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Abstract

Communication technologies evolve drastically in recent years. These recent develop-

ments in communication technologies inevitably lead to increasing demand for com-

munication technologies. They also lead to allocating progressively communication

channels between transmitting and receiving elements. However, the scarcity of spec-

trum began to appear with the accelerating rise in the usage of various communication

technologies and the preservation of traditional channel access methods. That is what

is called the spectrum under-utilization and frequencies crisis.

Cognitive Radio (CR) is an innovative solution developed to avoid these obstacles

mentioned above. It deals with the surrounding environment and determines the ap-

propriate communication parameters. The CR life cycle goes through many tasks.

Spectrum sensing is a key task in this cycle that gains significance where the spec-

trum holes can be detected during this task. Spectrum sensing task is needed in

both non-cooperative spectrum sensing (Non-CSS) or cooperative spectrum sens-

ing (CSS) modes, whereby the secondary users (SUs) cooperate to determine channel

state. The deployment of machine learning-based spectrum sensing techniques in CR

networks has been attracting researchers in recent years. The idea is to provide the

network with some intelligence to enhance the spectrum sensing process and thus

the possibility of accurately detecting PU activity. Examples of these techniques are

the energy detection-based, the covariance matrix-based, and Machine learning-

based techniques.

In this thesis, firstly we study and compare the performance of the Non-CSS, the

And-based, the Or-based techniques, as well as the KMeans-based ML technique

in stationary CRNs. In contrast to the majority of published research, we examine

the performance of that mentioned spectrum sensing techniques in mobile CRNs.

Also, we try to grasp the effect of the fading channels on the sensing performance.

Moreover, we try to find the optimal parameters that can improve the performance

of various spectrum sensing techniques. Finally, we investigate the circumstances in
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which KMeans-based spectrum sensing techniques introduce superior to traditional

techniques.

Stationary and mobile CRNs were simulating using the third version of the net-

work simulator (ns3 simulation). The result showed the effect of the communication

channel on the spectrum sensing performance. Difficult conditions such as noise and

fading effects on the transmitted signals lead to a notable decrease in sensing perfor-

mance. Also, the results generally revealed that spectrum sensing techniques provide

better performance in stationary networks. However, the results showed we need

above three SUs and about 1500 samples to reach an acceptable performance level

in mobile CRN. In addition, the results showed that the KMeans-based technique

slightly outperforms the Or-based technique, especially in highly-noisy environments

and under severe fading channels.
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Chapter ▷1
Introduction

Cognitive radio technology (CR) is a promising solution for the spectrum scar-

city problem. The reconfigurability feature of CR indicates the ability of CR

technology to switch between radio access methods, as well as, transmitting

in different portions of the radio spectrum. However, the reconfigurability

of the CR requires a dynamic spectrum management framework (DSMF) [4].

DSMF framework consist of cognition tasks that, in general, are: sensing

the spectrum, analyzing the spectrum, making joint decisions on spectrum

selections, and channel clearance when a licensed user need to use it.

Spectrum sensing is the first task of the cognitive radio life cycle that

gains significance since the spectrum holes can be detected during this task.

There are a plethora of works of spectrum sensing techniques on CR networks

(CRNs). Most of these types are the energy detection-based technique, the cy-

clostationary matrix-based technique, and the covariance-based technique.

Machine learning-based techniques are another modern type of innovated

spectrum sensing technique. In such methods, the sensing process in de-

tecting the primary user’s activities passes through two phases which are: I-

the feature extraction phase and II- the decision-making phase.

1.1 Problem formulation

Spectrum sensing is a key task in the CR life cycle. In this task, CR learns

and perceives the surrounding environment, then detects the spectrum holes.

Spectrum sensing was first formulated as a binary hypothesis test for radar

signal detection [5]. Later, the same binary hypothesis test is used to describe

the general spectrum sensing problem, as can be seen in equation (1.1),

y(k) =


w(k), H0

α ∗ s(k) + w(k), H1

(1.1)
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Introduction ▷ Thesis Motivation

where s(k) is the PU transmitted signal and y(k) is the PU signal received by

the SU side under the ambient noise w(k). k=1,..., to K are the signal samples

that were received by SU and the parameter α denotes the channel’s fading

coefficient. The SU examines the PU signal existences and the channel is

considered idle under the null hypothesis (H0) condition and busy under the

alternative hypothesis (H1) condition.

The detection of the PU signal faces two types of detection errors. Type (I)

error is a false alarm (FA), the probability of the decision making indicating the

PU does exist while it doesn’t exist. Type (II) error is the missed detection (MD),

which means the probability of the decision making indicates the PU doesn’t

exist while it does exist. The IEEE 802.22 [6] workgroup recommended that

the P(FA) should not exceed 10%. Further, the probability of detection P(D)

(the probability of the true detecting the PU signal, i.e., 1−P(MD)) should be

higher than 90%.

1.2 Thesis Motivation

Examining several approaches of spectrum sensing techniques, we noticed

that almost in all the spectrum sensing techniques, the authors considered

stationary cognitive radio systems, i.e., the primary users (PUs) and the sec-

ondary users (SUs) are fixed and not mobile. However, this is not always

the case. The only study which addressed the problem of detecting the ac-

tivity of PUs under the mobility condition is Y. Xu et al.’s study [7]. This

study considered the energy vector methods and the non-parametric hidden

Markov model that make the ML-based CSS more complex. However, this

study doesn’t regard the fading effects. The lack of studies considering the

mobility, with the effects of the fading, during the sensing process moti-

vated us to evaluate the performance of the machine learning-based co-

operative spectrum sensing techniques (ML-based CSS techniques) in the

mobile networks as well. We wanted to understand and determine scenar-

ios in which ML-based approaches would help in enhancing decision-making

processes.
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Introduction ▷ Contributions

1.3 Contributions

The main goal of this thesis is to evaluate the performance of detection of

ML-based CSS techniques in mobile cognitive radio networks in general

κ_µ fading channels. For that, we used the receiver operating characteristic

curve (ROC curve) that measures the probability of detection against the prob-

ability of false alarm at various threshold settings. The KMeans clustering

approach is considered for its simplicity and practicality of implementation.

Further, we try to develop and assess solution ideas that may sustain the

performance1 of the machine learning-based approaches in non-stationary

scenarios.

1.4 Thesis Organization

Chapter 2 describes the spectrum sensing problem, theories, and the basic

concepts needed to understand the rest of the thesis. Chapter 3 provides a

summary of some previous related works. Chapter 4 covers the methodology

used in the modeling, simulating, and aggregating data sets to implement and

enhance the accuracy. Chapter 5 demonstrates experiments and discusses

the results of this work. Finally, Chapter 6 concludes the work and proposes

some of the new directions for future research.

1From here to the rest of this thesis, we mention the term "performance" alone, but of course, we
mean "performance of detection."
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Chapter ▷2
Background

This chapter provides a quick overview of radio signal propagation and briefly

discusses some proposed fading models. This chapter also explains cogni-

tive radio technology, provides a brief discussion of its life cycle, and discuss

spectrum sensing task. Additionally, this chapter will briefly discuss machine

learning and related concepts.

2.1 Propagation of Radio Waves

In wireless communication, the radio signal emitted by an antenna travels

through space (atmosphere and water) towards the receiver. The radio waves,

like electromagnetic waves, have physical characteristics when acting with

the surrounding environment. Therefore, the wireless radio signal is con-

stantly deteriorating as it travels over long distances [8]. And thus, several

versions of the transmitted signal arrive at the receiver at different time de-

lays. Noise is one of the most common causes of signal attenuation. It is

imposed by the thermal agitation of electrons of the transmission system it-

self. Irregular pulses or impulses noise generated from external electromag-

netic disturbances. Crosstalk, or any other unwanted signals that interfere

with the transmitted signal, are several forms of noise [9]. Free space losses

related to the distance traveled; losses due to scattering of radio waves in the

atmospheric layer are also causes of attenuation.

2.1.1 Free space losses

All wireless technologies suffer from some level of free space loss. The value

of free space losses depends, mainly, on the transmission distance, frequen-

cies, antenna dimensions, and separation [10]. Free space loss, in decibel, is

described by the following equation 2.1

LdB = −20 log(f) + 20 log(d)− 10 log(AtAr) + 169.54 (2.1)
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Background ▷ Path-loss Propagation models

where f is the carrier frequency, d is the transmission distance, and At, Ar are

the effective area of the transmitting and receiving antennas, respectively.

2.1.2 Multipath propagation

As mentioned earlier, radio signals have many electromagnetic behaviors due

to the influence of scattered objects in the surrounding environment. Three

common electromagnetic properties that describe radio wave propagation are;

reflection, diffraction, and scattering. Reflection and diffraction are phenom-

ena when radio waves encounter a relatively large surface compared to the

signal wavelength. Some waves are reflected by a value according to the angle

of incidence, the reflecting medium, and the polarization of the electric field.

Other waves, specifically, those that meet the edges of the obstacles, bend in

a different transmission direction [10]. Radio waves are scattered when they

hit rough surfaces or obstacles having sizes that are, on the order or less of,

the wavelength of the signal.

Signal fading

Due to the multipath effect, several versions of the transmitted signal arrive at

the receiver at different time delays. This time variation of the received signal

power is known as fading. The types of fading are classified into large-scale

fading and small-scale fading. In the frequency domain, fading is classified

as flat fading and selective fading. On the other hand, small-scale fading

due to transmitter movement and transmitting area size can be classified into

fast-scale and slow-scale fading. Fast fading refers to rapid changes in sig-

nal strength as it propagates over a short distance of about half the signal

wavelength [11]. In contrast, slow fluctuations of signal strength facing dif-

ferent conditions due to its propagation over a long distance are known as

slow fading [8, 10, 12].

2.2 Path-loss Propagation models

A large number of distributions have been proposed in an attempt to find the

best model that approximates the distributions of different types of fading. In

general, the large-scale fading signal is well characterized by the log-normal

distribution. While small-scale signal variation is described by several other

distributions, such as the Rayleigh, Rice, Nakagami-m, Hoyt, and Weibull
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distributions [12]. In most cases, Nakagami-m and Rayleigh fadings are de-

scribed by the gamma distribution whereas the Rice fading is described by

the zero-order modified Bessel function of the first kind [12–14].

