processor map with

(c) If primary processor 1s no1 "
d ave the virtual processor pointer in variable

the primary processor an s
(PVP).

43

CHAPTER 3. METHODOLOGY

• In Step6 Implement GA', it does not propose any configuration solution that

does not consist of PVP pointer with status 1. To avoid that problem in GA

Algorithm, we enhance some steps in GA procedure as shown below:

(a) In Step 1 'Initialize Population': After initialize population, check the

status of PVP position. If the status is 0, alter it to 1.

(b) I Step 5 'Crossover': In new individual population, check the status of

PVP position. If the status is 0, alter it to 1.

(c) In Step 6 'Mutation': In the new individual population, check the status

of PVP position. If the status is 0, alter it to 1.

44

Chapter 4

Experiments and results

This chapter implements some applications on our algorithm to validate it. The algorithm

is split into a number of steps. Each step is to be validated by itself. After validating all

steps, a number of experiments that use standard benchmarks will be implemented. The

chapter is organized as follows: section 4.1 describes the implementation environment and

explains the hardware and software used in the implementation, section 4.2 explains the

tools used in the experiments, Section 4.3 describes the challenges and difficulties in the

implementations, and finally, section 4.4 describes the experiments used to validate the

proposed algorithm.

4.1 Environment
T> Alida the 3d al ithr the researcher used special software that can simulate Lo valuate tie propose algor m,

the real environment. In addition, the researcher used programs and tools to show the

al th results Implementation and analysis were execution results and tools to an yze ese ·
. h h foll wing specifications: made using an environment witl the tollo

dual core processor (Intel CoreDuo CPU T7300
• Personal computer: Compaq P4

2.00 GHa 2.00 GHz), RAM 3.00 GB.

45

CHAPTER 4 . EXPERIMENTS AND RESULTS
• Operating system: Windows 7 p c . ·

rotessional 32 bit,

• OVPsim simulator.

% MSYS / MinGW Environment to re .
present lmux (upuntu) under windows7.

• Matlab R2007b.

• Excel 2003.

4.2 Tools

There are two types of tools used in the implementation. The first type is OVPsim

simulator software to simulate high scale HMP architecture hardware; while the second

type is Matlab to analyze and draw the results.

4.2.1 OVPsirn Simulator

Open Virtual Platform simulator (OVPsim) software is used because no kit is available to

create high scale HMP architecture hardware. The OVPsim simulator was developed by

Imperas Company Partner with 30 famous companies and organizations like (Tensilica,

MIPS Technologies, CircuitSutra, and Cadence) [41].

OVPsim Features: OVPsim is selected because it has the following properties [3]:

• Easy to create complex processors.

• Easy to create virtual platforms of many processors.

• Easy to create shared and local memories.

• :. fc rocessors and peripheral modules.
• Collect a large number of libraries tor P

. te and very fast. • Simulations instructions are accura

46

@APTER4 EXPERIMENTS AND RESULTS
• Used for applications, operating t

sys em and embedded software.

% Efficient and complete system envir · onment.

• Interfacing by C language.

OVPsim Setup: The installation of OVPsim · 1 simulator on personal computer needed
to do some steps:

• Registration with lmperas Company.

o Download OVPsim simulator and processors library.

• Request of license key from the company to activate the simulator for a certain

period.

Processors Supported by OVPsim Simulator: The company provides new pro

cessors library from time to time. Until now, the available processors are:

• OpenCores ORlK

• ARM (Arml0, Armll, Arm7, Arm9, ARMTTDMI, ARM1136J-S, ARM Cortex-m3,

and ARM Cortex-A8/A9)

• MIPS32 (MIPS4KEm, MIPS24KEc, MIPS34Kc, MIPS74Kc, MIPS1004Kc, M14K,

and MIPS32 1074Kc)

• ARC (Arc6xx and Arc7xx)

• NecV850

• PowerPc32

• SparcV8

47

---==~~~---~CE_H~At:_PT~E~R~4~. ~~~~'!I§_~T!!_}_~'QJ!:~ EXPERIMENTS AND RESULTS

MSYS / MinGW Envhr onment 4.2.2

GNU Operating system is a default envir onment reqv d . uirer to bmld model with OVPsim
tools. To create models under windows operating s . .

£ system, it is needed to validate windows
environment using minGW and MSYS tools.

4.2.3 Matlab R2007b

MATLAB is a highly tuned mathematical environment. I t can execute simple, complex
operations on matrices, vectors to solve different problems and visualize the results with

very little code in an interactive development environment. This combination has made

it a standard tool for scientists and engineers all over the world. MATLAB designed

to support executables written in C or FORTRAN. Those executables are known as

MEX-files, where MEX stands for MATLAB Executable. The MEX API is available by

including special MATLAB header files in C. The resulting MEX-files are equally accurate

and much more efficient than the corresponding MATLAB functions [45].

The header files define MATLAB specific functions for many built-in C functions such

as malloc (memory allocation), free (memory de-allocation) and printf (print to standard

out). These functions have names such as mxFree, mxMalloc and mexPrintf, respectively.

4.3 Challenges and Difficulties during Implementa

tions

I fields is a difficult task. It requires high
n general, the research in many processor

. re and test program (benchmarks) and
Potential tools like many processors kit hardwa

. faced The most important ones
Supercomputing environment. Many difficulties were
are;

ors kit hardware or simulator
• L The do not have process

ack of computer labs. Y . d f time for finding a
ending a long per10 o I

software. This has been the cause for sp

48

----~-----~C~H"!!_A~P~T~E~RJ_4.:_· ~~~~~~~~:!!!!§_ EXPERIMENTS AND RESULTS
simulator software and learning h t . ow o use it.

• No availability of heavy computers th t
. a can execute operations quickly. The re-

searcher used his own personal comput c h'
er tor is stud Y experiments. This takes long

periods of time to do all the experiments.

4.4 Experiments and Results

Experiments were divided into three phases. Each phase d t al'd . use o v 1 ate a main part of
the proposed algorithm:

• Phasel: Experiments to evaluate procedures that used to estimate overall execution

time.

• Phase2: Experiments to show scheduling algorithm overhead.

• Phase3: Experiments to schedule problem on all processors and evaluate the pro

posed algorithm using standard benchmarks.

4.4.1 Phase 1. Accuracy of Estimation Execution Time

The goal of this experiment is:

· · · d eal execution time on different plat- • Estimate overall execution time an measure r

forms.

th stimated and the execution time.
• Calculate the difference (error) between e e

. th latform on the error value.
• Study the effect of number of processors in € P

Environment and Tools:

1 HMP architectures, and to run the application
• OVPsim Simulator: It is used to bmld -=::::::-:-----:-;;-;--·---- ... ___

s e" A,\6\3 [jykusl hi81-d#,Ra?
on the architectures platform. 5j?' woe @pf®or»

49 c::::::,..-,c-, -';. ·1·h , i'bt'"•ry ·A,7 ... S'J.t - Gs:if,» L ·al see

1 .21254.. +av+y
Acc ,.... . . -,, ;

Laska., lea@}
ctass ~ ~-~:.- .

CHAPTER a
EXPERIMENTS AND RESULTS

• Matlab 2007b: It is used to calculate and est"
1mate execution ti

results by analyzing execution info +. 9Q time and show the Iormation.

• Excel Files: They are used to store execution information
· The (xls) file passes

information between the simulator d 1 an matlab2007.

Platform: The OVPsim simulator is th . e environment that used to build different
HMP architecture platforms. Each platform consists f .

. 0 vanous processors. These proces
sors are four mam types as shown in table 4.1. each f h;h h . . O w IC as its particular performance

in the platform.

Table 4.1: Processors Specifications
I Processor I Type I ISA I

1 POWERPC 32 bit
2 ARM 32 bit
3 MIPS32 32 bit
4 ORlK 32 bit

Application Domain: Most of benchmark methods focus on a linear algebra equa

tion that used LU decomposition technique as shown in formula (4.1,4.2), the built ap

plication used to solve LU decomposition on high scale HMC processors.

XA= Y

LU = A

(4.1)

(4.2)

The scheduling Algorithm will decompose matrix A. Distribute it on all chosen pro-

1 Lu d composition. Matrix A is stored
cessors, and will estimate the time needed to so ve e

The database decomposition is
in share memory as a domain decomposition database.

based on rows distributed to processors.

Application Behavior:

d matrix length (number of rows).
P

· resente as a
• roblem Size: Size of database is P

I . f A . equal 1000.
n LU application the size ot S

50

% Sample Size: One row from . matrix A Is needed t

U at the same time.
0
calculate on e row for both L and

EX PERIM ENTS AND RESULTS

% Computation: All processors on platf atorm ll ;% adoWilt execute th
tion pseu to code shown in fi e same proces C gure 4.1 is used t s. omputa a.-- [[eaa,,,,,,,_ decomposition:

Cal.culate lower row:

For int j = l to
length A{

If j < n ➔ Ljn = o;

Else Lj n = Ajn;

For int k = l to n {

Ljn = Ljn - Ljk* Lkn;

Calculate upper row:

For int j = 1 t length A(
If · J < n > Uj = O;

If j = n ➔ U . ll) = 1;

Else Ujn = Ajn/ Lnn;

For int k = 1 ton {

Ujn Ujn - Ujk Un/
Lnn;

Figure 4.1: p d C d seu o o e to Calculate LU Decomposition

1. Experiment Pro d . Th c . ce ures. e tollowing steps are used to show the results:

• Design application.

• Design platform architecture.

• Determine application behavior, size and sample.

• For each platform

(a) Execute the sample on all processors and collect runtime information.

(b) Estimate overall execution time for all processors configuration.

(c) Measure real overall execution time for all processors configuration.

(d) Compare the estimation overall execution time to measurement execution

time.

(e) Calculate the error between two results.

51

CHAPTER 4. EXPERIMENTS AND RESULTS

• Study the effect of processor count on the result.

9, Experiment Components and Program Files : This section explains all

ipt files that are designed to apply the experiment These files are explained as scr]
run sequence:

Platform.c: By OVPsim simulator design platforms architecture, C language in-

f Ce is used to write script file code (Appendix A.4) to present the pseudo code ter a

that is shown below:

52

OlAPTER4. Ex ERIMENTS AND RESULTS
Beg in

Step! .

Step2.

Step3.

Step!.

bits

Step5.

Initialization 3 enabling verbose mode t
0 get statistics at end

For x =1 to Ps count

Create Px; create a processor
instance:

address bit Etc
name, type, id, attributes,

Create Busx; create the pr ocessor busses and determine, and address

Create Memx; create processors memories, and detriment size and

privilege(w ,r, uwr, and ura)

Step6. Create Share Mem end for; create share memories, and detriment size

and privilege(u ,r, ur, and ura)

Step/. For x = 1 to Ps count

Step8. Connect Px to Busx; connect the processors onto the busses

Step9. Connect BusX to Memx; connect local memories onto individual processor

buses

Step10. Connect Busx to Share Mem; connect the shared memory onto all the

local buses

Step11.

Step12.

Step13.

End for

End

Load application to memory; Load the processor object file

Simulate platform; simulate the platform

s and memories Terminate ; free processor

interface, design application script file
Application1.C: According to C language 1

'
all ·rocessors in platform. Below, shows

code is used to execute the sample on P
. escribed in (Appendix B.3).

pseudo code for the program that is d

53

as_
CHAPTER 4.

XPERIMENTS AND RESULTS

Step±.

Step2.

Step3.

Step±.

End for

End

For x = 1 to Ps count ... ; 7 oop to
cover all processors in platform

Load sample; Store sample
onto processors memories

Exec. Sample; Eaecute sample
on every processors

Export info.; store execution · n formation to eccl file

Application2.C: By C language, design application script file is used to decompose
and distribute the problem on all processors in platform according to algorithm

calculation that are described in chapter three section 3.3. This file also used to

measure average overall execution time. Below, shows pseudo code for the program

that is described in (Appendix B.4).
Begin

Step1. For x = 1 to Ps count; loop to cover all processors in platform

Step2. Load sample; Store sample onto processors memoreis

Step3. Exec. Sample; Execute sarrrp le on every processors

Measure Exec T ETx; end for; measurement execution time for every Step4.

processor

S 1 t N Of Config. tep5. For x = o o.

Step6.

Step7.

Step8.

Cal.

; all processors configuration

density according to ETo PSD; calculate sharing
. te to processor according to data and disrepu Disrepute data; decompose

PSD and problem size (PSD x I)
ii execution time for each

measurement overa
Measure Avg ET.; end for;

configuration . t excl file
information ·0

Stepg. E . f . store execution xport 1n o . ,

End
il platform script file and

. file is used to compile
Make File: Design compiler scrip

54

CHAPTER 4. EXPERIMENTS
application script file. Below sho __ a AND RESULTS

' ws pseud
scribed in (Appendix C.5). Af

O
code for a compiler . ter compilation script file that is de-

many files are created a.s sho . process under mi wn m table 4.2. nGW environment,

Begin

Stepl.

library

Step2.

ARM7

Step3.

MIPS32

Step4.

POWERPC

Step5.

OR1K

End

Compile platform· , build th e Platf orm eaecutable . file under OVPsim

Compile application· , build th e Application ex . ecution compatibl < Le with

Compile application· ; build the Appl ication esecut ion compatible with

Compile application· , build the Appl t ica ion ezecutio n compatible with

Compile application; build the Application execution compatible with

Table 4.2: LU Application Files
I Before compile I After compile

Platform.c Platform.dll
Platform. windows32 .exe

Applicationl.c Applicationl.ARM.ELF
A pplicationl. MIPS32.ELF
A pplicationl. ORIK.ELF
Application1. V850.ELF

Application2.c Application2.ARM.ELF
Application2.MIPS32.ELF
Application2.ORIK.ELF
Application2. V850.ELF

Runall.m: Design Matlab script file is used to analyze information that is collected

when executing applicationl and application2 files. This file is also used to compare

and dis VU isplay the results in figures and xls file tables. Below, shows pseu o code that

is Used to create Matlab script file (Appendix C.4).

55

r CHAPTp 4. EXPERIME NTS AND RESULTS
Begin

Step!:

eace

Import ETi; import eaecution t me for th e sample on processors from

Step2. Import overall ET· , import overaii
acel file @@ecution time that a measured from

Step3.

Step4.

Step5.

Determine No. p s; eatract th e number . of processors
Create Ps configuration S • in platform

pace; from 1 t . Cal. @ config. space
a . PSD; calculate sharing d . ensity (Q PSD = 1) for each

Processors.

Step6.

PSD)

Step7.

Disrepute data; according to PSD and Size I for each processor (Ix

Cal. Avg. Overall ET· l , ca culate average overall esecution "' ~ time for

each processors configuration

Step8. Comparisons; compare measurement overall execution time with

estimation overall execution time

Step9. Show comparisons result

End

3. Experiment parts

In this section, the experiment is split into six parts according to a processors count

in platform. This strategy for the splitting is adopted because the platform in real

world presents a computer machine that has static and fixed number of processors.

The experiment in each platform has the same procedure steps. The following parts

show and execute these procedure steps:

{a) Part 1: Create HMP Architecture Platforms: According to Platforms

Processors count shown in tables (4.3, 4.4,4.5, 4.6, 4.3, 47, 4.8), the sex

platform are created using OVPsim simulator.
(b) pP For each platform, the sample problem

art2: Execution Information:

56

r
CHAPTER 4
EXPERIMENTS AND RESULTS

Table 4 3· Platf .. orm j2sists of 4 _Proco Processor
Pl

ype MIPS

P2
ARM 100

POWERPC 32
P3 100

MIPS32
P4 ORIK

100
100

C
sors

Table 4.4: Platform Consists of 8 p I p I rocessors rocessor Type I MIPS I
Pl - P2 ARM 100- 200
P3 - P4 POWERPC 32 100- 200
P5 - P6 MIPS32 100- 200
PT- P8 ORlK 100- 200

Table 4.5: Platform Consists of 16 Processors l Processor I Type]MIPS+ 100 I
PI- P4 ARM 100 - 400
P5 - P8 POWERPC 32 100 - 400
P9 - P12 MIPS32 100- 400
Pl3 - Pl6 ORlK 100 - 400

Table 4.6: Platform Consists of 32 Processors
I Processor I Type [MIPS +50]

Pl - P7 ARM 100- 400
P8- PI5 POWERPC 32 100- 400
Pl6 - P23 MIPS32 100- 400
P24 - P32 ORlK 100- 400

4Pao&ossof{g#,}$'{gT
I p I Type rocessor 50- 425
Pl - Pl5 ARM
Pl6 - P31 POWERPC 32 50- 425

50 - 425
P32 - P47 MIPS32

50- 425
P47 - P64 ORIK

Table 4.8: Platform Consists.} j7[PS+25
Processor Type 2 (50- 425)
Pl - P31 ARM 7 ±x

PC 32 2x (50- 425)
P32 - P63 pOWER 9x (50- 425)
P64 - P95 MIPS32 (50 - 425)
P96- P128 ORIK 2x

f 128 Processors

57

CHAPTER a. 3XPERIME NTS AND RESULTS
is executed by implementing ap l' . p icationl prog

1 tf F
. (ram on all

p atform. '1gures 4.2, 4.3) show t processors in the
he execution t·

platform consist of 4 and 8 p ime for all processors in rocessors.

7000

Figure 4.2: Execution Time for One Sample among 4 Processors

In figure 4.3, we notice that, the execution time differs from one processor to

other, in spite that, some of these processors are same type (use same ISA),

but it differs in execution time due to difference in performance (MIPS value).

Also are similarities in information for the experiment that include platforms

that consist of 16, 32, 64, and 128 processors.

The performance value (MIPS) as shown in the above figures is the effective

factor of the execution time.

(c) Part 3: Estimate and Measure overall Execution Time:

I
. . h li tic 1s responsible to estimate and

n this part of the experiment, the applicatl0

measure overall execution time has two steps:

h 1 t£ m that is responsible on measur
i. Run the application! file on eact DP a or

. . . After execution is completed and the
ing sample problem execution tIm1©
. . e Matlab script file (runall.m) becomes
mformation is stored in excel file, th

. t verall execution time for any pro-
responsible to calculate and estimate O

58

CHAPTER q EX PERIM EN TS AND RESULTS

ooorrr """"woalo OVV" .,..,..,, 9 sarn 1 pie on rvo; y processor

7000

Figure 4.3: Execution Time for One Sample among 8 p rocessors

cessors configurations for the same platform according to formulas (3.7,

3.8, 3.9, and 3.10) in chapter three.

11. Run application2 program that is responsible to measure real overall exe

cution time to solve LU problem on the same processors configuration that

is used in the previous step for each platform.

The processors configurations is presented as a digital stream. If the processor

is shared in processing, it is presented as 1 value. If the processor is not

shared in processing, it is presented as 0 value. To simplify the presentation of

processors configurations shown in the figures, processors configuration stream

will convert to decimal value.
Figure 4.4 shows overall execution time for all possible processors configura

tion (24 _ 1 = 15) in platform that consists of 4 processors.

t
. time for all possible processors confg

Figure 4.5 shows the overall execu ion

59

CHAPTER u. ~ XPERIME JNTS AND RESULTS
Can;ans on between m 0a5ure and calute

.n 0''9f;al t.>:CCutlQn lirr...,t

-C,I Ill tlh".n hrr,e
Ct4ate 0erall execution tirre

0 4

oz

6 7 8
ccrert the 9 10 11 rt ie processors confquratn bit ts decimal vase

Figure 4.4: Estimated and Measured Execution Time f 4 p or rocessors

urations (2- 1 = 245) in platform consists of 8 processors.

u ,;

In platform consist of 16 processors, the processors configurations is too large

(2'° = 65536 combinations). To simplify the presentation, sample of processors

configuration is chosen to show overall execution time as shown in figure 4.6. In

platform consists of 32, 64, and 128 processors, the same presentation method

is applied as shown in figures 4.6.

We notice that, in figure 4.6 there exist zigzag in the output information, since

there are sharing or not sharing from processors in the execution, and these

processors have good performance or bad. Execution time may vary from high

to low if there are sharing from processors that have high performance, and

vice versa.