2.2.1 Log-normal distribution

The log-normal distribution is usually used to describe a medium-scale fading

that is caused when the signal is shaded by local obstacles. The Log-normal

indicates that the probability density function of the signal power is taken in

the decibel unit. Thus, with Log-normal distribution, the signal power is a

Gaussian random variable defined as equation 2.2 depicts

f(dBm)(w) =
1

σ
√
2π

exp
(
− (w − µ)2

2σ2

)
(2.2)

where w is the signal power in dBm (10 log(wmW ); wmW is the signal power in

Millie Watt). The µ and the σ are the mean value and the standard deviation

of w.

2.2.2 Nakagami distribution

Let r be the signal envelop. Then, Nakagami-m distribution is given by the

probability density function in the equation 2.3

f(r) =
2mm

Γ(m)wm
r2m−1 exp

(
− m

w
r2
)
, r ≥ 0 (2.3)

where m is the fading depth parameter. The spread of the distribution can be

controlled by the average signal power w [15]. The Rayleigh distribution can

be obtained by substituting the parameter m of the equation 2.3 by 1 as the

next equation 2.4 depicts

f(r) =
2r

w
exp

(
− r2

w

)
, r ≥ 0 (2.4)

2.2.3 Ricean Distribution

The formula of the envelop probability density of Ricean distribution is defined

as [10]:

f(r) =
r

σ2
exp

(r2 + A2

2σ2

)
I0
(Ar
σ2

)
, r ≥ 0 (2.5)

where A is the peak amplitude of the dominant signal and controls the mean

of the distribution. The σ is the standard deviation and I0(.) is the modified

Bessel function of the first kind and zero-order. Figure 2.1 gives a comparative

analysis that depicts how much various fading distributions best fit the cellu-
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Figure 2.1: Fading distribution comparison [1]

lar signals was collected from the Accra central market [1]. The figure shows

that the Rician, Nakagami-m, and log-normal distribution gave good agree-

ment with data but the Weibull distribution gave little agreement. Hence, The

quantified shadow loss distribution may follow a log-normal distribution.

2.2.4 κ− µ Distribution

Yacoub et al. [16] introduced a general κ − µ fading model that derives these

common types of fading by tuning the κ and µ parameters. Rayleigh fading

can be obtained as κ approaches 0 and µ equals 1. Different types of Rician

fading can be modeled by fixing the µ parameter and tuning κ. Also, different

types of Nakagami fading can be modeled by fixing the κ parameter and tuning

the µ parameter. The power probability density function of the general κ − µ

fading is described by the following equation 2.6

f(w) =
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(κµ)

w
µ−1
2 exp

(
− µ(1 + κ)w

)
Iµ−1

(
µ
√
κ(1 + κ)w

)
, (κ, µ) > 0

(2.6)

where κ > 0 is the ratio of the total power of the dominant components to the

total power of the scattered waves and µ = 1+2κ
(1+κ)2

, µ > 0. Ω is the normalized

power of the fading signal, w is the instantaneous fading signal, and Iv(.) is
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Figure 2.2: The general κ− µ fading distribution.

the modified Bessel function of the first kind and order v. Figure 2.2 shows

different power probability density distributions for different κ− µ settings.

2.3 Cognitive radio technology

There are numerous methods of channel access in wireless networks. The

foremost methods divide the communication channel according to the band

of allocated frequencies (the frequency division multiple access (FDMA)), the

geographical regions (space division multiple access (SDMA)), the time (the

time division multiple access (TDMA)), or the code that is assigned for each

user (the code division multiple access (CDMA)) [17]. Although these methods

make bandwidth utilization more efficient, they result in spectrum scarcity.

Cognitive radio (CR) is a promising solution for the spectrum scarcity prob-

lem. It is defined as an intelligent radio able to be aware of the surrounding

environment and know the used frequencies. One of the most notable fea-

tures of cognitive radio networks (CRN) is the ability to switch between radio

access methods, as well as, the ability to transmit in different portions of the

radio spectrum [18]. There are two types of users operate in CRN

• The primary users (PUs) are the licensed users who have a license to use

a part of the spectrum. However, PUs are not granted exclusive use of

that part of the spectrum, they are rather given a higher priority than
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Figure 2.3: CR life cycle [2]

other users as well as safeguards against interference.

• Secondary Users (SUs) are users who have a chance to use part of the

spectrum along with the PUs. However, this use is conditional on the

main PUs activities, and when they don’t temporarily use the spectrum.

2.3.1 CR life cycle

CR aims to make the overall radio spectrum usage more efficient by optimal

utilization of the large portions of the licensed frequencies that remain vacant

at certain times and locations. CR passes through cycles that provide it sev-

eral capabilities to act with the surrounding environment and determine the

appropriate communication parameters [19, 20].

The CR life cycle [2] encompasses three main tasks which are: radio-scene

analysis task, Channel identification task, and Transmit-power control, and

dynamic spectrum management task. In general, CR technology is mainly

interested in exploring the spectrum holes. It interacts with the surrounding

environment, measures the interference temperature1, then determines the

channel’s availability states. Figure 2.3 summarizes the main three tasks in

the CR life cycle.
1The interference temperature is a model to control interference at the receiver through the certain

metric called the interference temperature limit
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2.3.2 Spectrum sensing task in CRNs

Spectrum sensing is a critical task in the life cycle of a CR. In this task, CR

can learn and conscious the surrounding environment, then detect the spec-

trum holes. The binary hypothesis test was first formulated for radar signal

detection [5]. Later, the same test is used to describe the general spectrum

sensing problem. Detection of PU signals encounters two types of detection

errors. Type I, false alarm (FA); the decision made indicates the PU does

exist while it does not exist. Type II, is the missed detection (MD); that the

decision made indicates the PU does not exist while it exists. The two possibil-

ities, false alarm probability (P(FA)) and missed detection probability (P(MD))

estimate the two types of detection errors mentioned above (type I and II, re-

spectively). However, if type (I) occurs frequently, SU loses its chance to use

the communication channel, whereas when type (II) occurs frequently, the

collision is inevitable between PU and SU [5].

2.3.3 Spectrum sensing types

The spectrum sensing task may occur in non-cooperative or cooperative modes.

During the sensing duration, each SU individually determines the channel

state in the non-cooperative spectrum sensing (Non-CSS). For example, fig-

ure 2.4 shows that SU determines that the third and the fourth channels

are ideal during the first sensing duration. While the second and the third

channels are ideal in the next sensing duration and so on. The Non-CSS

mode is considered suitable when nodes are unable to share their spectrum

sensing information. In cooperative spectrum sensing (CSS), SUs cooperate

to determine the channel state. CSS provides high accuracy, whereby all SUs

participate in determining a general decision about the channel state. There

are two types of typologies of CSS;

• Centralized CSS: In this typology, spectrum allocation and access can be

controlled by a central entity called fusion center (FC). Here, all SUs ag-

gregate the information about PU signal existence via the sensing chan-

nel, then send back the sensing information towards the FC over the

reporting channel. Later, FC creates a general decision about the chan-

nel state. Although this typology is useful in spatial diversity networks,
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Figure 2.4: Explanation of the spectrum sensing task [3]

FC endures high overhead when determining the final sensing decision.

Further, this topology will face the single node failure problem.

• Distributed CSS: In this typology, a set of adjacent SUs form a cluster

then, they elect one node as a cluster head (CH). CH is responsible for

creating a general decision about the channel state. Several CHs may

subsequently exchange the sensing information to derive a general de-

cision about the channel state. An advantage of this mode is that the

overall overhead on determining the final sensing decision will be dis-

tributed among the various clusters, but the modeling of these systems

is too complicated.

2.4 Machine learning

Machine learning (ML) is a branch of artificial intelligence that provides sys-

tems automatically learn and improve their performance. ML algorithms are

designed, in such a way, that they can improve their behavior through exper-

iments without being explicitly programmed to do so. ML processes involve;

collecting data that describes a particular problem, finding hidden patterns

beyond that data, and eventually making a decision.

2.4.1 Main categories of ML algorithms

ML algorithms are generally classified into three main categories,
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• Unsuppervised ML: Clustering algorithms aim to organize the samples of

data into several clusters according to the features that distinguish them

from the other [21]. In this type, the ML classifier is fed blind samples

without declaring their distinct labels.

• Supervised ML: Unlike the previous type, the samples are fed to the ML

classifier along with their labels to produce a general decision [22].

• Reinforcement ML: In the standard reinforcement ML approaches, the

agent observes and acts with the environment and predicates the suitable

action that should be taken according to the actual state [23]. Therefore,

it receives a reward or a punishment that suits the action that was taken

as shown in figure 2.5. After considerable training, the agent has the

experience to handle certain states.

Figure 2.5: Reinforcement ML approach

Several ML algorithms are covered under each type. kMeans, Gaussian

mixture model (GMM), and Bayesian classifier are some of the most com-

mon examples of unsupervised ML. Different types of neural networks (such

as artificial neural network (ANN), convolutional neural network (CNN)), and

support vector machines (SVM) are the most famous examples of supervised

ML. TD learning, Q-Learning as well as Deep Q-Learning are addressed within

a reinforcement learning framework.
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2.4.2 ML-based CSS: General model

Three types of conventional CSS schemes are energy detection (ED), cyclo-

stationary detection, and matched filter (MF) detection. SU checks for the

presence of a PU signal and then sends back a local decision about the chan-

nel availability status toward the decision-making entity [5, 20, 24]. In con-

trast, the decision-making in CSS schemes which is based on ML schemes

(ML-based CSS) includes two types of classifier algorithms are: I- feature

extraction and II- machine learning classifier. In these schemes, the sys-

tem aggregates the sensing information by all SUs. After that, the features

that characterize the PUs’ status are extracted in the first classifier using the

mathematical algorithms. Subsequently, these features are fed into the ML

classifier to generate the possible clusters. Later, the final sensing decision is

made based on the result that is generated in the ML classifier.
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Literature Review

This chapter discusses how can be reformulated various machine learning

algorithms in terms of the CSS problem. Then, the general model of the ML-

based CSS is presented. Further, we review several techniques for feature

extraction schemes proposed in the literature. Finally, this chapter examines

several types of ML-based CSS.

3.1 ML-based CSS

Classification of ML-based CSS schemes, based on the type of ML algorithm,

include: I- unsupervised-based CSS, II- supervised-based CSS, and III- reinfo-

rcement-based CSS [25]. In the unsupervised-based CSS, the features are

fed into the classifier without declaring their distinct labels [7, 26–34]. In

the supervised-based, the features are filled along with their labels within

the classifier to construct the final decision [35–43]. Reinforcement-based

addresses specific problems such as power consumption level, throughput,

energy efficiency, etc. The agent is given rewards when evaluating its behavior.

These rewards are evaluated based on the problems intended to be solved

[44, 45].

3.1.1 CSS system with Multi-classes

In a large-scale CRN with multiple PUs, multiple hypotheses must be formu-

lated within the framework of binary hypothesis testing. Assuming CRN with

P′ active PUs of P PUs and possible classes of active P′ (i.e. {C1, C2, ..., Ci}).

Each ith class, has possible combinations
( P

i
)

= P !
(P−i)!i!

. Herein the null

hypothesis, H0, indicate that all PUs are inactive [38, 43] while there are ith

alternative hypotheses, Hi, construct the general alternative hypothesis, H1,

as shown in equation 3.1,

H1 =
⋃
i=1

Hi (3.1)
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In another case, multi-class hypotheses can be formulated with one PU, wher-

eby several classes represent an assurance level of PU presence. For example,

[30] initiates three clusters C1, C2, and C3 indicating the power is high, weak,

and the absence of the received PU signal, respectively. However, in our work,

we consider small-scale CRN with one PU.

3.2 Feature extraction methods

Several mathematical algorithms have been devised to extract the features of

the data samples. These algorithms fall mainly into three categories. The

first category is energy detection-based (ED-based). In this type, features are

the sensed PU signal power. The second is schemes based on signal pro-

cessing. This type focuses on finding the circular characteristic that helps to

distinguish between transmitted signals and noise. The third is the covari-

ance matrix-based schemes, which initially take the sensed PU signal power.

Then, they apply the mathematical calculations to derive some scales used as

feature vectors.

3.2.1 ED-based schemes

Let the channel’s availability state is ’A’, then, ’A’ is defined as in equation

3.2

A =


1, for H0

0, for H1

(3.2)

When the nth SU receives K samples from the transmitted PU signal, it calcu-

lates the energy of that signal by equation 3.3,

Zn(k) = [A ∗ αn ∗ s(k)] + w(k) (3.3)

where Z(k) is the energy value corresponding k samples and w(k) is the noise-

usually considered to be the additive white Gaussian noise (AWGN) with the

zero mean and 1 variance. The total energy (E) is estimated by the nth SU as

shown in equation 3.4

En =
1

K

K∑
k=1

|Zn(k)|2 (3.4)

SUs monitor the communication channel in the sensing period and then esti-

mate the value of E. The column vector from energy values {E1, E2, .., En, ..., EN}T

is then used to determine the channel state.
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Probability vectors

This method learns about the properties of the distribution models that un-

derlay the hypotheses H0 and H1. So, it aims to reduce the multidimensional

energy vectors to two-dimensional probability vectors [27, 35]. After collecting

a sufficiently large number of sensing samples over an appropriate sensing

period, the new probability vectors for the two hypotheses PG
Hi

are derived

from the probability density function as given in equation 3.5

PG
Hi

= ϕ(E|µE|Hi
, R|Hi

), i ∈ {0, 1} (3.5)

where µ|Hi
and R|Hi

are respectively the mean vector and the covariance matrix

of the multivariate Gaussian distribution ϕ.

3.2.2 Covariance matrix-based schemes

The sensing matrix (Si) can be generated from the received PU signal as given

in equation 3.6,

Si =



y1(1) y1(2) y1(3) . . . y1(K)

y2(1) y2(2) y2(3) . . . y2(K)

...
...

... . . . ...

yN(1) yN(2) yN(3) . . . yN(K)


(3.6)

where N is the number of SUs. K represents the number of samples. yN(.) is

the received signal estimated by N th SU under the binary hypotheses. There-

fore, the covarience matrix (R) can be reconstructed from Si matrix using

equation 3.7

R =
1

K

K∑
k=1

Si ∗ SiT (3.7)

SiT ; The transpose of a matrix- Si

Many of the proposals in the literature follow this method. We mention from

them

Eigenvalue, eignvector

Let the λ1 ≥ λ2 ≥ ... ≥ λN be the eigenvalues of the covariance matrix R. (ν⃗n)

and I be the eigenvector and the identity matrix of R respectively. Then, the

eigenvalue can be calculated using equation 3.8 as,

|R− λI|ν⃗n = 0 (3.8)
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Many researchers adopt the eigenvalue/eigenvector in their work. For ex-

ample, the ratio of the maximum and minimum eigenvalue (MME) and the

difference between the maximum and the mean eigenvalue (MSE) are used as

feature vectors in [27, 31]. The improved versions of MME and MSE (IMME

and IMSE respectively) are used as features in [28] after calculating the prin-

cipal component (PC) of the eigenvector of the matrix Si.

Geodesic distance

In the geodesic distance, the matrix Si is sequentially split upon the order and

the intervals into sub-signal vectors s of length q, i.e., s = K / q. Then, two

new covariance metrics SiO and SiI are derived from s and q respectively [29].

The Riemann means (Si
O
) and (Si

I
) which represent the noise environment

are calculated for both matrices SiO and SiI. After that, the geodesic distance

(Gd) between SiO, SiI and their Si
O
, Si

I
can be used as feature vectors, given

in equation 3.9,

Gd(Sia, Si
a
) =

√√√√1

2

Nq∑
j=1

log2 λj , a ∈ {O, I} (3.9)

Where λj is the ith eigenvalue indirectly derived from the SiO and SiI matrices.

3.2.3 Signal processing-based schemes

The idea of methods based on signal processing came from the fact that there

are characteristics that distinguish transmitted signals and noise. Such char-

acteristics can easily be detected in the frequency domain [39, 46]. Waveform-

based and cyclostationarity-based types, which are the most types addressed

under this method, will be briefly explained here;

Waveform-based schemes

In many situations, the PU signal pattern such as the regular pilot, pream-

bles, spreading sequence, etc. can be known and used efficiently. Therefore,

the binary hypothesis test can be formulated by the waveform-based method

as given in equation 3.10

y(k) =


Re

[∑K
k=1 w(k)s

∗(k)
]
, H0∑K

k=1 |s(n)|2 +Re
[∑K

k=1w(k)s
∗(k)

]
, H1

(3.10)
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where Re indicates the real part of the complex received signal and ∗ is the

complex conjugate operator.

Cyclostationarity-based schemes

cyclostationarity refers to the periodic characteristics of a certain signal. The

received PU signal usually has a cyclostationary characteristic such as the

mean and the autocorrelation. In contrast, the noise signal does not have

such periodic characteristics. Therefore, we can utilize the differences be-

tween the transmitted and the noise signals. The determination of the pres-

ence of the cyclic pattern of the PU signal can be examined using the so-called

spectral density function (SCD). Here, the binary hypothesis can be reformu-

lated by this method as given in equation 3.11,

Sw
y(k)[k] =


Sw
W (k)[k], H0

|α|2Sw
s(k)[k] + Sw

W (k)[k], H1

(3.11)

where Sw
y(k)[k] is the SCD of the PU transmitted signal at some cyclic frequency

w and α is the channel gain coefficient.

3.3 Data combining and ML

After extracting the features in the CSS mode, the classifier can apply soft

or hard combining schemes for decision making. The determined type de-

pends on the nature of the feature vectors. SUs in hard combining schemes

implement a mechanism to digitize their local observation, while they explic-

itly exchange their local decisions in soft combining schemes (i.e., the SUs

exchange the real values of their local decisions).

3.3.1 Logical And-based/Or-based CSS

And/Or-based CSS techniques are the most examples of hard combining

schemes. In the And-based CSS, the channel is considered occupied, if and

only if all SUs determine that the PU is active. Unlike the And-based CSS, in

the Or-based CSS, the channel is considered busy if at least one SU deter-

mines that the PU is active [47]. Therefore, if all SUs are independent then

the two probabilities, the probability of false alarm P(FA) and the probability

of detection P(D) of the And-based technique can be calculated as shown in

Page -18



Literature Review ▷ Data combining and ML

equation 3.12

P (I) =
N∏

n=1

P (i)n, I, i ∈ {FA,D} (3.12)

P(FA) and the P(D) of the Or-based technique can be calculated as shown in

equation 3.13

P (I) = 1−
N∏

n=1

1− P (i)n, I, i ∈ {FA,D} (3.13)

N; is the number of SUs

The appendixB.2.3 in the appendices shows the source code of the And-based

and the Or-based CSS techniques.

3.3.2 Unsupervised-based CCS

After collecting a sufficiently large number of training feature vectors, the

ML classifier constructs the suit decision. In unsupervised-based methods,

these blind features are populated within the classifier to produce the global

decision about the channel state. Various types of unsupervised algorithms

have been proposed in the literature to solve CSS problems in CRNs [7, 33,

34].

KMeans-based model

KMeans algorithm maps the feature vectors to non-overlapping clusters, at

the nearest Cartesian distance. Each possible cluster represents a set Ψ and

is indexed by j. So, KMeans-based methods try to find the Js of clusters cor-

responding to various channel states.1 Each cluster has its centroid Cj that

represents the cluster arithmetic mean. Therefore, the objective function of

the KMeans-based CSS technique (distortion function, Θ) is to find the mini-

mum squared distance of overall clusters from their corresponding centroid

as shown in equation 3.14,

Θ({Ψj},{Cj}) = argmin
J∑

j=1

∑
l∈Ψj

ηlj||l − Cj||2 (3.14)

where l is a feature vector and {.} reflects the cardinality of Ψj and Cj sets.

||.|| is the ℓ2-norm, ηlj takes 1 if l is belong to Ψj and 0 otherwise.