(
In this part of the experiment, the

d) Part 4: Calculate Percentage Error:
d calculated overall execution time

percentage error between the measured an
: ·alculation uses formula 4.3.

will calculate for all platforms. This c

IC alculatedTirne M easuredTirnel x 100% (4.3)

Pere.Error = M easuredTime

60O

CHAPTER 4. EXPERIME ____ NTS AND RESULTS

x 10
6 Comparison between measu

"a.a.fl"-, I - measure overall execution time
- calculate overall execution time

12

(ii
£ {
Q)

E
.:::
c g
(J
Q)
:<
UJ
~ 6
5
6

4

2

0 238 240 242 244
Convert Processors Configuration bits to DecimalValue

Figure 4.5: Estimated and Measured Execution Time for 8 Processors

Comparison between measure and calculate overall execution time (16 Processors) , """"""""""""1 =[] -- measure overall execution time
- calculate overall execution time

250

(i?: 240

~ 230
c
9 a 220
Q)
X
l1J

~ 210
Q)

&
200

190

»,,_gl 33()0 3310
170 80 3290 3250 3260 3270 32 Configuration bits to DecimaValue

Convert Processors

. T' for 128 Processors
d Execution 1me

Figure 4. 6: Estimated and Measure

61 -

APTER a XPERIMENTS AND RESULTS
Figure 4. 7 shows the percent age error for all

b
. d . processors fi

are com me m platform con • t· con gurations h' h SIS mg of f " W lC
. . our processors I

value of error is having indire t · n this figure, the
c correlation with

d
· At a number f

are share m processing. The m .
0

processors that
ax1mum value f th o e error in this platform is

approximately (0.79 %).

1_1_--.-_P_'='7•c-,e_n_ta..:..,ge0!J~ll'r~ro~r ~b~E!l~w-e~· E!~n~r ~~- ~===~~~;;;;~~ 0 8 . i'le .. ~urf! and <:alculatt- OYtorall execution tire
Avo,agi: pc-rc1tnl ■--.-.---...--

0 7 agv error ~0.4069% / \ x 11
Y. 07901

\ (6

0 5
5 .::
;; 0 4 •

0.3

o 2

0.1

; A \
\ -- o' ''}, h 4 6 6 7 8 9 10 11 12 13

corvurt the processors configuration bit to decimal value

Figure 4. 7: Percentage Error for 4 Processors

, ,.
,:;,

~ OB
s

OG I a

() =-

n.
u

14 15

In platform that consists of 8 and 16, the percentage error for these platforms

is showing in figures 4.8 and 4.9.

E f r 8 Processors
Figure 4.8: Percentage rror 0

ta e error mainly has an average
As shown in the last three figures, the percen g .

1
tf rm This implies that our

constant value when considering a specific p a
O

·

t
. . : ti is reliable. estimation of the execution time

62

CHAPTER 4. EXPERIMEN
="SAND RESETS

I fl "

I 6

0 t3 -

oG·

o4 ss2E,.......±s. » e. ' I 50
conv-0I1 lho proco~co,,:; conn 32-50 3300

IQUf;:lllion bll lo doclm;.--J 'IP'l\luo

Figure 4. 9: Percentage Error for 16 Processors

for platform consist of large number of processors, we note the persentage error

is increase as shown in figure 4.10, the figure is present the error for 32,64,

and 128 processors.

4

35

s

3350

-32 ProC05$0!S
-64 Processors
- 128 Processors -

5"7/y\yr®,g,,we ls r soy y]
';dis • fl % .#

49E0 5COO

"8 4900
4850 +it ratien bit to decmnal value

conv.erl thi! processors cor ,gu

F
. 4.10: Percentage Error for 128 Processors
1gure .

boundary is limit according to
n see the error

In the previous figures, we ca

· the platforms. number of processors m d nt of processors t' e an cou 11 execution 1110
Relationship between overa

· l: ti The error in p atforms: ors configura 10n.
r in process

f ach processo f cessors
There is an error value or e t dy the effect O pro

b determined to s u .
value for each platform needs to e

63 -

Chia®TEA EXxPERIM 3NTS AND RESULTS
scale to error. The procedure below specifies h

ow one can d t .
each platform: etermine error for

i. Calculate maximum overall execut· t· 1on ime for ch · eact processors confi T
tion in the platform. 8ura

ii. Measure maximum overall execution tim f e or each processors configuration
in the platform.

iii. Calculate percentage error for each processors co fi t· . h n guraton in t e platform

by using formula 4.3.

iv. Calculate the average and maximum percentage error for each platform.

Table 4.9 shows the number of processors configuration slides for all platforms.

Because the processors configuration space is very large for platforms that

consist of 16, 32, 64, and 128 processors, the computer memory cannot store

the data. To calculate error for these platforms, the researcher took 5000

samples from processors configuration space. Figure 4.11 shows the relation

between percentage error and platforms.

a e .. rocessor Number of Sample
Count of processor Processors configuration space

15 16
4 256
8 255 5000
16 65536 5000
32 4294967296 5000
64 1.84467E + 19 5000
128 3,40282E+ 38

T bl 4 9 P s Configuration Slides

h . an upper bound for the per-
From figure 4.11, we can conclude that t ere is

. :. zecution time. centage error in estimating eX

4.2 Phase 2: Overhead . .
:. behavior characteristic

Th, affect of implementation
goal of this phase is to study the e . b tween problem sample

th relation e
Such .: to present 1€

as the sample size and problem sze,

64

EXPERIMENTS AND RESULTS

op+pi,r hotowso 7-Avg ®"Platform and 4
-v "' • rror

-e--MaxAvg

25

2

5 15
'#-

0.5

O 4 B 16 32 64
Number of Processors in Platform

128

Figure 4.11: Percentage Error Relative to Numb f p er o rocessors

size and problem size, and to study the effect f th· 1 . . o 1s re at10n on execution time overhead.

Tools:

1. OVPsim simulator.

2. Matlab 2007 b.

3. Excel.

Platform: In this experiment there are various platforms that are created. Each

platform • consists of a number of processors as shown in table 4.10. These processors

are repeated f · h · h All rom the four main types as shown in table 4.11 in t e previous p ase.

platform h h . t bl 4.11 s ave the same overall capacity for each processors types s own in a e · ·

Tabl 4.10: Diff e eren
Platform No.

Number of processor

Platform 1
4

Platform 2
8

Platform 3
16

Platform 4
32

Platform 5
64

Platform 6
128

t Platforms Processor Count

65

-------~CH:::A~P~TE~R'l___44. EXP ERIMEN 'ISAND RESULTS
Table 4.11: Processors Sp . fi

Processor type ecth1cation and
Total capacity

ORIK
NEC V85O

800 MIPS
800 MIPS

POWERPC 32 800 MIPS
MIPS32 800 MIPS

-

Capacity

Applications: Two types of applications are used. In the fi
. . . rst one, the sample size

I as relation with problem size; while the second applicatio th h . m, ere as no relation between
sample size and problem size.

Application 1: This application is the same one used in phase on 1 th· 1. e. in us applca

tion, when the problem size is increases the sample size will increases.

Application 2: This application executes program that solves images filtering. the

sample size in this experiment is one image and the problem size is number of images (D)

in data base. Each image in the database is presented as one matrix (800X600 = 480000

pixel) as shown in figure 4.12. All images in the database are stored in one matrix (480K

x D). In this application, there are no relations between the sample size and the problem

size. The filter function in this application multiplies each pixel in the matrix by factor

as shown in formula 4.4. Source code for this application is shown in [Appendix B.5]

OutImage(z,y)= Image(as,y) + Image(a,y) X (cxyxp) (4.4)

where:

Pis pixel value.

y and x are pixel position.
Irnag · • es imput image.
per rIment procedure:

. A.5) that built all platforms shown
1. OVPsim is used to write script file (Appendix ·

i . are shown in table 4.4.2.
h figure 4.13. processors specifications

. B 3) that built application 1.
2. : 6le (Appendix 2

· c commands is used to write script Ie

66

_EBXPERIM . . JNTS AND RESULTS
commands 1s used to write script fil (A

3. c e ppendix B.5) tha .
. . t built application 2

Execute application 1 on each platform f · 4. tor problem · size (from 500 to 3000)

5
Execute application 2 on each platfo f · . rm or probl . em size (from 500 to 3000).

6
Show result and analysis by Matlab sc · t fil · np e (Appendix C.4),

I -1 I 11- I 71-
I I I l

~
,_ '- I I I I I I I

.

,__, I 1
3 I I I I I I - I 11
- 3- - - '- »»»

t---
~

-
-
sos

» p»

sos -
'-

sos

Figure 4.12: Image Data Base to Matrix

PLATFORM POWERPC 32 MIPS ORIK MIPS MIPS32 MIPS NEC V850 MIPS

4 p X 800 p X 800 p X 800 p X 800

8 2P x 400 2P x 400 2P x 400 2P x 400

16 4P x 200 4P x 200 4P x 200 4P x 200

32 8P x 100 8P x 200 8P x 200 8P x 200

64 16P x 50 16P x 50 16P x 50 16P x 50

128 32P x 25 32P x 25 32P x 25 32P x 25
'---

Table 4,12: Processors Specification

' ,map L j mA\ LILIA

4.1
a, we, so;+]

· mm.em, aaN
LAA

I t rconnection
F. 4 13· Processors n e 1gure. "

67

~

iment Results of Application!: Figure
415

h .
xpe Shows time needed to execute

f applicationl on different platforms. This tim
ple S o e represents the time for the

s ,ssor (bottleneck). This figure shows information th t ol
er proc 1a are co) tected as shown ea ,

4 14 . The collection process contained the following steps· fi Ure · · m 8

,OVPsim simulator is used to run applicationl on each platform and export the

tl·on information to excel files (XSLI, XSL2, XSL3, XSLA, XSLS and XSL6) execu , , , ·

CHAPTER4. sY
PERIMENTS AND RESULTS

9 Matlab imports XS Ls file, chooses the maximum time for each platform that presents

rhead and stores the application information in file XLS7 and time informa- the ove ,

tion in file XLS8.

3, Plot the figures to show the results.

MAX

OVPsim
Matlab

Out
put

Figure

: Enviroment
F. e 4 14· Processmg 1gur . ·

. t· 2 for each problem 1 S of applica wn
d t xecute samP e (b t- 4.15 shows time neede o e th weaker processor o

the time for e
This time represents size on different platforms.

tleneck).
. : time for the sample,

.:. the execution l
% ·jlarities 1 sl; +5on be We notice in figure 4.17, that there are sum . : it came from the liner relatio

d . t This similarity omposition
le to differ in the case in the expenrnen · ·iment we used LU dee

the exper we) 5le size. In n the problem size and the samp
ht .

Present the previous relation.

68

CHAPTER EXPERT
'.,, .. ~ .. OOM .. , -- ENTS AND % """""""«wswwwoau ?RESULTS

ptoblen sze for

-

dll,i,111

Platform1] B#lour(g
- Pl•llotm 2 Ned !0&,v,rd libl iill=tom»J] """"tntaods)

EIll PLafon» 4
[Ell Pater» 5
C:=JPIJtlo11n6

16

u -

(ii 12
0 ;;
£ 4o
~ g t) -

~
,Z G

2 -

Protlen sue 3000

Figure 4.15: s ample Execution T. ime for LU Application

In figure 4.16, we see that all . ' execution time for th
the problem size that we . e sample are the same fr execute, smce th 'away om

. . ere are no relati b
sample size m image processing li on etween problem size and

application.

2 S -

Figure 4.16: Sample Execution Time for Images Application

Figure 4
1

. l 7 and figure 4.18 show maximum overall execution time for each prob-

em size need d e to execute applicationl and apphcat10n2 time on different platforms; all

Proc essors th . . . at exist m platform are sharing processing.

In figure 4 17 h LU de itir 3liati th · t at show the execution time for' decomposition application, W© see

at all plat£ f) d (.) orms (regardless number ol processors in the platform) nee s approxunate

69

CHAPTER 4.
EXPERIMENTS AND RESULTS

100 Mo.,,num o•ornll exocul,on tirne to
1A x execute appl,ca11on 1 for ea h

c p1oblern size on d ff
- Plaiform 1 Terent platforms

[EIll +Pi:tor 2
[EIll Pi:om» 3
mz::j Plotfo1m 4
[EIll n+:om» s
c=IPlalform G

12

10
E ;::
g 8

3 w 6

o L_DSOlll:ia...._JJII::

Figure 4.17: Execution Time for LU Application

same execution time for the same problem size, due that, all platforms in the experiment

have the same total MIPS value. And from the figure, execution time increases where

the problem size increases. These notes applies also for image processing application as

it appears in figure 4.18.

Max Exec~~ Tirr~ ~ Eoell Prob!ern Size oo O!.rent Plt.lOIJ!l;

vi
?
.§. 2

[Ill P=two1
-Pl.'-fo1m2

25\ [Ill P=tr.3
[Ill Petr 4
-Pla1follll5
_JP=to 6

0
E ..
~ 1.5
5
u ~ w
'ii 1
0 ,.
0

05

500

. f Images Application
Figure 4.18: Execution Time or

h d to overall execution time
p· h density of over ea
igure 4.19 and figure 4.20 shown t e : 9 different platforms.

d Plication .., on fore h jlication 1 an ap
ac problem size when execute app 1

,

70

CHAPTER 4. EXPERIMENTS AND RESULTS

0 5

g ., € Q'.J:, .,
d a3l ~
~
~ o.:25 •
{'!
11 0 2 ~
UJ -
-:;; 0.1!> ;;;

6 01

a.as
0 1'500 ,,.

P1obln-1Y1 .::.12<J

. LU Application Overhead Rat10 for Figure 4.19:

07

0 1

- pl ..
s»== p]aa]

- --- pl:ii
pl:-,

/

/ ----- .

~ ------ _..,., 3(100 -----==-~
------ ------- -~ ~:#) s=3==» ~ :-,.--:-- 1 'itX> r,,ob1c:m =y"

Figure 4.20:

-P1,11tc.rm1
PlMfOtte 2
__ PlllHOlff1 3

P1Mform4
--p]3{fgrm ©

Platform 6

A plication Images p Ratio for Overhead

71

CHAPTER 4. y
~ . . : XPERIMENTS AND RESULTS

1 last figures if there is no relation bet
n the 2€tween the sample :

b h. d If p e size and th . ult can e ac. 1eve . ' however th . e problem size
good res ' ere is relation b t e ween the 1 .

,blem size, the overhead is affected b th Sample size and
the pro y e problem size.

3 phase 3: Power - Perforrnanc Tr 44 e adeoff

oal of this phase is to validate the proposed al . h
The {gorithm, by conducting the following

steps'

• Estimate overall execution time and consuming P . m· ower in o me mode, when all

processors that exist in the platform are sharing in processing.

• Implement an intelligent scheduling algorithm on high scale HMP architecture us

ing GA to set processors configuration that ensures to achieve performance closed

to optimal value by designing a complex search space from the large number of

combinations given by trying the share / not share state of each processor.

• Study the relation between performance and consuming power on different plat

forms.

Environment: The experiments is constructed by using 0VPsim, gee compiler, mat

lab, and excel file as stated in figure 4.21. The 0VPsim simulator is responsible to built
. 11 t the execution information and

processor architectures; matlab is responsible to co ec
d t bl s excels files represent the

analysis this information to show the result as figures an a e '
l 3d to compile c scripts files

medium between OVPsim and Matlab, and gcc compiler use
that d or architectures. create benchmarks application an process .

that are used m the exper
Problem: Table 4.13 shows the benchmarks programs . h

. d d to implement using e
'ent, p:. 5ble behavior neede his table also represents the pro em

'Search ±h n: scheduling algorithm. . ram is designed for
LINT Gd Jim Bunch, this pro8

PACK: Develop by Jack Dongarra an . 11 tion of FORTRAN "er») 3,, LINPACK is a cole©
Ihputers in the 1970s and early 198 · . 1 t-squares problems.

s} d linear leas rot4. puations an
Ines that analyze and solve linear eq

T2

CHAPr.I]
4 EXPERIN1sAND REsurs E

P1.C

gee compiler script
file

create
benchmarks
program by P2.C
gee compiler script

file

OVPsim
Xis file Matlab

Simulator Exec. Collect
Compile Info. &

&
Analysis ~

Execute

Figure 4.21: GA Environment System

Table 4.13: benchmarks behavior
Benchmark I Sample I Si ze
LINPAC Solve 200X200 l00000X S

PeakSpeedl Solve 5000000 iteration lO0000X S
Dhrystone Solve 2000 run lO0000X S

The package solves linear systems whose matrices are general, banded, symmetric indef

inite, symmetric positive definite, triangular, and triadiagonal square. In addition, the

package computes the QR and singular value decompositions of rectangular matrices and

applies them to least-squares problems. LINPACK uses column-oriented algorithms to

increase efficiency by preserving locality of reference [2].

Dhrystone Benchmark is a general-performance benchmark test originally developed

by Reinhold Weicker in 1984. Dhrystone benchmark used to measure and compares the
p £ . f th de generated for the same
rtormance of different computers or, the efficiency O e co

com · . of standard code and concentrates
pPuter by different compilers. Dhrystone consisS

o . . It heavily influenced by hard-
" string handling. It uses no floating-point operatwns.

. ode optimizing, cache memory
le and linker options, © compiler Vare id an software design,

d in eger data types [44].

73

CHAPTER q / · EXPE ----, RIMENTS

P
eakSpeedl is benchmark used t AND RESULTS o convert . Integer n

d
veloped by open virtual platform umber to ch sd" £roup t aracter· p ak 0 use in OV . ' e Speedl

Psim · simulator [3].

'[here is no relation between the samr ° ple size and th

t
·on to eliminate the overhead effectiv "° problem size in the i 1 0 Iveness of the . mplementa

experiment results.

platform: The problem is executed . . on various platforms t .
g!v!P arclntecture as shown in table 4 14 T hat consist of high scale

. . . he platforms represents th . . .
processors that are descnbed in table 4.15 [4]. he similarity of real

Table 4.14: Pl tf . I Platform NO I N um be~ of rms Combmation

Platforml
processors I Total MIPS I

32 Pl 64000

Platform2
32 P2 64000
64 PI 64000

Platform3
64 P2 64000
128 Pl 64000
128 P2 64000

Table 4.15: Real Processors Specification
Processor Type Power Similarity

Pl
P2

Intel@ Xeon@ processor X5675 3.07GHz 180W
AMD Opteron processor 6174 2.2GHz 230W

ARMT
ORIK

Ex · periment Procedure: The experiment is split into three parts; in each part the

Iesearcher ·ill wi, execute all benchmarks on the same platform. Then he will analyze the

informat; ion to show results.

1. Create script files (Appendix A.6) to simulate platforms architecture under OVP

sim simulator. Then compile these script files to create executable files there shown

in table 4.16. In this step the architecture represents one processor type. Pro
cessorlPl c and Processor2Platform is simulated

atform is simulated ARM7 process5Ok

ORIK processor.

74

~ CHAPTER 4 ----,
« c BXPERius»

,pile application file (LINPACK, 4ND RESULTS
z. ' D hrystone
reate exactable files as shown in t bl ' and PeakSpeedl b h a e 4.16. T enc marks) to

· ese file

P
latforms. s can execute on s1· 1 mulated

, Run the system. The information ill + w» store in xls fi] es.

4. Design Matlab program (Appendix C.6) that ll . col ects the inf .
when executing the benchmarks pr Hormation produced

rogram on the platforms. Thi
used to build high scale HMP architect . · is program is also

ures as shown in table

h h d 1 Al
. h 4.14, and to apply

t e sc e u er lgoritlm to show the result.

S !able 4.16: Experiment Program Files

Processor lPlatform
xecu a e file I

Processor lPlatform. Windows32.exe
Processor2Platform Processor lPlatform.dll

Processor2Platform .Windows32.exe

LINPAC
Processor2Platform .dll

linpack.ARM7.elf
linpack.ORlK.elf

peakSpeedl peakSpeedl .ARM7 .elf
peakSpeedl.ORlK.elf

Dhrystone Dhrystone. ARMT.elf
Dhrystone.ORIK.elf

co e file c I E t bl

In this experiment, all platforms have the same value of overall capacity (MIPS val

es). This result to eliminate the effect on the experiment result.

Implementation
Execute the b h k h t bl 4.13 on platforml that is described in the

enc mar s s own m a e •
table 4.17, platform2 that is described in table 4.18, and platform3 that is described in

table 4.19.
C · t of 64 Processors

,_Table 4.17: Plato Combination. "[pig
- ocessor type Count 0 + l0P x 300 64000

PT 32 ToPxi00+12Px [pp x 30_= 6A000
P2 32 10Px 100 + 12Px 200.