After training the clusters, the items and the centroid of each cluster be-

come known. In the testing phase, the classifier becomes able to make a
1J here is the same K in the KMeans algorithm that indicates the number of clusters. The experiments

of this thesis are based on K=2 corresponding two states (channel un/available states)

Page -19



Literature Review ▷ Data combining and ML

suitable decision about the channel state, i.e., the channel is available or not.

Let l’ denotes the test vector, then the decision making can be defined as

shown in equation 3.15,

||l′ − Ci||
minj=1,...,J ||l′ − Cj||

≥ ζ (3.15)

Ci < min(Cj) which usually represents the noise cluster

The test vector l’ is classified to the cluster Ci if equation 3.15 satisfied. Oth-

erwise, it is classified to the cluster Cj. Appendix B.2.2 and appendix B.1.3 in

the appendices respectively show the source codes of the KMeans algorithm

and the KMeans-based CSS technique.

Gaussian mixture model

Gaussian mixture model (GMM) provides a smooth classification in the oppo-

site of the KMeans algorithm. The clusters in GMM-based CSS are an overlay

of Gaussian densities. The statistical parameters are first randomly initial-

ized for each cluster (i.e., for various Gaussian densities). Let N (x|µk, covk) is

a Gaussian cluster k with the parameters µk and covk (x represents the set of

items that belong to cluster k). Then, these parameters can be estimated by

maximizing the likelihood function [27] given in equation 3.16,

ln p(l|π, µ, cov) =
M∑

m=1

ln
{ K∑

k=1

πkN (l|µk, covk)
}

(3.16)

where l is the training vector, M is the number of training vectors, and πj is

the mixing coefficient with
∑K

k=1 πk equals 1.

After training the model for several iterations, the parameters µk and covk

converge. In the testing phase, the testing vectors (l′) are then classified to the

corresponding cluster the classifier rule given equation 3.17 (assuming the

binary hypotheses test is adopted)

ln
π1N

(
l′|µ1, cov1

)
π2N

(
l′|µ2, cov2

) ≥ ζ (3.17)

The unsupervised-based CSS techniques are widely adopted in a lot of

researches. KMeans with ED-based scheme was adopted in [26] whereas the

geodesic distance was proposed for extracting the feature vectors with the

fuzzy C-mean in [29]. [30] proposes filtering energy vector to get the max

(Emax) as features of the kernel fuzzy C-means. The eigenvalue/eigenvector
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as features with the KMeans were adopted in [28] while with the GMM is was

adopted in [27]. The improvement IMSE, IMME were used in [27, 28, 33].

Non-parametric Byasien learning models, the Hierarchical Dirichlet Process,

and the beta process sticky hidden Markov model were proposed in [7, 32]

respectively. The hierarchical Dirichlet Process converts the received signal

to the frequency domain to find the Fourier coefficients. Then, it uses these

coefficients as feature vectors. Beta process sticky hidden Markov model is

ED-based.

Additionally, [31] introduces a signal processing scheme (WEMD) which

is combined the empirical mode decomposition algorithm and the wavelet

threshold algorithm to remove the noise components and thus reduce their

effects. WEMD adopts KMeans as an ML classifier with two types of feature

vectors which are: I- the difference between maximum eigenvalue and the

average energy, and II- the difference between the maximum and minimum

eigenvalue. Last but not least, a blind continuous hidden Markov model

scheme was proposed in [34]. This algorithm can recognize the PU trans-

mit power level. It uses the KMeans algorithm to estimate the channel state

as well as the continuous wavelet transform method for features extraction.

This study proposes two strategies. The first strategy applies the ED method

to build the observation sequence before computing the continuous wavelet

transform, while the latter strategy uses the MME as feature vectors.

3.3.3 Supervised-based CSS

In the supervised-based CSS, the features are extracted from the received sig-

nal. Then, they are labeled in a certain way. Labels are the correct individual

sensing decisions that each SU gets. The binary labels, due to the binary hy-

pothesis, can be represented as follows; label 1 indicates that the PU is absent

and the channel is available. Label [0] indicates that the PU is present and

the channel is unavailable. The signaling process (mapping the feature with

the appropriate label) increases the sensing accuracy, but it also increases

the system complexity and training overhead [37, 38]. Support vector ma-

chine (SVM) and neural network (NN) are examples of supervised-based CSS

techniques.
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Support vector machine (SVM)

SVM is an algorithm that aims to find the optimal hyperplanes that leave the

maximum margin from all possible classes. SVM for linearly separable data

uses the linear kernel and its formula is defined in equation 3.18

Kr(l) = wT l + bis (3.18)

where w is the hyperplane rotation weight and bis is the hyperplane bias.

Given a training vector l which may be labeled either 0 (l0) or 1 (l1), the opti-

mization problem of SVM is then defined as shown in equation equation 3.19,

minimize
1

2
||w||2 + c ∗

L∑
l=1

ζ l

s.t. li(w
T ∗ l + bis) ≥ 1− ζ l, i ∈ {0, 1}, ζ l > 0

(3.19)

where ζ is a tolerance limit that represents the number of vectors that mis-

classified into an incorrect cluster. The constant c controls the magnitude of

ζ. The value of c depends on the trade-off between achieving the lowest mis-

classification or the maximum margin. Minimizing w achieves the equation,

but on other hand, minimizing w is a nonlinear task. However, this convex

optimization can be solved under the Karush-Kuhn-Tucker (KKT) condition.

After finding the optimal boundary, a new test vector l’ can be classified using

equation 3.20,

Classf(l′) = sign(
∑

λι ∗Kr(l, l′) + bis) (3.20)

λι; The Lagrange multiplier

Lots of researches based on SVM were proposed. A probability vector with

linear and polynomial kernel was proposed in [35]. [36] proposed applying

two phases of SVM algorithms with ED-based methods. In the first phase,

each energy vector is mapped to a predicated label, whereby the unsuccessful

ones are propagated during the second phase to alleviate the misclassifica-

tion errors. Multi-class SVM (M-CSVM) with ED-based and multiple PUs was

adopted in [38, 42], whereas the supervised beamformer-based technique was

proposed in [43]. To implement M-CSVM, an approach of classes coding is

needed. For example, the one versus rest approach characterizes a particular

class as a positive class and the rest as negative classes.
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Neural network (NN)

Neural network algorithms are a set of interconnected virtual neurons that

operate in a manner somewhat similar to biological neurons or electronic

structures. Few NN-based CSS techniques have been proposed. Deep CSS

based on Convolutional Neural Network (CNN) was proposed in [37]. The CNN

structure consists of convolution and fully connected parts (FC). The convo-

lution part includes three layers which are: (I) the 3*3 convolution layer (3*3

Conv.), (II) rectifier linear unit (ReLU) layer, and (III) max-pooling layer.

[37] studies modeling a small-scale CRN with a PU that operates several

sub-bands. Each SU examines the presence of a PU on sub-bands then pro-

duces a 2D set of the labeled features. After giving the 2D data set during

the sensing process, it is fed to the first layer to extract the spatial correla-

tion of the sensing data. The residual layers deal with the nonlinearity and

reduce the size of the sensing data. Finally, FC multiplies the weights and

adds biases to generate the final decision.

Ensemble classifier was introduced in [40]. This unsupervised scheme

adopted the cyclostationary-based features extraction method and uses the

decision tree and AdaBoost for decision making. Finally, [41] suggested un-

supervised CSS based on an artificial neural network (ANN). This study makes

a 2D set of individual SUs decisions and uses Zhang statistics to train ANN to

make a decision.

3.3.4 Reinforcement CCS

Reinforcement learning is concerned with taking actions that maximize the

reward. Reinforcement-based CSS techniques are rare. Sensing policy based

on ϵ-greedy policy was proposed in [44]. The reward in this study represents

the immediate throughput corresponding to the selected sub-band sd. Under

this policy, the authorized SU that has access to sd will inform the FC of

the information about the achieved throughput. Later, the FC compares the

Q-value of a particular SU with the prior decision and updates the Q-value

based on the following rule given in equation 3.21

rt+1(SU, sd) =


dnt+1(SU, sd), dnt+1(FC, sd) = 1

Qt(SU, sd), dnt+1(FC, sd) = 0

(3.21)
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where dnt+1(SU , sd) indicates the decision that made by the SU on sd. While

dnt+1(FC , sd) is the global decision made by the FC accordingly. When FC

truly estimates the sd state, it is granted a reward equal to the immediate

throughput. However, it is granted the last Q-value when it misestimates the

sd state. After updating all Q-values based on this rule, the FC exploits its

knowledge and informs SUs to sense the sd that has the maximum Q-values.

Finally, an efficient sub-band selection policy based on replicated Q-learning

was proposed in [45]. This technique introduces a partially observable Markov

decision process that awards high rewards for a large number of idle channels

while otherwise being awarded smaller rewards.
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System Modeling & The

Experimental Setup

This chapter will examine system modeling and network simulation. It also

explains the challenges encountered while preparing for the experimental part

and the ideas used to overcome these challenges.

4.1 System modeling

We consider a small-scale CRN that consists of a PU network placed in the

center and N multiple SUs around it. Two mobility scenarios are considered

the stationary and the mobile CRNs, abbreviated as StaCR and MobCR, re-

spectively. The PU network in the two scenarios is the same and consists of

a fixed PU transmitter (PU-Tx) and a fixed PU receiver (PU-Rx) placed at 15

meters far from the PU-Tx. SUs in the first scenario are also fixed and posi-

tioned 120 meters away from the PU network.1 In the second scenario, SUs

are mobile and move randomly in the area (i.e., moving in a random direction

at a random velocity. The reasonable setting of these values has been taken

into account). However, both scenarios start with the initial configuration as

shown in figure 4.1

Different levels of cooperation are considered too. The Non-CSS is firstly

considered, in which only one node participates in the sensing process. Then,

different cooperative SUs (i.e., 2SUs, 5SUs, and 10SUs) are participating in

the sensing process. In addition, the effect of various fading channels is ex-

amined. We adopt the general κ − µ fading model. What makes this model

preferable is that completely different fading channels can be controlled and

modeled by two parameters of the distribution, the κ and the µ. A compre-

hensive guide of the general κ − µ fading model implementation and the test
1These locations are sensitive and carefully considered where if they change low according to mobility,

the SUs sometimes become able to detect the presence of PU and sometimes not.
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Figure 4.1: System Modeling

is available in the appendix A.1.