75

CHAPTER q -----, BKPERIMEyTs AD
ESULTS

Table 4.18: Platform Corbi: ;
Count

Inaion, C :
processor type ± onsist of 128 pP
;...- Pl 64

MIPS 3cessors
20P x 50 4 24P x 100

P2 64 20Px 50 + 24P x 100 + 20P x 150= 64000
l - +_20P X 150 = 64000

Table 4.19: Platform Combinati
Processor type Count

1on, onsist of 256 Processors

Pl 128
MIPS

40P x 25 4 48P x 5
P2 128 40P x 25 + 48P 5~ + 4oP x 75 = 64000

X + 40P x 75 64000

C

The first step in the Algorithm, measure the e t' . xecu ion time that needs to execute

the benchmark sample on each processor in the platform th t. . a Is corporated in processing.

Figure 4.22 shows the execution information for platforml fi 4 23 c 1 , gure • 1or p atform2, and

figure 4.24 for platform3. Therefore, all figures for the benchmarks are similar, because

the platform combination consists of two processer types (heterogeneous in functional),

and each processor was repeated in different capacity (heterogeneous on performance).

The second note about the processors execution time is that the processors that have

the same performance (MIPS value) differ in execution time that needs to execute the

same sample. For example in figure 4.22 group 1 of processors (1-10) has MIPS equal

100 that need approximate (0.9) seconds to execute the sample, and group 2 of processors

(32-42) has the same MIPS and needs approximate (11.2) seconds to execute the same

sample. Reason of the difference in execution time caused from the difference of the num

ber of instruction that is produced from the compiler for each processor type.

. . for the slower processor) com-
The last note is the overhead (sample execution tine
. d fr om the total MIPS for all

arisor }, The eason caused 1IO
n etween the three platforms. e re h d to decrease t e

Platf . more processors nee
Orms are equal. In the platforms which contam

Value f al f total MIPS. 0 processors MIPS to keep the v ue 0

76

CHAPTER 4.
EXPERIME JNTS AND RESULTS

16r
,:_::10:_4 ,""""""""""".. rocessors

.
14 ············+·············~·············•L .. ····· M1P;= ioo -uNPAc

: : : ·····\······· -PeakSpeed1

2
P1 MIP.~ :. !9~)...... 1 i Dhrystore

1 • • • • • • • •••••••• : • • • • • • • • P:2 MIPS - ' ' ! { el''#wyz@.........
(ii . . . • ' ' l '° .. ., :- . · -t · .. -1 . .t MIPSl)]

~ 8 -~· ····· ·-·~··· ········ '
f ·P1MIPS=209pyessoo} i

6 ······; . ···;······ ······;·· ······· . ········ ''' bod/ ·-+»»»» . . .
'

4 ······:·· ... T. . ···r-· ······ 1············ ·········
... . . 2

s,''3, ?
PROCESSORS

Figure 4.22: Benchmarks Execution Information among 64 Processors

3
:,c:,c~l0~5------.----~S~a:m~pl~e e~1C:ec~ut:io:n_~t-im:: _e~f:or:12'8j:,p_:_ro.:._:ce_ss_o_rs1_r==::i=:::~~7 ,..:. ! i I i -UNPAC
-PeakSpeedl
, : : - Ohrystone

··············~··············1--· ··········f. ···········r·····
. '

I o •- • • • • • • •• • • ••• • • .; • ••• • •• • • • ••••: ••• • • •• • •• • ••

fii' 21-•.............. ~•·············.·· . •
t I I : :

¢' [j ' ! ' : s .. l -----~ -
r ' ·--------},-}
~ t.5 --············· (•·············:·· ··
F : ' . .

1 : : I 1 ••• ,,,,i,, • •• ••• •• ••• -

1 ~ ..•.•...••••. [:•~·····:······=l··············\·· ···········j··············1····· L..--- • --
• I ' '

I ' : t -••••••-

0.5 "••••••••••••: ·············f··· ... \ .. ; .. \·· :- ' · 1
• I : - ;

!tty'+»
0 20 40 ppOCESSORS

2.5 · · · · · · · · · .• ·

,

128 Processors . I formation among
Figure 4.23: Benchmarks Execution n

77

CHAPTER q
BX"ERIENTS AND EsuLrs
"gswww processors

- I

: '
5 -···············t··············· ········· ······l. ······•·..!. ==~~:~~e-ed-1

j · · · · · · · · ··Dhystore

' (ii!' 4 ,-•··············~.--················ ········· ······-: .. • ····· ... - ······ .!:! : : ·:················-;-··· £ : : -

~ 3'-············ ··1··--············ ·········) : : ... ······'··-·-·--·· : : ······-:··········· ····· -
. '

2.-············ ··{················ ········· - .

'

... ···-r················j····· ···········:················- . . .
: : :

• ' 1 --:·················r········· ····•·-:.················L .
l, ' . ' o} ,l , j)
) 100 150 200 250

PROCESSORS
300

Figure 4.24: Benchmarks Execution Information among 256 Processors

Each problem consists of (100,000) benchmarks problem size, will spend overall exe

cution time that can be calculated by formula (3-7, in chapter 3).

Figure 4.25 shows the execution time for each problem size that execute among 64 proces

sors, when all processors are sharing the processing. We have run the same benchmarks

on platform consist of 128 processors and platform consist of 256 processors, and we get

similar results.

In the last figure we note all platforms approximately need the same execution time
to . 1 · ty for all platforms are the

execute the same problem size, the reason is the tota capaci

same.
Th . need approximately the same time

e second note is all processors in the platforms

to sol 1 · Ive the sharing data from the total prob em size.

fi t· on to achieve performance
Scheduler algorithm used to find betterprocessors con gura I . ' . alculate the total consuming
thde,s. la 4.5we can€

ermine consuming POWER. By Formu
Power t, at is needed to solve the problem.

78

CHAPTER 4. EXPERIMENTS AND RESULTS --------------------------------~

" ta 3 ,s,s

? 5S

7 .O!:lf;;

B -

;::;:.,- 7.805
-~

7 BF.I ~ i-
.is

±
7.U70

7.07

'3 7.065 ~ '-'
7 BR

7.0GG

10 50 a -rs PR"C·EE=co

1.22

1 1£35

(-

·l.165

11:1

!-.II a,,s ·-'n --esso 'jrcC;

Figure

BO 70

64 Processors among . Time ks Execut10n hmar 4.25: Bene

79

CHAPTER 4 EXPER JMENTS A ND RESULTS
T

Total consuming POW ER = (Sr i >< Power[i])
(4.5)

where:

S[i] is processor Status (Selected or Not).

P
wer[i] is the consuming power for th' o 18 processor.

Initial power value is the power that need s to solve the problem h
are sharing in processing. Table 4.20 shows th . . . w en all processors

e initial power for each benchmark.

. Table 4.20: Minimum Time and .
Benchmark Mm Average execution time (S) Maxi~um P Max Power(W)

Platforml Platform2 Platform3
LINPAC

PeakSpeed l
Dhrystone

L..

35.2324
78.6837
11.7698

13120 26240 52480
13120 26240 52480
l3120 26240 52480

Concerning genetic algorithm criteria

There are two main criteria used to finish GA search:

• Number of iteration: set maximum number of iteration

• Stability of fitness value: stop the search when fitness value will be stable for number

(n) of iteration.

This experiment set the maximum number of iteration which equals 50 and the count of

Iteration rhi ch whicl makes fitness stable is 10.

Figure 4.26 shows algorithm result when running the system in maximum power
(all Pro . : 5latform lthat consists of 64

cessors sharing to solve the problem size) by using P

Hocesso rs. We h . t of 128 processors and platform
ave run the same benchmarks on platform cons1s s

Cope: ®ists of9; otten 56 processors. Similar results are go e ·

80

CHAPTER 4. EXPERIMENTS AND RESULTS

A

J)
G,\ 111,.,: ,:,.;

E 4 flrua.: ... w"o,~ f'tw:.-k Spuwd1 OIi ., •
,,

1O
6

.4,:5

\ so .l.

e
:b. J.';

•
B : :::

i-
S
's ~ w :2

\,~
r

•

.,,
S , :5

"-.._,____~------ - --~
,o

8

C

4 26. Max. Figure • ·

25
35

64 Processors d among Execute when ance Perform

81

-------::C~H~A~P~T~ERI4 EX --------,
~ . . ·----!_ERIMENTS AND RESULTS

tic algorithm is fast to find better pr Gene 1 l OCessors confi . guration to sol
..1 5orformance because the number of variable 50 ve problem in al es (processors) is comp t'bl . au» te with GA.

Il .,,ever, the goal of the implementation . . 0U' s achieved.

The optimal solution runs all processors in the platform b . . . , ut this solution needs max-
. consuming power. nnum

In the experiment we determine the amount of total consuming power by decreasing

the maximum consuming power by 0.1 percentages in range from (0.1 to 1). Then the

algorithm will begin searching to find optimal processors configuration to achieve high

performance (minimum overall execution time). Figure 4.27 shows the relation between

overall execution time to total consuming power for platforml , figure 4.28 for platform

2, and figure 4. 29 for platform 3.

,%> o -UNPAC
»pf?9al,Spoof
Dhtyfore

2 5

·% o 5
1 5

4 ower ()

'Ir de off when run 64 Processors
Figure 4.27: Performance Power a

t . the trade off between power
A · hancemen 111

s shown in figure 4.28, we note tow is en
. t m increase. and f . ssors 111 sys e Performance when the number O proce hc the benefits of . d to s ow oints 1s use

Reference to figure 4.29, the selection of two p

algorithm when applying our propsed algorithem: . eeds full power. The
· this case n

p . but the system 111
oint A achieves max performance,

result f . . (4-20). 0 this point is shown in table

82

CHAPTER 4. Bx --------,
~---------=-~~~_:___!:___ERIMENTS AND RESULTS

Figure 4.28: Performance Power Trade off when run 128 Processors

Point B saves large amounts of power by sacrifice a small part of the performance.

For example: To execute linpak benchmark in 246 micr S (sacrifice 168 micro S), the

t n needs 15 k wat (saving is 40 k wat). Then if the processors is configured to point sys e1

B, it can solve linpak problem three times in the same power needed in full performance.

,6
4 5

>Peil£peadl
-UtlPAC
-Ohrysl0.'lP

A
B

j I
- 55 45

25 3 JS ;id 15 Power (W)

ff when run 256 Processors
Figure 4.29: Performance Power Trade 0

e has to implement the
: rree of performance on . In the obove figures to achive high deg

l' ' ontain high scale of processors.
esearch scheduling algorithm on system c

83

Chapter 5

Conclusion and Future Work

The purpose of this research is developing scheduling algorithm that split data domain

problem into independent parts and distribute these parts on a heterogeneous processors

set in platform architecture.

The propsed Algorithm is complex, because of this we split the Algorithm procedures

into Stages, each stage explained and tested as alone. The final test implemented on the

scheduler algorithm by standard benchmarks.

5.1 Discussion
. . 1 rithm on HMP platform focus

lt is important to point that, the proposed scheduling a go
erformance, that is to reduce the

on performing a tradeoff between the power and the P .
) then the proposed algorithm

Power by constant value by stockholder (system or user), Aft th t
. GA method. ter av,

sear h · the system using
c es for adequate group of processors m selected proces-

the . for the processes on the
Proposed algorithm performs load balancing . . which the system needs

$ors4, forms time estimatioll
group. In addition this algorithm per O . h ale HMP platform.

» . lied tohigt sc
0exa this algorithm is app cute the processes. Moreover, t is

. the computing system
d on enhancing

Most hie field focus of the previous work on t is

84

CONCL; "VUSIoy AND F
,,ance through sharmg ail the. 2'UTURE WORK
l System proce

h
. ssors exe .

er, these t eones were applied t cuting proc ote' 9 small or med;» ®®5@5 or programs
um scale HMP , " platform.

As rnentioned above, the proposed algorith · lm can not be f .

f t
he previous work which did not focus @Fly compared with o s on trading off b most

1
. t· d . ·· etween pow

» prove the rea 1s 1c an rehability of th er and performanc o e proposed algorith . e.
,plementations results is done and the 1 m, a discussion and study of
I resu ts shown in fi gure 5.1.

'ES7'res orm and % Error

-'<J-Avg
O MaxAvg

25

2

e h 15
°

0.5

U ' ,p 4 8 16 32 64
Number of Processors in Platform

128

Figure 5.1: Percentage Error Relative to Processors Count

As shown from the figure, the error value in estimation execution time is reasonable

accepted . ad .. ' m d1t10n, the error value has an upper bound property.

5.2 Conclusions
Wea% f th valid combinations of

e proposed a powerful methodology for exploration O e
Process . · he itabl power-performance trade

ors ma large multicore platforms, to achieve t e su1a e
off. Comb· . . rm means selecting a set of processors

inations of processors in a multicore platfo

tof h,% . e rest to participate in execut10n. . b' As th arch space of valid com ma-
0. wr h • tc explore t e se
'e ave used a genetic algonthrn ° e

85

CHAPTERS. CONCL;
""VUUStoy AND FUTURE won

f the processors to execute the prob]
os J/em. The key par

I
wn that they are fixed on the correct 1 ameters of the GA are tested

Jld s 10 va ues· mut t· ' " ation probabilit ·
er probability is equal to 0.75 and R 1 a llity is equal to 0.15

cross ov ou ette wheel selection w
We can summarize a number of conclusion . ave been used.

e S Ill the following points:

In case the consumed power is not count df • e or, the schedulin 1 .
f 11

. g algorithm can simply
be work as o ows.

Take a sample from the problem, and execute •t
On every processor to estimate

its processing capacity.

Distribute the problem among the processors according to the estimated pro

cessing capacity for each.

• The search time is highly reduced through the problem execution time estimation

depending on the sample execution before entering the search operation.

• The error in estimation the problem execution time is proved to be reasonable and

results show that there is an upper bound for this error.

• Results show that the error in estimation is increased as number of processors in

creased, due to:

. d t of samples which cannot be
The domain of the problem is considere as a se 0

completely identical.
:. jbstacles founded in the whole prob-

= The sample does not contain the execution o

lem eaecution such as exceptions, stalls, etc
' . domain decomposition, where

• Th h ffi · tly when usmg e scheduling algorithm work e cien
. the sample size is simple.

the relation between the problem size and

1
'thm is considered as an over-

• Th . the search a gon
e sample execution before starting . multiplication where the

he . roblerns like matnx ,
ad which increases when handling P

sa · ·oblem size increase.
Ihple size has to increase as the P

86

CHAPTER sqJJ] "" UONCLUStoNANDrruswo, El
rf'h proposed methodology permits p . s I0 ower saving th

fi · £ rough selectin . ·cessor configuration tor executing th b g an optimum pro e pro lem i
n a reasonable ti .

aximum power consumption. JIne with a fixed

The power saving is highly noted and enhan ·d .
' J. nee as the n b . um er of processors in the
platform increases.

3 Future work 5.

1. Generalize the methodology to work using real implementations on large distributed

computing environments.

2. Another direction may be considered in the future is integrating our algorithm into

a powerful compiler like gee.

3. Study the possibility of employing the proposed scheduling algorithm on dependant

domains and with functional decomposition.

87

Bibliography

[] TOP500 SUPERCOMPUTER, 2011. htt . // P: /www.top500.0rg/.
[2] LINPACK, 2012. http://www.netlib 11.

at/people/JackDongarra/faqlipa-[,''"P@ck/,http://rws .el±b.org/
• m. _Toc27885709.

[3] OVPpresentation, 2012. http://www.ovpworld.org/presentation.php?slide=
OVPINTR02.

[4] Measuring Processor Power Intel, Whit P A -1 , , i e aper, pn
2011. http://www.intel.com/content/www/xa/en/benchmarks/
resources-xeon-measuring-processor-power-paper.html.

[5] M Adiletta, M Rosenbluth, and D Bernstein. Virtualization: A survey on concepts,
taxonomy and associated security issuesthe next generation of intel ixp network pro
cessors. Intel Tech. Journal, pages 6-18, 2002.

[6] M Aldasht, J Ortega, and G Puntonet. A genetic exploration of dynamic load balanc
ing algorithms. IEEE: Evolutionary Computation, Congress on. ISBN: 0-7803-8515-2,
1.1:1158= 1163, 2004.

[7] J Allen B Bass C Basso and R Boivie. Ibm powernp network processor: Hardware,
software, and applications. IBM Journal of Research and Development, 47(2), pages
177-194, 2003.

[8] J B k K D · d A H 'ie. Entering the petaop era: the architecture and per- arker, Javis, an to1sie. tir (SC'08)
formance of roadrunner. Proceedings of the Conference on Supercompu ing '
2008.

[
• -,1 i nment on heterogeneous multipro-

9] M Becchi and P Crowley Dynamic thread ass g
Cessor architectures. ACM 1-59593-302-6 06 0005,2006.

. computational nanoscience. ISBN
[0] M Bernd. Introduction to parallel computmg.

3-00-017350-1, 31, 491-505. .
t·ve proc design automation

[11] h 1 y perspec 1 · · S Borkar. Thousand core chips: a tee no lg s 746-749, 2000.
conference. ACM press: SanDiego,CA,USA, pages " ilti

. ally heterogeneous mu, acore
I2] F Bowe D Sc+» id L Cox. The impact of dy",7 pjectrcal and Electronics er, iorin, an 7; Micro-Institute 0

Processors on thread scheduling. IEE ·
Engineers, 28{3), pages 17-25, 2008.

89

[13] p Case and A Padegs. Architecture of th .
e ibm system370. ,

[14
] p Chandra. Programming the 80387 commurncations.

coprocessor. BYTE, 13

[15]
y Cho and W Mangione-Smith A p tt ' Issue 3, 1988.

C 7 P d. · a ern match'
In DA O : rocee zngs of the 42nd g coprocessor for net k .

239. 2005 annual Design A t . wor security.
234-2 , utomation Conference, pages

[l6] W David, R Williams, and P Tilke. A
concurrent tasks on multi-core architect n event based algorithm for distributing

. . 8 (ures. ISSN 1879 2944 C Communications, 1U1 (2), pages 341-354, 2010. -Computer Physics

[l 7] E Ephzibah. Cost effective approach on fet ·] . .
and ls-svm classifier. IJCA Special Issue

O
e~ ur; s: ection usmg genetic algorithms

2010. n vvolutionary Computation, pages 16-20,

[18] D Fatima and C Tech. Computer hardware text book s ·d b d H
A.P., 2005. . a.a au-. /yderabad 500059

[19] J Greenstadt. The ibm 709 computer. ACM, 1957.92-98.

[20] T Hamaguchi, T Komata, and T Nagai. A framework of better deployment for wlan
access point using virtualization technique. IEEE 24th International Conference
on Advanced Information Networking and Applications Workshops (WAINA), page
968-973, 2010.

[21] J Hennessy. Computer architecture a quantitative approach fourth edition. San
Francisco: Denise E. M. Penrose, 2007.

[22] Hofstee. Power efficient processor architecture and the cell processor. International
Symposium on High-Performance Computer Architecture HPCA-11, 2005:258-262.

[23] A Huisman. Heterogeneous multi-core processor scheduling using meta-heuristic tech
niques. UMI-MR52237, 2009.

[24] A Jaejin and A Jung-Ho. Adaptive execution techniques of parallel programs for

multiprocessors. Elsevier Inc, 2009.

B L Jong aaa .J Nira). sac and dynamic vamiable ;,"""""""" ·\ohms for
real-time heterogeneous distributed embedded systems.

[. History-aware, resource-based dynamic
26] A Jooya, A Baniasadi, and M Analoui. Computers and Digital Tech

scheduling for heterogeneous multi-core processors.
iques: IET, pages 254- 262, 2009. l» load

. n A new method for scheduling oa
2l] O Kiyarazm, M Moeinzadeh, and S Sharifiat [EE [5BN: 978-1-4244-98093,

bal . ' . based on pso. ancing in multi-processor systems
Pages 71-76, 2011. . . heterogeneous multi-core

[28] Bias scheduling 1n
D Koufaty, D Reddy, and S Hahn.
architectures. ACM, 2010.

90

q D Krishnaswamy, R Stevens, and RH b ,a architecture and design. IEEE ~ un. The intel pxa800f .
ustom Integrate@ ,, reless internet-on

p Kumar and N Tullsen R Jou + ® ircuits, 2003,
[30] IEEE 38(11):32-38, 2005. pp1. Heterogeneous chip multipro cessors computer.
[31] W Li and L Wang. Energy-considered schedulin,,

multi-core processor. IEEE.ISBN: 978-1-619,,' 8orithm based on heterogeneous
. . 719-1, pages 1151-1154, 2011

[3Z] J Mars, D Williams, D Upton and s Gh h A . .
d ' os · reactive b • multicore an manycore architecture p... d. uno trus1ve prefetcher for

· Toceedings of th Wok Hardware Challenges of Manycore Platforms 2008,
200
;_ or, shop on Software and

[33] Melanie Mitchell. An introduction to genetic al . h (
A Bradford Book, Third edition, 1998. /gorithm(complex adaptive system).

[34] C Mogul, J Mudigonda, and N Binkert. Using asymmet • • 1 . . e nc smg e-1sa cmps to save
energy on operatmg systems. IEEE Micro, 28(3), pages 968-97326-41, 2008.

(3s] K Olukotun, A N ayfeh, and L Hammond. The case for a single-chip multiprocessor.
SIGPLAN Not., 31(9), pages 84-952-11, 1996.

[36] A Pfaff. Synthesis algorithm for application specific homogeneous processor networks.
IEEE: 1063 8210, 2009.

[37] V Rasmussen. Round robin scheduling - a survey. european journal of operational
research. European Journal of Operational Research, pages 617-636, 2008.

[38] J Reinders. Intel thread building blocks: Outfitting c++ for multi-core processor
parallelism. 0 Reilly Media, 2007.

[39] P Ross. Why cpu frequency stalled. IEEE Spectrum, 45(4)72-72, 2008.

[40] D Sh 1 J S d S J ff Hass. A scheduler for heterogeneous multicore e epov, aez, an e ery. ·
9 systems. SIGOPS Operating Systems Review, 43(2):66-75, 200 ·

[4l] Imperas Team. 19. imperas partners, 2012. http://www.imperas. com/
partners-memberships.

[1 data 6600. Foresman and Co., 1970.
42] E Thornton. Design of a computer the contro

[43] A . : chi Springer, 2011. Vajda. Programming many-core c ips.
Benchmark, 2012. http://www.ct.

'4] VALKOMMEN TILL COGNITIVE. Dhrystone e1
se/cthrystone/index. html. fle ·ironment of

o A matlab mex-1 I€ env
'i voner, s vase, v Andras and X "",, 1o.

hi Ch mitz, ·ernu 8 Icot. TU Chemnitz, D-09101 em ' ter architecture. News,
[46] . llelism. sigarch compu

W Wall. Limits of instruction-level para
19(112):176-188, 1991.

91

Heterogeneous chip multiprocessors computer. Carnegie-Mellon University. 47] B Yee .. -Mellon University., 1994. Carnegie

M Kai, and W Xiaorui. Temperature-constrained power control for chip [48]
W Yefu, ors with online model estimation. ACM, 2009, multiprocess

92

Appendices

• Appendix A: Source code to construct Processors Platform

• Appendix B: Source code to construct Application

• Appendix C: Source code to construct Matlab and Compiler

93

0Dendjy
/ ---- ; / / / / ///////I I I I I I I I
[[» /Ji
;/ APP ////;I I I I I I I I I I I I I I I ,, ssato.>
"" 2string.h>
,4c190° /1 <impTypes. h> ude
/inc d "icmlicmCpuManager.h"

clll e Jin le relaxed scheduling for max, nab imum perf
// e, sIM ATTRS (ICM_ ATTR RELAXED SCHE ormance efie - - D)
• n routine
// ~1a1 •n(int argc, char **argv) {
·ot rna1 . .
l // ini tial1 ze OVPs1m, enabling verbose mode t

// of execution ° get statistics at end
. minit(ICM VERBOSEIICM STOP ON CTRLCII jCl - -- CM ENABLE IMPE
//

create an array of pointers to procc =- 3RAS_INTERCEPTS, NULL, essor instances
icmProcessorP processor [2];
// create a new at tributes list
icrnAttrListP mipsU~erAttr0 = icmNewAttrList ();
icrnAddDoubleAttr (m1psUserAttr0, "mips", 300. 0);
//Link Processors With Library
const char *mips32Model = icmGetVlnvString (NULL, "mips. c,vp,·IOrld. org",
"9rocessor", "mips32", "l. 0", "model");
const char *mips32Semihost = icmGetVlnvString (NULL, "mips.ovpworld.org",
"semihosting", "mips 32SDE", "1. 0", "model");
// Create First Processor
processor [0] = icmNewProcessor (

"CPU0 MI PS", I I CPU name
"mips32", I I CPU type

0) ;

0 /
0,

32 /
mips32Model,
"model±Attrs",
SIM_ATTRS,
mipsUserAttr0,
mips32Semihost,
"modelAttrs") ;

II CPU cpuid
II CPU model flags
II address bits
II model file
II morpher attributes
II attributes
II user-defined attributes

II semi-hosting file
II semi-hosting attributes

I I Create a new attributes list
icmAttrListP mipsserAttrl = icmNewAttrList();
icmA 1 ""' · ~s" 100. 0); ddDoubleAttr (rnipsUserAttr , 0

•
11

.t- '

I I Create Secound Processor
Processor[l] = icrnNewProcessor(

"CPU1 MIPS" // CPU name
":--,.::.::::s-::.2" I I CPU type

- - ' II CPU cpuid
I/ CPU model flags
I I address bits
I I model file tributes
// morpher a
II attributes 'butes f' ed attn // user-de:1 'ng file
II semi-hosti . ttributes

h ting a II semi- os

1,
0 I
32,
mips32Model,
''> + ·Jae±±ttrs"
SIM ATTRS
- I

mipsUserAt trl,
mips32Sernihost,
II rv '=it2 '.c.__r. i , r ~ ") ,· C: . - ::; {eat • e the processor busseS

emA, ~ usp busl = icrnNewBus("t~=·'

- , - /'\PPendix A = icmNewBus("hus c r 32) ±
i nect the processors onto th '
// con e bus

nectProcessorBusses(proc ses
·cmcon essor[0] b
i nectProcessorBusses (proc ' Usl, busl) ,·
·cmcon . essor[l] bus2
l ate memories , r bus2) ;
// ere

,A rnorYP locall = icmNewMemory("l
;cmMe! : Ocall"
·cm•AernoryP local2 = icmNewMemory("l , ICM_PRrv RWX • ocalz" r cmoryP shared = icmNewMemory("sh. • ICM_PRIV RX
±cm : ared" ' nnect the memories onto the b r ICM_PRIV RY // co usses - ,
icmconnectMemoryToBus (busl, "mpl 11, shared
,aconnect MemoryToBus (bus2, "mp?", shared,
. connectMemoryToBus (busl, 11mpl 11, locall' ±cm
icmconnectMemoryToBus (bus2, 11rnpl", local2,
// create the processor busses

// NOTE: One bus for each processor in t . . · santiation
icmBusP busl = icmNewBus (11busl 11, 32);
±cmBusP bus? = icmNewBus (11bus2 11, 32);
// connect the processors onto the busses
icmconnectProcessorBusses (processor [0], busl, busl);
icmConnectProcessorBusses (processor[l], bus2, bus2);
// Load Program to Processors Memories
if (icmLoadProcessorMemory (processor [0], 11 Pro fr am.MIPS32LE.el f"

F

Oxooooffff);
0xooooffff);
0x000Offff);

Ox00lOOOOO);
Ox00lOOOOO);
0x001£0000);
0xoouoooo);

False, False,
True &&

(processor[l], 11Program.MIPS32LE.e2.:", False, False,
True)) {

} else {
return -1;}

// run platform
icmProcessorP final= icmSimulatePlatform();
I I say whether simulation was interrupted
if (final && (icmGetStopReason (final) =ICM_ SR _INTERRUPT))

icmPrintf("> simulation interrupteci\r."); }
// Free Processors
int stepindex;
for (stepindex=0; stepindex < 2; stepindex++) {

icmFreeProcessor(processor[stepindex]); }
// Free attributes list
icmFreeAttrList (mipsUserAttr0);
icmFreeAttrList (mipsUserAttrl);
return O;}

;1111111111111111
[[a .2 iii,
I I p.pP ; //I I I I I I I I I I I I I I
J/fff/l <stdio.h>
jude S- <string.h> jude

1iJ1C <impTypes. h>
aiDcltJ:: "icml icmCpuManager. h"
", relaxed scheduling for maxi· nab e mum perf
//e. SIM ATTRS (ICM_ATTR_RELAXED SCHE ormance efie - D) ·n routine
// Mal in(int argc, char **argv) {
. nt ma]] initialize OVPsim, enabling verbo · se mode to get

// of execution statistics at end
icminit(ICM_VERBOSEIICM_STOP_ON_CTRLCIICM

f , t _ENABLE_IMPERAS INTERCEPTS NULL I I create an array o pointers o processor instances ' , 0) ;
icmProcessorP processor[2];
// create First Processor
icmAttrListP mipsUserAttrO = icmNewAttrList(),·//

Create a new attributes list
// set the endian attribute for little endian
icmAddDoubleAttr (mipsUserAttrO, "mips", 300. 0);
icmAddStringAttr (mipsUserAttrO, "endian", "little");
//Link Processor With Library
const char *mips32Model = icmGetVlnvString (NULL, "mips. ovpt-:orld. o.:g",
"processor", "mips32", "l.O", "model");
const char *mips32Semihost = icmGetVlnvString (NULL, "mips. ovp·,,·0rld. org",
"semihosting", "mips32SDE", "1.0", "model");
processor [0] = icmNewProcessor (

"CPUO_MIPS", / / CPU name
"mips32",
0,
0,
32,
mips32Model,
"rr:odelAttrs",
SIM_ATTRS,
mipsUserAttrO,
mips32Semihost,

II CPU type
/I CPU cpuid
// CPU model flags
I/ address bits
/ I model file
II morpher attributes
// attributes
II user-defined attributes
II semi-hosting file
II semi-hosting attributes "modelAttrs") ;

// Create Secound Processor // create a new attributes list
icmAttrListP mipsUserAttrl = icmNewAttrList();
// Set the endian attribute for little endian
{cmAc "Es" 100.0)7
. ddDoubleAttr (mipsUserAttrl, rr,- ... :

11 11.,. t-E");
lClllAddStringAttr (mipsUserAttrl, "e:~J.::.a;. ' ~- -
I IL· k :: . ,. :: :: " , in Processor With Library : (NULL "c.::' · c·:;.,· .. ·.:
Const char *arrn7Model = icmGetVlnvstring ''
"».4 "): <3 r3", Processor" g" "mode> r riLL, "arr.cvis. > r arr , ±· r 'g(NU) r cor tcmGetVlnvstrin "st char *arrn7Semihost = l ,..

11
"'.1 :,:E-~ ");

·eihosting", "armNewi" "1.°
Ptoce r (ssor[l] = icmNewProcesso

"~-, - II CPU name =' J .!_ _P<.! 1" ,
II a:", //
o, I I
o, I I
32, / I

_ @rm7Model, / I

CPU type
CPU cpuld
CPU model flags

'ts address bl
f·1e model 3

"modelAttrs",
SIM_ATTRS,
icmAttr ,
arm7Semihost,

t II "rnodelAt rs

Appendix A

// orpher attri,
I I tt . u es a tributes
// user-defined
// semi-hosting
// semi-hosting

); reate the processor busses
// C ,
±cmBusP bus] = icmNewBus("usl", 32);
±cmBusP bus? = icmNewBus("bus?", 32);
/ onnect the processors onto the b / c usses

. connectProcessorBusses(processor[O] b
icm. r usl, busl); . connectProcessorBusses(processor[l] b
icm.. r us?, bus?);
// create memories

1. cmMemoryP locall = icmNewMemory (11 locall",
ICM PRIV RIX

l·cmMemoryP local2 = icmNewMemory("loca-l,--,", - - '
< ICM PRIV RWX

±cmMemory? shared = icmNewMemory("shared", ICM PRIV y,
// connect the memories onto the busses - - '
icmConnectMemoryToBus (busl, "mpl", shared, 0:xOOlOOOOO);
icmConnectMemoryToBus (bus2, 11mp2", shared, 0:xOOlOOOOO);
icmConnectMemoryToBus (busl, "mpl", local 1, O:xOOlfOOOO);
icmConnectMemoryToBus (bus2, "mpl 11, local2, OxOOlfOOOO);
// Load Program to Processors Memories
if (icmLoadProcessorMemory ((processor [O] , "Pre,gra:r:. MI PS32::...E. e:'..::",
, True) &&

attributes
file
attributes

OxOOOOffff);
OxOOOOffff);
OxOOOOffff);

False, False

(processor[l], "Program.ARM7.elf", False, False,
True)) {

} else {
return -1; }

// run platform
icrnProcessorP final= icmSimulatePlatforrn();
// say whether simulation was interrupted
if(final && (icmGetStopReason(final)==ICM_SR_INTERRUPT))

· ± interrupted\:");} icmPrintf("·> simulation F
//Free Processors
int stepindex;) {

< 2. stepindex++ for (steplndex=O; steplndex ,
icmFreeProcessor(processor[stepinctex]);}

// Free attributes list
icmFreeAttrList(mipsUserAttrO);
icmFreeAttrList(mipsUserAttrl);
return o;}

~ ;/////////////
'[as .3 //IT
/ I A~~ I I I I I / / / / / / / / I
/fl I de <math. h>
iiflclll <stdio. h>
, . ncl ude
H <stdlib. h>
cc1d° ' \de <impTypes.h>
,nclU : h <string. .> rclude ' ""icm/icmCpuManager.h"
«clude ' {de "icm/icmCpuManager.h"
cl · sble relaxed scheduling for max·
/
/ ena imum p f

f
·ne SIM ATTRS (ICM_ATTR RELAXED SCH er ormance

,de 1 - - _ ED)
// Function Prototypes early declaration

//stat 1
. c void parseArgs (int argc h , car **argv);

// valid command line
;define MIN _ARGS 1
const char *usage = " [P <GOB port> l [C <core name to debua e
// variables set by arguments ~ ~.g.

gool enableDebug = False;
s32 portNum = 0;

CPUO_ARM>]";

II set True when db e ugging selected
// set to a p t or number for a debug

connection
sool selectCore
char coreName[32] =

= False;
"CPU0_ARM";

// set True when a specific core is selected
II set default core name to debug

char *coreNameP
// Main routine
int main (int argc, char **argv) {
Uns64 IC0, I Cl, IC2, IC3; * /

= coreName;

/ /parseArgs (argc, argv) ;
// initialize OVPsim, enabling verbose mode to get statistics at end of

execution
// and
// Imperas Intercepts to utilise specific builtin simulator functions
unsigned int icmAttrs = ICM VERBOSE I ICM_STOP_ON_CTRLC
ICM_ENABLE _IMPERAS INTERCEPTS;
if (enableDebug) {

icrninit (icmAttrs, "rsp", portNum);
} else {

icminit(icmAttrs, 0 , 0);}
'. I create an array of pointers to processor instances

icmProcessorP processor [4];
// create processors . (NULL, "=rm.ovpworld.© :::-,:)'',
const char *arm7Model = icmGetVlnvString "
II -,,,.. Processor", "arr", "I.0", "model")r "arm.ovpworld.or"n
con vl string·(NULL,

st char arm7Semihost = icmGet' .nV:
"scs>.·.% n A "model"); -@9sting", "armNewlib', -· 'tr±ser ±mer = ±amass+®'.·97
. rnAddStringAttr(icmAttr, ""1.-a!°-0·-- ' .. --P") •
l CffiAdd . . - II 1 - - , StringAttr (icmAttr, "e::o::.c.,. ' -
Proce. (ssor[O] = icmNewProcesso
"po // CPU name

_f'.i:<.M"'
//
//
//
//
// model

"- " r:r" ,
0 I
0 I
32,
arm7Model

'

CPU type
cPU cpuld
CPU model flags
address bits

file

, Appendix A
••rnodell\L trs' ' I I morpher attr·
sIM_ATTRS, II attributes lbutes
icrnAttr, II user-def'
arrn

7sernihost, II inect attrib semi-host: utes
lAt trs") ,· ing fil "mode t / I · e semi-host:

: cmAddDoubleAt tr (icmAttr " . ing attrib t
1 _, , m1ps", 200 . u es

ocessor [l] - icmNewProcessor ("CPU .. 0),
pr " SIM ATTR! 3 l_ARM" », delAt trs , _ S,icmAttr ·7 - ' ctrrn" 1 o 32 "!110 * , arm Semi host " , , , r arm7Model

t char v8 50Model = icmGetVl, 'modelAt+ "y ' cons nvst , . Lrs ;
" "v850" "1 O" ring(NlJLL " ••orocessor , , . , "model") : , necel. o·1oworld "

' 850S 'h · ' · .c,rg , t char v emi ost = icmGetVl . cons' nvString(NUL
.ihosting", "v850Newlib" "1.0" 4D, "ecel.ovpworld.crg" ""sel · ' · , model") . - J ,

±AttrListP icmAttr v850 = icrnNewAtt . ' ich. - rList():
icrnAddStringAt tr(icmAttr v8 50, "endian 11 ' . , "little");
// create a processor instance
processor[2] = icmNewProcessor(

"CPU2 _ V8 50", I I CPU name
"v850", II CPU type
2, II CPU cpuid
o, II CPU model flags
32, II address bits
v850Model, II model file
"rnodelAttrs", II morpher attributes
SIM ATTRS, II attributes
i crnA t tr_ v 8 5 0 , II user-defined attributes
v850Semihost, II semi-hosting file
"rnodelAtt rs") ; I I semi-hosting attributes

icmAddDoubleAt tr (icmAttr _ v850, "mips", 150. 0) ;
processor(3] = icmNewProcessor("CPfJ3 V850","v850", 3,0,32, v850Model,
"modelAtt rs", SIM _ATTRS, icmAt tr_ v8 50, v8 50S emihost, "modelAt :rs") ;
// create the processor busses
// NOTE: One bus for each processor instantiation
icmBusP busl = icmNewBus ("busl", 32);
icmBusP bus2 = icmNewBus ("bus2", 32);
icmBusP bus3 = icmNewBus ("bus3", 32);
icmBusP bus4 = icmNewBus ("bus4", 32);
// connect the processors onto the busses
· O] b s1 busl);
icmConnectProcessorBusses (processor [' u ' ·] b 2 bus2);
icmConnectProcessorBusses (processor [l ' us ' · b 3 bus3);
icmconnectProcessorBusses (processor[2], 9S '
• [J] bus4, bus4);
lcmConnect Processor Busses (processor '
I I create memories y and stack in . d in lower memor
11 the ARM processor tool chain sites co e
h: igher memory
I I so we will use two memories 1 linker script used // c of the default yr{Erfff); OTE: this is just a consequence .. " ICM PRIV_RWX, Ox9II _r ,
'cmMc ·("ova--8' 3fv RWX, OxOfffffff) ;
{emoryP localla = icmNewMemory" \% 1CM PI· ref±Ef):
+cmM, ("va- 7 ry RWX, 0x9fff!E-
. m emoryP local lb = icmNewMemorY - L,~~= ~" ICM PRI - , oxOfffffff);
®mMemoryP local2a = icmNewMemory("+-,' +cy PRIV_RR&, .l. (11' r -- C , - Qx9fffffff);
·CmMemoryP local2b = icmNewMemorY - ~~=~ rcM pRIV_RWX, , Ox9fffffff);
®MemoryP local3 = icmvewMemory("-',' toy PRIV_R".{±£fEft±)7
®MemoryP local4 = icmewMemory(",' toy PRrV_RX,
CMemoryP shared = icmNewMemory("<··°' ' // he busses 3r buses
/ connect the memories onto t e . . ctual processo /cor t indiv} 9yoo00000007
i nnect local memories on ° _ 11 10calla, -
CmCon, 1 "up± ~MernoryToBus (bus , · ·-

-

ryToBus(bus1, "ml", localib, nR-,,,,
T Bus (bus? "mpi", j Oxfooooooo);

iv 4nectMer »ry' 'O ' ocal 2a' O xoo 0000 00) ,
"[_avemoryToBus (bus2, "", 16cal2b, xoocoj
c"-vemoryToBus(bus3, "" 10cal3, 0zoo,',
i,,conn ectMemoryToBus (bus 4 ' "'"P 1 " ' l oca14 ' Oxooooooo 0) ;
.aCo he shared memory onto all the local buses J. nect
I I ,on nectMemoryToBus (busl' "mpl"' shared, Oxaooooooo) ;
{a-1 {anoryToBus(bus2, "?", shared, 0xa0ooooy, nectlle
·c!llco M moryToBus (bus3, "mp?", shared, Oxaooooooo);
J. connect e (b 4 11rnp4 11 , h
ic!ll MemoryToBus us , s ared, Oxaooooooo); mnect! 5bi 5t fi] ic!llco processor o J ec - 1 e d the
// 10a cessorMemory(processor[O], : LoadPro :E (iC
l &&
True) cessorMemory(processor[l], icrnLoadPro

ue) &&
Tr essorMemory(processor[2], icrnLoadProc

ue) &&
Tr ssorMemory(processor[3], icrnLoadProce
True)) {

} else {
return -l; } .