4.2 The simulation & noise modeling

We used the well-known third version of the discrete-event network simula-

tor (ns3.30) to model a small-scale CRN and; to generate datasets.2 In this

model, we have assumed that the PU network always operates at channel 36

of the IEEE802.11n-5GHz wireless technology. The Wifi mode for unicast data

frames is indexed to ’HtMcs6’ value which is a metric to several parameters

of the wifi connection such as the 64-QAM modulation type, the 3/4 coding

rate, one spatial stream, and etc.3

During the simulation time, the PU-Tx randomly broadcasts 1500 byte-

length UDP packets to the PU-RX with a data rate of 5Mbps. SUs must

monitor and estimate the instantaneous signal-to-noise ratio (SNR) of each

packet for overall decision making. In the simulation experiments, SUs listen

to channel 36 for 5 milliseconds per second, then estimate the normalized
2This study was developed using version 3.30 documented on the web page https://www.nsnam.

org/releases/ns-3-30/documentation/
3Full MCS table is available in http://mcsindex.com/

Page -26

https://www.nsnam.org/releases/ns-3-30/documentation/
https://www.nsnam.org/releases/ns-3-30/documentation/
http://mcsindex.com/


System Modeling & The Experimental Setup ▷ The simulation & noise
modeling

SNR over the entire simulation time. After that, SUs determine their local de-

cision about the channel state, busy or ideal, according to the estimated SNR

value.

4.2.1 The general κ− µ fading distribution

A group of studies searched for the optimal distribution that suits the level of

the signal power propagated over communication channels. The general κ− µ

fading model was first proposed and examined in [16]. This study presents

a general κ − µ distribution that can be controlled via the two parameters, κ,

and µ. By controlling these parameters, many types of fading channels can

be modeled. Table 4.1 below shows the parameters’ values for different types

of fading channels.

Fading Channels

Fading Channel types Parameter κ Parameter µ

Nakagami-m → 0 µ (or m)
Rayleigh → 0 1
Rician κ 1
One-sided Gaussian → 0 0.5

Table 4.1: κ− µ values for different fading channel types

In our work, we aim at investigating the performance of several CSS tech-

niques in the general κ − µ fading channel. Unfortunately, the ns3 package

has no such model of this type of fading. Therefore, we developed our κ−µ fad-

ing model for the ns3 simulator. Here, we employed the well-known rejection

sampling method to directly sample random variables from the κ − µ distri-

bution [48]. The subsection 2.2.4 provides more information about the κ-µ

fading, while appendix A.2 explains the rejection sampling method. Appen-

dices A.1 and B.1.1 introduces the the implementation of this model within

the ns3 simulation platform. In our experiments, we assume that the prob-

ability of PU-Tx activity is 0.5. While the experiments for various types

of fading channels were carried out for the κ → 0, µ = 3.5 (Nakagami) and

the κ = 2.65, µ = 1 (Rician). In the page below, brief information on the con-

figuration of a Rayleigh fading channel experiment is provided.
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Stationary CR with Rayleigh fading
(brief info.)
==================================

Time:2400s; TxPower:3dBm

Signal(dBm) Noi+Inf(dBm) SNR(dB)
============================================
-84.7 -93.9 9.28

Kappa = 1.18e-38; Mu = 1; (Rayleigh)

Distance from, to(m)...
PU -->> SU Distance

0- 15 (PU-Rx)
1- 120
2- 120
3- 120
4- 120
5- 120
6- 120
7- 120
8- 120
9- 120
10- 120

Channel is avaliable for // 1.22e+03s // time long
Propability of the PU is inactive: 51%
Channel is not avaliable for // 1.18e+03s // time long
Propability of the PU is active: 49%

Mobile CR with Rayleigh fading
(brief info.)
==============================

Time:2400s; TxPower:3dBm

Signal(dBm) Noi+Inf(dBm) SNR(dB)
============================================
-83.9 -93.9 10

Kappa = 1.18e-38; Mu = 1; (Rayleigh)

Distance from, to(m)...
PU -->> SU Distance

0- 15 (PU-Rx)
1- 149
2- 377
3- 184
4- 54.7
5- 195
6- 111
7- 87.5
8- 131
9- 106
10- 122

Channel is avaliable for // 1.21e+03s // time long
Propability of the PU is inactive: 50.2%
Channel is not avaliable for // 1.19e+03s // time long
Propability of the PU is active: 49.8%

Configure a Rayleigh fading channel simulation.

4.2.2 The noise Model

While ns3 is in nature a discrete-event simulator, we can only track and ex-

tract the data when the PU becomes active (i.e., during the ON-intervals).4 To
4That because in the off-intervals the PU become silent and there are no more events to track. See

https://www.nsnam.org/docs/release/3.30/manual/html/events.html for more explanation
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overcome this problem, we developed a noise model using the python language

and embedded it in the ns3. The noise model follows the Gaussian distribu-

tion and can be controlled using the mean of the distribution (µ) as well as

the standard deviation (σ). A higher value for µ and σ indicates a very-noisy

environment, while a lower value indicates a low-noise environment.

We started the experiments by assuming the parametric noise model has

-89.75 dBm and µ and the σ parameters = 1.0 dBm. The low-noise environ-

ment, abbreviated as Env1/1, the coded as given in appendix B.2.1. Then,

we raised these values to model different channel conditions. Table 4.2 below

depicts the various noise conditions that were considered and their abbrevia-

tions.

** low-noise environment High-noise environment

µ 1.0 dBm 1.5 dBm
σ -89.75 dBm -89.25 dBm -88.25 dBm -87.5 dBm
Abb. Env1/1 Env1/2 Env2/1 Env2/2

Table 4.2: The different noise conditions

The resulting data was then combined with that of ns3 to obtain the com-

plete dataset that is in the experiments.5 While the Modulation and Coding

Index (MCS Index) was set to ’HtMcs6’. The packet size and the applica-

tion data rate were also set to 1500-byte and 5Mb/s, respectively. We found

the best configuration of the noise model to generate 2-samples per time key

(time key indicates the second’s index, i.e., 2-samples/s). The best number of

samples taken during the sensing duration can be calculated by dividing the

sensing interval by the packet size and the application data rate. This already

suits the data that was produced from the ns3 and reflects the probability of

the PU-Tx being active that was configured. Therefore the accurate selection

of the MCS Index, the size of the packet, and the application data rate has a

direct effect on the performance measurement.

5There is a note to be mentioned when FC loses a sample of SU at a certain instant, it randomly
compensate this sample with a low value to get feature vectors with the same length.
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Results and & discussion

This chapter discusses the most important findings of this work. The per-

formance for Non-CSS/CSS techniques is measured by the receiver operating

characteristic (ROC) curve. This curve plots the P(D) versus the P(FA) for dif-

ferent SNR settings. High P(D) versus low P(FA) indicates good detection, and

the opposite indicates bad detection. See appendix A.3 for more information

on the ROC curve. The experiments were conducted for the Non-CSS, the

and/Or-based CSS, and the KMeans-based CSS techniques.

5.1 Stationary CRN vs. Mobile CRN

We started the experiments by assuming that the parametric noise model has

-89.75 dBm and 1.0 dBm values for the µ and the σ parameters, i.e., for

Env1/1. Then, we raised these values to model different channel conditions.

Table 4.2 above depicts the various noise conditions that were considered.

In the addition, the experiments were initially carried out for Rayleigh fading

(i.e., κ → 0 & µ = 1).

Figure 5.1 and figure 5.2 show that the performance is generally better

for the stationary CR (StaCR) as compared to the mobile CR (MobCR). Fig-

ure 5.1a-left shows that the And-based technique in the StaCR and under

Rayleigh fading seems to give the worst-case and proximate to the Non-CSS

performance. This is because when a SU wrongly detects the presence of

the PU, it affects the global decision made by all SUs. Figure 5.1a-left also

shows that the Or-based and the KMeans-based techniques have perfect and

comparable detection performance. In MobCR under Rayleigh fading, the

KMeans-based technique is very slightly superior to the Or-based technique,

as clearly appears in figure 5.1a-right. However, the latter gives good per-

formance while the Non-CSS and the And-based techniques give a degraded
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(a) ROC of different CSS techniques, [Rayleigh, N=3SUs, M=1500s]

(b) KMeans-based CSS with different training samples, [Rayleigh, N=3SUs]

(c) KMeans-based CSS with different number of collaborative SUs, [Rayleigh, M=1500s]

Figure 5.1: StaCR (left) vs. MobCR (right) of Rayleigh fading

Page -31



Results and & discussion ▷ κ− µ setup

performance.

Figure 5.1b and figure 5.1c show that the number of samples, M, has no

clear effect while the number of SUs, N, have an obvious effect on the per-

formance of the KMeans-based technique, regardless of the mobility nature

of SUs. Figure 5.1b and figure 5.1c generally show that we need about 1500

samples and at least 3 SUs to reach acceptable performance.

Figure 5.1 confirms that employing more than 5SUs for cooperative sensing

as well as using more than the 1500s don’t massively improve the efficiency

or accuracy of the system. The results also show that all techniques provide

slightly better performance in the StaCR as compared to MobCR. This is due

to the more dynamic nature of mobile channels, which introduces difficulties

in identifying the presence of PU. This leads to a higher probability of F(A).

5.2 κ− µ setup

Returning to table 4.1, we easily conclude that the Rayleigh fading combines

the Rician fading set and the Nakagami fading set. Rayleigh fading can be

simulated as κ approaches 0 and µ equals 1. Different types of Rician fading

can be modeled by fixing the µ parameter and tuning the κ. Also, different

types of Nakagami fading can be modeled by fixing the κ parameter and tuning

the µ parameter. The experiments for other fading channel types were carried

out for κ → 0, µ = 3.5 (Nakagami) and κ = 2.65, µ = 1 (Rician).