. TimeSlice(0.00001), . SetSimulation icC

it run platform. - . mSimulatePlatform () ;
P final = ic icmProces sor

[/free processors
icmTerrninate () ;
return O;}

Appendix A

11

application.ARl17 .elf", False, False,
11

application. P..Rl17. el:", False, False,
11

application. V8 50. elf", False, False,

"application. V8 50. elf", False, False,

3

'~//////!!

Ill I I I I I . A 4 / / / / / / / /
l pdix '
/ ~ppe /// / / / / / / / / / / / / / /
I I I I I l' stdio.h> de : h> rt®? <string.
jde h> ° ,, <imptypes.

1jncl
0d "icm/icmCpuManager. h"
° 1axed scheduling for maxi ble mum perf ' as ICM - ATT~ _ RELAXED _SCHED) ormance
' , _ 128 / / Determine the numb ·ne - er of pr
l
defl . ocessors th

rn
ese used in

oiatfor . the
'sin routine
I . (int argc, char **argv) {
.» ma:?
1n int yIPSVALUE = 5 0 ; / / TO CHANGE MI PS VALUE

. t stepindex; jn
int cHVLAUE = 0 ;
car cpuName 16] ; //to
// initialize OVPsim,
// of execution
icminit (ICM VERBOSE I ICM STOP ON CTRLC I ICM ENABLE IMPERA - -- - - S_INTERCEPTS,

store processor name
enabling verbose mode to get statistics at end

NULL, 0);

// create an array of pointers to processor instances
icmProcessorP processor [P];
/ / create group one of processors, the same type butt different in
performance
I I Link to Library
canst char *powerpc32Model = icmGetVlnvString (NULL, "power.ovpworld.org",
"processor", "powerpc32", "l.O", "model");
canst char *powerpc32Semihost = icmGetVlnvString (NULL, "power.ovpworld.org",
"semihosting", "powerpc32Newlib", "l. O", "model");
II Create Attribute
icmAttrListP cpul attr = icmNewAttrList() ;
icmAddstringAttr(cpul attr, "endian", "big");

for (stepindex = O; stepIndex < P/4; steplndex++)
{

CHVLAUE++ : ,
if (P==4) MI PS VALUE = 10 0;
else if (P = 8) MIPSVALUE =
else if (P == 16) MI PSVALUE =
else if (P -- 32) MIPSVALUE =
else if (P -- 64) MIPSVALUE =
else if (P -- 12 8)
(if (CHVLAUE == 15) MI PS VALUE = 507
MIPSVALUE = MI PS VALUE + 257)) sprinu -2 ci" stepinctex ;

. (cpuName "CPU po·,,.;erpcj - ' VALUE) ·
1clllAdctD ' - " . - " MI PS ' oubleAttr (cpul attr, :r.ip::, '
Ptoce - ssor (ssor[stepindex] = ijcmNewProce

CpuName, / / name
".-, - +Jerpcs?"
StepIndex
0 ' ,

lOO*CHVLAUE;
100CHVLAUE ;
lOO+SO*(CHVLAUE-1);
50+25 (CHVLAUE-') 7

32,
Powerpc32M d l
11

o e ,
_ oaeip "-----.__ , ..._ .. ,ltts"

// type
// cpuld

// flags
II address
// model
// symbol

bits

7No
cpul_attr, 'h pc32Seminost ,
powe

cle J Mt rs") ;
"0 P two of ate grou

11 ere formance
Per . b . k to 11 rary
/ LJ.11 I st char *arm7Model = icmGetVlnvstr.

con cessor", "arm", "1.0", "model"),· ing(NULL, "ar .
or©® 47Se ihc 0Vpworld

char arm' ·eminiost = icmGetVl . .0rg"' ans nvStrinc(
c 'hosting", "armNewlib", "l.O" 11 gNULL "- veeto' . r 'ode]"), ''@%.0vpworld
- ate Attribute , .r.,rg",
// ere . .
. rn]\ttrListP icmAttr = icmNewAttrList () .
ic (" ' icrnAddStringAttr icmAttr, "endian", "big").
har cpuName [16]; '
:printf(cpuName, '_'CPU_ARM-cd", stepindex+P/4).
icrnAddStringAttr (icmAttr, "~tips", MIPSVALUE};'
processor [stepindex+P / 4] = icmNewProcessor (

cpuName, I I CPU name
"arm", I I CPU type

// rocAttrs
II attrlist
I I semihost file

II semihost
processors, th:Ymbol

sarne
type butt diff

erent in

stepindex+P / 4,

0 I
32 I
arm7Model,
"modelAttrs",
SIM_ ATTRS,

I/ CPU cpuid
II CPU model flags
II address bits
II model file
II morpher attributes
II attributes

icrnAttr, I I user-defined attributes
arm7Semihost, II semi-hosting file
"modelAttrs") ; I I semi-hosting attributes

I I Create group three of processors, the same type butt different in
performance
/ /Link Processors With Library
const char *mips32Model = icmGetVlnvString (NULL, "mips · c,vp·.":f.ci. org",
II !)rocessor", "mips32", "1.0", "model");
const char *mips32Semihost = icmGetVlnvString(NULL,
"s · h · 1 ") em2. .. osting", "mips32SDE", "1.0", "mode- ;

// Create Attribute
icrnAttrListP mipsUserAttrO = ijcmNewAttrList() ;
icrnActdDoubleAttr (mipsUserAttrO, "e:1di2::,"' "bi.?");

char cpuName [16] ; sp · d +P/2} ·
. Ilntf(cpuName, "CPU ~IPS32- d", stepin ex ' .
1crnActct - . " MI PSVALUE) 7

DoubleAttr (mipsUserAttrO, "r:-'.:..f s '
Processor [stepindex+P /2] = icmNewProcessor (

cpuName, II CPU name
"mis32" // CPU type - - ' // cPU cpuld
Slepindex+P/2
0 ,

I

32,
mips32Model
II I

cdelAttrs"
SIM_ATTRS,
m; 1PsUserAttrO m· , -ps 32Semi host
11,. ' !Id¢> L++ > -- . - - r::-,) ;

II
II
II
II
II
II
II
//

// teat 3rs, the '---.._____ e group four of processo '

CPU model flags
address bits
model file tributes
morpher a

'butes attri ibutes
Ser

-defined attr
ll . file semi-hosti9 ,,tributes

: .hosting semi7
% butt

same tyP

tin aifferen

ormance ;
pe" I< processors With Library
//Po har *orlkModel == ic G st c m etVln
co0 ," 11J.O", "model"); VString(Nu

»or1k' r LL, "%
-par orlkSemihost = icmc PP@orld.ore",
st Cl ietVlnvSt, ·

co 'hosting", "orlkNewlib", "1.0" " r1ng(1'nJLL "
getd : r 'tiode]" ' '9Vpworld >" Attribute o "); 30rg" I create "
I ttrListP orlkUserAttrO == icmN
icrnA ewAttrList (

ddDoubleAttr (orlkUserAttrO " a; (0 ; :cm© r enuian" " 1 cpuName[l6]; ' 19");
char "CPU OR spriotf (cpuName' - lK-. d", stepindex+
. crnAddDoubleAttr (orl kUserAttrO, "rriips II M stePinctex+3*P/ 4);
1 essor[stepindex+3*P/4] == icmNe P ' IPSVALUE);
proc w rocessor (

cpuName, / I CPU name
"or1k", II CPU type
stepindex+3*P/4, II CPU

II cpuid
0 I CPU model flags
32, II address bits
orlkModel, II model file
"modelAttr s", II morpher attributes
SIM _ATTRS I II attributes
orlkUserAttrO, II user-defined attributes
orlkSemihost, II semi-hosting file
"modelAttrs") ; } II semi-hosting attributes

II Processc,r"

/ /create the processor busses
iicmBusP = bus [P]
for (stepindex = 0; stepindex < P; stepindex++)

bus [stepindex] = icmNewBus ("stepindex 11, 32) ;
// connect the processors onto the busses
for (stepindex = 0; stepindex < P; stepindex++)
icmConnectProcessorBusses (processor [stepindex], stepindex, stepindex);
// create memories
icmMemoryP local [P] ;
for (stepindex = O · stepindex < P; stepindex++) , "'ff£) .
local [stepindex] = icmNewMemory (11 stepir:dex 11, ICM _PRIV _ RWX, Ox00001. '

I! create share memories
Iv RWX OxOOOOffff);

icmMemoryP shared = icmNewMemory("shared", ICM _PR - '
// connect the share memories onto the busses
for (stepindex = O; stepindex < P; stepindex++)
{

char Port Name [16] ;
·print f (Port Name' "mp' -d"' stepindex+ 1) ; shared, OxOOlOOOOO) ; }
cmc. id :] PortName, onnectMernoryToBus(bus[stepin ex'
// connect the memories onto the busses_,
for (t p tepindex++] QxOOlfOOOO);
. 5 epindex = O · stepindex < ; s 1 1 [stepindeX ' 'cc> "El" .0ca
1

onnectMernoryToBus(bus[stepindex], '
/ Load Program to Processors Memories Index++) - -- :5L. e- ~", or (s+, <P/A: step' ·at.cn.l©=
if(' epindex = o; stepindex ' Index], "a:..c -

+CmLoadPro :Me y (processor[steP .e· :", F ·cessor emor ~- ·""··,
se, False, True) && ,1aex +P/\lr "±:--F

(processor [steP) &&
l.re. True

False, Fa s ' rndeX +P/21, false, True) (processor[s'P", Falser
"tplicati ,3%x +P/l ,1se, True)

-. t· t pin Fa , - ssor [s e] False, (proce , ~ • _ '=-'-- , 43,U\1
"appl.cat

]3J]]]J]]]J

~
I el.Se rn -1 ; }

etU
• tform
run P a P final = icmSimulatePlatform () . / sssor! ,
proce simulation was interrupted ic %ether

/ / s•Y w && (i cmGet St op Re as on (final) ==ICM_ SR_ INTERRUPT))
·£(final. f('"'' simulation rnterruPted\n");) .J. • rnPrint

J.C rocessors free P
// Index;

;nt steP -O. stepindex < P; stepindex++) { , Index-,
for (steP essor (processor [stepindex]);} icrnfreeProc

turn O;} re

{
'wwendix A

ORPendix
/ / / / / / / / ///////I I I ~---------

/II I endiX A. 5 I I I I I
/ APP I /////////11/IIIIII
, <stdio.h>
:ncl U
"", de <string. h>
· nc u
J. 1 de <impTypes. h>

u • nc u
nl- d "icmlicmCpuManager.h" {include
' able relaxed scheduling for maxim
// en um performance
"define SIM_ATTRS (ICM_ATTR_RELAXED_SCHED)
n f. ne p = 4 / I Determine the numb
#de 1 . er of processors these used in th 1 tf / Main routine e p a orm
~ t main (int argc, char argv) {
in : OVP ' // initialize 'sim, enabling verbose d

. mo e to get statistics at end
/ / of execution

icmInit (ICM VERBOSE]ICM STOP ON CTRLC]ICM ENABLE IMP
- f - . - - - ERAS INTERCEPTS, NULL, 0) ;

// create an array o pointers to processor instances
icmProcessorP processor[4];
// create group one of processors, the same type butt different in
performance
// Link to Library
const char *powerpc32Model = icmGetVlnvString (NULL, "power.ovpworld.org",
"processor", "powerpc32", "l.011

, "model");
con st char *powerpc32Semihost = icmGetVlnvString (NULL, "pN,er. cvp1.,':Jrlci. org 11,
11 semi hosting", "powerpc32Ne1"1lib", 111.011

, "model 11);

/I Create Attribute
icmAttrListP cpul_attr = icmNewAttrList();
icmAddStringAttr (cpul_attr, "endian","big");
icmAddDoubleAttr (cpul _at tr, "mips", 100) ;
processor[0] = icmNewProcessor(

cpul, I I name
"powerpc3?",
O,
O,
32,
powerpc32Model,
"modelAttrs",
SIM_ATTRS,
cpul_attr,
powerpc32Sernihost,
"model±ttrs");

II Create group two of
performance
II Link to Library
const char *arm7Model

II type
// cpuld

I I flags
II address bits
II model
II symbol
// procAttrs
I; attrlist
// semihost file
// semihost symbol

the same processors,
type butt different in

= icmGetVlnvstring(NULL,
, ") . • n \n "hoae- v (NULL rcessc" "3r" r ·1g(l --F-9- r "- • + 1GetVlnvStrin

Const char arm7semihost = 1, «-.%.")7
"seihcsting", "armNelit" ±.
'./ Create Attribute ·AttrList();
lCffiAttrListP icrnAttr = icmNeW . _ ,-," ";.:-::_ _::");

icmAaddstringAttr(icmAttr, "° {po) 7
icffiAddStringAttr (icrnAttr, ""·- r::: '
P . cessor (tocessor[l] = icmNewPro

// CPU name
// cPU type
/I CPU cpuid

cpu2,

1,

~
32,
arm7Model ,
"modelAttrs",
SIM_ATTRS,
icmAt tr,
arm7Semi host,
"model.A.ttrs");

// create group three

_Appendix A
// CPU model fl --
// address b' ags
I its
/ model file

II m orpher attrib
II att 'b utes r1 utes
II user-def'
I

1ned att . / semi-host± ·lbutes
ing file

II semi-host·
of process ing attributes

ors th ' e same t YPe butt performance
//Link Processors With Librar ' y
const char mips32Model = i G cm etVlnvst ·
"processor", "mips3?", "l 0" ., d ring(NULL," · · r 'model"); maps.ovpworld.org"

const char *mips32Semihost = icmGetv ' . " ' . . " 'lnvString(NULL " . "semihosting', 'mips3?SDE" "I 0" " ' ops.ovpworld.org", · • r 'mnodel"); - -3
/ / create Attribute ,
icmAttrListP mipsUserAttrO = icmN At . . ew» trList();
icmAddDoubleAttr (mipsUserAttrO " d • , en 1an" "bio"} .
icrnAddDoubleAttr (mipsUserAttr0 "rr · " ' ~ ' , r tlps , 100);
processor[2] = 1cmNewProcessor(

cp3, II CPU name
"mips32", I I CPU type
2, II CPU cpuid
0, II CPU model flags
32, I I address bits
mips32Model, II model file
"modelAt trs", I I morpher attributes
SIM_ATTRS, II attributes
mipsUserAttrO, II user-defined attributes
mips32Semihost, II semi-hosting file
"modelAttrs") ; I I semi-hosting attributes

II Create group four of processors, the same type butt different in

different in

performance
//Link Processors With Library
const char orlkModel = icmGetVlnvString(NULL, "vpworld.org", "process©Ir"

, "orik", "1.0", "model"};
const char *orlkSemihost = icmGetVlnvString(NULL,

"semihosting", "orlkNewlin",
I I Create Attribute
icmAttrListP orlkUserAttr0 = icmNewAttrList();
icmAddDoubleAttr (orlkUserAttr0, "e::-:i:.:::.:-."' ".::.i::i"};
icmAddDoubleAt tr (orlkUserAttr0, "-, '-~ s", lOO} ;

Processor[3] = icmNewProcessor(
cp4,
"or1",
3,
0,
32,
orlkModel,
II model±ttrs",
SIM ATTRS - ,
orlkUserAttrO,
orlkSemihost,

II CPU name
II
II
II
II
II
II
II
//
//
II "ode±t":s"

//cr eate the processor
1 ' lcmBusP = bus [P]

) ; }

CPU type
CPU cpuld
CPU model flags
address bits
model file
morpher attribute
attributes d attributes
User-define file semi-hosting attributes
semi-hosting

busses

Appendix A
(tepindex = 0; stepindex < P· f r 5 . , steprnct 0

5 (stepindex] = icrnNewBus (", _ ex++) bu. steplndey@
nect the processors onto th b 32);

// con e usses
(stepindex = 0; stepindex < P· gor i steplnde
nnectProcessorBusses(processo [x++)

;cmcol ; r.step!ndex]
// create memories , stepindex, stepindex);

Memory P local[P]; 'cme
J. (stepindex = 0; stepindex < p. st 1 for . r ·ep.ndex++)

1 [stepindex] = icrnNewMernory (11 st 1 1oca. epndex" 1
// create share memories ' CM_PRIV _RWX, OxOOOOffff);
; «MemoryP shared = icmNewMemory("share-q
icmu . e , ICM PRIV RWX
// connect the share memories onto the busses - - , OxOOOOffff);
for (stepindex = 0; stepindex < p; stepindex++)

char port Name [16] ;
sprint f (Port Name, "mp··.d", stepindex+l};
icmConnectMemory ToBus (bus [stepindex), Port Name, shared, OxOOlOOOOO);
}
// connect the memories onto the busses
for (stepindex = 0; stepIndex < P; stepindex++)
icmConnectMemoryToBus (bus [stepindex], "mpl 11, local [stepindex], OxOOlfOOOO);
// Load Program to Processors Memories
if (icmLoadProcessorMemory ((processor [0] , "application.POERPC32.elf", False,
False, True) &&

(processor[l], "applicatio:1 .ARM7.elf", False, False
, True} &&
(processor [2], "application.MIPS3z.elf", False,
False, True) &&
(processor[3], "applicaticn.OR:i.K.el:", False, False
, True} &&
} {

else {
return -1;

}

// run platform
icrnProcessorP final= icmSimulatePlatform();

. interrupted
// say whether simulation was : ==ICM SR INTERRUPT)) {
if (final && (icmGetStopReason (final} - ~ . interrupted\'); icmPrintf ("·H·-- si:-r,u2.a;::ior.

int
for

I I Free Processors
stepindex; Index++) {

I:dex < P: step (stepindex=O; step n e ' I dex]};}
icmFreeProcessor(processorCstep n

return O; }

~ ---------------------- AA~ppendixA

/ ---- ;;/////////// .®
; I p,pP I I I I / / / I I I I I I I
;II//! <stdio.h> ude iS- <string.h>
.c1ud° pn <impTypes. h>
JincltJde ,, icm/ icmCpuManager. h" .-lude : " ,-ie relaxed scheduling for maxim na um perform sw ATTRS (ICM_ ATTR_ RELAXED SCH ED) ance
aef1 </ s • P "" 2 I Determine the number of ,efi°. Processors these ·n routine used in the platform
// t,1al •n(int argc, char **argv) {
·nt rnal . " n initialize OVPsim, enabling verbose mod t

· e O get statistics at end
// of execution
. rninit(ICM_VERBOSEIICM_STOP ON CTRLC]ICM ENAB lC . - - - LE_ IMPERAS INTERCEPTS NUL
// create an array of pointers to processor instances - ' L, 0);

icrnProcessorP processor [2];
// create group one of processors, the same type butt different in
performance
// Link to Library
const char *powerpc32Model = icmGetVlnvString (NULL, "po·r1er. 0·;p·.-,0rid. org",
"processor", "pc,werpc32", "l.0", "model");
const char *powerpc32Semihost = icmGetVlnvString (NULL, "pc,,e~. e,vp"·c,~ld. org",
"semihosting", "powerpc32Newlib", "l. 0", "model");
// Create Attribute
icmAttrListP cpul_attr = icmNewAttrList();
icmAddStringAt tr (cpul _ attr, "endian", "b::..g");

icmAddDoubleAttr(cpul_attr, "mips", 100);
processor[0] = icmNewProcessor(

cpul, II name
"powerpc32",
0,

0 I
32 t
powerpc32Model,
"rnodelAttrs",
SIM_ATTRS,
cpul attr,
powerpc32Semihost,
"modelAttrs")7

I I Create group two of
performance
I I Link to Library
Const char *arm7Model

/I type
/I cpuid

I I flags
II address bits
I I model
II symbol
// procAttrs
II attrlist
// semihost file
// semihost symbol

the same processors,
butt different in type

= icmGetVlnvstring(NULL,

")
"i.:.:::- cessr:,r", "ar:-n", "2. • O", '.''."\•:~:~vl~vstring(NULL,

·char ·a±manse±hos=®. ,
----:r,::.hr:-sting", "ar:-r\'e·,,· __ ::.c ,

'. 1 Create Attribute ttrList ();
+CmAttrListP icmAttr = icmNewA 11 "· :.,");

cmadstringAttr(icmAttn,I® {%0)7
10rnAddStringAttr (icmAttr' "''. ~ :·::, '
Ptocessor[l] = icmNewProcessor(

II CPU name Cpu2,
"arr" // cPU type

// cPU cpuid 1,

O,
32,
,rm7Model ,

t " "model At rs ,
SIM_ATTRS ,
jcmAt tr ,
,rm7Semi host ,
"odelAttrs");

;;create the processor
.. rnsusP == bus [P] iic
f
or (stepindex = 0; stepindex < p. t . ' S'.epIndex++)

bUS [stepindex] = 1cmNewBus (" st I ep ndex" 32

//
connect the processors onto the b ') ; usses

for (stepindex = 0; stepindex < p. t ' s eplndex++)
. rnconnectProcessorBusses (processor [t 10 . s eplndex) ,
// create memories stepindex, stepindex);

±cmMemoryP local [P] ;
for (stepindex = 0; stepindex < p; steplndex++)
local [stepindex] = icmNewMemory ("stcpTndex" 1 ~ -- · , CM PRIV RWX
// create share memories = ' OxOOOOffff);

icmMemoryP shared = icmNewM_ emory("shared", ICM_PRIV RWX, OxOOOOffff);
; / connect the share memories onto the busses
for (stepindex = 0; stepindex < P; steplndex++)

I I Appendix A
CPU model fl

II d @gs
a dress bits

I I model file
II m orpher attrib
II att 'b utes r1,utes
II user-def'
II . aned attrib semi-host± utes Ing file

II semi-hosting
busses attributes

char Port Name [16] ;
sprintf (Port Name, "mp ,ct", steplndex+ 1) ;
icmConnectMemoryToBus (bus [steplndex] , Port Name, shared, Ox00100000) ; }
// connect the memories onto the busses
for (stepindex = 0; stepindex < P; stepindex++)
icmConnectMemoryToBus (bus [stepindex], "mpl", local [steplndex], OxOOlfOOOO);

// Load Program to Processors Memories
if (icmLoadProcessorMemory ((processor [0] , "application. POERPC32. e::.f", False,

False, True) && (processor[l], "applicaticn.A:<-'.~7 .elf", False, False

, True)
) {

} else {
return -1; }

// run. platform
icmProcessorP final= icmSimulatePlatformO;
'. I say whether simulation was interrupted INTERRUPT)) {
if(final ss (icmGetstopReason(final)==1CMS

interrupted\»') 5
icmPrintf("· simulation +

// F ree Processors
etaaex; , star+)

(steplndex=O; stepindex < P']) . } · tepindeX ,
icmFreeProcessor(processor[s

Feturn O;}

~ AppendixB

//////////////// -----
W's w. /urn) , / / / / / / / / / / / / / / / /
f/fff!I <math.h>
jude ° <stdio.h>

. clllde . b h> i <stdli · jude 1inc <impTypes. h>

.,cud€
11n d <string. h>
lll e line . (int argc, char **argv) { a1

int ·nt id == impProcessorid () ; / / to define
J. d t t witch processor print£ ("CPU % s ar ing. . . n", id) ; are process this file

±ILE fp;
// to avoid overlapping in output information

0) f fop n ("D t PO l // cirfeate to file to store information
if (id==== p = e a a .x s", "w+") ; · t Dt tPO f l processor O process store
information in o a 1 e
if (id====l) fp = fopen("DataPl.xls", "w+"); // if processor 1 process store
information into Ota tPO file
fprintf (fp, " Processor ID \t Matrix Size\t Instruction Count \n ");
int I; // Matrix Size
// begin
for(I==lOO;I<lOOl;++I) {
int a[I][I],b[I][I],c[I][I]; // Define three matrix, a and pare input matrix,
c is output matrix
int i,j,k; // Loop Pointer
// Input Matrex Data
for(i=O; i<I ;++i)
for(j=;j<I;++j)
{b[i][j] = rand()%255;
a[i][j] = rand()%255;}
// Muliplication Matrix

// value from 1 to 255
// value from 1 to 255

for(i=;i<I;++i)
for(j=0; j<I;++j)

{ c[i] [j]=O;
for(k= O;k<I;++k)
c[i) [j]=c [i] [j] +b [i] [k]b[k][il;) ·Tr structioncount));// output
f 'd I ·mpProcessor ns
printf (fp, "%d\t, %d\t, %u\n" ,1 r r
information to excel file
return O;}}

Appendix B

;/////////////! as»@nun
// APP////////////////
'[at.> ac- <stdio.h> ,10de :
H11 <:stdllb. h> jude i®,, <impTypes.h>

• cl\J e ,4, <string.h> . 1ude 11nc 11rnrnrnul ticore4 hetero. h 11 «clude ·1 . NOOFCPU 4 / / number of CPU defJ.ne in platform
' parameters
~~e~ine poPSIZE 8 / / Population size
'.define I 1000 I I problem size
· f'ne pXOVER O • 6 / / probability of cro ~e J. ssover
:define pMUTATION O. 25 / / probability of mutation
;define MAXGENS 50 / / Maximum generations
volatile int flag = (volatile int *) FLAG; // LOCK

Volatile int IM = (volatile int *)A; // INPUT MATRIX
volatile int OM = (volatile int *) C; / / OUTPUT MATRIX
volatile int * f = (volatile int *) F; / / VECTOR TO CHECK ROW
MULTIPLICATION MATRIX
volatile int cpu_S = (volatile int *) CPU_S;/ / PROCESSOR STATUS
volatile long double cpu_t = (volatile long double *) CPU T; // time that need
to execute sample for each CPU -
volatile long double cpu_tt = (volatile long double *)CPU_TT; //
volatile long double cpu_td = (volatile long double *)CPU_TD; //
volatile long double cpu_pd = (volatile long double *)CPU PD; //cpu performance

density
volatile long double cpu_p = (volatile long double *)CPU_P; // cpu performance
volatile long double cpu_pp = (volatile long double *) CPU _PP; / /
volatile int s = (volatile int *)S;//
volatile long double p = (volatile long double *) P; / /

II Create GA gene type
struct genotype {
long double Tfi tness; / / execution time
long double Pf i tness • / / execution Power
tt cpustus [NOOFCPU]; / / runing cpu's
l ,
-ong double rfi tness • // relative fitness l , .
-ong double cfitness; }; // cumulative fitness
struct genotype population[POPSIZE+l];
~truct genotype newpopulation [POPSIZE+l];
ttmipsl[4];
-ong double fitp, fitt;
I I Pr
1 ogram functions
-ong d , ble CallPFitness ();
•,ih:~ double MinTime () ; / / calculate
" processors are sharing
- g doubl int b' e MaxPOWER () ;
''oicl 1n2ctec () ; / / Function used
hoc dec2bin (int decimal) ; I I

€sso o; rs status
lei l

lon nputMatrix (int id) ; / I
lon! double CallTFitness (); //
'ioicl ~OUble CallPFitness (); //

In: <"o a, // Processors

execution time
(minimum) overall

reference

decimal number
status to

Processors . 1 number to
to convert vertdecima d to con
Function use

ted input t crea value o .
Enter random 11 execution time

t 0vera . g power calculate ,j1 consumis it overa. cir outpbU
calculate . and repa ------- ;ttalizations
In

matrix

excel files

, 1ize (); I IG71,. initialization t ·tia s ep
·d if1J. te (void) ; I I GA evaluation st

voi al ua . . I / : ·ep ·d eV 1 (void), GA Selection step >' 1ect
id se the best() ; I I Keep the best ind. .

® aeP • // 3A hvidual in tr id J\. - ver (void) ; G Crossover step e population ® .yosso'
void c ver (int one' int two) ; / I apply Crossover bet
oid '/.O (void) ; I I GA Mutation step ween two individuals tate
Oid rn , t () . I I GA Accepting step

\
1 'tJ.5 '

d ell (, t ' d) d} ·pUPerformance ,1n i ; / / Function th
,oid calC , n the platform at used to execute sample on each
v or i
pr~:e::pPrint () ; I I Store output information in excel files
rol' fpl: fpr
i git1l7 . nt V [I] , ' ration,ll; .% gene
l double X7
ong ·d - , ·// processor 1
·nt id, · · · I I d . f
l ouble IIC' iiic; use in per ormance time calculation
1009 d · · · l · I/ l . - _0 ii z=0,1g,JJ, , oop pointer . t n- , '
JO aouble fit T ' fit P ;
1on9 °
int RunP; . best: I I Pointer to the best individual population int cur_ ,

double MinTime O { long
l ng double sum=O. 0;
.o i++) for (i=0; i < NOOFCPU;
sum= sum + cpu_p [i];
for (i=0; i < NOOFCPU; i++) {
cpu _td[i] =cpu _p [i] /sum;
)
sum= I*cpu_td[l] *cpu_t [l];
return sum; }
long double Max POWER () { int i;
long double sum=O;
for (i=; i < NOOFCPU; i++)
sum = sum +p [i] ;
return sum;}
int bin2dec () {
int i, sum=0;
for (i = O; i < NOOFCPU; ++i)
sum = sum + s [i]pow (2 , i) ;
return sum;
)

"id dec?bin(int decimal) {
int ± : 0 / j;
int remain;
do

Appendix B

S[i] =decimal% 2;
= decimal / 2; decimal

++i • J s f tle (decimal > 0) ;
O:t (j=i+l · j < NOOFCPU;
·1= o,) Vo· ,
l.d Inp tM 1· d) { int . u atrix (int

1, j . -, '
% 'S-71<1;++1)
ids=) p
~

j++)

h processor
d on eac

atrix lo@
I vector

V[i] = 2.23;III

t[O]:::O;cpu_pp[0]=0;
cPtJ-~ o·i<I;++i) {f[i] = 0·}
c6 + ' fo» o·i<l;++i) J:{l.:::: , '

£0 . 0 ·j<I ; ++J) t{J:::: ,
£0 "+ i * I] ::: 1 . 2 3 ;
lnterbatrex size = 2a rid X
p l'lllile (flag [2] != (NOOFCPU-l));

""av1 =-7
b
le call TFi tness () {

do 1 ,61e sum=0.07
g dou)Ofl

et h l . O. 1· < NOOFCPU; i++)
().,:::: I

for + s[i]*cpu p[i];
:::: surn -

sum (·::::O; i < NOOFCPU; i++) {
for i . td[i)==S [i] *cpu_p [1] /sum;}
cpU , for-(i==0; i < NOOFCPU; 1++)

if (s [i 1 ==== 1)

d Sucr·w<:; C -53Sul\r" 1
I I I> ;

!um:: r*cpu_td[i] *cpu_t [i];

reak ;)
return sum; }
long double CallPFitness () {
long double sum=0 . 0;
int i;
for (i = 0; i < NOOFCPU; i++)
sum== sum +s [i] *rnipsl [i];

return sum ; }
void init (int id) {
if (id==0) {
printf(" Starting ");
fp = fopen("phl.xls", "wt");
fpl = fopen("ph2.xls", "w-:-");

cpu_tt [0]=0; cpu_pp [0]=0;
mipsl[id] = 100;
p[id] = 155;}
if (id==l) {
mipsl[id] = 200;
P[id] = 2 90; }
if (id==2) {
mipsl [id] = 100·
lid] = 120; } ,
l~ (id==3) {
Ipsl[id] = 150:
~[id]= 95·}} ,
id ±,:, '
; . nitiali ze () {
•nt l , I] •
D ' ,opulat · ion['] . Popul. J .rf1tness=0.O;

@tion[5] · foi: . J • c fitness=O.0;
(J :::: O ; j < POPS I Z E ; j++) O)+l)'

{dec2bin ((abs (rand))&1 '
for (i = 0; i < NOOFCPU; i++) .. [i]==s[1],}

{population[j] .cpuStus lTfitnessO;
Population[j] .Tfitness == cal r·tnessO;}

' . . ::: callP l .
Population[]] .Pf1tness _1 o/o.O, · ess - · population[POPSIZE].Tfit ,,xH2050

f. tness -1·,
~Population[POPSIZE].P

1

(void) {
Appendix B

Oi j <POPSIZE; j++) {
for (i = 0; i < NOOFCPU · , i l++)

s[i] = population[j] ·cpustus [·
Population [j]. Tfitness _ C l]; - allTF'
population [j] . Pfi tness = C 1 ltness ();
if (bin2dec () ==0) a lPFitness ();

{
dec2?bin ((abs (rand())%208)+1) ;
population[]] .Tfitness = Call . , , TFitness ()
population[]] .Pfitness = C 11 , ; a. PFitnes: ()

, electl (void) { s ; } } }
«aid S, 3 k:
. nt rnern, l , J , '
1 double sum = 0;
109
jag double P;
// find total fitness of the population

(rnern = 0; mem < POPS I ZE; mem++)
for {sum += population[mem] .Tfitness; }
// calculate relative fitness
for (mem = ; mem < POPSIZE; mem++)

{population [mem] . rfi tness = population [mem] Tfit / . ness sum;}
population[0] .cfitness = population[0] .rfitness;
// calculate cumulative fitness
for (mem = 1; mem < POPS I ZE; mem++)

{population[mem] .cfitness = population[mem-1].cfitness +
population[mem] .rfitness;}

// finally select survivors using cumulative fitness.
for (i = 0; i < POPSIZE; i++)

{p = rand()%1000/1000.0;
if (p < population[0] .cfitness)

newpopulation[i] = population[O];
else

for (j = 0; j < POPSIZE;j++)
if (p >= population[j].cfitness ~&

p<population[j+l].cf1tness)

1 t
, n[i] = population[j+l];}}

newpopu a 10
// . , d py it back once a new population is create , co
for (i= O s : ·) - ; l < POPSIZE; i++

population[i] = newpopulation[i];
"oid k , eep_the best() {
-nt mem • -
ht ±. ,
r_best =
for (mem =

{

best individual
0; stores the index of the
0; mem < POPSIZE; mem++) && population[

{ t'on[POPSIZE],Tfitness
. <populai.l if (population[mem].Tfitness
mem].Pfitness <= fitP)

] Tfitness;
tion[mem.· }

cur best = mem; = popula] pfitness; }
pop\lat±onto#stzs].T5it°°_ ,splationl"",, aces

] Pf itness a, copy
I/ population [POPS I ZE · · foun ' Ones n1ation 3 i]') fo» the best member in the popu] cpustus [i ; ... (i ,r bes . • _

1 ::: 0; i < NOOFCPU; i ++) .] = population [CU - -

~lation[POPSIZE].cpuStuS[l

{

poPerformance (int id) {
C81C ·d

«o> , ±· ir}' t · •ot i processorins ructionCount () .
~ . IllP ' ' ,
l1c:::: i . ·-o •ii<I ;ii++) (11 '
®.,,1Mt±117
1 f \l t [id]== impProcessorinstructioncount {) / .
cP -. . . <I ·++i) m1ps1 [id].

(1 :::::0 , l , ,
fo~M[i]==V[i] *cos (Vl [i]);}
{ t[id]==impProcessorinstructionc
cpll_ ['d]==l/cpu t[id]; ount()/mipsl[id]- ptl p 1 - cpu_t[id];
c [3] . } / / all CPU, s are execute th +flag ' e sample

+ ·d popPrint (long double tavge, int g) {i
pol
nt i, j ; . . . d \ II ,,r("cen. mintime-> · v',g);
rint 5

P (j::: O; j < POPSIZE; j++)
for { print f (11 \ n ") ;

for (i = O; i < NOOFCPU; i++)
{s[i]=population[j] .cpustus[i];
fprintf(fp," .'d\t ·-u\t: d\t. .u\t. ·,J\t"
,s[i] /*CPU STSTUS*/
,cpu td[i] /*CPU SHD*/
,round(I*cpu_td[i]) /*CPU SD*/
,cpu_t[i] /*CPU SAMPLE EXECUTION TIME*/
,I*cpu_td[i]*cpu_t[i]); /*CPU OVERALL EXECUTION TIME*/
}
fprint f (fp," d t - u \ t: ·, u \n", j, population [j] . Tfi tness, population [j] .

Pfitness) ;}
fprintf {fpl, w d\-c·'u\t:'-u\t .J.\n" ,g,population[POPSIZE+l] .Tfitness,tavge,population[

P0PSIZE+l]. Pfitness);}
void Xover (int one, int two) {
int i, temp;
int point; /* crossover point * /
/* select crossover point * /
if(NOOFCPU > 1)

{if (NOOFCPU == 2)
point = 1;

else
point = (rand() % (NOOFCPU - 1)) + l;

for (i = O; i < point; i++)
{temp = population [one] . cpuStUS [i]; tus [i] · lation[two].cpust '
Population[one] .cpustus[i] = popu
Population[two].cpustus[i]= temp;}}} 1 ted parents.

// C f the two se..eC
rossover: performs crossover 0

"oid . crossover (void) {
lnt · -, mem one:
lnt · 1

' first = O: / 1on ' "S double x:
for <

(mem = O; mem < POPS IZE; ++mem)

bers chosen / of rnern
count of the number

{x == rand()%1000/1000.0;
if (x < PXOVER)

{++first;
if (first% 2 = 0)

xover(one, mem);

lse

one = mem; } } }

tate (void) { a go} :· ' J, »" tJbl e X ; @_ ; i <POPSIZE; i++)
tot (J. (J' == 0; j < NOOFCPU · ~ for ,

{
x = rand()l000/1000.0;
if (x < PMUTATION)

{

Appendix B

j++)

if (l popu at ion [i] ·cpustus[==
population [i] . cpust [~]--l)

else us J l=O;

population [i]. cpustus [.]= .
}}} J 1,

;a elitist O { ol
int i;

ble bestT worstT,· /* b
l
ong ctou , est and worst f itness values /
iong double bestP, worstP;

l
·nt bestT _mem, worstT _ mem; /* indexes of th b le est and worst member*/
estT = population [O]. Tfitness;
worstT = population[0] .Tfitness;
bestP = population [0] . Pf i tness;
worstP= population [0]. Pfi tness;
for (i = O; i < POPSIZE - l; ++i)

{
if (population [i] . Tf i tness < population [i+l]. Tfitness && population [i].