In Nakagami fading channels, figure 5.2a, and Rician fading, figure 5.2b, it

is clear that the KMeans-based technique and the Or-based technique almost

provide comparable performance. That is superior to the And-based tech-

nique in the StaCR. On the other hand, the KMeans-based technique out-

performs other techniques in MobCR. In general, the performance is better

under the Nakagami and Rician fading as compared to Rayleigh fading for all

CSS techniques, the And-based technique, the Or-based technique, and the

KMeans-based techniques. Thus, we conclude that the characteristic of the

fading environment is highly affecting the performance of all CSS techniques

as shown in the figures, figure 5.2 and figure 5.3.

Figure 5.3 highlights the performance of the KMeans-based technique of

Rayleigh fading compared to other fading distributions. The results show that

the performance of the KMeans is best in the Nakagami, figure 5.3a, and
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(a) Nakagami, [N=3SUs, M=3500s]

(b) Rician, [N=3SUs, M=3500s]

Figure 5.2: The performance of the various technique under the effect of the
different fading channels
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(a) Rayleigh vs. Nakagami, [N=3 SUs, M=1500]]

(b) Rayleigh vs. Rician, [N=3 SUs, M=1500]

Figure 5.3: Comparison the effect of different fading channels on the performance of
the KMeans-based technique
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Rician fading channels, figure 5.3b. This is because when the value of κ or

µ increases, the dispersion of the faded signal decreases. As a result, the

distance between the clusters’ centroids increases.

Comparing the performance of the KMeans-based technique for StaCR and

MobCR for all types of fading channels as also depicted in figure 5.3, we

found that mobility causes performance degradation. While increasing the

parameters κ and µ leads to a decrease in the dispersion of the fading signal,

the mobility increases the dispersion of the fading signal due to the spatial

diversity effects of mobile nodes. Thus, the signal dispersion has a significant

impact on the sensing performance.

5.3 Noisy environment

In a noisy environment, it becomes difficult for SUs to truly detect the pres-

ence of the PU signal. This is because they become unable to determine the

nature of the captured signal. Figure 5.4 compares different CSS techniques

in two different noisy environments, Env1/1 (µ= - 89.75, σ= 1.0) and Env2/1

(µ= - 88.25, σ= 1.5). The performance of CSS deteriorates in a high-noise

environment, especially for the And-based technique.

In StaCR, figure 5.4a, the performance of the KMeans-based and the Or-

based technique are comparable in a low-noise environment. However, their

performance is degraded in a high-noise environment. The performance of

the Or-based techniques is slightly superior compared to the performance of

the KMeans-based technique. But, the KMeans-based technique is superior

and more stable as compared to other techniques in the MobCR, figure 5.4b.

Further, the results show that the performance of the And-based technique is

degraded.

Figure 5.5 depicts the KMeans-based CSS performance for Rician fading

in two noisy environments, Env1/2 and Env2/1, which are parametrized in

the previous table 4.2. Figure 5.5b and figure 5.5d show that the mobility

clearly affects the sensing data. The data is more dispersed in the mobility

scenario, leading to altering the place of the centroids (i.e. the Euclidean dis-

tance in MobCR > the euclidean distance in StaCR). This means that mobility

inevitably presents low performance. Figure 5.5c and figure 5.5d show the

effects of the noise level on the sensing data. Clearly, in a noisy environ-
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(a) StaCR of Rayleigh fading, [N=5SUs, M=1500s]

(b) MobCR of Rayleigh fading, [N=5SUs, M=1500s]

Figure 5.4: The performance of the various technique under the effect of different
noisy environments
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(a) StaCR, Env1/2 (b) MobCR, Env1/2

(c) StaCR, Env2/1 (d) MobCR, Env2/1

Figure 5.5: Data Clustering for different environments, [Rician, M=1500s]

ment, the clusters become more condensed. Thus, clusters’ centroids become

more close, causing difficulties for the ML techniques to accurately classify

the sensed data.

Table 5.1 summaries the numerical results for the noisy environments,

Env 1/1 and Env2/1, under the effect of different fading channels. The table

depicts the probability of detection, Pr(D), verses different reference points

of probability of false alarm, Pr(FA), r1 = 5%, r2 = 10%, and r3 = 15%. By

comparing the measurements, it is clear that the Pr(D) decreases when the

noise level is high, and thus, the performance in a high-noise environment
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Low-noise environment, Env1/1

StaCR MobCR
Row’s
order

Ch.
type

Spectrum
sensing

r1 = r2 = r3 = r1 = r2 = r3 =

techniques 0.05 0.1 0.15 0.05 0.1 0.15

1st

N
ak

ag
am

i Non-CSS 0.8281 0.8612 0.8827 0.6218 0.6838 0.7428
2nd And 0.7207 0.7537 0.7702 0.4660 0.5340 0.5810
3rd Or 0.9950 0.9950 0.9983 0.9682 0.9773 0.9773
4th KMeans 0.9967 0.9966 0.9966 0.9788 0.9803 0.9818
1st

R
ic

ia
n Non-CSS 0.8397 0.8777 0.9025 0.7318 0.7712 0.7909

2nd And 0.7719 0.8033 0.8182 0.5362 0.5756 0.6373
3rd Or 0.9967 0.9999 1.0000 0.97575 0.9803 0.9818
4th KMeans 1.0000 1.0000 1.0000 0.9863 0.9879 0.9909
1st

R
ay

le
ig

h Non-CSS 0.5917 0.6247 0.6528 0.5348 0.5620 0.5954
2nd And 0.3272 0.4165 0.4500 0.2954 0.3848 0.4439
3rd Or 0.9719 0.9802 0.9851 0.9303 0.9450 0.9681
4th KMeans 0.9736 0.9851 0.9868 0.9560 0.9670 0.9700

Height-noise environment, Env2/1

StaCR MobCR
Row’s
order

Ch.
type

Spectrum
sensing

r1 = r2 = r3 = r1 = r2 = r3 =

techniques 0.05 0.1 0.15 0.05 0.1 0.15

1st

N
ak

ag
am

i Non-CSS 0.4850 0.5966 0.6650 0.4030 0.4810 0.5160
2nd And 0.4285 0.5040 0.5487 0.2239 0.2904 0.3237
3rd Or 0.8615 0.9005 0.9250 0.7700 0.8623 0.8950
4th KMeans 0.8876 0.9388 0.9586 0.8850 0.9107 0.9319
1st

R
ic

ia
n Non-CSS 0.5370 0.6430 0.7055 0.4136 0.4879 0.5530

2nd And 0.4770 0.5480 0.6100 0.2015 0.2712 0.3303
3rd Or 0.8980 0.9370 0.9640 0.7651 0.8742 0.9015
4th KMeans 0.9322 0.9669 0.9802 0.9045 0.9469 0.9560
1st

R
ay

le
ig

h Non-CSS 0.3867 0.4297 0.4743 0.3820 0.4409 0.4636
2nd And 0.1965 0.2380 0.3060 0.1515 0.1742 0.2409
3rd Or 0.7960 0.8644 0.9000 0.7166 0.7924 0.8196
4th KMeans 0.6810 0.8331 0.8942 0.8181 0.8697 0.9010

Table 5.1: Summary of numerical results for the noisy environments Env 1/1 and
Env2/1, [N=5SUs, M=1500s]

(Env2/1, the second part of the table) is degraded. The second rows of various

fading channels show that the performance of the And-based technique is the

lowest. The performance of this technique is far from reaching the value

of 90% for Pr(D) versus the value of 10% for Pr(FA). For example, while the

Pr(D) of stationary Rician fading was approximately equal 80% versus 10% of

Pr(FA), it decreases too much less in most experiments (i.e., The Pr(D) is even

lower 20% with the MobCR).

The performance of the Non-CSS techniques is low as shown in table 5.1.

The Pr(D) was around forty percent versus 10% of Pr(FA) of the Rayleigh fad-
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Figure 5.6: StaCR vs MobCR of KMeans-base CSS for different noisy environments,
[Rayleigh, N=5SUs, M=1500s]

ing with Env2/1. Table 5.1 also shows great convergence in the performance

of the Or-based and the KMeans-based techniques. They achieve high perfor-

mance that reaches 100 percent versus 10% of Pr(FA) in the KMeans-based

techniques under stationary Rician fading and Env1/1.

Finally, figure 5.6 illustrates the mobility and noise effects on the perfor-

mance of the KMeans-based technique for Rayleigh fading. As seen, the best

performance corresponds to a lowest-noise environment, while the worst per-

formance corresponds to a highest-noise environment. An exception here to

the mobility conditions, the MobCR introduces superior performance com-

pared to StaCR in high-noise environments. Actually, this is not an exception

in the true sense. The good performance comes from the approximation be-

tween the parameters of the Gaussian distribution and the parameters of the

κ − µ distribution while this was already achieved here with the high-noise

environments.

From the above results, we can deduce that the KMeans-based and the Or-

based techniques with the stationary scenarios provide the best comparable

Page -39



Results and & discussion ▷ Noisy environment

performance. The And-based and the Non-CSS techniques provide the worst

performance in stationary scenarios. In mobile CR, the And-based and the

Non-CSS techniques provide highly degraded performance. Also, the perfor-

mance of the KMeans-based and the or-based techniques is better as com-

pared to the And-based and the Non-CSS techniques, but at the same time

not better than the stationary case. Further, the results show that at least 3+

collaborative SUs and about 1500 samples are needed to improve the perfor-

mance of the KMeans-based and the Or-based techniques. Finally, we found

the performance of the KMeans-based technique is stable in the high-noise

environment as compared to the And-based and the Or-based techniques.
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Conclusion & Future Work

CR has been proposed as a promising solution to the problem of spectrum

scarcity. The life cycle of the CR goes through spectrum sensing task, spec-

trum analysis task, and making joint decisions on spectrum selection task.

SS is the first task of the cognitive radio life cycle during which spectral holes

are detected. The most well-known SS techniques are energy detection-based,

covariance matrix-based, and cyclostationary-based. Machine learning-based

techniques are other modern types of innovative spectrum sensing. In these

methods, the sensing process to detect the PUs activities passes through two

phases, which are: The feature extraction phase, and the decision-making

phase.

Literature studies conclude that the performance of the CSS schemes can

be affected by many factors. First, the number of collaborating SUs. Second,

the PU transmit power. Increasing the number of collaborating SUs and the

PU transmit power can improve the performance. Third, the number of active

PUs. Increasing the number of active PUs can deteriorate the performance

because of the high interference. Finally, the number of training samples.