Pfitness <= fitP)
{
if (population [i] . Tf i tness <= bestT && population [i]. Pfitness <=

f itP)
{
bestT = population[i].Tfitness;
bestP = population[i].Pfitness;
bestT mem = i;
}

if (population[i+l] .Tfitness >= worStT)
{ worstT = population[i+l].Tfitness;
worstP = population[i+l].Pfitness;
worstT mem = i + 1;}}

else

. >= worstT)
if (population[i].Tfitness

{

{

; [±j Tfitness;
worstT = population 1

· . . . ,] ptitness,
worstP = population[l.·
worstT_mem == i;}. <= bestT &&

if (population[i+l].Tfitnes
fitP))

. n[i+l].Pfitness <=
(populatlO

{ . 1] Tfitness;
' m[i+ · bestT == populatio . pfitness; :inti+ll

bestP = populatio! ±han '/
I - i + 1;}}} . better 'ts bestT_mem ,1atio°, en '
,P®® indiviaua1 from the new P ,%,lat

€ b, 3reviol©
~ individual from the P

t from the Appendix B
ghe bes! new populati ,

/
' individual from the curre t on, else rep] rst n Popul · ace th

/
1 1,0 ,,,

8
from the previous gen _, at ion With e at 9 s eration the <= population [POPSIZE]. Tf,

(
pest , 1tness &

f (i= O7 3 < NOOFCPU; i++) &
(foF 1ation[POPSIZE] .cpustus[i] = po"- s °POpulat:

1atiOD [POPS I ZE] . Tf i tness = lon [bestT
poPu 1ation [POPS I ZE] . Pf i tness = population [bestT me;~em]: cpustus [i];
oo" Population[be " ·{fitness; estT mem] Pf: '
e - · ltness }

e!S {fot (i = 0; i < NOOFCPU; i++) ;

P
opulation[worstT_mem] .cpustus['] _ l = popul. t · opulat ion[worst T _ mem] . Tf i tness _ a 1on [POPSI ZE] = populati [.cpustus[i].

opulation[worst T _mem] . Pf itness = -On[POPSIZE].Tfit ' populati [ess;

d
ouble calcPOPSI ZE (int g) on ;POPSIZE].Pfitne: : }

1on9 Ss;] }

(int i;
iong double sum= 0.0, Tavg = 0.0;
for (i:: O; i < POPSIZE ; ++i)

_ sum + population [i]. Tfitness.
~- I

avg = sum/POPS I ZE;
return Tavg; }
int main (int argc, char * * argv) {

*/
·k I

(bestp <- . * I = fitP))

int i;
long double mintime ;
id= impProcessorid () ; / / PROCESSOR ID
flag[] = 1; / / used to enter matrix
cpu_t[id] = 0.0;// used to initial performance time
cpu _p [id] = 0 . 0 ;
init(id) ;//creat output files, and enter MIPS valu for each matrix
inputMatrix (id) ; / / Input Matrex Data and load it in share memory
do{} while (flag[l] ==l) ;// all processors wait while Enter input matrix to

share memory
calCPUPerformance (id) ; ; / Measured a time that need to execute the sample for

each processor
do {} while (flag [3] !=NOOFCPU); / /wait for sample processing from all

processors
if (id == 1) / / Execute the algorithm on one processor
fitP = O, 9*MaxPOWER · / / Determine the value of power
// ' I begin GA procedure

initialize ();
evaluate() ;
keep_the best () ;
while(generation <= MAXGENS)

{

generation++.
I

select l () ;
Crossover () ;
mutate() ;
evaluate() ;
elitist();
Tav ·) · ge =calcPOPSIZE(generation] i
Popp , } f], 'Fint(favge,generation) co

, Ose (fpl) <e±, rn »;)

Appendix B

/////////////////////

"[ass 8.3 /hh[III
I I p,pP / / / / / I I I I I I I I I I I I I I I I
/II I " e . h >
Jinclll e <:stdio. h>
.4c96° 1l <:stdlib. h>
.,c10d€° ,, <impTypes.h>
· cl tJ e ae <:string. h>
±nclU : 4 h " {de "rnrnrnul ti core _ etero. h 11
rcl
s fP;
fl . le float * a = (volatile float *) A,·
volatJ. (. / / INPUT . le float *l = volatile float *) L,· // MATRIX
volatJ. LOWER

tile float u = (volatile float *) U; // MATRIX
vola . . . UPPER MATR
'd rnputMatrix (int id) ; / / ENTER THE INPUT IX

vol ' // MATRIX IN s id lu (int id) ; MEASURED SAMPLE EXECUTION HARE MEMORY
vo , (. . d TIME FOR EACH a InputMatrix [int i) { PROCESSOR
vo1

int i=O, j=O, k=O;
for (i=O;i<I;i++)
for (j=O;j<I;j++)
a[i] [j]=i%(j+l)/3;

print f(" \nEnt erbMatrex Size
void lu (int id)

t2d X ·.d Successful\n",I,I);}

frintf(fp," u\ t 11, impProcessorinstructionCount {));
for(i=2000; i<2001; i++)

{
for (j=O; j<I; j ++)
{

if (j<i)
{ 1 [j] [i] =O ;
}

else
{

l [j] [i] =aa [j] [i] ;
for(k=O;k<i;k++)
{

l [j] [i]=l [j] [i]-1 [j] [k] *u[k] [i];

} } }
for (j=O; j<I; j ++)
{

if (j<i)
{ u [i] [j] =O ; }

else if (j==i)
u[i] [j]=l;

else

u[i] [j]=aa[i] [j]/l[i] [i];
for(k=O;k<i;k++) . l[i][i]);}}}}
{ . ['][k]*u[k][J])/

u[i] [j]==u[i] [J]-((l
1

. ncountO>; }
[pr; ·Instruct?© s, f3tf(fp,".",impProcess0

main(s { lnt . int argc char argv)
l· '

~essorid(); // PROCESSOR ID

{

T INFORMATION IN A SEPARATE FOLDER To AV
// f_;)(pOR 0) fp = fopen("POWERPC32/phl xl

II
OID OVERLAPPING

-::::: ' ' S f 11111+ 11) , ;.£ (~d :::::: 0) fp = fopen(::l-\RM/phl.xls", "vi,"); '
·£ p.d _ 0) fp = fopen(M1PS32/phl.xls" "vi+").
J. ·d :::::- ' ,
;£ (l- _ O) fp = fopen ("ORlK/phl. Y.ls", "',Ji"). d ==- ,
;.£ (l- t:riX (id) ;
rpgut Na
6@)5
£ 1ose (fp) '. . h-------------\n") . " .r(\finis! 7 rint
p turn O;} re

AppendixB

2

;1///////////////
"[at» B.4 ///III
/ I p.,~~ I I I / / / I I I I I I I I I I I
/II I de math.h>
cl 9 11 de <stdio. h>
:«cl9 al <stdlib. h>
±clad° ,1 <irnpTypes. h> ,cud€
H <string. h>
,»cl ude

11 de 11rnrnrnul ticore4 hetero. h" nclU6 . e I = 10000 / / PROBLEM SIZE ef1
ioefine NOOFCPU = 8 / / NUMBER OF PROCESSORS IN PLATFORM

±LE fp;
latile float f vo

CALCULATE SHARING
volatile float a = (volatile float *)A; // *l (l INPUT MATRIX store in
volatile float = vo a tile float)L; / / LOWER MATRIX store in
volatile float u = (volatile float)U; // UPPER . * · MATRIX store in
volatile float Time = (volatile float)TIME: // ' TOTAL EXECUTION
volatile float Performance = (volatile float *) PER FORMANCE; // PERFORMANCE FOR

EACH PROCESSOR
volatile float *cpu_sh = (volatile float *)CPU_SH; // SHARING DATA FOR EACH

PROCESSOR
double long IC; / / INITIAL POINT USE TO CALCULATE SAMPLE EXECUTION TIME AND

TOTAL EXECUTION TIME
int SH[NOOFCPU]; / / processor sharing (=l) in processing or no (=0}

void InputMatrix (int id)// SUB ROUTINE TO INPUT A MATRIX
void samplelu (int id) //SUB ROUTINE TO MEASURE SAMPLE EXECUTION TIME, CALCULATE

= (volatile float)FLAG;
FOR EACH ONE / / FLAGE, ALL PROCESSOR WAIT DURING

share memory
share memory
share memory
TIME

LOWER AND UPPER FOR ONE ROW
void ClacSharing (int conf,int id) / / SUB ROUTINE TO CALCULATE DATA SHARING FOR

EACH PROCESSOR
void Distributelu (int conf, int id) / / SUB ROUTINE TO DISTRIBUTE DATA SHARING TO

PROCESSORS AND MEASURE TOTAL EXECUTION TIME FOR EACH ONE
void PrintResult (in id, FILE fp,int conf) // SUB ROUTINE TO OUTPUT THE RESULT

void dec2bin (int decimal) {
int i = 0, j;
int remain;
do

SH[i] = decimal % 2;
decimal = decimal / 2;
++i·

) Wh' ' ile (decimal > O) ;

for (. . S J=i+l; j < NOOFCPU;
H[j] = 0·}

"id L, ' . nputMatrix (int id) {
Int i= - ,j=0,k=O;
for (i=;i<I;i++)
for (j::0 . . = ;j<I;j++)
a[1+I*j]=rand()/255;

Voi/t int f (II L !:: r r ,.:, ~ I : , : l '. r- /.

I sarnplelu (int id)

', linpProcessorinstructioncountO;

j++)

0 TO 255
/ /RANDOM VA~UE FROM . ",I, I);}

;i<2001;i++)
Ge'' po 'tor(j=07j<I;j++)

{
±f (j<i)

{ l [j] [i] =0 ;
}

else

l [j] [i]=aa [j] [i];
for(k=0;k<i;k++)
{

l[j][i]=l[j][i]-l[j][k]* [.
} } } u k] [l] ;

for (j=0; j<I; j ++)

{
if (j<i)

{ u [i] [j] =0 ; }
else if(j==i)

u[i] [j]=l;
else
{

u [i] [j] =a a [i] [j] / 1 [i] [i) ;
for(k=;k<i;k++)
{

u[i] [j]=u[i) [j]-((l[i] [k]*u[k] [j])/l[i] [i]) ;}}}}
Time [id] = (impProcessorinstructionCount ()-IC) /rnips (id));
Performance [id] = 1/Time [id];}

void ClacSharing (int conf ig, int id)
{

long double sum=0. 0;
int i;
dec2bin (conf ig)
if (id==O)
{

for (i=0; i < NOOFCPU; i++)
sum= sum + SH [i] *Performance [i];
for (i=O; i < NOOFCPU; i++) {
cpu_sh [i]=round (SH [i] *I*Perf ormance [i] /sum) ;
f[lJ =l;}}}
"oid D: istributelu(int id)
{

IC - · () - impProcessorinstructionCount ;
[or(i= 3 = ;i<cpu sh[id];i++)

{ -

for(j=0 ;j<I ;j++)
{

if(j<i)
{ l [j] [i] =0 ;
}

else
{

l [j] [i]=aa [j l [i];
for(k=O;k<i;k++) ; ·}}} (4 (taotk)

1ti1ti]=1Lilt±-!9
2

u0- 751+1+
{

Appendix B

±£ (j<i)
{u[il [j]=u;}

else if (j=i)
u[i] [j]=l;

else

u[i] [j]=aa[i] [j]/l[i] [i .
for(k=O;k<i;k++)],

{

u [i] [j] =u [i] [j] _ ((l [.]
. P l [k] *u [k] [.

Tl
·rne[id] == (imp rocessorinstructi· C J])/l[i][']) on ount()- . 1 ;}}}}

[
~]++;} IC)/m1ps(id)).

ag''
d
• printResul t (in id, FILE *fp, int co: f i n ig)

t i;
pa==)

. ~,~ 11~::-- -~ - -~-- ~ ' -.,--- inti(Ir- -- - ----¥ \F-0.4 EXECUTION TIE
ir (i==2; NOOFCPU; i ++)
Jrintf(fp,"::. -:.::: -:.·..: :--_",i,config,Time[i]);}}
it main (int argc, char **argv) {

ti;
ing double conf ig;
onfig = pow (2, NOOFCPU)

har file_ name[<];
sprintf(file_name, ";:.:_,s_-:::.:::::--. :::", NOOFCPU);

=fopen(file_name, "-");
d = impProcessorid () ; / / GET PROCESSOR ID
nputMatrix (id) ;
aplelu(id) ;
"[i] = O;
tor (i = :l ; i < config; i++)
I
acsharing (i, id) ;
o{} wile(f[]== 0);
Distributelu (id) ;
he(Et) <oorcPU) ;
Result (id,fp,i);)
tclose (fp) .
p ' ,
. tint f (" ~ -= , - _ _ ~
return G .i ;- . - ;c, •• - - - - - - - - - - - - -

llllllllf""" ~----~
;/////////////////////

I I JWPendiX B. 5 / / / / / / /
/!///////////////!//I I I/
[I di h ., -1ude <stdio. »>
yin© . lude <stdlib. h>
gin© tti!lclude <impTypes. h>
,+aclude <string.h?
' . elude "rnmmul ticore4 hetero h" 7 ,ae fine NOOFCPU 4
flLf. *fp;
volatile float * aa = (volatile float *)A· / /
volatile float *ll = (volatile float *)L'· . t , / /

//
sub rotine o execute one image (sample)

void rilterirnage (int id)

Appendix B

INPUT IMAGES MATRIX
OUTPUT IMAGES MATRIX

{ for (I== 500 i I <3001; 1=1+500)
{printf ("\n begin I = 'd-------------\n" ,I);
noat aa[I] [Im] ,ll[I] [Im];
int i==O,j=0,k=O;

for (i==0; i<l; i++)
for (j==O;j<Im;j++)

aa[i] [j]=j%255;
fprint f (fp, 11 • d \ tu\ ",1, impProcessorlnstructionCount ()) ;

for(i=; i <Im; i ++}
{ ll[0][i]= (aa[O][i]*(2*i))/(aa[O][il*(i+l)) * aa[O)[i);

} fprintf (fp, 11• u \n", impProcessorinstructioncount ()) ; } }

int main (int argc, char **argv) {

int i;
// TO AVOID OVERLAPPING
if (id == 0) fp = fopen(""i/phl.xls", "")7
if (id== 1) fp = fopen("P2/9".1.x::..s",

11

'.'

7
-");

if (id == 2) fp= fopen("/hi.xls", ""
l
. f (. d f (" "'/ /1 ls II "-.,,- ") ; l ==== 3) fp = open .,., p,.- · _,_ '
id = impProcessorid () ; / / PROCESSOR ID

Filterlmage (id} ;
fclose (fp} ;
printf ("\n::.:..r-,is:-.------------- .'.",");

return O;
}

AppendixC

,,49g g 8 8 8 3 % % 8 % 8 3 %.% % 3 3 33gggg g9 as8" '®%%5%%%%%% 33g949
%%% ,.-,di){ C .1: return to chapter th o·a1,1,-0%%%%9-9-g.a_o pe" ree · • • ••·•• • s,,n source code .m that use t implementati aooo

e<P a • • • • oo oo •. 0 ° anal · . on %%
%% o o i9,9-%-o-5'15%'o'15'1515'15'15'6'09,9-9-9-g.g.o o ysis Ei {4gs3°"" 7#88%8%88%%%%3gg4, .read (' d: TP\GAMULC4 \ph1') :

0

"'"•%%%%%"••
00

OP0''15 read (' d: \ T P \GAMULC 4 \ph2 ,) '.

0 0 0

' o%
1::::){lS 000000000 , w 009-9-%%%%%'15'15'6'6'6'15'15'6'15%%%%%
, g 8 8%°

%%% ~E GE:t.JERATION %%%%%%%%%
t% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ai4~%%%'6'6'6'15'6'6'6'6'6'15-'6'6'6-'6'6-'6-'6
gg 8 855°° ~ u--[DPO (: , 1) , opO (: , 6) , DpO (: , 11) , DpO (. 16) l cP ~ • ' • 9-CPU
sao•[OPD (: '2) 'opD (: '7) 'DpO (:,12),DpO : '17) 1 ·,; CP~s STATUS
,[Dpo(:,3),DP0(:,8),Dp0(:,13),DpO(: 18)]·o ,s SHD SD' • • , , '6 CPU Is SD
c"''[DpO (:, 4) , opO (. , 9) , DpO (., 14) , DpO (. 1 g) l O

C S1,!~ • ' ; '6 PU SAMPLE E

V11

LLET:::[Dp0(:,5) ,Dp0(:,10) ,Dp0(:,15) DpO(· 20) XECUTION TIME o' · , l ·gCPU O
I saow RESULT '. VERALL EXECUTION TIME

){lswr:ite('d:\TP\GAMULC4\SHD.xls', [CPU,SHD]) ;
){lswr:ite('d:\TP\GAMULC4\SET.xls', [CPU,SET]) ;
swrite ('d: TP\GAMULC4 \SET. xls' , [CPU, SET]) ;

,959900999gggggggggggQg
% % % % % % % '6 '6 '6 '6 '15 '15 '6 '6 '6 '6 '6 '6 '6 '6 15 '6 -'6 '6 '6 -'6 -'6 '6

%% MANY GENERATION
%%%%%%%%

%%%%%%%%%%%% %% %% %% % % % % %% % %%% %
GENERATION = Dpl (:, 1) ; %GENERATIONS
MINET = Dpl(:,2) ;%MINIMUM EXECUTION TIME
iWGET= Dpl (:, 3) ; %AVARAGE EXECUTION TIME
CONP0WE = Dpl (: , 4) ; %CONSUMING POWER

-.
~ .. ,,.,,,,c

;pg44#########################+ ' c.2: return to chap&\.'f##0sis o° Fee in "f#### ti , n source code . make that implementat. r r#11111Ht#11##liii
, ,,p1ar use to co . ion ,.
ti i II I 11ii1Hill U illllillltllltli Hi H Ii H 1111 #II U II mpi le experimen . I I
1111~5 HOME :~ $ I shell getpath. exe "$ /Hlilllillllllllllll t f~les II
1ir£. / 1ocallY without using a VLNV l _ IMPERAS _HOME) "I 111111rn11111

1
aorl ibrary

a +1d using
,Bu> 'cnsS?=°
,,% (uAKEPASS) 7 0)
+fed

3115 $(MAKE) MAKEPASS=l
, (MAKE) MAKE PASS=2
$(MAKE) MAKEPASS=3
$ (MAKE) MAKEPASS=4
$ (MAKE) MAKEPASS=5

two passes so that each pas includes separate Makefiles

clean:
$ (MAKE) MAKEPASS=l clean

$ (MAKE) MAKEPASS=2 clean

$ (MAKE) MAKEPASS=3 clean

$ (MAKE) MAKEPASS=4 clean

$ (MAKE) MAKEPASS=5 clean

endif
~ Pass 1 build the Platform
ifeq ($ (MAKE PASS) , 1)
SRC=platform. C include $ I IMPERAS _HOME I / rmpera s Lib/source /buil du til s /Makefile . p 1 a tform

endif
~ Pass 2 build the Application

ifeq ($ (MAKEPASS) , 2)
OPTIMISATION?=-O2
CROSS=ARM7
SRC?=application. c
SRCINC?=
INCOBJ=$ (patsubst % • c, % • $(CROSS) • o, $ (SRCINC))
EXE=$(patsubst %.c,%.$(CROSS) .elf,$(SRC))
-include $ (IMPERAS HOME) /bin/Makefile· include . , l d
·include $ (IMPERAS- LIB) ;crossCompiler/$ (GROSSI .makefile.inc u e

endif
ifeq ($(MAKEPASS) 3)
OPT ' lMISATION?=-O2
CROSS=OR 1K

SRC?=a . s pplication. c
RCINC?= Coss7 ,ssRcINCO
~E - (patsubst %.c,%.$(CROSS) .o,
•. •$(patsubst %.c %.$(CROSS).elf,$(SRC)l d
1
nc1 ' • 1, tnclude : .lude ,@e $ (IMPERAS HOME) /bin/Makefi e.r ossl .makefile.inc

["ae s (wsass)/crosscompile/°
lf -

ifeq
0PTIM~$ (MAKE PASS) , 4)

SATION?=-02

~ a° ,j±cation-©
C1::::aPP

sf+ c?=
5
p.Cl . $ (patsubst % .c, % ·$(CROSS) .o $ (SR

o!3J:::: o $ ' CINC))
1NC atsubst %.C,'o• (CROSS) .elf,$(SRC)
BtE::::$ (P $ (n-1PERAS _HOME) /bin/Makefile .) ude '·1nclude
,inc d $ (H1PERAS_LIB) /CrossCompiler/$ (C ·nclU 8 ROSS) m k . :' I$ I$ I cROSS) - CC) ') . a eflle. include

ifeq ,ipERAS ERROR : = $ (error "Error . $ (CR
ll'J - • OSS) cc installation of toolchain for $(CROSS)") - not set. Please check

di
endif . 2 build the Application
~ pass
ifeq ($ (MAKEPASS), 5)

oPTitvlISATION?=-02

ass=MIPS 32
ac=application. C
RC INC?= INCOBJ::$ (patsubst % . c, % . $ (CROSS) .o, $ (SRCINC))
EXE==$(patsubst %.c,%.$(CROSS) .elf,$(SRC))
±clude S (IMPERAS _HOME) /bin/Makefile. include
-include $ (IMPERAS_LIB) /CrossCompiler/$ (CROSS) .makefile.include

ifeq ($($(CROSS)_CC),) IMPERAS_ERROR := $ (error "Error : $ (CROSS)_CC not set. Please check

installation of tool chain for $(CROSS)")

AppendixC

endif
endif
applicationFiles: $ (EXE)
%.$(CROSS) .elf: %.$ (CROSS) .o

$ (V) echo "Linking $@"
$(V) $ (IMPERAS__LINK) -o $@ $< $ (IMPERAS_LDFLAGS) -lm

%.$(CROSS) .o: % . c
$ (V) echo "Compiling $<"
$(V) $(IMPERAS_CC) -c -o $@ $< -02

~ App,001,c

0
% 0. 9! 9~ ~ % % % % % % % % % %

q g 8&bb50° ,4a1x C.3 88ssss
~ % p,pP O a a o o o o o o o o o sag3%838%% %565555
g8 &5°° gs\ne max Measurements ov ete" Per all ex

p l•l:NOOFCPU*power(2,NOOFCPU(l))-l ecution

fot' if (TirneP~ (i,2) .== TimeP4 (i-1,2))
if (TimeP4(i,3) > TimeP4(i-l 3

4
. ,)

max = TimeP4(i,3);

end
MesurTime4(TimeP4(i-1,2)) = max4;

end ,4 1=1 :NOOFCPUpower ? ,NOOFCPU(2))-1
if (TimePS(i,2) == TimePS(i-1,2))

if (TimePS(i,3) > TimePS(i-1,3)
max8 = TimePS(i,3);

end
MesurTimeS(TimePS(i-1,2)) = max8;

end
~r i=1:NOOFCPU*power(2,NOOFCPU(3))-l

if (TimeP16(i,2) == TimeP16(i-l,2))
if (TimeP16(i,3) > TimeP16(i-1,3)

ma:x:16 = TimeP16(i,3);

end
MesurTime16(TimeP16(i-l,2)) = maxl6;

end
£or i=l:NOOFCPU*power(2,NOOFCPU(4))-1
if (TimeP32 (i, 2) == TimeP32 (i-1, 2))

±f (TimeP32(i,3) > TimeP32(i-l,3)
ma:x:32 = TimeP32(i,3);

time (fi , nish execution time)

end
MesurTime32(TimeP32(i-l,2)) = max32;

end
fur i=l:NOOFCPU*power(2,NOOFCPU(5))-l

if (TimeP64(i,2) = TimeP64(i-l,2))
if (TimeP64(i,3) > TimeP64(i-l,3)

ma:x:64 = TimeP64(i,3);

end
MesurTime64(TimeP64(i-l,2)) = max

64
;

end
for · 1 1=1:NOOFCPU*power(2,NOOFCP0(6))-

if (TimeP128 (i, 2) = TimeP128 (i-l,
2
))

if (TimeP128(i,3) > TimeP128(i-l,
3

>

max128 = TimeP128(i,3);
end == rna:x:128;
MesurTimel28(TimeP128(i-1,

2
))

end
~ urernent
'alcLs ,±sn and me® 5) 1097
!RR ate error be tween cal cul a

O
/ M 5urTime4 (' l

!~ 0R4 = ((MesurT ime4 (:) _MA)(Tlt-!E4 (:)) e urTlmeB (:)) •100; "es skas o-is t. ,,"fist?} '/" ®ill&-l&if?]Ji[[
R32 = (MesurTime32 (:)-MAxTIME??

~ AppendixC

4493388 8 8 % % %% % 8 8 3 3 % % 3 %
,4g8 ° +°,,8ix C.4 88888388%ss

s P",4sssssss&3s8ssssss
sss° s' .} sample execution time inf po' (Formation t
" i-xlsread (0: \ TP\IMPl \ POWERPCJ2\ ables 3ata- , \ ph 1

1

) •
z::::xlsread(0: TP\IMPl\ARM\phl'). ,

at@ "\I '
3
-xisread(0: TP\IMP1\MIPS32\phl

aata - 1 ') ;

aata4::::x1sread~ o:\TP\IMPl\ORlK\phl');
.lsread('D: \TP\IMP1\MIPS') ;

t
~act instructions count for h %£){ J.. eac processor

rel:::: datal(:,2) - datal(:,1);
c= data2(:,2) - data2 (:, 1);
1
c
3
::: data3(: ,2) - data3(: ,1);

1
c
4
::: data4 (: ,2) - data4 (: ,1);

collect mips values for every platform processors

i,11PS4:::: 0(4/4:4/4+4/4-1,2:5);
i,11PS8 :::: 0 (8 / 4: 8 / 4 +8 / 4-1, 2: 5) ;
i,11PSl6:::: 0(16/4 :16/4+16/4-1,2:5);
~ps32 == 0(32/4:32/4+32/4-1,2:5);
yrPS64 = D(64/4:64/4+64/4-1,2:5) 7
MIPS128 = 0(128/4:128/4+128/4-1,2:5);
Calculate the time need to execute sample for each processor in the platforms
T!ME4 = [IC1./MIPS4 (: , 1);1C2./MIPS4 (:,2) ; re3. /MIPS4(:, 3) ; IC4. /MIPS4 (:, 4)];
TIMES = [IC1./MIPS8 (:,1) ; re2. /MIPSS (:, 2) ;IC3./MIPSS (:, 3) ;IC4 ./MIPSS (: ,4) J;
TIME16 =. [rel. /MrPS16 (:, 1) ;102./MIPS16 (:,2) ;rC3. /MIPS16 (: ,3) ;IC4. /MIPS16 (: ,4)];
TIME32 = [rel. /MIPS32 (: , 1) ; re2 ./MrPS32 (; , 2) ; IC3. /MIPS32 (:, 3) ; IC4. /MIPS32 (:, 4) J;
T!ME64 = [rel. /MIPS 64 (: , 1) ; re2. /MrPS64 (: , 2) ; IC3. /MIPS64 (:, 3) ; IC4 ./MIPS64 (:, 4) l;
TIME12S = [rel. /MrPS128 (; , 1) ; re2. /MIPS12S (:, 2) ; IC3. /MIPS12S (:, 3) ; re,. /MIPS128 (:, 4) 1;
I= 1000;% detemine problem size
I Collect number of processors for all platforms in one matrix
NOOFCPU = [1 ength (TIME

4
) ; length (TIMES) ; length (TrMEl 6) ; length (TIME32) ; length (T IME64) ;

length(TIME128)]; %Building a matrix of all possibilities for the participation of processors

CONFIG4 = de2bi ([1: power (2, NOOFCPU (1)) -l l) ;
roNFIG8 = de2bi([l:power(2,NOOFCPU(2))-l));
COOFIG16 = de2bi([l:power(2,NOOFCPU(3))-l));

CONFIG32 = de2bi ([l: 5000], 32);
CONFIG64 = de2bi ([l:5000] ,64);
CONF1G128 = de2bi([l:5000],128);
%Cal 1 · cu ate over all execution time
sharing Data, and Fit T for overall
C4 =Call Fi tTP (TIME4,CONFTG4, 1) ;
K4 = ' f - round(I*C4 (:, :)) ;
or r==l: length (K4)

for i=l:NOOFCPU(l)
fit_T4(r,i)=K4(r,i)*TIME

4
(i);

C for sharing density, K for

for everY platform,

execution time

end
end
cs -c Ks = all Fi tTP (TIME8, coNFIG8, I) ;
s,, F9narcs (G,:))7

t==l:length(K8)

----;; i=l :NOOFCPU (2)
fit_TB(r,i)=KB(r ') ,r1 TIME8(i) ;

end

AppendixC

and c16 ::callFitTP(TIME16,CONFIGl 6, I) .
1<16 == round(I*Cl6(:, :)) ; ,
for r=l:length(K16)

for i=l:NOOFCPU(3)
fit_T16(r,i)=K16(r ')* ,i TIME16(i);

end

end
c32 ::CallFitTP(TIME32,CONFIG32 I).
1<32 == round(I*C32(:,:)); ' '
for r=l:length(K32)

for i=l:NOOFCPU(4)
fit_T32(r,i)=K32(r,i)*TIME32(i);

end

end
c64 =CallFitTP(TIME64,CONFIG64,I);
1<64 = round(I*C64(:,:));
for r=l:length(K64)

for i=l:NOOFCPU(5)
fit_T64(r,i)=K64(r,i)*TIME64(i);

end

end
Cl28 =CallFitTP(TIME128,CONFIG128,I);
Kl28 = round(I*Cl28(:,:));
for r=l:length(Kl28)

for i=l:NOOFCPU(6)
fit_T128(r,i)=K128(r,i)*TlME128(i);

end %%determine max calculations over all execution time (finish execution time)

MAXTIME4 = max(fit_T4
1
);

x4 = bi2de(CONFIG4);
MAXTIMEB = max(fit T8

1
);

x8 = bi2de(CONFIG8)~
MAXTIME16 = max(fit Tl6

1
);

xl6 = bi2de(CONFIG16);
MAXTIME32 = max(fit T32

1
);

x32 = bi2de (CONF1G32) 7
MAXTIME64 = max(fit T64

1

);

x64 = pi2de (CONFIG64) 7
MAXTIME128 = max(fit T128

1

);

x128 = bi2de (CONF1G128) 7
%inport Measured overall execution time
TimeP4 = xlsread('D:\TP\IMP1\platforrn4');
TimeP8 = xlsread('D:\TP\IMP1\Platforrn8');
"imeP16 = xlsread(':\TP\IMP1\platform!0'
TimeP32 = xlsread(':\TP\IMP1\platform3&')
"imeP64 = xlsread(':\TP\IMPI\platform6°' : 128')Y°
!imeP128 = xlsread(':\TP\IMP1\plat!OF"° ''

2

end

AppendixC

,g4######l#########I######## "! APPendiX c. 5 return to cha lllillliilllllll\'I""' ## @Per fo _ '##l###i#####4 plain source code .make th our implem .
1
1r 11tlHl#ll##lHl####u fi e at use lentation 1 "

fi I I II 11111111111 I II illlil 11111111 UH 111 UH HI to compile . 11 !"so=sag,,#hniil" @+ MP 'exe "$(#i############
ouild 1ocally without using (IMPERAs HOME)" r 11######## a VLNV 1 · b -)
vLNV} Pry
u Build using two passes
{t

«xE PASS ?=0
ifeq ($(MAKE PASS) , 0)

all: s (MAKE) MAKEPASS=l
s (MAKE) MAKEPASS=2
$(MAKE) MAKEPASS=3
$(MAKE) MAKEPASS=4

so that each pas . includes separate Makefiles

clean:
s (MAKE) MAKEPASS=l clean

s (MAKE) MAKEPASS=2 clean

$ (MAKE) MAKEPASS=3 clean

$(MAKE) MAKEPASS=4 clean

endif
4 Pass 1 build the Platform
ifeq ($(MAKEPASS),l)

SRC=platform. C include $(IMPERAS_HOME)/ImperasLib/source/buildutils/Makefile.platform

endif # Pass 2 build the Application to execute on ARM processor

ifeq ($ (MAKEPASS), 2)
OPTIMISATION?=-02
CROSS=ARM7
SRC?=application.c
SRCINC?=
INCOBJ=$ (patsubst % . c, % . $(CROSS) . o, $ (SRCINC))
EXE=$(patsubst %.c,%.$(CROSS) .elf,$(SRC))
-include $ (IMPERAS HOME) /bin/Makefile· i

n
clude . . - . /$(CROSS) makefile.include

-include S (IMPERAS_LIB) /CrossCompile
endif

te on ORlK processor

Pass 3 build the Application to execu
ifeq ($(MAKE PASS) , 3)
OPTIMISATION?=-02
CROSS=ORlK
SRC?=a; 1' : :=pp. ication.c
SRCINC?= l .- $ (SRCINC) l
NCOBJ=$(patsubst %.c,%.$(CROSS) .o, sRC))

EXE=S (patsubst %. c, % • $ (CROSS l . elf'$~ include · 1 de
-include $ (IMPERAS HOME) /bin/Makef 1 e: i $ (CROSS) .makefile. inc u

include $ (TMPERAS_LIB) /CrossCO" •ndif powERPC32 processor
I P . to execute on
. ass 4 build the Application

lfeq ($ (MAKEPASS), 4)

~ON?=-02 Appendixc

"['_owe®cs2 oS» ·
? D
,/TP/IMPl/application c

5p_C,::::: • •
c1NC?=

s?- oBJ:::::$(patsubst %.c,%.$(CROSS) NC g .g ·0,$(SRCINC)
E-$(patsubst 7c.C,7c,$(CROSS) elf$) "a> susRas_os)/±/,,']'P inc- efile.includ

. iude $ (IMPERAS LIB) /CrossCom . l . e ,J.!1C - pi er/$ (CROS
;feq I$ ($I CROSS)_ CC) ,) s l .makefile. include

n-1PERAS ERROR : = $ (error "Err - , or : $ (CROSS) CC
installation of toolchain for $(CROSS)") not set. Please check

ndif tt pass 5 build the Application to execute on MIPS32
;f eq I$ (MAKE PASS) , 5) processor

TIMI SAT ION ?=-02

cRoSS=MIPS 3 2
s~?==D:/TP/IMPl/application.c

sRCINC?=
INCOBJ:::::$ (patsubst % . c, % . $(CROSS). o, $ (SRCINC))
yE=S (patsubst %.c,%.$(CROSS).elf,$(SRC))
-include $(IMPERAS_HOME)/bin/Makefile.include
-include $ (IMPERAS _LIB) /CrossCompiler/$ (CROSS) .makefile. include

ifeq ($($(CROSS) _CC),) IMPERAS_ERROR := $ (error "Error : $ (CROSS)_CC not set. Please check

installation of toolchain for $(CROSS)")

endi f
applicationFiles: $(EXE)
%.$(CROSS) .elf: %.$(CROSS) .o

$(V) echo "Linking$@"
$ (V) $ (IMPERAS _LINK) -o $@ $< $ (TMPERAS_LD FLAGS) -lm

%.$(CROSS) .o: %.c
$(V) echo "Compiling$<"
$(V) $(IMPERAS_CC) -c -o $@ $< -02

AppendixC

0 0
o o o o o .. o.,.. ~ o o o o 0 , q g { 88%% 3 %855555555

g88°°".35 C 6 3gggs
P
en J. X . o o o ·o ·a

% AP % ag333 3 3 3 8 % 3 3 % % % % %
,g8885° + :tialization
g1In)
1car all7
cc ,100000; Problem size
1 - ~irnport the time need to execute the if ati fr sample for each %in orma ion rom Pprocessorl processor type.

PlIMPl=xlsread('D:\TP\IMP3\ARM\l'
1

inpack')·
p1IMP2=xlsread('D: \TP\IMP3\ARM\ peakspead') :
p1IMP3=xlsread('D:\TP\IMP3\ARM\dh ' rystone');

%information from Pprocessor2
p2IMP1=xlsread('D:\TP\IMP3\0R1K\linpack');
P2IMP2=xlsread('D:\TP\IMP3\0R1K\peakspead');
P2IMP3=xlsread('D:\TP\IMP3\0R1K\dhrystone');

gThe number of instructionss needed by processorl to execute the benchmark sample
1cPl(l) = PlIMPl(:,2) - PlIMPl(:,l);
ICP1(2) = P1IMP2(:,2) - P1IMP2(:,l);
ICP1(3) = P1IMP3(:,2) - P1IMP3(:,l);
%The number of instructionss needed by processor2 to execute the benchmark sample

ICP2(1) = P2IMP1(:,2) - P2IMP1(:,1);
ICP2(2) = P2IMP2(:,2) - P2IMP2(:,1);
ICP2(3) = P2IMP3(:,2) - P2IMP3(:,l);
\Import MIPS and Consuming power information for each processor type.

DMIPS=xlsread (' D: \TP\IMP3\mips');
DPOWER=xlsread (' D: \ TP\ IMP3\POWER') ;
%Create vector matrix that represent MIPS information

MIPS4 = [DMIPS(:,1) ,DMIPS(:,2)1;
[RP CP 1 = size (MIPS4); information for all processor
%Create vector matrix that represent consumed power

POWER(2)* ones(RP,l));
PR = [DPOWER (1) * ones (RP, 1) ; D f (all processors l

f the
samples on plat :orm

%Calculate execution time or
for i = 1:3 2(') /MIPS4(:,2)J;
TIME(:,i) = [ICP1(i)./MIPS4(:,l);ICP J..

end
% Begin GA
G=l0;% max generation ll execution time . · rnurn over a
MinT=zeros (3, G) ,· % Initialized mini cut ion time overall ex©
Avg=zeros (3 G) ·%Initialized average ming power d 3 , , . . rall consu . k z==2 peakspead, an z==
PWR=zeros(3,G) ;%Initialized OV© [,-1 for linP?'
s% r 7- 4rately
-.Run GA for each benchmark se?
dhrystone) for z = 1:3 ah all processors sharing ctensitY wen

T=TIME (. z) . calculate ., , T)));%
SH== CallSHD(T,ones(l,length(hmark separately ar ach benc hmark separately

e sharing ·n densitY fore for each benc
TSH(:,z)= SH;%Calculate shari g sharing data
sD .4calculate

== round(ITSH(:,:)) 7-V°
Initialized GA parameter

,,A = eagth (®) 7 Number oO _ +;g; 9f CPUs

S
1z£ - NOOFCPU+3,~Populat' . OP [-g¢ -On size

O
VR :::: O. 80, ·oCross over prob b' . XO 4 ?@bility

pt,1UT:::: o.1;%Mutate probability

l
culate reference (minimum)

gCa
ar in9
calculate
arin9
,,·nfitness == INIFTCallFitT (T PR ~1 ' ,ones(l N00FC
pecrease the value of power lD% from ' PU) ,I);
for pBA = 1: 10 the maximum for

t,10DP0W:::: MinTimePower(2,z)*PHA*O.l;
%GA initialization step
y..:::: init (POPSIZE, NOOFCPU);
%GA evaluation step
C ::::callFitT(T,PR,X,I);
Keep the best individual in the population
K:::: Keep_The_Pest (MODPOW ,C);

AppendixC

(gene variab]

overall execution time wh 1 en a 1 processors are

reference (maximum) overall consuming power when all processors are

each step

% GA loop
for ii=l:G
s == select (K) ; %Selection step
yy = crossover(S,PXOVR) ;%Crossover step
y =mutate (XV, PMUT) ; %Mutation step
CF ==CallFitT (T, PR,M, I) ;%evaluation step
= elitist (MODPOW,CF) ;%Accepting steP
%Keep information (minimum execution time, average execution time, and consuming

power) for each generation
[r c] = size(K);
MinT (z,ii) ==K (r, c-3) ;
PWR (z, ii) == K (r , c- 2) ;
Avg(z,ii)==sum(K(l:r-1,c-3))/(length(K)-1);

%Termination criteria if (ii>5) · · · T(· · 3)&&M' ~ ·-,,4,,±±9Mtm(a,ii-2)ssMinT(z,ii)=Minf(@,dk7?'
if (MinT(z,ii)==MinT(z,ii-l)&&MlD z,

11
- '

(z, ii) =MinT (z, ii-4) &&MinT (Z, ii) =MinT (Z • ii-S))

break
end
end
end

execution time, and consuming
. time, average

%Keep information (minimum execution
power) for each consuming power value

POWER (z, PHA) =MODPOW;
AVARAGE (z, PHA) == Avg (z ,end);
MINIMUM (z,PHA)= MinT(z,end) ;
end

,\ooFCPU,SD) show sharih,edwe
p t (POWER,AVARAGE, POWER MINI g data for plO ' MUM), each pr --------------

cu ti on time {average and . ,Show rel at. ocessor ex© 'linimumy +On bet
~••11111111111111111•••••• um ween the •I•''• "'""'°'" power and over all

5 ±, he 55%%%%}9299
,,1ain the source code for ®%%88%%%%¢ gE Or the f,,. °Pt8%%8%%33%g¢

"1cu1ate reference time a d unction that o o o 6 gco 3' power used t .,
,{6ssss88888388%sssssg±a,, ""lues gs& b%8%%3%%%%%%ggg99 %8 . INIFT = INIF o o o-o~~g_o o o o o ~ct•on - TCallFitT(t ••••••%%1111%1111''

1NJFT ~ zeros(l,2); ,pr,x,I) .,

{J'. cl ::: size (x) ;

,um= %Calculate processors sharing density
for j=l:c

sum= sum+ x(j)*l/t(j);

end
for j=l:C

f 1.. tP (J') = x (j) * (1 / t (j)) /sum· I

end
%calculate over all execution time

for j=l:C
if X (j)=l
INIFT(l) = I*fitP(j)*t(j);

end

end
%calculate over all consuming power

INIFT (2) =0 ;
for j=l: c

INIFT(2) = INIFT(2)+ pr(j);

11,1,1%%%%%%%11%%%1%%%%%%%%%%%%%%%
%Explain the source code for the function· that used to Initial population%

end

%1%1%11%1%11%11%111%111111%111%11%11%%%%%1%%%%%%%%%%%%%1%%%%%%%%%%%%%%%%%%

function population= init(p,n)

B =zeros (1, n+4) ;
%Random population
population=round(rand(p+1,n+4)); %Validate

O

, s constraint _ AVoid anY population not share all processors

for i = 1 : p
if bi2de(population(i,:)=0)

B = de2bi(i,n+4);
population(i,:)=B(:) 7

end

ea
ch population

· tY for
sharing den©?

AppendixC

~T = mutate(x,MP) not = tv\ cl ::: size (MUT) ;
{1:r-\
r 1 fo fo:r:: j=l: c-4

±f rand < MP
if ,.,MUT (i, j) ;

MUT(i,j)=l;

end

end

end

end %60999990999gggggggogggg ,g g g { 8 8 % % 5'&%%%%%%%%88%%%%$}ggg999 g g g g9 '6'6 00000'6'6'6'6'6'6-0%%%~~~~~00

Explain the source code for the function th • • • 6 655 '6 at used to %

ofind and save the pest population
F,,3009699994494494go9? b ~~~~%%%%'6%%%%%~~~~~~~0000000000 3° 555555%%3%8%8%%%%% % %

function EL = elitist (MODPOW, x)

00 00

..

p:=l/0;
EL=xX ;
(r cl :::: size (EL) ;

mern ==r;
for i==l: r-1

if (x(i,c-3)< p && x(i,c-2)< MODPOW)

p = x(i,c-3);
mem = i;

end

end
if x (mem, c- 3) < x (r , c- 3)

for i=l:c
EL(r,i)=x(mem,i);

end

end