Increasing the number of training samples increases the classification time

and computational complexity. However, these studies are conducted for sta-

tionary CR. As nodes in wireless networks are normally mobile, studying the

performance of CSS techniques is needed. Throughout this work, we focused

on the KMeans-based technique.

A small-scale CRN was adopted in this thesis and simulated using the

well-known ns3 simulation platform. The general κ− µ fading channel is con-

sidered. The κ − µ fading signal was sampled using the well-known rejection

sampling method. As ns3 is a discrete-event network simulator, there was a

need to develop a noise model using python language. Non-CSS and different
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types of CSS techniques were considered.

This thesis concludes that:

• There are two main reasons for the degradation of CSS performance,

which are: mobility and noise level. The nodes’ movement and the high

noise complicate the process of classifying data.

• The strength of ML techniques appears in highly faded channels.

• The And-based technique has the lowest performance in stationary sce-

narios, as well as in mobile CR for a small number of samples and SUs.

• Non-CSS has low performance in stationary scenarios. It also shows

highly degraded performance in mobile CR. However, the Or-based and

the KMeans-based techniques provide the best performance in stationary

scenarios.

• Although the KMeans-based and the Or-based techniques have slightly

lower performance in mobile scenarios, their performance can be im-

proved by increasing the number of cooperative SUs and the training

samples. We noticed that increasing the number of SU and number of

training samples above certain values, does not lead to an increase in

performance.

• In a high-noise environment, the performance of the KMeans-based tech-

niques outperforms other techniques, whereby the clusters that repre-

sent the channel state have similar densities. This occurs when the re-

ceived PU signal is weak and the noise level is high. These are the key

parameters that affect CSS performance.

In the following, ideas for future research are presented:

• To improve the performance in mobile networks, spatial diversity may

provide useful information that can be utilized to improve the accuracy

of estimating the PU states. This spatial diversity results from the dif-

ferent SUs positions and their movement. The accurate estimate of the

channel states inevitably leads to massive improvement in the sensing

performance. A certainty factor that represents how much estimates of

SUs are trusted can be utilized. Appendix B.1.3 shows a simple idea of
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the proposed factor. Finding new methods for extracting the sensing data

features can be very useful for this task.

• Further research can be devoted to other ML techniques, such as the

GMM.

• In our simulations, we used the rejection sampling approach for modeling

the fading. Other methods can be studied. See appendix B.1.2 and

appendix A.2 for more information on the rejection sampling method.

• Correct tuning of sensing parameters, such as sensing duration and pe-

riods, probability of primary user activity, number of samples taken per

sensing period, etc., has a direct impact on sensing performance. The se-

lection of the exact values of these parameters is mainly modified based

on the type of simulated networks and their protocols. Here, some limi-

tations regarding network technologies and protocols are visual and are

worth considering as directions for future research. The standards that

govern these parameters constitute another aspect worth considering as

well.

• Whereas different levels of SUs’ cooperation are considered, we assume

that all SUs that participate in the sensing process provide honest infor-

mation about what has been observed from their point of view. However,

the security aspect may be considered. Of course, if we assume scenarios

when some adversary nodes deliberately manipulate the sensing data to

falsy determine the channel state.
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Related topics

A.1 Ns3 implementation of general κ− µ fading

A.1.1 Introduction

In the wireless network, when the signal travels from the transmitter to the

receiver, it suffers from several types of attenuation such as path loss and

multipath [9]. The value of the attenuation depends on several factors such as

the distance from the transmitter to the receiver, the time, the working radio

frequency, and scattered objects along the path from the transmitter to the

receiver. Due to the multipath effect, several versions of the transmitted signal

arrive at the receiver at different time delays. However, this time variation of

the received signal power is known as fading.

The types of fading are divided into large-scale fading and small-scale fad-

ing. A large number of distributions have been proposed in an attempt to

find the best model that approximates the distributions of different types of

fading. In general, the large-scale fading signal is well characterized by the

lognormal distribution. While small-scale signal variation is described by sev-

eral other distributions, such as the Rayleigh, Rice, Nakagami-m, Hoyt, and

Weibull distributions [12]. In most cases, Nakagami-m and Rayleigh fadings

are described by the gamma distribution whereas the Rice fading is described

by the zero-order modified Bessel function of the first kind. Yacoub et al. [16]

introduced a general κ − µ fading model that derives these common types of

fading by tuning the κ and µ parameters.

A.1.2 Model implementation

In our work, we aimed at investigating the performance of several CSS tech-

niques in the general κ − µ fading channel. Therefore, there was a need to

develop our κ − µ fading model for the ns3 simulator. Here, we employed the
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Figure A.1: The drawn samples from the KappaMuGeneralPropagationLossModel of
different values of κ, µ.
[κ → 0 with µ = 0.5, 1.0,&3.0], [µ = 1.0 with κ = 0.75, 1.0,&4.0]
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well-known rejection sampling method to directly sample random variables

from the κ− µ distribution [48].

Our κ−µ fading model for ns3 is developed as the "ns3::KappaMuGeneral-

PropagationLossModel" class. The newly Ns3 developed propagation loss class

must be registered to the generic interface, namely "PropagationLossModel"

via the TypeId system. TypeId is a general class that records a lot of meta-

information about the ns3 classes. However, we firstly model a random num-

ber class which we called "ns3::KappaMuRandomVariable".

The KappaMuRandomVariable class is provided via instances of the "ns3::-

RandomVariableStream" abstract class. It should implement virtual "Get-

Integer (void)" and "GetValue (void)" member functions which use the rejec-

tion method to randomly draw numbers. Later, a specific member func-

tion returns these random numbers to the KappaMuGeneralPropagationLoss-

Model’s member function via requesting. Further, the KappaMuGeneralProp-

agationLossModel class should implement a "CalcRxPower (double txPow-

erDbm, . . . )". CalcRxPower takes a transmitted power value as a parame-

ter, then returns a floating value representing the received power toward the

requesting member function.1

Virtual member functions GetInteger (void) and GetValue (void) are over-

loaded to new versions that pass three parameters corresponding to the κ and

µ parameters, as well as the transmitted power. Therefore, we can control the

nature of the data yielded from our propagation model.

We test the histogram for more than 6000 samples that are randomly

drawn from the KappaMuGeneralPropagationLossModel for different values

of κ, and µ ([κ → 0 with µ =0.5, 1.0, & 3.0], [µ =1.0 with κ =0.75, 1.0, & 4.0]).

Figure A.1 depicts that the drawn random numbers that fit the κ − µ power

probability density function. The transmission power was set to 30dbm. The

developed model provides samples that are close to the exact distribution

function. Further, the figure shows that Rayleigh and Rician distributions

can be obtained as special cases by setting proper values for the parameters,

κ and µ.

1https://www.nsnam.org/docs/doxygen/classns3_1_1_random_variable_stream.html
lists the ns3::RandomVariableStream Class’ APIs while https://www.nsnam.org/docs/doxygen/
classns3_1_1_propagation_loss_model.html lists the ns3::PropagationLossModel Class’ APIs
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Figure A.2 depicts the effect of the transmitted power on the yielded data.

Here, the transmission power was set to 0dbm. As seen, the κ and the µ

parameters affect the shape of the distribution, while the power influences

the spread of the distribution.

(a) The drawn samples from the KappaMuGeneralPropagationLoss-
Model for different values of µ and κ → 0

(b) The drawn samples from the KappaMuGeneralPropagationLoss-
Model for different values κ and µ = 1

Figure A.2: The Effect of the power on the yielded data

Page -48



Related topics ▷ Sampling methods

Figure A.3: The reject-accept algorithm 2

A.2 Sampling methods

A random number generator (RNG) is hardware or computer software that

generates a series of numbers or symbols that cannot reasonably be expected.

There are two types of RNG are true-RNG and Pseudo-RNG (PRNG). True-RNG

took its name from the assumption that it can be used to generate real sets of

random numbers. Whereas PRNG algorithms conceptually provide a large

number of independent streams. Therefore determining the next random

number is guided by the seed. The importance of the PRNG emerges from

the fact that it can be used to construct random number generators for differ-

ent statistical distributions. However, PRNGs cannot be used for applications

that worry about really unpredictable numbers, since constructing real RNG

from deterministic things is considered impossible.

Some probability distributions can be easy to sample, while others with a

complex density function are more complex. Therefore, some proposals offer

ideas to facilitate this task. For example, the well-known rejection-sampling

algorithm. Rejection sampling, acceptance-rejection, or accept-reject is a type

of Monte Carlo random sampling method used to generate observation directly

from density functions [48]. The idea behind this method is to use a well-
2Source: https://towardsdatascience.com/what-is-rejection-sampling-1f6aff92330d
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defined distribution easy to sample (the proposal distribution) for sampling a

more complex distribution (the target distribution).

Let f(x) and g(x) are respectively the target and the proposal distribution.

f(x) ≤ c ∗ g(x) where c is constant, then, we can use c ∗ g(x) to envelope the

target distribution. Thus when a new sample comes in, it is either rejected or

accepted based on its position regarding f(x). Therefore, the new sample will

be accepted if it falls under the target distribution while it will be rejected if it

is above the target distribution. The figure A.3 shows that a redpoint drawn

at random is acceptable because it lies under the target distribution. The the

set of acceptance points x then follow the target distribution x ∼ f(x).

The algorithm works as follow:

• Start:

• Repeat for ∀i,

(i represents the required number of samples)

– Draw x ∼ g(x);

– Draw u ∼ U(0, 1); U: uniform distribution

– Then,


accept(xi), if ui ≤ f(xi)

c∗g(xi)

reject(xi), otherwise

• End

A.3 Receiver operating characteristic curve

Receiver operating characteristics (ROC) is one of the primary measures of

performance of classification algorithms. The Roc curve is a probability curve

that plots the true positive rate (TPR)- x-axis, versus the true positive rate

(FPR)- y-axis. To truly plot the ROC curve, we first need to construct a con-

fusion matrix by comparing the actual classes with the predicated ones as

follows,

A
ct

u
al

Positive Negative

Positive TP FN

Negative FP TN

* Predicated
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Figure A.4: Good/Bad ROC curve 3

Then TPR (Sensitivity) can be calculated from the confusion matrix as follow,

equation A.1

TPR =
TP

TP + FN
(A.1)

While FPR (1 - Specificity) can be calculated from the confusion matrix as

follow, equation A.2

FPR =
FP

TN + FP
(A.2)

In this curve, high TPR, sensitivity, recall, or high probability of detection P(D)

versus low FPR or probability of alarm P(FA) indicates the good detection while

the opposite indicates the bad detection. Figure A.4 depicts the best and the

worst ROC curves.

3Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Code synopsis

B.1 ns3 Code synopsis

B.1.1 Source code: The κ− µ general distribution

Each class in ns3 must implement a static public member function called Get-

TypeId (void) which registers a unique string into the TypeId system. TypeId

system consists of important metadata of classes so ns3 can derive objects

from the correct class.

Listing B.1: κ− µ general distribution, GetTypeId

61 TypeId

62 KappaMuGeneralPropagationLossModel::GetTypeId (void)

63 {

64 static TypeId tid =

65 TypeId ("ns3::KappaMuGeneralPropagationLossModel")

66 .SetParent<PropagationLossModel> ()

67 .SetGroupName ("Propagation")

68 .AddConstructor<KappaMuGeneralPropagationLossModel> ()

69

70 .AddAttribute ("Kappa",

71 "the ratio of the total power of the line-of-sight

(LOS) components to the total power of the

reflected waves kappa should be > 0",

↪→

↪→

72 DoubleValue (DBL_MIN),

73 MakeDoubleAccessor

(&KappaMuGeneralPropagationLossModel↪→

74 ::SetKappa,

75 &KappaMuGeneralPropagationLossModel

76 ::GetKappa),

77 MakeDoubleChecker<double> ())

78

79 .AddAttribute ("Mu",

80 "mu is a value related to multipath fading, should

be > 0",↪→

81 DoubleValue (DBL_MIN),

82 MakeDoubleAccessor (

83 &KappaMuGeneralPropagationLossModel::SetMu,
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84 &KappaMuGeneralPropagationLossModel::GetMu),

85 MakeDoubleChecker<double> ())

86

87 .AddAttribute ("KappaMuRv",

88 "Access to the underlying KappaMuRandomVariable",

89 StringValue ("ns3::KappaMuRandomVariable"),

90 MakePointerAccessor

(&KappaMuGeneralPropagationLossModel↪→

91 ::m_kappaMuRandomVariable),

92 MakePointerChecker<UniformRandomVariable> ())

93 ;

94 return tid;

95 }

B.1.2 Source code: Rejection-sampling method

Listing B.2: κ− µ general distribution, accept-reject method

96 // Get a uniform value from KappaMuRandomVariable.

97

98 double

99 KappaMuRandomVariable::GetUnifrormValue (double min, double max)

100 {

101 NS_LOG_FUNCTION (this << min << max);

102 double v = rand();

103 v = v/RAND_MAX;

104 v = min + v * (max - min);

105 return v;

106 }

107

108 /**
109 * The code for the following generator functions was developed

110 * using the Rejection sampling method.

111 */

112

113 double

114 KappaMuRandomVariable::GetValue

115 (double kappa, double mu, double power)

116 {

117 NS_LOG_FUNCTION (this << kappa << mu);

118 while (1)

119 {

120 double u1 = KappaMuRandomVariable::GetUnifrormValue (0.0, 3.0);

121 // Set the envolop (the proposal function time constant = 100.0).

122 double u2 = KappaMuRandomVariable::GetUnifrormValue(0.0, 2.5);

123 double value = KappaMuRandomVariable::ComputeKappaMuPdf (u1,

kappa, mu);↪→

124

125 NS_LOG_DEBUG ("The power before the fading " << power <<
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126 "W; \t The power to be estimate after fading " << power * u1);

127

128 // Sampling from a kappa-mu pdf, See Rejection sampling:

129 // http://en.wikipedia.org/wiki/Rejection_sampling

130

131 if (u2 <= value)

132 {

133 return u1*power;

134 break;

135 }

136 }

137 }

B.1.3 Certainly factor

Listing B.3: Certainly factor

138 double ComputeCertianly (double receivedSNR)

139 {

140 int16_t highRxPwr = -80.0; // dBm.

141 int16_t lowRxPwr = -100.0; // dBm.

142

143 double res;

144

145 if (receivedSNR > highRxPwr)

146 receivedSNR = highRxPwr;

147 if (receivedSNR < lowRxPwr)

148 receivedSNR = lowRxPwr;

149

150 res = 5 * (receivedSNR + 100);

151

152 return res / 100;

153 }

B.2 Python Code synopsis

B.2.1 Source code: Noise Modling

Listing B.4: Noise Modling

154 def get_truncated_normal(mean, sd, low, upp):

155 a=(low - mean) / sd

156 b=(upp - mean) / sd

157 return truncnorm(a, b, loc=mean, scale=sd)

158

159 nf = -93.9660 # noise floor

160 nmax = abs(nf)

161 nsd = 1.0
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162 n_su = int(input("Please, input number of SUs: ")) # number of STAs

163 total = [0] * n_su

164

165 for i in range(l): # number of samples

166 for j in range(n_su):

167 # replace '0.000000' with random value follow normal distribution

168 if lines[i][j] == '0.000000':

169 X = get_truncated_normal(mean=89.75, sd=nsd, low=82.0, upp=nmax)

170 tmp = X.rvs()

171 sig = -tmp

172 else:

173 tmp = float(lines[i][j])

174 sig = tmp

175 lines[i][j] = sig-nf #recivied_pwr

176 total[j] += lines[i][j]

177

178 norm = [total[i]/l for i in range(len(total))]

179

180 # normalizing the received power to the total received power

181 lines = [['{:07.6f}'.format(round(float(lines[i][j])/norm[j], 12)) for j

in range(n_su)] for i in range(l)]↪→

B.2.2 Source code: KMeans algorithm

Listing B.5: Classification process of KMeans algorithm

182 # Belonging samples to a certain cluster by means of the set of centroid

183 def clustering(num, clus, initCen, par):

184 lagacy = par

185 dis = [0 for i in range(num)]

186 newClusters = [[] for i in range(num)]

187

188 for i in clus:

189 for j in range(len(dis)):

190 dis[j] = CalcEuclideanDis(i,initCen[j])

191 index = dis.index(min(dis))

192 # append the sample feature to the closest cluster

193 if index == 0:

194 newClusters[0].append(i)

195 else:

196 newClusters[index].append(i)

197

198 means = CalcMean(newClusters)

199 variences = CalcVar(means, newClusters)

200

201 if (variences != lagacy):

202 means, newClusters = clustering(num, clus, means, variences)

203

204 return means, newClusters;
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B.2.3 Some of CSS techniques source codes

Listing B.6: And/Or-based CSS techniques

205 ############# The and tec.

206 def AndRule(file1, upper, snrth):

207 a = ReadContent(str(file1))

208 b = []

209

210 for i in range(len(a)):

211 ld = a[i][1] >= snrth # observing hight snr

212 for j in range(2, upper):

213 ld &= (a[i][j] >= snrth)

214 if ld == 1:

215 b.append([a[i][0], -1]) # channel unavailable cluster

216 else:

217 b.append([a[i][0], 1]) # channel available cluster

218

219 return b

220

221 ############# The or tec.

222 def OrRule(file1, upper, snrth):

223 a = ReadContent(str(file1))

224 b =[]

225

226 for i in range(len(a)):

227 ld = a[i][1] >= snrth # observing hight snr

228 for j in range(2, upper):

229 ld |= (a[i][j] >= snrth)

230 if ld == 1:

231 b.append([a[i][0], -1]) # channel unavailable cluster

232 else:

233 b.append([a[i][0], 1]) # channel available cluster

234

235 return b

Listing B.7: KMeans-based CSS techniques

236 # The KMeans tec.

237 def ML_Decision(file1, file2, upper, threshold, thr=thr):

238 sum1 = sum2 = 0

239 result = [];

240 decision = []

241 centriods = []

242 a = ReadContent(str(file1))

243 infile = open(str(file2), 'r')

244 centriods = infile.readline()

245 centriods = ast.literal_eval(centriods)
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246 infile.close()

247 c1 = centriods[0]

248 c2 = centriods[1]

249 d1 = d2 = 0

250

251 for i in range(upper-1) :

252 d1 += (c1[i]**2)

253 d2 += (c2[i]**2)

254 d1 = math.sqrt(d1); d2 = math.sqrt(d2)

255

256 if (d1 < d2) :

257 centriods[0] = c1

258 centriods[1] = c2

259 else :

260 centriods[1] = c1

261 centriods[0] = c2

262

263 for i in range(len(a)) :

264 for j in range(1, upper) :

265 sum1 += math.pow(a[i][j] - centriods[0][j-1], 2)

266 sum2 += math.pow(a[i][j] - centriods[1][j-1], 2)

267 result.append([math.sqrt(sum1), math.sqrt(sum2)])

268 sum1 = sum2 = 0

269

270 for i in range(len(result)) :

271 res = result[i][0]/result[i][1]

272 if (res >= threshold) :

273 decision.append([a[i][0], -1]) # channel unavailable cluster

274 else :

275 decision.append([a[i][0], 1]) # channel available cluster

276

277 return decision

B.2.4 ROC Curve source code

Listing B.8: ROC Curve

278 # Generating the ROC curve

279 def ROCcurve(actual, predicted):

280 tn = fn = fp = tp = 0

281

282 # -1/ PU is exist, channel does not available

283 # +1/ PU is not exist, channel does available

284

285 for i in range(len(actual)):

286 if actual[i][1] == +1 and predicted[i][1] == +1:

287 tn +=1

288 elif actual[i][1] == -1 and predicted[i][1] == +1:

289 fn +=1
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290 elif actual[i][1] == +1 and predicted[i][1] == -1:

291 fp +=1

292 else:

293 tp +=1

294

295 tpr = tp/(tp+fn) # True positive rate

296 fpr = fp/(fp+tn) # False positive rate

297

298 return fpr, tpr, fn, tp, tn, fp
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